CHAPTER 3

STRAIGHT LINES - 1

TOPICS

1. Inclination, slope of a line when inclination is given, slope of a line through two points.
2.Equation of a line in point slope form, two point form, Slope intercept form, intercepts form.
2. Equation of a line in normal form
3. Equation of a line in symmetric form and parametric form.
5.Reduction of a line into various forms
6.Point of intersection of two lines
7.Family of straight lines .
4. Condition for concurrency of three straight lines.
5. Angle between two lines
6. Length of perpendicular from a point to line
7. Distance between two parallel lines
8. Foot of the perpendicular from a point to a straight Line
13.Image of a line w.r.t a line
9. Concurrent lines- properties related to a triangle.

STRAIGHT LINES

INCLINATION OF A LINE

If a line L makes an angle θ with the positive direction of the x - axis, then θ is called the inclination of the line L .
The range of θ is $0 \leq \theta \leq \pi$.
If $\theta=0^{0}$, then the line L is parallel to the x - axis.
If $\theta=90^{\circ}$, then the line L is perpendicular to the x - axis.
Two lines have same inclination if and only if they are parallel.

Slope of a line:

If θ is the inclination of a line L then $\tan \theta$ is called the slope (or gradient) of the line L .
The slope of a line L is denoted by $\mathrm{m} . \mathrm{m}=\tan \theta\left(\theta \neq 90^{0}\right)$
e.g., i) If the inclination of a line is 45^{0}, then its slope is 1 .
ii) If the slope of a line is $\sqrt{3}$, than its inclination is 60^{0}.

Note 1: \quad The slope of x - axis is $0 .(\because \theta=0)$
Note 2: \quad The slope of a horizontal line is $0 .(\because \theta=0)$
Note 3: The slope of y-axis is not defined .
Note 4: The slope of a vertical line is not defined.
Note 5: if $1 . \theta=0^{0} \mathrm{~m}=0$.
2. $0^{\circ}<\theta<90^{\circ} \mathrm{m}>0$.
3. $\theta=90^{\circ} \mathrm{m}$ is not defined.
$4.90^{\circ}<\theta<180^{\circ} \mathrm{m}<0$.

THEOREM

The slope of the line passing through the points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{1} \neq x_{2}$. (If $\mathrm{x}_{1}=\mathrm{x}_{2}$, then the line is vertical and hence its slope is not defined.)

Note: Two non vertical lines are parallel iff their slopes are equal.
Note: Two non vertical lines are perpendicular iff the product of their slopes is -1 .

EQUATIONS OF A LINE

Equation of horizontal line

The equation of the horizontal line passing through the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{y}=\mathrm{y}_{1}$
Note 1: The equation of x - axis is $\mathrm{y}=0$.
Note 2: The equation of any line parallel to $x-a x i s$ is $y=k, k$ is an unknown constant.

Equation of vertical line

The equation of the vertical line passing through the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{x}=\mathrm{x}_{1}$.
Note 1: The equation of y - axis is $\mathrm{x}=0$.
Note 2: The equation of any line parallel to y-axis is $x=k, k$ is an unknown constant.

POINT -SLOPE FORM

The equation of the line passing through $A\left(x_{1}, y_{1}\right)$ and having slope m is $y-y_{1}=m\left(x-x_{1}\right)$.
Note: The equation of the line passing through the origin and having slope m is $y=m x$.

TWO POINT FORM

The equation of the line passing through $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is

$$
\left(y-y_{1}\right)\left(x_{2}-x_{1}\right)=\left(x-x_{1}\right)\left(y_{2}-y_{1}\right) .
$$

Note: The equation of the line passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\left(\mathrm{x}_{1} \neq \mathrm{x}_{2}\right)$ is

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \text { (or) } \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}
$$

INTERCEPTS:

If a line cuts x - axis at $A(a, 0)$ and the $y-a x i s ~ a t ~ B(0, b)$ then a is called the x - intercept and b is called the y - intercept of the line. y

SLOPE INTERCEPT FORM

The equation of the line having slope m and y - intercept c is $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.

Note: The equation of the line having slope m and $x-$ intercept a is $y=m(x-a)$.

INTERCEPT FORM

The equation of the line having $\mathrm{x}-\operatorname{intercept~} \mathrm{a}(\neq 0)$ and $\mathrm{y}-$ intercept $\mathrm{b}(\neq 0)$ is $\frac{\boldsymbol{x}}{\boldsymbol{a}}+\frac{\boldsymbol{y}}{\boldsymbol{b}}=\mathbf{1}$.

Proof:

Since the x - intercept of the line is a, the line cuts the x - axis at $(\mathrm{a}, 0)$ and the y - intercept of the line is b , the line cuts the y - axis at $(0, b)$.

Equation of the line is $\mathrm{y}-0=\frac{b-0}{0-a}(\mathrm{x}-\mathrm{a})$

$$
\begin{aligned}
& \mathrm{ay}=-\mathrm{bx}+\mathrm{ab} \Rightarrow \mathrm{bx}+\mathrm{ay}=\mathrm{ab} \\
& \Rightarrow \frac{b x}{a b}+\frac{a y}{a b}=1 \Rightarrow \frac{x}{a}+\frac{y}{b}=1
\end{aligned}
$$

EXERCISE - 3(A)

1. Find the slope of the line $x+y=0$ and $x-y=0$.

Sol. Given line is $x+y=0=>y=-x$ which is of the form $y=m x$.
Therefore slope $m=-1$
Equation of the line is $x-y=0 \Rightarrow y=x$.
\Rightarrow slope of the line is $\mathrm{m}=1$.
2. Find the equation of the line containing the points $(2,-3)$ and $(0,-3)$.

Sol. Equation of the line is $\left(y-y_{1}\right)=\frac{\left(y_{1}-y_{2}\right)}{\left(x_{1}-x_{2}\right)}\left(x-x_{1}\right)$
$(y+3)=\frac{(-3+3)}{(2-0)}(x-2)$
$2(y+3)=0 \Rightarrow y+3=0$
3. Find the equation of the line containing the points (1,2) and (1, -2).

Ans; $\mathrm{x}-1=0$
4. Find the angle which the straight line $y=\sqrt{3 x}-4$ makes with the Y-axis.

Sol. Equation of the line is $y=\sqrt{3} x-4$
Slope $m=\sqrt{3}=\tan \frac{\pi}{6}$
Angle made with $\mathrm{x}-$ axis $=\frac{\pi}{6}$
\therefore Angle made with $y-$ axis $=\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3}$
5. Write the equation of the reflection of the line $x=1$ in the Y - axis.

Sol. Equation of PQ is $\mathrm{x}=1$
Reflection about y - axis is $\mathrm{x}=-1 \quad$ i.e., $\mathrm{x}+1=0$

6. Find the condition for the points $(a, 0),(h, k)$ and $(0, b)$ where $a b \neq 0$ to be collinear.

Sol. $\mathrm{A}(\mathrm{a}, 0), \mathrm{B}(\mathrm{h}, \mathrm{k}), \mathrm{C}(0, \mathrm{~b})$ are collinear.
\Rightarrow Slope of $A B=$ Slope of $A C$
$\Rightarrow \frac{\mathrm{k}-0}{\mathrm{~h}-\mathrm{a}}=\frac{-\mathrm{b}}{\mathrm{a}} \Rightarrow \mathrm{ak}=-\mathrm{bh}+\mathrm{ab}$
$\Rightarrow \mathrm{bh}+\mathrm{ak}=\mathrm{ab} \Rightarrow \frac{\mathrm{h}}{\mathrm{a}}+\frac{\mathrm{k}}{\mathrm{b}}=1$
7. Write the equation of the straight lines parallel to X - axis is
i) at a distance of 3 units above the x-axis and
ii) at a distance of 4 units below the x - axis.

Sol. i)

Equation of the line which is at distance 3 units above the x - axis is $y=3$
ii)

Equation of the line which is at distance 3 units below the $x-$ axis is $y=-3$
8. Write the equation of the straight line parallel to Y-axis and i) at a distance of 2 units from the Y - axis to the right of it.ii) at a distance of 5 units from the Y-axis to the left of it.
Sol. i)

Equation of the required line is $\mathrm{x}=2$ or $\mathrm{x}-2=0$
ii)

Equation of the required line is $x=-5 \Rightarrow x+5=0$
II.

1. Find the slope of the straight line passing through the following points.
i) $(-3,8)(10,5)$
ii)
$(3,4)(7 .-6)$
iii) $(8,1),(-1,7)$ iv
$(-\mathbf{p}, \mathbf{q})(\mathbf{q} \cdot-\mathbf{p})(p q \neq 0)$

Sol. i) Slope $=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{8-5}{-3-10}=\frac{-3}{13}$
ii) Slope $=\frac{4+3}{3-7}=\frac{10}{-4}=\frac{-5}{2}$
iii) Slope $=\frac{1-7}{8+1}=\frac{-6}{9}=-\frac{-2}{3}$
iv) Slope $=\frac{q+p}{-p-q}=\frac{(p+q)}{-(p+q)}=-1$
2. Find the value of x, if the slope of the line passing through $(2,5)$ and $(x, 3)$ is 2 .

Sol. Slope of the line is 2 .
But slope $=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \Rightarrow \frac{5-3}{2-x}=2 \Rightarrow 2=2(2-x) \Rightarrow \quad x=2-1=1$
3. Find the value of y if the line joining the points $(3, y)$ and $(2,7)$ is parallel to the line joining the points $(-1,4)$ and $(0,6)$.
Sol. Let A $(3, y), B(2,7), P(-1,4)$ and $\mathrm{Q}(0,6)$ be the given points.
Slope of $\mathrm{AB}=\frac{\mathrm{y}-7}{3-2}=\mathrm{y}-7 \quad$ AND \quad slope of $\mathrm{PQ}=\frac{4-6}{-1-0}=\frac{-2}{-1}=2$
lines AB and PQ are parallel \Rightarrow their slopes are equal $\quad \Rightarrow y-7=2 \Rightarrow y=2+7=9$
4. Find the slopes of the lines i) parallel to and ii) is perpendicular to the line passing through $(6,3)$ and $(-4,5)$.
Sol. Let $\mathrm{A}(6,3)$ and $\mathrm{B}(-4,5) \Rightarrow$ Slope of $\mathrm{AB}=\frac{3-5}{6+4}=\frac{-2}{10}=-\frac{1}{5}$
i)Slope of the line parallel to line $A B=$ slope of $A B=-\frac{1}{5}$
ii) slope of a line perpendicular to $\mathrm{AB}=\frac{-1}{\text { slope of } \mathrm{AB}} \quad=5$
5. Find the equation of the straight line which makes the following angles with positive X - axis and which passes through the points given below
i) $\frac{\pi}{4}$ and $(0,0)$
ii) $\frac{\pi}{3}$ and (1,2)
iii) 135° and ($3,-2$) iv) 150° and ($-2,-1$)

Sol. i) inclination $\quad \theta=\frac{\pi}{4}$ and point is (0,0).
Slope of the line $\mathrm{m}=\tan 45^{\circ}=1$
Equation of the line is $y-y_{1}=m\left(x-x_{1}\right)$

$$
y-0=1(x-0) \quad \text { i.e., } y=x \text { or } x-y=0
$$

ii) ANS: $\sqrt{3} x-y+(2-\sqrt{3})=0$
iii) inclination $\theta=135^{\circ}$ and point $(3,-2)$

Slope $m=\tan 135^{\circ}=-\tan 45^{\circ}=-1$
Equation of the line is $y-y_{1}=m\left(x-x_{1}\right)$

$$
\Rightarrow y+2=-1(x-3)=-x+3 \text { i.e., } x+y-1=0
$$

iv) ANS: $\mathrm{x}+\sqrt{3} \mathrm{y}+(2+\sqrt{3})=0$
6. Find the equation of the straight line passing through the origin and making equal angles with co- ordinates axes.

Sol. since require lines are passing through origin and making equal angles with the axes, therefore angles are 45° and 135°.
i) $\theta=45^{\circ}$ and point (0,0)

$$
\text { slope } m=\tan 45^{\circ}=1
$$

\Rightarrow equation of the line is $y=m x \Rightarrow y=x$
ii) $\theta=135^{\circ}$ and point $(0,0) \Rightarrow$ slope $\mathrm{m}=\tan 135^{\circ}=-1$
\Rightarrow equation of the line is $y=m x \quad \Rightarrow y=-x$
7. The angle made by a straight line with the positive X-axis in the positive direction and the Y-intercept cut of by it are given below. Find the equation of the straight line.
i) $\mathbf{6 0}, 3$
ii) $\mathbf{1 5 0}^{\boldsymbol{\circ}}, \mathbf{2}$
iii) $45^{\circ},-2$ iv) $\tan ^{-1}\left(\frac{2}{3}\right), 3$

Sol. i) Slope $\mathrm{m}=\tan 60^{\circ}=\sqrt{3}$ and y intercept is $\mathrm{c}=3$
Equation of the line is $y=m x+c \quad \Rightarrow y=\sqrt{3} x+3$

$$
\sqrt{3} x-y+3=0
$$

ii) ANS : $\quad x+\sqrt{3} y-2 \sqrt{3}=0$
iii) ANS : $\quad x-y-2$
iv) inclination $\theta=\tan ^{-1}\left(\frac{2}{3}\right) \Rightarrow \tan \theta=\frac{2}{3}$

Slope $\mathrm{m}=\tan \theta=\frac{2}{3}$ and y intercept $\mathrm{c}=3$ Equation of the line is $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
$\Rightarrow y=\frac{2}{3} x+3 \Rightarrow \quad 3 y=2 x+9 \Rightarrow 2 x-3 y+9=0$
8. Find the equation of the straight line passing through $(-4,5)$ and cutting off equal non- zero intercepts on the co- Ordinate axes?

Sol. Line is making equal intercepts, let the inter cepts be a,a

Equation of the line in the intercept from is
$\frac{x}{a}+\frac{y}{b}=1 \quad \Rightarrow \frac{x}{a}+\frac{y}{a}=1 \quad \Rightarrow x+y=a$
This line is passing through $\mathrm{p}(-4,5) \Rightarrow \quad-4+5=\mathrm{a} \Rightarrow \mathrm{a}=1$
Equation of the line is $x+y=1$
9. Find the equation of the straight line passing through ($-2,4$) and making non-zero intercepts whose sum is zero. ?

Sol. Let the intercepts be a, b.
Given $\mathrm{a}+\mathrm{b}=0 \Rightarrow \mathrm{~b}=-\mathrm{a}$
Equation of the line in the intercept form is
$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}=1 \Rightarrow \frac{\mathrm{x}}{\mathrm{a}}-\frac{\mathrm{y}}{\mathrm{a}}=1 \Rightarrow \mathrm{x}-\mathrm{y}=\mathrm{a}$
This line is passing through $\mathrm{P}(-2,4)$

$$
\therefore-2-4=\mathrm{a} \Rightarrow \mathrm{a}=-6
$$

Equation of the required line is $x-y=-6 \Rightarrow x-y+6=0$
III.

1. Find the equation of the straight line passing through the point (3, -4) and making X and Y - intercepts which are in the ratio $2: 3$.?

Sol. Let the intercepts be a, b.
Given $\frac{\mathrm{a}}{\mathrm{b}}=\frac{2}{3} \Rightarrow \mathrm{~b}=\frac{3 \mathrm{a}}{2}$
Equation of the line in the intercept form is
$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}=1 \Rightarrow \frac{\mathrm{x}}{\mathrm{a}}+\frac{2 \mathrm{y}}{3 \mathrm{a}}=1 \Rightarrow 3 \mathrm{x}+2 \mathrm{y}=3 \mathrm{a}$
This line passes through $\mathrm{p}(3,-4) \quad \Rightarrow \quad 9-8=3 \mathrm{a} \Rightarrow 3 \mathrm{a}=1$
Equation of the required line is $3 x+2 y=13 x+2 y-1=0$
2. Find the equation of the straight line passing through the point $(4,-3)$ and perpendicular to the line passing through the points $(1,1)$ and $(2,3)$.
Sol. Let A(1, 1), B(2, 3)

Slope of $A B$ is $m=\frac{1-3}{1-2}=\frac{-2}{-1}=2$

Since require line is perpendicular to AB ,
\Rightarrow Slope of required line $=-\frac{1}{m}=-\frac{1}{2}$
Require line is passing through $\mathrm{p}(4,-3)$
\Rightarrow Equation of the line is $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\Rightarrow \mathrm{y}+3=-\frac{1}{2}(\mathrm{x}-4) \Rightarrow 2 \mathrm{y}+6=-\mathrm{x}+4 \Rightarrow \mathrm{x}+2 \mathrm{y}+2=0$
3. Show that the following sets of points are collinear and find the equation of the line L containing them.
i) $(-51),(5,5),(10,7)$
ii) $(1,-3),(-2,-6),(2,6)$
iii) $(a, b+c),(b, c+a),(c, a+b)$

Sol. i) Given points $\mathrm{A}(-5,1), \mathrm{B}(5,5), \mathrm{C}(10,7)$
Equation of $A B$ is
$\left(y-y_{1}\right)\left(x_{1}-x_{2}\right)=\left(x-x_{1}\right)\left(y_{1}-y_{2}\right)$
$(y-1)(-5-5)=(x+5)(1-5)$
$\Rightarrow-10+10=-4 \mathrm{x}-20$
$\Rightarrow 4 x-10 y+30=0$
or $2 x-5 y+15=0$
substituting c $(10,7)$,
$2 \mathrm{x}-5 \mathrm{y}+15=2.10-5.7+15$
$=20-35+15=0$
Therefore C is a point on the line AB .
A, B, C are collinear and Equation of the line containing them is $2 x-5 y+15=0$
ii) ANS: $3 x-y=0$
iii) Given points $\mathrm{A}(\mathrm{a}, \mathrm{b}+\mathrm{c}), \mathrm{B}(\mathrm{b}, \mathrm{c}+\mathrm{a}), \mathrm{C}(\mathrm{c}, \mathrm{a}+\mathrm{b})$

Equation of $A B$ is $\quad(y-(b+c))(a-b)=(x-a)(b+c-c-a)$
$\Rightarrow(y-b-c)(a-b)=-(a-b)(x-a)$
$\Rightarrow x+y-(a+b+c)=0$
Substituting $\mathrm{C}(\mathrm{c}, \mathrm{a}+\mathrm{b})$ in above equation
$c+a+b-a-b-c=0 \Rightarrow C$ lies on $A B$
Therefore, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear.
Equation of the line containing them is $x+y=a+b+c$
4. $A(10,4), B(-4,9)$ and $C(-2,-1)$ are the vertices of a triangle $A B C$. Find the equations of i) $\overrightarrow{\mathrm{AB}}$ ii) the median through A iii) the altitude through B IV) the perpendicular bisector of AB

Sol. i) vertices of the triangle are $\mathrm{A}(10,4), \mathrm{B}(-4,9), \mathrm{C}(-2,-1)$
\Rightarrow Equation of AB is $\quad(\mathrm{y}-4)(10+4)=(x-10)(4-9)$
$\Rightarrow 14 y-56=-5 x+50 \Rightarrow 5 x+14 y-106=0$
ii) let D be the mid-point of BC

$$
\Rightarrow \mathrm{D}=\left(\frac{-4-2}{2}, \frac{9-1}{2}\right)=(-3,4)
$$

Equation of AD is $(y-4)(10+3)=(x+3)(4-4)$

$$
\Rightarrow 13(y-4)=0 \Rightarrow y-4=0 \Rightarrow y=4
$$

iii)

Slope of AC is $\mathrm{m}=\frac{4+1}{10+2}=\frac{5}{12}$
since $B E$ is perpendicular to $A C, \quad$ Slope of $B E=\frac{-1}{m}=\frac{-12}{5}$
\Rightarrow Equation of the altitude BE is $\mathrm{y}-9=\frac{-12}{5}(\mathrm{x}+4)$

$$
\Rightarrow 5 y-45=-12 x-48 \Rightarrow 12 x+5 y+3=0
$$

iv) let F be the mid-point of AB

$$
\Rightarrow \mathrm{F}=\left(\frac{10-4}{2}, \frac{4+9}{2}\right)=\left(3, \frac{13}{2}\right)
$$

Slope of $\mathrm{AB} \mathrm{m}=\frac{4-9}{10+4}=\frac{-5}{14}$
\Rightarrow Slope of the line perpendicular to $\mathrm{AB}=\frac{-1}{\mathrm{~m}}=\frac{14}{5}$
Point is $=\left(3, \frac{13}{2}\right)$ and slope $\frac{14}{5}$
Equation of the perpendicular bisector AB is $\mathrm{y}-\frac{13}{2}=\frac{14}{5}(\mathrm{x}-3)$

$$
\begin{aligned}
& \Rightarrow 5 y-\frac{65}{2}=14 x-42 \\
& \Rightarrow 14 x-5 y-\left(\frac{65}{2}-42\right)=0 \\
& \Rightarrow 14 x-5 y-\frac{19}{2}=0 \\
& \Rightarrow 28 x-10 y-19=0
\end{aligned}
$$

