STRAIGHT LINE -2

NORMAL FORM

Let a line be at a distance of p units from the origin and $\boldsymbol{\alpha}\left(\mathbf{0} \leq \boldsymbol{\alpha}<\mathbf{3 6 0}^{\mathbf{0}}\right)$ be the angle made by the normal to the line with positive direction of $x-$ axis. Then the equation of the line is $x \cos \boldsymbol{\alpha}+\mathrm{y} \sin \boldsymbol{\alpha}=\mathrm{p}$.

SYMMETRIC FORM

The equation of the line passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and having inclination θ

$$
\text { is } \frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}, \text { where } \theta\left(0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right) .
$$

NOTE:

A first degree equation in x and y represents a straight line.
The equation $a x+b y+c=0$ is called the General Form Of The Equation Of A Line.
Note: The slope of the line $a x+b y+c=0$ is $-a / b$.

Theorem

Two lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are parallel iff $\quad a_{1} b_{2}=a_{2} b_{1}$ i.e. $\quad \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$ Theorem

Two equations $\mathrm{a} 1 \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$ represent the same line iff

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

Theorem

Two lines $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$ are perpendicular if $\boldsymbol{a}_{\mathbf{1}} \boldsymbol{a}_{\mathbf{2}}+\boldsymbol{b}_{\mathbf{1}} \boldsymbol{b}_{\mathbf{2}}=\mathbf{0}$

Reduction of the equation $a x+b y+c=0$ of a straight line into various forms.

1. SLOPE INTERCEPT FORM

Equation of the line is $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$

$$
\mathrm{by}=-\mathrm{ax}-\mathrm{c} \Rightarrow \mathrm{y}=-\frac{a}{b} x-\frac{c}{b}
$$

This equation is of the form $y=m x+K . \mathrm{k}$ is constant.

2. INTERCEPTS FORM

Equation of the line is $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$

$$
a x+b y=-c
$$

$\Rightarrow \frac{a x}{-c}+\frac{b y}{-c}=1 \Rightarrow \frac{x}{-c / a}+\frac{y}{-c / b}=1$ Which is of the form $\frac{x}{A}+\frac{y}{B}=1$
Here $\mathrm{x}-$ intercept $=-\frac{c}{a}, \mathrm{y}-$ intercept $=-\frac{c}{b}$.

3. NORMAL FORM

Case (i) Let $\mathrm{c} \geq 0$
The equation of the line is $a x+b y+c=0$

$$
\mathrm{ax}+\mathrm{by}=-\mathrm{c}(-\mathrm{c} \geq 0) \Rightarrow \frac{a}{\sqrt{a^{2}+b^{2}}} x+\frac{b}{\sqrt{a^{2}+b^{2}}} y=\frac{-c}{\sqrt{a^{2}+b^{2}}}
$$

$\mathrm{x} \cos \boldsymbol{\alpha}+\mathrm{y} \sin \boldsymbol{\alpha}=\mathrm{p}$, where $\cos \alpha=\frac{a}{\sqrt{a^{2}+b^{2}}}, \sin \alpha=\frac{b}{\sqrt{a^{2}+b^{2}}}$ and

$$
p=\frac{-c}{\sqrt{a^{2}+b^{2}}}>0
$$

Case (ii) Let c>0.
Then $a x+b y+c=0$
$a x+b y=-c$
$(-a) x+(-b) y=c$
$\Rightarrow\left(\frac{-a}{\sqrt{a^{2}+b^{2}}}\right) x+\left(\frac{-b}{\sqrt{a^{2}+b^{2}}}\right) y=\frac{c}{\sqrt{a^{2}+b^{2}}}$
$\mathrm{x} \cos \boldsymbol{\alpha}+\mathrm{y} \sin \boldsymbol{\alpha}=\mathrm{p}$, where $\cos \alpha=\frac{-a}{\sqrt{a^{2}+b^{2}}}, \sin \alpha=\frac{-b}{\sqrt{a^{2}+b^{2}}}$ and $p=\frac{c}{\sqrt{a^{2}+b^{2}}}$

Note: The perpendicular distance from origin to the line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ is $\frac{|c|}{\sqrt{a^{2}+b^{2}}}$. The area of the triangle formed by the line $\frac{x}{a}+\frac{y}{b}=1$ with the cooridnate axes is $\frac{1}{2}|a b|$.

PARAMETRIC FORM

If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is any point on the line passing through $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and having inclination θ, then
$\mathrm{x}=\mathrm{x}_{1}+\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{y}_{1}+\mathrm{r} \sin \theta$ where $|\mathrm{r}|$ is the distance from A to P . (r is a real parameter)

EXERCISE - 3(B)

I.

1. Find the sum of the square of the intercepts of the line $4 x-3 y=12$ on the axes of co-ordinates.
Sol. Given line is $4 x-3 y=12$
$\Rightarrow \frac{4 \mathrm{x}}{12}-\frac{3 \mathrm{y}}{12}=1 \Rightarrow \frac{\mathrm{x}}{3}+\frac{\mathrm{y}}{-4}=1$
Intercepts are $a=3, b=-4 \Rightarrow$ Sum of the squares $=a^{2}+b^{2}=9+16=25$
2. If the portion of a straight line intercepted between the axes of co-ordinates is bisected at (2p, 2q), write the equation of the straight line.

Sol. Let a, b be the intercepts of the line and AB be the line segment between the axes.
Then points $\mathrm{A}=(\mathrm{a}, 0)$ and $\mathrm{B}=(0, \mathrm{~b})$
Equation of the line in the intercept form is $\frac{x}{a}+\frac{y}{b}=1$

Mid -point of $A B$ is $M=\left(\frac{a}{2}, \frac{b}{2}\right)=(2 p, 2 q)$ given
$\Rightarrow \frac{\mathrm{a}}{2}=2 \mathrm{p}, \frac{\mathrm{b}}{2}=2 \mathrm{q} \Rightarrow \mathrm{a}=4 \mathrm{p}, \mathrm{b}=4 \mathrm{q}$
Substituting in (1), $\quad \frac{x}{4 p}+\frac{y}{4 q}=1 \Rightarrow \frac{x}{p}+\frac{y}{q}=4$
3. If the linear equation $a x+b y+c=0$
(a, $\mathbf{b}, \mathbf{c} \neq 0$) and $\boldsymbol{l x}+\mathbf{m y}+\mathbf{n}=\mathbf{0}$ represent the same line and $\mathrm{r}=\frac{1}{\mathrm{a}}=\frac{\mathrm{n}}{\mathrm{c}}$, write the value of r in terms of m and b.
Sol. The equations $a x+b y+c=0$ and $l \mathrm{x}+\mathrm{my}+\mathrm{n}=0$ are representing the same line $\Rightarrow \frac{1}{\mathrm{a}}=\frac{\mathrm{m}}{\mathrm{b}}=\frac{\mathrm{n}}{\mathrm{c}}=\mathrm{r} \Rightarrow \frac{\mathrm{m}}{\mathrm{b}}=\mathrm{r}$
4. Find the angle made by the straight line $y=-\sqrt{3} x+3$ with the positive X-axis measured in the counter clock-wise direction.

Sol. Equation of the given line is $y=-\sqrt{3} x+3$
let α be the inclination of the line.
Then $\tan \alpha=-\sqrt{3}=\tan \frac{2 \pi}{3} \Rightarrow \alpha=\frac{2 \pi}{3}$
5. The intercepts of a straight line on the axes of co-ordinates are a and b. If P is the length of the perpendicular drawn from the origin to this line. Write the value of P in terms of a and b.

Sol. Equation of the line in the intercept form is

$$
\begin{aligned}
& p=\frac{|0+0-1|}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}} \\
& \Rightarrow \frac{1}{\mathrm{p}}=\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}
\end{aligned}
$$

Square on both sides

$$
\Rightarrow \frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2} \mathrm{~b}^{2}} \Rightarrow \mathrm{p}^{2}=\frac{\mathrm{a}^{2} \mathrm{~b}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}} \Rightarrow \mathrm{p}=\frac{|\mathrm{ab}|}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}
$$

II.

1. In what follows, P denotes the distance of the straight line from the origin and α is the angle made by the normal ray drawn from the origin to the straight line with $\overrightarrow{\mathrm{OX}}$ measured in the anti-clock wise sense. Find the equations of the straight lines with the following values of P and α.
i) $\mathbf{p}=5, \alpha=60^{\circ}$
ii) $p=6, \alpha=150^{\circ}$
iii) $\mathbf{p}=\mathbf{1}, \alpha=\frac{7 \pi}{4}$
iv) $p=4, \alpha=90^{\circ}$
iv) $\mathbf{p}=\mathbf{0}, \alpha=0$
v) $\mathbf{p}=\mathbf{2} \sqrt{2,} \alpha=\frac{5 \pi}{4}$

Sol. Equation of the line in the normal form is $x \cos \alpha+y \sin \alpha=p$
i) given $\mathrm{p}=5, \alpha=60^{\circ}$ $\cos \alpha=\cos 60^{\circ}=\frac{1}{2}$ and $\sin \alpha=\sin 60^{\circ}=\sqrt{\frac{3}{2}}$
Equation of the line is $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$
$\Rightarrow x \frac{1}{2}+y \frac{\sqrt{3}}{2}=5 \Rightarrow x+\sqrt{3} y=10$
ii) ans: $\sqrt{3} \mathrm{x}+\mathrm{y}+12=0$
iii) $\mathrm{p}=4, \alpha=\frac{7 \pi}{4}$

$$
\cos \alpha=\cos 315^{\circ}=\frac{1}{\sqrt{2}} \text { and } \sin \alpha=\sin 315^{\circ}=-\frac{1}{\sqrt{2}}
$$

Equation of the line is $x \cdot \frac{1}{\sqrt{2}}-y \cdot \frac{1}{\sqrt{2}}=1$

$$
x-y=\sqrt{2} \Rightarrow x-y-\sqrt{2=0}
$$

iv) $\mathrm{P}=4, \alpha=90^{\circ}$
$\cos \alpha=\cos 90^{\circ}=0$ and $\sin \alpha=\sin 90^{\circ}=1$
Equation of the line is $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p} \Rightarrow \mathrm{x} .0+\mathrm{y} .1=4 \Rightarrow \mathrm{x}=4$
v) ans: $\quad x=0$
vi) ans: $x+y+4=0$
2. Find the equation of the straight line in the symmetric form, given the slope and a point on the line in each part of the question.
i) $\sqrt{3},(2,3)$
ii) $-\frac{1}{\sqrt{3}},(-2,0)$
iii) $-1,(1,1)$

Sol. i) point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(2,3)$
slope $m=\tan \alpha=\sqrt{3} \Rightarrow \alpha=60^{\circ} \Rightarrow \cos \alpha=\cos 60^{\circ} \Rightarrow \sin \alpha=\sin 60^{\circ}$
Equation of the line in the symmetric form is $\frac{x-x_{1}}{\cos \alpha}=\frac{y-y_{1}}{\sin \alpha}=r \Rightarrow \frac{x-2}{\cos \frac{\pi}{3}}=\frac{y-3}{\sin \frac{\pi}{3}}$
ii) $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(-2,0)$
$\tan \alpha=-\frac{1}{\sqrt{3}} \Rightarrow \alpha=180^{\circ}-30^{\circ}=150^{\circ}$
Equation of the line in the symmetric form is

$$
\frac{x-x_{1}}{\cos \alpha}=\frac{y-y_{1}}{\sin \alpha}=r \Rightarrow \frac{x-2}{\cos \frac{\pi}{3}}=\frac{y-3}{\sin \frac{\pi}{3}} \quad \Rightarrow \quad \frac{x+2}{\cos 150^{\circ}}=\frac{y}{\sin 150^{\circ}}
$$

iii) ans: $\frac{\mathrm{x}-1}{\cos \left(\frac{3 \pi}{4}\right)}=\frac{\mathrm{y}-1}{\sin \left(\frac{3 \pi}{4}\right)}$
3. Transform the following equation into a) Slope-intercept form
b) Intercept from and
c) Normal form
i) $3 x+4 y=5$
ii) $4 x-3 y+12=0$
iii) $\sqrt{3} x+y=4$
iv) $x+y+2=0$
v) $\mathbf{x}+\mathbf{y}-\mathbf{2}=\mathbf{0}$ vi) $\sqrt{3} \mathrm{x}+\mathrm{y}+10=0$

Sol. i) equation of the line is $3 x+4 y=5$
1.Slope-intercept form
$4 y=-3 x+5 \Rightarrow \quad y=\left(-\frac{3}{4}\right) x+\left(\frac{5}{4}\right)$) which is of the form $y=m x+c$.
2. Intercept form : $\quad 3 x+4 y=5$
$\frac{3 x}{5}+\frac{4 y}{5}=5 \Rightarrow \frac{x}{\left(\frac{5}{3}\right)}+\frac{y}{\left(\frac{5}{4}\right)}=1 \quad$ which is of the form $\frac{x}{a}+\frac{y}{b}=1$
3.Normal form : $3 x+4 y=5$

Dividing with $\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=5$

$$
\frac{3}{5} x+\frac{4}{5} y=1 \Rightarrow \text { let } \quad \cos \alpha=\frac{3}{5}, \sin \alpha=\frac{4}{5} \text { and } p=1
$$

Then the above eq. reduces to $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$
ii) ans: $y=\left(\frac{4}{3}\right) x+4, \frac{x}{(-3)}+\frac{y}{4}=1,\left(\frac{-4}{5}\right) x+\left(\frac{3}{5}\right) y=\frac{12}{5}$
iii) $y=-\sqrt{3} x+4, \frac{x}{\left(\frac{4}{\sqrt{3}}\right)}+\frac{y}{4}=1, x \cos \left(\frac{\pi}{6}\right)+y \sin \left(\frac{\pi}{6}\right)=32$
iv) $x+y+2=0$

1. Slope-intercept form :
$x+y+2=0$
$\Rightarrow \mathrm{y}=-\mathrm{x}-2=(-1) \mathrm{x}+(-2)$ which is of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
Intercept form :

$$
\begin{aligned}
& x+y+2=0 \Rightarrow-x-y=2 \\
& \Rightarrow-\frac{x}{2}-\frac{y}{2}=1 \Rightarrow \frac{x}{-2}+\frac{y}{-2}=1 \text { which is of the form } \frac{x}{a}+\frac{y}{b}=1
\end{aligned}
$$

3.Normal form: $x+y+2=0 \Rightarrow-x-y=2$

Dividing with $\sqrt{1+1}=\sqrt{2}$

$$
\Rightarrow\left(-\frac{1}{\sqrt{2}}\right) x+\left(-\frac{1}{\sqrt{2}}\right) y=\sqrt{2} \Rightarrow x \cos \left(\frac{5 \pi}{4}\right)+y \sin \left(\frac{5 \pi}{4}\right)=\sqrt{2}
$$

Which is of the form $x \cos \alpha+y \sin \alpha=p$
v) $y=-x+2, \quad \frac{x}{2}+\frac{y}{2}=1, x \cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right)=\sqrt{2}$
vi) $\quad y=-\sqrt{3} x-10$,

$$
\frac{x}{\left(\frac{10}{\sqrt{3}}\right)}+\frac{y}{-10}=1, \quad x \cos 30^{\circ}+y \sin 30^{\circ}=5
$$

4. If the product of the intercepts made by the straight line

 $x \tan \alpha+y \sec \alpha=1\left(0 \leq \alpha<\frac{\pi}{2}\right)$, on the co-ordinate axes is equal to $\sin \alpha$, find α.Sol. Equation of the line is $\mathrm{x} \tan \alpha+\mathrm{y} \sec \alpha=1$

$$
\Rightarrow \frac{\mathrm{x}}{\cot \alpha}+\frac{\mathrm{y}}{\cos \alpha}=1 \Rightarrow \mathrm{a}=\cot \alpha, \mathrm{b}=\cos \alpha
$$

Given product of intercepts $=\sin \alpha$
$\Rightarrow \cot \alpha \cdot \cos \alpha=\sin \alpha$
$\Rightarrow \frac{\cos ^{2} \alpha}{\sin \alpha}=\sin \alpha \Rightarrow \cos ^{2} \alpha=\sin ^{2} \alpha$
$\Rightarrow \tan ^{2} \alpha=1 \Rightarrow \tan \alpha- \pm 1 \Rightarrow \alpha=45^{\circ}$
5. If the sum of the reciprocals of the intercept made by a variable straight line on the axes of co-ordinates is a constant then prove that the line always passes through a fixed point.
Sol. Equation of the line in the intercept form is $\frac{x}{a}+\frac{y}{b}=1$
Sum of the reciprocals of the intercepts

$$
\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}=\mathrm{k} \Rightarrow \frac{1}{\mathrm{ak}}+\frac{1}{\mathrm{bk}}=\mathrm{k} \Rightarrow \frac{\left(\frac{1}{\mathrm{k}}\right)}{\mathrm{a}}+\frac{\left(\frac{1}{\mathrm{k}}\right)}{\mathrm{b}}=1
$$

Comparing this equation with (1),
The line (1) passes through the fixed point $\left(\frac{1}{\mathrm{k}}, \frac{1}{\mathrm{k}}\right)$
6. Line L has intercepts a and b on the axes of co-ordinates. When the axes are rotated through a given angle, keeping the origin fixed, the same line L has intercepts \mathbf{p} and \mathbf{q} on the transformed axes. Prove that $\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}=\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}}$.
Sol. Equation of the line in the old system in intercept form is $\frac{x}{a}+\frac{y}{b}=1 \Rightarrow \frac{x}{a}+\frac{y}{b}-1=0$ Length of the perpendicular form origin $=\frac{|0+0-1|}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}--(1)$
Equation of the line in the new system in intercept form
is $\frac{X}{p}+\frac{Y}{q}=1 \Rightarrow \frac{X}{p}+\frac{Y}{q}-1=0$
Length of the perpendicular form origin $=\frac{|0+0-1|}{\sqrt{\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}}}}--$
(2)

Since the position of the origin and the given line remain unchanged ,perpendicular distances in both the systems are same.

$$
\frac{|-1|}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}=\frac{\mid-1}{\sqrt{\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}}}} \Rightarrow \frac{1}{\left(\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}\right)}=\frac{1}{\left(\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}}\right)} \Rightarrow \frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}=\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}}
$$

7. Transform the equation $\frac{x}{a}+\frac{y}{b}=1$ into the normal form when $a>0$ and $b>0$. If the perpendicular distance of the straight line form the origin is p, deduce that $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$.
Sol. Equation of the line is $\frac{x}{a}+\frac{y}{b}=1$
$\Rightarrow \quad b x+a y=a b$
Dividing with $\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$

$$
\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}} \cdot x+\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}} \cdot y=\frac{\mathrm{ab}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}----(1)
$$

Let $\cos \alpha=\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}, \sin \alpha=\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$ and $\mathrm{p}=\frac{\mathrm{ab}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$
Now eq. (1) reduces to $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$ which is normal form

The perpendicular distance from O to the line is $\quad p=\frac{a b}{\sqrt{a^{2}+b^{2}}} \Rightarrow p^{2}=\frac{a^{2} b^{2}}{a^{2}+b^{2}}$ $\Rightarrow \frac{1}{\mathrm{p}^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2} \mathrm{~b}^{2}}=\frac{\mathrm{a}^{2}}{\mathrm{a}^{2} \mathrm{~b}^{2}}+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2} \mathrm{~b}^{2}}=\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{a}^{2}} \quad \therefore \frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$
III. 1. A straight line passing through $\mathbf{A}(-2,1)$ makes an angle 30° with $\overrightarrow{\mathrm{OX}}$ in the positive direction. Find the points on the straight line whose distance form A is 4 units.

Sol. Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(-2,1), \mathrm{r}=4$ and $\alpha=30^{\circ}$
Co-ordinates of any point on the given line are

$$
\left(\mathrm{x}_{1} \pm \mathrm{r} \cos \alpha, \mathrm{y}_{1} \pm \mathrm{r} \sin \alpha\right)^{\cos \alpha=\cos 30^{\circ}=\frac{\sqrt{3}}{2}, \sin \alpha=\sin 30^{\circ}=\frac{1}{2} .}
$$

Require points are

$$
\begin{aligned}
& \left(-2+4 \cdot \frac{\sqrt{3}}{2}, 1+4 \cdot \frac{1}{2}\right)=(-2+2 \sqrt{3}, 3) \quad \text { And } \\
& \left(-2+4 \cdot \frac{\sqrt{3}}{2}, 1-4 \cdot \frac{1}{2}\right)=(-2-2 \sqrt{3,-1})
\end{aligned}
$$

2. Find the points on the line $3 x-4 y-1=0$ which are at a distance of 5 units form the point $(3,2)$.
Sol. Equation of the line is $3 x-4 y-1=0 \Rightarrow$ slope of the line is $\tan \theta=3 / 4$
$\Rightarrow \sin \theta=3 / 5$ and $\cos \theta=4 / 5$
Given Point is $(3,2)=\left(x_{1}, y_{1}\right)$ and $r=5$.
Co-ordinates of any point on the given line are $\left(\mathrm{x}_{1} \pm \mathrm{r} \cos \theta, \mathrm{y}_{1} \pm \mathrm{r} \sin \theta\right)$
Co-ordinates of the points are $\left(3+5 \cdot \frac{4}{5}, 2+5 \cdot \frac{3}{5}\right)=(7,5)$ And
$\left(3-5 \cdot \frac{4}{5}, 2-5 \cdot \frac{3}{5}\right)=(-1,-1)$
3. A straight line whose inclination with the positive direction of the X - axis measured in the anti clock wise sense is $\pi / 3$ makes positive intercept on the Y - axis. If the straight line is at a distance of 4 form the origin, find its equation.
Sol. Let $\alpha=\pi / 3, P=4$
Slope $m=\tan \alpha=\tan 60^{\circ}=\sqrt{3}$
Equation of the line in the slope - intercept
form is $y=\sqrt{3} x+c \Rightarrow \sqrt{3} x-y+c=0$
Distance from the origin $=4$
$\frac{|0-0+\mathrm{c}|}{\sqrt{3+1}}=4 \Rightarrow|\mathrm{c}|=4 \times 2=8 \Rightarrow \mathrm{c}= \pm 8$
Given $\mathrm{c}>0 \quad \therefore \mathrm{c}=8$
Equation of the line $\sqrt{3} x-y+8=0$
4. A straight line L is drawn through the point $A(2,1)$ such that its point of intersection with the straight line $x+y=9$ is at a distance of $3 \sqrt{2}$ form A. Find the angle which the line L makes with the positive direction of the X axis.
Sol. Suppose α is the angle made by L with the positive X - axis
Given point $(\mathbf{2}, \mathbf{1})=\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) \quad$ and $\mathbf{r}=\mathbf{3} \sqrt{2}$
Any point on the line is $\left(x_{1}+r \cos \theta, y_{1}+\sin \theta\right)=(2+3 \sqrt{2} \cos \theta+3 \sqrt{2} \sin \theta)$
This is a point on the line $x+y=9$

$$
\begin{aligned}
& \Rightarrow 2+3 \sqrt{2} \cos \alpha+1+3 \sqrt{2} \sin \alpha=9 \\
& \Rightarrow 3 \sqrt{2}(\cos \alpha+\sin \alpha)=6 \Rightarrow \frac{1}{\sqrt{2}} \cdot \cos \alpha+\frac{1}{\sqrt{2}} \sin \alpha=1 \Rightarrow \cos \alpha \cdot \cos 45^{\circ}+\sin \alpha \cdot \sin 45^{\circ}=1 \\
& \Rightarrow \cos \left(\alpha-45^{\circ}\right)=\cos 0^{\circ} \Rightarrow \alpha-45^{\circ}=0 \Rightarrow \alpha=45^{\circ}=\frac{\pi}{4}
\end{aligned}
$$

5. A straight line L with negative slope passes through the point $(8,2)$ and cuts positive co-ordinates axes at the points P and Q. Find the minimum value of $O P+O Q$ as L varies, when O is the origin.
Sol. Let -m be the slope of the line where $\mathrm{m}>0$.
Equation of the line passing through $\mathrm{A}(8,2)$
With negative slope ' -m ' is
$\mathrm{y}-2=-\mathrm{m}(\mathrm{x}-8)$
$\Rightarrow \mathrm{mx}+\mathrm{y}-(2+8 \mathrm{~m})=0 \Rightarrow \mathrm{mx}+\mathrm{y}=2+8 \mathrm{~m}$

$$
\Rightarrow \frac{\mathrm{m}}{2+8 \mathrm{~m}} \mathrm{x}+\frac{\mathrm{y}}{2+8 \mathrm{~m}}=1 \Rightarrow \frac{\mathrm{x}}{\frac{2+8 \mathrm{~m}}{\mathrm{~m}}}+\frac{\mathrm{y}}{2+8 \mathrm{~m}}=1
$$

$$
\mathrm{OP}=\mathrm{x} \text { Intercept }=\frac{2+8 \mathrm{~m}}{\mathrm{~m}}
$$

$$
\mathrm{OQ}=\mathrm{Y} \text {-Intercept }=2+8 \mathrm{~m}
$$

$$
\mathrm{OP}+\mathrm{OQ}=\frac{8 \mathrm{~m}^{2}+10 \mathrm{~m}+2}{\mathrm{~m}}
$$

$$
=8 \mathrm{~m}+\frac{2}{\mathrm{~m}}+10 \geq 10+2 \sqrt{8 \mathrm{~m} \cdot \frac{2}{\mathrm{~m}}} \geq 10+2 \cdot 4=18
$$

Therefore the minimum value is 18 .

