PAIR OF LINES-SECOND DEGREE GENERAL EQUATION

THEOREM

If the equation $S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of straight lines then
i) $\Delta \equiv a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$ and (ii) $h^{2} \geq a b, g^{2} \geq a c, f^{2} \geq b c$

Proof:

Let the equation $\mathrm{S}=0$ represent the two lines $l_{1} x+m_{1} y+n_{1}=0$ and $l_{2} x+m_{2} y+n_{2}=0$.
Then

$$
\begin{aligned}
& a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c \\
& \equiv\left(l_{1} x+m_{1} y+n_{1}\right)\left(l_{2} x+m_{2} y+n_{2}\right)=0
\end{aligned}
$$

Equating the co-efficients of like terms, we get
$l_{1} l_{2}=a, l_{1} m_{2}+l_{2} m_{1}=2 h, \mathrm{~m}_{1} \mathrm{~m}_{2}=\mathrm{b}$, and $l_{1} n_{2}+l_{2} n_{1}=2 g, m_{1} n_{2}+m_{2} n_{1}=2 f, n_{1} n_{2}=c$
(i) Consider the product $(2 h)(2 g)(2 f)$
$=\left(l_{1} m_{2}+l_{2} m_{1}\right)\left(l_{1} n_{2}+l_{2} n_{1}\right)\left(m_{1} n_{2}+m_{2} n_{1}\right)$
$=l_{1} l_{2}\left(m_{1}^{2} n_{2}^{2}+m_{2}^{2} n_{1}^{2}\right)+m_{1} m_{2}\left(l_{1}^{2} n_{2}^{2}+l_{2}^{2} n_{1}^{2}\right)+n_{1} n_{2}\left(l_{1}^{2} m_{2}^{2}+l_{2}^{2} m_{1}^{2}\right)+2 l_{1} l_{2} m_{1} m_{2} n_{1} n_{2}$
$=l_{1} l_{2}\left[\left(m_{1} n_{2}+m_{2} n_{1}\right)^{2}-2 m_{1} m_{2} n_{1} n_{2}\right]+m_{1} m_{2}\left[\left(l_{1} n_{2}+l_{2} n_{1}\right)^{2}-2 l_{1} l_{2} n_{1} n_{2}\right]$
$+n_{1} n_{2}\left[\left(l_{1} m_{2}+l_{2} m_{1}\right)^{2}-2 l_{1} l_{2} m_{1} m_{2}\right]+2 l_{1} l_{2} m_{1} m_{2} n_{1} n_{2}$
$=a\left(4 f^{2}-2 b c\right)+b\left(4 g^{2}-2 a c\right)+c\left(4 h^{2}-2 a b\right)$
$8 f g h=4\left[a f^{2}+b g^{2}+c h^{2}-a b c\right]$
$\therefore a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$
ii) $h^{2}-a b=\left(\frac{l_{1} m_{2}+l_{2} m_{1}}{2}\right)^{2}-l_{1} l_{2} m_{1} m_{2}=\frac{\left(l_{1} m_{2}+l_{2} m_{1}\right)^{2}-4-l_{1} l_{2} m_{1} m_{2}}{4}$

$$
=\frac{\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}}{4} \geq 0
$$

Similarly we can prove $g^{2} \geq a c$ and $f^{2} \geq b c$

NOTE :
If $\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0, \boldsymbol{h}^{\mathbf{2}} \geq \boldsymbol{a} \boldsymbol{b}, \boldsymbol{g}^{\mathbf{2}} \geq \boldsymbol{a} \boldsymbol{c}$ and $\boldsymbol{f}^{\mathbf{2}} \geq \boldsymbol{b} \boldsymbol{c}$, then the equation $S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of straight lines

CONDITIONS FOR PARALLEL LINES-DISTANCE BETWEEN THEM

THEOREM

If $S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of parallel lines then $h^{2}=a b$ and $b g^{2}=a f^{2}$. Also the distance between the two parallel lines is $2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}$ (or) $2 \sqrt{\frac{f^{2}-b c}{b(a+b)}}$

Proof:

Let the parallel lines represented by $\mathrm{S}=0$ be $1 \mathrm{x}+\mathrm{my}+\mathrm{n}_{1}=0-$ (1) $\mathrm{lx}+\mathrm{my}+\mathrm{n}_{2}=0-$ (2)

$$
\begin{aligned}
& \therefore a x^{2}+2 h x y+2 g x+2 f y+c \\
& \quad \equiv\left(l x+m y+n_{1}\right)\left(l x+m y+n_{2}\right)
\end{aligned}
$$

Equating the like terms

$$
\begin{array}{lr}
l^{2}=a--(3) & 2 l m=2 h \\
m^{2}=b--(5) & l\left(n_{1}+n_{2}\right)=2 g--(6) \\
m\left(n_{1}+n_{2}\right)=2 f--(7) \quad n_{1} n_{2}=c--(8)
\end{array}
$$

From (3) and (5), $l^{2} m^{2}=a b$ and from (4) $h^{2}=a b$.
Dividing (6) and (7) $\frac{l}{m}=\frac{g}{f} \Rightarrow \frac{l^{2}}{m^{2}}=\frac{g^{2}}{f^{2}}$,
$\therefore \frac{a}{b}=\frac{g^{2}}{f^{2}} \Rightarrow b g^{2}=a f^{2}$
Distance between the parallel lines (1) and (2) is

$$
\begin{aligned}
& =\left|\frac{n_{1}-n_{2}}{\sqrt{\left(l^{2}+m^{2}\right)}}\right|=\frac{\sqrt{\left(n_{1}+n_{2}\right)^{2}-4 n_{1} n_{2}}}{\sqrt{l^{2}+m^{2}}} \\
& =\frac{\sqrt{\left(4 g^{2} / l^{2}\right)-4 c}}{\sqrt{a+b}} \text { or } \frac{\sqrt{\left(4 f^{2} / m^{2}\right)-4 c}}{\sqrt{a+b}} \\
& =\boldsymbol{2} \sqrt{\frac{\boldsymbol{g}^{2}-\boldsymbol{a} \boldsymbol{c}}{\boldsymbol{a}(\boldsymbol{a}+\boldsymbol{b})}} \text { (or) } \boldsymbol{2} \sqrt{\frac{\boldsymbol{f}^{2}-\boldsymbol{b} \boldsymbol{c}}{\boldsymbol{b}(\boldsymbol{a}+\boldsymbol{b})}}
\end{aligned}
$$

POINT OF INTERSECTION OF PAIR OF LINES THEOREM

The point of intersection of the pair of lines represented by $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ when $h^{2}>a b$ is $\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)$

Proof:
Let the point of intersection of the given pair of lines be $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$. Transfer the origin to $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ without changing the direction of the axes.

Let (X, Y) represent the new coordinates of (x, y). Then $x=X+x_{1}$ and $y=Y+y_{1}$.

Now the given equation referred to new axes will be

$$
\begin{aligned}
& a\left(X+x_{1}\right)^{2}+2 h\left(X+x_{1}\right)\left(Y+y_{1}\right)+b\left(Y+y_{1}\right)^{2}+2 g\left(X+x_{1}\right)+2 f\left(Y+y_{1}\right)+c=0 \\
& \Rightarrow a X^{2}+2 h X Y+b Y^{2}+2 X\left(a x_{1}+h y_{1}+g\right)+2 Y\left(h x_{1}+b y_{1}+f\right) \\
& +\left(a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}+2 g x_{1}+2 f y_{1}+c\right)=0
\end{aligned}
$$

Since this equation represents a pair of lines passing through the origin it should be a homogeneous second degree equation in X and Y . Hence the first degree terms and the constant term must be zero. Therefore,

$$
\begin{array}{cc}
a x_{1}+h y_{1}+g=0 & --(1) \\
h x_{1}+b y_{1}+f=0 & --(2) \\
a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}+2 g x_{1}+2 f y_{1}+c=0 & --(3)
\end{array}
$$

But (3) can be rearranged as

$$
\begin{aligned}
& x_{1}\left(a x_{1}+h y_{1}+g\right)+y_{1}\left(h x_{1}+b y_{1}+f\right)+\left(g x_{1}+f y_{1}+c\right)=0 \\
& \Rightarrow g x_{1}+f y_{1}+c=0--(4)
\end{aligned}
$$

Solving (1) and (2) for x_{1} and y_{1}
$\frac{x_{1}}{h f-b g}=\frac{y}{g h-a f}=\frac{1}{a b-h^{2}}$
$\therefore x_{1}=\frac{h f-b g}{a b-h^{2}}$ and $y_{1}=\frac{g h-a f}{a b-h^{2}}$
Hence the point of intersection of the given pair of lines is $\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)$

THEOREM

If the pair of lines $\boldsymbol{a} \boldsymbol{x}^{2}+\mathbf{2 h} \boldsymbol{x} \boldsymbol{y}+\boldsymbol{b} \boldsymbol{y}^{2}=\mathbf{0}$ and the pair of lines
$\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$ form a rhombus then $(\boldsymbol{a}-\boldsymbol{b}) f \boldsymbol{f}+\boldsymbol{h}\left(\boldsymbol{f}^{2}-\boldsymbol{g}^{2}\right)=\mathbf{0}$.

Proof:

The pair of lines $\boldsymbol{a} \boldsymbol{x}^{2}+\mathbf{2 h x y}+\boldsymbol{b}^{\mathbf{2}}=\mathbf{0}-$ (1) is parallel to the lines
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$

Now the equation

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c+\lambda\left(a x^{2}+2 h x y+b y^{2}\right)=0
$$

Represents a curve passing through the points of intersection of (1) and (2).
Substituting $\lambda=-1$, in (3) we obtain $2 g x+2 f y+c=0 \ldots$ (4) Equation (4) is a straight line passing through A and B and it is the diagonal $\overleftrightarrow{A B}$
The point of intersection of (2) is $C=\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)$
\Rightarrow Slope of $\overrightarrow{O C}=\frac{g h-a f}{h f-b g}$
In a rhombus the diagonals are perpendicular $\Rightarrow($ Slope of $\overleftrightarrow{O C})($ Slope of $\overleftrightarrow{A B})=-1$
$\Rightarrow\left(\frac{g h-a f}{h f-b g}\right)\left(-\frac{g}{f}\right)=-1$
$\Rightarrow g^{2} h-a f g=h f^{2}-b f g$
$\Rightarrow(a-b) f g+h\left(f^{2}-g^{2}\right)=0$
$\frac{g^{2}-f^{2}}{a-b}=\frac{f g}{h}$

THEOREM

If $\boldsymbol{a} \boldsymbol{x}^{2}+2 \boldsymbol{h} \boldsymbol{x y}+\boldsymbol{b y ^ { 2 }}=\mathbf{0}$ be two sides of a parallelogram and $p x+\boldsymbol{q} y=\mathbf{1}$ is one diagonal, then the other diagonal is $\boldsymbol{y}(\boldsymbol{b p}-\boldsymbol{h q})=\boldsymbol{x}(\boldsymbol{a q}-\boldsymbol{h} \boldsymbol{p})$
proof:
Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ be the points where the digonal

$p x+q y=1$ meets the pair of lines.
$\overline{O R}$ and $\overline{P Q}$ biset each other at $M(\alpha, \beta)$.
$\therefore \alpha=\frac{x_{1}+x_{2}}{2}$ and $\beta=\frac{y_{1}+y_{2}}{2}$
Eliminating y from $a x^{2}+2 h x y+b y^{2}=0$
and $\quad \mathrm{px}+\mathrm{qy}=1$

$$
\begin{equation*}
a x^{2}+2 h x\left(\frac{1-p x}{q}\right)+b\left(\frac{1-p x}{q}\right)^{2}=0 \tag{2}
\end{equation*}
$$

$\Rightarrow x^{2}\left(a q^{2}-2 h p q+b p^{2}\right)+2 x(h p-b p)+b=0$

The roots of this quadratic equation are x_{1} and x_{2} where
$x_{1}+x_{2}=-\frac{2(h q-b p)}{a q^{2}-2 h p q-b p^{2}}$
$\Rightarrow \alpha=\frac{(b p-h q)}{\left(a q^{2}-2 h p q+b p^{2}\right)}$

Similarly by eliminating x from (1) and (2) a quadratic equation in y is obtained and y_{1}, y_{2} are its roots where
$y_{1}+y_{2}=-\frac{2(h p-a q)}{a q^{2}-2 h p q-n p^{2}} \Rightarrow \beta=\frac{(a q-h p)}{\left(a q^{2}-2 h p q+b p^{2}\right)}$

Now the equation to the join of $O(0,0)$ and $M(\alpha, \beta)$ is $(y-0)(0-\alpha)=(x-0)(0-\beta)$

$$
\Rightarrow \alpha y=\beta x
$$

Substituting the values of α and β, the equation of the diagonal OR is $\boldsymbol{y}(b p-h q)=x(a q-h p)$.

EXERCISE 4B

I

1. Find the angle between the lines represented by $2 x^{2}+x y-6 y^{2}+7 y-2=0$.

Sol. Given equation is

$2 x^{2}+x y-6 y^{2}+7 y-2=0$ Comparing with
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ then
$\mathrm{a}=2, \mathrm{~b}=-6, \mathrm{c}=-2, \mathrm{~g}=0, \mathrm{f}=\frac{7}{2}, \mathrm{~h}=\frac{1}{2}$

Angle between the lines is given by
$\cos \alpha=\frac{|a+b|}{\sqrt{(a-b)^{2}+4 h^{2}}}=\frac{|2-6|}{\sqrt{(2+6)^{2}+1}}=\frac{4}{\sqrt{65}} \Rightarrow \alpha=\cos ^{-1}\left(\frac{4}{\sqrt{65}}\right)$
2. Prove that the equation $2 x^{2}+3 x y-2 y^{2}+3 x+y+1=0$ represents a pair of perpendicular lines.

Sol. From given equation $\mathrm{a}=2, \mathrm{~b}=-2$ and $\mathbf{a}+\mathbf{b}=\mathbf{2}+(-\mathbf{2})=\mathbf{0}$
\Rightarrow angle between the lines is $90^{\circ} . \quad \therefore$ The given lines are perpendicular.

1. Prove that the equation $3 x^{2}+7 x y+2 y^{2}+5 x+5 y+2=0$ represents a pair of straight lines and find the co-ordinates of the point of intersection.

Sol. The given equation is $3 x^{2}+7 x y+2 y^{2}+5 x+5 y+2=0$
Comparing with $\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$, we get

$$
\begin{aligned}
& \mathrm{a}=3 \quad, \mathrm{~b}=2, \mathrm{c}=2, \quad 2 \mathrm{f}=3 \quad \Rightarrow \mathrm{f}=\frac{5}{2} \\
& 2 \mathrm{~g}=5 \Rightarrow \mathrm{~g}=\frac{5}{2}, \quad 2 \mathrm{~h}=7 \Rightarrow \mathrm{~h}=\frac{7}{2} \\
& \Delta=\mathrm{abc}+2 \mathrm{fgh}-\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2} \\
& =3(2)(2)+2 \cdot \frac{5}{2} \cdot \frac{5}{2} \cdot \frac{7}{2}-3 \cdot \frac{25}{4}-2 \cdot \frac{25}{4}-2 \cdot \frac{49}{4} \\
& =\frac{1}{4}(48+175-75-50-98) \\
& =\frac{1}{2}(223-223)=0 \\
& \mathrm{~h}^{2}-\mathrm{ab}=\left(\frac{7}{2}\right)^{2}-3 \cdot 2=\frac{49}{4}-6=\frac{25}{4}>0 \\
& \mathrm{f}^{2}-\mathrm{bc}=\left(\frac{5}{2}\right)^{2}-2.2=\frac{25}{4}-4=\frac{9}{4}>0 \\
& \mathrm{~g}^{2}-\mathrm{ac}=\left(\frac{5}{2}\right)^{2}-3.2=\frac{25}{4}-6=\frac{1}{4}>0
\end{aligned}
$$

\therefore The given equation represents a pair of lines.
The point of intersection of the lines is $\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)$

$$
\begin{aligned}
& =\left(\frac{\frac{7}{2} \cdot \frac{5}{2}-2 \frac{5}{2}}{6-\frac{49}{4}}, \frac{\frac{5}{2} \cdot \frac{7}{2}-3 \cdot \frac{5}{2}}{6-\frac{49}{4}}\right)=\left(\frac{35-20}{24-29}, \frac{35-30}{24-49}\right) \\
& =\left(\frac{+15}{-25}, \frac{5}{-28}\right)=\left(\frac{-3}{5},-\frac{1}{5}\right)
\end{aligned}
$$

Point of intersection is $\mathrm{p}\left(\frac{-3}{5}, \frac{-1}{5}\right)$
2. Find the value of \mathbf{k}, if the equation $2 x^{2}+k x y-6 y^{2}+3 x+y+1=0$ represents a pair of straight lines. Find the point of intersection of the lines and the angle between the straight lines for this value of k.

Sol. The given equation is $2 x^{2}+k x y-6 y^{2}+3 x+y+1=0$

$$
\mathrm{a}=2, \mathrm{~b}=-6, \mathrm{c}=1, \mathrm{f}=\frac{1}{2}, 2 \mathrm{~g}=3 \mathrm{~g}=\frac{3}{2}, \mathrm{~h}=\frac{\mathrm{k}}{2}
$$

Since the given equation is representing a pair of straight lines, therefore

$$
\begin{aligned}
& \Delta=\mathrm{abc}+2 \mathrm{fgh}-\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0 \\
& \Rightarrow-12+2 \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot\left(+\frac{\mathrm{k}}{2}\right)-2 \cdot \frac{1}{4}+6 \cdot \frac{9}{4}-\frac{\mathrm{k}^{2}}{4}=0 \\
& \Rightarrow-48+3 \mathrm{k}-2+54-\mathrm{k}^{2}=0 \\
& \Rightarrow-\mathrm{k}^{2}+3 \mathrm{k}+4=0 \Rightarrow \mathrm{k}^{2}-3 \mathrm{k}-4=0 \\
& \Rightarrow(\mathrm{k}-4)(\mathrm{k}+1)=0 \\
& \Rightarrow \mathrm{k}=4 \text { or }-1
\end{aligned}
$$

Case (i) $k=-1$

Point of intersection is $\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)$

$$
\begin{aligned}
& \left(\frac{+\frac{1}{2} \cdot \frac{1}{2}+6 \cdot \frac{3}{2}}{-12-\frac{1}{4}}, \frac{\frac{3}{2}\left(-\frac{1}{2}\right)-2 \cdot \frac{1}{2}}{-12-\frac{1}{4}}\right)=\left(\frac{-1+36}{-49}, \frac{-3-4}{-49}\right) \\
& =\left(\frac{35}{-49}, \frac{-7}{-49}\right)=\left(\frac{-5}{7}, \frac{1}{7}\right)
\end{aligned}
$$

Point of intersection is $\left(\frac{-5}{7}, \frac{1}{7}\right)$

$$
\text { Angle between the lines }=\cos \alpha=\frac{|a+b|}{\sqrt{(a-b)^{2}+4 h^{2}}}=\frac{|2-6|}{\sqrt{(2+6)^{2}+4}}=\left(\frac{4}{\sqrt{65}}\right)
$$

Case (ii) $k=4$

$$
\left(\frac{2 \cdot \frac{1}{2}+6 \cdot \frac{3}{2}}{-12-4}, \frac{\frac{3}{2} \cdot 2-2 \cdot \frac{1}{2}}{-12-4}\right)=\left(-\frac{5}{8},-\frac{1}{8}\right)
$$

Point of intersection is $\mathrm{P}\left(-\frac{5}{8},-\frac{1}{8}\right)$ and angle between the lines is

$$
\begin{aligned}
& \cos \alpha=\frac{|a+b|}{\sqrt{(a-b)^{2}+4 h^{2}}} \\
& =\frac{|2-6|}{\sqrt{(2+6)^{2}+16}}=\frac{4}{4 \sqrt{5}}=\frac{1}{\sqrt{5}} \\
& \alpha=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)
\end{aligned}
$$

3. Show that the equation $x^{2}-y^{2}-x+3 y-2=0$ represents a pair of perpendicular lines and find their equations.

Sol. Given equation is $\mathbf{x}^{2}-\mathbf{y}^{2}-\mathbf{x}+3 \mathbf{y}-\mathbf{2}=\mathbf{0} \Rightarrow \mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=-2 \mathrm{f}=\frac{3}{2}, \mathrm{~g}=-\frac{1}{2}$,

$$
\mathrm{h}=0
$$

Now $\Delta=a b c+2 f g h-a f^{2}-b^{2}-\operatorname{ch}^{2}$
$=1(-1)(-2)+0-1 \cdot \frac{9}{4}+1 \cdot \frac{1}{4}+0=+2-\frac{9}{4}+\frac{1}{4}=0$
$h^{2}-a b=0-1(-1)=1>0$
$\mathrm{f}^{2}-\mathrm{bc}=\frac{9}{4}-2=\frac{1}{4}>0$
$\mathrm{g}^{2}-\mathrm{ac}=\frac{1}{4}+2=\frac{9}{4}>0$
And $\mathrm{a}+\mathrm{b}=1-1=0$

The given equation represent a pair of perpendicular lines.
Let $x^{2}-y^{2}-x+3 y-2=\left(x+y+c_{1}\right)\left(x-y+c_{2}\right)$

Equating the coefficients of $x \Rightarrow c_{1}+c_{2}=-1$

Equating the co-efficient of $y \Rightarrow-c_{1}+c_{2}=3$

Adding $2 \mathrm{c}_{1}=2 \Rightarrow \mathrm{c}_{2}=1$
$\mathrm{c}_{1}+\mathrm{c}_{2}=-1 \Rightarrow \mathrm{c}_{1}+1=-1, \mathrm{c}_{1}=-2$

Equations of the lines are $x+y-2=0$ and $x-y+1=0$
4. Show that the lines $x^{2}+2 x y-35 y^{2}-4 x+44 y-12=0$ are $5 x+2 y-8=0$ are concurrent.

Sol. Equation of the given lines are $x^{2}+2 x y-35 y^{2}-4 x+44 y-12=0$

$$
\mathrm{a}=1, \mathrm{~b}=-35, \mathrm{c}=-12, \mathrm{f}=22, \mathrm{~g}=-2, \quad \mathrm{~h}=1
$$

Point of intersection is $\left(\frac{h f-b g}{a b-h^{2}}, \frac{\mathrm{gh}=\mathrm{af}}{\mathrm{ab}-\mathrm{h}^{2}}\right)$

$$
=\left(\frac{22-70}{-35-1}, \frac{-2-22}{-35-1}\right)=\left(\frac{-48}{-36}, \frac{-24}{-36}\right)=\left(\frac{4}{3}, \frac{2}{3}\right)
$$

Point of intersection of the given lines is $\mathrm{P}\left(\frac{4}{3}, \frac{2}{3}\right)$. Given line is $5 \mathrm{x}+2 \mathrm{y}-8=0$.

Substituting P in above line,
$5 x+2 y-8=5 \cdot \frac{4}{3}+2 \cdot \frac{2}{3}-8=\frac{20+4-24}{3}=0$
P lies on the third line $5 x+2 y-8=0$
\therefore The given lines are concurrent.
5. Find the distances between the following pairs of parallels straight lines :
i). $\quad 9 x^{2}-6 x y+y^{2}+18 x-6 y+8=0$

Sol. Given equation is

$9 x^{2}-6 x y+y^{2}+18 x-6 y+8=0$.

From above equation $\mathrm{a}=9, \mathrm{~b}=1, \mathrm{c}=8, \mathrm{~h}=-3, \mathrm{~g}=9, \mathrm{f}=-3$.
Distance between parallel lines $=2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}$

$$
=2 \sqrt{\frac{9^{2}-9.8}{9(9+1)}}=2 \sqrt{\frac{9}{9.10}}=\sqrt{\frac{4}{10}}=\sqrt{\frac{2}{5}}
$$

ii. $\quad x^{2}+2 \sqrt{3} x y+3 y^{2}-3 x-3 \sqrt{3} y-4=0$
ans. $\frac{5}{2}$
6. Show that the pairs of lines $3 x^{2}+8 x y-3 y^{2}=0$ and $3 x^{2}+8 x y-3 y^{2}+2 x-4 y-1=0$ form a squares.

Sol. Equation of the first pair of lines is $\quad 3 x^{2}+8 x y-3 y^{2}=0$

$$
\Rightarrow(x+3 y)(3 x-y)=0 \quad \Rightarrow 3 x-y=0, x+3 y=0
$$

Equations of the lines are $3 x-y=0 \ldots \ldots$. (1)and $x+3 y=0 \ldots \ldots$. (2)

Equation of the second pair of lines is $3 x^{2}+8 x y-3 y^{2}+2 x-4 y+1=0$

Since $3 x^{2}+8 x y-3 y^{2}=(x+3 y)(3 x-y)$

Let $3 x^{2}+8 x y-3 y^{2}+2 x-4 y+1=\quad\left(3 x-y+c_{1}\right)\left(x+3 y+c_{2}\right)$

Equating the co-efficient of x, we get $c_{1}+3 c_{2}=2$
Equation the co-efficient of y, we get $3 c_{1}+c_{2}=-4$

$\frac{c_{1}}{12-2}=\frac{c_{2}}{-6-4}=\frac{1}{-1-9}$
$c_{1}=\frac{10}{-10}=-1, c_{2}=\frac{-10}{-10}=1$

Equations of the lines represented by $3 x^{2}+8 x y-3 y^{2}+2 x-4 y+1=0$ are
$3 x-y-1=0 \ldots .(3)$ and $x+3 y+1=0 \ldots . .(4)$

From above equations, lines (1) and (3) are parallel and lines (2) and(4) are parallel.

Therefore given lines form a parallelogram.
But the adjacent sides are perpendicular, it is a rectangle.(since,(1),(2) are perpendicular and (3),(4) and perpendicular.)

The point of intersection of the pair of lines $3 x^{2}+8 x y-3 y^{2}=0$ is $O(0,0)$.
Length of the perpendicular from O to $(3)=\frac{|0+0+1|}{\sqrt{1+9}}=\frac{1}{\sqrt{10}}$
Length of the perpendicular from O to $(4)=\frac{|0+0+1|}{\sqrt{1+9}}=\frac{1}{\sqrt{10}}$
Therefore, O is equidistant from lines (3),(4).
Therefore, the distance between the parallel lines is same. Hence the rectangle is a square.

III

1. Find the product of the length of the perpendiculars drawn from (2,1) upon the
lines $12 x^{2}+25 x y+12 y^{2}+10 x+11 y+2=0$

Sol. Given pair of lines is $12 x^{2}+25 x y+12 y^{2}+10 x+11 y+2=0$

Now

$$
\begin{aligned}
& 12 x^{2}+25 x y+12 y^{2}=12 x^{2}+16 x y+9 x y+12 y^{2} \\
& =4 x(3 x+4 y)+3 y(3 x+4 y)=(3 x+4 y)(4 x+3 y)
\end{aligned}
$$

Let $12 x^{2}+25 x y+12 y^{2}+10 x+11 y+2=\left(3 x+4 y+c_{1}\right)\left(4 x+3 y+c_{2}\right)$

Equating the co-efficient of x, y we get
$4 \mathrm{c}_{1}+3 \mathrm{c}_{2}=10 \Rightarrow 4 c_{1}+3 c_{2}-10=0$

$$
\begin{equation*}
3 \mathrm{c}_{1}+4 \mathrm{c}_{2}=11 \Rightarrow 3 c_{1}+4 c_{2}-11=0 . \tag{2}
\end{equation*}
$$

Solving,

Therefore given lines are $3 x+4 y+1=0----(3)$ and $4 x+3 y+2=0---(4)$
Length of the perpendicular form $\mathrm{P}(2,1)$ on $\quad(1)=\frac{6+4+1}{\sqrt{9+16}}=\frac{11}{5}$
Length of the perpendicular from $\mathrm{P}(2,1)$ on $(2)=\frac{|8+3+2|}{\sqrt{16+9}}=\frac{13}{5}$

Product of the length of the perpendicular $=\frac{11}{5} \times \frac{13}{5}=\frac{143}{25}$
2. Show that the straight lines $y^{2}-4 y+3=0$ and $x^{2}+4 x y+4 y^{2}+5 x+10 y+4=0$ from a parallelogram and find the lengths of its sides.

Sol. Equation of the first pair of lines is

$$
y^{2}-4 y+3=0, \Rightarrow(y-1)(y-3)=0
$$

$\Rightarrow \mathrm{y}-1=0$ or $\mathrm{y}-3=0$
\Rightarrow Equations of the lines are $y-1=0$
and $\mathrm{y}-3=0$ \qquad

Equations of (1) and (2) are parallel.

Equation of the second pair of lines is $x^{2}+4 x y+4 y^{2}+5 x+10 y+4=0$

$$
\begin{aligned}
& \Rightarrow(\mathrm{x}+2 \mathrm{y})^{2}+5(\mathrm{x}+2 \mathrm{y})+4=0 \\
& \Rightarrow(\mathrm{x}+2 \mathrm{y})^{2}+4(\mathrm{x}+2 \mathrm{y})+(\mathrm{x}+2 \mathrm{y})+4=0 \\
& \Rightarrow(\mathrm{x}+2 \mathrm{y})(\mathrm{x}+2 \mathrm{y}+4)+1(\mathrm{x}+2 \mathrm{y}+4)=0 \\
& \Rightarrow(\mathrm{x}+2 \mathrm{y}+1)(\mathrm{x}+2 \mathrm{y}+4)=0 \\
& \Rightarrow \mathrm{x}+2 \mathrm{y}+1=0, \mathrm{x}+2 \mathrm{y}+4=0
\end{aligned}
$$

Equations of the lines are $x+2 y+1=0 \ldots \ldots$. .(3)and $x+2 y+4=0$

Equations of (3) and (4) are parallel .

Solving (1), (3) $x+2+1=0, x=-3$

Co-ordinates of A are $(-3,1)$

Solving (2), (3) $x+6+1=0, x=-7$
Co-ordinates of D are $(-7,3)$

Solving (1), (4) $x+2+4=0, x=-6$
Co-ordinates of B are $(-6,1)$

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(-3+6)^{2}+(1-1)^{2}}=\sqrt{9+0}=3 \\
& \mathrm{AD}=\sqrt{(-3+7)^{2}+(1-3)^{2}}=\sqrt{16+4}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

Length of the sides of the parallelogram are $3,2 \sqrt{5}$
3. Show that the product of the perpendicular distances from the origin to the pair of straight lines represented by $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is $\frac{|c|}{\sqrt{(a-b)^{2}+4 h^{2}}}$

Sol. Let $l_{1} \mathrm{x}+\mathrm{m}_{1} \mathrm{y}+\mathrm{n}_{1}=0$
$l_{2} \mathrm{x}+\mathrm{m}_{2} \mathrm{y}+\mathrm{n}_{2}=0 \quad \ldots \ldots .$. (2)be the lines represented by
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
$\Rightarrow \mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c} \quad=\left(l_{1} \mathrm{x}+\mathrm{m}_{1} \mathrm{y}+\mathrm{n}_{1}\right)\left(l_{2} \mathrm{x}+\mathrm{m}_{2} \mathrm{y}+\mathrm{n}_{2}\right)$
$\Rightarrow l_{1} l_{2}=\mathrm{a}, \mathrm{m}_{1} \mathrm{~m}_{2}=\mathrm{b}, l_{1} \mathrm{~m}_{2}+l_{2} \mathrm{~m}_{1}=2 \mathrm{~h}$
$l_{1} \mathrm{n}_{2}+l_{2} \mathrm{n}_{1}=2 \mathrm{~g}, \mathrm{~m}_{1} \mathrm{n}_{2}+\mathrm{m}_{2} \mathrm{n}_{1}=2 \mathrm{f}, \mathrm{n}_{1} \mathrm{n}_{2}=\mathrm{c}$

Perpendicular from origin to $(1)=\frac{\left|\mathrm{n}_{1}\right|}{\sqrt{l_{1}^{2}+\mathrm{m}_{1}^{2}}}$

Perpendicular from origin to (2) $=\frac{\left|\mathrm{n}_{2}\right|}{\sqrt{l_{2}^{2}+\mathrm{m}_{2}^{2}}}$

Product of perpendiculars

$$
\begin{aligned}
& =\frac{\left|\mathrm{n}_{1}\right|}{\sqrt{l_{1}^{2}+\mathrm{m}_{1}^{2}}} \cdot \frac{\left|\mathrm{n}_{2}\right|}{\sqrt{l_{2}^{2}+\mathrm{m}_{2}^{2}}} \\
& =\frac{\left|\mathrm{n}_{1} \mathrm{n}_{2}\right|}{\sqrt{l_{1}^{2} l_{2}^{2}+\mathrm{m}_{1}^{2} \mathrm{~m}_{2}^{2}+l_{1}^{2} \mathrm{~m}_{2}^{2}+l_{2}^{2} \mathrm{~m}_{1}^{2}}} \\
& =\frac{\left|\mathrm{n}_{1} \mathrm{n}_{2}\right|}{\sqrt{\left(l_{1} l_{2}-\mathrm{m}_{1} \mathrm{~m}_{2}\right)^{2}+\left(l_{1} \mathrm{~m}_{2}+l_{2} \mathrm{~m}_{1}\right)^{2}}} \\
& =\frac{|\mathrm{c}|}{\sqrt{(\mathrm{a}-\mathrm{b})^{2}+(2 \mathrm{~h})^{2}}}=\frac{|\mathrm{c}|}{\sqrt{(\mathrm{a}-\mathrm{b})^{2}+4 \mathrm{~h}^{2}}}
\end{aligned}
$$

4. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of intersecting lines, then show that the square of the distance of their point of intersection from the origin is $\frac{c(a+b)-f^{2}-g^{2}}{a b-h^{2}}$. Also show that the square of this distance from origin is $\frac{f^{2}+g^{2}}{h^{2}+b^{2}}$ if the given lines are perpendicular.

Sol. Let $l_{1} \mathrm{x}+\mathrm{m}_{1} \mathrm{y}+\mathrm{n}_{1}=0$
$l_{2} \mathrm{x}+\mathrm{m}_{2} \mathrm{y}+\mathrm{n}_{2}=0$
be the lines represented by $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
$\Rightarrow \mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}$
$=\left(l_{1} \mathrm{x}+\mathrm{m}_{1} \mathrm{y}+\mathrm{n}_{1}\right)\left(l_{2} \mathrm{x}+\mathrm{m}_{2} \mathrm{y}+\mathrm{n}_{2}\right)$
$l_{1} l_{2}=\mathrm{a}, \mathrm{m}_{1} \mathrm{~m}_{2}=\mathrm{b}, l_{1} \mathrm{~m}_{2}+l_{2} \mathrm{~m}_{1}=2 \mathrm{~h}$
$l_{1} \mathrm{n}_{2}+l_{2} \mathrm{n}_{1}=2 \mathrm{~g}, \mathrm{~m}_{1} \mathrm{n}_{2}+\mathrm{m}_{2} \mathrm{n}_{1}=2 \mathrm{f}, \mathrm{n}_{1} \mathrm{n}_{2}=\mathrm{c}$ Solving (1) and (2)
$\frac{\mathrm{x}}{\mathrm{m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}}=\frac{\mathrm{y}}{l_{2} \mathrm{n}_{1}-l_{1} \mathrm{n}_{2}}=\frac{1}{l_{1} \mathrm{~m}_{2}-l_{2} \mathrm{~m}_{2}}$

The point of intersection is $\mathrm{P}=\left[\frac{\mathrm{m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}}{l_{1} \mathrm{~m}_{2}-l_{2} \mathrm{~m}_{1}}, \frac{l_{2} \mathrm{n}_{1}-l_{1} \mathrm{n}_{2}}{l_{1} \mathrm{~m}_{2}-l_{2} \mathrm{~m}_{1}}\right]$

$$
\begin{aligned}
& \mathrm{OP}^{2}=\frac{\left(\mathrm{m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}\right)^{2}+\left(l_{2} \mathrm{n}_{1}-l_{1} \mathrm{n}_{2}\right)^{2}}{\left(l_{1} \mathrm{~m}_{2}-l_{2} \mathrm{~m}_{1}\right)^{2}} \\
& =\frac{\left(\mathrm{m}_{1} \mathrm{n}_{2}+\mathrm{m}_{2} \mathrm{n}_{1}\right)^{2}-4 \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{n}_{1} \mathrm{n}_{2}+\left(l_{1} \mathrm{n}_{2}+l_{2} \mathrm{n}_{1}\right)^{2}-4 l_{1} l_{2} \mathrm{n}_{1} \mathrm{n}_{2}}{\left(l_{1} \mathrm{~m}_{2}+l_{2} \mathrm{~m}_{1}\right)^{2}-4 l_{1} l_{2} \mathrm{~m}_{1} \mathrm{~m}_{2}} \\
& =\frac{4 \mathrm{f}^{2}-4 \mathrm{abc}+4 \mathrm{~g}^{2}-4 \mathrm{ac}}{4 \mathrm{~h}^{2}-4 \mathrm{ab}} \\
& =\frac{\mathrm{c}(\mathrm{a}+\mathrm{b})-\mathrm{f}^{2}-\mathrm{g}^{2}}{\mathrm{ab}-\mathrm{h}^{2}} .
\end{aligned}
$$

If the given pair of lines are perpendicular, then $a+b=0 \Rightarrow a=-b$

$$
\Rightarrow \mathrm{OP}^{2}=\frac{0-\mathrm{f}^{2}-\mathrm{g}^{2}}{(-\mathrm{b}) \mathrm{b}-\mathrm{h}^{2}}=\frac{\mathrm{f}^{2}+\mathrm{g}^{2}}{\mathrm{~h}^{2}+\mathrm{b}^{2}}
$$

HOMOGENISATION

THEOREM

The equation to the pair of lines joining the origin to the points of intersection of the curve $S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ and the line

$$
L \equiv l x+m y+n=0 \text { is } \quad a x^{2}+2 h x y+b y^{2}+(2 g x+2 f y)\left(\frac{l x+m y}{-n}\right)+c\left(\frac{l x+m y}{-n}\right)^{2}=0--(1)
$$

Eq (1) represents the combined equation of the pair of lines $\overrightarrow{O A}$ and $\overrightarrow{O B}$.

EXERCISE - 4(c)

1. Find the equation of the lines joining the origin to the point of intersection of

$$
x^{2}+y^{2}=1 \text { and } x+y=1
$$

Sol. The given curves are $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ \qquad

$$
\begin{equation*}
x+y=1 \tag{2}
\end{equation*}
$$

Homogenising (1) with the help of (2) then $x^{2}+y^{2}=1^{2}$

$$
\Rightarrow x^{2}+y^{2}=(x+y)^{2}=x^{2}+y^{2}+2 x y \text { i.e. } 2 x y=0 \Rightarrow x y=0
$$

2. Find the angle between the lines joining the origin to points of intersection of $\mathrm{y}^{2}=\mathrm{x}$ and $\mathrm{x}+\mathrm{y}=1$.

Sol. Equation of the curve is $y^{2}=x \ldots . .(1)$ and Equation of line is $x+y=1$

Harmogonsing (1) with the help of (2)
$Y^{2}-x .1=0 \Rightarrow y^{2}=x(x+y)=x^{2}+x y$
$\Rightarrow x^{2}+x y-y^{2}=0$ which represents a pair of lines. From this equation
$a+b=1-1=0$

The angle between the lines is 90°.

II

1. Show that the lines joining the origin to the points of intersection of the curve $x^{2}-x y+y^{2}+3 x+3 y-2=0$ and the straight line $x-y-\sqrt{2}=0$ are mutually perpendicular.

Sol.

Le $t A, B$ the the points of intersection of the line and the curve.
Equation of the curve is $x^{2}-x y+y^{2}+3 x+3 y-2=0$

Equation of the line $A B$ is $x-y-\sqrt{2}=0$

$$
\begin{equation*}
\Rightarrow \quad x-y=\sqrt{2} \Rightarrow \frac{x-y}{\sqrt{2}}=1 \tag{2}
\end{equation*}
$$

Homogenising, (1) with the help of (2) combined equation of OA, OB is

$$
\begin{aligned}
& x^{2}-x y+y^{2}+3 x \cdot 1+3 y \cdot 1-2 \cdot 1^{2}=0 \\
& \Rightarrow x^{2}-x y+y^{2}+3(x+y) \frac{x-y}{\sqrt{2}}-2 \frac{(x-y)^{2}}{2}=0 \\
& \Rightarrow x^{2}-x y+y^{2}+\frac{3}{\sqrt{2}}\left(x^{2}-y^{2}\right)-\left(x^{2}-2 x y+y^{2}\right)=0 \\
& \Rightarrow x^{2}-x y+y^{2}+\frac{3}{\sqrt{2}} x^{2}-\frac{3}{\sqrt{2}} y^{2}-x^{2}+2 x y-y^{2}=0 \\
& \Rightarrow \frac{3}{\sqrt{2}} x^{2}+x y-\frac{3}{\sqrt{2}} y^{2}=0 \\
& \Rightarrow a+b=\frac{3}{\sqrt{2}}-\frac{3}{\sqrt{2}}=0
\end{aligned}
$$

$\therefore \mathrm{OA}, \mathrm{OB}$ are perpendicular.
2. Find the values of k, if the lines joining the origin to the points of intersection of the curve $2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and the line $x+2 y=k$ are mutually perpendicular.

Sol. Given equation of the curve is $S \equiv 2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0 \ldots \ldots$ (1)
Equation of $A B$ is $x+2 y=k$

$$
\begin{equation*}
\frac{x+2 y}{k}=1 \tag{2}
\end{equation*}
$$

Le $t A, B$ the the points of intersection of the line and the curve.
Homogenising, (1) with the help of (2), the combined equation of OA, OB is

$$
2 x^{2}-2 x y+3 y^{2}+2 x \cdot 1-y \cdot 1-1^{2}=0
$$

$$
2 x^{2}-2 x y+3 y^{2}+2 x \frac{(x+2 y)}{k}-y \frac{(x+2 y)}{k}=\frac{(x+2 y)^{2}}{k^{2}}=0
$$

$$
\Rightarrow 2 \mathrm{k}^{2} \mathrm{x}^{2}-2 \mathrm{k}^{2} \mathrm{xy}+3 \mathrm{k}^{2} \mathrm{y}^{2}+2 \mathrm{kx}(\mathrm{x}+2 \mathrm{y})-\mathrm{ky}(\mathrm{x}+2 \mathrm{y})-(\mathrm{x}+2 \mathrm{y})^{2}=0
$$

$$
\Rightarrow 2 \mathrm{k}^{2} \mathrm{x}^{2}-2 \mathrm{k}^{2} \mathrm{xy}+3 \mathrm{k}^{2} \mathrm{y}^{2}+2 \mathrm{kx}^{2}+4 \mathrm{kxy}-\mathrm{kxy}-2 \mathrm{ky}^{2}-\mathrm{x}^{2}-4 \mathrm{xy}-4 \mathrm{y}^{2}=0
$$

$$
\Rightarrow\left(2 \mathrm{k}^{2}+2 \mathrm{k}-1\right) \mathrm{x}^{2}+\left(-2 \mathrm{k}^{2}+3 \mathrm{k}-4\right) \mathrm{xy}+\left(3 \mathrm{k}^{2}-2 \mathrm{k}-4\right) \mathrm{y}^{2}=0
$$

Given that above lines are perpendicular, Co-efficient $x^{2}+\operatorname{co-efficient~of~} y^{2}=0$

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{k}^{2}+2 \mathrm{k}-1+3 \mathrm{k}^{2}-2 \mathrm{k}-4=0 \\
& \Rightarrow 5 \mathrm{k}^{2}=5 \Rightarrow \mathrm{k}^{2}=1 \quad \therefore \mathrm{k}= \pm 1
\end{aligned}
$$

3. Find the angle between the lines joining the origin to the points of intersection of the curve $x^{2}+2 x y+y^{2}+2 x+2 y-5=0$ and the line $3 x-y+1=0$

Sol.

Equation of the curve is

$$
x^{2}+2 x y+y^{2}+2 x+2 y-5=0
$$

Equation of $A B$ is $3 x-y+1=0 \Rightarrow y-3 x=1$

Le $t A, B$ the the points of intersection of the line and the curve.

Homogenising (1) with the help of (2), combined equation of OA, OB is

$$
\begin{aligned}
& x^{2}+2 x y+y^{2}+2 x \cdot 1+2 y \cdot 1-5 \cdot 1^{2}=0 \\
& \Rightarrow x^{2}+2 x y+y^{2}+2 x(y-3 x)+2 y(y-3 x)-5(y-3 x)^{2}=0 \\
& \Rightarrow x^{2}+2 x y+y^{2}+2 x y-6 x^{2}+2 y^{2}-6 x y-5\left(y^{2}+9 x^{2}-6 x y\right)=0 \\
& \Rightarrow-5 x^{2}-2 x y+3 y^{2}-5 y^{2}-45 x^{2}+30 x y=0 \\
& \Rightarrow-50 x^{2}+28 x y-2 y^{2}=0 \Rightarrow 25 x^{2}-14 x y+y^{2}=0
\end{aligned}
$$

let θ be the angle between OA and OB ,then

$$
\begin{aligned}
& \cos \theta=\frac{|\mathrm{a}+\mathrm{b}|}{\sqrt{(\mathrm{a}-\mathrm{b})^{2}+4 \mathrm{~h}^{2}}}=\frac{|25+1|}{\sqrt{(25-1)^{2}+196}}=\frac{26}{\sqrt{576+196}}=\frac{26}{\sqrt{772}} \\
& =\frac{26}{2 \sqrt{193}}=\frac{13}{\sqrt{193}} \therefore \theta=\cos ^{-1}\left(\frac{13}{\sqrt{193}}\right)
\end{aligned}
$$

III

1. Find the condition for the chord $l x+m y=1$ of the circle $x^{2}+y^{2}=a^{2}$ (whose centre is the origin) to subtend a right angle at the origin.

Sol.

Equation of the circle $x^{2}+y^{2}=a^{2}$

Equation of AB is $l \mathrm{x}+\mathrm{my}=1$

Let A, B the the points of intersection of the line and the curve

Homogenising (1) with the help of (2) ,the combined equation of OA, OB is

$$
\begin{aligned}
& \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2} \cdot 1^{2} \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}(l \mathrm{x}+\mathrm{my})^{2} \\
& =\mathrm{a}^{2}\left(l^{2} \mathrm{x}^{2}+\mathrm{m}^{2} \mathrm{y}^{2}+2 l \mathrm{mxy}\right)=\mathrm{a}^{2} l^{2} \mathrm{x}^{2}+\mathrm{a}^{2} \mathrm{~m}^{2} \mathrm{y}^{2}+2 \mathrm{a}^{2} l \mathrm{mxy} \\
& \Rightarrow \mathrm{a}^{2} l^{2} \mathrm{x}^{2}+2 \mathrm{a}^{2} l \mathrm{mxy}+\mathrm{a}^{2} \mathrm{~m}^{2} \mathrm{y}^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}=0 \\
& \Rightarrow\left(\mathrm{a}^{2} l^{2}-1\right) \mathrm{x}^{2}+2 \mathrm{a}^{2} l \mathrm{mxy}+\left(\mathrm{a}^{2} \mathrm{~m}^{2}-1\right) \mathrm{y}^{2}=0
\end{aligned}
$$

Since OA, OB are perpendicular, Coefficient of $x^{2}+$ co-efficient of $y^{2}=0$
$\Rightarrow \mathrm{a}^{2} l^{2}-1+\mathrm{a}^{2} \mathrm{~m}^{2}-1=0 \Rightarrow \mathrm{a}^{2}\left(l^{2}+\mathrm{m}^{2}\right)=2$ which is the required condition
2. Find the condition for the lines joining the origin to the points of intersection of the circle $x^{2}+y^{2}=a^{2}$ and the line $l x+m y=1$ to coincide.

Sol.

Equation of the circle is $x^{2}+y^{2}=a^{2}$

Equation of AB is $l \mathrm{x}+\mathrm{my}=1 \ldots \ldots$.(2).

Le $t A, B$ the the points of intersection of the line and the curve.
Homogenising (1) with the help of (2),
Then the combined equation of $O A, O B$ is $x^{2}+y^{2}=a^{2} .1^{2}$

$$
\begin{aligned}
& \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}(l \mathrm{x}+\mathrm{my})^{2}=\mathrm{a}^{2}\left(l^{2} \mathrm{x}^{2}+\mathrm{m}^{2} \mathrm{y}^{2}+2 l \mathrm{mxy}\right) \\
& \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2} l^{2} \mathrm{x}^{2}+\mathrm{a}^{2} \mathrm{~m}^{2} \mathrm{y}^{2}+2 \mathrm{a}^{2} l \mathrm{mxy} \\
& \Rightarrow\left(\mathrm{a}^{2} l^{2}-1\right) \mathrm{x}^{2}+2 \mathrm{a}^{2} l \mathrm{mxy}+\left(\mathrm{a}^{2} \mathrm{~m}^{2}-1\right) \mathrm{y}^{2}=0
\end{aligned}
$$

Since OA, OB are coincide $\Rightarrow h^{2}=a b$

$$
\begin{aligned}
& \Rightarrow \mathrm{a}^{4} l^{2} \mathrm{~m}^{2}=\left(\mathrm{a}^{2} l^{2}-1\right)\left(\mathrm{a}^{2} \mathrm{~m}^{2}-1\right) \Rightarrow \mathrm{a}^{4} l^{2} \mathrm{~m}^{2}=\mathrm{a}^{4} l^{2} \mathrm{~m}^{2}-\mathrm{a}^{2} l^{2}-\mathrm{a}^{2} \mathrm{~m}^{2}+1 \\
& \therefore \mathrm{a}^{2} l^{2}-\mathrm{a}^{2} \mathrm{~m}^{2}+1=0 \Rightarrow \mathrm{a}^{2}\left(l^{2}+\mathrm{m}^{2}\right)=1
\end{aligned}
$$

This is the required condition.
3. Write down the equation of the pair of straight lines joining the origin to the points of intersection of the lines $6 x-y+8=0$ with the pair of straight lines $3 x^{2}+4 x y-4 y^{2}-11 x+2 y+6=0$. Show that the lines so obtained make equal angles with the coordinate axes.

Sol. Given pair of line is $3 x^{2}+4 x y-4 y^{2}-11 x+2 y+6=0$

Given line is $\quad 6 x-y+8=0 \Rightarrow \frac{6 x-y}{-8}=1 \quad \Rightarrow \frac{y-6 x}{8}=1----(2)$
Homogenising (1) w.r.t (2)

$$
\begin{align*}
& 3 x^{2}+4 x y-4 y^{2}-(11 x-2 y)\left(\frac{y-6 x}{8}\right)+6\left(\frac{y-6 x}{8}\right)^{2}=0 \\
& 64\left[3 x^{2}+4 x y-4 y^{2}\right]-8\left[11 x y-66 x^{2}-2 y^{2}+12 x y\right]+6\left[y^{2}+36 x^{2}-12 x y\right]=0 \\
& \Rightarrow 936 x^{2}+256 x y-256 x y-234 y^{2}=0 \\
& \Rightarrow 468 x^{2}-117 y^{2}=0 \\
& \Rightarrow 4 x^{2}-y^{2}=0---(3) \tag{3}
\end{align*}
$$

Is eq. of pair of lines joining the origin to the point of intersection of (1) and (2).

The eq. pair of angle bisectors of (3) is

$$
h\left(x^{2}-y^{2}\right)-(a-b) x y=0
$$

$\Rightarrow 0\left(x^{2}-y^{2}\right)-(4-1) x y=0 \quad \Rightarrow x y=0$
$\mathrm{x}=0$ or $\mathrm{y}=0$ which are the eqs. is of co-ordinates axes
\therefore The pair of lines are equally inclined to the co-ordinate axes
4. If the straight lines given by $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ intersect on Y -axis, show that $2 \mathrm{fgh}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0$

Sol. Given pair of lines is $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$

Equation of Y-axis is $x=0$ then equation becomes $b y^{2}+2 f y+c=0$

Since the given pair of lines intersect on Y - axis, the roots or equation (1) are equal.
\therefore Discriminate $=0$
$\Rightarrow(2 \mathrm{f})^{2}-4 . \mathrm{b} . \mathrm{c}=0 \Rightarrow 4 \mathrm{f}^{2}-4 \mathrm{bc}=0$
$\Rightarrow \mathrm{f}^{2}-\mathrm{bc}=0 \Rightarrow \mathrm{f}^{2}=\mathrm{bc}$

Since the given equation represents a pair of lines

$$
\begin{aligned}
& a b c+2 f g h+\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0 \\
\Rightarrow & \mathrm{a}\left(\mathrm{f}^{2}\right)+2 \mathrm{fgh}-\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0 \\
\Rightarrow & 2 \mathrm{fgh}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0
\end{aligned}
$$

5. Prove that the lines represented by the equations $x^{2}-4 x y+y^{2}=0$ and $x+y=3$ form an equilateral triangle.

Sol. Since the straight line $L: x+y=3$ makes 45° with the negative direction of the X -axis, none of the lines which makes 60° with the line L is vertical. If ' m ' is the slope of one such straight line, then $\sqrt{3}=\tan 60^{\circ}=\left|\frac{m+1}{1-m}\right|$ and so, satisfies the equation $(m+1)^{2}=3(m-1)^{2}$

Or $m^{2}-4 m+1=0$

But the straight line having slope ' m ' and passing through the origin is

$$
\begin{equation*}
y=m x \tag{2}
\end{equation*}
$$

So the equation of the pair of lines passing through the origin and inclined at 60° with the line L is obtained by eliminating ' m ' from the equations (1) and (2).
Therefore the combined equation of this pair of lines is $\left(\frac{y}{x}\right)^{2}-4\left(\frac{y}{x}\right)+1=0$ (i.e,) $x^{2}-4 x y+y^{2}=0$

Which is the same as the given pair of lines. Hence, the given traid of lines form an equilateral triangle.
6. Show that the product of the perpendicular distances from a point (α, β) to
the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}}$
Sol. Let $a x^{2}+2 h x y+b y^{2} \equiv\left(l_{1} x+m_{1} y\right)\left(l_{2} x+m_{2} y\right)$
Then the separate equations of the lines represented by the equation
$a x^{2}+2 h x y+b y^{2}=0$ are $L_{1}: l_{1} x+m_{1} y=0$ and $L_{2}: l_{2} x+m_{2} y=0$
Also, we have $l_{1} l_{2}=a ; m_{1} m_{2}=b$ and $l_{1} m_{2}+l_{2} m_{1}=2 h$
$d_{1}=$ length of the perpendicular from (α, β) to $L_{1}=\frac{\left|l_{1} \alpha+m_{1} \beta\right|}{\sqrt{l_{1}^{2}+m_{1}^{2}}}$
$d_{2}=$ length of the perpendicular from (α, β) to $L_{2} L_{2}=\frac{\left|l_{2} \alpha+m_{2} \beta\right|}{\sqrt{l_{2}^{2}+m_{2}^{2}}}$

Then, the product of the lengths of the perpendiculars from (α, β) to the given pair of lines $=d_{1} d_{2}$

$$
=\frac{\left|\left(l_{1} \alpha+m_{1} \beta\right)\left(l_{2} \alpha+m_{2} \beta\right)\right|}{\sqrt{\left(l_{1}^{2}+m_{1}^{2}\right)\left(l_{2}^{2}+m_{2}^{2}\right)}}=\frac{\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}}
$$

PROBLEMS FOR PRACTICE.

1. If the lines $x y+x+y+1=0$ and $x+a y-3=0$ are concurrent, find a.
2. The equation $a x^{2}+3 x y-2 y^{2}-5 x+5 y+c=0$ represents two straight lines perpendicular to each other. Find a and c.
3. Find λ so that $x^{2}+5 x y+4 y^{2}+3 x+2 y+\lambda=0$ may represent a pair of straight lines. Find also the angle between them for this value of λ.
4. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents the straight lines equidistant from the origin, show that $f^{4}-g^{4}=c\left(b f^{2}-a g^{2}\right)$
5. Find the centroid of the triangle formed by the lines $12 x^{2}-20 x y+7 y^{2}=0$ and $2 x-3 y+4=0$

ANS. $=\left(\frac{8}{3}, \frac{8}{3}\right)$
6. Let $a X^{2}+2 h X Y+b Y^{2}=0$ represent a pair of straight lines. Then show that the equation of the pair of straight lines.
i)Passing through $\left(x_{o}, y_{o}\right)$ and parallel to the given pair of lines is $a\left(x-x_{o}\right)^{2}+2 h\left(x-x_{o}\right)\left(y-y_{o}\right)+b\left(y-y_{o}\right)^{2}=0$ ii) Passing through $\left(x_{o}, y_{o}\right)$ and perpendicular to the given pair of lines is $b\left(x-x_{o}\right)^{2}-2 h\left(x-x_{o}\right)\left(y-y_{o}\right)+a\left(y-y_{o}\right)^{2}=0$
7. Find the angle between the straight lines represented by

$$
2 x^{2}+3 x y-2 y^{2}-5 x+5 y-3=0
$$

8. Find the equation of the pair of lines passing through the origin and perpendicular to the pair of lines $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
9. If $x^{2}+x y+2 y^{2}+4 x-y+k=0$ represents a pair of straight lines find \mathbf{k}.
10. Prove that equation $2 x^{2}+x y-6 y^{2}+7 y-2=0$ represents a pair of straight line.
11. Prove that the equation $2 x^{2}+3 x y-2 y^{2}-x+3 y-1=0$ represents a pair of perpendicular straight lines.
12. Show that the equation $2 x^{2}-13 x y-7 y^{2}+x+23 y-6=0$ represents a pair of straight lines. Also find the angle between the co-ordinates of the point of intersection of the lines.
13. Find that value of λ for which the equation $\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$ represents a pair of straight lines.
14. Show that the pair of straight lines $6 x^{2}-5 x y-6 y^{2}=0$ and $6 x^{2}-5 x y-6 y^{2}+x+5 y-1=0$ form a square.
15. Show that the equation $8 x^{2}-24 x y+18 y^{2}-6 x+9 y-5=0$ represents pair of parallel straight lines are find the distance between them.
