AIMSTUTORIAL

		10.	If the roots of $ax^2 + bx + c = 0$ are imaginary (complex roots) then for $x \in R$, ' $ax^2 + bx + c$ ' and 'a' have the same sign.
DEFINITIONS, CONCEPTS AND FORMULAE		11.	If the roots of $ax^2 + bx + c = 0$ are real and equal to
1.	If a, b, c are complex numbers and $a \neq 0$, then $ax^2 + bx + c = 0$ is called a quadratic equation.		$\alpha = \frac{-b}{2a}$, then for $\alpha \neq x \in R$, 'ax ² + bx + c' and 'a' have the same sign.
2.	The roots of the quadratic equation $ax^2 + bx + c = 0$ are $\frac{-b \pm \sqrt{b^2 - 4ac}}{c}$.	12. Let α , β be the real roots of $ax^2 + bx + c = 0$ and $\alpha < \beta$, then for i) $x \in R$, $\alpha < x < \beta \Rightarrow `ax^2 + bx + c'$ and `a' have opposite signs. ii) $x \in R$, $x < \alpha$ or $x > \beta \Rightarrow `ax^2 + bx + c'$ and `a' have the same sign.	
3.	2a If α, β are roots of $ax^2 + bx + c = 0$, then $\alpha + \beta = \frac{-b}{a}$, $\alpha\beta = \frac{c}{a}$.		opposite signs. ii) $x \in R$, $x < \alpha$ or $x > \beta \Rightarrow ax^2+bx+c'$ and 'a' have the same sign.
4.	$\Delta = b^2$ - 4ac is called discriminant of ax ² + bx + c = 0.	13.	Let f (x) = ax^2+bx+c be a quadratic function.
5.	If a, b, c are real, then the nature of the roots of $ax^2 + bx + c = 0$ is as follows :	i) If a > 0, then f (x) has minimum at x = $\frac{-b}{2a}$ and	
	 i) If b² - 4ac < 0, then the roots are imaginary and they are conjugate complex numbers. 		the minimum value = $\frac{4ac - b^2}{4a}$.
	ii) If b^2 -4ac = 0, then the roots are real and equal.		ii) If a < 0, then f (x) has maximum at x = $\frac{-D}{2a}$ and
	iii) If b² - 4ac > 0, then the roots are real and distinct.	the maximum value :	the maximum value = $\frac{4ac - b^2}{4a}$.
6.	If a, b, c are rational, then the nature of the roots of $ax^2 + bx + c = 0$ is as follows :	14.	Let α , β be the roots of ax ² +bx+c = 0, then the
	 i) If b² - 4ac < 0, then the roots are imaginary and they are conjugate complex numbers. 	i) $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is f $(\frac{1}{x}) = 0$	
	ii) If b^2 - 4ac = 0, then the roots are rational and equal.		ii) α + k and β + k is f(x - k) = 0
	 iii) If b² - 4ac > 0 and b² - 4ac is a perfect square, then the roots are rational and distinct. 		iii) α - k and β - k is f(x + k) = 0
	 iv) If b² - 4ac > 0 and b² - 4ac is not a perfect square, then the roots are irrational and distinct. They are conjugate surds. 	v) $k\alpha$ and $k\beta$ is $f\left(\frac{x}{k}\right) = 0$ 15. If $ax^2 + bx + c$ is a quadratic expression, then $ax^2 + bx + c > 0$ or $ax^2 + bx + c \ge 0$ or $ax^2 + bx + c$ < 0 or $ax^2 + bx + c \le 0$ are called a 'quadratic inequations'.	
7.	The quadratic equation whose roots are α , β is x^2 - (α + β) x + $\alpha\beta$ = 0.		
8.	If α , β are the roots of $ax^2+bx+c=0$, then $ax^2+bx+c=a(x - \alpha)(x - \beta)$.		
9.	A necessary and sufficient condition for the quadratic equations $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ to have a common root is $(c_1a_2 - c_2a_1)^2 = (a_1b_2 - a_2b_1)(b_1c_2 - b_2c_1)$.		
	Here the common root is $\frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$		

1

AIMSTUTORIAL MATHEMATICS - IIA LEVEL - I (VSAQ) 4. If α , β are the roots of the equation $ax^2 + bx + c = 0$. Find the value of $\frac{1}{\alpha} + \frac{1}{\alpha}$ 1. Form a guadratic equation whose roots are -3 ± 5i. A: α , β are the roots of $ax^2 + bx + c = 0$ A: The quadratic equation whose roots are $\Rightarrow \alpha + \beta = \frac{-b}{a}, \ \alpha\beta = \frac{c}{a}$ -3 + 5i and -3 - 5i is $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ $\Rightarrow x^2 - (-3 + 5i - 3 - 5i) x + (-3 + 5i) (-3 - 5i) = 0$ Now $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta} = \frac{-b/a}{c/a} = \frac{-b}{c}$. :: $(a + ib) (a - ib) = a^2 + b^2$ \Rightarrow x² + 6x + 34 = 0. 5. If α and β are the roots of the equation $ax^{2} + bx + c = 0$, then find the value of 2. Obtain a guadratic equation whose roots are $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$. p-q -(p+q) A: α , β are the roots of $ax^2 + bx + c = 0$. A: The quadratic equation whose roots are $\frac{p-q}{p+q}, \frac{-(p+q)}{p-q}$ is $\Rightarrow \alpha + \beta = \frac{-b}{2}, \ \alpha\beta = \frac{c}{2}$ $\mathbf{X}^{2} - \left[\frac{\mathbf{p} - \mathbf{q}}{\mathbf{p} + \mathbf{q}} - \frac{(\mathbf{p} + \mathbf{q})}{\mathbf{p} - \mathbf{q}}\right] \mathbf{X} + \left(\frac{\mathbf{p} - \mathbf{q}}{\mathbf{p} + \mathbf{q}}\right) \left\{\frac{-(\mathbf{p} + \mathbf{q})}{\mathbf{p} - \mathbf{q}}\right\} = \mathbf{0}$ Now $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\beta^2 + \alpha^2}{(\alpha\beta)^2}$ $=\frac{(\alpha+\beta)^2-2\alpha\beta}{(\alpha\beta)^2}$ $\Rightarrow x^{2} - \left\{ \frac{(p-q)^{2} - (p+q)^{2}}{p^{2} - q^{2}} \right\} x - 1 = 0$ $=\frac{(-b/a)^2 - 2c/a}{(c/a)^2}$ AIMS \Rightarrow (p² - q²) x² + 4pqx - (p² - q²) = 0 $=\frac{b^2-2ac}{a^2}\cdot\frac{a^2}{c^2}$ 3. Find the guadratic equation, the sum of whose roots is 7 and the sum of the squares of the roots is 25. $=\frac{b^2-2ac}{c^2}$. A: Let α , β be the roots of the required quadratic equation. 6. If α and β are the roots of the equation $x^2 + x + 1 = 0$, Given that $\alpha + \beta = 7$. $\alpha^2 + \beta^2 = 25$. find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$. $(\alpha + \beta)^2 = 7^2$ $\Rightarrow \alpha^2 + \beta^2 + 2\alpha\beta = 49$ A: α and β are the roots of $x^2 + x + 1 = 0$. \Rightarrow 25 + 2 $\alpha\beta$ = 49 $\Rightarrow \alpha + \beta = -b/a = -1$; $\alpha\beta = c/a = 1$ $\Rightarrow 2\alpha\beta = 49 - 25 = 24$ Now $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$ $\Rightarrow \alpha\beta = 12$ $=\frac{(\alpha+\beta)^2-2\alpha\beta}{\alpha\beta}$: Required quadratic equation is $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ $=\frac{(-1)^2-2(1)}{4}$ $\Rightarrow x^2 - 7x + 12 = 0.$

Quadratic Expressions

= -1.

AIMSTUTORIAL

7. If α and β are the roots of the equation 10. Prove that the roots of $(x - a) (x - b) = h^2$ are $2x^2 + 3x + 6 = 0$, find the guadratic equation always real. whose roots are α^3 and β^3 . A: Given equation is $(x - a)(x - b) = h^2$ A: α , β are the roots of $2x^2 + 3x + 6 = 0$ $\Rightarrow x^2 - (a + b)x + (ab - h^2) = 0$ $\Rightarrow \alpha + \beta = \frac{-b}{a} = \frac{-3}{2}; \ \alpha\beta = \frac{c}{a} = \frac{6}{2} = 3$ Its discriminant $= \{-(a + b)^2 - 4(1)(ab - h^2)\}$ $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ $= a^{2} + b^{2} + 2ab - 4ab + 4h^{2}$ $=\frac{-27}{8}+\frac{27}{2}$ $= (a - b)^{2} + (2h)^{2}$ <u>></u> 0 $=\frac{-27+108}{8}$ Hence the roots of the given equation are always real. = - 81 11. If $x^2 - 6x + 5 = 0$ and $x^2 - 12x + p = 0$ have a common root, then find p. $\alpha^{3}\beta^{3} = 3^{3} = 27$ A: $x^2 - 6x + 5 = 0$ Required guadratic equation is \Rightarrow (x - 1) (x - 5) = 0 $x^{2} - (\alpha^{3} + \beta^{3})x + \alpha^{3}\beta^{3} = 0$ ⇒x = 1. 5 $x^2 - \frac{81}{8}x + 27 = 0$ \Rightarrow If x = 1, 1 - 12 + p = 0 \Rightarrow p = 11 \Rightarrow If x = 5, 25 - 60 + p = 0 \Rightarrow p = 35 $8x^2 - 81x + 216 = 0$. ∴ p = 11 or 35 8. If the equation $x^2 - 15 - m(2x - 8) = 0$ has equal 12. If the quadratic equations $ax^2 + 2bx + c \in \mathbf{0}$ roots, then find the values of m. and $ax^2 + 2cx + b = 0$, (b \neq c) have a common A: Given equation is $x^2 - 2mx + (8m - 15) = 0$ root, then show that a + 4b + 4c = 0. since it has equal roots $b^2 - 4ac = 0$ A: Let α be the common root of given two equations. \Rightarrow (-2m)² - 4(1)(8m - 15) = 0 $a\alpha^2 + 2b\alpha + c = 0$ $\Rightarrow 4m^2 - 4(8m - 15) = 0$ $\div 4$ $a\alpha^2 + 2c\alpha + b = 0$ \Rightarrow m² - 8m + 15 = 0 on subtraction $2(b-c)\alpha - (b-c) = 0$ \Rightarrow (m - 3) (m - 5) = 0 $2\alpha - 1 = 0$ $\therefore b - c \neq 0$ \therefore m = 3 or 5. $\alpha = 1/2$ 9. If $(m + 1) x^2 + 2 (m + 3) x + m + 8 = 0$ has equal \Rightarrow a (1/2)² + 2b (1/2) + c = 0 roots, find m. \Rightarrow a + 4b + 4c = 0. A: Given equation is $(m + 1)x^2 + 2(m + 3)x + (m + 8) = 0$ 13. For what values of x, the expression Since it has equal roots $b^2 - 4ac = 0$ $3x^2 + 4x + 4$ is positive. \Rightarrow {2(m+3)}² - 4(m + 1) (m + 8) = 0 ÷4 A: Given expression is $3x^2 + 4x + 4$ \Rightarrow m² + 6m + 9 - (m² + 9m + 8) = 0 Consider $3x^2 + 4x + 4 = 0$ \Rightarrow - 3m + 1 = 0 Roots are x = $\frac{-b \pm \sqrt{b^2} - 4ac}{2}$ ⇒m = 1/3. 2a

3

$$=\frac{4\pm\sqrt{16}\cdot 4(3)(4)}{2(3)}$$

$$=\frac{4\pm\sqrt{32}}{6}$$

$$=\frac{4\pm\sqrt{2}i}{6}$$
which are complex numbers.
Thus, $\forall x \in \mathbb{R}$, $3x^2 + 4x + 4$ is positive.
14. For what values of x, the expression $15 + 4x - 3x^2$
is negative.
A: Given expression is $15 + 4x - 3x^2$.
Here $a = -3 < 0$.
Consider $15 + 4x - 3x^2 = 0$
 $= 3x^2 - 3x + 5 (x - 3) = 0$
 $= (3x + 5)(x - 3) = 0$
 $= (-5)(x - 5)(x - 5)($

4

3. If x is a real number, find the range	5. If x is real, show that the values of the
$\frac{x+2}{2x^2+3x+6}$.	expression $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ do not lie between
A: Let $\frac{x+2}{2} = y$	5 and 9.
$2x^{2} + 3x + 6$ $\Rightarrow x + 2 = 2yx^{2} + 3yx + 6y$	A: Let $\frac{x^2 + 34x - 71}{x^2 + 2x - 7} = y$
$\Rightarrow 2yx^2 + (3y - 1)x + 2(3y - 1) = 0$	$\rightarrow x^2 + 24x 71 = 10x^2 + 21x 7y$
For $x \in R$, $b^2 - 4ac \ge 0$	$ \rightarrow x + 34x - 71 - yx + 2yx - 7y $ $ \rightarrow (y, -1) y^{2} + 2(y, -17)y + (71, -7y) = 0 $
$\Rightarrow (3y - 1)^2 - 4(2y) (2) (3y - 1) \ge 0$	$\Rightarrow (y - 1) x^{2} + 2(y - 17)x + (71 - 7y) = 0$ For $x \in \mathbb{R}$ h^{2} $A = 0$
\Rightarrow (3y - 1) [3y - 1 - 16y] \geq 0	For $x \in \mathbb{R}$, $p^2 - 4ac \ge 0$ $\Rightarrow (2(y - 47))^2 - 4(y - 1)(71 - 7y) > 0$
\Rightarrow (3y - 1) (-13y - 1) ≥ 0 x (-1)	$\Rightarrow \{2(y-17)\}^2 - 4(y-1)(71-7y) \ge 0$
$\Rightarrow (3y - 1) (13y + 1) \le 0 \qquad \qquad \div 3(13)$	$\Rightarrow 4(y^2 - 34y + 289) + 4(7y^2 - 78y + 71) \ge 0$
$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{pmatrix} 1 \\ -1 \end{bmatrix} = 0$	$\Rightarrow y^2 - 34y + 289 + 7y^2 - 78y + 71 \ge 0$
$\Rightarrow \left[\begin{array}{c} \mathbf{y} \cdot \left(\frac{13}{13} \right) \right] \left(\begin{array}{c} \mathbf{y} \cdot \frac{3}{3} \right) \leq 0 \end{array}$	$\Rightarrow 8y^2 - 112y + 360 \ge 0 \qquad \div 8$
[-1 1]	$\Rightarrow y^2 - 14y + 45 \ge 0$
\Rightarrow y $\in \left\lfloor \overline{13}, \overline{3} \right\rfloor$	$\Rightarrow y^2 - 9y - 5y + 45 \ge 0$
: Range of $\frac{x+2}{2}$ is $\begin{bmatrix} -1 & 1 \end{bmatrix}$	$\Rightarrow y(y - 9) - 5(y - 9) \ge 0$
$2x^2 + 3x + 6$	$\Rightarrow (y - 5) (y - 9) \ge 0$
1 1 1	$\Rightarrow y \in (-\infty, 5] \cup [9, \infty)$
4. Prove that $\frac{1}{3x+1} + \frac{1}{x+1} - \frac{1}{(3x+1)(x+1)}$ does	Hence the values of $\frac{x^2 + 34x - 71}{40}$ do not lie
not lie between 1 and 4, if x is real.	hetween 5 and 9 $x^2 + 2x - 7$
$x = \frac{1}{1} + \frac{1}{1} - \frac{1}{1} - \frac{x + 1 + 3x + 1 - 1}{1}$	between 5 and 5.
A: $3x+1$ $x+1$ $(3x+1)(x+1) = (3x+1)(x+1)$	x -1
4x + 1	6. Show that $\frac{1}{x^2 - 5x + 9}$ lies between $\frac{1}{11}$, 1.
$=\frac{1}{(3x+1)(x+1)}$	v
4x + 1 = x	A: Let $\frac{x}{x^2 - 5x + 9} = y$
$3x^2 + 4x + 1$	$\rightarrow x = 3\alpha^2$ First 0.4
\Rightarrow 4x + 1 = 3yx ² + 4yx + y	$\Rightarrow x - yx^2 - 5yx + 9y$
$\Rightarrow 3yx^2 + 4(y - 1)x + (y - 1) = 0$	$\Rightarrow yx^2 - (3y + 1)x + 9y = 0$
For $x \in R$, b ² - 4ac ≥ 0	For $x \in \mathbb{R}$, $b^2 - 4ac \ge 0$
$\Rightarrow \{(4(y-1))^2 - 4(3y) (y-1) \ge 0 \qquad \qquad \div 4$	$\Rightarrow \{-(5y+1)\}^2 - 4(y)(9y) \ge 0$
\Rightarrow (y - 1) [4(y - 1) - 3y] \geq 0	$\Rightarrow 25y^2 + 10y + 1 - 36y^2 \ge 0$
$\Rightarrow (y - 1) (y - 4) \ge 0$	$\Rightarrow -11y^2 + 10y + 1 \ge 0 \qquad \qquad x (-1)$
\Rightarrow y \in (- ∞ , 1] \cup [4, ∞).	$\Rightarrow 11y^2 - 10y - 1 \le 0$
Hence the given expression does not lie	$\Rightarrow 11y^2 - 11y + y - 1 \leq 0$
between 1 and 4.	$\Rightarrow 11y(y-1) + 1(y-1) \le 0$
	$\Rightarrow (11y+1) (y-1) \le 0 \qquad \qquad \div 11$

AIMSTUTORIAL

 \Rightarrow (11y + 1) (y - 1) < 0 \Rightarrow t² - 6t + 8 = 0 $\Rightarrow \left\lceil y - \left(\frac{-1}{11}\right) \right\rceil (y - 1) \le 0$ \Rightarrow t² - 4t - 2t + 8 = 0 \Rightarrow t(t - 4) -2(t - 4) = 0 (t - 2)(t - 4) = 0 \Rightarrow y $\in \left[\frac{-1}{11}, 1\right]$ t = 2 (or) 4 Case (i): If t = 2 Case - (ii): If t = 4 Hence $\frac{x}{x^2 - 5x + 9}$ lies between $\frac{-1}{11}$, 1. $2^{x} = 2$ $2^{x} = 2^{2}$ ∴ x = 1 ∴ x = 2 7. If x is real, find the maximum and minimum ∴ x = 1, 2 values of the expression $\frac{x^2 + 14x + 9}{x^2 + 2x + 3}$. 9. If the roots of $ax^2 + bx + c = 0$ are imaginary, show that for all $x \in R$, 'ax² + bx + c' and 'a' A: Let $\frac{x^2 + 14x + 9}{x^2 + 2x + 3} = y$ have the same sign. A: Given that the roots of $ax^2 + bx + c = 0$ are \Rightarrow x² + 14x + 9 = y x² + 2yx + 3y imaginary. \Rightarrow b² - 4ac < 0 \Rightarrow (y - 1)x² + 2(y - 7)x + (3y - 9) = 0 For $x \in R$, $b^2 - 4ac > 0$ $4ac - b^2 > 0$ ----- (1) \Rightarrow {2(y - 7)}² - 4(y - 1) (3y - 9) > 0 Consider $\frac{ax^2 + bx + c}{c}$ \Rightarrow y² - 14y + 49 - (3y² - 12y + 9) > 0 AIMS \Rightarrow -2y² - 2y + 40 \ge 0 ÷-2 $= x^2 + \frac{b}{a}x + \frac{c}{a}$ \Rightarrow y² + y - 20 <0 \Rightarrow y² + 5y - 4y - 20 < 0 $= x^{2} + 2x. \frac{b}{2a} + \left(\frac{b}{2a}\right)^{2} + \frac{c}{a} - \left(\frac{b}{2a}\right)^{2}$ \Rightarrow y(y + 5) -4 (y + 5) \leq 0 \Rightarrow (y + 5) (y - 4) \leq 0 $=\left(x+\frac{b}{2a}\right)^{2}+\frac{4ac-b^{2}}{4a^{2}}$ from (1) \Rightarrow y \in [-5, 4] \therefore Maximum value of $\frac{x^2 + 14x + 9}{x^2 + 2x + 3}$ is 4 and the > 0 <u>></u>0 minimum value is -5. > 0 8. Solve $4^{x-1} - 3 \cdot 2^{x-1} + 2 = 0$. \therefore For all $x \in R$, 'ax² + bx + c' and 'a' have the same sign. A. Given $4^{x-1} - 3 \cdot 2^{x-1} + 2 = 0$ 10.Let α , β be the real roots of $ax^2 + bx + c = 0$ $\Rightarrow \frac{4^x}{4} - \frac{3 \cdot 2^x}{2} + 2 = 0$ where $\alpha < \beta$, then prove the following. i) for $\alpha < x < \beta$; 'ax² + bx + c' and 'a' have Let $2^{x} = t$ $\Rightarrow 4^x = 2^{2x} = t^2$ opposite signs. The above equation becomes ii) for $x < \alpha$ or $x > \beta$; 'ax² + bx + c' and 'a' have the same sign. $\Rightarrow \frac{t^2}{4} - \frac{3 \cdot t}{2} + 2 = 0$ 6

MATHEMATICS - IIA

AIMSTUTORIAL

For
$$x \in \mathbb{R}$$
, $b^2 - 4ac \ge 0$
 $\Rightarrow \{-(3y + 1)\}^2 - 4(y) (2y + p) \ge 0$
 $\Rightarrow 9y^2 + 6y + 1 - 8y^2 - 4yp \ge 0$
 $\Rightarrow y^2 - 2(2p - 3) y + 1 \ge 0$
Here, coefficient of $y^2 = 1 > 0$
So, the roots of $y^2 - 2(2p - 3)y + 1 = 0$ are imaginary
or real and equal $\Rightarrow b^2 - 4ac \le 0$
 $\Rightarrow \{-2(2p - 3)\}^2 - 4(1) (1) \le 0$ $\div 4$
 $\Rightarrow 4p^2 - 12p + 9 - 1 \le 0$
 $\Rightarrow 4p^2 - 12p + 8 \le 0$ $\div 4$
 $\Rightarrow p^2 - 3p + 2 \le 0$
 $\Rightarrow (p - 1) (p - 2) \le 0$
 $\Rightarrow p \in [1, 2]$
But $\frac{x - p}{x^2 - 3x + 2}$ is not defined for $p = 1, 2$.
 $\therefore p \in (1, 2)$.
LEVEL - II (VSAQ)
Find the nature of the roots of $3x^2 + 7x + 2 = 0$.
 \therefore Given equation is $3x^2 + 7x + 2 = 0$.
 \therefore Now, $\Delta = b^2 - 4ac = (7)^2 - 4(3) (2)$
 $= 49 - 24 = 25 = 5^2 > 0$.
 \therefore Roots are rational and not equal.

2. If α , β are the roots of the equation $ax^2 + bx + c = 0$,

then find the value of $\frac{\alpha^2 + \beta^2}{\alpha^{-2} + \beta^{-2}}$.

A: Clearly,
$$\alpha + \beta = \frac{-b}{a}$$
, $\alpha\beta = \frac{c}{a}$.

Now
$$\frac{\alpha^2 + \beta^2}{\alpha^{-2} + \beta^{-2}} = \frac{\frac{\alpha^2 + \beta^2}{1}}{\frac{1}{\alpha^2} + \frac{1}{\beta^2}}$$

$$= \frac{\alpha^2 + \beta^2}{\beta^2 + \alpha^2} = (\alpha\beta)^2 = \left(\frac{c}{a}\right)^2 = \frac{c^2}{a^2}$$

AIMSTUTORIAL

- 3. If α , β are the roots of $ax^2 + bx + c = 0$, find the values of $\alpha^2 + \beta^2$ and $\alpha^3 + \beta^3$.
- A: If α , β are the roots of $ax^2 + bx + c = 0$ then

$$\alpha + \beta = \frac{-b}{a}, \ \alpha\beta = \frac{c}{a}$$
(i) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$

$$= \left(\frac{-b}{a}\right)^2 - 2\left(\frac{c}{a}\right) = \frac{b^2 - 2ac}{a^2}.$$
(ii) $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$

$$= \left(\frac{-b}{a}\right)^3 - 3\left(\frac{c}{a}\right)\left(\frac{-b}{a}\right)$$

$$= \frac{b^3}{a^3} + \frac{3bc}{a^2} = \frac{3abc - b^3}{a^3}.$$

4. Find a quadratic equation, the sum of whose roots is 1 and sum of the squares of roots is 13. A: Let a, b be the roots of required equation then

$$\alpha + \beta = 1, \ \alpha^{2} + \beta^{2} = 13$$
We have, $(\alpha + \beta)^{2} = \alpha^{2} + \beta^{2} + 2\alpha\beta$

$$\Rightarrow (1)^{2} = 13 + 2\alpha\beta$$

$$\Rightarrow 1 - 13 = 2\alpha\beta \Rightarrow 2\alpha\beta = -12$$

$$\Rightarrow \alpha\beta = -6$$

$$\therefore \text{ Required equation : } x^{2} - (\alpha + \beta)x + \alpha\beta = -12$$

$$\Rightarrow x^2 - (1)x - 6 = 0 \Rightarrow \boxed{x^2 - x - 6 = 0}$$

- 5. If $x^2 + bx + c = 0$ and $x^2 + cx + b = 0$ (b \neq c) have a common root then show that 1 + b + c = 0.
- A: Let α be the common root of the given equations then $\alpha^2 + b\alpha + c = 0$ (1) and $\alpha^2 + c\alpha + b = 0$ (2) Solving (1) & (2)

$$\alpha^{\mathbb{Z}} + b\alpha + c = 0 - (\alpha^{\mathbb{Z}} + c\alpha + b) = 0$$

$$\Rightarrow (b - c)\alpha + (c - b) = 0$$

$$\Rightarrow (b - c)\alpha = (b - c) \Rightarrow \boxed{\alpha = 1}$$

Substitute in (1) \Rightarrow (1)² + b(1) + c = 0

$$\Rightarrow \boxed{1 + b + c = 0}.$$

6. If the equations $x^2 + ax + b = 0$ and $x^2 + cx + d = 0$ have a common root and the first equation has equal roots then prove that 2(b + d) = ac.

A:Let α be the common root.

Then
$$\alpha^2 + c\alpha + d = 0 \rightarrow (1)$$

Also, $x^2 + ax + b = 0$ has equal roots.

$$\Rightarrow \alpha + \alpha = -a, \ \alpha \alpha = b \Rightarrow \alpha = -a/2, \ \alpha^2 = b$$
(1)
$$\Rightarrow b + c (-a/2) + d = 0.$$

$$\Rightarrow b + d = ac/2$$

$$\Rightarrow \boxed{2(b+d) = ac}.$$

- 7. Determine the sign of the expression $x^2 5x + 6$.
- A: (i) Take $x^2 5x + 6 > 0 \implies (x 2) (x 3) > 0$. \Rightarrow for x < 2, x > 3 the expression is positive. (ii) Take $x^2 - 5x + 6 < 0 \Rightarrow (x - 2) (x - 3) < 0$. \Rightarrow for 2 < x < 3 the expression is negative.
- 8. Find the maximum or minimum of the expression $ax^2 + bx + a$ (a, $b \in R$ and $a \neq 0$).
- A: Case: (i) Suppose a > 0
 - \Rightarrow the expression has absolute minimum at

$$x = \frac{-b}{2a}$$

That minimum value is

$$= \frac{4a(a) - b^{2}}{4a} = \frac{4a^{2} - b^{2}}{4a}$$

Case: (ii) Suppose a < 0

AIMS \Rightarrow the expression has absolute maximum at

$$x = \frac{-b}{2a}$$

0

That maximum value is

$$=\frac{4a(a)-b^2}{4a}=\frac{4a^2-b^2}{4a}$$
.

9.Find the maximum or minimum of the expression $3x^2 + 2x + 11$.

A: Given expression is $3x^2 + 2x + 11$ compare with $ax^2 + bx + c = 0$ then we get a = 3 > 0, b = 2, c = 11Since a > 0

 \Rightarrow the expression has absolute minimum at

$$x = \frac{-b}{2a} = \frac{-2}{2(3)} = \frac{-1}{3}$$

 $=\frac{132-4}{128}=\frac{128}{128}=$

12

That minimum value = $\frac{4ac - b^2}{4a} = \frac{4(3)(11) - 2^2}{4(3)}$

32

3

AIMSTUTORIAL

LEVEL - II (SAQ) $2z^2 - 5z + 2 = 0$ $2z^2 - 4z - z + 2 = 0$ \Rightarrow \Rightarrow 2z(z - 2) - 1(z - 2) = 0 1. Solve $2x^4 + x^3 - 11x^2 + x + 2 = 0$ A. Given equation $2x^4 + x^3 - 11x^2 + x + 2 = 0$ \Rightarrow (z - 2) (2z - 1) = 0 $\Rightarrow \pm by x^2$ z = 2, 1/2 Case - i: If z = 2 Case - ii: If z = 1/2 $\Rightarrow 2x^2 + x - 11 + \frac{1}{x} + \frac{2}{x^2} = 0$ $\Rightarrow \sqrt{\frac{x}{x-3}} = 2 \qquad \Rightarrow \sqrt{\frac{x}{x-3}} = \frac{1}{2}$ $\Rightarrow 2\left(x^2 + \frac{1}{x^2}\right) + \left(x + \frac{1}{x}\right) - 11 = 0$ $\Rightarrow \frac{x}{x-3} = 4 \qquad \Rightarrow \frac{x}{x-3} = \frac{1}{2}$ $\Rightarrow x = 4x - 12 \qquad \Rightarrow 4x = x - 3$ $\Rightarrow 12 = 3x \qquad \Rightarrow 3x = 3$ $x = 4 \qquad \Rightarrow x = 1$ Let $x + \frac{1}{r} = z$, $x^2 + \frac{1}{r^2} = z^2 - 2$ The above equation becomes $\Rightarrow 2(z^2-2)+z-11=0$ \therefore The roots are $\{1, 4\}$. $2z^2 - 4 + z - 11 = 0$ 3. Suppose that a, b, $c \in R$, $a \neq 0$ and $\Rightarrow 2z^2 + 6z - 5z - 15 = 0$ $f(x) = ax^2 + bx + c$ 2z(z + 3) - 5(z + 3) = 0i) If a > 0, then show that f has minimum at (z + 3) (2z - 5) = 0z = -3, 5/2 $x = \frac{-b}{2a}$ and the minimum value of f is $\frac{4ac - b^2}{4a}$. Case - ii: If z = 5/2 **Case - i**: If z = -3 se - 1: 11 - $x + \frac{1}{x} = -3$ $x + \frac{1}{x} = -3$ $x + \frac{1}{x} = 2$ ii) If a < 0, then show that f has maximum at $x = \frac{-b}{2a}$ and the maximum value of f is $\frac{4ac - b^2}{4a}$ $x = \frac{-3 \pm \sqrt{9-4}}{2} \qquad \qquad \Rightarrow 2x2 - 4x - x + 2 = 0$ A: Given quadratic function is $f(x) = ax^2 + bx + c$. Differentiating w.r.t. x successively for two times, $x = \frac{-3 \pm \sqrt{5}}{2}$ $\Rightarrow 2x(x-2)-1(x-2) = 0$ f'(x) = 2ax + b(x - 2) (2x - 1) = 0x = 2, 1/2 f''(x) = 2a \therefore The roots are $\left\{\frac{-3\pm\sqrt{5}}{2}, 2, \frac{1}{2}\right\}$ For f(x) to be maximum or minimum, f'(x) = 0 \Rightarrow 2ax + b = 0 $\Rightarrow x = \frac{-b}{2}$ 2. Solve $\sqrt{\frac{x}{x-3}} + \sqrt{\frac{x-3}{x}} = \frac{5}{2}$ when $x \neq 0, x \neq 3$. If a > 0, then f''(x) > 0 and hence f has minimum A. Let $\sqrt{\frac{x}{x-3}} = z$ at x = $\frac{-b}{2a}$ and the minimum value of f The above equation becomes $=a\left(\frac{-b}{2a}\right)^2 + b\left(\frac{-b}{2a}\right) + c$ $z + \frac{1}{z} = \frac{5}{2}$ $=\frac{b^2-2b^2+4ac}{c}$ $\Rightarrow \frac{z^2+1}{z} = \frac{5}{2}$

MATHEMATICS - IIA

$=\frac{4ac-b^2}{4a}$

- If a < 0, then f''(x) < 0 and hence f has maximum
- at x = $\frac{-b}{2a}$ and the maximum value of f

$$= a \left(\frac{-b}{2a}\right)^2 + b \left(\frac{-b}{2a}\right) + c$$
$$= \frac{4ac - b^2}{abc}.$$

- 4. Find set of values of x for which the inequalities $x^2 3x 10 < 0$, $10x x^2 16 > 0$ hold simultaneously.
- A: Consider $x^2 3x 10 < 0$

$$\Rightarrow x^{2} - 5x + 2x - 10 < 0$$

$$\Rightarrow x(x - 5) + 2(x - 5) < 0$$

$$\Rightarrow (x + 2) (x - 5) < 0$$

$$\Rightarrow [x - (-2)] (x - 5) < 0$$

$$\Rightarrow x \in (-2, 5)$$

Now $10x - x^{2} - 16 > 0$

$$\Rightarrow x^{2} - 10x + 16 < 0$$

$$\Rightarrow x^{2} - 8x - 2x + 16 < 0$$

$$\Rightarrow x(x - 8) - 2(x - 8) < 0$$

$$\Rightarrow (x - 2) (x - 8) < 0$$

 \Rightarrow x \in (2, 8)

Required solution set = $(-2, 5) \cap (2, 8)$

AIMSTUTORIAL

* * * * * * *