STRAIGHT LINE -2

NORMAL FORM

Let a line be at a distance of p units from the origin and α ($0 \le \alpha < 360^{\circ}$) be the angle made by the normal to the line with positive direction of

x - axis. Then the equation of the line is $x \cos \alpha + y \sin \alpha = p$.

SYMMETRIC FORM

The equation of the line passing through (x_1, y_1) and having inclination θ

is
$$\frac{x - x_1}{\cos \theta} = \frac{y - y_1}{\sin \theta}$$
, where $\theta \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right)$.

NOTE:

A first degree equation in x and y represents a straight line. The equation ax + by + c = 0 is called the General Form Of The Equation Of A Line. **Note:** The slope of the line ax + by + c = 0 is -a/b.

Theorem

Two lines $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$ are parallel iff $a_1b_2 = a_2b_1$ i.e. $\frac{a_1}{a_2} = \frac{b_1}{b_2}$

Theorem

Two equations $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$ represent the same line iff

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Theorem

Two lines $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$ are perpendicular if $a_1a_2+b_1b_2=0$

Reduction of the equation ax + by + c = 0 of a straight line into various forms.

1. SLOPE INTERCEPT FORM

Equation of the line is ax + by + c = 0

by =
$$-ax - c \implies y = -\frac{a}{b}x - \frac{c}{b}$$

This equation is of the form y = mx + K.k is constant.

2. INTERCEPTS FORM

Equation of the line is ax + by + c = 0

ax + by = -c

$$\Rightarrow \frac{ax}{-c} + \frac{by}{-c} = 1 \Rightarrow \frac{x}{-c/a} + \frac{y}{-c/b} = 1 \text{ Which is of the form } \frac{x}{A} + \frac{y}{B} = 1$$
Here x - intercept = $-\frac{c}{a}$, y - intercept = $-\frac{c}{b}$.

3. NORMAL FORM

Case (i) Let $c \ge 0$

The equation of the line is ax + by + c = 0

ax + by = - c (- c
$$\ge 0$$
) $\Rightarrow \frac{a}{\sqrt{a^2 + b^2}} x + \frac{b}{\sqrt{a^2 + b^2}} y = \frac{-c}{\sqrt{a^2 + b^2}}$

 $x \cos \alpha + y \sin \alpha = p$, where $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$, $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$ and

$$p = \frac{-c}{\sqrt{a^2 + b^2}} > 0$$

Case (ii) Let c > 0.

Then ax + by + c = 0
ax + by = - c
(-a)x + (-b)y = c
$$\Rightarrow \left(\frac{-a}{\sqrt{a^2 + b^2}}\right)x + \left(\frac{-b}{\sqrt{a^2 + b^2}}\right)y = \frac{c}{\sqrt{a^2 + b^2}}$$

 $x \cos \alpha + y \sin \alpha = p$, where $\cos \alpha = \frac{-a}{\sqrt{a^2 + b^2}}$, $\sin \alpha = \frac{-b}{\sqrt{a^2 + b^2}}$ and $p = \frac{c}{\sqrt{a^2 + b^2}}$

Note: The perpendicular distance from origin to the line ax + by + c = 0 is $\frac{|c|}{\sqrt{a^2 + b^2}}$.

The area of the triangle formed by the line $\frac{x}{a} + \frac{y}{b} = 1$ with the cooridnate axes is $\frac{1}{2} |ab|$.

PARAMETRIC FORM

If P(x, y) is any point on the line passing through A(x₁, y₁) and having inclination θ , then

 $x = x_1 + r \cos \theta$, $y = y_1 + r \sin \theta$ where |r| is the distance from A to P. (r is a real parameter)

EXERCISE
$$-3(B)$$

I.

- 1. Find the sum of the square of the intercepts of the line 4x 3y = 12 on the axes of co-ordinates.
- **Sol.** Given line is 4x 3y = 12

$$\Rightarrow \frac{4x}{12} - \frac{3y}{12} = 1 \Rightarrow \frac{x}{3} + \frac{y}{-4} = 1$$

Intercepts are a = 3, $b = -4 \implies$ Sum of the squares $= a^2 + b^2 = 9 + 16 = 25$

- 2. If the portion of a straight line intercepted between the axes of co-ordinates is bisected at (2p, 2q), write the equation of the straight line.
- **Sol.** Let a, b be the intercepts of the line and AB be the line segment between the axes. Then points A = (a, 0) and B = (0, b)

Equation of the line in the intercept form is $\frac{x}{a} + \frac{y}{b} = 1$ --- (1)

Mid -point of AB is $M = \left(\frac{a}{2}, \frac{b}{2}\right) = (2p, 2q)$ given $\Rightarrow \frac{a}{2} = 2p, \frac{b}{2} = 2q \Rightarrow a = 4p, b = 4q$ Substituting in (1), $\frac{x}{4p} + \frac{y}{4q} = 1 \Rightarrow \frac{x}{p} + \frac{y}{q} = 4$

3. If the linear equation ax + by + c = 0

(a, b, c \neq 0) and lx + my + n = 0 represent the same line and $r = \frac{1}{a} = \frac{n}{c}$, write

the value of r in terms of m and b.

Sol. The equations ax + by + c = 0 and

lx + my + n = 0 are representing the same line $\Rightarrow \frac{l}{a} = \frac{m}{b} = \frac{n}{c} = r \Rightarrow \frac{m}{b} = r$

- 4. Find the angle made by the straight line $y = -\sqrt{3} x + 3$ with the positive X-axis measured in the counter clock-wise direction.
- **Sol.** Equation of the given line is $y = -\sqrt{3}x + 3$ let α be the inclination of the line.

Then $\tan \alpha = -\sqrt{3} = \tan \frac{2\pi}{3} \Rightarrow \alpha = \frac{2\pi}{3}$

5. The intercepts of a straight line on the axes of co-ordinates are a and b. If P is the length of the perpendicular drawn from the origin to this line. Write the value of P in terms of a and b.

Sol. Equation of the line in the intercept form is

P = length of the perpendicular from origin

$$p = \frac{|0+0-1|}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}}$$

$$\Rightarrow \frac{1}{p} = \sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$$

Square on both sides

$$\Rightarrow \frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} = \frac{a^2 + b^2}{a^2b^2} \Rightarrow p^2 = \frac{a^2b^2}{a^2 + b^2} \Rightarrow p = \frac{|ab|}{\sqrt{a^2 + b^2}}$$

- II.
- 1. In what follows, P denotes the distance of the straight line from the origin and α is the angle made by the normal ray drawn from the origin to the straight line with \overrightarrow{OX} measured in the anti-clock wise sense. Find the equations of the straight lines with the following values of P and α .
 - i) p = 5, $\alpha = 60^{\circ}$ ii) p = 6, $\alpha = 150^{\circ}$ iii) p = 1, $\alpha = \frac{7\pi}{4}$ iv) p = 4, $\alpha = 90^{\circ}$ iv) p = 0, $\alpha = 0$ v) $p = 2\sqrt{2}, \alpha = \frac{5\pi}{4}$

Sol. Equation of the line in the normal form is $x \cos \alpha + y \sin \alpha = p$

i) given
$$p = 5$$
, $\alpha = 60^{\circ}$
 $\cos \alpha = \cos 60^{\circ} = \frac{1}{2}$ and $\sin \alpha = \sin 60^{\circ} = \sqrt{\frac{3}{2}}$
Equation of the line is $x \cos \alpha + y \sin \alpha = p$
 $\Rightarrow x \frac{1}{2} + y \frac{\sqrt{3}}{2} = 5 \Rightarrow x + \sqrt{3}y = 10$
ii) ans : $\sqrt{3}x + y + 12 = 0$
iii) $p = 4$, $\alpha = \frac{7\pi}{4}$
 $\cos \alpha = \cos 315^{\circ} = \frac{1}{\sqrt{2}}$ and $\sin \alpha = \sin 315^{\circ} = -\frac{1}{\sqrt{2}}$
Equation of the line is $x \cdot \frac{1}{\sqrt{2}} - y \cdot \frac{1}{\sqrt{2}} = 1$
 $x - y = \sqrt{2} \Rightarrow x - y - \sqrt{2} = 0$
iv) $P = 4$, $\alpha = 90^{\circ}$
 $\cos \alpha = \cos 90^{\circ} = 0$ and $\sin \alpha = \sin 90^{\circ} = 1$
Equation of the line is $x \cos \alpha + y \sin \alpha = p \Rightarrow x$. $0 + y$. $1 = 4 \Rightarrow x = 4$

- v) ans:
 x = 0

 vi) ans:
 x + y + 4 = 0
- 2. Find the equation of the straight line in the symmetric form, given the slope and a point on the line in each part of the question.
 - i) $\sqrt{3}$, (2, 3) ii) $-\frac{1}{\sqrt{3}}$, (-2, 0) iii) -1, (1, 1)

Sol. i) point $(x_1, y_1) = (2, 3)$ slope $m = \tan \alpha = \sqrt{3} \Rightarrow \alpha = 60^\circ \Rightarrow \cos \alpha = \cos 60^\circ \Rightarrow \sin \alpha = \sin 60^\circ$ Equation of the line in the symmetric form is $\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\sin \alpha} = r \Rightarrow \frac{x - 2}{\cos \frac{\pi}{3}} = \frac{y - 3}{\sin \frac{\pi}{3}}$

ii) $(x_1, y_1) = (-2, 0)$ $\tan \alpha = -\frac{1}{\sqrt{3}} \Rightarrow \alpha = 180^\circ - 30^\circ = 150^\circ$

Equation of the line in the symmetric form is

$$\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\sin \alpha} = r \implies \frac{x - 2}{\cos \frac{\pi}{3}} = \frac{y - 3}{\sin \frac{\pi}{3}} \implies \frac{x + 2}{\cos 150^\circ} = \frac{y}{\sin 150^\circ}$$

iii) ans:
$$\frac{x - 1}{\cos \left(\frac{3\pi}{4}\right)} = \frac{y - 1}{\sin \left(\frac{3\pi}{4}\right)}$$

Transform the following equation into a) Slope-intercept form

b) Intercept from and c) Normal form

- i) 3x + 4y = 5 ii) 4x 3y + 12 = 0 iii) $\sqrt{3}x + y = 4$ iv) x + y + 2 = 0v) x + y - 2 = 0 vi) $\sqrt{3}x + y + 10 = 0$
- Sol. i) equation of the line is 3x + 4y = 51.Slope-intercept form

3.

$$4y = -3x + 5 \Rightarrow \qquad y = \left(-\frac{3}{4}\right)x + \left(\frac{5}{4}\right)) \text{ which is of the form } y = mx + c.$$

2. Intercept form :
$$3x + 4y = 5$$

$$\frac{3x}{5} + \frac{4y}{5} = 5 \Longrightarrow \frac{x}{\left(\frac{5}{3}\right)} + \frac{y}{\left(\frac{5}{4}\right)} = 1 \text{ which is of the form } \frac{x}{a} + \frac{y}{b} = 1$$

3.Normal form : 3x + 4y = 5Dividing with $\sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5$

$$\frac{3}{5}x + \frac{4}{5}y = 1 \Longrightarrow \text{let} \quad \cos \alpha = \frac{3}{5}, \sin \alpha = \frac{4}{5} \text{ and } p=1$$

Then the above eq. reduces to $x \cos \alpha + y \sin \alpha = p$

ii) ans:
$$y = \left(\frac{4}{3}\right)x + 4$$
, $\frac{x}{(-3)} + \frac{y}{4} = 1$, $\left(\frac{-4}{5}\right)x + \left(\frac{3}{5}\right)y = \frac{12}{5}$

iii)
$$y = -\sqrt{3}x + 4$$
, $\frac{x}{\left(\frac{4}{\sqrt{3}}\right)} + \frac{y}{4} = 1$, $x \cos\left(\frac{\pi}{6}\right) + y \sin\left(\frac{\pi}{6}\right) = 32$
iv) $x + y + 2 = 0$

iv)
$$x + y + 2 = 0$$

1. Slope-intercept form :
 $x + y + 2 = 0$
 $\Rightarrow y = -x - 2 = (-1) x + (-2)$ which is of the form $y = mx + c$.
Intercept form :
 $x + y + 2 = 0 \Rightarrow -x - y = 2$
 $\Rightarrow -\frac{x}{2} - \frac{y}{2} = 1 \Rightarrow \frac{x}{-2} + \frac{y}{-2} = 1$ which is of the form $\frac{x}{a} + \frac{y}{b} = 1$

3.Normal form: $x + y + 2 = 0 \implies -x - y = 2$

Dividing with
$$\sqrt{1+1} = \sqrt{2}$$

$$\Rightarrow \left(-\frac{1}{\sqrt{2}}\right) x + \left(-\frac{1}{\sqrt{2}}\right) y = \sqrt{2} \Rightarrow x \cos\left(\frac{5\pi}{4}\right) + y \sin\left(\frac{5\pi}{4}\right) = \sqrt{2}$$

Which is of the form $x \cos \alpha + y \sin \alpha = p$

v)
$$y = -x + 2$$
, $\frac{x}{2} + \frac{y}{2} = 1$, $x \cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) = \sqrt{2}$
vi) $y = -\sqrt{3}x - 10$, $\frac{x}{\left(\frac{10}{\sqrt{3}}\right)} + \frac{y}{-10} = 1$, $x \cos 30^\circ + y \sin 30^\circ = 5$

4. If the product of the intercepts made by the straight line

x $\tan \alpha + y \sec \alpha = 1 \left(0 \le \alpha < \frac{\pi}{2} \right)$, on the co-ordinate axes is equal to $\sin \alpha$, find α .

Sol. Equation of the line is x tan α + y sec α = 1

$$\Rightarrow \frac{x}{\cot \alpha} + \frac{y}{\cos \alpha} = 1 \Rightarrow a = \cot \alpha, b = \cos \alpha$$

Given product of intercepts $= \sin \alpha$

$$\Rightarrow \cot \alpha . \cos \alpha = \sin \alpha$$
$$\Rightarrow \frac{\cos^2 \alpha}{\sin \alpha} = \sin \alpha \Rightarrow \cos^2 \alpha = \sin^2 \alpha$$
$$\Rightarrow \tan^2 \alpha = 1 \Rightarrow \tan \alpha - \pm 1 \Rightarrow \alpha = 45^{\circ}$$

- 5. If the sum of the reciprocals of the intercept made by a variable straight line on the axes of co-ordinates is a constant then prove that the line always passes through a fixed point.
- **Sol.** Equation of the line in the intercept form is $\frac{x}{a} + \frac{y}{b} = 1$ --- (1)

Sum of the reciprocals of the intercepts

$$\frac{1}{a} + \frac{1}{b} = k \Rightarrow \frac{1}{ak} + \frac{1}{bk} = k \Rightarrow \frac{\left(\frac{1}{k}\right)}{a} + \frac{\left(\frac{1}{k}\right)}{b} = 1$$

Comparing this equation with (1),

The line (1) passes through the fixed point

6. Line L has intercepts a and b on the axes of co-ordinates. When the axes are rotated through a given angle, keeping the origin fixed, the same line L has

intercepts p and q on the transformed axes. Prove that $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$.

Sol. Equation of the line in the old system in intercept form is $\frac{x}{a} + \frac{y}{b} = 1 \Rightarrow \frac{x}{a} + \frac{y}{b} - 1 = 0$

Length of the perpendicular form origin $=\frac{|0+0-1|}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}}$ ---(1)

Equation of the line in the new system in intercept form

$$\operatorname{is} \frac{X}{p} + \frac{Y}{q} = 1 \Longrightarrow \frac{X}{p} + \frac{Y}{q} - 1 = 0$$

Length of the perpendicular form origin $=\frac{|0+0-1|}{\sqrt{\frac{1}{p^2}+\frac{1}{q^2}}}$ ---

$$\left(\frac{1}{k}, \frac{1}{k}\right)$$

Since the position of the origin and the given line remain unchanged ,perpendicular distances in both the systems are same.

$$\frac{|-1|}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} = \frac{|-1|}{\sqrt{\frac{1}{p^2} + \frac{1}{q^2}}} \Rightarrow \frac{1}{\left(\frac{1}{a^2} + \frac{1}{b^2}\right)} = \frac{1}{\left(\frac{1}{p^2} + \frac{1}{q^2}\right)} \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$$

7. Transform the equation $\frac{x}{a} + \frac{y}{b} = 1$ into the normal form when a > 0 and b > 0.

If the perpendicular distance of the straight line form the origin is p, deduce that 1 1 1 1

$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}.$$

Sol. Equation of the line is $\frac{x}{a} + \frac{y}{b} = 1$

$$\Rightarrow bx + ay = ab$$

Dividing with $\sqrt{a^2 + b^2}$
$$\frac{b}{\sqrt{a^2 + b^2}} \cdot x + \frac{a}{\sqrt{a^2 + b^2}} \cdot y = \frac{ab}{\sqrt{a^2 + b^2}} - --(1)$$

Let $\cos\alpha = \frac{b}{\sqrt{a^2 + b^2}}$, $\sin\alpha = \frac{a}{\sqrt{a^2 + b^2}}$ and $p = \frac{ab}{\sqrt{a^2 + b^2}}$

Now eq. (1) reduces to $x \cos \alpha + y \sin \alpha = p$ which is normal form

The perpendicular distance from O to the line is

 $p = \frac{ab}{\sqrt{a^2 + b^2}} \Rightarrow p^2 = \frac{a^2b^2}{a^2 + b^2}$

$$\Rightarrow \frac{1}{p^2} = \frac{a^2 + b^2}{a^2 b^2} = \frac{a^2}{a^2 b^2} + \frac{b^2}{a^2 b^2} = \frac{1}{b^2} + \frac{1}{a^2} \quad \therefore \frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$$

- III. 1. A straight line passing through A(-2, 1) makes an angle 30° with OX in the positive direction. Find the points on the straight line whose distance form A is 4 units.
- **Sol.** Let $(x_1, y_1) = (-2, 1)$, r =4 and $\alpha = 30^{\circ}$

Co-ordinates of any point on the given line are

$$(x_1 \pm r \cos \alpha, y_1 \pm r \sin \alpha) \cos \alpha = \cos 30^\circ = \frac{\sqrt{3}}{2}, \sin \alpha = \sin 30^\circ = \frac{1}{2}$$

Require points are

$$\left(-2+4.\frac{\sqrt{3}}{2},1+4.\frac{1}{2}\right) = \left(-2+2\sqrt{3},3\right) \qquad \text{And}$$
$$\left(-2+4.\frac{\sqrt{3}}{2},1-4.\frac{1}{2}\right) = \left(-2-2\sqrt{3},-1\right)$$

- 2. Find the points on the line 3x 4y 1 = 0 which are at a distance of 5 units form the point (3, 2).
- **Sol.** Equation of the line is $3x 4y 1 = 0 \implies$ slope of the line is $\tan \theta = \frac{3}{4}$ $\implies \sin \theta = \frac{3}{5}$ and $\cos \theta = \frac{4}{5}$

Given Point is $(3,2) = (x_1, y_1)$ and r = 5.

Co-ordinates of any point on the given line are $(x_1 \pm r \cos \theta, y_1 \pm r \sin \theta)$

Co-ordinates of the points are $\left(3+5,\frac{4}{5},2+5,\frac{3}{5}\right) = (7,5)$ And $\left(3-5,\frac{4}{5},2-5,\frac{3}{5}\right) = (-1,-1)$

- 3. A straight line whose inclination with the positive direction of the X axis measured in the anti clock wise sense is $\pi/3$ makes positive intercept on the Y axis. If the straight line is at a distance of 4 form the origin, find its equation.
- **Sol.** Let $\alpha = \pi/3$, P = 4

Slope m = tan α = tan 60° = $\sqrt{3}$ Equation of the line in the slope – intercept form is y = $\sqrt{3}x + c \Rightarrow \sqrt{3}x - y + c = 0$ Distance from the origin = 4 $\frac{|0-0+c|}{\sqrt{3+1}} = 4 \Rightarrow |c| = 4 \times 2 = 8 \Rightarrow c = \pm 8$ Given c > 0 $\therefore c = 8$ Equation of the line $\sqrt{3}x - y + 8 = 0$

- 4. A straight line L is drawn through the point A(2, 1) such that its point of intersection with the straight line x + y = 9 is at a distance of $3\sqrt{2}$ form A. Find the angle which the line L makes with the positive direction of the X axis.
- **Sol.** Suppose α is the angle made by L with the positive X axis

Given point (2, 1) =(x₁, y₁) and r = $3\sqrt{2}$ Any point on the line is $(x_1 + r\cos\theta, y_1 + \sin\theta) = (2 + 3\sqrt{2}\cos\theta + 3\sqrt{2}\sin\theta)$ This is a point on the line x + y = 9

$$\Rightarrow 2+3\sqrt{2}\cos\alpha+1+3\sqrt{2}\sin\alpha=9$$

$$\Rightarrow 3\sqrt{2}(\cos\alpha+\sin\alpha) = 6 \Rightarrow \frac{1}{\sqrt{2}} \cdot \cos\alpha + \frac{1}{\sqrt{2}}\sin\alpha=1 \Rightarrow \cos\alpha \cdot \cos 45^\circ + \sin\alpha \cdot \sin 45^\circ = 1$$

$$\Rightarrow \cos(\alpha-45^\circ) = \cos 0^\circ \Rightarrow \alpha - 45^\circ = 0 \Rightarrow \alpha = 45^\circ = \frac{\pi}{4}$$

5. A straight line L with negative slope passes through the point (8, 2) and cuts positive co-ordinates axes at the points P and Q. Find the minimum value of OP + OQ as L varies, when O is the origin.

Sol. Let -m be the slope of the line where m>0.
Equation of the line passing through A (8, 2)
With negative slope '-m' is

$$y - 2 = -m(x - 8)$$

 $\Rightarrow mx + y - (2 + 8m) = 0 \Rightarrow mx + y = 2 + 8m$
 $\Rightarrow \frac{m}{2+8m}x + \frac{y}{2+8m} = 1 \Rightarrow \frac{x}{2+8m} + \frac{y}{2+8m} = 1$
 $OP = x \text{ Intercept} = \frac{2+8m}{m}$
 $OQ = Y - \text{Intercept} = 2 + 8m$
 $OP + OQ = \frac{8m^2 + 10m + 2}{m}$
 $= 8m + \frac{2}{m} + 10 \ge 10 + 2\sqrt{8m \cdot \frac{2}{m}} \ge 10 + 2.4 = 18$

Therefore the minimum value is 18.