## DEFINITIONS, CONCEPTS AND FORMULAE

1. If $a, b, c$ are complex numbers and $a \neq 0$, then $a x^{2}+b x+c=0$ is called a quadratic equation.
2. The roots of the quadratic equation $a x^{2}+b x+c=0$ are $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
3. If $\alpha, \beta$ are roots of $a x^{2}+b x+c=0$, then
$\alpha+\beta=\frac{-b}{a}, \alpha \beta=\frac{c}{a}$.
4. $\Delta=b^{2}-4 a c$ is called discriminant of $a x^{2}+b x+c=0$.
5. If $a, b, c$ are real, then the nature of the roots of $a x^{2}+b x+c=0$ is as follows:
i) If $b^{2}-4 a c<0$, then the roots are imaginary and they are conjugate complex numbers.
ii) If $b^{2}-4 a c=0$, then the roots are real and equal.
iii) If $b^{2}-4 a c>0$, then the roots are real and distinct.
6. If $a, b, c$ are rational, then the nature of the roots of $a x^{2}+b x+c=0$ is as follows :
i) If $b^{2}-4 a c<0$, then the roots are imaginary and they are conjugate complex numbers.
ii) If $b^{2}-4 a c=0$, then the roots are rational and equal.
iii) If $b^{2}-4 a c>0$ and $b^{2}-4 a c$ is a perfect square, then the roots are rational and distinct.
iv) If $b^{2}-4 a c>0$ and $b^{2}-4 a c$ is not a perfect square, then the roots are irrational and distinct. They are conjugate surds.
7. The quadratic equation whose roots are $\alpha, \beta$ is $x^{2}-(\alpha+\beta) x+\alpha \beta=0$.
8. If $\alpha, \beta$ are the roots of $a x^{2}+b x+c=0$, then $a x^{2}+b x+c=a(x-\alpha)(x-\beta)$.
9. A necessary and sufficient condition for the quadratic equations $a_{1} x^{2}+b_{1} x+c_{1}=0$ and $a_{2} x^{2}+b_{2} x+c_{2}=0$ to have a common root is $\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}=\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(b_{1} c_{2}-b_{2} c_{1}\right)$.
Here the common root is $\frac{c_{1} a_{2}-c_{2} a_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
10. If the roots of $a x^{2}+b x+c=0$ are imaginary (complex roots) then for $x \in R$, ' $a x^{2}+b x+c$ ' and 'a' have the same sign.
11. If the roots of $a x^{2}+b x+c=0$ are real and equal to $\alpha=\frac{-b}{2 a}$, then for $\alpha \neq x \in R$, ' $a x^{2}+b x+c$ ' and ' $a$ ' have the same sign.
12. Let $\alpha, \beta$ be the real roots of $a x^{2}+b x+c=0$ and $\alpha<\beta$, then for
i) $x \in R, \alpha<x<\beta \Rightarrow$ ' $a x^{2}+b x+c$ ' and ' $a$ ' have opposite signs.
ii) $x \in R, x<\alpha$ or $x>\beta \Rightarrow$ ' $a x^{2}+b x+c$ ' and ' $a$ ' have the same sign.
13. Let $f(x)=a x^{2}+b x+c$ be a quadratic function.
i) If $a>0$, then $f(x)$ has minimum at $x=\frac{-b}{2 a}$ and the minimum value $=\frac{4 a c-b^{2}}{4 a}$.
ii) If $a<0$, then $f(x)$ has maximum at $x=\frac{-b}{2 a}$ and the maximum value $=\frac{4 a c-b^{2}}{4 a}$.
14. Let $\alpha, \beta$ be the roots of $a x^{2}+b x+c=0$, then the equation whose roots are
i) $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is $f\left(\frac{1}{x}\right)=0$
ii) $\alpha+k$ and $\beta+k$ is $f(x-k)=0$
iii) $\alpha-k$ and $\beta-k$ is $f(x+k)=0$
iv) $-\alpha$ and $-\beta$ is $f(-x)=0$
v) $k \alpha$ and $k \beta$ is $f\left(\frac{x}{k}\right)=0$
15. If $a x^{2}+b x+c$ is a quadratic expression, then $a x^{2}+b x+c>0$ or $a x^{2}+b x+c \geq 0$ or $a x^{2}+b x+c$ $<0$ or $a x^{2}+b x+c \leq 0$ are called a 'quadratic inequations'.

## LEVEL - I (VSAQ)

1. Form a quadratic equation whose roots are $-3 \pm 5 i$.

A: The quadratic equation whose roots are
$-3+5 i$ and $-3-5 i$ is $x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$\Rightarrow x^{2}-(-3+5 i-3-5 i) x+(-3+5 i)(-3-5 i)=0$
$\because(a+i b)(a-i b)=a^{2}+b^{2}$
$\Rightarrow x^{2}+6 x+34=0$.
2. Obtain a quadratic equation whose roots are $\frac{p-q}{p+q}, \frac{-(p+q)}{p-q}$.

A: The quadratic equation whose roots are $\frac{p-q}{p+q}, \frac{-(p+q)}{p-q}$ is

$$
\begin{aligned}
& x^{2}-\left[\frac{p-q}{p+q}-\frac{(p+q)}{p-q}\right] x+\left(\frac{p-q}{p+q}\right)\left\{\frac{-(p+q)}{p-q}\right\}=0 \\
& \Rightarrow x^{2}-\left\{\frac{(p-q)^{2}-(p+q)^{2}}{p^{2}-q^{2}}\right\} x-1=0 \\
& \Rightarrow\left(p^{2}-q^{2}\right) x^{2}+4 p q x-\left(p^{2}-q^{2}\right)=0
\end{aligned}
$$

3. Find the quadratic equation, the sum of whose roots is 7 and the sum of the squares of the roots is 25.

A: Let $\alpha, \beta$ be the roots of the required quadratic equation.

Given that $\alpha+\beta=7, \alpha^{2}+\beta^{2}=25$.

$$
\begin{aligned}
& (\alpha+\beta)^{2}=7^{2} \\
& \Rightarrow \alpha^{2}+\beta^{2}+2 \alpha \beta=49 \\
& \Rightarrow 25+2 \alpha \beta=49 \\
& \Rightarrow 2 \alpha \beta=49-25=24 \\
& \Rightarrow \alpha \beta=12
\end{aligned}
$$

$\therefore$ Required quadratic equation is
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$\Rightarrow x^{2}-7 x+12=0$.
4. If $\alpha, \beta$ are the roots of the equation $a x^{2}+b x+c=0$.

Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$.
A: $\alpha, \beta$ are the roots of $a x^{2}+b x+c=0$
$\Rightarrow \alpha+\beta=\frac{-b}{a}, \alpha \beta=\frac{c}{a}$
Now $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta}=\frac{-b / a}{c / a}=\frac{-b}{c}$.
5. If $\alpha$ and $\beta$ are the roots of the equation $a x^{2}+b x+c=0$, then find the value of $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$.
$\mathrm{A}: \alpha, \beta$ are the roots of $a x^{2}+b x+c=0$.

$$
\begin{aligned}
\Rightarrow \alpha+\beta & =\frac{-b}{a}, \alpha \beta=\frac{c}{a} \\
\text { Now } \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}} & =\frac{\beta^{2}+\alpha^{2}}{(\alpha \beta)^{2}} \\
& =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{(\alpha \beta)^{2}} \\
& =\frac{(-b / a)^{2}-2 c / a}{(c / a)^{2}} \\
& =\frac{b^{2}-2 a c}{a a^{2}} \cdot \frac{a^{2}}{c^{2}} \\
& =\frac{b^{2}-2 a c}{c^{2}} .
\end{aligned}
$$

6. If $\alpha$ and $\beta$ are the roots of the equation $x^{2}+x+1=0$, find the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$.
A: $\alpha$ and $\beta$ are the roots of $x^{2}+x+1=0$.
$\Rightarrow \alpha+\beta=-\mathrm{b} / \mathrm{a}=-1 ; \alpha \beta=\mathrm{c} / \mathrm{a}=1$
$\operatorname{Now} \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$
$=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}$
$=\frac{(-1)^{2}-2(1)}{1}$
$=-1$.
7. If $\alpha$ and $\beta$ are the roots of the equation $2 x^{2}+3 x+6=0$, find the quadratic equation whose roots are $\alpha^{3}$ and $\beta^{3}$.
A: $\alpha, \beta$ are the roots of $2 x^{2}+3 x+6=0$

$$
\begin{aligned}
\Rightarrow \alpha+\beta & =\frac{-b}{a}=\frac{-3}{2} ; \alpha \beta=\frac{c}{a}=\frac{6}{2}=3 \\
\alpha^{3}+\beta^{3} & =(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta) \\
& =\frac{-27}{8}+\frac{27}{2} \\
& =\frac{-27+108}{8} \\
& =\frac{81}{8} \\
\alpha^{3} \beta^{3}=3^{3} & =27
\end{aligned}
$$

Required quadratic equation is
$x^{2}-\left(\alpha^{3}+\beta^{3}\right) x+\alpha^{3} \beta^{3}=0$
$x^{2}-\frac{81}{8} x+27=0$
$8 x^{2}-81 x+216=0$.
8. If the equation $x^{2}-15-m(2 x-8)=0$ has equal roots, then find the values of $m$.
A: Given equation is $x^{2}-2 m x+(8 m-15)=0$
since it has equal roots $b^{2}-4 a c=0$
$\Rightarrow(-2 m)^{2}-4(1)(8 m-15)=0$
$\Rightarrow 4 \mathrm{~m}^{2}-4(8 \mathrm{~m}-15)=0$
$\Rightarrow \mathrm{m}^{2}-8 \mathrm{~m}+15=0$
$\Rightarrow(m-3)(m-5)=0$
$\therefore \mathrm{m}=3$ or 5 .
9. If $(m+1) x^{2}+2(m+3) x+m+8=0$ has equal roots, find $m$.
A: Given equation is $(m+1) x^{2}+2(m+3) x+(m+8)=0$
Since it has equal roots $b^{2}-4 a c=0$
$\Rightarrow\{2(m+3)\}^{2}-4(m+1)(m+8)=0$
$\Rightarrow \mathrm{m}^{2}+6 \mathrm{~m}+9-\left(\mathrm{m}^{2}+9 \mathrm{~m}+8\right)=0$
$\Rightarrow-3 \mathrm{~m}+1=0$
$\Rightarrow m=1 / 3$.
10. Prove that the roots of $(x-a)(x-b)=h^{2}$ are always real.
A: Given equation is $(x-a)(x-b)=h^{2}$
$\Rightarrow \mathrm{x}^{2}-(\mathrm{a}+\mathrm{b}) \mathrm{x}+\left(\mathrm{ab}-\mathrm{h}^{2}\right)=0$
Its discriminant

$$
\begin{aligned}
& =\left\{-(a+b\}^{2}-4(1)\left(a b-h^{2}\right)\right. \\
& =a^{2}+b^{2}+2 a b-4 a b+4 h^{2} \\
& =(a-b)^{2}+(2 h)^{2} \\
& \geq 0
\end{aligned}
$$

Hence the roots of the given equation are always real.
11. If $x^{2}-6 x+5=0$ and $x^{2}-12 x+p=0$ have a common root, then find $p$.
A: $x^{2}-6 x+5=0$
$\Rightarrow(x-1)(x-5)=0$
$\Rightarrow x=1,5$
$\Rightarrow$ If $x=1,1-12+p=0 \Rightarrow p=11$
$\Rightarrow$ If $x=5,25-60+p=0 \Rightarrow p=35$
$\therefore \mathrm{p}=11$ or 35
12. If the quadratic equations $a x^{2}+2 b x+c$ AIMS and $a x^{2}+2 c x+b=0,(b \neq c)$ have a common root, then show that $a+4 b+4 c=0$.
A: Let $\alpha$ be the common root of given two equations.

$$
\begin{aligned}
& a \alpha^{2}+2 b \alpha+c=0 \\
& a \alpha^{2}+2 c \alpha+b=0
\end{aligned}
$$

on subtraction $2(b-c) \alpha-(b-c)=0$

$$
\begin{gathered}
2 \alpha-1=0 \\
\alpha=1 / 2 \\
\Rightarrow a(1 / 2)^{2}+2 b(1 / 2)+c=0
\end{gathered}
$$

$$
\because b-c \neq 0
$$

$$
\Rightarrow a+4 b+4 c=0
$$

13. For what values of $x$, the expression $3 x^{2}+4 x+4$ is positive.
A: Given expression is $3 x^{2}+4 x+4$
Consider $3 x^{2}+4 x+4=0$
Roots are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

AIMSTUTORIAL

$$
\begin{aligned}
& =\frac{-4 \pm \sqrt{16-4(3)(4)}}{2(3)} \\
& =\frac{-4 \pm \sqrt{-32}}{6} \\
& =\frac{-4 \pm 4 \sqrt{2} \mathrm{i}}{6}
\end{aligned}
$$

which are complex numbers.
Thus, $\forall x \in R, 3 x^{2}+4 x+4$ is positive.
14. For what values of $x$, the expression $15+4 x-3 x^{2}$ is negative.
A: Given exprssion is $15+4 x-3 x^{2}$.
Here $\mathrm{a}=-3<0$.
Consider $15+4 \mathrm{x}-3 \mathrm{x}^{2}=0$
$\Rightarrow 3 x^{2}-4 x-15=0$
$\Rightarrow 3 x^{2}-9 x+5 \mathrm{x}-15=0$
$\Rightarrow 3 x(x-3)+5(x-3)=0$
$\Rightarrow(3 x+5)(x-3)=0$
$\Rightarrow \alpha=-5 / 3, \beta=3 \quad \because \alpha<\beta$
Thus for $x \in R$ and $x<-5 / 3$ or $x>3$, then $15+4 x-3 x^{2}$ is negative.
15. Find the maximum value of $2 x-7-5 x^{2}$ for $x \in R$.
A: Comparing $2 x-7-5 x^{2}$ with $a x^{2}+b x+c$, we get $a=-5, b=2, c=-7$.
Maximum value of $2 x-7-5 x^{2}$

$$
\begin{aligned}
& =\frac{4 a c-b^{2}}{4 a} \\
& =\frac{4(-5)(-7)-2^{2}}{4(-5)} \\
& =\frac{140-4}{-20} \\
& =\frac{136}{-20} \\
& =-\frac{34}{5} .
\end{aligned}
$$

## LEVEL - I (SAG)

1. Determine the range of the experssion $\frac{x^{2}+x+1}{x^{2}-x+1}, x \in R$.
A: Let $\frac{x^{2}+x+1}{x^{2}-x+1}=y$
$\Rightarrow x^{2}+x+1=y x^{2}-y x+y$
$\Rightarrow(y-1) x^{2}-(y+1) x+(y-1)=0$.
For $x \in R, b^{2}-4 a c \geq 0$
$\Rightarrow\{-(y+1)\}^{2}-4(y-1)(y-1) \geq 0$
$\Rightarrow-3 y^{2}+10 y-3 \geq 0 \quad x(-1)$
$\Rightarrow 3 y^{2}-10 y+3 \leq 0$
$\Rightarrow 3 y^{2}-y-9 y+3 \leq 0$
$\Rightarrow \mathrm{y}(3 \mathrm{y}-1)-3(3 \mathrm{y}-1) \leq 0$
$\Rightarrow(3 y-1)(y-3) \leq 0 \quad \div 3$
$\Rightarrow\left(y-\frac{1}{3}\right)(y-3) \leq 0$
$\Rightarrow y \in\left[\frac{1}{3}, 3\right]$
Hence the range of $\frac{x^{2}+x+1}{x^{2}-x+1}$ is $\left[\frac{1}{3}, 3\right]$.
2. Find the range of $\frac{2 x^{2}-6 x+5}{x^{2}-3 x+2}$ if $x \in R$.

A: Let $\frac{2 x^{2}-6 x+5}{x^{2}-3 x+2}=y$
$\Rightarrow 2 x^{2}-6 x+5=y x^{2}-3 y x+2 y$
$\Rightarrow(y-2) x^{2}+3(2-y) x+(2 y-5)=0$
For $x \in R, b^{2}-4 a c \geq 0$
$\Rightarrow\{3(2-y)\}^{2}-4(y-2)(2 y-5) \geq 0$
$\Rightarrow(y-2)[9(y-2)-4(2 y-5)] \geq 0$
$\Rightarrow(y-2)[9 y-18-8 y+20] \geq 0$
$\Rightarrow(y-2)(y+2) \geq 0$
$\Rightarrow[y-(-2)](y-2) \geq 0$.
Hence the range of $\frac{2 x^{2}-6 x+5}{x^{2}-3 x+2}$ is $(-\infty,-2] \cup[2, \infty)$.
3. If $x$ is a real number, find the range $\frac{x+2}{2 x^{2}+3 x+6}$.

A: Let $\frac{x+2}{2 x^{2}+3 x+6}=y$
$\Rightarrow x+2=2 y x^{2}+3 y x+6 y$
$\Rightarrow 2 y x^{2}+(3 y-1) x+2(3 y-1)=0$
For $x \in R, b^{2}-4 a c \geq 0$
$\Rightarrow(3 y-1)^{2}-4(2 y)(2)(3 y-1) \geq 0$
$\Rightarrow(3 y-1)[3 y-1-16 y] \geq 0$
$\Rightarrow(3 y-1)(-13 y-1) \geq 0 \quad x(-1)$
$\Rightarrow(3 y-1)(13 y+1) \leq 0$
$\Rightarrow\left[y-\left(\frac{-1}{13}\right)\right]\left(y-\frac{1}{3}\right) \leq 0$
$\Rightarrow \mathrm{y} \in\left[\frac{-1}{13}, \frac{1}{3}\right]$
$\therefore$ Range of $\frac{x+2}{2 x^{2}+3 x+6}$ is $\left[\frac{-1}{13}, \frac{1}{3}\right]$.
4. Prove that $\frac{1}{3 x+1}+\frac{1}{x+1}-\frac{1}{(3 x+1)(x+1)}$ does not lie between 1 and 4, if $x$ is real.

$$
\begin{aligned}
A: \frac{1}{3 x+1}+\frac{1}{x+1}-\frac{1}{(3 x+1)(x+1)} & =\frac{x+1+3 x+1-1}{(3 x+1)(x+1)} \\
& =\frac{4 x+1}{(3 x+1)(x+1)}
\end{aligned}
$$

Let $\frac{4 x+1}{3 x^{2}+4 x+1}=y$
$\Rightarrow 4 \mathrm{x}+1=3 \mathrm{yx}^{2}+4 \mathrm{yx}+\mathrm{y}$
$\Rightarrow 3 y x^{2}+4(y-1) x+(y-1)=0$
For $x \in R, b^{2}-4 a c \geq 0$
$\Rightarrow\left\{(4(y-1)\}^{2}-4(3 y)(y-1) \geq 0\right.$
$\div 4$
$\Rightarrow(y-1)[4(y-1)-3 y] \geq 0$
$\Rightarrow(y-1)(y-4) \geq 0$
$\Rightarrow y \in(-\infty, 1] \cup[4, \infty)$.
Hence the given expression does not lie between 1 and 4.
5. If $x$ is real, show that the values of the expression $\frac{x^{2}+34 x-71}{x^{2}+2 x-7}$ do not lie between 5 and 9.
A: Let $\frac{x^{2}+34 x-71}{x^{2}+2 x-7}=y$
$\Rightarrow x^{2}+34 x-71=y x^{2}+2 y x-7 y$
$\Rightarrow(y-1) x^{2}+2(y-17) x+(71-7 y)=0$
For $x \in R, b^{2}-4 a c \geq 0$
$\Rightarrow\{2(y-17)\}^{2}-4(y-1)(71-7 y) \geq 0$
$\Rightarrow 4\left(y^{2}-34 y+289\right)+4\left(7 y^{2}-78 y+71\right) \geq 0$
$\Rightarrow \mathrm{y}^{2}-34 \mathrm{y}+289+7 \mathrm{y}^{2}-78 \mathrm{y}+71 \geq 0$
$\Rightarrow 8 y^{2}-112 y+360 \geq 0 \quad \div 8$
$\Rightarrow y^{2}-14 y+45 \geq 0$
$\Rightarrow y^{2}-9 y-5 y+45 \geq 0$
$\Rightarrow \mathrm{y}(\mathrm{y}-9)-5(\mathrm{y}-9) \geq 0$
$\Rightarrow(y-5)(y-9) \geq 0$
$\Rightarrow \mathrm{y} \in(-\infty, 5] \cup[9, \infty)$
Hence the values of $\frac{x^{2}+34 x-71}{x^{2}+2 x-7}$ do not AIMS between 5 and 9 .
6. Show that $\frac{x}{x^{2}-5 x+9}$ lies between $\frac{-1}{11}, 1$.

A: Let $\frac{x}{x^{2}-5 x+9}=y$
$\Rightarrow x=y x^{2}-5 y x+9 y$
$\Rightarrow y^{2}-(5 y+1) x+9 y=0$
For $x \in R, b^{2}-4 a c \geq 0$
$\Rightarrow\{-(5 y+1)\}^{2}-4(y)(9 y) \geq 0$
$\Rightarrow 25 y^{2}+10 y+1-36 y^{2} \geq 0$
$\Rightarrow-11 y^{2}+10 y+1 \geq 0$
$x(-1)$
$\Rightarrow 11 y^{2}-10 y-1 \leq 0$
$\Rightarrow 11 y^{2}-11 y+y-1 \leq 0$
$\Rightarrow 11 \mathrm{y}(\mathrm{y}-1)+1(\mathrm{y}-1) \leq 0$
$\Rightarrow(11 y+1)(y-1) \leq 0$
$\Rightarrow(11 y+1)(y-1) \leq 0$
$\Rightarrow\left[y-\left(\frac{-1}{11}\right)\right](y-1) \leq 0$
$\Rightarrow \mathrm{y} \in\left[\frac{-1}{11}, 1\right]$

Hence $\frac{x}{x^{2}-5 x+9}$ lies between $\frac{-1}{11}, 1$.
7. If $\mathbf{x}$ is real, find the maximum and minimum
values of the expression $\frac{x^{2}+14 x+9}{x^{2}+2 x+3}$.
A: Let $\frac{x^{2}+14 x+9}{x^{2}+2 x+3}=y$
$\Rightarrow x^{2}+14 x+9=y x^{2}+2 y x+3 y$
$\Rightarrow(y-1) x^{2}+2(y-7) x+(3 y-9)=0$
For $x \in R, b^{2}-4 a c \geq 0$
$\Rightarrow\{2(y-7)\}^{2}-4(y-1)(3 y-9) \geq 0$
$\Rightarrow y^{2}-14 y+49-\left(3 y^{2}-12 y+9\right) \geq 0$
$\Rightarrow-2 y^{2}-2 y+40 \geq 0$
$\Rightarrow \mathrm{y}^{2}+\mathrm{y}-20 \leq 0$
$\Rightarrow \mathrm{y}^{2}+5 \mathrm{y}-4 \mathrm{y}-20 \leq 0$
$\Rightarrow \mathrm{y}(\mathrm{y}+5)-4(\mathrm{y}+5) \leq 0$
$\Rightarrow(y+5)(y-4) \leq 0$
$\Rightarrow \mathrm{y} \in[-5,4]$
$\therefore$ Maximum value of $\frac{x^{2}+14 x+9}{x^{2}+2 x+3}$ is 4 and the minimum value is -5 .
8. Solve $4^{x-1}-3 \cdot 2^{x-1}+2=0$.
A. Given $4^{\mathrm{x}-1}-3 \cdot 2^{\mathrm{x}-1}+2=0$

$$
\Rightarrow \frac{4^{x}}{4}-\frac{3.2^{x}}{2}+2=0
$$

Let $2^{x}=t$
$\Rightarrow 4^{\mathrm{x}}=2^{2 \mathrm{x}}=\mathrm{t}^{2}$
The above equation becomes

$$
\Rightarrow \frac{t^{2}}{4}-\frac{3 \cdot t}{2}+2=0
$$

$\Rightarrow t^{2}-6 t+8=0$
$\Rightarrow \mathrm{t}^{2}-4 \mathrm{t}-2 \mathrm{t}+8=0$
$\Rightarrow t(t-4)-2(t-4)=0$
$(\mathrm{t}-2)(\mathrm{t}-4)=0$
$\mathrm{t}=2$ (or) 4
Case (i): If $t=2 \quad \underline{\text { Case - (ii): }}$ If $t=4$

$$
\begin{array}{lr}
2^{x}=2 & 2^{x}=2^{2} \\
x=1 & \therefore x=2 \\
\therefore x=1,2 &
\end{array}
$$

$\therefore \mathrm{x}=1$
9. If the roots of $a x^{2}+b x+c=0$ are imaginary, show that for all $x \in R$, ' $a x^{2}+b x+c$ ' and ' $a$ ' have the same sign.
A: Given that the roots of $a x^{2}+b x+c=0$ are imaginary.
$\Rightarrow \mathrm{b}^{2}-4 \mathrm{ac}<0$
$4 \mathrm{ac}-\mathrm{b}^{2}>0$

Consider $\frac{a x^{2}+b x+c}{a}$

$$
=x^{2}+\frac{b}{a} x+\frac{c}{a}
$$

$$
=x^{2}+2 x \cdot \frac{b}{2 a}+\left(\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\left(\frac{b}{2 a}\right)^{2}
$$

$$
=\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}} \quad \text { from }(1)
$$

$$
\geq 0 \quad>0
$$

$$
>0
$$

$\therefore$ For all $x \in R$, ' $a x^{2}+b x+c$ ' and ' $a$ ' have the same sign.
10. Let $\alpha, \beta$ be the real roots of $a x^{2}+b x+c=0$ where $\alpha<\beta$, then prove the following.
i) for $\alpha<x<\beta$; ' $a x^{2}+b x+c$ ' and ' $a$ ' have opposite signs.
ii) for $x<\alpha$ or $x>\beta$; ' $a x^{2}+b x+c$ ' and ' $a$ ' have the same sign.

A: Given that $\alpha, \beta$ are the real roots of $a x^{2}+b x+c=0$ with $\alpha<\beta$.

$$
\begin{align*}
& \Rightarrow a x^{2}+b x+c=a(x-\alpha)(x-\beta) \\
& \Rightarrow \frac{a x^{2}+b x+c}{a}=(x-\alpha)(x-\beta)- \tag{1}
\end{align*}
$$

i) Suppose $x \in R$ and $\alpha<x<\beta$
$-\infty \quad \dot{\alpha} \times \dot{\beta}$

Now $\mathrm{x}-\alpha>0$ and $\mathrm{x}-\beta<0$

$$
\Rightarrow(x-\alpha)(x-\beta)<0
$$

$$
\begin{equation*}
\Rightarrow \frac{a x^{2}+b x+c}{a}<0 \quad \text { from } \tag{1}
\end{equation*}
$$

Thus for $x \in R$ and $\alpha<x<\beta$, then ' $a x^{2}+b x+c$ ' and 'a' have opposite signs.
ii) Suppose $x \in R$ and $x<\alpha$


Now $x-\alpha<0$ and $x-\beta<0$

$$
\Rightarrow(x-\alpha)(x-\beta)>0
$$

$$
\begin{equation*}
\Rightarrow \frac{a x^{2}+b x+c}{a}>0 \quad \text { from } \tag{1}
\end{equation*}
$$

Suppose $x \in R$ and $x>\beta$


Now $\mathrm{x}-\alpha>0$ and $\mathrm{x}-\beta>0$
$\Rightarrow(x-\alpha)(x-\beta)>0$
$\Rightarrow \frac{a x^{2}+b x+c}{a}>0 \quad$ from
Thus for $x \in R, x<\alpha$ or $x>\beta$, then ' $a x^{2}+b x+$ $c$ ' and ' $a$ ' have the same sign.
11. If the expression $\frac{x-p}{x^{2}-3 x+2}$ takes all real values
for $x \in R$, then find the bounds for $p$.
A: Let $\frac{x-p}{x^{2}-3 x+2}=y$
$\Rightarrow \mathrm{x}-\mathrm{p}=\mathrm{y} \mathrm{x}^{2}-3 \mathrm{yx}+2 \mathrm{y}$
$\Rightarrow \mathrm{yx}^{2}-(3 \mathrm{y}+1) \mathrm{x}+(2 \mathrm{y}+\mathrm{p})=0$

For $x \in R, b^{2}-4 a c \geq 0$
$\Rightarrow\{-(3 y+1)\}^{2}-4(y)(2 y+p) \geq 0$
$\Rightarrow 9 y^{2}+6 y+1-8 y^{2}-4 y p \geq 0$
$\Rightarrow y^{2}-2(2 p-3) y+1 \geq 0$
Here, coefficient of $y^{2}=1>0$
So, the roots of $y^{2}-2(2 p-3) y+1=0$ are imaginary or real and equal $\Rightarrow b^{2}-4 a c \leq 0$
$\Rightarrow\{-2(2 p-3)\}^{2}-4(1)(1) \leq 0 \quad \div 4$
$\Rightarrow 4 \mathrm{p}^{2}-12 \mathrm{p}+9-1 \leq 0$
$\Rightarrow 4 p^{2}-12 p+8 \leq 0$
$\Rightarrow p^{2}-3 p+2 \leq 0$
$\Rightarrow(\mathrm{p}-1)(\mathrm{p}-2) \leq 0$
$\Rightarrow \mathrm{p} \in[1,2]$
But $\frac{x-p}{x^{2}-3 x+2}$ is not defined for $p=1,2$.
$\therefore \mathrm{p} \in(1,2)$.

## LEVEL - II (VSAQ)

1. Find the nature of the roots of $3 x^{2}+7 x+2=0$.

A: Given equation is $3 x^{2}+7 x+2=0$.
Now, $\Delta=b^{2}-4 \mathrm{ac}=(7)^{2}-4(3)(2)$

$$
=49-24=25=5^{2}>0 .
$$

$\therefore$ Roots are rational and not equal.
2. If $\alpha, \beta$ are the roots of the equation $a x^{2}+b x+c=0$, then find the value of $\frac{\alpha^{2}+\beta^{2}}{\alpha^{-2}+\beta^{-2}}$.

A: Clearly, $\alpha+\beta=\frac{-b}{a}, \alpha \beta=\frac{c}{a}$.

$$
\text { Now } \frac{\alpha^{2}+\beta^{2}}{\alpha^{-2}+\beta^{-2}}=\frac{\frac{\alpha^{2}+\beta^{2}}{\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}}}{\frac{1}{2}}
$$

$=\frac{\frac{\alpha^{2}+\beta^{2}}{\frac{\beta^{2}+\alpha^{2}}{\alpha^{2} \beta^{2}}}=(\alpha \beta)^{2}=\left(\frac{c}{a}\right)^{2}=\frac{c^{2}}{a^{2}} . . . . ~ . ~ . ~ . ~}{\text { a }}$.
3. If $\alpha, \beta$ are the roots of $a x^{2}+b x+c=0$, find the values of $\alpha^{2}+\beta^{2}$ and $\alpha^{3}+\beta^{3}$.
A: If $\alpha, \beta$ are the roots of $a x^{2}+b x+c=0$ then

$$
\alpha+\beta=\frac{-b}{a}, \alpha \beta=\frac{c}{a}
$$

(i) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$

$$
=\left(\frac{-b}{a}\right)^{2}-2\left(\frac{c}{a}\right)=\frac{b^{2}-2 a c}{a^{2}}
$$

(ii) $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$

$$
\begin{aligned}
& =\left(\frac{-b}{a}\right)^{3}-3\left(\frac{c}{a}\right)\left(\frac{-b}{a}\right) \\
& =\frac{b^{3}}{a^{3}}+\frac{3 b c}{a^{2}}=\frac{3 a b c-b^{3}}{a^{3}} .
\end{aligned}
$$

4. Find a quadratic equation, the sum of whose roots is 1 and sum of the squares of roots is 13.
$A$ : Let $a, b$ be the roots of required equation then

$$
\alpha+\beta=1, \alpha^{2}+\beta^{2}=13
$$

We have, $(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta$

$$
\begin{aligned}
& \Rightarrow(1)^{2}=13+2 \alpha \beta \\
& \Rightarrow 1-13=2 \alpha \beta \Rightarrow 2 \alpha \beta=-12 \\
& \quad \Rightarrow \alpha \beta=-6
\end{aligned}
$$

$\therefore$ Required equation : $\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta=0$

$$
\Rightarrow x^{2}-(1) x-6=0 \Rightarrow x^{2}-x-6=0
$$

5. If $x^{2}+b x+c=0$ and $x^{2}+c x+b=0(b \neq c)$ have a common root then show that $1+b+c=0$.
A: Let $\alpha$ be the common root of the given equations

$$
\text { then } \alpha^{2}+b \alpha+c=0
$$ and $\alpha^{2}+c \alpha+b=0$

Solving (1) \& (2)

$$
\begin{aligned}
& \alpha^{2}+b \alpha+c=0-\left(\propto^{2}+c \alpha+b\right)=0 \\
& \Rightarrow(b-c) \alpha+(c-b)=0 \\
& \Rightarrow(b-c) \alpha=(b-c) \Rightarrow \alpha=1
\end{aligned}
$$

Substitute in (1) $\Rightarrow(1)^{2}+b(1)+c=0$

$$
\Rightarrow 1+b+c=0
$$

6. If the equations $x^{2}+a x+b=0$ and $x^{2}+c x+d=0$ have a common root and the first equation has equal roots then prove that $2(b+d)=a c$.
A:Let $\alpha$ be the common root.
Then $\alpha^{2}+c \alpha+d=0 \rightarrow(1)$
Also, $x^{2}+a x+b=0$ has equal roots.

$$
\begin{aligned}
& \Rightarrow \alpha+\alpha=-a, \alpha \alpha=b \Rightarrow \alpha=-a / 2, \alpha^{2}=b \\
& (1) \Rightarrow b+c(-a / 2)+d=0 \\
& \Rightarrow b+d=a c / 2 \\
& \Rightarrow 2(b+d)=a c
\end{aligned}
$$

7. Determine the sign of the expression $x^{2}-5 x+6$.

A: (i) Take $x^{2}-5 x+6>0 \Rightarrow(x-2)(x-3)>0$.
$\Rightarrow$ for $x<2, x>3$ the expression is positive.
(ii) Take $x^{2}-5 x+6<0 \Rightarrow(x-2)(x-3)<0$.
$\Rightarrow$ for $2<x<3$ the expression is negative.
8. Find the maximum or minimum of the expression $a x^{2}+b x+a(a, b \in R$ and $a \neq 0)$.
A: Case: (i) Suppose $a>0$
$\Rightarrow$ the expression has absolute minimum at

$$
x=\frac{-b}{2 a}
$$

That minimum value is
$=\frac{4 a(a)-b^{2}}{4 a}=\frac{4 a^{2}-b^{2}}{4 a}$
Case: (ii) Suppose a<0
$\Rightarrow$ the expression has absolute maximum at

$x=\frac{-b}{2 a}$
That maximum value is
$=\frac{4 a(a)-b^{2}}{4 a}=\frac{4 a^{2}-b^{2}}{4 a}$.
9.Find the maximum or minimum of the expression $3 x^{2}+2 x+11$.
A: Given expression is $3 x^{2}+2 x+11$
compare with $a x^{2}+b x+c=0$
then we get $a=3>0, b=2, c=11$
Since a>0
$\Rightarrow$ the expression has absolute minimum at
$x=\frac{-b}{2 a}=\frac{-2}{2(3)}=\frac{-1}{3}$
That minimum value $=\frac{4 a c-b^{2}}{4 a}=\frac{4(3)(11)-2^{2}}{4(3)}$

$$
=\frac{132-4}{12}=\frac{128}{12}=\frac{32}{3} .
$$

## LEVEL - II (SAQ)

1. Solve $2 x^{4}+x^{3}-11 x^{2}+x+2=0$
A. Given equation $2 x^{4}+x^{3}-11 x^{2}+x+2=0$

$$
\begin{aligned}
& \Rightarrow \div \text { by } x^{2} \\
& \Rightarrow 2 x^{2}+x-11+\frac{1}{x}+\frac{2}{x^{2}}=0 \\
& \Rightarrow 2\left(x^{2}+\frac{1}{x^{2}}\right)+\left(x+\frac{1}{x}\right)-11=0
\end{aligned}
$$

Let $x+\frac{1}{x}=z, x^{2}+\frac{1}{x^{2}}=z^{2}-2$
The above equation becomes

$$
\begin{aligned}
\Rightarrow & 2\left(z^{2}-2\right)+z-11=0 \\
& 2 z^{2}-4+z-11=0 \\
\Rightarrow & 2 z^{2}+6 z-5 z-15=0 \\
& 2 z(z+3)-5(z+3)=0 \\
& (z+3)(2 z-5)=0 \\
& z=-3,5 / 2
\end{aligned}
$$

Case -i: If $z=-3$
$x+\frac{1}{x}=-3$
Case - ii: If $z=5 / 2$
$x+\frac{1}{x}=\frac{5}{2}$
$x^{2}+3 x+1=0$
$\Rightarrow 2 \mathrm{x} 2-5 \mathrm{x}+2=0$
$x=\frac{-3 \pm \sqrt{9-4}}{2}$
$\Rightarrow 2 x 2-4 x-x+2=0$
$x=\frac{-3 \pm \sqrt{5}}{2}$
$\Rightarrow 2 x(x-2)-1(x-2)=0$
$(x-2)(2 x-1)=0$
$x=2,1 / 2$
$\therefore$ The roots are $\left\{\frac{-3 \pm \sqrt{5}}{2}, 2, \frac{1}{2}\right\}$
2. Solve $\sqrt{\frac{x}{x-3}}+\sqrt{\frac{x-3}{x}}=\frac{5}{2}$ when $x \neq 0, x \neq 3$.
A. Let $\sqrt{\frac{x}{x-3}}=z$

The above equation becomes

$$
\begin{array}{r}
z+\frac{1}{z}=\frac{5}{2} \\
\Rightarrow \quad \frac{z^{2}+1}{z}=\frac{5}{2}
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & 2 z^{2}-5 z+2=0 \\
\Rightarrow & 2 z^{2}-4 z-z+2=0 \\
\Rightarrow & 2 z(z-2)-1(z-2)=0 \\
\Rightarrow & (z-2)(2 z-1)=0 \\
& z=2,1 / 2
\end{array}
$$

Case - i: If $z=2$
Case - ii: If $z=1 / 2$

$$
\begin{array}{ll}
\Rightarrow \sqrt{\frac{x}{x-3}}=2 & \Rightarrow \sqrt{\frac{x}{x-3}}=\frac{1}{2} \\
\Rightarrow \frac{x}{x-3}=4 & \Rightarrow \frac{x}{x-3}=\frac{1}{2} \\
\Rightarrow x=4 x-12 & \Rightarrow 4 x=x-3 \\
\Rightarrow 12=3 x & \Rightarrow 3 x=3 \\
\quad x=4 & \Rightarrow x=1
\end{array}
$$

$\therefore$ The roots are $\{1,4\}$.
3. Suppose that $a, b, c \in R, a \neq 0$ and $f(x)=a x^{2}+b x+c$
i) If $a>0$, then show that $f$ has minimum at
$x=\frac{-b}{2 a}$ and the minimum value of $f$ is $\frac{4 a c-b^{2}}{4 a}$.
ii) If $\mathbf{a}<0$, then show that $\mathbf{f}$ has maximum at $x=\frac{-b}{2 a}$ and the maximum value of $f$ is $\frac{4 a c-b^{2}}{4 a}$ AIMS
A: Given quadratic function is $f(x)=a x^{2}+b x+c$.
Differentiating w.r.t. x successively for two times,
$f^{\prime}(x)=2 a x+b$
$f^{\prime \prime}(x)=2 a$
For $f(x)$ to be maximum or minimum, $f^{\prime}(x)=0$
$\Rightarrow 2 \mathrm{ax}+\mathrm{b}=0$
$\Rightarrow x=\frac{-b}{2 a}$
If $a>0$, then $f^{\prime \prime}(x)>0$ and hence $f$ has minimum at $x=\frac{-b}{2 a}$ and the minimum value of $f$

$$
\begin{aligned}
& =a\left(\frac{-b}{2 a}\right)^{2}+b\left(\frac{-b}{2 a}\right)+c \\
& =\frac{b^{2}-2 b^{2}+4 a c}{4 a}
\end{aligned}
$$

$$
=\frac{4 a c-b^{2}}{4 a}
$$

If $a<0$, then $f^{\prime \prime}(x)<0$ and hence $f$ has maximum at $x=\frac{-b}{2 a}$ and the maximum value of $f$

$$
\begin{aligned}
& =a\left(\frac{-b}{2 a}\right)^{2}+b\left(\frac{-b}{2 a}\right)+c \\
& =\frac{4 a c-b^{2}}{4 a}
\end{aligned}
$$

4. Find set of values of $x$ for which the inequalities $x^{2}-3 x-10<0,10 x-x^{2}-16>0$ hold simultaneously.
A: Consider $x^{2}-3 x-10<0$

$$
\begin{aligned}
& \Rightarrow x^{2}-5 x+2 x-10<0 \\
& \Rightarrow x(x-5)+2(x-5)<0 \\
& \Rightarrow(x+2)(x-5)<0 \\
& \Rightarrow[x-(-2)](x-5)<0 \\
& \Rightarrow x \in(-2,5)
\end{aligned}
$$

Now 10x- $x^{2}-16>0$
$\Rightarrow x^{2}-10 x+16<0$
$\Rightarrow x^{2}-8 x-2 x+16<0$
$\Rightarrow x(x-8)-2(x-8)<0$
$\Rightarrow(x-2)(x-8)<0$
$\Rightarrow x \in(2,8)$
Required solution set $=(-2,5) \cap(2,8)$

$$
=(2,5) .
$$

5. Find the solution set of $x^{2}+x-12 \leq 0$ by graphical method.
A: Consider $y=x^{2}+x-12$

$$
=(x+4)(x-3)
$$

Table for $\mathrm{y}=\mathrm{x}^{2}+\mathrm{x}-12$

| $x$ | -5 | -4 | 0 | 3 | 4 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| $y=x^{2}+x-12$ | 8 | 0 | -12 | 0 | 8 |



AIMS
$\therefore$ From the graph of $\mathrm{y}=\mathrm{x}^{2}+\mathrm{x}-12$, the solution set of $x^{2}+x-12 \leq 0$ is $[-4,3]$.

