## Aimstutorial MODEL PAPER - 3

## MATHS - 1A

## SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. Find the inverse of the real funciton of $f(x)=a x+b, a \neq 0, a, b \in R$.
2. Find the domain of the real function $f(x)=\frac{1}{\sqrt{1-x^{2}}}$.
3. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$ and $2 X+A=B$ then find $X$.
4. Find the cofactors of 2 and -5 in the matrix $\left[\begin{array}{ccc}-1 & 0 & 5 \\ 1 & 2 & -2 \\ -4 & -5 & 3\end{array}\right]$
5. Show that the points $A(2 \bar{i}-\bar{j}+\bar{k}), B(\bar{i}-3 \bar{j}-5 \bar{k}), C(3 \bar{i}-4 \bar{j}-4 \bar{k})$ are the vertices of a right angled triangle.
6. Find the angle between the vectors $\bar{i}+2 \bar{j}+3 \bar{k}$ and $3 \bar{i}-\bar{j}+2 \bar{k}$.
7. Let $\bar{a}=\bar{i}+\bar{j}+\bar{k}$ and $\bar{b}=2 \bar{i}+3 \bar{j}+\bar{k}$ find projection vector of $\bar{b}$ on $\bar{a}$ and its magnitude.
8. Eliminate ' $\theta$ ' from $x=a \cos ^{3} \theta, y=b \sin ^{3} \theta$.
9. Find a cosine function whose period is 7 .
10. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.

## SECTION-BM

II. Answer any FIVE of the following Short Answer Questions:
11. Show that $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b(b-c)(c-a)$
12. Find $\lambda$ in order that the four points $A(3,2,1), B(4, \lambda, 5), C(4,2,-2)$ and $D(6,5,-1)$ be coplanar.
13. If $[\bar{b} \bar{c} \bar{d}]+[\bar{c} \bar{a} \bar{d}]+[\bar{a} \bar{b} \bar{d}]=[\bar{a} \bar{b} \bar{c}]$, then show that the points with $p . v$ 's $\bar{a}, \bar{b}, \bar{c}, \bar{d}$ are coplanar.
14. Show that $\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}=\frac{1+\sin \theta}{\cos \theta}$.
15. Solve the equation $2 \cos ^{2} \theta+11 \sin \theta=7$ and write general solution.
16. Find the value of $\tan \left(\operatorname{Sin}^{-1} \frac{3}{5}+\operatorname{Cos}^{-1} \frac{5}{\sqrt{34}}\right)$.
17. If $\mathrm{C}=60^{\circ}$, then show that $\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{c}+\mathrm{a}}=1$.

## SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. If $f: A \rightarrow B$ is a function and $I_{A} . I_{B}$ are identity functions on $A, B$ respectively then prove that $\mathrm{fol}_{A}=f=I_{B}$ of.
19. By Mathematical Induction, show that $49^{n}+16 n-1$ is divisible by 64 for all positive integer $n$.
20. If A is a non-singular matrix then prove that $\mathrm{A}^{-1}=\frac{1}{\operatorname{det} \mathrm{~A}}(\operatorname{Adj} \mathrm{~A})$
21. Solve the system of equations by Matrix inverse method, $2 x-y+3 z=8, x+2 y+z=4,3 x+y-4 z=0$.
22. If $\bar{a}=2 \bar{i}+3 \bar{j}+4 \bar{k}, \bar{b}=\bar{i}+\bar{j}-\bar{k}, \bar{c}=\bar{i}-\bar{j}+\bar{k}$, compute $\bar{a} \times(\bar{b} \times \bar{c})$ and verify that it is perpendicular to $\overline{\mathrm{a}}$.
23. If $A, B, C$ are angles in a triangle, then prove that $\cos A+\cos B-\cos C=-1+4 \cos \frac{A}{2} \cos \frac{B}{2} \cdot \sin \frac{C}{2}$.
24. If $a=(b-c) \sec \theta$, prove that $\tan \theta=\frac{2 \sqrt{b c}}{b-c} \sin \frac{A}{2}$.

