CONCURRENT LINES- PROPERTIES RELATED TO A TRIANGLE THEOREM

The medians of a triangle are concurrent.

Proof:
Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ be the vertices of the triangle
$B\left(x_{2}, y_{2}\right) \quad D \quad C\left(x_{3}, y_{3}\right)$
Let $\mathrm{D}, \mathrm{E}, \mathrm{F}$ be the mid points of $\overline{B C}, \overline{C A}, \overline{A B}$ respectively

$$
\begin{aligned}
& \therefore D=\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right), E=\left(\frac{x_{3}+x_{1}}{2}, \frac{y_{3}+y_{1}}{2}\right) \\
& F=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& \text { Slope of } \overline{A D} \text { is } \frac{\frac{y_{2}+y_{3}}{2}-y_{1}}{\frac{x_{2}+x_{3}}{2}-x_{1}}=\frac{y_{2}+y_{3}-2 y_{1}}{x_{2}+x_{3}-2 x_{1}}
\end{aligned}
$$

Equation of $\overline{A D}$ is

$$
\begin{aligned}
& y-y_{1}=\frac{y_{2}+y_{3}-2 y_{1}}{x_{2}+x_{3}-2 x_{1}}\left(x-x_{1}\right) \\
& \Rightarrow\left(\mathrm{y}-\mathrm{y}_{1}\right)\left(\mathrm{x}_{2}+\mathrm{x}_{3}-2 \mathrm{x}_{1}\right)=\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{y}_{2}+\mathrm{y}_{3}-2 \mathrm{y}_{1}\right) \\
& \Rightarrow \mathrm{L}_{1} \equiv\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{y}_{2}+\mathrm{y}_{3}-2 \mathrm{y}_{1}\right) \\
& \quad-\left(\mathrm{y}-\mathrm{y}_{1}\right)\left(\mathrm{x}_{2}+\mathrm{x}_{3}-2 \mathrm{x}_{1}\right)=0 .
\end{aligned}
$$

Similarly, the equations to $\overline{B E}$ and $\overline{C F}$ respectively are $\mathrm{L}_{2} \equiv\left(\mathrm{x}-\mathrm{x}_{2}\right)\left(\mathrm{y}_{3}+\mathrm{y}_{1}-2 \mathrm{y}_{2}\right)$

$$
-\left(y-y_{2}\right)\left(x_{3}+x_{1}-2 x_{2}\right)=0
$$

$$
\mathrm{L}_{3} \equiv\left(\mathrm{x}-\mathrm{x}_{3}\right)\left(\mathrm{y}_{1}+\mathrm{y}_{2}-2 \mathrm{y}_{3}\right)
$$

$$
-\left(y-y_{3}\right)\left(x_{1}+x_{2}-2 x_{3}\right)=0
$$

Now 1. $\mathrm{L}_{1}+1 . \mathrm{L}_{2}+1 . \mathrm{L}_{3}=0$
The medians $\mathrm{L}_{1}=0, \mathrm{~L}_{2}=0, \mathrm{~L}_{3}=0$ are concurrent.

THEOREM

The altitudes of a triangle are concurrent.

Proof:

Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ be the vertices of the triangle $A B C$.
Let AD, BE,CF be the altitudes.
Slope of $\overrightarrow{B C}$ is $\frac{y_{3}-y_{2}}{x_{3}-x_{2}}$ and $\mathrm{AD} \perp \mathrm{BC}$
Slope of the altitude through A is $-\frac{x_{3}-x_{2}}{y_{3}-y_{2}}$
Equation of the altitude through A is $\mathrm{y}-\mathrm{y}_{1}=\frac{x_{3}-x_{2}}{y_{3}-y_{2}}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\left(y-y_{1}\right)\left(y_{3}-y_{2}\right)=-\left(x-x_{1}\right)\left(x_{3}-x_{2}\right)$
$L_{1}=\left(x-x_{1}\right)\left(x_{2}-x_{3}\right)+\left(y-y_{1}\right)\left(y_{2}-y_{3}\right)=0$.
Similarly equations of the altitudes through B,C are
$L_{2}=\left(x-x_{2}\right)\left(x_{3}-x_{1}\right)+\left(y-y_{2}\right)\left(y_{2}-y_{3}\right)=0$,
$L_{3}=\left(x-x_{3}\right)\left(x_{1}-x_{2}\right)+\left(y-y_{3}\right)\left(y_{1}-y_{2}\right)=0$.
Now 1. $L_{1}+1 . L_{2}+1 . L_{3}=0$
The altitudes $\mathrm{L}_{1}=0, \mathrm{~L}_{2}=0, \mathrm{~L}_{3}=0$ are concurrent.

THEOREM

The internal bisectors of the angles of a triangle are concurrent.

THEOREM

The perpendicular bisectors of the sides of a triangle are concurrent

EXERCISE - 3 (e)

I.

1. Find the in center of the triangle whose vertices are $(1, \sqrt{3})(2,0)$ and $(\mathbf{0}, \mathbf{0})$

Sol. let $\mathrm{A}(0,0), \mathrm{B}(1, \sqrt{3}), \mathrm{C}(2,0)$ be the vertices of $\Delta \mathrm{ABC}$
$\mathrm{a}=\mathrm{BC}=\sqrt{(1-2)^{2}+(\sqrt{3}-0)^{2}}=\sqrt{1+3}=2$
$\mathrm{b}=\mathrm{CA}=\sqrt{(2-0)^{2}-(0-0)^{2}}=\sqrt{4}=2$
$\mathrm{C}=\mathrm{AB}=\sqrt{(0-1)^{2}+(0-\sqrt{3})^{2}}=\sqrt{4}=2$
$\therefore \mathrm{ABC}$ is an equilateral triangle co-ordinates of the in centre are
$=\left(\frac{\mathrm{ax}_{1}+\mathrm{bx}_{2}+\mathrm{cx}_{3}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}, \frac{\mathrm{ay}_{1}+\mathrm{by}_{2}+\mathrm{cy}_{3}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\right)=\left(\frac{2.0+2,1+2.2}{2+2+2}, \frac{2.0+2 \cdot \sqrt{3}+2.0}{2+2+2}\right)$
$=\left(\frac{6}{6}, \frac{2 \sqrt{3}}{6}\right)=\left(1, \frac{1}{\sqrt{3}}\right)$
2. Find the orthocenter of the triangle are given by $x+y+10=0, \mathbf{x}-\mathbf{y}-\mathbf{2}=\mathbf{0}$ and $2 x+y-7=0$
Sol. Let equation of
$A B$ be $x+y+10=0$
$B C$ be $x-y-2=0$

(2)

Solving (1) and (2) $B=(-4,-6)$
Solving (1) and (3) $\mathrm{A}=(17,-27)$
Equation of $B C$ is $x-y-2=0$
Altitude $A D$ is perpendicular to $B C$, therefore Equation of $A D$ is $x+y+k=0$
AD is passing through $\mathrm{A}(17,-27)$
$\Rightarrow 17-27+\mathrm{k}=0 \Rightarrow \mathrm{k}=10$
\therefore Equation if AD is $\mathrm{x}+\mathrm{y}+10=0---(4)$

Altitude BE is perpendicular to AC .
\Rightarrow Let the equation of DE be $x-2 y=k$
BE is passing through $\mathrm{D}(-4,-6)$
$\Rightarrow-4+12=\mathrm{k} \Rightarrow \mathrm{k}=8$
Equation of BE is $\mathrm{x}-2 \mathrm{y}=8----(5)$
Solving (4) and (5), the point of intersection is ($-4,-6$).
Therefore the orthocenter of the triangle is $(-4,-6)$.
3. Find the orthocentre of the triangle whose sides are given by $4 x-7 y+10=0, x+y=5$ and $7 x+4 y=15$
Sol. Ans: $\mathrm{O}(1,2)$
4. Find the circumcentre of the triangle whose sides are $x=1, y=1$ and $x+y=1$

Sol. Let equation of AB be $\mathrm{x}=1---(1)$
BC be $y=1 \quad----(2)$
and $A C$ be $x+y=1 \quad----(3)$
lines (1) and (2) are perpendicular to each other. Therefore, given triangle is a right triangle and $\angle B=90^{\circ}$.
Therefore, circumcentre is the mid point of hypotenuse AC.

(1)

Solving (1) and (3), vertex $\mathrm{A}=(1,0)$
Solving (2) and (3), vertex $\mathrm{c}=(0,1)$

Circumcentre $=$ mid point of $\mathrm{AC}=\left(\frac{1}{2}, \frac{1}{2}\right)$
5. Find the incentre of the triangle formed by the lines $x=1, y=1$ and $x+y=1$

Sol. ANS: $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
6. Find the circumcentre of the triangle whose vertices are $(1,0),(-1,2)$ and $(3,2)$

Sol. vertices of the triangle are
A (1, 0), B (-1, 2), (3, 2)

Let $S(x, y)$ be the circumcentre of $\Delta \mathrm{ABC}$.
Then SA = SB $=$ SC
Let $\mathrm{SA}=\mathrm{SB} \Rightarrow \mathrm{SA}^{2}=\mathrm{SB}^{2}$
$(x-1)^{2}+y^{2}=(x+1)^{2}+(y-2)^{2}$
$\Rightarrow x^{2}-2 x+1+y^{2}=x^{2}+2 x+1+y^{2}-4 y+4$
$\Rightarrow 4 \mathrm{x}-4 \mathrm{y}=-4 \Rightarrow \mathrm{x}-\mathrm{y}=-1$
$\mathrm{SB}=\mathrm{SC} \Rightarrow \mathrm{SB}^{2}=\mathrm{SC}^{2}$
$(x+1)^{2}+(y-2)^{2}=(x-3)^{2}+(y-2)^{2}$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}+1=\mathrm{x}^{2}-6 \mathrm{x}+9$
$\Rightarrow 8 x=8 \Rightarrow x=1$
From (1), $1-y=-1 \Rightarrow y=2$
\therefore Circum centre is $(1,2)$
7. Find the value of \mathbf{k}, if the angle between the straight lines $k x+y+9=0$ and
$3 x-y+4=0$ is $\pi / 4$
Sol. Given lines are
$\mathrm{kx}+\mathrm{y}+9=0$
$3 x-y+4=0$ and angle between the lines is $\pi / 4$.
$\therefore \cos \frac{\pi}{4}=\frac{|3 \mathrm{k}-1|}{\sqrt{\mathrm{k}^{2}+1} \sqrt{9+1}} \Rightarrow \frac{1}{\sqrt{2}}=\frac{|3 \mathrm{k}-1|}{\sqrt{10} \sqrt{\mathrm{k}^{2}+1}}$
Squaring
$\Rightarrow 5 \mathrm{k}^{2}+5=(3 \mathrm{k}-1)^{2}=9 \mathrm{k}^{2}-6 \mathrm{k}+1 \Rightarrow 4 \mathrm{k}^{2}-6 \mathrm{k}-4=0 \Rightarrow 2 \mathrm{k}^{2}-3 \mathrm{k}-2=0$
$\Rightarrow(\mathrm{k}-2)(2 \mathrm{k}+1)=0 \Rightarrow \mathrm{k}=2$ or $-1 / 2$
8. Find the equation of the straight line passing through the origin and also the point of intersection of the lines. $2 x-y+5=0$ and $x+y+1=0$

Sol. Given lines are $L_{1}=2 x-y+5=0$

$$
\mathrm{L}_{2}=\mathrm{x}+\mathrm{y}+1=0
$$

Equation of any line passing through the point of intersection of the lines $L_{1}=0$ and $L_{2}=0$
is $\mathrm{L}_{1}+\mathrm{KL}_{2}=0$
$\Rightarrow(2 \mathrm{x}-\mathrm{y}+5)+\mathrm{k}(\mathrm{x}+\mathrm{y}+1)=0$
This line is passing through $\mathrm{O}(0,0) \Rightarrow 5+\mathrm{k}=0 \Rightarrow \mathrm{k}=-5$
Substituting in (1), equation of OA is $(x-y+5)-5(x+y+1)=0$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}+5-5 \mathrm{y}-5=0$
$\Rightarrow-3 x-6 y=0 \Rightarrow x+2 y=0$
9. Find the equation of the straight line parallel to the lines $3 x+4 y=7$ and passing through the point of intersection of the lines $x-2 y-3=0$ and $x+3 y-6=0$
Sol. Given lines are $L_{1}=x-2 y-3=0$ and
$\mathrm{L}_{2}=\mathrm{x} _3 \mathrm{y}-6=0$
Equation of any line passing through the point of intersection of the lines $L_{1}=0$ and $L_{2}=0$
is $\mathrm{L}_{1}+\mathrm{KL}_{2}=0$
$\Rightarrow(\mathrm{x}-2 \mathrm{y}-3)+\mathrm{k}(\mathrm{x}+3 \mathrm{y}-6)=0$
$\Rightarrow(1+\mathrm{k}) \mathrm{x}+(-2+3 \mathrm{k}) \mathrm{y}+(-3-6 \mathrm{k})=0---(1)$
This line is parallel to $3 x+4 y=7$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \Rightarrow \frac{3}{(1+\mathrm{k})}=\frac{4}{(-2+3 \mathrm{k})}$
$\Rightarrow 3(-2+3 \mathrm{k})=(1+\mathrm{k}) 4$
$\Rightarrow-6+9 \mathrm{k}=4+4 \mathrm{k} \Rightarrow 5 \mathrm{k}=10 \Rightarrow \mathrm{k}=2$
Equation of the required line is
$3 x+4 y-15=0$
10. Find the equation of the straight line perpendicular to the line $2 x+3 y=0$ and passing through the point of intersection of the lines $x+3 y-1=0$ and $x-2 y+4=0$
Sol. $L_{1}=x+3 y-1=0$
$L_{2}=x-2 y+4=0$
Equation of any line passing through the point of intersection of the lines $L_{1}=0$ and $L_{2}=0$
is $L_{1}+\mathrm{KL}_{2}=0$
$\Rightarrow(\mathrm{x}+3 \mathrm{y}-1)+\mathrm{k}(\mathrm{x}-2 \mathrm{y}+4)=0$
$\Rightarrow(1+\mathrm{k}) \mathrm{x}+(3-2 \mathrm{k}) \mathrm{y}+(4 \mathrm{k}-1)=0--(1)$
This line is perpendicular to $2 \mathrm{x}+3 \mathrm{y}=0$,
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}=0 \Rightarrow 2(1+\mathrm{k})+3(3-2 \mathrm{k})=0$
$2+2 \mathrm{k}+9-6 \mathrm{k}=0 \Rightarrow 4 \mathrm{k}=11 \Rightarrow \mathrm{k}=\frac{11}{4}$
Substituting in (1), equation of the required line is

$$
\begin{aligned}
& \left(1+\frac{11}{4}\right) x+\left(3-\frac{11}{2}\right) y+(11-1)=0 \\
& \frac{15}{4} x-\frac{5}{2} y+10=0 \\
& \Rightarrow 15 x-10 y=40=0 \\
& \Rightarrow 3 x-2 y+8=0
\end{aligned}
$$

11. Find the equation of the straight line making non - zero equal intercepts on the axes and passing through the point of intersection of the lines $2 x-5 y+1=0$ and $\mathbf{x - 3 y}-4=0$
Sol. Let $\mathrm{L}_{1}=2 \mathrm{x}+5 \mathrm{y}+1=0, \mathrm{~L}_{2}=\mathrm{x}-3 \mathrm{y}-4=0$
Equation of any line passing through the point of intersection of the lines $L_{1}=0$ and $L_{2}=0$
is $\mathrm{L}_{1}+\mathrm{KL}_{2}=0$
$\Rightarrow(2 \mathrm{x}-5 \mathrm{y}+1)+\mathrm{k}(\mathrm{x}-3 \mathrm{y}-4)=0$
$\Rightarrow(2+\mathrm{k}) \mathrm{x}-(5+3 \mathrm{k}) \mathrm{y}+(1-4 \mathrm{k})=0-(1)$
Intercepts on co-ordinates axes are equal, coefficient of $x=$ coefficient of y
$\Rightarrow 2+\mathrm{k}=-5-3 \mathrm{k}$
$\Rightarrow 4 \mathrm{k}=-7 \Rightarrow \mathrm{k}=-7 / 4$
Substituting in (1)
Equation of the required line is

$$
\begin{aligned}
& \Rightarrow\left(-2 \frac{7}{4}\right) \mathrm{x}-\left(5-\frac{21}{4}\right) \mathrm{y}+(1+7)=0 \\
& \Rightarrow \frac{1}{4} \mathrm{x}+\frac{1}{4} \mathrm{y}+8=0 \Rightarrow \mathrm{x}+\mathrm{y}+32=0
\end{aligned}
$$

12. Find the length of the perpendicular drawn from the point of intersection of the lines $3 x+2 y+4=0$ and $2 x+5 y-1=$ to the straight line $7 x+24 y-15=0$
Sol. Given lines are
$3 x+2 y+4=0----(1)$
$2 x+5 y-1=0---(2)$
Solving (1) and (2), point of intersection is $\quad \mathrm{P}(-2,1)$.
Length of the perpendicular from $P(-2,1)$ to the line $7 x+24 y-15=0$ is
$=\left|\frac{-14+24-15}{\sqrt{49+576}}\right|=\frac{5}{25}=\frac{1}{5}$.
13. Find the value of ' a ' if the distance of the points $(2,3)$ and $(-4, a)$ from the straight line $3 x+4 y-8=0$ are equal.
Sol. Equation of the line is $3 x+4 y-8=0--$ (1)

Given pointsP $(2,3),(-4, a)$
Perpendicular from $\mathrm{P}(2,3)$ to $(1)=$ perpendicular from $\mathrm{Q}(-4, \mathrm{a})$ to (1)
$\Rightarrow \frac{|3 \cdot 2+4 \cdot 3-8|}{\sqrt{9+16}}=\frac{|3 \cdot(-4)+4 a-8|}{\sqrt{9+16}}$
$\Rightarrow 10=|4 \mathrm{a}-20|$
$\Rightarrow 4 \mathrm{a}-20= \pm 10 \Rightarrow 4 \mathrm{a}=20 \pm 10=30$ or 10
$\Rightarrow \mathrm{a}=\frac{30}{4}$ or $\frac{10}{4}$
$\therefore \mathrm{a}=\frac{15}{2}$ or $5 / 2$
14. Fund the circumcentre of the triangle formed by the straight lines $\mathbf{x}+\mathbf{y}=0$,
$2 x+y+5=0$ and $x-y=2$
Sol. let the equation of
AB be $x+y=0$
$B C$ be $2 x+y+5=0$
And AC be $x-y=2$
A

Solving (1) and (2), vertex $B=(-5,5)$
Solving (2) and (3), vertex $C=(-1,-3)$
Solving (1) and (3), vertex $\mathrm{A}=(1,-1)$
Let $S(x, y)$ be the circumcentre of $\Delta A B C$.
Then SA = SB = SC
$\mathrm{SA}=\mathrm{SB} \Rightarrow \mathrm{SA}^{2}=\mathrm{SB}^{2}$
$(x+5)^{2}+(y-5)^{2}=(x+1)^{2}+(y+3)^{2}$
$x^{2}+10 x+25+y^{2}-10 y+25=x^{2}+2 x+1+y^{2}+6 y+9$
$\Rightarrow 8 \mathrm{x}-16 \mathrm{y}=-40$
$\Rightarrow \mathrm{x}-2 \mathrm{y}=-5$
$\mathrm{SB}=\mathrm{SC} \Rightarrow \mathrm{SB}^{2}=\mathrm{SC}^{2}$
$\Rightarrow(\mathrm{x}+1)^{2}+(\mathrm{y}+3)^{2}=(\mathrm{x}-1)^{2}+(\mathrm{y}+1)^{2}$
$\Rightarrow x^{2}+2 x+1+y^{2}+6 y+9=x^{2}-2 x+1+y^{2}+2 y+1$
$\Rightarrow 4 \mathrm{x}+4 \mathrm{y}=-8$
$\Rightarrow x+y=-2$

Solving (4) \& (5), point of intersection is $(-3,1)$
circumcentre is $S(-3,1)$
15. If θ is the angle between the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{x}{a}=1$, find the value of $\sin \theta$, when $\mathbf{a}>\mathrm{b}$.

Sol. Given equations are $\frac{x}{a}+\frac{y}{b}=1 \Rightarrow b x+a y=a b$
And $\frac{x}{b}+\frac{y}{a}=1 \Rightarrow a x+b y=a b$
Let θ be angle between the lines, then

$$
\begin{aligned}
& \cos \theta=\frac{\left|a_{1} a_{2}+b_{1} b_{2}\right|}{\sqrt{\mathrm{a}_{1}^{2}+b_{1}^{2}} \sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}}} \\
& =\frac{|\mathrm{ab}+\mathrm{ab}|}{\sqrt{\mathrm{b}^{2}+\mathrm{a}^{2}} \sqrt{\mathrm{~b}^{2}+\mathrm{a}^{2}}}=\frac{2 \mathrm{ab}}{\mathrm{a}^{2}+\mathrm{b}^{2}} \\
& \sin ^{2} \theta=1-\cos ^{2} \theta=1-\frac{4 \mathrm{a}^{2} \mathrm{~b}^{2}}{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}} \Rightarrow \sin \theta=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}
\end{aligned}
$$

II.

1. Find the equation of the straight lines passing through the point $(-10,4)$ and making an angle θ with the line $x-2 y=10$ such that $\tan \theta=2$.
Sol: Given line is $x-2 y=10---$ (1) and point ($-10,4$).

$$
\tan \theta=2 \Rightarrow \cos \theta=\frac{1}{\sqrt{5}}
$$

Let m be the slope of the require line. This line is passing through $(-10,4)$, therefore equation of the line is

$$
\begin{align*}
& y-4=m(x+10) \quad=m x+10 m \\
\Rightarrow & m x-y+(10 m+4)=0 \tag{2}
\end{align*}
$$

Given θ is the angle between (1) and (2), therefore, $\cos \theta=\frac{\left|a_{1} a_{2}+b_{1} b_{2}\right|}{\sqrt{a_{1}^{2}+b_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}}}$
$\frac{1}{\sqrt{5}}=\frac{|\mathrm{m}+2|}{\sqrt{1+4} \sqrt{\mathrm{~m}^{2}+1}}$
Squaring
$\mathrm{m}^{2}+1=(\mathrm{m}+2)^{2}=\mathrm{m}^{2}+4 \mathrm{~m}+4$
$\Rightarrow 4 \mathrm{~m}+3=0 \Rightarrow \mathrm{~m}=-\frac{3}{4}$

Case (i): Co-efficient of $\mathrm{m}^{2}=0$
\Rightarrow One of the root is ∞
Hence the line is vertical.
\therefore Equation of the vertical line passing through $(-10,4)$ is $\mathrm{x}+10=0$
Case (ii): $m=-\frac{3}{4}$
Substituting in (1)
Equation of the line is $-\frac{3}{4} x-y+\left(-\frac{30}{4}+4\right)=0$
$\frac{-3 x-4 y-14}{4}=0 \Rightarrow 3 x+4 y+14=0$
2. Find the equation of the straight lines passing through the point $(1,2)$ and making an angle of 60° with the line $\sqrt{3} x+y-2=0$.
Sol: equation of the given line is $\sqrt{3} x+y-2=0 .----(1)$

Let $\mathrm{P}(1,2)$. let m be the slope of the required line.
Equation of the line passing through $\mathrm{P}(1,2)$ and having slope m is

$$
y-2=m(x-1)=m x-m
$$

$$
\begin{equation*}
m x-y+(2-m)=0 \tag{2}
\end{equation*}
$$

This line is making an angle of 60° with (1), therefore,

$$
\begin{aligned}
& \cos \theta=\frac{\left|\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}\right|}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}} \sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}}} \Rightarrow \cos 60^{\circ}=\frac{|\sqrt{3} \mathrm{~m}-1|}{\sqrt{3+1} \sqrt{\mathrm{~m}^{2}+1}} \\
& \Rightarrow \frac{1}{2}=\frac{|\sqrt{3 \mathrm{~m}-1}|}{2 \sqrt{\mathrm{~m}^{2}+1}}
\end{aligned}
$$

Squaring on both sides, $\Rightarrow \mathrm{m}^{2}+1=(\sqrt{3} \mathrm{~m}-1)^{2}=3 \mathrm{~m}^{2}+1-2 \sqrt{3} \mathrm{~m}$

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{~m}^{2}-2 \sqrt{3} \mathrm{~m}=0 \Rightarrow 2 \mathrm{~m}(\mathrm{~m}-\sqrt{3})=0 \\
& \Rightarrow \mathrm{~m}=0 \text { or } \sqrt{3}
\end{aligned}
$$

Case (i): $\mathrm{m}=0, \mathrm{P}(1,2)$

Equation of the line is $-y+2=0$ or $y-2=0$
Case (ii): $\mathrm{m}=\sqrt{3}, \mathrm{P}(1,2)$
Equation is $\sqrt{3} x-y+(2-\sqrt{3})=0$
3. The base of an equilateral triangle is $x+y-2=0$ and the opposite vertex is $(2,-1)$.

Find the equation of the remaining sides.
ANS: $\quad y+1=(2+\sqrt{3})(x-2), \quad y+1=(2-\sqrt{3})(x-2)$

4. Find the orthocentre of the triangle whose sides are given below.

i) $(-2,-1),(6,-1)$ and $(2,5)$
ii) $(5,-2),(-1,2)$ and $(1,4)$

Sol: i) $\mathrm{A}(-2,-1), \mathrm{B}(6,-1), \mathrm{C}(2,5)$ are the vertices of $\triangle \mathrm{ABC}$.

Slope of $\mathrm{BC}=\frac{5+1}{2-6}=\frac{6}{-4}=-\frac{3}{2}$
AD is perpendicular to $\mathrm{BC} \Rightarrow$ Slope of $\mathrm{AD}=\frac{2}{3}$
Equation of $A D$ is $y+1=\frac{2}{3}(x+2)$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}+1=0$
Slope of $\mathrm{AC}=\frac{5+1}{2+2}=\frac{6}{4}=\frac{3}{2}$
BE is $\perp^{l \mathrm{r}}$ to AC
Equation of BE is $\mathrm{y}+1=-\frac{2}{3}(\mathrm{x}-6)$

$$
\begin{equation*}
2 x-3 y-9=0 \tag{2}
\end{equation*}
$$

solving (1), (2)
x
3
-3
$\frac{x}{3-27}=\frac{y}{-18-2}=\frac{1}{-6-6}$

$$
\begin{aligned}
& \frac{x}{-24}=\frac{y}{-20}=\frac{1}{-12} \\
& x=\frac{-24}{-12}=2, y=\frac{-20}{-12}=\frac{5}{3}
\end{aligned}
$$

$$
\therefore \text { Co-ordinates of the orthocenter } \mathrm{O} \text { are }=\left(2, \frac{5}{3}\right)
$$

ii) $\mathrm{A}(5,-2), \mathrm{B}(-1,2), \mathrm{C}(1,4)$ are the vertices of $\triangle \mathrm{ABC}$.

$$
\text { ANS: }\left(\frac{1}{5}, \frac{14}{5}\right)
$$

5. Find the circumcentre of the triangle whose vertices are given below.
i) $(-2,3)(2,-1)$ and $(4,0)$
ii) $(1,3),(0,-2)$ and $(-3,1)$

Sol: i) Ans $\left(\frac{3}{2}, \frac{5}{2}\right)$
ii) $(1,3),(0,-2)$ and $(-3,1)$

ANS: $\left(-\frac{1}{3}, \frac{2}{3}\right)$
6. Let $\overline{\mathrm{PS}}$ be the median of the triangle with vertices $\mathrm{P}(2,2) \mathrm{Q}(6,-1)$ and $\mathrm{R}(7,3)$. Find the equation of the straight line passing through $(1,-1)$ and parallel to the median $\overline{\mathrm{PS}}$.

Sol: $\mathrm{P}(2,2), \mathrm{Q}(6,-1), \mathrm{R}(7,3)$ are the vertices of $\triangle \mathrm{ABC}$. Let $\mathrm{A}(1,-1)$
Given S is the midpoint of QR
Co-ordinates of S are $\left(\frac{6+7}{2}, \frac{-1+3}{2}\right)=\left(\frac{13}{2}, 1\right)$
Slope of PS $=\frac{1-2}{\frac{13}{2}-2}=-\frac{1}{\left(\frac{9}{2}\right)}=-\frac{2}{9}$

Required line is parallel to PS and passing through $\mathrm{A}(1,-1)$,
Equation of the line is $y+1=-\frac{2}{9}(x-1)$
$\Rightarrow 9 \mathrm{y}+9=-2 \mathrm{x}+2 \Rightarrow 2 \mathrm{x}+9 \mathrm{y}+7=0$
7. Find the orthocentre of the triangle formed by the lines. $x+2 y=0,4 x+3 y-5=0$ and $3 x+y=0$.

(3)

Sol: Given equations are $x+2 y=0$

$$
\begin{align*}
& 4 x+3 y-5=0---(2) \tag{1}\\
& 3 x+y=0 \tag{3}
\end{align*}
$$

Solving (1) and (2), vertex $\mathrm{A}=(0,0)$
Solving (1) and (3),
Vertex B $(2,-1)$
Equation of $B C$ is $4 x+3 y-5=0$
$A B$ is perpendicular to $B C$ and passes through $A(0,0)$
Equation of $A B$ is $3 x-4 y=0$
BE is perpendicular to AC
\therefore Equation of BE is $\mathrm{x}-3 \mathrm{y}=\mathrm{k}$
BE passes through $\mathrm{B}(2,-1)$
$2+3=k \Rightarrow k=5$
Equation of BE is $x-3 y-5=0$
Solving (4) and (5),
\therefore Orthocentre is $\mathrm{O}(-4,-3)$
8. Find the circumference of the triangle whose sides are given by $x+y+2=0$, $5 x-y-2=0$ and $x-2 y+5=0$.
Sol: Given lines are $x+y+2=0$

Point of intersection of (1) and (2) is $\mathrm{A}=(0,-2)$
Point of intersection of (2) and (3) is $\mathrm{B}=(1,3)$
Point of intersection of (1) and (3) is $\mathrm{C}=(-3,1)$
Let $S=(\alpha, \beta)$ the orthocentre of $\triangle \mathrm{ABC}$ then $\mathrm{SA}=\mathrm{SB}=\mathrm{SC}$

$$
\begin{align*}
& \Rightarrow \mathrm{SA}^{2}=\mathrm{SB}^{2}=\mathrm{SC}^{2} \\
& \Rightarrow(\alpha-0)^{2}+(\beta+2)^{2}=(\alpha-1)^{2}+(\beta-3)^{2}=(\alpha+3)^{2}+(\beta-1)^{2} \\
& \Rightarrow \alpha^{2}+\beta^{2}+4 \beta+4=\alpha^{2}+\beta^{2}-2 \alpha-6 \beta+10=\alpha^{2}+\beta^{2}+6 \alpha-2 \beta+10 \\
& \mathrm{SA}^{2}=\mathrm{SB}^{2} \Rightarrow \alpha^{2}+\beta^{2}+4 \beta+4=\alpha^{2}+\beta^{2}-2 \alpha-6 \beta+10 \\
& \Rightarrow 2 \alpha+10 \beta-6=0 \Rightarrow \alpha+5 \beta-3=0 \tag{4}\\
& \mathrm{SA}^{2}=\mathrm{SC}^{2} \Rightarrow \alpha^{2}+\beta^{2}+4 \beta+4=\alpha^{2}+\beta^{2}+6 \alpha-2 \beta+10 \\
& \Rightarrow 6 \alpha-6 \beta+6=0 \Rightarrow \alpha-\beta+1=0 \tag{5}
\end{align*}
$$

From (4) and (5)

$\frac{\alpha}{5-3}=\frac{\beta}{-3-1}=\frac{1}{-1-5} \Rightarrow \frac{\alpha}{2}=\frac{\beta}{-4}=\frac{1}{-6}$
$\alpha=-\frac{2}{6}=-\frac{1}{3}$
$\beta=-\frac{4}{-6}=\frac{2}{3}$
\therefore Circumcentre $\mathrm{S}=\left(-\frac{1}{3}, \frac{2}{3}\right)$
9. Find the equation of the straight lines passing through $(1,1)$ and which are at a distance of 3 units from ($-2,3$).
Sol: let $A(1,1)$. Let m be the slope of the line.
Equation of the line is $\mathrm{y}-1=\mathrm{m}(\mathrm{x}-1)$
$\Rightarrow \mathrm{mx}-\mathrm{y}+(1-\mathrm{m})=0$

Give distance from $(-2,3)$ to $(1)=3$

$$
\begin{aligned}
& \Rightarrow \frac{|-2 \mathrm{~m}-3+1-\mathrm{m}|}{\sqrt{\mathrm{m}^{2}+1}}=3 \\
& \Rightarrow(3 \mathrm{~m}+2)^{2}=9\left(\mathrm{~m}^{2}+1\right) \\
& \Rightarrow 9 \mathrm{~m}^{2}+4+12 \mathrm{~m}=9 \mathrm{~m}^{2}+9 \\
& \Rightarrow 12 \mathrm{~m}=5 \Rightarrow \mathrm{~m}=\frac{5}{12}
\end{aligned}
$$

Co-efficient of $\mathrm{m}^{2}=0 \Rightarrow \mathrm{~m}=\infty$
Case i) $\mathrm{m}=\infty$
line is a vertical line
Equation of the vertical line passing through $\mathrm{A}(1,1)$ is $\mathrm{x}=1$
Case ii) $\mathrm{m}=\frac{5}{12}$, point $(1,1)$

Equation of the line is $y-1=\frac{5}{12}(x-1)=0$
$\Rightarrow \quad 5 \mathrm{x}-12 \mathrm{y}+7=0$
10. If \mathbf{p} and q are lengths of the perpendiculars from the origin to the straight lines $x \sec \alpha+y \operatorname{cosec} \alpha=a$ and $x \cos \alpha-y \sin \alpha=a \cos 2 \alpha$, prove that $4 p^{2}+q^{2}=a^{2}$.
Sol: Equation of AB is $\mathrm{x} \sec \alpha+\mathrm{y} \operatorname{cosec} \alpha=\mathrm{a}$

$$
\begin{align*}
& \frac{x}{\cos \alpha}+\frac{y}{\sin \alpha}=a \\
\Rightarrow & x \sin \alpha+y \cos \alpha=a \sin \alpha \cos \alpha \\
\Rightarrow & x \sin \alpha+y \cos \alpha-a \sin \alpha \cos \alpha=0 \\
p & =\text { length of the perpendicular from } O \text { to } A B=\frac{|0+0-a \sin \alpha \cos \alpha|}{\sqrt{\sin ^{2} \alpha+\cos ^{2} \alpha}} \\
& =a \sin \alpha \cdot \cos \alpha=a \cdot \frac{\sin 2 \alpha}{2} \\
\Rightarrow & 2 p=a \sin 2 \alpha \quad---(1) \tag{1}
\end{align*}
$$

Equation of CD is $\mathrm{x} \cos \alpha-\mathrm{y} \sin \alpha=\mathrm{a} \cos 2 \alpha$
$\Rightarrow \mathrm{x} \cos \alpha-\mathrm{y} \sin \alpha-\mathrm{a} \cos 2 \alpha=0$
$\mathrm{q}=$ Length of the perpendicular from O to CD $\frac{|0+0-a \cos 2 \alpha|}{\sqrt{\cos ^{2} \alpha+\sin ^{2} \alpha}}=\operatorname{a~cos} 2 \alpha$
Squaring and adding (1) and (2)
$4 p^{2}+q^{2}=a^{2} \sin ^{2} 2 \alpha+a^{2} \cos ^{2} 2 \alpha$
$=\mathrm{a}^{2}\left(\sin ^{2} 2 \alpha+\cos ^{2} 2 \alpha\right)=\mathrm{a}^{2} .1=\mathrm{a}^{2}$
11. Two adjacent sides of a parallelogram are given by $4 x+5 y=0$ and $7 x+2 y=0$ and one diagonal is $11 x+7 y=9$. Find the equations of the remaining sides and the other diagonal.
Sol: Let $4 x+5 y=0 \quad--(1)$ and

$$
7 x+2 y=0 \quad---(2) \text { respectively }
$$

denote the side $\overleftrightarrow{\mathrm{OA}}$ and $\overleftrightarrow{\mathrm{OB}}$ of the parallelogram OABC.
Equation of the diagonal $\overleftrightarrow{\mathrm{AB}}$ is $11 \mathrm{x}+7 \mathrm{y}-9=0$

Solving (1) and (2) vertex $O=(0,0)$
Solving (1) and (3), $\mathrm{A}=\left(\frac{5}{3},-\frac{4}{3}\right)$
Solving (2) and (3), $\mathrm{B}=\left(-\frac{2}{3}, \frac{7}{3}\right)$
Midpoint of AB is $\mathrm{P}\left(\frac{1}{2}, \frac{1}{2}\right)$. Slope of OP is 1
Equation to OC is $\mathrm{y}=(1) \mathrm{x} \Rightarrow \mathrm{x}-\mathrm{y}=0$
$\mathrm{x}=\mathrm{y}$.
Equation of AC is $4\left(x-\frac{5}{3}\right)+3\left(y+\frac{4}{3}\right)=0 \Rightarrow 4 x+5 y=9$
Equation of BC is $7\left(x+\frac{2}{3}\right)+2\left(y-\frac{7}{3}\right)=0 \Rightarrow 7 x+2 y=9$
12. Find the in centre of the triangle whose sides are given below.
i) $x+1=0,3 x-4 y=5$ and $5 x+12 y=27$
ii) $x+y-7=0, x-y+1=0$ and $x-3 y+5=0$

Sol: i) Sides are

$$
\begin{align*}
& x+1=0 \tag{1}\\
& 3 x-4 y-5=0 \tag{2}\\
& 5 x+12 y-27=0 \tag{3}
\end{align*}
$$

The point of intersection of (1), (2) is $\mathrm{A}=(-1,,-2)$
The point of intersection of (2), (3), $B=(3,1)$
The point of intersection of (3), (1) is $\mathrm{C}=\left(-1, \frac{8}{3}\right)$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{BC}=\sqrt{(3+1)^{2}+\left(1+\frac{8}{3}\right)^{2}}=\sqrt{16+\frac{25}{9}}=\sqrt{\frac{169}{9}}=\frac{13}{3} \\
& \mathrm{~b}=\mathrm{CA}=\sqrt{(-1+1)^{2}+\left(-2-\frac{8}{3}\right)^{2}}=\sqrt{0+\left(-\frac{14}{3}\right)^{2}}=\sqrt{\left(\frac{14}{3}\right)^{2}}=\frac{14}{3} \\
& c=\mathrm{AB}=\sqrt{(-1-3)^{2}+(-2-1)^{2}}=\sqrt{16+9}=5
\end{aligned}
$$

Incentre $=\mathrm{I}=$

$$
\begin{aligned}
& \left(\frac{\mathrm{ax}_{1}+\mathrm{bx}_{2}+\mathrm{cx}_{3}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}, \frac{\mathrm{ay}_{1}+\mathrm{by}_{2}+\mathrm{cy}_{3}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\right)=\left(\frac{\frac{13}{3}(-1)+\frac{14}{3}(3)+5(-1)}{\frac{13}{3}+\frac{14}{3}+5}, \frac{\frac{13}{3}(-2)+\frac{14}{3}(1)+5\left(\frac{8}{3}\right)}{\frac{13}{3}+\frac{14}{3}+5}\right) \\
& \quad=\left(\frac{14}{42}, \frac{28}{42}\right)=\left(\frac{1}{3}, \frac{2}{3}\right)
\end{aligned}
$$

$$
\therefore \text { Incentre }=\left(\frac{1}{3}, \frac{2}{3}\right)
$$

ii) Ans: $(3,1+\sqrt{5})$
13. A $\Delta^{l \mathrm{e}}$ is formed by the lines $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0, l \mathrm{x}+\mathrm{my}+\mathrm{n}=0$ and $\mathrm{px}+\mathrm{qy}+\mathrm{r}=0$. Given that the straight line $\frac{\mathrm{ax}+\mathrm{by}+\mathrm{c}}{\mathrm{ap}+\mathrm{bq}}=\frac{l \mathrm{x}+\mathrm{my}+\mathrm{n}}{l \mathrm{p}+\mathrm{mq}}$ passes through the orthocentre of the $\Delta^{l \mathrm{e}}$.

Sol:

(3)

Sides of the triangle are

$$
\begin{align*}
& \mathrm{ax}+\mathrm{by}+\mathrm{c}=0 \tag{1}\\
& l \mathrm{x}+\mathrm{my}+\mathrm{n}=0 \tag{2}\\
& \mathrm{px}+\mathrm{qy}+\mathrm{r}=0 \tag{3}
\end{align*}
$$

Equation of the line passing through intersecting points of (1), (2) is
$a x+b y+c+k(l x+m y+n)=0--(4)$
$(\mathrm{a}+\mathrm{k} l) \mathrm{x}+(\mathrm{b}+\mathrm{km}) \mathrm{y}+(\mathrm{c}+\mathrm{nk})=0$
If (4) is the altitude of the triangle then it is $\perp^{l \mathrm{r}}$ to (3),
$\mathrm{p}(\mathrm{a}+\mathrm{kl})+\mathrm{q}(\mathrm{b}+\mathrm{km})=0 \Rightarrow \mathrm{k}=-\frac{\mathrm{ap}+\mathrm{bq}}{\mathrm{lp}+\mathrm{mq}}$
From (4)
$(a x+b y+c)-\left(\frac{a p+b q}{l p+m q}\right)(l x+m y+n)=0$
$\therefore \frac{\mathrm{ax}+\mathrm{by}+\mathrm{c}}{\mathrm{ap}+\mathrm{bq}}=\frac{l \mathrm{x}+\mathrm{my}+\mathrm{n}}{l \mathrm{p}+\mathrm{mq}}$
is the required straight line equation which is passing through orthocenter. (it is altitude)
14. The Cartesian equations of the sides $\mathbf{B C}, \mathrm{CA}, \mathrm{AB}$ of a $\Delta^{\text {le }}$ are respectively $u_{1}=a_{1} x+b_{1} y+c_{1}=0, u_{2}=a_{2} x+b_{2} y+c_{2}=0$. and $u_{3}=a_{3} x+b_{3} y+c_{3}=0$. Show that the equation of the straight line through A Parallel to the side $\overline{\mathrm{BC}}$ is
$\frac{u_{3}}{a_{3} b_{1}-a_{1} b_{3}}=\frac{u_{2}}{a_{2} b_{1}-a_{1} b_{2}}$.

Sol: A is the point of intersecting of the lines $u_{2}=0$ and $u_{3}=0$
\therefore Equation to a line passing through A is

$$
\begin{align*}
& \mathrm{u}_{2}+\lambda \mathrm{u}_{3}=0 \Rightarrow\left(\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}\right)+\lambda\left(\mathrm{a}_{3} \mathrm{x}+\mathrm{b}_{3} \mathrm{y}+\mathrm{c}_{3}\right) \tag{1}\\
& \Rightarrow\left(\mathrm{a}_{2}+\lambda \mathrm{a}_{3}\right) \mathrm{x}+\left(\mathrm{b}_{2}+\lambda \mathrm{b}_{3}\right) \mathrm{y}+\left(\mathrm{c}_{2}+\lambda \mathrm{c}_{3}\right)=0
\end{align*}
$$

If this is parallel to $a_{1} x+b_{1} y+c_{1}=0$,

$$
\begin{aligned}
& \Rightarrow \frac{\left(\mathrm{a}_{2}+\lambda \mathrm{a}_{3}\right)}{\mathrm{a}_{1}}=\frac{\left(\mathrm{b}_{2}+\lambda \mathrm{b}_{3}\right)}{\mathrm{b}_{1}} \\
& \Rightarrow\left(\mathrm{a}_{2}+\lambda \mathrm{a}_{3}\right) \mathrm{b}_{1}=\left(\mathrm{b}_{1}+\lambda \mathrm{b}_{3}\right) \mathrm{a}_{1} \\
& \Rightarrow \mathrm{a}_{2} \mathrm{~b}_{1}+\lambda \mathrm{a}_{3} \mathrm{~b}_{1}=\mathrm{a}_{1} \mathrm{~b}_{2}+\lambda \mathrm{a}_{1} \mathrm{~b}_{3} \\
& \Rightarrow \lambda\left(\mathrm{a}_{3} \mathrm{~b}_{1}-\mathrm{a}_{1} \mathrm{~b}_{3}\right)=-\left(\mathrm{a}_{2} \mathrm{~b}_{1}-\mathrm{a}_{1} \mathrm{~b}_{2}\right) \\
& \Rightarrow \lambda=\frac{\left(\mathrm{a}_{2} \mathrm{~b}_{1}-\mathrm{a}_{1} \mathrm{~b}_{2}\right)}{\mathrm{a}_{3} \mathrm{~b}_{1}-\mathrm{a}_{1} \mathrm{~b}_{3}}
\end{aligned}
$$

Substituting this value of λ in (1), the required equation is

$$
\begin{aligned}
& \left(a_{2} x+b_{2} y+c_{2}\right)-\frac{\left(a_{2} b_{1}-a_{1} b_{2}\right)}{\left(a_{3} b_{1}-a_{1} b_{3}\right)}\left(a_{3} x+b_{3} y+c_{3}\right)=0 \\
& \Rightarrow\left(a_{3} b_{1}-a_{1} b_{3}\right)\left(a_{2} x+b_{2} y+c_{2}\right)-\left(a_{2} b_{1}-a_{1} b_{2}\right)\left(a_{3} x+b_{3} y+c_{3}\right)=0 \\
& \Rightarrow\left(a_{3} b_{1}-a_{1} b_{3}\right) u_{2}-\left(a_{2} b_{1}-a_{1} b_{2}\right) u_{3}=0 \\
& \Rightarrow\left(a_{3} b_{1}-a_{1} b_{3}\right) u_{2}=\left(a_{2} b_{1}-a_{1} b_{2}\right) u_{3} \\
& \Rightarrow \frac{u_{3}}{\left(a_{3} b_{1}-a_{1} b_{3}\right)}=\frac{u_{2}}{\left(a_{2} b_{1}-a_{1} b_{2}\right)} .
\end{aligned}
$$

PROBLEMS FOR PRACTICE

1. Find the equation of the straight line passing through the point $(2,3)$ and making non-zero intercepts on the axes of co-ordinates whose sum is zero.
2. Find the equation of the straight line passing through the points $\left(a t_{1}^{2}, 2 \mathrm{at}_{1}\right)$ and $\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right)$.
3. Find the equation of the straight line passing through the point $A(-1,3)$ and
i) parallel
ii) perpendicular to the straight line passing
through $B(2,-5)$ and $C(4,6)$.
4. Prove that the points $(1,11),(2,15)$ and $(-3,-5)$ are collinear and find the equation of the line containing them.
5. A straight line passing through $A(1,-2)$ makes an angle $\tan ^{-1} \frac{4}{3}$ with the positive direction of the X-axis in the anti clock-wise access. Find the points on the straight line whose distance from \mathbf{A} is ± 5 units.
Sol:

Given $\alpha=\tan ^{-1} \frac{4}{3} \Rightarrow \tan \alpha=\frac{4}{3}$

$\cos \alpha=\frac{3}{5}, \sin \alpha=\frac{4}{5}$
$\left(x_{1}, y_{1}\right)=(1,-2)=x_{1}=1, y_{1}=-2$
Case i): $r=5$

$$
\begin{aligned}
& x=x_{1}+r \cos \alpha=1+5 \cdot \frac{4}{3}=1+4=5 \\
& y=y_{1}+r \sin \alpha=-2+5 \cdot \frac{3}{5}=-2+3=1
\end{aligned}
$$

Co-ordinate of B are $(5,1)$

Case ii):
$x=x_{1}+r \cos \alpha=1-5 \cdot \frac{4}{5}=1-4=-3$
$y=y_{1}+r \sin \alpha=-2-5 \cdot \frac{3}{4}=-2-3=-5$
Co-ordinate of C are $(-3,-5)$
6. A straight line parallel to the line $y=\sqrt{3} x$ passes through $Q(2,3)$ and cuts the line $2 x+4 y-27=0$ at \mathbf{P}. Find the length of $\mathbf{P Q}$.
Sol: PQ is parallel to the straight line $\mathrm{y}=\sqrt{3} \mathrm{x}$
$\tan \alpha=\sqrt{3}=\tan 60^{\circ}$
$\alpha=60^{\circ}$
$\mathrm{Q}(2,3)$ is a given point

Co-ordinates of any point P are
$\left(x_{1}+r \cos \alpha y_{1}+r \sin \alpha\right)=\left(2+r \cos 60^{\circ}, 3+r \sin 60^{\circ}\right)$
$=P\left(2+\frac{r}{2}, 3+\frac{\sqrt{3}}{2} r\right)$
P is a point on the line $2 x+4 y-27=0$
$\Rightarrow 2\left(2+\frac{\mathrm{r}}{2}\right)+4\left(3+\frac{\sqrt{3}}{2} \mathrm{r}\right)-27=0$
$\Rightarrow 4+\mathrm{r}+12+2 \sqrt{3} \mathrm{r}-27=0$
$\Rightarrow \mathrm{r}(2 \sqrt{3}+1)=27-16=11$
$\Rightarrow \mathrm{r}=\frac{11}{2 \sqrt{3}+1} \cdot \frac{2 \sqrt{3}-1}{2 \sqrt{3}-1}=\frac{11(2 \sqrt{3}-1)}{11}$
7. Transform the equation $3 x+4 y+12=0$ into
i) slope - intercept form
ii) intercept form and
iii) normal form
8. If the area of the triangle formed by the straight line $x=0, y=0$ and $3 x+4 y=a(a>0)$, find the value of a.
9. Find the value of \mathbf{k}, if the lines $2 x-3 y+k=0,3 x-4 y-13=0$ and $8 x-11 y-33=0$ are concurrent.
10. If the straight lines $a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0$ are concurrent, then prove that $\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}=3 \mathrm{abc}$.
Sol: The equations of the given lines are $a x+b y+c=0$

$$
\begin{align*}
& b x+c y+a=0 \tag{2}\\
& c x+a y+b=0 \tag{3}
\end{align*}
$$

Solving (1) and (2) points of intersection is got by

Point of intersection is $\left(\frac{a b-c^{2}}{c a-b^{2}}, \frac{b c-a^{2}}{c a-b^{2}}\right)$
$c\left(\frac{a b-c^{2}}{c a-b^{2}}\right)+a\left(\frac{b c-a^{2}}{c a-b^{2}}\right)+b=0$
$c\left(a b-c^{2}\right)+a\left(b c-a^{2}\right)+b\left(c a-b^{2}\right)=0$
$a b c-c^{3}+a b c-a^{3}+a b c-b^{3}=0$
$\therefore \mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}=3 \mathrm{abc}$.
11. A variable straight line drawn through the point of intersection of the straight lines $\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}=1$ and $\frac{\mathrm{x}}{\mathrm{b}}+\frac{\mathrm{y}}{\mathrm{a}}=1$ meets the co-ordinate axes at A and B. Show that the locus the mid point of $\overline{A B}$ is $2(a+b) x y=a b(x+y)$.

Sol: Equations of the given lines are $\frac{x}{a}+\frac{y}{b}=1$
and $\frac{\mathrm{x}}{\mathrm{b}}+\frac{\mathrm{y}}{\mathrm{a}}=1$
Solving the point of intersection $\mathrm{P}\left(\frac{\mathrm{ab}}{\mathrm{a}+\mathrm{b}}, \frac{\mathrm{ab}}{\mathrm{a}+\mathrm{b}}\right)$
$\mathrm{Q}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ is any point on the locus
\Leftrightarrow The line with x -intercept $2 \mathrm{x}_{0}$, y -intercept $2 \mathrm{y}_{0}$, passes through P
$\Leftrightarrow P$ lies on the straight line $\frac{x}{2 x_{0}}+\frac{y}{2 y_{0}}=1$
i.e., $\frac{a b}{a+b}\left(\frac{1}{2 x_{0}}+\frac{1}{2 y_{0}}\right)=1$
$\Rightarrow \frac{a b}{a+b} \cdot \frac{x_{0}+y_{0}}{2 x_{0} y_{0}}=0$
$a b\left(x_{0}+y_{0}\right)=2(a+b) x_{0} y_{0}$
$\mathrm{Q}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ lies on the curve $2(\mathrm{a}+\mathrm{b}) \mathrm{xy}=\mathrm{ab}(\mathrm{x}+\mathrm{y})$
Locks the midpoint of $A B$ is $2(a+b) x y=a b(x+y)$.
12. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are in arithmetic progression, then show that the equation $a x+b y+c=0$ represents a family of concurrent lines and find the point of concurrency.
13. Find the value of \mathbf{k}, if the angle between the straight lines $4 x-y+7$ and $\mathrm{kx}-5 \mathrm{y}+9=0$ is 45°.
14. Find the equation of the straight line passing through $\left(x_{0}, y_{0}\right)$ and
i) parallel
ii) perpendicular to the straight line $a x+b y+c=0$.
15. Find the equation of the straight line perpendicular to the line $5 x-2 y=7$ and passing through the point of intersection of the lines $2 x+3 y=1$ and $3 x+4 y=6$.
16. If $2 x-3 y-5=0$ is the perpendicular bisectors of the line segment joining (3-4) and (α, β) find $\alpha+\beta$.
17. If the four straight lines $a x+b y+p=0, a x+b y+q=0, c x+d y+r=0$ and $c x+d y+s=0$ form a parallelogram, show that the area of the parallelogram bc formed is.
$\left|\frac{(\mathrm{p}-\mathrm{q})(\mathrm{r}-\mathrm{s})}{\mathrm{bc}-\mathrm{ad}}\right|$
18. Find the orthocentre of the triangle whose vertices are $(-5,-7)(13,2)$ and $(-5,6)$.
19. If the equations of the sides of a triangle are $7 x+y-10=0, x-2 y+5=0$ and $x+y+2=0$, find the orthocentre of the triangle.
20. Find the circumcentre of the triangle whose vertices are $(1,3),(-3,5)$ and $(5,-1)$.
21. Find the circumcentre of the triangle whose sides are $3 x-y-5=0, x+2 y-4=0$ and $5 \mathrm{x}+3 \mathrm{y}+1=0$.

Sol: Let the given equations $3 x-y-5=0, x+2 y-4=0$ and $5 x+3 y+1=0$ represents the sides $\overleftrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{CA}}$ and $\overrightarrow{\mathrm{AB}}$ respectively of $\triangle \mathrm{ABC}$. Solving the above equations two by two, we obtain the vertices $A(-2,3), B(1,-2)$ and $(2,1)$ of the given triangle.
The midpoints of the sides $\overline{\mathrm{BC}}$ and $\overline{\mathrm{CA}}$ are respectively $\mathrm{D}=\left(\frac{3}{2}, \frac{-1}{2}\right)$ and $\mathrm{E}=(0,2)$.
22. Let ' O ' be any point in the plane of $\triangle \mathrm{ABC}$ such that O does not lie on any side of the triangle. If the line joining O to the vertices A, B, C meet the opposite sides in D, E, F respectively, then prove that $\frac{\mathrm{BD}}{\mathrm{DC}} \times \frac{\mathrm{CE}}{\mathrm{EA}} \times \frac{\mathrm{AF}}{\mathrm{FB}}=1$ (Ceva's Theorem)
Sol: Without loss of generality take the point P as origin O . Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ be the vertices. Slope of AP is $\frac{y_{1}-0}{x_{1}-0}=\frac{y_{1}}{x_{1}}$

A

E
F

B D C
Equation of AP is $y-0=\frac{y_{1}}{x_{1}}(x-0)$
$\Rightarrow \mathrm{yx}_{1}=\mathrm{xy}_{1} \Rightarrow \mathrm{xy}_{1}-\mathrm{yx}_{1}=0$
$\therefore \frac{B D}{D C}=\frac{-\left(\mathrm{x}_{2} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{2}\right)}{\mathrm{x}_{3} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{3}}=\frac{\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{1}}{\mathrm{x}_{3} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{3}}$
Slope of $\overleftrightarrow{B P}$ is $\frac{y_{2}-0}{x_{2}-0}=\frac{y_{2}}{x_{2}}$
Equation of $\overleftrightarrow{\mathrm{BP}}$ is $\mathrm{y}-0=\frac{\mathrm{y}_{2}}{\mathrm{x}_{2}}(\mathrm{x}-0)$
$\Rightarrow \mathrm{x}_{2} \mathrm{y}=\mathrm{y}_{2} \mathrm{x} \Rightarrow \mathrm{xy}_{2}-\mathrm{x}_{2} \mathrm{y}=0$
$\therefore \frac{C E}{E A}=\frac{-\left(\mathrm{x}_{3} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{3}\right)}{\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{1}}=\frac{\mathrm{x}_{2} \mathrm{y}_{3}-\mathrm{x}_{3} \mathrm{y}_{2}}{\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{1}}$
Slope of $\overleftrightarrow{C P}=\frac{y_{3}-0}{x_{3}-0}=\frac{y_{3}}{x_{3}}$
Equation of $\overleftrightarrow{\mathrm{CP}}$ is $\mathrm{y}-0=\frac{\mathrm{y}_{3}}{\mathrm{x}_{3}}(\mathrm{x}-0)$
$\Rightarrow x_{3} y=x y_{3} \Rightarrow x y_{3}-x_{3} y=0$
$\therefore \frac{A F}{F B}=\frac{\left(\mathrm{x}_{1} \mathrm{y}_{3}-\mathrm{x}_{3} \mathrm{y}_{1}\right)}{\mathrm{x}_{2} \mathrm{y}_{3}-\mathrm{x}_{3} \mathrm{y}_{2}}=\frac{\mathrm{x}_{3} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{3}}{\mathrm{x}_{2} \mathrm{y}_{3}-\mathrm{x}_{3} \mathrm{y}_{2}}$
$\therefore \frac{\mathrm{BD}}{\mathrm{DC}} \cdot \frac{\mathrm{CE}}{\mathrm{EA}} \cdot \frac{\mathrm{AF}}{\mathrm{FB}}$
$\frac{x_{1} y_{2}-x_{2} y_{1}}{x_{3} y_{1}-x_{1} y_{3}} \cdot \frac{x_{2} y_{3}-x_{3} y_{2}}{x_{1} y_{2}-x_{2} y_{1}} \cdot \frac{x_{3} y_{1}-x_{1} y_{3}}{x_{2} y_{3}-x_{3} y_{2}}=1$
23. If a transversal cuts the side $\overleftrightarrow{B C}, \overleftrightarrow{C A}$ and $\overleftrightarrow{A B}$ of $\triangle \mathrm{ABC}$ in \mathbf{D}, \mathbf{E} and \mathbf{F} respectively. Then prove that $\frac{\mathrm{BD}}{\mathrm{DC}} \times \frac{\mathrm{CE}}{\mathrm{EA}} \times \frac{\mathrm{AF}}{\mathrm{FB}}=1$. (Meneclau's Theorem)
Sol:

Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$
Let the transversal be $a x+b y+c=0$
$\frac{B D}{D C}=$ The ratio in which $a x+b y+c=0$
divides.
$\overline{\mathrm{BC}}=\frac{-\left(\mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{c}\right)}{\mathrm{ax}_{3}+\mathrm{by}_{3}+\mathrm{c}}$
$\frac{C E}{E A}=$ The ratio in which $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
divides.
$\overline{\mathrm{CA}}=\frac{-\left(\mathrm{ax}_{3}+\mathrm{by}_{3}+\mathrm{c}\right)}{\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{c}}$
$\frac{\mathrm{AF}}{\mathrm{FB}}=$ The ratio in which $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ divides.
$\overline{\mathrm{AB}}=\frac{-\left(\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{c}\right)}{\mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{c}}$
$\therefore \frac{\mathrm{BD}}{\mathrm{DC}} \cdot \frac{\mathrm{CE}}{\mathrm{EA}} \cdot \frac{\mathrm{AF}}{\mathrm{FB}}=-1$
24. Find the incentre of the triangle formed by straight lines $y=\sqrt{3} x, y=-\sqrt{3} x$ and $y=3$.
Sol:

The straight lines $y=\sqrt{3} x$ and $y=-\sqrt{3} x$ respectively make angles 60° and 120° with the positive directions of X-axis.
Since $y=3$ is a horizontal line, the triangle formed by the three given lines is equilateral.
So in-centre is same and centriod.
Vertices of the triangle and $(0,0), \mathrm{A}(\sqrt{3}, 3)$ and $\mathrm{D}(-\sqrt{3}, 3)$
\therefore Incentre is $\left(\frac{\mathrm{o}+\sqrt{3}-\sqrt{3}}{3}, \frac{0+3+3}{3}\right)$
$=(0,2)$.

