Random Variables and Probability Distribution

Random Variable

Random variable: If S is the sample space P(S) is the power set of the sample space, P is the probability of the function then (S, P(S), P) is called the probability space,

In the probability space if $X: S \to \mathbb{R}$ is a function then x is called random variable

Frequency function of random variable (or) Probability density function: Function $f: X(S) \to \mathbb{R}$ is defined by

f(r) = p[e/x(e) = r] is called the frequency function associated with random variable

Where i)
$$0 \le f(r) \le 1 \ \forall \ r \in x(S)$$

ii)
$$\sum f(r) = 1 \ \forall r \in x(S)$$

Arithmetic mean of the random variable: Arithmetic mean of the random variable x is denoted by \bar{x} or all E(x) expected value of X and is defined as $\bar{x} = \sum r f(r)$

Variance of the random variable: If 'x' is a random variable then $E(x^2)$ is defined such that $E(x^2) = \sum r^2 f(r) \ \forall x \in x(S)$. The variance of random variable (σ^2) and is defined as $F(x-x)^2$

Variance of the random variable

$$\sigma^2 = E(x - \bar{x})^2 = E(x^2 + \bar{x}^2 - 2x \bar{x})$$

$$\sigma^2 = E(x)^2 + \overline{x}^2 - 2x E(x)$$

$$\sigma^2 = E(x)^2 + \overline{x}^2$$

Variable of random variable $\sigma^2 = E(x^2) - \mu^2$

$$\sigma^2 = \Sigma r^2 f(r) - \mu^2$$

$$\sigma^2 + \mu^2 = \Sigma r^2 f(r)$$

Standard deviation: It is the positive square root of the variance of the standard deviation of the random variable this is denoted by $\sigma = \sqrt{vairance}$

Note: Let X be a random variable on a sample space S. If $x \in R$ then we use the following symbols to denote some events in S.

i)
$$\{a \in S : X(a) = x\} = (X = x)$$

- **ii**) $\{a \in S : X(a) < x\} = (X < x)$
- **iii)** $\{a \in S : X(a) \le x\} = (X \le x)$
- **iv**) $\{a \in S : X(a) > x\} = (X > x)$
- **v**) $\{a \in S : X(a) \ge x\} = (X \ge x)$
- **Def 2:** Let S be a sample space and $X: S \to R$ be a random variable. The function $F: R \to R$ defined by $F(x) = P(X \le x)$, is called probability distribution function of the random variable X.

We now state some properties of probability distribution function for the random youd the scope of the book.

Theorem 2: Let F(x) be the probability distribution function for the random variable X. then

- i) $0 \le F(x) \le 1, \forall x \in R$
- ii) F (x) is an increasing function i.e. $x_1, x_2 \in R, x_1 < x_2 \Rightarrow F(x_1) F(x_2)$
- iii) $\underset{x \to \infty}{Lt} F(x) = 1$, $\underset{x \to -\infty}{Lt} F(x) = 0$

Theorem 3: If $X: S \to R$ is a discrete random variable with range $\{x_1, x_2, x_3,\}$ then $\sum_{r=1}^{\infty} P(X = x_r) = 1$.

Mean and Variance

- **Def :** Let $X: S \to R$ be a discrete random variable with range $\{x_1, x_2, x_3, \dots\}$. If $\Sigma x_r P(X = x_r)$ exists, then $\Sigma x_r P(X = x_r)$ is called the mean of the random variable X. It is denoted by μ or x. If $\Sigma (x_r \mu)^2 P(X = x_r)$ exists, then $\Sigma (x_r \mu)^2 P(X = x_r)$ is called variance of the random variable X. It is denoted by σ^2 . The positive square root of the variance is called the standard deviation of the random variable X. It is denoted by σ .
- **Theorem 4:** Let $X: S \to R$ be a discrete random variable with range $\{x_1, x_2, x_3, \dots\}$. If μ , σ^2 are the mean and variance of X then $\sigma^2 + \mu^2 = \sum x_r^2 P(X = x_r)$.
- **Def:** Let n be a positive integer and p be a real number such that $0 \le p \le 1$. A random variable X with range $\{0, 1, 2, .n\}$ is said to follows (or have) binomial distribution or Bernoulli distribution with parameters n and p if $P(X = r) = {}^{n}C_{r}$ $p^{r}q^{n-r}$ for r = 0, 1, 2... n where q = 1 p.
- **Theorem :** If the random variable X follows a binomial distribution with parameters n and p then mean of X is np and the variance is npq where q = 1 p.
- **Def**: Let $\lambda > 0$ be are real number. A random variable X with range $\{0, 1, 2, ...\}$ is said to follows (have) Poisson distribution with parameter λ if $P(X = r) = \frac{e^{-\lambda} \lambda^r}{r!}$ for r = 0, 1, 2, ...

Theorem : If a random variable X follows Poisson distribution with parameter λ , then mean of X is λ and variance of X is λ .

EXERCISE - 9(a)

- 1. A p.d.f of a discrete random variable is zero except at the points x = 0, 1, 2. At these points it has the value $p(0) = 3c^3$, $p(1) = 4c 10c^2$, p(0) = 5c 1 for some c > 0. Find the value of c.
- Sol. P(x = 0) + p(x = 1) + p(x = 2) = 1 $3c^3 + 4c - 10c^2 + 5c - 1 = 1$ $3c^3 - 10^2 + 9c - 2 = 0$ Put c = 1, then 3 - 10 + 9 - 2 = 12 - 12 = 0

C = 1 satisfy the above equation

$$C = 1 \Rightarrow p(x = 0) = 3$$
 which is not possible dividing with $c - 1$, we get $3c^2 - 7c + 2 = 0$ $(c - 2)(3c - 1) = 0$ $c = 2$ or $c = 1/3$ $c = 2 \Rightarrow p(x = 0) = 3.2^3 = 24$ which is not possible $\therefore c = 1/3$

- 2. Find the constant C, so that $F(x) = C\left(\frac{2}{3}\right)^x$, $x = 1, 2, 3, \dots$ is the p.d.f of a discrete random variable X.
- **Sol.** Given $F(x) = C(\frac{2}{3})^x$, x = 1, 2, 3

We know that $p(x) = C(\frac{2}{3})^x$, x = 1, 2, 3 ...

$$\therefore \sum_{x=1}^{\infty} p(x) = 1$$

$$\Rightarrow \sum_{x=1}^{\infty} c\left(\frac{2}{3}\right)^{x} = 1$$

$$\Rightarrow c\left[\left(\frac{2}{3}\right) + \left(\frac{2}{3}\right)^{2} + \left(\frac{2}{3}\right)^{3} + \dots \right] = 1$$

$$\Rightarrow C\frac{2}{3}\left[1 + \frac{2}{3} + \left(\frac{2}{3}\right)^{2} + \dots \right] = 1$$

$$\Rightarrow \frac{2c}{3}\left[\frac{1}{1 - \frac{2}{3}}\right] = 1$$

$$[\because a + ar + ar^{2} + \dots = \frac{a}{1 - r}, if |r| <]$$

$$\Rightarrow \frac{2c}{3} \times 3 = 1 \Rightarrow c = \frac{1}{2}$$

X=x	-2	-1	0	1	2	3
P(X=x)	0.1	k	0.2	k	0.3	k

is the probability distribution of a random variable x. find the value of K and the variance of x.

Sol. Sum of the probabilities = 1

$$0.1 + k + 0.2 + 2k + 0.3 + k = 1$$

$$4k + 0.6 = 1$$

$$4k = 1 - 0.6 = 0.4$$

$$k = \frac{0.4}{4} = 0.1$$

$$Mean = (-2) (0.1) + (-1) k + 0 (0.2) + 1 (2k) + 2(0.3) + 3k$$

$$= -0.2 - k + 0 + 2k + 0.6 + 3k$$

$$= 4k + 0.4 = 4(0.1) + 0.4 = 0.4 + 0.4 = 0.8$$

$$\mu = 0.8$$

Variance
$$(\sigma^2) = \sum_{1=1}^{0} x^2 p(x = x_1) - \mu^2$$

:. Variance =
$$4(0.1) + 1(k) + 0(0.2) + 1(2k) + 4(0.3) + 9k - \mu^2$$

$$= 0.4 + k + 0 + 2k + 4(0.3) + 9k - \mu^{2}$$

$$= 12k + 0.4 + 1.2 - (0.8)^2$$

$$= 12(0.1) + 1.6 - 0.64$$

$$= 1.2 + 1.6 - 0.64$$

$$\sigma^2 = 2.8 - 0.64 = 2.16$$

4.

V	2	2	1	0	1	2	2
X=x	-3		-1	v	1	4	3
- (1	1	1	1	1	1	1
P(X=x)	9	9	9	9	9	9	9

is the probability distribution of a random variable x. find the variance of x.

Sol Mean
$$(\mu) = -3\left(\frac{1}{9}\right) - 2\left(\frac{1}{9}\right) - 1\left(\frac{1}{9}\right) + 0\left(\frac{1}{9}\right) + 1\left(\frac{1}{9}\right) + 2\left(\frac{1}{9}\right) + 3\left(\frac{1}{9}\right)$$

$$= -\frac{3}{9} - \frac{2}{9} - \frac{1}{9} + 0 + \frac{1}{9} + \frac{2}{9} + \frac{3}{9} = (\mu) = 0$$
Variance $(\sigma^2) = (-3)^2 \frac{1}{9} + (-2)^2 \frac{1}{9} + (-1)^2 \frac{1}{9} + (0)^2 \left(\frac{1}{3}\right) + (1)^2 \frac{1}{9} + (2)^2 \frac{1}{9} + (3)^2 \frac{1}{9} - \mu^2$

$$= \frac{9}{9} + \frac{4}{9} + \frac{1}{9} + 0 + \frac{1}{9} + \frac{4}{9} + \frac{9}{9} - 0^2 = \frac{28}{9} - 0$$

$$\sigma^2 = \frac{28}{9}$$

5. A random variable x has the following probability distribution.

X=x	0	1	2	3	4	5	6	7
P(X=x)	0	k	2k	2k	3k	\mathbf{K}^2	$2k^2$	$7k^2+k$

Find i) k ii) the mean and iii) p(0 < x < 5).

Sol. Sum of the probabilities =

$$0 + k + 2k + 2k + 3k + K^2 + 2k^2 + 7k^2 + k = 1$$