1. FUNCTIONS

DEFINITIONS, CONCEPTS AND FORMULAE:

1) Function: Let A and B be non empty sets and f be a relation from A to B. If for each element $a \in A$, there exists a unique $b \in B$ such that $(a, b) \in f$, then f is called a function from A to B. It is denoted by $f: A \rightarrow B$.

The set A is called 'domain of f ' and B is called 'codomain of f'and the set of all f images of the elements of A is called the range of f which is denoted by $f(A)$.
2) One - one function or Injection :If $f: A \rightarrow B$ is such that distinct elements of A have distinct f-images in B, then f is said to be a one - one function.
$f: A \rightarrow B$ is one- one \Leftrightarrow if $a_{1}, a_{2} \in A$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
3) Onto function or Surjection :- Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$. If every element of B occurs as the image of atleast one element of A, then we say that f is an onto function.
$f: A \rightarrow B$ is onto \Leftrightarrow given $b \in B$, there exists $a \in A$ such that $f(a)=b$.
4) Bijection:- If $f: A \rightarrow B$ is both one - one and onto, then f is said to be a bijection from A to B. $f(a)=b \Rightarrow a=f^{-1}(b)$.
5) Constant function :- A function $f: A \rightarrow B$ is said to be a constant function, if the range of f contains only one element. $f(x)=c$ (a constant) for all $\mathrm{x} \in$ domain.
6) Identity function :- If A is a non - empty set, $f: A \rightarrow A$ defined by $f(x)=x$ for all $x \in A$ is called the identity function on A and is denoted by I_{A}.
7) Composite function :- If $f: A \rightarrow B, g: B \rightarrow C$ are two functions, then gof : $A \rightarrow C$ is defined by (gof) $(x)=g[f(x)] \forall x \in A$.
8) Equality of two functions:- Two functions f and g are said to be equal if
i) they are defined on the same domain A and codomain B
ii) $f(x)=g(x)$ for every $x \in A$.
9) Domain calculations: Function Method for finding domain of f

1. $\frac{f(x)}{g(x)} \quad$ Delete the values of $g(x)=0$ from R .
2. $\sqrt{f(x)} \quad$ Solve $f(x) \geq 0$
$\begin{array}{lll}\text { 3. } \begin{array}{ll}\frac{1}{\sqrt{f(x)}} & \text { Solve } f(x)>0 \\ \text { 4. } & \log f(x)\end{array} & \text { Solve } f(x)>0\end{array}$
3. $\frac{1}{\log f(x)} \quad$ Solve $f(x)>0$ and $f(x) \neq 1$

LEVEL - I (VSAQ)

1. Define one - one function. Give an example.
A : If $f: A \rightarrow B$ is such that distinct elements of A have distinct f - images in B, then f is said to be a one one function.
Eg: $f: R \rightarrow R$ defined by $f(x)=3 x+2$ is one one.
2. Define onto function. Give an example.

A: Let $f: A \rightarrow B$. If every element of B occurs as the image of atleast one element of A, then f is said to be an onto function.
Eg: $f: R \rightarrow R$ defined by $f(x)=3 x+2$ is onto.
3. $f: N \rightarrow N$ is defined as $f(x)=2 x+3$. Is f onto ? Explain with reason.
A: (Let x_{1}, x_{2} domain N such that $f(x)=f\left(x_{2}\right)$.
$\Rightarrow 2 \mathrm{x}_{1}+3=2 \mathrm{x}_{2}+3$
$\Rightarrow 2 \mathrm{x}_{1}=2 \mathrm{x}_{2}$
$\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore \mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is an injection)
Here codomain of $f=N$.
Range of $f=\{f(1), f(2), f(3), \ldots \ldots \ldots . . . \infty\}$

$$
\begin{aligned}
& =\{5,7,9, \ldots \ldots \infty\} \\
& \neq N
\end{aligned}
$$

Hence $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is not a surjection (onto)
4. $f: R \rightarrow R$ is defined as $f(x)=\frac{2 x+1}{3}$, then this function is injection or not? Justify.
A: Let $x_{1}, x_{2} \in$ domain R such that $f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{2 x_{1}+1}{3}=\frac{2 x_{2}+1}{3} \\
& \Rightarrow 2 x_{1}+1=2 x_{2}+1 \\
& \Rightarrow 2 x_{1}=2 x_{2} \\
& \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

Hence $f: R \rightarrow R$ is an injection.
5. If $f: R \rightarrow R$ is defined by $f(x)=\frac{1-x^{2}}{1+x^{2}}$, then find $f(\tan \theta)$.
A: Given that $f: R \rightarrow R, f(x)=\frac{1-x^{2}}{1+x^{2}}$
$\therefore f(\tan \theta)=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$.
6. If $A=\{-2,-1,0,1,2\}$ and $f: A \rightarrow B$ is a surjection defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$, then find B.
A: $\mathrm{f}(-2)=(-2)^{2}+(-2)+1=3$
$\mathrm{f}(-1)=(-1)^{2}+(-1)+1=1$
$\mathrm{f}(0)=0^{2}+0+1=1$
$f(1)=1^{2}+1+1=3$
$f(2)=2^{2}+2+1=7$
Since $f: A \rightarrow B$ is a surjection,
$B=f(A)$

$$
=\{3,1,7\}
$$

7. If $f: R \rightarrow R, g: R \rightarrow R$ are defined by $f(x)=4 x-1$ and $g(x)=x^{2}+2$, then find
$\begin{array}{ll}\text { (i) (gof) }\left(\frac{a+1}{4}\right) & \text { (ii) go[fof (0)] }\end{array}$
A: $f: R \rightarrow R, g: R \rightarrow R$ are given by $f(x)=4 x-1$, $g(x)=x^{2}+2$
(i) (gof) $\left(\frac{a+1}{4}\right)=g\left[f\left(\frac{a+1}{4}\right)\right]$

$$
\begin{aligned}
& =g\left[\frac{4(a+1)}{4}-1\right] \\
& =g[a+1-1] \\
& =g(a) \\
& =a^{2}+2
\end{aligned}
$$

(ii) $g[(f \circ f)(0)]=g[f\{f(0)\}]$

$$
=g[f(-1)]
$$

$$
=g(-4-1)
$$

$$
=g(-5)
$$

$$
=(-5)^{2}+2
$$

$$
=27 .
$$

8. If $f(x)=\frac{x+1}{x-1}$, then find (fofof) (x).

A: $(f \circ f)(x)=f\left(\frac{x+1}{x-1}\right)$

$$
\begin{aligned}
& =\frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1} \\
& =\frac{x \not-1+x \not-1}{x+1-\not x+1} \\
& =\frac{2 x}{2}
\end{aligned}
$$

$\therefore(\mathrm{f} \circ \mathrm{f} \circ \mathrm{f})(\mathrm{x})=\mathrm{f}[\mathrm{fof}(\mathrm{x})]=\mathrm{f}(\mathrm{x})$.
9. If $f: R \rightarrow R, g: R \rightarrow R$ are defined by $f(x)=3 x-2, g(x)=x^{2}+1$, then find $\left(g \circ f^{-1}\right)(2)$. A: Let $f(x)=y$
$\Rightarrow 3 x-2=y$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}=\frac{\mathrm{y}+2}{3}=\mathrm{f}^{-1}(\mathrm{y}) \\
& \therefore \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}+2}{3} \\
& \therefore\left(\mathrm{gof}^{-1}\right)(2)=\mathrm{g}\left[\mathrm{f}^{-1}(2)\right]=\mathrm{g}\left[\frac{2+2}{3}\right]=\mathrm{g}\left(\frac{4}{3}\right) \\
& \\
& =\left(\frac{4}{3}\right)^{2}+1=\frac{16}{9}+1=\frac{25}{9} .
\end{aligned}
$$

10. Find the inverse of the following functions
(i) If $a, b \in R, f: R \rightarrow R$ defined by $f(x)=a x+b(a$ $\neq 0$)
(ii) $\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)$ defined by $\mathrm{f}(\mathrm{x})=5^{\mathrm{x}}$
(iii) $f:(0, \infty) \rightarrow R$ defined by $f(x)=\log _{2} x$
(iv) $f: Q \rightarrow Q$ defined by $f(x)=5 x+4$

A: (i) If $a, b \in R, f: R \rightarrow R$ defined by $f(x)=a x+b$ ($a \neq 0$)
Let $x \in$ domain R and $Y \in$ codomain R such that f
(x) $=\mathrm{y}$

$$
\begin{aligned}
& \Rightarrow \mathrm{ax}+\mathrm{b}=\mathrm{y} \\
& \Rightarrow \mathrm{ax}=\mathrm{y}-\mathrm{b} \\
& \Rightarrow \mathrm{x}=\frac{\mathrm{y}-\mathrm{b}}{\mathrm{a}}=\mathrm{f}-1(\mathrm{y}) \quad \therefore \mathrm{f} \text { is bijection } \\
& \Rightarrow \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}-\mathrm{b}}{\mathrm{a}}
\end{aligned}
$$

(ii) $f: R \rightarrow(0, \infty)$ defined by $f(x)=5^{x}$

Let $x \in R$ and $y \in(0, \infty)$ such that $f(x)=y$

$$
\Rightarrow 5^{x}=y
$$

$\Rightarrow \mathrm{x}=\log _{5} \mathrm{y}=\mathrm{f}^{-1}(\mathrm{y}) \quad \because \mathrm{f}$ is bijection $\Rightarrow \mathrm{f}^{-1}(\mathrm{x})=\log _{5} \mathrm{x}$
(iii) $f:(0, \infty) \rightarrow R$ defined by $f(x)=\log _{2} x$ let $x \in(0, \infty)$ and $y \in R$ such that $f(x)=y$

$$
\Rightarrow \log _{2} x=y
$$

$\Rightarrow x=2^{y}=f^{-1}(y) \quad \because f$ is bijection $\Rightarrow \mathrm{f}^{-1}(\mathrm{x})=2^{\mathrm{x}}$.
(iv) $f: Q \rightarrow Q$ is defined by $f(x)=5 x+4$
let $x \in$ domain Q and $y \in$ codomain Q such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$

$$
\begin{aligned}
& \Rightarrow 5 x+4=y \\
& \Rightarrow 5 x=y-4 \\
& \Rightarrow x=\frac{y-4}{5}=f^{-1}(y)
\end{aligned}
$$

$$
\therefore f^{-1}(x)=\frac{\mathrm{x}-4}{5} .
$$

11. Determine whether the following functions are even or odd.
(i) $f(x)=a^{x}-a^{-x}+\sin x$
(ii) $f(x)=x\left(\frac{e^{x}-1}{e^{x}+1}\right)$
(iii) $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$.

A: (i) $f(x)=a^{x}-a^{-x}+\sin x$
Now $\mathrm{f}(-\mathrm{x})=\mathrm{a}^{-\mathrm{x}}-\mathrm{a}^{-(-x)}+\sin (-\mathrm{x})$

$$
\begin{aligned}
& =a^{-x}-a^{x}-\sin x \\
& =-\left\{a^{x}-a^{-x}+\sin x\right] \\
& =-f(x)
\end{aligned}
$$

So $f(x)$ is an odd function.
(ii) $f(x)=x\left(\frac{e^{x}-1}{e^{x}+1}\right)$

$$
\begin{aligned}
f(-x) & =(-x)\left(\frac{e^{-x}-1}{e^{-x}+1}\right) \\
& =(-x)\left(\frac{\frac{1}{e^{x}}-1}{\frac{1}{e^{x}}+1}\right) \\
& =(-x)\left(\frac{1-e^{x}}{1+e^{x}}\right) \\
& =x\left(\frac{e^{x}-1}{e^{x}+1}\right)
\end{aligned}
$$

So $f(x)$ is an even function.
(iii) $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$

$$
\begin{aligned}
f(-x) & =\log \left[-x+\sqrt{(-x)^{2}+1}\right] \\
& =\log \left[\sqrt{x^{2}+1}-x\right] \\
& =\log \left[\frac{\left(\sqrt{x^{2}+1}-x\right)\left(\sqrt{x^{2}+1}+x\right)}{\sqrt{x^{2}+1}+x}\right] \\
& =\log \left(\frac{x^{2}+1-x^{2}}{x+\sqrt{x^{2}+1}}\right) \\
& =\log \left(x+\sqrt{x^{2}+1}\right)^{-1} \\
& =-\log \left(x+\sqrt{x^{2}+1}\right) \\
& =-f(x)
\end{aligned}
$$

So $f(x)$ is an odd function.
12. Find the domain of the real valued function
$f(x)=\frac{1}{\sqrt{x^{2}-a^{2}}}(a>0)$.
A: To get the domain of $f, x^{2}-a^{2}>0$.
$\Rightarrow(x+a)(x-a)>0$.
$\Rightarrow x<-a$ or $x>a$.
$\Rightarrow x \in(-\infty,-a) \cup(a, \infty)$
\therefore Domain of $f=(-\infty,-a) \cup(a, \infty)$.
13. Find the domain of the real valued function
$f(x)=\sqrt{(x-\alpha)(x-\beta)}(0<\alpha<\beta)$.
A: To get the domain $(x-\alpha)(x-\beta) \geq 0$.
$x \leq \alpha$ or $x \geq \beta$.
$x \in(-\infty, \alpha] \cup[\beta, \infty)$
\therefore Domain of $f=(-\infty, \alpha] \cup[\beta, \infty)$
14. Find the domain of the real valued function
$f(x)=\frac{2 x^{2}-5 x+7}{(x-1)(x-2)(x-3)}$.
A: To get the domain of $f,(x-1)(x-2)(x-3) \neq 0$.
$\Rightarrow x \neq 1,2,3$
\therefore Domain of $f=R-\{1,2,3\}$

15. Find the domain of the function

(i) $f(x)=\frac{1}{\left(x^{2}-1\right)(x+3)}$
(ii) $f(x)=\frac{1}{\log (2-x)}$
$A: f(x)=\frac{1}{\left(x^{2}-1\right)(x+3)} \in R$
$\Leftrightarrow\left(x^{2}-1\right)(x+3) \neq 0$
$\Leftrightarrow(x+1)(x-1)(x+3) \neq 0$
$\Leftrightarrow x \neq-3,-1,1$
\therefore Domain of $f=R-\{-3,-1,1\}$
(ii) $f(x)=\frac{1}{\log (2-x)}$
$\Leftrightarrow 2-x>0$ and $2-x \neq 1$
$\Leftrightarrow x-2<0$ and $x \neq 1$.
$\Leftrightarrow x<2$ and $x \neq 1$.
$\Leftrightarrow x \in(-\infty, 2)$ and $x \neq 1$
Domain of $f=(-\infty, 1) \cup(1,2)$.
16. Find the domain of the function
(i) $f(x)=\sqrt{x^{2}-25}$
(ii) $f(x)=\frac{1}{\sqrt{1-x^{2}}}$
(iii) $f(x)=\sqrt{4 x-x^{2}}$

A: $f(x)=\sqrt{x^{2}-25} \in R$
$\Leftrightarrow x^{2}-25 \geq 0$
$\Leftrightarrow(x+5)(x-5) \geq 0$
$\Leftrightarrow x \in(-\infty,-5] \cup[5, \infty)$
\therefore Domain of $f=(-\infty,-5] \cup[5, \infty)$
(ii) $f(x)=\frac{1}{\sqrt{1-x^{2}}} \in R$
$\Leftrightarrow 1-x^{2}>0$
$\Leftrightarrow x^{2}-1<0$
$\Leftrightarrow(x+1)(x-1)<0$
$\Leftrightarrow x \in(-1,1)$
\therefore Domain of $f=(-1,1)$
(iii) $f(x)=\sqrt{4 x-x^{2}} \in R$
$\Leftrightarrow 4 \mathrm{x}-\mathrm{x}^{2} \geq 0$
$\Leftrightarrow x(4-x) \geq 0$
$\Leftrightarrow x(x-4) \leq 0$
$\Leftrightarrow x \in[0,4]$
\therefore Domain of $\mathrm{f}=[04]$
17. Find the domain of the function
(i) $f(x)=\log \left(x^{2}-4 x+3\right)$
(ii) $\mathrm{f}(\mathrm{x})=\sqrt{\log _{0.3}\left(\mathrm{x}-\mathrm{x}^{2}\right)}$

A: (i) $f(x)=\log \left(x^{2}-4 x+3\right) \in R$

$$
\begin{aligned}
& \Leftrightarrow x^{2}-4 x+3>0 \\
& \Leftrightarrow(x-1)(x-3)>0 \\
& \Leftrightarrow x \in(-\infty, 1) \cup(3, \infty)
\end{aligned}
$$

\therefore Domain of $f=(-\infty, 1) \cup(3, \infty)$.
(ii) $f(x)=\sqrt{\log _{0.3}\left(x-x^{2}\right)} \in R$
$\Leftrightarrow x-x^{2}>0$
$\Leftrightarrow x(1-x)>0$
$\Leftrightarrow x(x-1)<0$
$\Leftrightarrow x \in(0,1)$
Domain of $f=(0,1)$.
18. Find the range of the function
(i) $f(x)=\log \left|4-x^{2}\right|$
(ii) $f(x)=\sqrt{[x]-x}$

A: (i) $f(x)=\log \left|4-x^{2}\right| \in R$
Let $f(x)=y$
$\Rightarrow \log \left|4-x^{2}\right|=y$
$\Rightarrow\left|4-x^{2}\right|=e^{y}>0 \forall y \in R$
\therefore Range of f is R.
(ii) $f(x)=\sqrt{[x]-x} \in R$
$\Leftrightarrow[x]-x \geq 0$
$\Leftrightarrow \mathrm{X} \leq[\mathrm{x}]$
$\Leftrightarrow X \in Z$
\therefore Domain of $\mathrm{f}=\mathrm{Z}$
\Rightarrow Range of $f=\{0\}$.
19. Find the range of
$\begin{array}{ll}\text { (i) } f(x)=\frac{x^{2}-4}{x-2} & \text { (ii) } f(x)=\sqrt{9+x^{2}}\end{array}$
A: (i) $f(x)=\frac{x^{2}-4}{x-2} \in R$
$\Leftrightarrow x-2 \neq 0$
$\Leftrightarrow x \neq 2$
\therefore Domain of $f=R-\{2\}$
Then $\mathrm{y}=\mathrm{x}+2 \quad \because \mathrm{x} \neq 2 \Rightarrow \mathrm{y} \neq 4$
\therefore Range of $f=R-\{4\}$.
(ii) $f(x)=\sqrt{9+x^{2}}$

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{9+\mathrm{x}^{2}} \in \mathrm{R}$
\Leftrightarrow Domain of $f=R$
When $\mathrm{x}=0, \mathrm{f}(0)=\sqrt{9}=3$
When $x \in R-\{0\}, f(x)>3$
\therefore Range of $f=[3, \infty)$.
20. Find the domain and range of
(i) $f(x)=\frac{2+x}{2-x}$
(ii) $f(x)=\frac{x}{1+x^{2}}$
(iii) $f(x)=\sqrt{9-x^{2}}$
(iv) $f(x)=\frac{x}{2-3 x}$

A: (i) $f(x)=\frac{2+x}{2-x} \in R$

$$
2-x \neq 0
$$

$\Rightarrow x \neq 2$
Domain of $f=R-\{2\}$.
Let $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow \frac{2+x}{2-x}=y$
$\Rightarrow 2+x=2 y-x y$
$\Rightarrow x(1+y)=2(y-1)$
$\Rightarrow x=\frac{2(y-1)}{y+1}$
Clearly x is not defined for $\mathrm{y}+1=0$
\therefore Range of $f=R-\{-1\}$
(ii) $f(x)=\frac{x}{1+x^{2}}$
$f(x)=\frac{x}{1+x^{2}} \in R$
$\Leftrightarrow 1+x^{2} \neq 0$
\Leftrightarrow Domain of $f=R$
Let $f(x)=y$
$\Rightarrow \frac{x}{1+x^{2}}=y$
$\Rightarrow x=y+y x^{2}$
$\Rightarrow y x^{2}-x+y=0$
$\Rightarrow x=\frac{1 \pm \sqrt{1-4 y^{2}}}{2 y} \in R$
$\Rightarrow 1-4 y^{2} \geq 0$ and $y \neq 0$
$\Rightarrow(1+2 \mathrm{y})(1-2 \mathrm{y}) \geq 0$ and $\mathrm{y} \neq 0$
$\Rightarrow(y+1 / 2)(y-1 / 2) \leq 0$ and $y \neq 0$
$\Rightarrow y \in[-1 / 2,1 / 2]$ and $y \neq 0$
Also $x=0 \Rightarrow y=0$
\because Range of $f=[-1 / 2,1 / 2]$
(iii) $f(x)=\sqrt{9-x^{2}} \in R$
$\Leftrightarrow 9-x^{2} \geq 0$
$\Leftrightarrow x^{2}-9 \leq 0$
$\Leftrightarrow(x+3)(x-3) \leq 0$
\therefore Domain of $\mathrm{f}=[-3,3]$
Let $f(x)=y$
$\sqrt{9-x^{2}}=y$
$9-x^{2}=y^{2}$
$x=\sqrt{9-y^{2}}$
$\Rightarrow 9-\mathrm{y}^{2} \geq 0$
$\Rightarrow y^{2}-9 \leq 0$
$y \in[-3,3]$
Since y takes only non negative values
\therefore Range of $\mathrm{f}=[0,3]$.
(iv) $f(x)=\frac{x}{2-3 x} \in R$
$\Leftrightarrow \quad 2-3 x \neq 0$
$\Leftrightarrow \quad x \neq 2 / 3$
Domain of f is $R-\{2 / 3\}$
Let $f(x)=y$
$\Rightarrow \frac{x}{2-3 x}=y$
$\Rightarrow x=2 y-3 x y$
$\Rightarrow x(1+3 y)=2 y$
$\Rightarrow x=\frac{2 y}{1+3 y}$
$\Rightarrow 1+3 y \neq 0$
$\Rightarrow y \neq-1 / 3$
\therefore Range of $f=R-\{1 / 3\}$
21. If a function is defined as

$$
f(x)=\left\{\begin{array}{l}
x+2, \quad x>-1 \\
2,-1 \leq x \leq 1 \\
x-1,-3<x<-1
\end{array}\right.
$$

Find the values of (i) $f(0)$ (ii) $f(2)+f(-2)$
A: (i) $f(0)=2$
(ii) $f(2)+f(-2)=\{2+2\}+\{-2-1]$

$$
\begin{aligned}
& =4-3 \\
& =1 .
\end{aligned}
$$

22.If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=3 x-1$ and $g(x)=x^{2}+1$, then find (i) $(\mathrm{fog})(x)$ (ii) (gof)(x)

A: Given that $f: R \rightarrow R, g: R \rightarrow R$ are defined by

$$
f(x)=3 x-1, g(x)=x^{2}+1
$$

(i) $(\mathrm{fog})(\mathrm{x})=\mathrm{f}[\mathrm{g}(\mathrm{x})]$

$$
=f\left[x^{2}+1\right]
$$

$$
=3\left(x^{2}+1\right)-1
$$

$$
=3 x^{2}+2
$$

(ii) $(\operatorname{gof}(x)=g[f(x)]$

$$
\begin{aligned}
& =g[3 x-1] \\
& =(3 x-1)^{2}+1 \\
& =9 x^{2}-6 x+2
\end{aligned}
$$

23. If f and g are real valued functions defined by $f(x)=2 x-1$ and $g(x)=x^{2}$, then find
(i) $(\mathrm{fg})(\mathrm{x})$
(ii) $(f+g+2)(x)$
$A: f(x)=2 x-1, g(x)=x^{2}$
(i) $(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$

$$
\begin{aligned}
& =(2 x-1)\left(x^{2}\right) \\
& =2 x^{3}-x^{2}
\end{aligned}
$$

(ii) $(f+g+2)(x)=f(x)+g(x)+2$

$$
\begin{aligned}
& =2 x-1+x^{2}+2 \\
& =x^{2}+2 x+1 \\
& =(x+1)^{2}
\end{aligned}
$$

LEVEL - I (LAQ)

1. If $f: A \rightarrow B, g: B \rightarrow C$ are two bijections, then prove that gof: $\mathrm{A} \rightarrow \mathrm{C}$ is also a bijection.
A : Given : $f: A \rightarrow B, g: B \rightarrow C$ are bijections.
Part 1 :- To prove that gof: $A \rightarrow C$ is one-one. Now $f: A \rightarrow B, g: B \rightarrow C$ are one-one functions. \Rightarrow gof: $A \rightarrow C$ is a function.
Let $\mathrm{a}_{1}, \mathrm{a}_{2} \in \mathrm{~A} \Rightarrow \mathrm{f}\left(\mathrm{a}_{1}\right), \mathrm{f}\left(\mathrm{a}_{2}\right) \in \mathrm{B}$ and (gof) $\left(\mathrm{a}_{1}\right)$, (gof) $\left(\mathrm{a}_{2}\right) \in \mathrm{C}$.
Suppose that $($ gof $)\left(a_{1}\right)=($ gof $)\left(a_{2}\right)$
$\Rightarrow g\left[f\left(a_{1}\right)\right]=g\left[f\left(a_{2}\right)\right]$
$\Rightarrow f\left(\mathrm{a}_{1}\right)=\mathrm{f}\left(\mathrm{a}_{2}\right) \because \mathrm{g}$ is one-one
$\Rightarrow a_{1}=a_{2} \quad \because f$ is one-one
\therefore gof $: A \rightarrow C$ is one-one.

Part 2:- To prove that gof: $\mathrm{A} \rightarrow \mathrm{C}$ is onto.
Now $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are onto functions.

$$
\Rightarrow \text { gof }: \mathrm{A} \rightarrow \mathrm{C} \text { is a function. }
$$

Let $\mathrm{c} \in \mathrm{C}$.
Since $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ is onto, there exists atleast one element $b \in B$ such that $g(b)=c$.

Since $f: A \rightarrow B$ is also onto, there exists atleast one element $a \in A$ such that $f(a)=b$

Now (gof) $(\mathrm{a})=\mathrm{g}[\mathrm{f}(\mathrm{a})]$

$$
\begin{aligned}
& =g(b) \\
& =c
\end{aligned}
$$

\therefore For $\mathrm{c} \in \mathrm{C}$, there is an element $\mathrm{a} \in \mathrm{A}$ such that (gof) (a) $=\mathrm{c}$.
so gof : $A \rightarrow C$ is onto.
since gof : $A \rightarrow C$ is both one-one and onto, hence gof : $\mathrm{A} \rightarrow \mathrm{C}$ is a bijection.
2. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are bijections, then prove that $(\mathrm{gof})^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$.
A Given that $f: A \rightarrow B, g: B \rightarrow C$ are bijections.

$$
\Rightarrow f^{-1}: B \rightarrow A, g^{-1}: C \rightarrow B
$$

Now gof : $\mathrm{A} \rightarrow \mathrm{C}$ is also a bijection.
$\Rightarrow(\text { gof })^{-1}: C \rightarrow A$
Also $g^{-1}: C \rightarrow B, f^{-1}: B \rightarrow A \Rightarrow f^{-1}{ }^{-1}: C \rightarrow A$.
Thus (gof) ${ }^{-1}$ and f^{1} og ${ }^{-1}$ both the functions exist and have the same domain C and the same codomain A.
Let c be any element in C .
Since $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ is onto, there exists atleast one element $b \in B$ such that $g(b)=c$ $\Rightarrow \mathrm{b}=\mathrm{g}^{-1}(\mathrm{c}) \quad \because \mathrm{g}$ is a bijection

Since $f: A \rightarrow B$ is onto, there exists atleast one element $a \in A$ such that $f(a)=b$.

$$
\Rightarrow \mathrm{a}=\mathrm{f}^{-1}(\mathrm{~b}) \quad \because \text { fis a bijection }
$$

Consider (gof) (a) $=g[f(\mathrm{a})]$

$$
\therefore(\mathrm{gof})(\mathrm{a})=\mathrm{c} .
$$

$\Rightarrow \mathrm{a}=(\mathrm{gof})^{-1}(\mathrm{c}) \quad \because$ gof is a bijection
Also $\left(f^{-1} \mathrm{og}^{-1}\right)(\mathrm{c})=\mathrm{f}^{-1}\left[\mathrm{~g}^{-1}(\mathrm{c})\right]$

$$
=f^{-1}(b)
$$

= a
\therefore (gof) $)^{-1}(c)=\left(f^{-1} \mathrm{og}^{-1}\right)(\mathrm{c}) \forall \mathrm{c} \in \mathrm{C}$.
Hence (gof) ${ }^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$
3. If $f: A \rightarrow B$ is a bijection, then show that fof ${ }^{1}=I_{B}$ and f^{1} of $=I_{A}$.
A : Given that $f: A \rightarrow B$ is a bijection

$$
\Rightarrow \mathrm{f}^{-1}: \mathrm{B} \rightarrow \mathrm{~A} .
$$

Part 1:- To show that fof ${ }^{-1}=I_{B}$
Now $\mathrm{f}^{-1}: B \rightarrow \mathrm{~A}, \mathrm{f}: \mathrm{A} \rightarrow \mathrm{B} \Rightarrow$ fof $^{-1}: B \rightarrow B$.

$$
\text { Also } I_{B}: B \rightarrow B
$$

Thus fof ${ }^{-1}$ and I_{B} have the same domain B and the same codomain B.
Let a be any element in A.
Since $f: A \rightarrow B$, there is a unique element $b \in B$. such that $f(a)=b$

$$
\Rightarrow a=f^{1}(b) \quad \because f \text { is a bijection }
$$

Consider $\left(\right.$ fof $\left.^{-1}\right)(b)=f\left[f^{-1}(b)\right]$

$$
\begin{aligned}
& =f(a) \\
& =b
\end{aligned}
$$

$$
=I_{B}(b) \quad \because I_{B}: B \rightarrow B \Rightarrow I_{B}(b)=b
$$

$\therefore\left(\right.$ fof $\left.^{1}\right)(\mathrm{b})=\mathrm{I}_{\mathrm{B}}(\mathrm{b}) \forall \mathrm{b} \in \mathrm{B}$
Thus fof ${ }^{-1}=I_{B}$
Part 2:- To prove that f^{-1} of $=\mathrm{I}_{\mathrm{A}}$
Now $f: A \rightarrow B, f^{-1}: B \rightarrow A \Rightarrow f^{-1}$ of:A A

$$
\text { Also } I_{A}: A \rightarrow A
$$

Thus f^{-1} of and I_{A} have the same domain A and the same codomain A.

Now ($\left.\mathrm{f}^{-1} \mathrm{of}\right)(\mathrm{a})=\mathrm{f}^{-1}[\mathrm{f}(\mathrm{a})]$

$$
\begin{aligned}
& =f^{-1}(\mathrm{~b}) \\
& =\mathrm{a} \\
& =I_{A}(\mathrm{a}) \quad \therefore \mathrm{I}_{A}: A \rightarrow A \Rightarrow I_{A}(\mathrm{a})=\mathrm{a}
\end{aligned}
$$

$$
\left(f^{1} \circ f\right)(a)=l_{A}(a) \quad \forall a \in A
$$

$$
\therefore \mathrm{f}^{-1} \mathrm{of}=\mathrm{I}_{\mathrm{A}}
$$

Hence fof ${ }^{-1}=I_{B}$ and f^{-1} of $=I_{A}$.
4. Iff: $A \rightarrow B, I_{A}$ and I_{B} are identity functions on $\quad A$ and B respectively, then prove that $\mathrm{fol}_{A}=I_{B}$ of $=f$.
A : Given that $f: A \rightarrow B$
$I_{A}: A \rightarrow A$ is defined by $I_{A}(a)=a \forall a \in A$.
$I_{B}: B \rightarrow B$ is defined by $I_{B}(b)=b \forall b \in B$.
Part 1:- To prove that fol ${ }_{A}=f$
Now $I_{A}: A \rightarrow A, f: A \rightarrow B \Rightarrow$ fol $_{A}: A \rightarrow B$ Also $f: A \rightarrow B$

Thus fol ${ }_{A}$ and f both the functions exist and have the same domain A and the same codomain B.

Let $a \in A$
Since $f: A \rightarrow B$, there exists a unique element $b \in B$ such that $f(a)=b$

Consider $\left(\right.$ fol $\left._{A}\right)(a)=f\left[l_{A}(a)\right]$ $=f(a)$
$\therefore\left(\mathrm{fol}_{A}\right)(\mathrm{a})=\mathrm{f}(\mathrm{a})$ for all $\mathrm{a} \in \mathrm{A}$
Hence fol $=f$ \qquad
Part 2:- To show that I_{B} of $=f$
Now $f: A \rightarrow B, I_{B}: B \rightarrow B \Rightarrow I_{B}$ of : $A \rightarrow B$

$$
\text { Also } f: A \rightarrow B
$$

Thus I_{B} of and f both the functions exist and have the same domain A and codomain B.
Consider ($\left.l_{B} \mathrm{Of}\right)(\mathrm{a})=l_{\mathrm{B}}[\mathrm{f}(\mathrm{a})]$

$$
\begin{aligned}
& =I_{B}(b) \\
& =b \\
& =f(a)
\end{aligned}
$$

$\therefore\left(I_{B}\right.$ of) $(a)=f(a)$ for all $a \in A$
$\Rightarrow I_{B}$ of $=f$ \qquad
From (1) \& (2) fol $I_{A}=f=I_{B}$ of.
5. If $f: A \rightarrow B, g: B \rightarrow A$ are two functions such that gof $=I_{A}$ and $f 0 g=I_{B}$ then prove that $g=f$.
A : Given that $f: A \rightarrow B, g: B \rightarrow A$ are two functions
such that gof $=I_{A}$ and fog $=I_{B}$.
Part 1:- To prove that f is one-one.
Let $\mathrm{a}_{1}, \mathrm{a}_{2} \in \mathrm{~A} \Rightarrow \mathrm{f}\left(\mathrm{a}_{1}\right), \mathrm{f}\left(\mathrm{a}_{2}\right) \in \mathrm{B}$
Consider $f\left(a_{1}\right)=f\left(a_{2}\right)$
$\Rightarrow g\left[f\left(a_{1}\right)\right]=g\left[f\left(a_{2}\right)\right]$
\Rightarrow (gof) $\left(\mathrm{a}_{1}\right)=(\mathrm{gof})\left(\mathrm{a}_{2}\right)$
$\Rightarrow I_{A}\left(a_{1}\right)=I_{A}\left(a_{2}\right) \quad \because$ gof $=I_{A}$
$\Rightarrow a_{1}=a_{2}$
Thus $f: A \rightarrow B$ is one-one.
Part 2:- To prove that f is onto.
Let $b \in B$.
$\because g: B \rightarrow A$, there exists a unique element $a \in A$ such that $g(b)=a$.
Now $f(a)=f[g(b)]$

$$
\begin{aligned}
& =(f \circ g)(b) \\
& =I_{B}(b) \quad \because f \circ g=I_{B} \\
& =b
\end{aligned}
$$

WWW.AIMSTUTORIAL.IN

So $f: A \rightarrow B$ is onto.
Since f is both one-one and onto, so f is a bijection.

$$
\Rightarrow f^{-1}: B \rightarrow A
$$

Also g: B $\rightarrow \mathrm{A}$
Thus both the functions f^{-1} and g have the same domain B and same codomain A.
Part 3:- To show that $g=f-1$
From previous part, $f(a)=b$

$$
\begin{aligned}
\Rightarrow a & =f^{-1}(b) \\
\text { Also } g(b) & =a \\
\therefore g(b) & =f^{-1}(b) \quad \forall b \in B .
\end{aligned}
$$

Hence $g=f^{-1}$.
6. If $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$ are functions, then prove that ho(gof) $=$ (hog)of.
A : Given that $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$
Now $f: A \rightarrow B, g: B \rightarrow C \Rightarrow$ gof: $A \rightarrow C$
Also gof : $\mathrm{A} \rightarrow \mathrm{C}, \mathrm{h}: \mathrm{C} \rightarrow \mathrm{D} \Rightarrow$ ho(gof) : $\mathrm{A} \rightarrow \mathrm{D}$
Now g: B $\rightarrow \mathrm{C}, \mathrm{h}: \mathrm{C} \rightarrow \mathrm{D} \Rightarrow$ hog : $\mathrm{B} \rightarrow \mathrm{D}$
Also $f: A \rightarrow B$, hog : $B \rightarrow D \Rightarrow$ (hog)of : $A \rightarrow D$
Thus ho(gof) and (hog)of both the functions exist and have the same domain and the same codomain.
Let a be any element in A.

$$
\begin{aligned}
{[\text { ho(gof) }](\mathrm{a}) } & =\mathrm{h}[(\mathrm{gof})(\mathrm{a})] \\
& =\mathrm{h}[\mathrm{~g}\{\mathrm{f}(\mathrm{a})\}]
\end{aligned}
$$

Also [(hog)of] (a)=(hog)[f(a)]

$$
=\mathrm{h}[g \mathrm{~g} f(\mathrm{a})]
$$

Thus [ho(gof)](a) = [hog)of] (a) for all $a \in A$ Hence ho(gof) = (hog)of.

7. If $f: A \rightarrow B$ is a bijection, then prove that $f^{-1}: B \rightarrow A$ is a bijection

A : Given that $f: A \rightarrow B$ is a bijection

$$
\Rightarrow f^{-1}: B \rightarrow A \text { is a function }
$$

Part 1: To prove that $\mathrm{f}^{-1}: \mathrm{B} \rightarrow \mathrm{A}$ is one-one. Let $b_{1}, b_{2} \in B$.
$\because f: A \rightarrow B$ is onto, there exist $a_{1}, a_{2} \in A$ such that

$$
\begin{gathered}
f\left(a_{1}\right)=b_{1}, f\left(a_{2}\right)=b_{2} \\
\Rightarrow a_{1}=f^{-1}\left(b_{1}\right), a_{2}=f^{-1}\left(b_{2}\right) \quad \because f: A \rightarrow B \text { is a }
\end{gathered}
$$ bijection

Now, suppose that $f^{-1}\left(b_{1}\right)=f^{-1}\left(b_{2}\right)$

$$
\begin{aligned}
& \Rightarrow a_{1}=a_{2} \\
& \Rightarrow f\left(a_{1}\right)=f\left(a_{2}\right) \because f: A \rightarrow B \text { is a funciton } \\
& \Rightarrow b_{1}=b_{2}
\end{aligned}
$$

So $f^{-1}: B \rightarrow A$ is a one-one function.
Part 2: To prove that $\mathrm{f}^{-1}: B \rightarrow \mathrm{~A}$ is onto.
Let $a \in A$.
Since $f: A \rightarrow B$, there exists a unique element b $\in B$ such that $f(a)=b$

$$
\Rightarrow \quad f^{-1}(b)=a \quad \because f \text { is a bijection }
$$

So, for every $a \in A$, there is an element $b \in B$ such that $f^{-1}(b)=a$
So $f^{-1}: B \rightarrow A$ is onto
Since $f^{-1}: B \rightarrow A$ is both one-one and onto, hence $f^{-1}: B \rightarrow A$ is a bijection.
8. Let $A=\{1,2,3\}, B=\{a, b, c\}, C=\{p, q, r\}$. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are defined by $f=\{(1, a),(2, c),(3, b)\}, \quad g=\{(a, q),(b, r)$, $(c, p)\}$, then show that $f^{-1} \mathrm{og}^{-1}=(\mathrm{gof})^{-1}$.
A: Given that $A=\{1,2,3\}, B=\{a, b, c\}, C=\{p, q, r\}$ $f: A \rightarrow B, g: B \rightarrow C$ are given by
$f=\{(1, a),(2, c),(3, b)\} \Rightarrow f^{-1}=\{(a, 1),(b, 3),(c, 2)\}$ and
$g=\{(a, q),(b, r),(c, p)\} \Rightarrow g^{-1}=\{(q, a),(r, b),(p, c)\}$
Now $\left(f^{-1} \circ g^{-1}\right)(p)=f^{-1}\left[g^{-1}(p)\right]$

$$
\begin{aligned}
& =f^{-1}(c) \\
& =2
\end{aligned}
$$

Similarly $\left(f^{-1} \mathrm{og}^{-1}\right)(\mathrm{q})=1,\left(\mathrm{f}^{-1} \mathrm{og}^{-1}\right)(\mathrm{r})=3$
$\therefore f^{-1} \mathrm{og}^{-1}=\{(\mathrm{p}, 2),(\mathrm{q}, 1),(\mathrm{r}, 3)\}$
Also (gof)(1) $=g[f(1)]$

$$
\begin{aligned}
& =g(a) \\
& =q
\end{aligned}
$$

Similarly (gof) (2) $=p$, (gof) (3) $=r$
\Rightarrow gof $=\{(1, q),(2, p),(3, r)\}$
$\Rightarrow(\mathrm{g} \circ \mathrm{f})^{-1}=\{(\mathrm{q}, 1),(\mathrm{p}, 2),(\mathrm{r}, 3)\}$
From (1) and (2) $f^{-1} \circ g^{-1}=(g \circ f)^{-1}$.
9. If $f: Q \rightarrow Q$ defined by $f(x)=5 x+4$ for all $x \in Q$,
show that f is a bijection and find $f{ }^{-1}$.
Given : $f: Q \rightarrow Q$ is defined by $f(x)=5 x+4$
Part 1:- To prove that f is one-one
Let $x_{1}, x_{2} \in Q$ (domain) and

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
\Rightarrow & 5 x_{1}+4=5 x_{2}+4 \\
\Rightarrow & 5 x_{1}=5 x_{2} \\
\Rightarrow & x_{1}=x_{2}
\end{aligned}
$$

$\therefore f: Q \rightarrow Q$ is one-one.
Part 2:- To prove that f is onto
Let $\mathrm{y} \in$ the codomain Q and $\mathrm{x} \in$ domain Q such that

$$
f(x)=y
$$

$\Rightarrow 5 x+4=y$
$\Rightarrow \mathrm{x}=\frac{\mathrm{y}-4}{5}$
So for every $y \in \operatorname{codomain} Q$, there is a preimage $\frac{y-4}{5} \in$ domain Q such that

$$
f\left(\frac{y-4}{5}\right)=y
$$

Thus $f: Q \rightarrow Q$ is onto.
Part 3:- To find $f^{-1}(x)$
Since f is both one-one, onto, so it is a bijection.

$$
\begin{aligned}
& f(x)=y \Rightarrow x=f^{-1}(y) \\
& 5 x+4=y \Rightarrow x=\frac{y-4}{5}=f^{-1}(y) \\
& \therefore f^{1}(x)=\frac{x-4}{5} .
\end{aligned}
$$

LEVEL - II (VSAQ)

1. If $f: R-\{0\} \rightarrow R$ is defined by $f(x)=x^{3}-1 / x^{3}$, then show that $f(x)+f(1 / x)=0$.
A: $f(x)=x^{3}-1 / x^{3}$
Now $f(x)+f(1 / x)=x^{3}-1 / x^{3}+1 / x^{3}-x^{3}=0$.
2. If $f(x)=\left\{\begin{array}{cc}3 x-2, & x \geq 1 \\ x^{2}-2, & -2 \leq x \leq 2 \\ 2 x+1, & x<-3\end{array}\right.$ then find $f(4), f(2.5)$,
$f(-2), f(-4), f(0), f(-7)$
A: i) $f(4)=3(4)-2=10$
ii) $f(2.5)$ is not defined
iii) $f(-2)=(-2)^{2}-2=4-2=2$
iv) $f(-4)=2(-4)+1=-8+1=-7$
v) $f(0)=0^{2}-2=-2$
vi) $f(-7)=2(-7)+1=-14+1=-13$
3. If $f(x)=x+\frac{1}{x}$ then prove that $[f(x)]^{2}=f\left(x^{2}\right)+$ $f(1)$.
A: Given $f(x)=x+\frac{1}{x}$
$[f(x)]^{2}=\left(x+\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}}+2 x \frac{1}{x}=x^{2}+\frac{1}{x^{2}}+2$.
and $f\left(x^{2}\right)=x^{2}+\frac{1}{x^{2}}, f(1)=1+\frac{1}{1^{2}}=2$.
$f\left(x^{2}\right)+f(1)=x^{2}+\frac{1}{x^{2}}+2=[f(x)]^{2}$
Hence proved.
4. If $f: R-\{ \pm 1\} \rightarrow R$ is defined by $f(x)=\log$ $\left|\frac{1+x}{1-x}\right|$, then show that $f\left(\frac{2 x}{1+x^{2}}\right)=2 f(x)$.
A: Given $f(x)=\log \left|\frac{1+x}{1-x}\right|$
Now, $f\left(\frac{2 x}{1+x^{2}}\right)=\log \left|\frac{1+\frac{2 x}{1+x^{2}}}{1-\frac{2 x}{1+x^{2}}}\right|=\log$
$\left|\frac{\frac{1+x^{2}+2 x}{\frac{1+x^{2}}{1+x^{2}-2 x}}}{\frac{1+x^{2}}{1}}\right|$
$=\log \left|\frac{(1+x)^{2}}{(1-x)^{2}}\right|=\log \left|\frac{1+x}{1-x}\right|^{2}=2 \log \left|\frac{1+x}{1-x}\right|=2 f(x)$.
5. If $f(x)=\frac{\cos ^{2} x+\sin ^{4} x}{\sin ^{2} x+\cos ^{4} x} \quad x \quad \forall$ then show that $f(2012)=1$

A: Given that $f(x)=\frac{\cos ^{2} x+\sin ^{4} x}{\sin ^{2} x+\cos ^{4} x}$

$$
\begin{aligned}
f(x) & =\frac{1-\sin ^{2} x+\sin ^{4} x}{1-\cos ^{2} x+\cos ^{4} x}=\frac{1-\sin ^{2} x\left(1-\sin ^{2} x\right)}{1-\cos ^{2} x\left(1-\cos ^{2} x\right)} \\
& =\frac{1-\sin ^{2} x \cos ^{2} x}{1-\cos ^{2} x \sin ^{2} x} . \\
& =1 \\
& \Rightarrow f(2012)=1
\end{aligned}
$$

6. If $f(x+y)=f(x y) \forall x, y \in R$ then prove that ' f ' is a constant function.
A: Let $f(0)=k$
Given that $f(x+y)=f(x y)$
Now, $f(x)=f(x+0)=f(x .0)=f(0)=k$.
which is a constant, $\forall x \in R$
Hence, $f(x)$ is a constant function.
7. If the function $f:\{-1,1\} \rightarrow\{0,2\}$ is defined by $f(x)=a x+b$ is a surjection, then find a, b.
A: Here f is a surjection, so two cases arise.
case i) $f(-1)=0, f(1)=2$
$\Rightarrow-a+b=0, a+b=2 \Rightarrow a=1, b=1$
case ii) $f(1)=0, f(-1)=2$
$\Rightarrow \mathrm{a}+\mathrm{b}=0,-\mathrm{a}+\mathrm{b}=2 \Rightarrow \mathrm{a}=-1, \mathrm{~b}=1$
Hence, $a= \pm 1, b=1$
8. If $f: R \rightarrow R$ is defined by $f(x)=2 x^{2}+3$ and $g(x)=3 x-2$ then find i) fog(x) ii) gof (x), iii) fof (0), iv) [go(fof)](3)

A: Given that $f(x)=2 x^{2}+3$ and $g(x)=3 x-2$
i) $f \circ g(x)=f[g(x)]=f[3 x-2]=2(3 x-2)^{2}+3$
$=2\left(9 x^{2}+4-12 x\right)+3=18 x^{2}-24 x+11$
ii) $\operatorname{gof}(x)=g[f(x)]=g\left[2 x^{2}+3\right]=3\left(2 x^{2}+3\right)-2$ $=6 x^{2}+9-2=6 x^{2}+7$
iii) $f f(0)=f[f(0)]=f[3]=2(3)^{2}+3=21$
iv) $[g o(f \circ f)](3)=g[f \circ f(3)]=g[f\{f(3)\}]$

$$
\begin{aligned}
& =g[f(21)]=g\left[2(21)^{2}+3\right] \\
& =g[885]=3(885)-2=2653 .
\end{aligned}
$$

9. If $f(x)=4 x-1, g(x)=x^{2}+2$ then find
i) gof (x) ii) fof (x)

A: Given $f(x)=4 x-1, g(x)=x^{2}+2$
i) $\operatorname{gof}(x)=g[f(x)]=g[4 x-1]=(4 x-1)^{2}+2$

$$
=16 x^{2}+1-8 x+2=16 x^{2}-8 x+3
$$

ii) $(f \circ f(x)=f[f(x)]=f(4 x-1)$

$$
=4(4 x-1)-1=16 x-5
$$

10.If $f(x)=2, g(x)=x^{2}, h(x)=2 x$, then find fo(goh)
(x).

A: Given $f(x)=2, g(x)=x^{2}, h(x)=2 x$

$$
\begin{aligned}
f 0(g o h)(x) & =\mathrm{f}[g(\mathrm{~h}(\mathrm{x})]=\mathrm{f}[\mathrm{~g}(2 \mathrm{x})] \\
& =\mathrm{f}\left[(2 \mathrm{x})^{2}\right]=\mathrm{f}\left[4 \mathrm{x}^{2}\right] \\
& =2
\end{aligned}
$$

11. If $f(x)=x^{2}, g(x)=2^{x}$ then solve the equation $\mathrm{fog}(\mathrm{x})=\operatorname{gof}(\mathrm{x})$
A: $f \circ g(x)=f[g(x)]=f\left(2^{x}\right)=\left(2^{x}\right)^{2}=2^{2 x}$
and $\operatorname{gof}(x)=g[f(x)]=g\left[x^{2}\right]=2^{x^{2}}$
Since, fog $(x)=\operatorname{gof}(x) \Rightarrow 2^{2 x}=2^{x^{2}}$
$\Rightarrow 2 x=x^{2} \Rightarrow x^{2}-2 x=0 \Rightarrow x(x-2)=0$
$\Rightarrow x=0$ or 2
12.If $f, g: R \rightarrow R$ are defined by $f(x)= \begin{cases}0, & \text { if } x \in Q \\ 1, & \text { if } x \in Q\end{cases}$ and $g(x)=\left\{\begin{aligned}-1, & \text { if } x \in Q \\ 0, & \text { if } x \in Q\end{aligned}\right.$ = then find (fog) $(\pi)+$ (gof) (e)
A: $(\mathrm{fog})(\pi)=\mathrm{f}[g(\pi)]=\mathrm{f}(0)=0$
$(g \circ f)(e)=g[f(e)]=g(1)=-1 \quad[\because \pi \notin Q]$
\therefore (fog) $(\pi)+$ (gof) $(\mathrm{e})=0-1=-1$
13.If $f(x)=e^{x}$ and $g(x)=\log _{e} x$ then show that fog $=$ gof and find f^{-1}, g^{-1}
A: Given that $f(x)=e^{x}$ and $g(x)=\log _{e} x$
take $f \circ g(x)=f[g(x)]=f\left[\log _{e} x\right]=e^{\log _{e} x}=x$
$g \circ f(x)=g[f(x)]=g\left(e^{x}\right)=\log _{e} e^{x}=x \log _{e} x=x$
Clearly, $\operatorname{fog}(x)=\operatorname{gof}(x)$
Hence, $f^{-1}(x)=g(x)=\log _{e} x$ and $g^{-1}(x)=f(x)=e^{x}$.
14.If $f(x)=1+x+x^{2}+$ \qquad for |x| < 1 then show that $f^{-1}(x)=\frac{x-1}{x}$.
A: Given that $f(x)=1+x+x^{2}+\ldots \ldots . .=\frac{1}{1-x}$
$\because a+a r+a r^{2}+$. \qquad $=\frac{a}{1-r}, r<1$
Let $f(x)=y \Rightarrow x=f^{-1}(y)$
$\therefore \frac{1}{1-\mathrm{x}}=\mathrm{y} \Rightarrow \mathbf{1 - x}=\frac{1}{\mathrm{y}} \Rightarrow \mathrm{x}=1-\frac{1}{\mathrm{y}}$.
$\Rightarrow x=\frac{y-1}{y} \Rightarrow f^{-1}(y)=\frac{y-1}{y} \Rightarrow f^{-1}(x)=\frac{x-1}{x}$.
12. If $f=\{(1,2)(2,-3)(3,-1)\}$ then
find (i) $\mathbf{2 f}$ (ii) $\mathbf{f}^{\mathbf{2}}$ (iii) $\mathbf{2 + f}$ (iv) $\sqrt{\mathbf{f}}$
A: Given $f=\{(1,2)(2,-3)(3,-1)\}$
i) take $2 f(1)=2[f(1)]=2(2)=4$

$$
\begin{aligned}
& 2 f(2)=2[f(2)]=2(-3)=-6 \\
& 2 f(3)=2[f(3)]=2(-1)=-2
\end{aligned}
$$

$$
\therefore 2 f=\{(1,4)(2,-6)(3,-2)\}
$$

ii) take $f^{2}(1)=[f(1)]^{2}=(2)^{2}=4$

$$
\begin{aligned}
& \mathrm{f}^{2}(2)=[f(2)]^{2}=(-3)^{2}=9 \\
& f^{2}(3)=[f(3)]^{2}=(-1)^{2}=1 \\
& \therefore f^{2}=\{(1,4)(2,9)(3,1)\}
\end{aligned}
$$

iii) take $(2+$ f) $(1)=2+f(1)=2+2=4$

$$
\begin{aligned}
& (2+f)(2)=2+f(2)=2-3=-1 \\
& (2+f)(3)=2+f(3)=2-1=1
\end{aligned}
$$

$$
\therefore 2+f=\{(1,4)(2,-1)(3,1)\}
$$

$$
\sqrt{f}(1)=\sqrt{f(1)}=\sqrt{2}
$$

$$
\sqrt{f}(2)=\sqrt{f(2)}=\sqrt{-3}(\text { not valid })
$$

$$
\sqrt{\mathrm{f}}(3)=\sqrt{\mathrm{f}(3)}=\sqrt{-1}(\text { not valid })
$$

$$
\therefore \sqrt{\mathfrak{f}}=\{(1, \sqrt{2})\}
$$

16.If $f=\{(4,5),(5,6),(6,-4)\} g=\{(4,-4),(6,5)$,
$(8,5)$ then find (i) $f+4$
(ii) fg
(iii) f / g
(iv) $\mathbf{f}+\mathbf{g}$ (v) $\mathbf{2 f + 4 g \quad \text { (vi) } | f | \quad \text { (vii) } \sqrt { f } \quad \text { (viii) } f ^ { 2 } , ~}$

A: Given $f=\{(4,5),(5,6),(6,-4)\}, g=\{(4,-4),(6$, 5), $(8,5)$

Here Domain of $f \cap g=\{4,6\}$
i) take $(f+4)(4)=f(4)+4=5+4=9$
$(f+4)(5)=f(5)+4=6+4=10$
$(f+4)(6)=f(6)+4=-4+4=10$
$\therefore f+4=\{(4,9),(5,10),(6,0)\}$
ii) take $(\mathrm{fg})(4)=[\mathrm{f}(4)][\mathrm{g}(4)]=(5)(-4)=-20$
$(\mathrm{fg})(6)=[\mathrm{f}(6)][\mathrm{g}(6)]=(-4)(5)=-20$ $\therefore \mathrm{fg}=\{(4,-20),(6,-20)\}$
iii) take $\left(\frac{f}{g}\right)(4)=\frac{f(4)}{g(4)}=\frac{5}{-4}=\frac{-5}{4}$ and
$\left(\frac{f}{g}\right)(6)=\frac{f(6)}{g(6)}=\frac{-4}{5} \therefore \frac{f}{g}=\left\{\left(4, \frac{-5}{4}\right)\left(6, \frac{-4}{5}\right)\right\}$
(iv) $\{(4,1),(6,1) \quad(\mathrm{v})\{4,-6),(6,12)\}$
(vi) $\{(4,5),(5,6),(6,4)\} \quad$ (vii) $\{(4, \sqrt{5})(5, \sqrt{6})\}$
(viii) $\{(4,25),(5,36),(6,16)\}$
17.On what domain the function $f(x)=x^{2}-2 x$ and $g(x)=-x+6$ are equal?
A: Take $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \Rightarrow \mathrm{x}^{2}-2 \mathrm{x}=-\mathrm{x}+6$
$\Rightarrow x^{2}-x-6=0 \Rightarrow(x-3)(x+2)=0 x=3,-2$
$f(x)$ and $g(x)$ are equal on the domain $\{-2,3\}$
18. Find the domain of definition of the function $\mathbf{y}(\mathrm{x})$, given by the equation $2^{\mathrm{x}}+2^{\mathrm{y}}=\mathbf{2}$.
A: Given equation is $2^{x}+2^{y}=2$.
$\Rightarrow 2^{\mathrm{x}}=2-2^{\mathrm{y}}$
$\Rightarrow 2^{\mathrm{x}}<2$
$\Rightarrow \log 2^{x}<\log 2$
$\Rightarrow x \log 2<\log 2$
$\Rightarrow \mathrm{x}<1$
$\therefore \mathrm{x} \in(-\infty, 1)$
\therefore Domain $=(-\infty, 1)$
19.Find the domain of $\frac{\sqrt{2+x}+\sqrt{2-x}}{x}$.

A: Let $\mathrm{f}(\mathrm{x})=\frac{\sqrt{2+\mathrm{x}}+\sqrt{2-\mathrm{x}}}{\mathrm{x}}$
The function $f(x)$ is defined for
$2+x \geq 0 \Rightarrow x \geq-2 \rightarrow$ (1) and
$2-x \geq 0 \Rightarrow x \leq 2 \rightarrow(2)$ and
$x \neq 0 \quad \rightarrow(3)$
from (1) and (2) and (3)
$x \in[-2,2]-\{0\}($ or $) x \in[-2,0) \cup(0,2]$
20.Find the domain of $\sqrt{x+2}+\frac{1}{\log _{10}(1-x)}$.

A: The function is defined for
$x+2 \geq 0 \Rightarrow x \geq-2 \rightarrow(1)$ and
$1-x>0$ and $1-x \neq 1$
$x-1<0$ and $x \neq 0$.
$x \in[-2,1)-\{0\}$
or) $x \in[-2,0) \cup(0,1)$.
21. Find the domain of the function
(i) $f(x)=\frac{1}{\sqrt{|x|-x}}$
(ii) $f(x)=\sqrt{|x|-x}$

A: (i) $f(x)=\frac{1}{\sqrt{|x|-x}} \in R$

$$
\Leftrightarrow|x|-x>0
$$

$\Leftrightarrow|x|>x$
$\Leftrightarrow x \in(-\infty, 0)$
\therefore Domain of $\mathrm{f}=(-\infty, 0)$
(ii) $f(x)=\sqrt{|x|-x}$
$\Leftrightarrow|x|-x \geq 0$
$\Leftrightarrow|x| \geq x$
$\Leftrightarrow x \in R$
\therefore Domain of $\mathrm{f}=\mathrm{R}$ or $(-\infty, \infty)$
22. Find the domain of the function
(i) $f(x)=\sqrt{x-[x]}$
(ii) $f(x)=\sqrt{[x]-x}$

A: (i) $f(x)=\sqrt{x-[x]} \in R$

$$
\Leftrightarrow \quad x-[x] \geq 0
$$

$\Leftrightarrow \quad x \geq[x]$
$\Leftrightarrow \quad x \in R$
\therefore Domain of $f=R$ or $(-\infty, \infty)$
(ii) $f(x)=\sqrt{[x]-x} \in R$
$\Leftrightarrow[x]-x \geq 0$
$\Leftrightarrow[x] \geq x$
$\Leftrightarrow x \leq[x]$
$\Leftrightarrow X \in Z$
\therefore Domain of $\mathrm{f}=\mathrm{Z}$.
23. Find the range of $\frac{\sin \pi[x]}{1+[x]^{2}}$.

A: The function is defined for $1+[x]^{2} \neq 0$
Which is true $\forall x \in R$ Hence, Domain $=R$ If $x \in R$ then $[x] \in Z \Rightarrow \sin \pi[x]=0$
$\Rightarrow \frac{\sin \pi[x]}{1+[x]^{2}}=0 \forall x \in R$ Hence, Range $=\{0\}$.
24. Determine the function $f(x)=\frac{x}{e^{x}-1}+\frac{x}{2}+1$ is even or odd.

A: take $f(-x)=\frac{-x}{e^{-x}-1}+\frac{-x}{2}+1$
$=\frac{-x}{\frac{1}{e^{x}}-1}-\frac{x}{2}+1=\frac{-x e^{x}}{1-e^{x}}-\frac{x}{2}+1$
$=\frac{-x e^{x}+x-x}{1-e^{x}}-\frac{x}{2}+1$
$=\frac{x\left(1-e^{x}\right)-x}{1-e^{x}}-\frac{x}{2}+1$
$=x-\frac{x}{1-e^{x}}-\frac{x}{2}+1=\frac{x}{e^{x}-1}+\frac{x}{2}+1=f(x)$
Hence, $f(x)$ is an even function.

LEVEL - II (LAQ)

1. If $A=\{1,2,3\}, B=\{a, b, c\}, C=\{p, q, r\}$ and
$f: A \rightarrow B, g: B \rightarrow C$ are defined by
$f=\{(1, a)(2, c)(3, b)\}$,
$g=\{(a, q),(b, r),(c, p)\}$ then
show that $\mathbf{f}^{-1} 0 \mathbf{g}^{-1}=(\text { gof })^{-1}$.
$A: f=\{(1, a),(2, c),(3, b)\} \quad g=\{(a, q),(b, r),(c$,
$p)\}$ then gof $=\{(1, q)(2, p)(3, r)\}$
$\Rightarrow(\text { gof })^{-1}=\{(q, 1)(p, 2)(r, 3)\} \rightarrow(1)$
$g^{-1}=\{(q, a)(r, b),(p, c)\}$
$f^{-1}=\{(a, 1)(c, 2)(b, 3)\}$
$\Rightarrow \mathrm{f}^{-1} \mathrm{og}^{-1}=\{(\mathrm{q}, 1)(\mathrm{r}, 3)(\mathrm{p}, 2)\} \rightarrow$ (2)
from (1) and (2)

$$
(\mathrm{gof})^{-1}=\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}
$$

2. If the function $f: R \rightarrow R$ defined by $f(x)=\frac{3^{x}+3^{-x}}{2}$, then show that $f(x+y)+f(x-y)=2 f(x) f(y)$.

A: Given that $f: R \rightarrow R$ and $f(x)=\frac{3^{x}+3^{-x}}{2}$
$\therefore f(x+y)=\frac{3^{x+y}+3^{-(x+y)}}{2}, f(x-y)=\frac{3^{x-y}+3^{-(x-y)}}{2}$

