TRANSLATION OF AXES.

- 1. **Definition**: Without changing the direction of the axes, the transformation in which the origin is shifted to another position or point is called translation of axes.
- 2. Theorem: To find the co-ordinates of a point (x, y) are translated by shifting the origin to a point (x_1, y_1)

Proof:

Let $xox^1 xox^1$, yoy^1 be the original axes and $A(x_1, y_1)$ be a point to which the origin is shifted.

Let AX, AY be the new axes which are parallel to the original axes as in figure.

Let P be any point in the plane whose coordinates w.r.t old system are (x, y)

And w.r.t new axes are (X,Y).

From figure,
$$A = (x_1, y_1)$$
 then $AL = y_1$, $OL = x_1$,

$$P(x, y)$$
 then $x = ON = OL + LN = OL + AM = x_1 + X = X + x_1$

Hence $x = X + x_1$.

$$y=PN = PM + MN = X + AL = X + y_1$$

therefore, $y = Y + y_1$

hence
$$x = X + x_1$$
, $y = Y + y_1$

3. Theorem: To find the point to which the origin is to be shifted by translation of axes to eliminate x, y terms(first degree terms) in the equation $ax^2 + 2xhy + by^2 + 2gx + 2fy + c = 0(h^2 = ab)$

Proof: given equation is $ax^2 + 2xhy + by^2 + 2gx + 2fy + c = 0$

Let (x_1, y_1) be a point to which the origin is shifted by translation

Let (X,Y) be the new co-ordinates of the point (x,y).

 \therefore the equations of the transformation are $x = X + x_1$, $y = Y + y_1$

Now the transformed equation is

$$a(X + x_1)^2 + 2h(X + x_1)(Y + y_1) + b(Y + y_1)^2 + 2g(X + x_1) + 2f[Y + y_1] + c = 0$$

$$\Rightarrow a(X^2 + 2x_1X + x_1^2) + 2h(XY + x_1Y + y_1X + x_1y_1) + b(Y^2 + 2y_1Y + y_1^2) + 2g(X + x_1) + 2f(Y + y_1) + c = 0$$

$$\Rightarrow aX^2 + 2hXY + bY^2 + 2X(ax_1 + hy_1 + g) + 2Y(hx_1 + by_1 + f) + (ax_1^2 + 2x_1 + by_1^2 + 2gx_1 + 2fy_1 + c) = 0$$

Since x, y terms (the first degree terms) are to be eliminated

$$ax_1 + hy_1 + g = 0$$

$$hx_1 + by_1 + f = 0$$

Solving these two equations by the method of cross pollination

$$\frac{x_1}{hf - bg} = \frac{y_1}{gh - af} = \frac{1}{ab - h^2}$$
 $\Rightarrow x_1 = \frac{hf - bg}{ab - h^2}, y_1 = \frac{gh - af}{ab - h^2}$

New origin is
$$\Rightarrow$$
 $(x_1, y_1) = \left(\frac{hf - bg}{ab - h^2}, \frac{gh - af}{ab - h^2}\right)$

Note: (i) The point to which the origin has to be shifted to eliminate x, y terms by translation in the equation $ax^2 + by^2 + 2gx + 2fy + c = 0$ is $\left(\frac{-g}{a}, \frac{-f}{h}\right)$

If b = a, then the new origin is
$$\left(\frac{-g}{a}, \frac{-f}{a}\right)$$

- (ii) The point to which the origin has to be shifted to eliminate x, y terms by translation of axes in the equation $a(x+x_1)^2 + b(y+y_1)^2 = c$ is $(-x_1, -y_1)$
- iii) The point to which the origin has to be shifted to eliminate x, y terms by translation in the equation 2hxy + 2gx + 2fy + c = 0 is $\left(\frac{-f}{h}, \frac{-g}{h}\right)$

Theorem : To find the condition that the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ to be in the form $aX^2 + 2hXY + bY^2 = 0$ when the axes are translated. $(h^2 \neq ab)$

Proof: From theorem 3, we get

$$ax_1 + hy_1 + g = 0$$
 _____(1)

$$hx_1 + by_1 + f = 0$$
____(2)

Solving (1) and (2),

$$(x_1, y_1) = \left(\frac{hf - bg}{ab - h^2}, \frac{gf - af}{ab - h^2}\right)$$

Since the equation is to be in the form of $aX^2 + 2hXY + bY^2 = 0$, then for this we should have $ax_1^2 + 2hx_1y_1 + by_1^2 + 2gx_1 + 2fy_1 + c = 0$

$$\Rightarrow (ax_1 + hy_1 + g)x_1 + (x_1 + by_1 + f)y_1 + (gx_1 + fy_1 + c) = 0$$

$$\Rightarrow$$
 (0). $x_1 + (0)$, $y_1 + (gx_1 + fy_1 + c) = 0$ from (1) and (2) $\Rightarrow gx_1 + fy_1 + c = 0$ (3)

Substituting x_1 , y_1 in (3), we get

$$g\left(\frac{hf - bg}{ab - h^2}\right) + f\left(\frac{gh - af}{ab - h^2}\right) + c = 0$$

$$\Rightarrow fgh - bg^2 + fgh - af^2 + abc + -ch^2 = 0$$

$$\Rightarrow abc + 2fgh - af^2 - bg^2 - ch^2 = 0$$

1. When the origin is shifted to (4,-5) by the translation of axes, find the co-ordinates of the following points with reference to new axes.?

Sol. i) (0,3)

New origin =
$$(4,-5)$$
= (h,k)

Old co-ordinates are (0,3) = (x,y)

$$X = x - h = 0 - 4 = -4$$

$$Y = y - k = 3 + 5 = 8$$

New co-ordinates are (-4,8)

- ii) (-2,4) ANS. (-6,9)
- iii) (4,-5)
- ans. (0,0)
- 2. The origin is shifted to (2,3) by the translation of axes. If the co-ordinates of a point P changes as follows, find the co-ordinates of Pin the original system.?
 - i)(4,5)
- ii) (-4,3)
- iii) (0,0)
- **Sol.** New origin = (2,3) = (h,k)
 - i) New co-ordinates are(4,5)

$$x = 4, y = 5$$

$$x = x + h = 4 + 2 = 6$$

$$y = y + k = 5 + 3 = 8$$

Old co-ordinates are (6,8)

ii) New co-ordinates are (-4,3)

iii) New co-ordinates are (0,0)

3. Find the point to which the origin is to be shifted so that the point (3,0) may change to (2,-3)?

Sol.
$$(x, y) = (3, 0)$$

$$(x^1, y^1) = (2, -3)$$

Let (h,k) be the new origin

$$h = x - x^1 = 3 - 2 = 1$$

$$k = y - y^1 = 0 + 3 = 3$$

$$(h,k) = (1,3)$$

4. When the origin is shifted to (-1,2) by the translation of axes, find the transformed equations of the following.?

i)
$$x^2 + y^2 + 2x - 4y + 1 = 0$$

ii)
$$2x^2 + y^2 - 4x + 4y = 0$$

Sol. i) The given equation is $x^2 + y^2 + 2x - 4y + 1 = 0$ -----(1)

Origin is shifted to
$$(-1,2)$$
 \therefore h=-1, k=2

Equations of transformations are x = X + h, y = Y + k

i.e,
$$x = X - 1$$
, $y = Y + 2$

The new equation is

$$(X-1)^2 + (Y+2)^2 + 2(X-1) - 4(Y+2) + 1 = 0$$

$$\Rightarrow X^2 + 1 - 2X + Y^2 + 4 + 4Y + 2X - 2 - 4Y - 8 + 1 = 0$$

$$\Rightarrow X^2 + Y^2 - 4 = 0$$

ii) Old equation is $2x^2 + y^2 - 4x + 4y = 0$

Ans.
$$2X^2 + Y^2 - 8X + 8Y + 18 = 0$$

5. The point to which the origin is shifted and the transformed equation are given below. Find the original equation.?

i)
$$(3,-4)$$
; $x^2 + y^2 = 4$

i)
$$(3,-4)$$
; $x^2 + y^2 = 4$ ii) $(-1,2)$; $x^2 + 2y^2 + 16 = 0$

Sol. i) New origin = (3,-4) = (h,k)

$$X = x - h, Y = y - k$$

$$= x - 3 = y + 4$$

The original equation of $(X)^2 + (Y)^2 = 4$ is $(x-3)^2 + (y+4)^2 = 4$

$$x^2 - 6x + 9 + y^2 + 8y + 16 = 4$$

$$\therefore x^2 + y^2 - 6x + 8y + 21 = 0$$

ii) New origin = (h, k) = (-1, 2)

$$X = x - h$$
, $Y = y - k$

$$= x + 1$$
 $= y - 2$

The original equation of $X^2 + 2Y^2 + 16 = 0$

$$(x+1)^2 + 2(y-2)^2 + 16 = 0$$

$$x^{2} + 2x + 1 + 2y^{2} - 8y + 8 + 16 = 0 \Rightarrow x^{2} + 2y^{2} + 2x - 8y + 25 = 0$$

- 6. Find the point to which the origin is to be shifted so as to remove the first degree terms from the **equation,** $4x^2 + 9y^2 - 8x + 36y + 4 = 0$
- **Sol.** The given equation is

$$4x^2 + 9y^2 - 8x + 36y + 4 = 0$$
 comparing with $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

$$a = 4$$
 $h = 0$

$$a = 4$$
 $h = 0$ $g = -4$ $b = 9$ $f = 18$

$$f = 18$$

$$-\frac{g}{a} = \frac{4}{4} = 1, -\frac{f}{b} = -2$$

Origin should be shifted to $\left(\frac{-g}{a}, \frac{-f}{b}\right) = (1,-2)$

SHORT ANSWER QUESTIONS

- 1. When the origin is shifted to the point (2,3), the transformed equation of a curve is $x^2 + 3xy 2y^2 + 17x 7y 11 = 0$. Find the original equation of the curve?
- **Sol.** New origin =(2,3) = (h,k)

Equations of transformation are

$$X = x + h$$
, $y = Y + k$

$$X = x - h = x - 2, Y = y - 3$$

Transformed equation is

$$x^2 + 3xy - 2y^2 + 17x - 7y - 11 = 0$$

Original equation is

$$(x-2)^2 + 3(x-2)(y-3) - 2(y-3)^2 + 17(x-2) - 7(y-3) - 11 = 0$$

$$x^{2} + 4x + 4 + 3xy - 9x - 6y + 18 - 2y^{2} + 12y - 18 + 17x - 34 - 7y + 21 - 11 = 0$$

$$\Rightarrow x^2 + 3xy - 2y^2 + 4x - y - 20 = 0$$
 is the required original equation.

- 3. If the transformed equation of a curve is $3x^2 + xy y^2 7x + y 7 = 0$ when the origin is shifted to the point (1,2)by translation of axes, find the original equation of the curve?
- **Sol.** Same as above problem.

Ans.
$$3x^2 + xy - y^2 - 15x + 4y + 13 = 0$$
.