1. FUNCTIONS

DEFINITIONS, CONCEPTS AND FORMULAE:

 Function: Let A and B be non empty sets and f be a relation from A to B. If for each element a ∈ A, there exists a unique b ∈ B such that (a, b) ∈ f, then f is called a function from A to B. It is denoted by f : A → B.

The set A is called 'domain of f' and B is called 'codomain of f' and the set of all f images of the elements of A is called the range of f which is denoted by f(A).

- 2) One one function or Injection :-If f: A \rightarrow B is such that distinct elements of A have distinct f - images in B, then f is said to be a one - one function. f: A \rightarrow B is one- one \Leftrightarrow if $a_1, a_2 \in$ A and $f(a_1) = f(a_2)$, then $a_1 = a_2$.
- 3) Onto function or Surjection :- Let f : A → B. If every element of B occurs as the image of atleast one element of A, then we say that f is an onto function.

 $\label{eq:states} \begin{array}{l} f:A \rightarrow B \text{ is onto } \Leftrightarrow \text{ given } b \in B, \text{ there exists} \\ a \in A \text{ such that } f(a) = b. \end{array}$

- Bijection :- If f : A → B is both one one and onto, then f is said to be a bijection from A to B. f(a) = b ⇒ a = f⁻¹ (b).
- 5) Constant function :- A function f : A → B is said to be a constant function, if the range of f contains only one element. f(x) = c (a constant) for all x ∈ domain.
- 6) Identity function :- If A is a non empty set, f : A → A defined by f(x) = x for all x ∈ A is called the identity function on A and is denoted by I_A.
- 7) Composite function :- If $f : A \rightarrow B$, $g : B \rightarrow C$ are two functions, then gof : $A \rightarrow C$ is defined by (gof) (x) = g[f(x)] $\forall x \in A$.
- 8) Equality of two functions:- Two functions f and g are said to be equal if i) they are defined on the same domain A and
 - i) they are defined on the same domain A and codomain B
 ii) f(x) = c(x) for even (x)
 - ii) f(x) = g(x) for every $x \in A$.

9) Domain calculations: Function Method for finding domain of f

1. $\frac{f(x)}{g(x)}$ Delete the values of g(x) = 0 from R.

2. $\sqrt{f(x)}$ Solve $f(x) \ge 0$

3. $\frac{1}{\sqrt{f(x)}}$ Solve f(x) > 0

4. $\log f(x)$ Solve f(x) > 0

5. $\frac{1}{\log f(x)}$ Solve f(x) > 0 and $f(x) \neq 1$

LEVEL - I (VSAQ)

- 1. Define one one function. Give an example.
- A: If f: A → B is such that distinct elements of A have distinct f images in B, then f is said to be a one one function.
 Eg: f : R →R defined by f(x) = 3x + 2 is one one.

2. Define onto function. Give an example.

A: Let f : A → B. If every element of B occurs as the image of atleast one element of A, then f is said to be an onto function.

Eg: f : R \rightarrow R defined by f(x) = 3x + 2 is onto.

f: N → N is defined as f(x) = 2x + 3. Is f onto ? Explain with reason.

A: (Let x_1, x_2 domain N such that $f(x) = f(x_2)$. $\Rightarrow 2x_1 + 3 = 2x_2 + 3$ $\Rightarrow 2x_1 = 2x_2$ $\Rightarrow x_1 = x_2$ $\therefore f : N \rightarrow N$ is an injection) Here codomain of f = N. Range of f = { f(1), f(2), f(3),.....∞} $= { 5, 7, 9,.....∞}$ $\neq N$ Hence f : N \rightarrow N is not a surjection (onto) **MATHEMATICS-1A**

WWW.AIMSTUTORIAL.IN

4. $f : \mathbb{R} \to \mathbb{R}$ is defined as $f(x) = \frac{2x+1}{3}$, then	8. If $f(x) = \frac{x+1}{x-1}$, then find (fofof) (x).
this function is injection or not? Justify. A: Let $x_1, x_2 \in$ domain R such that $f(x_1) = f(x_2)$	A: (fof) (x) = $f\left(\frac{x+1}{x-1}\right)$
	$\frac{x+1}{x+1}$ + 1
$\Rightarrow \frac{2x_1+1}{3} = \frac{2x_2+1}{3}$	$= \frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1}$
$\Rightarrow 2x_1 + 1 = 2x_2 + 1$	$\frac{x+1}{x-1}-1$
$\Rightarrow 2x_1 = 2x_2$	
$\Rightarrow x_1 = x_2$ Hence f : R \rightarrow R is an injection.	$=\frac{x \neq 1 + x \neq 1}{\neq 1 + 1 \neq 1}$
5. If f : R \rightarrow R is defined by f(x) = $\frac{1 - x^2}{1 + x^2}$, then	$=\frac{2x}{2}$
find f (tan θ).	2
A: Given that f: R \rightarrow R, f (x) = $\frac{1-x^2}{1+x^2}$	$\therefore (f \circ f \circ f) (x) = f [f \circ f (x)] = f(x).$
$\therefore f(\tan \theta) = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos 2\theta.$	9. If $f : R \rightarrow R$, $g : R \rightarrow R$ are defined by
$1 + \tan^2 \theta$	$f(x) = 3x - 2$, $g(x) = x^2 + 1$, then find (g o f ⁻¹) (2). A: Let $f(x) = y$
6. If A = { -2, -1, 0, 1, 2} and f : A \rightarrow B is a	$\Rightarrow 3x - 2 = y$
surjection defined by f (x) = $x^2 + x + 1$, then	y+2 $z=1$
find B. A: f (-2) = (-2) ² + (-2) + 1 = 3	$\Rightarrow x = \frac{y+2}{3} = f^{-1}(y)$
$f(-1) = (-1)^2 + (-1) + 1 = 1$	x + 2
f(0) = 02 + 0 + 1 = 1 f(1) = 1 ² + 1 + 1 = 3	$\therefore f^{-1}(x) = \frac{x+2}{3}$
$f(2) = 2^2 + 2 + 1 = 7$	
Since $f : A \rightarrow B$ is a surjection, D = f(A)	$\therefore \left(\operatorname{gof}^{-1}\right)(2) = g\left[f^{-1}(2)\right] = g\left[\frac{2+2}{3}\right] = g\left(\frac{4}{3}\right)$
B = f (A) = {3, 1, 7}	
	$=\left(\frac{4}{3}\right)^2+1=\frac{16}{9}+1=\frac{25}{9}$.
7. If $f : R \rightarrow R$, $g : R \rightarrow R$ are defined by $f(x) = 4x - 1$ and $g(x) = x^2 + 2$, then find	
(i) $(\operatorname{gof})\left(\frac{a+1}{4}\right)$ (ii) $\operatorname{go}[\operatorname{fof}(0)]$	10.Find the inverse of the following functions
	(i) If a, $b \in R$, f : R \rightarrow R defined by f (x) = ax + b (a
A: f: R \rightarrow R, g: R \rightarrow R are given by f (x) = 4x - 1, g(x) = x ² + 2	≠ 0) (ii) f : R → (0 , ∞) defined by f (x) = 5 ^x
(i) (gof) $\left(\frac{a+1}{4}\right) = g\left[f\left(\frac{a+1}{4}\right)\right]$	(iii) f : (0, ∞) \rightarrow R defined by f (x) = log ₂ x (iv) f : Q \rightarrow Q defined by f(x) = 5x + 4
	(iv) f: $\mathbf{Q} \rightarrow \mathbf{Q}$ defined by f(x) = 5x + 4 A: (i) If a, b \in R, f : R \rightarrow R defined by f(x) = ax + b
$= g \left[\frac{4(a+1)}{4} - 1 \right]$	(a ≠ 0)
4 = g [a + 1 - 1]	Let $x \in \text{domain } R$ and $Y \in \text{codomain } R$ such that f
= g [a + + + 1] = g (a)	(x) = y
$= a^2 + 2$	$\Rightarrow ax + b = y$ $\Rightarrow ax = y - b$
(ii) g [(fof) (0)] = g [f{f(0)}]	$\Rightarrow x = \frac{y - b}{a} = f^{-1}(y) \therefore \text{ f is bijection}$
= g [f(-1)]	u u
= g(-4 - 1)	\Rightarrow f ⁻¹ (x) = $\frac{x-b}{a}$
= g(-5)	(ii) f :R \rightarrow (o, ∞) defined by f(x) = 5 ^x
$= (-5)^2 + 2$	Let $x \in R$ and $y \in (0, \infty)$ such that $f(x) = y$ $\Rightarrow 5^x = y$
= 27.	
Aimstutorial.in	

MATHEMATICS-1A

$$\Rightarrow x = \log_5 y = f^{-1}(y) \quad \therefore \text{ f is bijection}$$

$$\Rightarrow f^{-1}(x) = \log_5 x$$

(iii) $f: (0, \infty) \rightarrow R$ defined by $f(x) = \log_2 x$
let $x \in (0, \infty)$ and $y \in R$ such that $f(x) = y$

$$\Rightarrow \log_2 x = y$$

$$\Rightarrow x = 2^y = f^{-1}(y) \quad \therefore \text{ f is bijection}$$

$$\Rightarrow f^{-1}(x) = 2^x.$$

(iv) $f: Q \rightarrow Q$ is defined by $f(x) = 5x + 4$
let $x \in \text{ domain } Q$ and $y \in \text{ codomain } Q$ such that

$$f(x) = y$$

$$\Rightarrow 5x + 4 = y$$

$$\Rightarrow 5x = y - 4$$

$$\Rightarrow x = \frac{y - 4}{5} = f^{-1}(y)$$

$$\therefore f^{-1}(x) = \frac{x - 4}{5}.$$

11. Determine whether the following functions are even or odd.
(i) f (x) = a^x - a^x + sinx

(ii) f (x) = x
$$\left(\frac{e^x - 1}{e^x + 1}\right)$$

(iii) f (x) = log (x +
$$\sqrt{x^2 + 1}$$
).
A: (i) f(x) = a^x - a^{-x} + sinx
Now f (-x) = a^{-x} - a^{-(-x)} + sin(-x)
= a^{-x} - a^x - sinx
= -{a^x - a^{-x} + sinx}]
= - f (x)
So f (x) is an odd function.

(ii) f (x) = x
$$\left(\frac{e^{x} - 1}{e^{x} + 1}\right)$$

f (-x) = (-x) $\left(\frac{e^{-x} - 1}{e^{-x} + 1}\right)$
= (-x) $\left(\frac{\frac{1}{e^{-x}} - 1}{\frac{1}{e^{-x}} + 1}\right)$
= (-x) $\left(\frac{1 - e^{x}}{1 + e^{x}}\right)$
= x $\left(\frac{e^{x} - 1}{e^{x} + 1}\right)$

So f (x) is an even function.

(iii) f (x) = log $\left(x + \sqrt{x^2 + 1}\right)$ f (-x) = log $\left[-x + \sqrt{(-x)^2 + 1}\right]$ = log $\left[\sqrt{x^2 + 1} - x\right]$ = $log \left[\frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x}\right]$ = log $\left(\frac{x^2 + 1 - x^2}{x + \sqrt{x^2 + 1}}\right)$ = log (x + $\sqrt{x^2 + 1}$)⁻¹ = - log (x + $\sqrt{x^2 + 1}$)

WWW.AIMSTUTORIAL.IN

- $= -\log (x + \sqrt{x^2 + 1})$ = -f(x)
- So f (x) is an odd function.

12. Find the domain of the real valued function

$$f(x) = \frac{1}{\sqrt{x^2 - a^2}} (a > 0)$$
.

- A: To get the domain of f, $x^2 a^2 > 0$. ⇒ (x + a) (x - a) > 0. ⇒ x < -a or x > a. ⇒ $x \in (-\infty, -a) \cup (a, \infty)$ ∴ Domain of f = $(-\infty, -a) \cup (a, \infty)$.
- 13. Find the domain of the real valued function

$$f(x) = \sqrt{(x-\alpha)(x-\beta)} (0 < \alpha < \beta).$$

- A: To get the domain $(x \alpha) (x \beta) \ge 0$. $x \le \alpha \text{ or } x \ge \beta$. $x \in (-\infty, \alpha] \cup [\beta, \infty)$ \therefore Domain of f = $(-\infty, \alpha] \cup [\beta, \infty)$
- 14. Find the domain of the real valued function

$$f(x) = \frac{2x^2 - 5x + 7}{(x - 1)(x - 2)(x - 3)}$$

A: To get the domain of f, $(x - 1)(x - 2)(x - 3) \neq 0$. ⇒ $x \neq 1, 2, 3$ ∴ Domain of f = R - {1, 2, 3}

3

15. Find the domain of the function
(i)
$$f(x) = \frac{1}{(x^2 - 1)(x + 3)}$$
 (ii) $f(x) = \frac{1}{\log(2 - x)}$
A: $f(x) = \frac{1}{(x^2 - 1)(x + 3)} \in \mathbb{R}$
 $\Rightarrow (x^2 - 1) (x + 3) \neq 0$
 $\Rightarrow (x + 1) (x - 1) (x + 3) \neq 0$
 $\Rightarrow x \neq -3, -1, 1$
 \therefore Domain of $f = \mathbb{R} - \{-3, -1, 1\}$
(ii) $f(x) = \frac{1}{\log(2 - x)}$
 $\Rightarrow 2 - x > 0$ and $2 - x \neq 1$
 $\Rightarrow x - 2 < 0$ and $x \neq 1$.
 $\Rightarrow x \in (-\infty, 2)$ and $x \neq 1$
Domain of $f = (-\infty, 1) \cup (1, 2)$.

16. Find the domain of the function

(i) f (x) =
$$\sqrt{x^2 - 25}$$
 (ii) f (x) = $\frac{1}{\sqrt{1 - x^2}}$
(iii) f (x) = $\sqrt{4x - x^2}$
A: f (x) = $\sqrt{x^2 - 25} \in \mathbb{R}$
 $\Leftrightarrow x^2 - 25 \ge 0$
 $\Leftrightarrow (x + 5) (x - 5) \ge 0$
 $\Leftrightarrow x \in (-\infty, -5] \cup [5, \infty)$
 \therefore Domain of f = $(-\infty, -5] \cup [5, \infty)$
(ii) f (x) = $\frac{1}{\sqrt{1 - x^2}} \in \mathbb{R}$
 $\Leftrightarrow 1 - x^2 > 0$
 $\Leftrightarrow x^2 - 1 < 0$
 $\Leftrightarrow x \in (-1, 1)$
 \therefore Domain of f = $(-1, 1)$
(iii) f (x) = $\sqrt{4x - x^2} \in \mathbb{R}$
 $\Leftrightarrow 4x - x^2 \ge 0$
 $\Leftrightarrow x(4 - x) \ge 0$
 $\Leftrightarrow x(4 - x) \ge 0$
 $\Leftrightarrow x \in [0, 4]$
 \therefore Domain of f = $[0 4]$

17. Find the domain of the function (i) $f(x) = \log (x^2 - 4x + 3)$ (ii) f (x) = $\sqrt{\log_{0.3} (x - x^2)}$ A: (i) f (x) = log (x² - 4x + 3) $\in \mathbb{R}$ \Leftrightarrow x² - 4x + 3 > 0 \Leftrightarrow (x - 1) (x - 3) > 0 \Leftrightarrow x \in (- ∞ , 1) U (3, ∞) \therefore Domain of f = (- ∞ , 1) U (3, ∞). (ii) f (x) = $\sqrt{\log_{0.3}(x - x^2)} \in R$ \Leftrightarrow x - x² > 0 ⇔ x (1 - x) > 0 ⇔ x (x - 1) < 0 $\Leftrightarrow x \in (0, 1)$ Domain of f = (0, 1). 18. Find the range of the function (i) f (x) = $\log |4 - x^2|$ (ii) f (x) = $\sqrt{[x] - x}$ A: (i) f (x) = log $|4 - x^2| \in \mathbb{R}$ Let f(x) = y $\Rightarrow \log |4 - x^2| = y$ \Rightarrow |4 - x²| = e^y > 0 \forall y \in R : Range of f is R. (ii) f (x) = $\sqrt{[x] - x} \in R$ \Leftrightarrow [x] - x ≥ 0 $\Leftrightarrow X \leq [X]$ $\Leftrightarrow x \in Z$: Domain of f = Z \Rightarrow Range of f = {0}. 19. Find the range of (i) $f(x) = \frac{x^2 - 4}{x - 2}$ (ii) $f(x) = \sqrt{9 + x^2}$ A: (i) $f(x) = \frac{x^2 - 4}{x - 2} \in \mathbb{R}$ $\Leftrightarrow x - 2 \neq 0$ $\Leftrightarrow x \neq 2$ \therefore Domain of f = R - {2} Then y = x + 2 $\therefore x \neq 2 \implies y \neq 4$ \therefore Range of f = R - {4}. (ii) $f(x) = \sqrt{9 + x^2}$ Let $y = f(x) = \sqrt{9 + x^2} \in \mathbb{R}$ rightarrow Domain of f = R When x = 0, f (0) = $\sqrt{9}$ = 3 When $x \in R - \{0\}, f(x) > 3$ \therefore Range of f = [3, ∞).

MATHEMATICS-1A		
20. Find the domain and range of		
(i) $f(x) = \frac{2+x}{2-x}$ (ii) $f(x) = \frac{x}{1+x^2}$		
(iii) $f(x) = \sqrt{9 - x^2}$ (iv) $f(x) = \frac{x}{2 - 3x}$		
A: (i) f (x) = $\frac{2+x}{2-x} \in \mathbb{R}$		
$2 - x \neq 0$ $\Rightarrow x \neq 2$		
Domain of $f = R - \{2\}$. Let f (x) = y		
$\Rightarrow \frac{2+x}{2-x} = y$		
$\Rightarrow 2 + x = 2y - xy$ $\Rightarrow x(1+y) = 2(y-1)$		
$\Rightarrow x = \frac{2(y-1)}{y+1}$		
y + 1 Clearly x is not defined for y + 1 = 0 ∴ Range of f = R - {-1}		
(ii) $f(x) = \frac{x}{1 + x^2}$		
$f(x) = \frac{x}{1 + x^2} \in \mathbb{R}$ $\iff 1 + x^2 \neq 0$		
\Leftrightarrow Domain of f = R		
Let $f(x) = y$		
$\Rightarrow \frac{x}{1+x^2} = y$		
$\Rightarrow x = y + yx^{2}$ $\Rightarrow yx^{2} - x + y = 0$		
$\Rightarrow x = \frac{1 \pm \sqrt{1 - 4y^2}}{2y} \in \mathbb{R}$		
\Rightarrow 1 - 4y ² \ge 0 and y \neq 0		
$\Rightarrow (1 + 2y) (1-2y) \ge 0 \text{ and } y \ne 0$ $\Rightarrow (y + \frac{1}{2}) (y - \frac{1}{2}) \le 0 \text{ and } y \ne 0$		
$\Rightarrow (y + \frac{1}{2}) (y - \frac{1}{2}) \le 0 \text{ and } y \ne 0$ $\Rightarrow y \in [-\frac{1}{2}, \frac{1}{2}] \text{ and } y \ne 0$		
Also $x = 0 \implies y = 0$		
\therefore Range of f = [- $\frac{1}{2}$, $\frac{1}{2}$]		

(iii) f (x) =
$$\sqrt{9-x^2} \in \mathbb{R}$$

 $\Rightarrow 9 - x^2 \ge 0$
 $\Rightarrow x^2 - 9 \le 0$
 $\Rightarrow (x + 3) (x - 3) \le 0$
 \therefore Domain of f = [-3, 3]
Let f (x) = y
 $\sqrt{9-x^2} = y$
 $9 - x^2 = y^2$
 $x = \sqrt{9-y^2}$
 $\Rightarrow 9 - y^2 \ge 0$
 $\Rightarrow y^2 - 9 \le 0$
 $y \in [-3, 3]$
Since y takes only non negative values
 \therefore Range of f = [0, 3].
(iv) f(x) = $\frac{x}{2-3x} \in \mathbb{R}$
 $\Rightarrow 2 - 3x \ne 0$
 $\Rightarrow x \ne 2/3$
Domain of f is $\mathbb{R} - \{2/3\}$
Let f (x) = y
 $\Rightarrow \frac{x}{2-3x} = y$
 $\Rightarrow x = 2y - 3xy$
 $\Rightarrow x = 2y - 3xy$
 $\Rightarrow x = 2y - 3xy$
 $\Rightarrow x = \frac{2y}{1+3y}$
 $\Rightarrow 1 + 3y \ne 0$
 $\Rightarrow y \ne -1/3$
 \therefore Range of f = $\mathbb{R} - \{1/3\}$
21. If a function is defined
 $f(x) = \begin{cases} x+2, x > -1 \\ 2, -1 \le x \le 1 \\ x - 1 - 3 \le x \le -1 \end{cases}$

[x - 1, -3 < x < -1]Find the values of (i) f(0) (ii) f(2) + f(-2) A: (i) f (0) = 2 (ii) $f(2) + f(-2) = \{2 + 2\} + \{-2 - 1\}$ = 4 - 3

as

22.If f : R \rightarrow R and g: R \rightarrow R are defined by f(x) = 3x - 1 and $g(x) = x^2 + 1$, then find (i) (fog)(x) (ii) (gof)(x) A: Given that f : R \rightarrow R, g: R \rightarrow R are defined by f(x) = 3x - 1, $g(x) = x^2 + 1$ (i) (fog)(x) = f[g(x)] $= f[x^2 + 1]$ $= 3(x^2 + 1) - 1$ $= 3x^{2} + 2$. (ii) (gof(x) = g[f(x)])= g[3x - 1] $= (3x - 1)^2 + 1$ $= 9x^2 - 6x + 2$ 23. If f and g are real valued functions defined by f(x) = 2x - 1 and $g(x) = x^2$, then find (i) (fg) (x) (ii) (f + g + 2)(x)A: f(x) = 2x - 1, $g(x) = x^2$ (i) (fg)(x) = f(x) g(x) $= (2x - 1) (x^2)$ $= 2x^3 - x^2$ (ii) (f + g + 2)(x) = f(x) + g(x) + 2 $= 2x - 1 + x^2 + 2$ $= x^{2} + 2x + 1$ $= (x + 1)^{2}$ LEVEL - I (LAQ) 1. If f : A \rightarrow B, g : B \rightarrow C are two bijections, then prove that gof: $A \rightarrow C$ is also a bijection. A: Given : $f : A \rightarrow B$, $g : B \rightarrow C$ are bijections. Part 1 :- To prove that $gof : A \rightarrow C$ is one-one. Now f : A \rightarrow B, g : B \rightarrow C are one-one functions. \Rightarrow gof: A \rightarrow C is a function. Let $a_1, a_2 \in A \implies f(a_1), f(a_2) \in B$ and (gof) $(a_1), (a_2) \in B$ $(gof)(a_2) \in C.$ Suppose that $(gof)(a_1) = (gof)(a_2)$ \Rightarrow g[f(a₁)] = g[f(a₂)] \Rightarrow f(a₁) = f(a₂) \therefore g is one-one \Rightarrow a₁ = a₂ \therefore f is one-one \therefore gof : A \rightarrow C is one-one. Hence (gof) $^{-1} = f^{-1}og^{-1}$

Part 2:- To prove that gof: $A \rightarrow C$ is onto. Now $f : A \rightarrow B$, $g : B \rightarrow C$ are onto functions. \Rightarrow gof : A \rightarrow C is a function. Let $c \in C$. Since $g: B \rightarrow C$ is onto, there exists at least one element $b \in B$ such that g(b) = c. Since $f : A \rightarrow B$ is also onto, there exists atleast one element $a \in A$ such that f(a) = bNow (gof) (a) = g[f(a)]= g(b)= c \therefore For c \in C, there is an element a \in A such that (qof)(a) = c.so gof : A \rightarrow C is onto. since gof : $A \rightarrow C$ is both one-one and onto, hence $gof: A \rightarrow C$ is a bijection. 2. If f: A \rightarrow B, g : B \rightarrow C are bijections, then prove that (gof) $^{-1} = f^{-1}og^{-1}$. A: Given that $f : A \rightarrow B$, g : $B \rightarrow C$ are bijections. \Rightarrow f⁻¹: B \rightarrow A, g⁻¹: C \rightarrow B Now gof : $A \rightarrow C$ is also a bijection. \Rightarrow (gof) ⁻¹ : C \rightarrow A Also $g^{-1}: C \rightarrow B$, $f^{-1}: B \rightarrow A \implies f^{-1}og^{-1}: C \rightarrow A$. Thus (gof) ⁻¹ and f⁻¹og ⁻¹ both the functions exist and have the same domain C and the same codomain A. Let c be any element in C. Since $g: B \rightarrow C$ is onto, there exists atleast one element $b \in B$ such that g(b) = c \Rightarrow b = g⁻¹ (c) $\cdot \cdot g$ is a bijection Since $f : A \rightarrow B$ is onto, there exists atleast one element $a \in A$ such that f(a) = b. \Rightarrow a = f⁻¹(b) \cdot f is a bijection Consider (gof) (a) = q[f(a)]= g(b)∴ (gof) (a) = c. \Rightarrow a = (gof)⁻¹ (c) \therefore gof is a bijection Also $(f^{-1}og^{-1})(c) = f^{-1}[g^{-1}(c)]$ $= f^{1}(b)$ = a : $(gof)^{-1}(c) = (f^{-1}og^{-1})(c) \forall c \in C.$

6

3. If f : A \rightarrow B is a bijection, then show that $fof^{-1} = I_{B}$ and $f^{-1}of = I_{A}$. A: Given that $f : A \rightarrow B$ is a bijection \Rightarrow f⁻¹: B \rightarrow A. Part 1:- To show that $fof^{-1} = I_{R}$ Now $f^{-1} : B \to A$, $f : A \to B \implies \text{fof}^{-1} : B \to B$. Also $I_{B} : B \rightarrow B$ Thus fof⁻¹ and I_B have the same domain B and the same codomain B. Let a be any element in A. Since f : A \rightarrow B, there is a unique element b \in B. such that f(a) = b \Rightarrow a = f¹ (b) \cdot f is a bijection Consider $(fof^{-1})(b) = f[f^{-1}(b)]$ = f (a) = b $= I_{B}(b) \quad \therefore \quad I_{B} : B \rightarrow B \implies I_{B}(b) = b$ \therefore (fof ¹) (b) = I_B(b) \forall b \in B Thus fof $-1 = I_{B}$ Part 2:- To prove that $f^{-1}of = I_{A}$ Now $f : A \rightarrow B$, $f^{-1} : B \rightarrow A \implies f^{-1}of : A \rightarrow A$ Also $I_A : A \rightarrow A$ Thus f^1 of and I_{A} have the same domain A and the same codomain A. Now $(f^{-1}of)(a) = f^{-1}[f(a)]$ $= f^{-1}(b)$ = a $= I_A(a)$ \therefore $I_A : A \rightarrow A \Longrightarrow I_A(a) = a$ $(f^{-1}of)(a) = I_{A}(a)$ $\forall a \in A$ \therefore f⁻¹of = I Hence fof ${}^{-1} = I_{R}$ and f ${}^{-1}$ of $= I_{A}$. 4. If $f: A \rightarrow B$, I_A and I_B are identity functions on А and B respectively, then prove that $fol_{A} = l_{B} of = f$. A: Given that $f : A \rightarrow B$ $\mathsf{I}_{_{A}}:A \ \rightarrow \ \mathsf{A} \text{ is defined by } \mathsf{I}_{_{A}} \left(a\right) \texttt{=} a \ \forall \ a \in \mathsf{A}.$ $I_{_{B}}$: B \rightarrow B is defined by $I_{_{B}}$ (b) = b \forall b \in B. Part 1:- To prove that $fol_{A} = f$ Now $I_{A} : A \to A$, $f : A \to B \Longrightarrow fol_{A} : A \to B$ Also f : A \rightarrow B

Thus fol, and f both the functions exist and have the same domain A and the same codomain B. Let $a \in A$ Since $f : A \rightarrow B$, there exists a unique element $b \in B$ such that f(a) = bConsider (fol_a) (a) = f[l_a(a)] = f(a) \therefore (fol,) (a) = f(a) for all $a \in A$ Hence fol_{Δ} = f(1) Part 2:- To show that $I_{\rm p}$ of = f Now f : A \rightarrow B, I_B : B \rightarrow B \Rightarrow I_B of : A \rightarrow B Also $f: A \rightarrow B$ Thus I_p of and f both the functions exist and have the same domain A and codomain B. Consider $(I_{B}of)(a) = I_{B}[f(a)]$ $= I_{R}(b)$ = b = f(a) \therefore (I_B of) (a) = f(a) for all a \in A \Rightarrow I_B of = f(2) From (1) & (2) fol $_{A} = f = I_{B}$ of. 5. If $f : A \rightarrow B$, $g : B \rightarrow A$ are two functions such that gof = I_{A} and fog = I_{B} then prove that g = f⁻¹. A: Given that $f : A \rightarrow B$, $g : B \rightarrow A$ are two functions such that gof = I_{A} and fog = I_{B} . Part 1:- To prove that f is one-one. Let $a_1, a_2 \in A \Longrightarrow f(a_1), f(a_2) \in B$ Consider $f(a_1) = f(a_2)$ \Rightarrow g[f(a₁)] = g[f(a₂)] \Rightarrow (gof) (a₁) = (gof) (a₂) $\Rightarrow I_{A}(a_{1}) = I_{A}(a_{2})$ \therefore gof = I_{A} \Rightarrow a₁ = a₂ Thus f : A \rightarrow B is one-one. Part 2:- To prove that f is onto. Let $b \in B$. \therefore g : B \rightarrow A, there exists a unique element a \in A such that g(b) = a. Now f(a) = f[g(b)]= (fog) (b) $= I_{R}(b)$ \therefore fog = I = b

So f : A \rightarrow B is onto. Since f is both one-one and onto, so f is a bijection. \Rightarrow f⁻¹ : B \rightarrow A Also g : B \rightarrow A Thus both the functions f⁻¹ and g have the same domain B and same codomain A. Part 3:- To show that $g = f^{-1}$ From previous part, f(a) = b \Rightarrow a = f⁻¹ (b) Also q(b) = a \therefore g(b) = f⁻¹(b) \forall b \in B. Hence $g = f^{-1}$. 6. If f: $A \rightarrow B$, g: $B \rightarrow C$, h: $C \rightarrow D$ are functions, then prove that ho(gof) = (hog)of. A: Given that $f : A \rightarrow B$, $g : B \rightarrow C$, $h : C \rightarrow D$ Now f : A \rightarrow B, g : B \rightarrow C \Rightarrow gof : A \rightarrow C Also gof : A \rightarrow C, h: C \rightarrow D \Rightarrow ho(gof) : A \rightarrow D Now g : B \rightarrow C, h: C \rightarrow D \Rightarrow hog : B \rightarrow D Also f : A \rightarrow B, hog : B \rightarrow D \Rightarrow (hog)of : A \rightarrow D Thus ho(qof) and (hoq)of both the functions exist and have the same domain and the same codomain. Let a be any element in A. [ho(gof)](a) = h[(gof)(a)] $= h[g{f(a)}]$ Also [(hog)of](a) = (hog)[f(a)] $= h[g{f(a)}]$ Thus [ho(gof)](a) = [hog)of](a) for all $a \in A$ Hence ho(gof) = (hog)of. 7. If $f: A \rightarrow B$ is a bijection, then prove that $f^{-1}: B \rightarrow A$ is a bijection A: Given that $f : A \rightarrow B$ is a bijection \Rightarrow f⁻¹ : B \rightarrow A is a function **Part 1:** To prove that $f^{-1} : B \rightarrow A$ is one-one. Let $b_1, b_2 \in B$. \therefore f : A \rightarrow B is onto, there exist a, a $_{2} \in$ A such that

 $f(a_1) = b_1, f(a_2) = b_2$ \Rightarrow a₁ = f⁻¹ (b₁), a₂ = f⁻¹ (b₂) \cdots f: A \rightarrow B is a bijection

Now, suppose that $f^{-1}(b_1) = f^{-1}(b_2)$ \Rightarrow a₁ = a₂ \Rightarrow f(a,) = f(a,) \cdot f : A \rightarrow B is a function $\Rightarrow b_1 = b_2$ So f⁻¹: B \rightarrow A is a one-one function. **Part 2:** To prove that $f^{-1}: B \rightarrow A$ is onto. Let $a \in A$. Since f : A \rightarrow B, there exists a unique element b \in B such that f(a) = b \Rightarrow f⁻¹(b) = a ·· f is a bijection So, for every $a \in A$, there is an element $b \in B$ such that $f^{-1}(b) = a$ So f⁻¹ : B \rightarrow A is onto Since f⁻¹: $B \rightarrow A$ is both one-one and onto, hence $f^{-1}: B \rightarrow A$ is a bijection. 8. Let $A = \{1, 2, 3\}, B = \{a, b, c\}, C = \{p, q, r\}.$ If $f : A \rightarrow B$, $g : B \rightarrow C$ are defined by $f = \{(1, a), (2, c), (3, b)\}, g = \{(a, q), (b, r), \}$ (c, p)}, then show that $f^{-1}og^{-1} = (gof)^{-1}$. A: Given that $A = \{1, 2, 3\}, B = \{a, b, c\}, C = \{p, q, r\}$ $f: A \rightarrow B, g: B \rightarrow C$ are given by $f = \{(1, a), (2, c), (3, b)\} \Longrightarrow f^{-1} = \{(a, 1), (b, 3), (c, 2)\}$ and $g = \{(a, q), (b, r), (c, p)\} \Longrightarrow g^{-1} = \{(q, a), (r, b), (p, c)\}$ Now $(f^{-1}og^{-1})(p) = f^{-1}[g^{-1}(p)]$ $= f^{-1}(c)$ = 2 Similarly $(f^{-1}og^{-1})(q) = 1$, $(f^{-1}og^{-1})(r) = 3$ \therefore f⁻¹og⁻¹ = {(p, 2), (q, 1), (r, 3)}(1) Also (gof)(1) = g[f(1)]= g(a)= q Similarly (gof) (2) = p, (gof) (3) = r \Rightarrow gof = {(1, q), (2, p), (3, r)} \Rightarrow (gof) ⁻¹ = {(q, 1), (p, 2), (r, 3)} (2) From (1) and (2) $f^{-1}og^{-1} = (gof)^{-1}$.

MATHEMATICS-1A

WWW.AIMSTUTORIAL.IN

MATHEMATICS-1A	
9. If $f : Q \rightarrow Q$ defined by $f(x) = 5x+4$ for all $x \in Q$, show that f is a bijection and find f ⁻¹ .	(3x - 2, x ≥ 1
Given : f : Q \rightarrow Q is defined by f(x) = 5x + 4	2. If f(x) = $\begin{cases} x^2 - 2, & -2 \le x \le 2\\ 2x + 1, & x < -3 \end{cases}$ then find f(4), f(2.5),
Part 1:- To prove that f is one-one	$\begin{bmatrix} 2x+1, & x < -3 \end{bmatrix}$
Let \mathbf{x}_1 , $\mathbf{x}_2 \in \mathbf{Q}$ (domain) and	f(-2), f(-4), f(0), f(-7)
$f(x_1) = f(x_2)$	A: i) $f(4) = 3(4) - 2 = 10$
$\Rightarrow 5x_1 + 4 = 5x_2 + 4$	ii) f(2.5) is not defined
$\Rightarrow 5x_1 = 5x_2$	iii) $f(-2) = (-2)^2 - 2 = 4 - 2 = 2$
$\Rightarrow \mathbf{x}_1 = \mathbf{x}_2$	iv) f(- 4) = 2 (- 4) + 1 = - 8 + 1 = - 7
\therefore f: Q \rightarrow Q is one-one.	v) $f(0) = 0^2 - 2 = -2$
	vi) f(- 7) = 2 (- 7) + 1 = - 14 + 1 = - 13
Part 2:- To prove that f is onto	
Let $y \in$ the codomain Q and $x \in$ domain Q such that	3. If $f(x) = x + \frac{1}{x}$ then prove that $[f(x)]^2 = f(x^2) + \frac{1}{x}$
f(x) = y	^ f(1).
\Rightarrow 5x + 4 = y	
	A: Given $f(x) = x + \frac{1}{x}$
\Rightarrow x = $\frac{y-4}{5}$	
So for every $y \in codomain Q$, there is a preimage	$[f(x)]^{2} = \left(x + \frac{1}{x}\right)^{2} = x^{2} + \frac{1}{x^{2}} + 2 x \frac{1}{x} = x^{2} + \frac{1}{x^{2}} + 2.$
$\frac{y-4}{5} \in \text{domain Q}$ such that	
0	and $f(x^2) = x^2 + \frac{1}{x^2}$, $f(1) = 1 + \frac{1}{t^2} = 2$.
$f\left(\frac{y-4}{5}\right) = y$	$x^{2}, x^{2}, x^{2}, x^{2}$
Thus f : $Q \rightarrow Q$ is onto.	$f(x^2) + f(1) = x^2 + \frac{1}{x^2} + 2 = [f(x)]^2$
	X
<u>Part 3:-</u> To find f ⁻¹ (x)	Hence proved.
Since f is both one-one, onto, so it is a bijection.	4. If f : R - $\{\pm 1\} \rightarrow R$ is defined by f(x) = log
$f(x) = y \Longrightarrow x = f^{-1}(y)$	
$5x + 4 = y \Longrightarrow x = \frac{y - 4}{5} = f^{-1}(y)$	$\left \frac{1+x}{1-x}\right $, then show that $f\left(\frac{2x}{1+x^2}\right) = 2f(x)$.
$\therefore f^{1}(x) = \frac{x-4}{5}$	1+ x
., 5	A: Given $f(x) = \log \frac{1+x}{1-x}$
LEVEL - II (VSAQ)	
1. If f : R - {0} → R is defined by $f(x) = x^3 - 1/x^3$, then show that $f(x) + f(1/x) = 0$. A: $f(x) = x^3 - 1/x^3$	Now, $f\left(\frac{2x}{1+x^2}\right) = \log \left \frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right = \log \left \frac{1+\frac{2x}{1+x^2}}{1+x^2}\right $
Now f (x) + f(1/x) = $x^3 - 1/x^3 + 1/x^3 - x^3 = 0$.	$\frac{1 + x^2 + 2x}{1 + x^2}$ $\frac{1 + x^2 - 2x}{1 + x^2}$
	$\left \frac{1+x^2-2x}{1+x^2}\right $
	$= \log \left \frac{(1+x)^2}{(1-x)^2} \right = \log \left \frac{1+x}{1-x} \right ^2 = 2\log \left \frac{1+x}{1-x} \right = 2f(x).$

9

5. If $f(x) = \frac{\cos^2 x + \sin^4 x}{\sin^2 x + \cos^4 x} \times \forall R$ then show that f(2012) = 1A: Given that $f(x) = \frac{\cos^2 x + \sin^4 x}{\sin^2 x + \cos^4 x}$ $f(x) = \frac{1 - \sin^2 x + \sin^4 x}{1 - \cos^2 x + \cos^4 x} = \frac{1 - \sin^2 x (1 - \sin^2 x)}{1 - \cos^2 x (1 - \cos^2 x)}$ $1 - \sin^2 x \cos^2 x$

$$= \frac{1 - \sin^2 x \cos^2 x}{1 - \cos^2 x \sin^2 x}$$
$$= 1$$
$$\Rightarrow f(2012) = 1$$

- If f(x + y) = f(xy) ∀ x,y ∈ R then prove that 'f' is a constant function.
- A: Let f(0) = kGiven that f(x + y) = f(xy)Now, f(x) = f(x + 0) = f(x.0) = f(0) = k. which is a constant, $\forall x \in R$ Hence, f(x) is a constant function.
- 7. If the function f : {-1, 1} \rightarrow {0, 2} is defined by f(x) = ax + b is a surjection, then find a, b.
- A: Here f is a surjection, so two cases arise.

case i) f (-1) = 0, f(1) = 2 \Rightarrow - a + b = 0, a + b = 2 \Rightarrow a = 1, b = 1 case ii) f(1) = 0, f(-1) = 2 \Rightarrow a + b = 0, - a + b = 2 \Rightarrow a = - 1, b = 1 Hence, $a = \pm 1, b = 1$

8. If f: $R \rightarrow R$ is defined by $f(x) = 2x^2 + 3$ and g(x) = 3x - 2 then find i) fog(x) ii) gof (x), iii) fof (0), iv) [go(fof)](3)

A: Given that $f(x) = 2x^2 + 3$ and g(x) = 3x - 2i) fog(x) = f[g(x)] = f[3x - 2] = $2(3x - 2)^2 + 3$ = $2(9x^2 + 4 - 12x) + 3 = 18x^2 - 24x + 11$ ii) gof(x) = g[f(x)] = g[$2x^2 + 3$] = $3(2x^2 + 3) - 2$ = $6x^2 + 9 - 2 = 6x^2 + 7$ iii) fof(0) = f[f(0)] = f[3] = $2(3)^2 + 3 = 21$ iv) [go(fof)](3) = g[fof(3)] = g[f{(3)}] = g[f(21)] = g[$2(21)^2 + 3$] = g[8x5] = 3(885) - 2 = 2653.

9. If f(x) = 4x - 1, $g(x) = x^2 + 2$ then find i) gof (x) ii) fof (x) A: Given f(x) = 4x - 1, $g(x) = x^2 + 2$ i) $gof(x) = g[f(x)] = g[4x - 1] = (4x - 1)^2 + 2$ $= 16x^{2} + 1 - 8x + 2 = 16x^{2} - 8x + 3$ ii) (fof (x) = f[f(x)] = f(4x - 1)= 4(4x - 1) - 1 = 16x - 510.If f(x) = 2, $g(x) = x^2$, h(x) = 2x, then find fo(goh) (x). A: Given f(x) = 2, $g(x) = x^2$, h(x) = 2xfo(goh)(x) = f[g(h(x)] = f[g(2x)] $= f[(2x)^2] = f[4x^2]$ = 2 11. If $f(x) = x^2$, $g(x) = 2^x$ then solve the equation fog(x) = gof(x)A: $fog(x) = f[g(x)] = f(2^x) = (2^x)^2 = 2^{2x}$ and $gof(x) = g[f(x)] = g[x^2] = 2^{x^2}$ Since, $fog(x) = gof(x) \Rightarrow 2^{2x} = 2^{x^2}$ \Rightarrow 2x = x² \Rightarrow x² - 2x = 0 \Rightarrow x(x - 2) = 0 \Rightarrow x = 0 or 2 12. If f, g: R \rightarrow R are defined by f(x) = $\begin{cases} 0, & \text{if } x \in Q \\ 1, & \text{if } x \in Q \end{cases}$ and g (x) = $\begin{cases} -1, & \text{if } x \in Q \\ 0, & \text{if } x \in Q \end{cases}$ = then find (fog) (π) + (gof) (e) A: (fog) $(\pi) = f[g(\pi)] = f(0) = 0$ (gof) (e) = g[f(e)] = g(1) = -1[**∵** π ∉ Q] \therefore (fog) (π) + (gof) (e) = 0 - 1 = -1 13.If $f(x) = e^x$ and $g(x) = \log_x x$ then show that fog = gof and find f^{-1} , g^{-1} A: Given that $f(x) = e^x$ and $g(x) = \log_x x$ take fog(x) = f[g(x)] = f[log_ex] = $e^{log_ex} = x$ $gof(x) = g[f(x)] = g(e^x) = \log_e e^x = x \log_e x = x$ Clearly, fog(x) = gof(x)Hence, $f^{-1}(x) = g(x) = \log_{a} x$ and $g^{-1}(x) = f(x) = e^{x}$.

10

WWW.AIMSTUTORIAL.IN

14.If $f(x) = 1 + x + x^2 + \dots$ for |x| < 1 then show that $f^{-1}(x) = \frac{x-1}{x}$. A: Given that $f(x) = 1 + x + x^2 + \dots = \frac{1}{1 - \sqrt{1 - x^2}}$ (fg)(6) = [f(6)][g(6)] = (-4)(5) = -20: $a + ar + ar^2 + \dots = \frac{a}{1-r}, r < 1$ Let $f(x) = y \implies x = f^{-1}(y)$ ii $\therefore \frac{1}{1-x} = \mathbf{y} \Rightarrow \mathbf{1} - \mathbf{x} = \frac{1}{\mathbf{y}} \Rightarrow \mathbf{x} = 1 - \frac{1}{\mathbf{y}}.$ $\Rightarrow x = \frac{y-1}{y} \Rightarrow f^{-1}(y) = \frac{y-1}{y} \Rightarrow \left| f^{-1}(x) = \frac{\overline{x-1}}{x} \right|.$ 15. If $f = \{(1,2), (2,-3), (3,-1)\}$ then find (i) 2f (ii) f² (iii) 2 + f (iv) \sqrt{f} A: Given $f = \{(1, 2)(2, -3)(3, -1)\}$ i) take 2f(1) = 2[f(1)] = 2(2) = 42f(2) = 2[f(2)] = 2(-3) = -62f(3) = 2[f(3)] = 2(-1) = -2 $\therefore 2f = \{(1, 4)(2, -6) (3, -2)\}$ ii) take $f^2(1) = [f(1)]^2 = (2)^2 = 4$ $f^{2}(2) = [f(2)]^{2} = (-3)^{2} = 9$ $f^{2}(3) = [f(3)]^{2} = (-1)^{2} = 1$ \therefore f² = {(1, 4)(2, 9) (3, 1)} iii) take (2 + f)(1) = 2 + f(1) = 2 + 2 = 4(2 + f)(2) = 2 + f(2) = 2 - 3 = -1(2 + f)(3) = 2 + f(3) = 2 - 1 = 1 \therefore 2 + f = {(1, 4)(2, -1) (3, 1)} $\sqrt{f}(1) = \sqrt{f(1)} = \sqrt{2}$ \Rightarrow x < 1 $\sqrt{f(2)} = \sqrt{f(2)} = \sqrt{-3}$ (not valid) iv) take $\sqrt{f(3)} = \sqrt{f(3)} = \sqrt{-1}$ (not valid) $\therefore \sqrt{f} = \left\{ \left(1, \sqrt{2} \right) \right\}$ 16. If $f = \{(4, 5), (5, 6), (6, -4)\} g = \{(4, -4), (6, 5), (6, 5), (6, -4)\} \}$ (8, 5) then find (i) f + 4 (ii) fg (iii) f/g (iv) f + g (v) 2f + 4g (vi) |f| (vii) \sqrt{f} (viii) f² A: Given $f = \{(4,5), (5, 6), (6, -4)\}, g = \{(4, -4), (6, -4)\}, g = \{(4, -4),$ 5), (8, 5) Here Domain of $f \cap g = \{4, 6\}$ x ≠ 0 i) take (f + 4) (4) = f(4) + 4 = 5 + 4 = 9

(f + 4) (6) = f(6) + 4 = -4 + 4 = 10 \therefore f + 4 = {(4, 9), (5, 10), (6, 0)} ii) take (fg) (4) = [f(4)] [g(4)] = (5) (-4) = -20

WWW.AIMSTUTORIAL.IN

∴ fg = {(4, -20), (6, -20)}
ii) take
$$\left(\frac{f}{g}\right)(4) = \frac{f(4)}{g(4)} = \frac{5}{-4} = \frac{-5}{4}$$
 and

- $\left(\frac{f}{g}\right)(6) = \frac{f(6)}{g(6)} = \frac{-4}{5} \therefore \frac{f}{g} = \left\{ \left(4, \frac{-5}{4}\right) \left(6, \frac{-4}{5}\right) \right\}$ $(iv) \{(4, 1), (6, 1) (v) \{4, -6\}, (6, 12)\}$ (vi) {(4, 5), (5, 6), (6, 4)} (vii) $\left\{ \left(4, \sqrt{5}\right) \left(5, \sqrt{6}\right) \right\}$ (viii) {(4, 25), (5, 36), (6, 16)}
- 17.On what domain the function $f(x) = x^2 2x$ and g(x) = -x + 6 are equal?

A: Take
$$f(x) = g(x) \Rightarrow x^2 - 2x = -x + 6$$

 $\Rightarrow x^2 - x - 6 = 0 \Rightarrow (x - 3) (x + 2) = 0 x = 3, -2$
 $f(x)$ and $g(x)$ are equal on the domain {-2,3}

18. Find the domain of definition of the function y(x), given by the equation $2^{x} + 2^{y} = 2$. A: Given equation is $2^x + 2^y = 2$. $\Rightarrow 2^x = 2 - 2^y$

 $\Rightarrow 2^x < 2$ $\Rightarrow \log 2^x < \log 2$ \Rightarrow xlog 2 < log 2 $\therefore x \in (-\infty, 1)$: Domain = (-∞,1)

19. Find the domain of $\frac{\sqrt{2 + x} + \sqrt{2 - x}}{x}$ A: Let $f(x) = \frac{\sqrt{2 + x} + \sqrt{2 - x}}{\sqrt{2 - x}}$ The function f(x) is defined for $2 + x > 0 \Rightarrow x > - 2 \rightarrow (1)$ and 2 - x \geq 0 \Rightarrow x \leq 2 \rightarrow (2) and \rightarrow (3) from (1) and (2) and (3) $x \in [-2,2] - \{0\}$ (or) $x \in [-2,0] \cup (0,2]$

Aimstutorial.in

(f + 4) (5) = f(5) + 4 = 6 + 4 = 10

20. Find the domain of
$$\sqrt{x+2} + \frac{1}{\log_{10}(1-x)}$$
.
A: The function is defined for
 $x + 2 \ge 0 \Rightarrow x \ge -2 \rightarrow (1)$ and
 $1 - x > 0$ and $1 - x \ne 1$
 $x - 1 < 0$ and $x \ne 0$.
 $x \in [-2,1) - \{0\}$
or) $x \in [-2, 0) \cup (0,1)$.
21. Find the domain of the function
(i) $f(x) = \frac{1}{\sqrt{|x|-x|}}$ (ii) $f(x) = \sqrt{|x|-x|}$
A: (i) $f(x) = \frac{1}{\sqrt{|x|-x|}} \in \mathbb{R}$
 $\Rightarrow |x| - x > 0$.
 $\Rightarrow |x| > x$
 $\Rightarrow x \in (-\infty, 0)$
 \therefore Domain of $f = (-\infty, 0)$
(ii) $f(x) = \sqrt{|x|-x|}$
 $\Rightarrow |x| - x \ge 0$
 $\Rightarrow |x| \ge x$
 $\Rightarrow x \in \mathbb{R}$
 \therefore Domain of $f = \mathbb{R}$ or $(-\infty, \infty)$
22. Find the domain of the function
(i) $f(x) = \sqrt{x-[x]}$
(ii) $f(x) = \sqrt{x-[x]} \in \mathbb{R}$
 $\Rightarrow x - [x] \ge 0$
 $\Rightarrow x \ge [x]$
 $\Rightarrow x \in \mathbb{R}$
 \therefore Domain of $f = \mathbb{R}$ or $(-\infty, \infty)$
(ii) $f(x) = \sqrt{|x|-x|} \in \mathbb{R}$
 $\Rightarrow x - [x] \ge 0$
 $\Rightarrow x \ge [x]$
 $\Rightarrow x \in \mathbb{R}$
 \therefore Domain of $f = \mathbb{R}$ or $(-\infty, \infty)$
(ii) $f(x) = \sqrt{|x|-x|} \in \mathbb{R}$
 $\Rightarrow x - [x] \ge 0$
 $\Rightarrow x \ge [x]$
 $\Rightarrow x \in [x]$
 $\Rightarrow x \in \mathbb{Z}$
 \therefore Domain of $f = \mathbb{Z}$.
23.Find the range of $\frac{\sin\pi[x]}{1+[x]^2}$.
A: The function is defined for $1 + [x]^2 \ne 0$
Which is true $\forall x \in \mathbb{R}$ Hence, Domain $= \mathbb{R}$
If $x \in \mathbb{R}$ then $[x] \in \mathbb{Z} \Rightarrow \sin\pi[x] = 0$
 $\Rightarrow \frac{\sin\pi[x]}{1+[x]^2} = 0 \quad \forall x \in \mathbb{R}$ Hence, Range = {0}.

24. Determine the function $f(x) = \frac{x}{e^x - 1} + \frac{x}{2} + 1$ is even or odd. A: take f(-x) = $\frac{-x}{e^{-x}-1} + \frac{-x}{2} + 1$ $=\frac{-x}{\frac{1}{e^x}-1}-\frac{x}{2}+1=\frac{-xe^x}{1-e^x}-\frac{x}{2}+1$ $=\frac{-xe^{x}+x-x}{1-e^{x}}-\frac{x}{2}+1$ $=\frac{x(1-e^{x})-x}{1-e^{x}}-\frac{x}{2}+1$ $=x-\frac{x}{1-e^{x}}-\frac{x}{2}+1=\frac{x}{e^{x}-1}+\frac{x}{2}+1=f(x)$ Hence, f(x) is an even function LEVEL - II (LAQ) 1. If A = {1, 2, 3}, B = {a, b, c}, C = {p, q, r} and $f : A \rightarrow B, g : B \rightarrow C$ are defined by $f = \{(1, a)(2, c)(3, b)\},\$ $g = \left\{ \left(a,q\right), \left(b,r\right), \left(c,p\right) \right\}$ then show that $f^{-1} \circ g^{-1} = (g \circ f)^{-1}$. A: $f = \{ (1, a), (2, c), (3, b) \}$ $g = \{ (a, q), (b, r), (c, c) \}$ p)} then gof = {(1, q) (2, p) (3, r)} $\Rightarrow (gof)^{-1} = \{(q,1)(p,2)(r,3)\} \rightarrow \mathbb{O}$ $g^{-1} = \{(q, a) (r, b), (p, c)\}$ f⁻¹ = {(a, 1) (c, 2) (b, 3)} $\Rightarrow f^{-1} o g^{-1} = \left\{ (q, 1)(r, 3)(p, 2) \right\} \rightarrow \mathbb{Q}$ from ① and ② $(gof)^{-1} = f^{-1} o g^{-1}$ 2. If the function $f : R \rightarrow R$ defined by $f(x) = \frac{3^{x} + 3^{-x}}{2}, \text{ then show that}$ f(x + y) + f(x - y) = 2f(x) f(y).A: Given that $f : R \to R$ and $f(x) = \frac{3^x + 3^{-x}}{2}$ $\therefore f(x+y) = \frac{3^{x+y} + 3^{-(x+y)}}{2}, f(x-y) = \frac{3^{x-y} + 3^{-(x-y)}}{2}$