Aimstutorial MODEL PAPER-2

MATHS - 1A

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x 2 = 20]

1. $f: R \rightarrow R$ defined by $f(x)=\frac{2 x+1}{3}$, then this function is injection or not? Justify.
2. Find the domain of the real function $\log \left(x^{2}-4 x+3\right)$.
3. Find the trace of $\left[\begin{array}{ccc}1 & 3 & -5 \\ 2 & -1 & 5 \\ 2 & 0 & 1\end{array}\right]$.
4. If $\left[\begin{array}{ccc}0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0\end{array}\right]$ is a skew symmetric matrix then find the value of x.
5. Show that the triangle formed by the vectors $3 \bar{i}+5 \bar{j}+2 \bar{k}, 2 \bar{i}-3 \bar{j}-5 \bar{k}, 5 \bar{i}-2 \bar{j}+3 \bar{k}$ is equilateral.
6. Find the vector equation of the line passing through the points $2 \bar{i}+\bar{j}+3 \bar{k},-4 \bar{i}+3 \bar{j}-\bar{k}$.
7. If $|\overline{\mathrm{a}}+\overline{\mathrm{b}}|=|\overline{\mathrm{a}}-\overline{\mathrm{b}}|$ then find the angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$.
8. Find the value of $\sin 34^{\circ}+\cos 64^{\circ}-\cos 4^{\circ}$.
9. Find the period of $f(x)=\cos (3 x+5)+7$.
10. If $\sinh x=3 / 4$ then find $\cosh 2 x$ and $\sinh 2 x$.
II. Answer any FIVE of the following Short Answer Questions:
11. Show that the matrix $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$ is non-singular and find A^{-1}.
12. If the points whose postion vecotrs are $3 \bar{i}-2 \bar{j}-\bar{k}, 2 \bar{i}+3 \bar{j}-4 \bar{k}, \bar{i}+\bar{j}+2 \bar{k}, 4 \bar{i}+5 \bar{j}+\lambda \bar{k}$ are coplanar, then show that $\lambda=\frac{146}{17}$.
13. Find the area of the triangle formed with the points $A(1,2,3), B(2,3,1), C(3,1,2)$.
14. $\sin \frac{\pi}{5} \cdot \sin \frac{2 \pi}{5} \cdot \sin \frac{3 \pi}{5} \cdot \sin \frac{4 \pi}{5}=\frac{5}{16}$.
15. Solve $\cot ^{2} x-(\sqrt{3}+1) \cot x+\sqrt{3}=0$.
16. Show that $2 \operatorname{Sin}^{-1}\left(\frac{3}{5}\right)-\operatorname{Cos}^{-1}\left(\frac{5}{13}\right)=\operatorname{Cos}^{-1}\left(\frac{323}{325}\right)$
17. If $\cot \frac{A}{2}: \cot \frac{B}{2}: \cot \frac{C}{2}=3: 5: 7$ then show that $a: b: c=6: 5: 4$.
III. Answer any FIVE of the following Long Answer Questions. :
18. If $f: A \rightarrow B, g: B \rightarrow C$ are two bijective funcitons then prove that gof: $A \rightarrow C$ is also a bijective function.
19. Using the principle of finite Mathematical Induction prove that
$2.3+3.4+4.5+\ldots \ldots \ldots \ldots$ upto n terms $=\frac{n\left(n^{2}+6 n+11\right)}{3}$.
20. Show that $\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a b+b c+c a)$.
21. Solve the following equations by using Cramer's rule $2 x-y+3 z=9, x+y+z=6, x-y+z=2$.
22. Prove that the smaller angle θ between any two diagronals of a cube is given by $\cos \theta=1 / 3$.
23. If A, B, C are angles in a triangle, then prove that $\sin ^{2} A+\sin ^{2} B-\sin ^{2} C=2 \sin A \sin B \cos C$.
24. In $\triangle A B C$ prove that $\frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}=\frac{1}{r}-\frac{1}{2 R}$.
