CHAPTER

3-D GEOMETRY

TOPICS:-

1. Introduction to 3-D system and coordinates Axes and coordinate planes, coordinate of a point in the space
2. Distance between two points, section formula, points of trisection and mid - point, Centroid of triangle and tetrahedron.
3. Translation of axes.

COORDINATES OF A POINT IN SPACE (3-D) (2 MARKS)

Let $\overrightarrow{X^{\prime} O X}, \overrightarrow{Y^{\prime} O Y}$ and $\overrightarrow{Z^{\prime} O Z}$ be three mutually perpendicular straight lines in space, intersecting at O . This point O is called origin.

Axes :

The three fixed straight lines $\overrightarrow{X^{\prime} O X}, \overrightarrow{Y^{\prime} O Y}$ and $\overrightarrow{Z^{\prime} O Z}$ are respectively called X -axis, Y -axis and Z-axis. The three lines taken together are called rectangular coordinate axes.

COORDINATE PLANES

The plane containing the axes of Y and Z is called yz-plane. Thus yoz is the yz plane. Similarly the plane zox containing the axes of z and x is called ZX -plane and the plane xoy is called the xy-plane and contains x axis and y axis.

The above three planes are together called the rectangular co ordinate plane.
OCTANTS. The three co ordinate planes divide the whole space into 8 parts called octants.

COORDINATES OF A POINT.

Let P be any point in the space. Draw through P , three planes parallel to the three co ordinate planes meeting the axes of X, Y, Z in the points A, B and C respectively. Then if $O A=x, O B=y$ and $O C=z$, the three numbers x, y, z taken in this order are called the co ordinates of the point P and we refer the point as ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) . Any one of these $\mathrm{x}, \mathrm{y}, \mathrm{z}$ will be positive of negative according as it is measured from O along the corresponding axis, in the positive or negative direction.

Another method of finding coordinates of a point.
The coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$ of a point P are the perpendicular distances of P from the three co ordinate planes YZ,ZX and XY respectively.

From fig $P N=z, P L=x$ and $P M=y$
Therefore point $P=(x, y, z)$
Note. On YZ- plane, a point has x coordinate as zero and similarly on zx-plane y coordinates and on xy-plane z coordinates are zero.

For any point on the
(i) X -axis, Y, Z coordinates are equal to zero,
(ii) Y -axis, X, Z coordinates are equal to zero,
(iii) Zaxis, X, Y coordinates are equal to zero.

DISTANCE BETWEEN THE POINTS

1.

The distance between the points and is given
by $P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$

Note:-

If is the origin and is a point in space, then

$$
O P=\sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}}=\sqrt{x^{2}+y^{2}+z^{2}}
$$

EXERCISE

I.

1. Find the distance of $\mathbf{P}(3,-2,4)$ from the origin.

Sol. Origin $0=(0,0,0)$ and $P(3,-2,4)$

$$
\mathrm{OP}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}=\sqrt{9+4+16}=\sqrt{29} \text { units }
$$

2. Find the distance between the points $(\mathbf{3}, 4,-2)$ and $(1,0,7)$.

Sol. Given points are $\mathrm{P}(3,4,-2)$ and $\mathrm{Q}(1,0,7)$
$P Q=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}=\sqrt{(3-1)^{2}+(4-0)^{2}+(-2-7)^{2}}$
$=\sqrt{4+16+81}=\sqrt{101}$ units
II.

1. Find x if the distance between $(5,-1,7)$ and $(x, 5,1)$ is 9 units.

Sol. Given Points are $\mathrm{P}(5,-1,7), \mathrm{Q}(\mathrm{x}, 5,1)$ and given that $\mathrm{PQ}=9$

$$
\begin{aligned}
& P Q=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}=9 \\
& \Rightarrow \sqrt{(5-x)^{2}+(-1-5)^{2}+(7-1)^{2}}=9
\end{aligned}
$$

Squaring on both sides

$$
\begin{aligned}
& \Rightarrow(5-x)^{2}+36+36=81 \\
& \Rightarrow(5-x)^{2}=81-72=9 \\
& \Rightarrow 5-x= \pm 3 \\
& \Rightarrow 5-x=3 \text { or } 5-x=-3 \\
& \Rightarrow x=5-3 \text { or } x=5+3 \\
& \Rightarrow x=2 \text { or } 8
\end{aligned}
$$

2. Show that the points $(2,3,5),(-1,5,-1)$ and $(4,-3,2)$ form a right angled isosceles triangle.
Sol. Given points are $\mathrm{A}(2,3,5), \mathrm{B}(-1,5,-1), \mathrm{C}(4,-3,2)$

$$
\begin{aligned}
& A B=\sqrt{(2+1)^{2}+(3-5)^{2}+(5+1)^{2}} \\
& \Rightarrow \mathrm{AB}^{2}=(2+1)^{2}+(3-5)^{2}+(5+1)^{2} \\
& \quad=9+4+36=49
\end{aligned}
$$

Similarly, $\quad \mathrm{BC}^{2}=(-1-4)^{2}+(5+3)^{2}+(-1-2)^{2}=25+64+9=98$
And $\mathrm{CA}^{2}=(4-2)^{2}+(-3-3)^{2}+(2-5)^{2}=4+36+9=49$
from above values $\mathrm{AB}^{2}+A C^{2}=B C^{2}$
Therefore, ABC is a right angled isosceles triangle.
3. Show that the points $(1,2,3),(2,3,1)$ and $(3,1,2)$ form an equilateral triangle.

Sol. Given points are $\mathrm{A}(1,2,3), \mathrm{B}(2,3,1)$ and $\mathrm{C}(3,1,2)$

$$
\begin{aligned}
A B & =\sqrt{(1-2)^{2}+(2-3)^{2}+(3-1)^{2}}=\sqrt{1+1+4}=\sqrt{6} \\
& B C=\sqrt{(2-3)^{2}+(3-1)^{2}+(1-2)^{2}}=\sqrt{6} \\
& C A=\sqrt{(3-1)^{2}+(1-2)^{2}+(2-3)^{2}}=\sqrt{6} \\
& \Rightarrow A B=B C=C A
\end{aligned}
$$

$\Rightarrow A B C$ is an equilateral triangle.
4. $\quad P$ is a variable point which moves such that $3 P A=2 P B$. If $A=(-2,2,3)$ and
$B=(13,-3,13)$. prove that P satisfies the equation
$x^{2}+y^{2}+z^{2}+28 x-12 y+10 z-247=0$.
Sol. Given points are $\mathrm{A}(-2,2,3)$ and $\mathrm{B}=(13,-3,13)$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be any point on the locus.
Given that $3 \mathrm{PA}=2 \mathrm{~PB} \Rightarrow 9 \mathrm{PA}^{2}=4 \mathrm{~PB}^{2}$
$9\left[(\mathrm{x}+2)^{2}+(\mathrm{y}-2)^{2}+(\mathrm{z}-3)^{2}\right]=4\left[(\mathrm{x}-13)^{2}+(\mathrm{y}+3)^{2}+(\mathrm{z}-13)^{2}\right]$
$\left.\Rightarrow 9\left(x^{2}+4 x+4+y^{2}-4 y+4+z^{2}-6 z+9\right)=x^{2}-26 x+169+y^{2}+6 y+9+z^{2}-26 z+169\right)$
$\Rightarrow 9 x^{2}+9 y^{2}+9 z^{2}+36 x-36 y-54 z+153=4 x^{2}+4 y^{2}+4 z^{2}-104 x+24 y-104 z+1388$
$\Rightarrow 5 \mathrm{x}^{2}+5 \mathrm{y}^{2}+5 \mathrm{z}^{2}+140 \mathrm{x}-60 \mathrm{y}+50 \mathrm{z}-1235=0$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+28 \mathrm{x}-12 \mathrm{y}+10 \mathrm{z}-247=0$.
Locus of P is $x^{2}+y^{2}+z^{2}+28 x-12 y+10 z-247=0$.
5. Show that the points $(1,2,3)(7,0,1)$ and $(-2,3,4)$ are collinear.

Sol. Given points are $\mathrm{A}(1,2,3), \mathrm{B}(7,0,1)$ and $\mathrm{C}(-2,3,4)$

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(1-7)^{2}+(2-0)^{2}+(3-1)^{2}}=\sqrt{36+4+4}=\sqrt{44}=2 \sqrt{11} \\
& \mathrm{BC}=\sqrt{(7+2)^{2}+(0-3)^{2}+(1-4)^{2}}=\sqrt{81+9+9}=\sqrt{99}=3 \sqrt{11} \\
& \mathrm{CA}=\sqrt{(-2-1)^{2}+(3-2)^{2}+(4-3)^{2}}=\sqrt{9+1+1}=\sqrt{11}
\end{aligned}
$$

From above values $\mathrm{AB}+\mathrm{AC}=2 \sqrt{11}+\sqrt{11}=3 \sqrt{11}=\mathrm{BC}$
Hence, the points A, B, C are collinear.
6. Show that ABCD is a square where $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are the points $(0,4,1),(2,3,-1)$, $(4,5,0)$ and $(2,6,2)$ respectively.
Sol. Given points $\mathrm{A}=(0,4,1), \mathrm{B}=(2,3,-1), \mathrm{C}=(4,5,0)$ and $\mathrm{D}=(2,6,2)$

$$
\begin{aligned}
\mathrm{AB}=\sqrt{(0-2)^{2}+(4-3)^{2}+(1+1)^{2}}=3 \\
\mathrm{BC}=\sqrt{(2-4)^{2}+(3-5)^{2}+(-1-0)^{2}}=3
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{CD}=\sqrt{(4-2)^{2}+(5-6)^{2}+(0-2)^{2}}=3 \\
\mathrm{DA}=\sqrt{(2-0)^{2}+(6-4)^{2}+(2-1)^{2}}=3 \\
\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA} \\
\mathrm{AC}=\sqrt{(0-4)^{2}+(4-5)^{2}+(1-0)^{2}}=\sqrt{18} \\
\mathrm{BD}=\sqrt{(2-2)^{2}+(3-6)^{2}+(-1-2)^{2}}=\sqrt{18} \\
\Rightarrow \mathrm{AC}=\mathrm{BC} \text { and } \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}=9+9=19=\mathrm{AC}^{2} \\
\Rightarrow \angle \mathrm{ABC}=90^{\circ}
\end{gathered}
$$

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are the vertices of a square.

SECTION FORMULA

(i)
$P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ be two points in space and let \mathbf{R} be a point on the line segment joining P and Q such that it divides $\overline{P Q}$ internally in the ratio $m: n$. Then

(ii) $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ be two points in space and let \mathbf{R} be a point on the line segment joining P and \mathbf{Q} such that it divides $\overline{P Q}$ externally in the ratio $m: n$. Then the coordinates of are $\frac{\not \partial x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n} \frac{\ddot{\partial}}{\stackrel{\rightharpoonup}{\dot{\phi}}} m^{1} n$

MID POINT
The mid point of the linesegment joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\frac{œ x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2} \frac{\ddot{\partial}}{\stackrel{\rightharpoonup}{\bar{\circ}}}
$$

Centroid of a triangle.

The coordinates of the centriod of the triangle with vertices $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ is $\frac{æ x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}+\frac{z_{1}+z_{2}+z_{3}}{3} \frac{\ddot{\partial}}{\stackrel{\ddot{\emptyset}}{\dot{\emptyset}}}$

Centroid of a tetrahydron.

The coordinates of the centriod of the tetrahedron with vertices $A\left(x_{1}, y_{1}, z_{1}\right)$,

$$
B\left(x_{2}, y_{2}, z_{2}\right), C\left(x_{3}, y_{3}, z_{3}\right) \text { and } D\left(x_{4}, y_{4}, z_{4}\right)
$$

$$
\text { ise } \frac{\mathfrak{c} x_{1}+x_{2}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{4}}{4} \frac{\ddot{\partial}}{\stackrel{\rightharpoonup}{\phi}}
$$

TRANSLATION OF AXES

Let $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{A}(\mathrm{h}, \mathrm{k}, \mathrm{l})$ be two points is space w.r.t the frame of reference OXYZ . Now treating A as the origin, let $\overrightarrow{A X^{1}}, \overrightarrow{A Y^{1}}, \overrightarrow{A Z^{1}}$ be the new axes parallel to $\overrightarrow{O X}, \overrightarrow{O Y}, \overrightarrow{O Z}$ respectively. If $\left(x^{1}, y^{1}, z^{1}\right)$ are the coordinates of P w.r.t $A X^{1} Y^{1} Z^{1}$, then $x^{1}=x-h, y^{1}=y-k, z^{1}=z-l$.

Ex. Origin is shifted to the point (1,2-3). Find the new coordinates of (1,0,-1)

Sol. $\quad(x, y, z)=(1,0,-1) \quad \operatorname{and}(h, k, l)=(1,2-3)$.
Now new coordinates are $\mathrm{X}=\mathrm{x}-\mathrm{h}=1-1=0$

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{y}-\mathrm{k}=0-2=-2 \\
& \mathrm{Z}=\mathrm{z}-\mathrm{l}=-1+3=2
\end{aligned}
$$

herefore new coordinates are ($0,-2,2$)

ExERCISE 5

1. Find the ratio in which the xz-plane divides the line joining $A(-2,3,4)$ and $B(1,2,3)$.

Sol. The Ratio in which xz plane divides the line segment joining the points $\mathrm{A}(-2,3,4)$ and $(1,2,3)$ is $-y_{1}: y_{2}=-3: 2$
2. Find the coordinates of the vertex C of $\triangle \mathrm{ABC}$ if its centroid is the origin and the vertices A, B are $(1,1,1)$ and $(-2,4,1)$ respectively.
Sol. A(1, 1, 1), B($-2,4,1$) are the vertices of $\triangle \mathrm{ABC}$.
Let $\mathrm{C}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Given O is the centroid of $\triangle A B C$

$$
\Rightarrow\left(\frac{1-2+\mathrm{x}}{3}, \frac{1+4+\mathrm{y}}{3}, \frac{1+1+\mathrm{z}}{3}\right)=(0,0,0)
$$

$\Rightarrow \frac{\mathrm{x}-1}{3}=0, \frac{\mathrm{y}+5}{3}=0, \frac{\mathrm{z}+2}{3}=0$
$\mathrm{x}-1=0, \mathrm{y}+5=0, \mathrm{z}+2=0 \Rightarrow \mathrm{x}=1, \mathrm{y}=-5, \mathrm{z}=-2$
\therefore Coordinates of c are $(1,-5,-2)$.
3. If $(3,2,-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2)$ is the centroid of a tetrahedron, find the fourth vertex.
Sol. $\mathrm{A}(3,2,-1), \mathrm{B}(4,1,1), \mathrm{C}(6,2,5)$, let $\mathrm{D}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be the $4^{\text {th }}$ vertex of the tetrahedron.
Given centroid $G=(4,2,2)$
But $\mathrm{G}=\left(\frac{3+4+6+\mathrm{x}}{4}, \frac{2+1+2+\mathrm{y}}{4}, \frac{-1+1+5+\mathrm{z}}{4}\right)$
Therefore, $\left(\frac{13+\mathrm{x}}{4}, \frac{5+\mathrm{y}}{4}, \frac{5+\mathrm{z}}{4}\right)=(4,2,2)$
$\Rightarrow \frac{13+\mathrm{x}}{4}=4, \frac{5+\mathrm{y}}{4}=2, \frac{5+\mathrm{z}}{4}=2$
$\Rightarrow 13+x=16,5+y=8,5+z=8$
$\Rightarrow \mathrm{x}=3, \mathrm{y}=3, \mathrm{z}=3$
Coordinates of D are $(3,3,3)$
4. Find the distance between the midpoint of the line segment $\overrightarrow{\mathrm{AB}}$ and the point $(\mathbf{3},-\mathbf{1}, 2)$ where $A=(6,3,-4)$ and $B=(-2,-1,2)$.
Sol. Given points are $\mathrm{A}=(6,3,-4), \mathrm{B}=(-2,-1,2)$
Mid point of AB is $\mathrm{Q}=\left(\frac{6-2}{2}, \frac{3-1}{2}, \frac{-4+2}{2}\right)=(2,1,-1)$
Given point $\mathrm{P}=(3,-1,2)$
$\Rightarrow \mathrm{PQ}=\sqrt{(3-2)^{2}+(-1-1)^{2}+(2+1)^{2}}=\sqrt{1+4+9}=\sqrt{14}$ units.
II.

1. Show that the points $(5,4,2)(6,2,-1)$ and $(8,-2,-7)$ are collinear.

Sol. Given points are $\mathrm{A}(5,4,2), \mathrm{B}(6,2,-1), \mathrm{C}(8,-2,-7)$
Show that $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$.
2. Show that the points $A(3,2,-4), B(5,4,-6)$ and $C(9,8,-10)$ are collinear and find the ratio in which B divides $\overline{\mathrm{AC}}$.
Sol. Given points are $\mathrm{A}(3,2,-4), \mathrm{B}(5,4,-6)$ and $\mathrm{C}(9,8,-10)$
$\mathrm{AB}=\sqrt{(3-5)^{2}+(2-4)^{2}+(-4+6)^{2}}=\sqrt{4+4+4}=\sqrt{12}=2 \sqrt{3}$
$\mathrm{BC}=\sqrt{(5-9)^{2}+(4-8)^{2}+(-6+10)^{2}}=\sqrt{16+16+16}=\sqrt{48}=4 \sqrt{3}$
$\mathrm{CA}=\sqrt{(9-3)^{2}+(8-2)^{2}+(-10+4)^{2}}=\sqrt{36+36+36}=\sqrt{108}=6 \sqrt{3}$

From above values $\quad \mathrm{AB}+\mathrm{BC}=2 \sqrt{3}+4 \sqrt{3}=6 \sqrt{3}=\mathrm{CA}$
$\therefore \mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear.
The Ratio in which B divides $A C$ is $A B$: BCi.e., $2 \sqrt{3}: 4 \sqrt{3}=1: 2$
III.

1. If $A(4,8,12), B(2,4,6), C(3,5,4)$ and $D(5,8,5)$ are four points, show that the line $\overleftrightarrow{\mathrm{AB}}$ and $\overleftrightarrow{\mathrm{CD}}$ intersect. Also find their point of intersection.
Sol. Given points are $\mathrm{A}(4,8,12), \mathrm{B}(2,4,6), \mathrm{C}(3,5,4), \mathrm{D}(5,8,5)$
Equation of $\overrightarrow{A B}$ is $\frac{x-2}{2}=\frac{y-4}{4}=\frac{z-6}{6}=t$ i.e.,
$\overrightarrow{A B}$ is $\frac{x-2}{1}=\frac{y-4}{2}=\frac{z-6}{3}=t$
Any point on this line is $\quad P(2+t, 4+2 t, 6+3 t)$
Equation of $\overrightarrow{C D}$ is $\frac{x-3}{2}=\frac{y-5}{3}=\frac{z-4}{1}=s$
Any of on this line is $\quad \mathrm{Q}(3+2 \mathrm{~s}, 5+3 \mathrm{~s}, 4+\mathrm{s})$
Lines are intersecting, $\quad \mathrm{P}=\mathrm{Q}$
```
\((2+t, 4+2 \mathrm{t}, 6+3 \mathrm{t})=(3+2 \mathrm{~s}, 5+3 \mathrm{~s}, 4+\mathrm{s})\)
\(\mathrm{t}+2=3+2 \mathrm{~s} \quad, \quad 4+2 \mathrm{t}=5+3 \mathrm{~s}\) and \(6+3 \mathrm{t}=4+\mathrm{s}\)
\(\Rightarrow \mathrm{t}-2 \mathrm{~s}=1-------(1)\),
\(2 \mathrm{t}-3 \mathrm{~s}=1\)-----------(2) and
\(3 \mathrm{t}-\mathrm{s}=-2\)

Solving (1) and (2), \(\quad t=-1, s=-1\)
Substituting these values in (3), 3(-1) -(-1) =-2
\[
-2=-2
\]

Therefore eq.(3) is satisfied by the values of \(t\) and \(s\).
Hence the lines are intersecting lines.
Sub \(t=-1\) in point \(P\) then \(P=(2-1,4-2,6-3)=(1,2,3)\)
2. Find the point of intersection of the lines \(\overleftrightarrow{A B}\) and \(\overleftrightarrow{C D}\) where \(A=(7,-6,1)\), \(B=(17,-18,-3), C=(1,4,-5)\) and \(D=(3,-4,11)\).

Same as above problem.
3. \(A(3,2,0), B(5,3,2), C(-9,6,-3)\) are vertices of a triangle. \(\overline{\mathrm{AD}}\), the bisector of \(\angle \mathrm{BAC}\) meets \(\overline{\mathrm{BC}}\) at D . Find the coordinates of \(D\).
Sol. A(3, 2, 0), B(5, 3, 2), C(-9, 6, -3\()\) are the vertices of \(\triangle \mathrm{ABC}\).

\(\mathrm{AB}=\sqrt{(3-5)^{2}+(2-3)^{2}+(0-2)^{2}} \quad=\sqrt{4+1+4}=3\)
\(\mathrm{AC}=\sqrt{(3+9)^{2}+(2-6)^{2}+(0+3)^{2}} \quad=\sqrt{144+16+9}=\sqrt{169}=13\)
Let AD be the bisector of \(\angle \mathrm{BAC}\). Then D divides BC in the ratio \(\mathrm{AB}: \mathrm{AC}\) i.e., \(3: 13\)
\(\therefore\) Coordinates of D are \(\left(\frac{3(-9)+13 \cdot 5}{3+13}, \frac{3 \cdot 6+13 \cdot 3}{3+13}, \frac{3(-3)+13 \cdot 2}{3+13}\right)=\left(\frac{38}{16}, \frac{57}{16}, \frac{17}{16}\right)\)
4. Show that the points \(\mathbf{O}(0,0,0), \mathbf{A}(2,-3,3), \mathbf{B}(-2,3,-3)\) are collinear. Find the ratio in which each point divides the segment joining the other two.
Sol. Given points are \(\mathrm{O}(0,0,0), \mathrm{A}(2,-3,3), \mathrm{B}(-2,3,-3)\)
\(\mathrm{OA}=\sqrt{(0-2)^{2}+(0+3)^{2}+(0-3)^{2}}=\sqrt{4+9+9}=\sqrt{22}\)
\(\mathrm{OB}=\sqrt{(0+2)^{2}+(0-3)^{2}+(0+3)^{2}} \quad=\sqrt{4+9+9}=\sqrt{22}\)
\(\mathrm{AB}=\sqrt{(2+2)^{2}+(-3-3)^{2}+(3+3)^{2}} \quad=\sqrt{16+36+36}=\sqrt{88}=2 \sqrt{22}\)
\(\mathrm{OA}+\mathrm{OB}=\sqrt{22}+\sqrt{22}=2 \sqrt{22}=\mathrm{AB}\)
\(\therefore \mathrm{O}, \mathrm{A}, \mathrm{B}\) are collinear.

The Ratio in which O divides AB is \(\mathrm{OA}: \mathrm{OB}=\sqrt{22}: \sqrt{22}=1: 1\)
The Ratio in which A divides OB is \(\mathrm{OA}: \mathrm{AB}=\sqrt{22}: 2 \sqrt{22}=1: 2\)
The Ratio in which B divides OA is \(\mathrm{AB}: \mathrm{BO}=2 \sqrt{22}: \sqrt{22}=2: 1\)

\section*{5. Find the fourth vertex of the parallelogram whose consecutive vertices are ( \(2,4,-1\) ),} \((3,6,-1)\) are \((4,5,1)\).
Sol.

ABCD is a parallelogram

where \(\mathrm{A}=(2,4,-1), \mathrm{B}=(3,6,-1), \mathrm{C}=(4,5,1)\)
let \(\mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})\) be the fourth vertex
since ABCD is a parallelogram, therefore Mid point of AC=Mid point of BD
\(\left(\frac{2+4}{2}, \frac{4+5}{7}, \frac{-1+1}{2}\right)=\left(\frac{3+x}{2}, \frac{6+y}{2}, \frac{-1+\mathrm{z}}{2}\right)\)
\(\frac{3+\mathrm{x}}{2}=\frac{6}{2} \Rightarrow \mathrm{x}=3, \frac{6+\mathrm{y}}{2}=\frac{9}{2} \Rightarrow \mathrm{y}=3, \frac{\mathrm{z}-1}{2}=\frac{0}{2} \Rightarrow \mathrm{z}=1\)
\(\therefore\) Coordinates of the fourth vertex are \(\mathrm{D}(3,3,1)\)
6. \(\mathbf{A}(5,4,6), \mathrm{B}(1,-1,3), \mathrm{C}(4,3,2)\) are three points. Find the coordinates of the point in which the bisector of \(\angle \mathrm{BAC}\) meets the side \(\overline{\mathrm{BC}}\).
Sol. We know that if AB is the bisector of \(\angle \mathrm{BAC}\) divides BC in the ratio AB : AC

\[
\begin{array}{ll}
\mathrm{AB}=\sqrt{(5-1)^{2}+(4+1)^{2}+(6-3)^{2}} & =\sqrt{16+25+9}=\sqrt{50}=5 \sqrt{2} \\
\mathrm{AC}=\sqrt{(5-4)^{2}+(4-3)^{2}+(6-2)^{2}} & =\sqrt{1+1+16}=\sqrt{18}=3 \sqrt{2}
\end{array}
\]

D divides BC in the ratio \(\mathrm{AB}: \mathrm{AC}\) i.e., \(5 \sqrt{2}: 3 \sqrt{2} \quad\) i.e., \(5: 3\). Coordinates of D are \(\left(\frac{5 \cdot 4+3 \cdot 1}{5+3}, \frac{5 \cdot 3+3 \cdot(-1)}{5+3}, \frac{5 \cdot 2+3 \cdot 3}{5+3}\right)=\left(\frac{23}{8}, \frac{3}{2}, \frac{19}{8}\right)\)

\section*{Problems for practice}
1. Show that the points \(A(-4,9,6), B(-1,6,6)\) and \(C(0,7,10)\) from a right angled isosceles triangle.
2. Show that the point whose distance from
\(Y\)-axis is thrice its distance from \((1,2,-1)\) satisfies the equation \(8 x^{2}+9 y^{2}+8 z^{2}-18 x-\) \(36 y+18 z+54=0\).
3. Show that the points \(A(3,-2,4), B(1,1,1)\) and \(C(-1,4,2)\) are collinear.
4. Find the ratio in which YZ-plane divides the line joining \(A(2,4,5)\) and \(B(3,5,-4)\). Also find the point of intersection.
Ans. (0, 2, 23)
5. Show that the points \(A(3,-2,4), B(1,1,1)\) and \(C(-1,4,-2)\) are collinear.```

