TRANSLATION OF AXES.

1. Definition: Without changing the direction of the axes, the transformation in which the origin is shifted to another position or point is called translation of axes.
2. Theorem: To find the co-ordinates of a point (x, y) are translated by shifting the origin to a point $\left(x_{1}, y_{1}\right)$

Proof :

Let $x o x^{1}$ xox ${ }^{1}$, yoy ${ }^{1}$ be the original axes and $A\left(x_{1}, y_{1}\right)$ be a point to which the origin is shifted.
Let AX, AY be the new axes which are parallel to the original axes as in figure.
Let P be any point in the plane whose coordinates w.r.t old system are (x, y)
And w.r.t new axes are (X, Y).
From figure, $A=\left(x_{1}, y_{1}\right)$ then $A L=y_{1}, O L=x_{1}$,
$P(x, y)$ then $\quad x=O N=O L+L N=O L+A M=x_{1}+X=X+x_{1}$
Hence $x=X+x_{1}$.

$$
\mathrm{y}=\mathrm{PN}=\mathrm{PM}+\mathrm{MN}=\mathrm{X}+\mathrm{AL}=\mathrm{X}+\mathrm{y}_{1}
$$

therefore, $y=Y+y_{1}$
hence $x=X+x_{1}, y=Y+y_{1}$
3.Theorem: To find the point to which the origin is to be shifted by translation of axes to eliminate
\mathbf{x}, \mathbf{y} terms(first degree terms) in the equation $a x^{2}+2 x h y+b y^{2}+2 g x+2 f y+c=0\left(h^{2}=a b\right)$
Proof : given equation is $a x^{2}+2 x h y+b y^{2}+2 g x+2 f y+c=0$
Let $\left(x_{1}, y_{1}\right)$ be a point to which the origin is shifted by translation
Let (X, Y) be the new co-ordinates of the point (x, y).
\therefore the equations of the transformation are $x=X+x_{1}, y=Y+y_{1}$
Now the transformed equation is

$$
\begin{aligned}
& a\left(X+x_{1}\right)^{2}+2 h\left(X+x_{1}\right)\left(Y+y_{1}\right)+b\left(Y+y_{1}\right)^{2}+2 g\left(X+x_{1}\right)+2 f\left[Y+y_{1}\right]+c=0 \\
& \Rightarrow a\left(X^{2}+2 x_{1} X+x_{1}^{2}\right)+2 h\left(X Y+x_{1} Y+y_{1} X+x_{1} y_{1}\right)+b\left(Y^{2}+2 y_{1} Y+y_{1}^{2}\right)+2 g\left(X+x_{1}\right)+2 f\left(Y+y_{1}\right)+c=0 \\
& \Rightarrow a X^{2}+2 h X Y+b Y^{2}+2 X\left(a x_{1}+h y_{1}+g\right)+2 Y\left(h x_{1}+b y_{1}+f\right)+\left(a x_{1}^{2}+2 x_{1}+b y_{1}^{2}+2 g x_{1}+2 f y_{1}+c\right)=0
\end{aligned}
$$

Since x , y terms (the first degree terms) are to be eliminated

$$
\begin{aligned}
& a x_{1}+h y_{1}+g=0 \\
& h x_{1}+b y_{1}+f=0
\end{aligned}
$$

Solving these two equations by the method of cross pollination

$$
\begin{aligned}
& \frac{x_{1}}{h f-b g}=\frac{y_{1}}{g h-a f}=\frac{1}{a b-h^{2}} \Rightarrow x_{1}=\frac{h f-b g}{a b-h^{2}}, y_{1}=\frac{g h-a f}{a b-h^{2}} \\
& \text { New origin is } \Rightarrow\left(x_{1}, y_{1}\right)=\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)
\end{aligned}
$$

Note: (i) The point to which the origin has to be shifted to eliminate x, y terms by translation in the equation $a x^{2}+b y^{2}+2 g x+2 f y+c=0$ is $\left(\frac{-g}{a}, \frac{-f}{b}\right)$

If $\mathrm{b}=\mathrm{a}$, then the new origin is $\left(\frac{-g}{a}, \frac{-f}{a}\right)$
(ii) The point to which the origin has to be shifted to eliminate \mathbf{x}, \mathbf{y} terms by translation of axes in the equation $a\left(x+x_{1}\right)^{2}+b\left(y+y_{1}\right)^{2}=c$ is $\left(-x_{1},-y_{1}\right)$
iii) The point to which the origin has to be shifted to eliminate x , y terms by translation in the equation $2 h x y+2 g x+2 f y+c=0$ is $\left(\frac{-f}{h}, \frac{-g}{h}\right)$

Theorem : To find the condition that the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ to be in the form $a X^{2}+2 h X Y+b Y^{2}=0$ when the axes are translated. $\left(h^{2} \neq a b\right)$

Proof: From theorem 3, we get

$$
\begin{equation*}
a x_{1}+h y_{1}+g=0 \tag{1}
\end{equation*}
$$

\qquad
$h x_{1}+b y_{1}+f=0$ \qquad
Solving (1) and (2),

$$
\left(x_{1}, y_{1}\right)=\left(\frac{h f-b g}{a b-h^{2}}, \frac{g f-a f}{a b-h^{2}}\right)
$$

Since the equation is to be in the form of $a X^{2}+2 h X Y+b Y^{2}=0$, then for this we should have

$$
a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}+2 g x_{1}+2 f y_{1}+c=0
$$

$$
\Rightarrow\left(a x_{1}+h y_{1}+g\right) x_{1}+\left(x_{1}+b y_{1}+f\right) y_{1}+\left(g x_{1}+f y_{1}+c\right)=0
$$

$$
\begin{equation*}
\Rightarrow(0) \cdot x_{1}+(0), y_{1}+\left(g x_{1}+f y_{1}+c\right)=0 \text { from }(1) \text { and }(2) \Rightarrow g x_{1}+f y_{1}+c=0 \tag{3}
\end{equation*}
$$

Substituting x_{1}, y_{1} in (3), we get

$$
\begin{aligned}
& g\left(\frac{h f-b g}{a b-h^{2}}\right)+f\left(\frac{g h-a f}{a b-h^{2}}\right)+c=0 \\
& \Rightarrow f g h-b g^{2}+f g h-a f^{2}+a b c+-c h^{2}=0 \\
& \quad \Rightarrow a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0
\end{aligned}
$$

Problems.

1. When the origin is shifted to $(4,-5)$ by the translation of axes, find the co-ordinates of the following points with reference to new axes.?

Sol. i) $(0,3)$

New origin $=(4,-5)=(h, k)$
Old co-ordinates are $(0,3)=(x, y)$

$$
X=x-h=0-4=-4
$$

$Y=y-k=3+5=8$
New co-ordinates are ($-4,8$)
ii) $(-2,4) \quad$ ANS. $(-6,9)$
iii) $(4,-5)$
ans. (0,0)
2. The origin is shifted to $(2,3)$ by the translation of axes. If the co-ordinates of a point P changes as follows, find the co-ordinates of Pin the original system.?
i) $(4,5)$
ii) $(-4,3)$
iii) $(0,0)$

Sol. New origin $=(2,3)=(h, k)$
i) New co-ordinates are $(4,5)$
$x=4, y=5$
$x=x+h=4+2=6$
$y=y+k=5+3=8$
Old co-ordinates are $(6,8)$
ii) New co-ordinates are $(-4,3)$

ANS. (-2,6)
iii) New co-ordinates are $(0,0)$

ANS. $(2,3)$
3. Find the point to which the origin is to be shifted so that the point $(\mathbf{3}, 0)$ may change to $(\mathbf{2}, \mathbf{- 3})$?

Sol. $(x, y)=(3,0)$
$\left(x^{1}, y^{1}\right)=(2,-3)$
Let (h, k) be the new origin
$\therefore h=x-x^{1}=3-2=1$
$k=y-y^{1}=0+3=3$
$\therefore(h, k)=(1,3)$
4. When the origin is shifted to $(-1,2)$ by the translation of axes, find the transformed equations of the following.?
i) $x^{2}+y^{2}+2 x-4 y+1=0$
ii) $2 x^{2}+y^{2}-4 x+4 y=0$

Sol. i)The given equation is $x^{2}+y^{2}+2 x-4 y+1=0-------(\mathbf{1})$
Origin is shifted to $(-1,2) \quad \therefore \quad \mathrm{h}=-1, \mathrm{k}=2$
Equations of transformations are $x=X+h, y=Y+k$
i.e, $x=X-1, y=Y+2$

The new equation is

$$
\begin{aligned}
& (X-1)^{2}+(Y+2)^{2}+2(X-1)-4(Y+2)+1=0 \\
& \Rightarrow X^{2}+1-2 X+Y^{2}+4+4 Y+2 X-2-4 Y-8+1=0 \\
& \Rightarrow X^{2}+Y^{2}-4=0
\end{aligned}
$$

ii) Old equation is $2 x^{2}+y^{2}-4 x+4 y=0$

Ans. $2 X^{2}+Y^{2}-8 X+8 Y+18=0$
5. The point to which the origin is shifted and the transformed equation are given below. Find the original equation.?
i) $(3,-4) ; x^{2}+y^{2}=4$
ii) $(-1,2) ; x^{2}+2 y^{2}+16=0$

Sol. i) New origin $=(3,-4)=(h, k)$

$$
\begin{aligned}
\therefore X & =x-h, Y & =y-k \\
& =\mathrm{x}-3 & =\mathrm{y}+4
\end{aligned}
$$

The original equation of $(X)^{2}+(Y)^{2}=4$ is $(x-3)^{2}+(y+4)^{2}=4$

$$
\begin{aligned}
& x^{2}-6 x+9+y^{2}+8 y+16=4 \\
& \therefore x^{2}+y^{2}-6 x+8 y+21=0
\end{aligned}
$$

ii) New origin $=(h, k)=(-1,2)$

$$
\begin{aligned}
X=x-h, & Y=y-k \\
=\mathrm{x}+1 & =\mathrm{y}-2
\end{aligned}
$$

The original equation of $X^{2}+2 Y^{2}+16=0$
$(x+1)^{2}+2(y-2)^{2}+16=0$
$x^{2}+2 x+1+2 y^{2}-8 y+8+16=0 \Rightarrow x^{2}+2 y^{2}+2 x-8 y+25=0$
6. Find the point to which the origin is to be shifted so as to remove the first degree terms from the equation, $4 x^{2}+9 y^{2}-8 x+36 y+4=0$

Sol. The given equation is
$4 x^{2}+9 y^{2}-8 x+36 y+4=0$ comparing with $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
$\mathrm{a}=4 \mathrm{~h}=0 \quad \mathrm{~g}=-4 \quad \mathrm{~b}=9 \quad \mathrm{f}=18$
$-\frac{g}{a}=\frac{4}{4}=1,-\frac{f}{b}=-2$
Origin should be shifted to $\left(\frac{-g}{a}, \frac{-f}{b}\right)=(1,-2)$

SHORT ANSWER QUESTIONS

1. When the origin is shifted to the point $(2,3)$, the transformed equation of a curve is $x^{2}+3 x y-2 y^{2}+17 x-7 y-11=0$. Find the original equation of the curve?

Sol. New origin $=(2,3)=(h, k)$
Equations of transformation are
$X=x+h, y=Y+k$
$X=x-h=x-2, Y=y-3$
Transformed equation is
$x^{2}+3 x y-2 y^{2}+17 x-7 y-11=0$
Original equation is
$(x-2)^{2}+3(x-2)(y-3)-2(y-3)^{2}+17(x-2)-7(y-3)-11=0$
$x^{2}+4 x+4+3 x y-9 x-6 y+18-2 y^{2}+12 y-18+17 x-34-7 y+21-11=0$
$\Rightarrow x^{2}+3 x y-2 y^{2}+4 x-y-20=0$ is the required original equation.
3. If the transformed equation of a curve is $3 x^{2}+x y-y^{2}-7 x+y-7=0$ when the origin is shifted to the point $(1,2)$ by translation of axes, find the original equation of the curve?

Sol. Same as above problem.
Ans. $3 x^{2}+x y-y^{2}-15 x+4 y+13=0$.

