CONTINUITY

CONTINUITY AT A POINT

Let f be a function defined in a neighbourhood of a point a. Then f is said to be continuous at the point a if and only if $\underset{x \rightarrow a}{\operatorname{Lt}} f(x)=f(a)$.

In other words, f is continuous at a iff the limit of f at a is equal to the value of f at a .

NOTE:

1.If f is not continuous at a it is said to be discontinuous at a, and a is called a point of discontinuity of f.
2. Let f be a function defined in a nbd of a point a. Then f is said to be
(i) Left continuous at a iff $\underset{x \rightarrow a-}{L t} f(x)=f(a)$.
(ii) Right continuous at a iff $\underset{x \rightarrow a+}{L t} f(x)=f(a)$.
3. f is continuous at a iff f is both left continuous and right continuous at a

$$
\text { i.e, } \underset{x \rightarrow a}{\operatorname{Lt}} f(x)=f(a) \Leftrightarrow \underset{x \rightarrow a-}{\operatorname{Lt}} f(x)=f(a)={\underset{x \rightarrow a+}{\operatorname{Lt}} f(x), ~}_{x}
$$

CONTINUITY OF A FUNCTION OVER AN INTERVAL

I) A function f defined on (a, b) is said to be continuous (a, b) if it is continuous at everypoint of (a, b) i.e., if $\underset{x \rightarrow c}{\operatorname{Lt}} f(x)=f(c) \forall c \in(a, b)$
II) A function f defined on $[a, b]$ is said to be continuous on $[a, b]$ if
(i) f is continuous on (a, b) i.e., $\underset{x \rightarrow c}{\operatorname{Lt}} f(x)=f(c) \forall c \in(a, b)$
(ii) f is right continuous at a i.e., $\underset{x \rightarrow a+}{\boldsymbol{L t}} \boldsymbol{f}(x)=f(a)$
(iii) f is left continuous at b i.e., $\underset{x \rightarrow b-}{\boldsymbol{L} t} \boldsymbol{f}(\boldsymbol{x})=f(\boldsymbol{b})$.

NOTE :

1. Let the functions f and g be continuous at a and $k \notin R$. Then $f+g, f-g, k f, k f+l g$, f.g are continuous at a and $\frac{f}{g}$ is continuous at a provided $g(a) \neq 0$.
2. All trigonometric functions, Inverse trigonometric functions, hyperbolic functions and inverse hyperbolic functions are continuous in their domains of definition.
3. A constant function is continuous on R
4. The identity function is continuous on R.
5. Every polynomial function is continuous on R.

EXERCISE - 8 (e)

I.

1. Is the function \mathbf{f} defined by $f(x)=\left\{\begin{array}{cll}x^{2} & \text { if } & x \leq 1 \\ x & \text { if } & x>1\end{array}\right.$ Continuous on \mathbf{R} ?

Sol : $\underset{x \rightarrow 1-}{\operatorname{Lt}} f(x)=\underset{x \rightarrow 1-}{\operatorname{Lt}} x^{2}=1^{2}=1$

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow 1+}^{\operatorname{Lt}} f(x)=\underset{x \rightarrow 1+}{\operatorname{Lt}} x=1 \\
& \therefore \operatorname{Lt}_{x \rightarrow 1-}^{\operatorname{Lt}} f(x)=\underset{x \rightarrow 1+}{\operatorname{Lt}} f(x)=1 \text { and } f(1)=1^{2}=1 \\
& \operatorname{Lt}_{x \rightarrow 1}^{\operatorname{Lt}} f(x)=f(1)
\end{aligned}
$$

f is continuous $x=1$

Hence f is continuous on R.
2. Is \mathbf{f} defined by $f(x)=\left\{\begin{array}{cll}\frac{\sin 2 x}{x} & \text { if } & x \neq 0 \\ 1 & \text { if } & x=0\end{array}\right.$ Continuous at 0 ?

Sol : $\underset{x \rightarrow 0}{\operatorname{Lt}} f(x)=\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sin 2 x}{x}=2$ But $f(0)=1$

$$
\therefore \operatorname{Lt}_{x \rightarrow 0} f(x) \neq f(0)
$$

Hence f is not continuous at 0
3. Show that the function $f(x)=\left[\cos \left(x^{10}+1\right)\right]^{1 / 3}, x \in R$ is a continuous functions.

Sol : We know that $\cos x$ continuous for every $x \in R$
\therefore The given function $f(x)$ is continuous for every $x \in R$
II.

1. Check the continuity of the following function at $\mathbf{2}$ for the function

$$
f(x)=\left\{\begin{array}{ccc}
\frac{1}{2}\left(x^{2}-4\right) & \text { if } & 0<x<2 \\
2-8 x^{-3} & \text { if } & x>2
\end{array}\right.
$$

Sol : $\quad l . l=\underset{x \rightarrow 2-}{\operatorname{Lt}} f(x)=\underset{x \rightarrow 2-}{L t} \frac{1}{2}\left(x^{2}-4\right)=\frac{1}{2}(4-4)=0$

$$
\begin{aligned}
& R . L=\underset{x \rightarrow 2+}{L t} f(x)=\underset{x \rightarrow 2+}{\operatorname{Lt}}\left(2-\frac{8}{x^{3}}\right)=2 \frac{-8}{8}=2-1=1 \\
& \underset{x \rightarrow 2-}{L t} f(x) \neq \underset{x \rightarrow 2+}{L t} f(x) \\
& \therefore \underset{x \rightarrow 2}{\operatorname{Lt}} f(x) \text { does not exist }
\end{aligned}
$$

Hence $f(x)$ is not continuous at 2 .
2. Check the continuity of \mathbf{f} given by $f(x)=\left\{\begin{array}{ccc}\frac{x^{2}-9}{x^{2}-2 x-3} & \text { if } & 0<x<5 \text { and } x \neq 3 \\ 1.5 & \text { if } & x=3\end{array}\right.$ At the point 3.

Sol : Given $f(3)=1.5$.

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow 3} f(x)=\operatorname{Lt}_{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-2 x-3} \\
& =\operatorname{Lt}_{x \rightarrow 3} \frac{(x-3)(x+3)}{(x-3)(x+1)}=\frac{3+3}{3+1}=\frac{6}{4}=1.5=f(3)
\end{aligned}
$$

$\therefore f(x)$ is continuous at $x=3$.
3. Show that \mathbf{f}, given by $f(x)=\frac{x-|x|}{x}(x \neq 0)$ is continuous on $R-\{0\}$.

Sol :

Left limit at $\mathrm{x}=0$ is $\underset{x \rightarrow 0^{-}}{\operatorname{Lt}} f(x)=\underset{x \rightarrow 0^{-}}{\operatorname{Lt}} 2=2$

> Right limit at $\mathrm{x}=0$ is $\underset{x \rightarrow 0^{+}}{\operatorname{Lt}} f(x)=\underset{x \rightarrow 0^{+}}{\operatorname{Lt}} 0=0$
> $\underset{x \rightarrow 0-}{\operatorname{Lt}} f(x) \neq \underset{x \rightarrow 0^{+}}{\operatorname{Lt}} f(x) \quad \therefore \underset{x \rightarrow 0}{\operatorname{Lt}} f(x)$ does not exist.

Hence the function is not continuous at $\mathrm{x}=0$.

When $\mathrm{x}<0, \mathrm{f}(\mathrm{x})=2$, a constant. And it is continuous for all $\mathrm{x}<0$.

When $x>0, f(x)=0$, which is continuos for all $x>0$.

Hence the function is continuous on $\mathrm{R}-\{0\}$.
4. If f is a function defined by $f(x)=\left\{\begin{array}{ccc}\frac{x-1}{\sqrt{x}-1} & \text { if } & x>1 \\ 5-3 x & \text { if } & -2 \leq x \leq 1 \text { then discuss the } \\ \frac{6}{x-10} & \text { if } & x<-2\end{array}\right.$

continuity of f

Sol: Case (i) continuity at $x=1$

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow 1+}^{\operatorname{Lt}} f(x)={\underset{x t}{x \rightarrow 1+}}_{\operatorname{Lt}} \frac{x-1}{\sqrt{x}-1}=\underset{x \rightarrow 1+}{\operatorname{Lt}} \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}=\underset{x \rightarrow 1+}{\operatorname{Lt}} \sqrt{x-1}=\sqrt{1-1}=0 \\
& \operatorname{Lt}_{x \rightarrow 1^{-}}^{\operatorname{Lt}} f(x)=\underset{x \rightarrow 1^{-}}{\operatorname{Lt}}(5-3 x)=5-3=2 \\
& \therefore \operatorname{Lt}_{x \rightarrow 1^{-}}^{\operatorname{Lt}} f(x) \neq \underset{x \rightarrow 1^{+}}{\operatorname{Lt}} f(x) . \quad \text { Hence } \mathrm{f} \text { is not continuous at } \mathrm{x}=1
\end{aligned}
$$

Case (ii) continuity at $x=-2$

$$
\begin{aligned}
& \underset{x \rightarrow-2-}{L t^{2}} f(x)={\underset{x \rightarrow-2-}{L t}}^{L-10}=\frac{6}{-2-10}=\frac{-6}{12}=\frac{-1}{2} \\
& \underset{x \rightarrow-2+}{\operatorname{Lt}} f(x)={\underset{x \rightarrow-2+}{L t}}^{L t}(5-3 x)=5-3(-2)=5+6=11 \\
& \therefore \underset{x \rightarrow-2-}{\operatorname{Lt}} f(x) \neq \underset{x \rightarrow-2+}{L t} f(x)
\end{aligned}
$$

Hence $f(x)$ is not continuous at $x=-2$.
5. If \mathbf{f} is given by $f(x)=\left\{\begin{array}{cll}k^{2} x-k & \text { if } & x \geq 1 \\ 2 & \text { if } & x<1\end{array}\right.$ is a continuous function on \mathbf{R}, then find the values of k .

Sol : $\underset{x \rightarrow 1-}{L t} f(x)=\underset{x \rightarrow 1-}{L t} 2=2$

$$
\begin{aligned}
& \underset{x \rightarrow 1+}{\operatorname{Lt}} f(x)=\underset{x \rightarrow 1+}{\operatorname{Lt}}\left(k x^{2}-k\right)=k^{2}-k \text { Given } f(x) \text { is continuous at } x=0 \\
& \underset{x \rightarrow 1^{-}}{\operatorname{Lt}} f(x)=\underset{x \rightarrow 1+}{\operatorname{Lt}} f(x) \quad 2=k^{2}-k
\end{aligned}
$$

GIVEN f is continuous on R , hence it is continuous at $\mathrm{x}=1$.
Therefore L.L =R.L
$\Rightarrow k^{2}-k-2=0$
$\Rightarrow(k-2)(k+1)=0 \Rightarrow k=2$ or -1
6. Prove that the functions ' $\sin x^{\prime}$ ' and ' $\cos x^{\prime}$ are continuous on \mathbf{R}.

Sol : i) Let $a \in R$

$$
\operatorname{Lt}_{x \rightarrow a}^{L t} f(x)=\underset{x \rightarrow a}{L t} \sin x=\sin a=f(a)
$$

$\therefore f$ is continuous at a.
ii) Let $a \in R$

$$
\operatorname{Lt}_{x \rightarrow a} f(x) \underset{x \rightarrow a}{L t} \cos x-\cos a=f(a)
$$

$\therefore \mathrm{f}$ is continuous at a.
III.

1 Check the continuity of ' \mathbf{f} ' given by $f(x)=\left\{\begin{array}{ccc}4-x^{2} & \text { if } & x \leq 0 \\ x-5 & \text { if } & 0<x \leq 1 \\ 4 x^{2}-9 & \text { if } & 1<x<2 \\ 3 x+4 & \text { if } & x \geq 2\end{array}\right.$ at the points $\mathbf{0}$,

1 and 2.

Ans: f is continuous at $x=0,1,2$
2. Find real constant a, b so that the function f given by

$$
f(x)=\left\{\begin{array}{ccc}
\sin x & \text { if } & x \leq 0 \\
x^{2}+a & \text { if } & 0<x<1 \\
b x+3 & \text { if } & 1 \leq x \leq 3 \\
-3 & \text { if } & x>3
\end{array} \text { is continuous on } \mathbf{R} .\right.
$$

Sol : Given $f(x)$ is continuous on R, hence it is continuous at $0,1,3$.

At $x=0$.
$\underset{x \rightarrow 0+}{\operatorname{Lt}} f(x)=\operatorname{Lt}_{x \rightarrow 0}\left(x^{2}+a\right)=0+a=a$
$\underset{x \rightarrow 0-}{L t} f(x)=\underset{x \rightarrow 0}{L t} \sin x=0$

Since $f(x)$ is continuous at $\mathrm{x}=0$,
. L.L = R.L $\rightarrow \mathrm{a}=0$.

At $x=3$
$\mathrm{R} . \mathrm{L}=\underset{x \rightarrow 3+}{\operatorname{Lt}} f(x)=\underset{x \rightarrow 3}{L t}-3=-3$
$\mathrm{L} . \mathrm{L}=\underset{x \rightarrow 3-}{\operatorname{Lt}} f(x)=\underset{x \rightarrow 3}{\operatorname{Lt}}(b x+3)=3 b+3$

Since $f(x)$ is continuous AT X=3,L.L=R.L

$$
\Rightarrow 3 b+3=-3 \Rightarrow 3 b=-6 \Rightarrow b=-2
$$

3. Show that $f(x)\left\{\begin{array}{cll}\frac{\cos a x-\cos b x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2}\left(b^{2}-a^{2}\right) & \text { if } x=0\end{array}\right.$

Where a and b are real constant, is continuous at 0 .

Sol : $\underset{x \rightarrow 0}{\operatorname{Lt}} f(x)=\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\cos a x-\cos b x}{x^{2}}$

$$
=\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{2 \sin \frac{(a+b) x}{x} \sin \frac{(b-a) x}{2}}{x^{2}}
$$

$$
=2 \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sin (a+b) \frac{x}{2}}{x} \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sin (b-a) \frac{x}{2}}{x}
$$

$$
=\frac{2(b+a)}{2} \frac{(b-a)}{2}=\frac{b^{2}-a^{2}}{2}
$$

Given $f(0)=\frac{b^{2}-a^{2}}{2} . \quad \therefore \operatorname{Lt}_{x \rightarrow 0} f(x)=f(0)$
$\therefore f(x)$ is continuous at $x=0$

PROBLEMS FOR PRACTICE

1. If \mathbf{f} is given by $f(x)=\left\{\begin{array}{clc}a x-b & \text { if } & x \leq-1 \\ 3 x^{2}-4 a x+2 b & \text { if } & -1<x<1 \text { a continuous function is } \mathbf{o n} \mathbf{R}, \\ 10 & \text { if } & x \geq 1\end{array}\right.$ then find the values of a, b.
2. Check the continuity of the function f given below at $\mathbf{1}$ and at $\mathbf{2}$.

$$
f(x)=\left\{\begin{array}{ccc}
x+1 & \text { if } & x \leq 1 \\
2 x & \text { if } & 1<x>2 \\
1+x^{2} & \text { if } & x \geq 2
\end{array}\right.
$$

3. Show that $f(x)=(x)(x \in R$ is continuous at only those real numbers that are not integers.

Sol : Case i) if $a \in z, f(a)=(a)=a$

$$
\begin{aligned}
& \underset{x \rightarrow a-}{L t} f(x)=\underset{h \rightarrow 0}{L t}(a-h)=a+ \\
& \underset{x \rightarrow a+}{L t} f(x)={ }_{h \rightarrow 0}^{L t}(a-h)=a \\
& \therefore \underset{x \rightarrow a-}{L t} f(x) \neq \underset{x \rightarrow a+}{L t} f(x) \\
& \underset{x \rightarrow a}{L t} f(x) \text { does not exist }
\end{aligned}
$$

$\therefore \mathrm{f}$ is not continuous at $x=a \in z$.

Case ii) : if $a \notin z$, then $\exists n \in z$ such that $n<a<n+1$ then $f(a)=(a)=n$.

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow a-}^{\operatorname{Lt}} f(x)=\underset{h \rightarrow 0}{L t}(a-h)=n, \\
& \operatorname{Lt}_{x \rightarrow a+}^{L t} f(x)=\underset{h \rightarrow 0}{L t}(a+h)=n,
\end{aligned}
$$

$\therefore \underset{x \rightarrow a}{\operatorname{Lt}} f(x)=n=f(a)$
$\therefore f(x)$ is continuous at $x=a \notin z$.
4. If $f: R \rightarrow R$ is such that $f(x+y)=f(x)+f(y)$ for all $x, y \in R$ then \mathbf{f} is continuous on R if it is continuous at a single point in R.

Sol : Let f be continuous at $x_{0} \in R$

$$
\begin{aligned}
& \operatorname{Lt}_{t \rightarrow x_{0}} f(t)=f\left(x_{0}\right) \underset{h \rightarrow 0}{\operatorname{Lt}} f\left(x_{0}+h\right)=f\left(x_{0}\right) x \in R, f\left(x_{0}\right) \\
& \Rightarrow f(x+h)-f(x)=f(h)=f\left(x_{0}+h\right)-f\left(x_{0}\right) \underset{h \rightarrow 0}{\operatorname{Lt}}\{f(x+h)-f(x)\} \\
& =\underset{h \rightarrow 0}{\operatorname{Lt}}\left\{f\left(x_{0}+h\right)-f\left(x_{0}\right)\right\}=0
\end{aligned}
$$

$\therefore \mathrm{f}$ is continuous at x .
Since $x \in R$ is arbitrary, f is continuous on R .

