4. THEORY OF EQUATIONS

DEFINITIONS, CONCEPTS AND FORMULAE

1. If α , β , γ are the roots of $ax^3 + bx^2 + cx + d = 0$, then

i)
$$\mathbf{s}_1 = \alpha + \beta + \gamma = \frac{-\mathbf{b}}{\mathbf{a}}$$

ii) $\mathbf{s}_2 = \alpha\beta + \beta\gamma + \gamma\alpha = \frac{\mathbf{c}}{\mathbf{a}}$

iii)
$$s_3 = \alpha \beta \gamma = \frac{-d}{a}$$

Required cubic equation is $x^3-s_1x^2+s_2x-s_3=0$

2. If α , β , γ , δ are the roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$, then

i)
$$s_1 = \alpha + \beta + \gamma + \delta = \frac{-b}{a}$$

ii)
$$s_2 = \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = \frac{c}{a}$$

iii)
$$\mathbf{s}_3 = \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = \frac{-\mathsf{d}}{\mathsf{a}}$$

iv)
$$s_4 = \alpha\beta\gamma\delta = \frac{e}{a}$$

Required biquadratic equation is $x^4 - s_1x^3 + s_2x^2 - s_3x + s_4 = 0$

- 3. For a cubic equation, when the roots are
 i) in A.P, then they are taken as a-d, a, a+d
 ii) in G.P, then they are taken as a/r , a, ar.
 iii) in H.P, then they are taken as 1/(a-d), 1/(a, 1/(a+d))
- 4. For a biquadratic equation, if the roots are
 i) in A.P, then they are taken as a-3d, a-d, a+d, a+3d

ii) in G.P, then they are taken as
$$\frac{a}{r^3}$$
, $\frac{a}{r}$ ar, ar³
iii) in H.P, then they are taken a

- iii)in H.P, then they are taken as $\frac{1}{a-3d}, \frac{1}{a-d}, \frac{1}{a+d}, \frac{1}{a+3d}$
- 5. If $f'(\alpha) = 0$ and $f(\alpha) = 0$, then α is a multiple root of order 2 for the algebraic equation f(x) = 0.

- If f"(α) = 0 and f(α) = 0, then α is a multiple root of order 3 for the algebraic equation f(x) = 0
- 7. In an equation with rational co-efficients, irrational roots occur in pairs of conjugate surds.
- 8. In an equation with real coefficients, imaginary roots occur in conjugate pairs.
- 9. Remainder theorem : If f(x) is a polynomial, then the remainder of f(x) when divided by x a is f(a).
- 10. Factor theorem: If f(x) is a polynomial and f(a) = 0then x - a is a factor of f(x).
- Horner's method: If f(x) is a polynomial function of degree 5, then
 f(x + h) = A₀x⁵ + A₁x⁴ + A₂x³ + A₃x² + A₄x + A₅ where A₁, A₂, A₃, A₄, A₅ are the remainders of f(x) when divided by (x h)⁵, (x h)⁴, (x h)³, (x h)², (x h) respectively and A₀ is the coefficient of AIMS f(x).
- 12. For a cubic equation

i)
$$\sum \alpha^2 \beta = s_1 s_2 - 3 s_3$$

ii)
$$\sum \alpha^{3}\beta^{3} = \mathbf{s}_{2}^{3} - \mathbf{3}\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3} + \mathbf{3}\mathbf{s}_{3}^{2}$$

13. For a biquadratic equation:

i)
$$\sum \alpha^2 \beta = s_1 s_2 - 3s_3$$

ii) $\sum \alpha^2 \beta \gamma = s_1 s_3 - 4s_4$

- 14. Consider $f(x) = p_0 x^n + p_1 x^{n-1} + \dots + p_n = 0$
 - i) To eliminate the second term, f(x) = 0 is transformed

to f(x + h) = 0 where h =
$$\frac{-p_1}{n.p_0}$$
.
ii) To eliminate the third term, f(x) = 0 is transformed
to f(x + h) = 0 where h is given by
 $\frac{n(n-1)}{2}p_0h^2 + (n-1)p_1h + p_2 = 0.$
15. An equation f(x) = 0 is said to be a reciprocal

equation if $\frac{1}{\alpha}$ is a root of f(x) = 0 whenever α is a root of f(x) = 0

16.	A R.E. $f(x) = p_0 x^n + p_1 x^{n-1} + \dots + p_n = 0$ is said to be a reciprocal equation of first class if $p_i = p_{n-i}$ for all i.		Required biquadratic equation is [x ² - (2 + $\sqrt{3}$ + 2 - $\sqrt{3}$)x + (2 + $\sqrt{3}$) (2 - $\sqrt{3}$)]
17.	A R.E. $f(x) = p_0 x^n + p_1 x^{n-1} + \dots + p_n = 0$ is said to be a reciprocal equation of second class if $p_i = -p_{n-i}$ for all i.		$[x^{2} - (1 + 2i + 1 - 2i)x + (1 + 2i) (1 - 2i)] = 0$ $\Rightarrow (x^{2} - 4x + 1) (x^{2} - 2x + 5) = 0$ $\Rightarrow x^{4} - 2x^{3} + 5x^{2} - 4x^{3} + 8x^{2} - 20x + x^{2} - 2x + 5 = 0$
18.	If $f(x) = 0$ is a reciprocal equation first class and odd degree, then '-1' is a root of $f(x) = 0$.		$\Rightarrow x^4 - 6x^3 + 14x^2 - 22x + 5 = 0.$
19.	If $f(x) = 0$ is a reciprocal equation of second class and odd degree, then '1' is a root of $f(x) = 0$.	3. ^·	If -1, 2, α are the roots of 2x ³ + x ² - 7x - 6 = 0, then find α . Given that 1.2 α are the roots of 2x ³ + x ² - 7x - 6
20.	If $f(x) = 0$ is a reciprocal equation of second class and even degree, then 1, -1 are roots of $f(x) = 0$.	А.	= 0 $\Rightarrow s_1 = \alpha + \beta + \gamma = -b/a$
21.	The transformed equation whose roots are negatives of roots of $f(x) = 0$ is $f(-x) = 0$.		$\Rightarrow -1 + 2 + \alpha = -1/2$ $\Rightarrow \alpha = -2/2$
22.	The T.E. whose roots are multiplied by $k(\neq 0)$ of the roots of $f(x) = 0$ is $f\left(\frac{x}{x}\right) = 0$.		$\rightarrow \alpha = -5/2$.
23.	The T.E. whose roots are reciprocals of the roots	4.	If the product of the roots of the equation $4x^3 + 16x^2 - 9x - a = 0$ is 9 then find a
	of $f(x) = 0$ is $f(\frac{1}{x}) = 0$.	A:	Product of the roots of $4x^3 + 16x^2 - 9x - a = 0$
24.	The T.E. whose roots exceed by h than those of $f(x) = 0$ is $f(x - h) = 0$.		$\Rightarrow s_3 = \alpha \beta \gamma = -d/a = 9$ $\Rightarrow -(-a)/4 = 9$
25.	The T.E. whose roots are diminished by h than those of $f(x) = 0$ is $f(x + h) = 0$		⇒a = 36.
26.	The T.E. whose roots are squares of the roots of $f(x) = 0$ is obtained by eliminating square root from $f(\sqrt{x}) = 0$.	5. A:	If α , β and 1 are the roots of $x^3 - 2x^2 - 5x + 6 = 0$, then find α and β . Given α , β , 1 are the roots of $x^3 - 2x^2 - 5x + 6 = 0$
27.	The T.E. whose roots are cubes of the roots of $f(x) = 0$ is obtained by eliminating cube root from		$\Rightarrow \mathbf{s}_1 = \alpha + \beta + 1 = 2$ $\Rightarrow \alpha + \beta = 1$
	$f(\sqrt[3]{x}) = 0$.		$\Rightarrow \alpha + \beta = 1$. Also s ₃ = $\alpha\beta\gamma = \alpha\beta(1) = -d/a = -6/1 = -6$
			$\Rightarrow \alpha\beta = -6$
	LEVEL - I (VSAQ)		By observation α = 3, β = -2.
1. A:	Form a polynomial equation of lowest degree, whose roots are 1, -1, 3. Polynomial equation of lowest degree whose roots are $1 - 1 - 3$ is $(x - 1)(x + 1)(x - 3) = 0$.	6. A:	If 1, -2, 3 are the roots of $x^3 - 2x^2 + ax + 6 = 0$, then find a. Given that 1 is a root of $x^3 - 2x^2 + ax + 6 = 0$
	$\Rightarrow (x^2 - 1) (x + 3) = 0$		⇒1 - 2 + a + 6 = 0
	$\Rightarrow x^3 - 3x^2 - x + 3 = 0.$		\Rightarrow a = -5.
2.	Form a polynomial equation with rational coefficients and whose roots are $2 + \sqrt{3}$ $4 + 2$	7. A:	Solve the equation $x^3 - 3x^2 - 6x + 8 = 0$, given that the roots are in A.P. Let the roots be a-d, a, a + d.
A:	Given roots are $2 \pm \sqrt{3}$, 1 ± 21 .		s ₁ = a - d + a + a + d = 3
			\Rightarrow 3a = 3 \Rightarrow a = 1

= 1(2) + 1(3) + 1(4) + 2(3) + 2(4) + 3(4) = 35 $s_3 = (a - d) (a) (a + d) = -8$ $c = -s_2 = -(\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta)$ \Rightarrow (1-d)(1)(1+d) = -8 = -(1.2.3 + 1.2.4 + 1.3.4 + 2.3.4) = -50⇒1 - d² = - 8 $d = s_4 = \alpha \beta \gamma \delta = 1.2.3.4 = 24$ $\Rightarrow d^2 = 9$ ∴ a = -10, b = 35, c = -50, d = 24 ∴ d = ± 3 If d = 3, the roots are 1 - 3, 1, 1 + 311. If α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$, then find $\alpha^2 + \beta^2 + \gamma^2$. i.e - 2, 1, 4. A: Given that α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$. Now $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ 8. Find s₁, s₂, s₃ and s₄ for the equation $8x^4 - 2x^3 - 27x^2 + 6x + 9 = 0.$ $= (-p)^2 - 2(q)$ A: Given equation is $8x^4 - 2x^3 - 27x^2 + 6x + 9 = 0$ $= p^2 - 2q$. Comparing this with $ax^4 + bx^3 + cx^2 + dx + e = 0$. 12. If α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$, $s_1 = -\frac{b}{a} = \frac{2}{8} = \frac{1}{4}$ then find the value of $\alpha^3 + \beta^3 + \gamma^3$. A: We know that $s_2 = \frac{c}{2} = \frac{-27}{8}$ $\alpha^{3} + \beta^{3} + \gamma^{3} - 3\alpha\beta\gamma = (\alpha + \beta + \gamma) [\alpha^{2} + \beta^{2} + \gamma^{2} - \alpha\beta - \beta\gamma - \gamma\alpha]$ $\Rightarrow \alpha^{3} + \beta^{3} + \gamma^{3} = (\alpha + \beta + \gamma) [(\alpha + \beta + \gamma)^{2} - 3(\alpha\beta + \beta\gamma + \gamma\alpha)] + 3\alpha\beta\gamma$ $s_3 = -\frac{d}{a} = \frac{-6}{8} = \frac{-3}{4}$ AIMS $= (-p) [(-p)^2 - 3(q)] + 3(-r)$ $= 3pq - p^3 - 3r.$ $s_4 = \frac{e}{a} = \frac{9}{8}$. 13. If α, β, γ are the roots of $x^3 - 2x^2 + 3x - 4 = 0$, then find $\Sigma \alpha^2 \beta^2$ 9. Solve the equation $x^3 - 3x^2 - 16x + 48 = 0$, one A: Given that α , β , γ are the roots of $x^3 - 2x^2 + 3x - 4 = 0$ root being 3. A: Given equation is $x^3 - 3x^2 - 16x + 48 = 0$ $\sum \alpha^2 \beta^2 = \alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$ $s_1 = 3 + \beta + \gamma = 3$ = $(\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2(\alpha\beta \cdot \beta\gamma + \beta\gamma \cdot \gamma\alpha + \gamma\alpha \cdot \alpha\beta)$ $\Rightarrow \beta + \gamma = 0$ = $(\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2\alpha\beta\gamma(\beta + \gamma + \alpha)$ $s_{2} = 3 (\beta)(\gamma) = -48$ $= 3^2 - 2(4)(2)$ $\Rightarrow \beta \gamma = -16$ = 9 - 16 The quadratic equation whose roots are β , γ is = -7. $\mathbf{x}^2 - (\beta + \gamma)\mathbf{x} + \beta\gamma = \mathbf{0}$ 14. Find the quotient and remainder, when \Rightarrow x² - (0)x - 16 = 0 $2x^{5} - 3x^{4} + 5x^{3} - 3x^{2} + 7x - 9$ divided by $x^{2} - x - 3$. x = +4.A: By synthetic division, dividing $2x^{5} - 3x^{4} + 5x^{3} - 3x^{2} + 7x - 9$ is by $x^{2} - x - 3$: The other two roots are 4, -4. 2 -3 5 7 -9 10. If 1, 2, 3, 4 are the roots of $x^4 + ax^3 + bx^2 + cx + d$ - 3 = 0, then find the values of a, b, c, d. 1 0 2 -1 10 4 0 A: Given that 1, 2, 3, 4 are the roots of 3 0 0 6 -3 30 12 $x^4 + ax^3 + bx^2 + cx + d = 0.$ -1 10 41 3 2 4 \Rightarrow a = -s, = - (α + β + γ + δ) = - (1 + 2 + 3 + 4) = - 10 Required quotient is $2x^3 - x^2 + 10x + 4$ and the $b = s_2 = \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ remainder is 41x + 3.

AIMSTUTORIAL

- 15. Find the polynomial equation of degree 4 whose roots are negatives of the roots of $x^4 - 6x^3 + 7x^2 - 2x + 1 = 0$
- A: Required transformed equation is f(-x) = 0 $\Rightarrow (-x)^4 - 6(-x)^3 + 7(-x)^2 - 2(-x) + 1 = 0$

$$\Rightarrow x^{4} + 6x^{3} + 7x^{2} + 2x + 1 = 0.$$

- 16. Find the algebraic equation whose roots are 3 times the roots of $x^3 + 2x^2 4x + 1 = 0$.
- A: Given equation is $f(x) = x^3 + 2x^2 4x + 1 = 0$.

Required transformed equation is f(x/3) = 0

$$\Rightarrow \frac{x^3}{27} + \frac{2x^2}{9} - \frac{4x}{3} + 1 = 0$$
$$\Rightarrow x^3 + 6x^2 - 36x + 27 = 0$$

17. If α , β , γ are the roots of the equation $x^3 + 2x^2 - 4x - 3 = 0$, find the equation whose

roots are
$$\frac{\alpha}{3}$$
, $\frac{\beta}{3}$, $\frac{\gamma}{3}$.
A: Given equation is $f(x) = x^3 + 2x^2 - 4x - 3 = 0$

Required transformed equation is f(3x) = 0

$$\Rightarrow 27x^{3} + 2(9x^{2}) - 4(3x) - 3 = 0$$
$$\Rightarrow 9x^{3} + 6x^{2} - 4x - 1 = 0.$$

- 18. Find the equation whose roots are squares of the roots of $x^3 + 3x^2 7x + 6 = 0$.
- A: Given equation is $f(x) = x^3 + 3x^2 7x + 6 = 0$.
 - Required transformed equation is $f(\sqrt{x}) = 0$

$$\Rightarrow (\sqrt{x})^3 + 3(\sqrt{x})^2 - 7\sqrt{x} + 6 = 0$$
$$\Rightarrow x\sqrt{x} + 3x - 7\sqrt{x} + 6 = 0$$

$$\Rightarrow \sqrt{x} (x - 7) = -(3x + 6)$$

Squaring on both sides,

$$\Rightarrow x(x^2 - 14x + 49) = 9x^2 + 36x + 36$$
$$\Rightarrow x^3 - 14x^2 + 49x - 9x^2 - 36x - 36 = 0$$

$$\Rightarrow$$
 x³ - 23x² + 13x - 36 = 0.

LEVEL - I (LAQ)

1. Solve $4x^3 - 24x^2 + 23x + 18 = 0$, given that the roots are in A.P. A: Given that the roots of $4x^3 - 24x^2 + 23x + 18 = 0$ are in A.P. Let the roots be a - d, a, a + d. Sum of the roots $a - d + a + a + d = \frac{-b}{a}$ $\Rightarrow 3a = \frac{24}{4}$ $\Rightarrow a = \frac{6}{3} = 2$. Product of the roots $(a - d) (a) (a + d) = \frac{-d}{a}$ $\Rightarrow (2 - d) (2) (2 + d) = \frac{-18}{4}$ $\Rightarrow 4 - d^2 = \frac{-9}{4}$ $\Rightarrow d^2 = 4 + \frac{9}{4} = \frac{25}{4}$ $\Rightarrow d = \pm \frac{5}{2}$ Hence the roots of the given equation are

$$2 - \frac{5}{2}, 2, 2 + \frac{5}{2}$$
$$= \frac{-1}{2}, 2, \frac{9}{2}.$$

2. If the roots of the equation $x^3 + 3px^2 + 3qx + r = 0$ are in A.P., then show that $2p^3 - 3pq + r = 0$.

A: Given that the roots of $x^3 + 3px^2 + 3qx + r = 0$ ----(1) are in A.P. Let the roots be a - d, a, a + d. Sum of the roots a - d + a + a + d = $\frac{-b}{a}$ $\Rightarrow 3a = -3p$

$$\Rightarrow a = -p$$

Substituting x = -p in (1), we get
(-p)³ + 3p(-p)² + 3q (-p) + r = 0

 $(-p)^3 + 3p(-p)^2 + 3q(-p) + r = 0$ $\Rightarrow -p^3 + 3p^3 - 3pq + r = 0$

 \Rightarrow 2p³ - 3pq + r = 0.

AIMSTUTORIAL

AIMS

3.	Solve the equation $x^3 - 7x^2 + 14x - 8 = 0$, given that the roots are in geometric progression.		$\Rightarrow p\alpha + q = 0$ $\Rightarrow p\alpha = -q$	$\therefore \alpha \neq 0$
A:	Given that the roots of $x^3 - 7x^2 + 14x - 8 = 0$ are in G.P.		$\rightarrow p\alpha = -q$	
	a			
	Let the roots be $\frac{a}{r}$, a, ar		$p^{\alpha}\alpha^{\beta} - q^{\beta}$	
			$\Rightarrow p^{3}(-r) = -q^{3}$	
	$s_3 = \left(\frac{a}{r}\right)$ (a) (ar) $= \frac{-a}{r}$		\Rightarrow p ³ r = q ³ is the require	ed condition.
	$\Rightarrow a^3 = 8$	5.	Solve the equation '	$15x^3 - 23x^2 + 9x - 1 = 0,$
	\Rightarrow a = 2	۸.	given that the roots a	are in H.P.
	a -b	А.	$f(x) = 15x^3 - 23x^2 + 9x - 3x^2 + 3x^2 + 9x - 3x^2 + 3x^2 + 9x - 3x^2 + 3x^$	1 = 0 (1) are in H.P.
	s, = — + a + ar = — r a		(1)	
	2(r+1+1) 7		\Rightarrow Roots of f $\left(\frac{-}{x}\right) = 0$ a	are in A.P.
	$\Rightarrow 2(1+r+1) = 7$		(1) 15 23 9	<u>^</u>
	1.7		$f\left(\frac{1}{x}\right) = \frac{1}{x^3} - \frac{1}{x^2} + \frac{1}{x} - 1$	= 0
	\Rightarrow r+ $\frac{1}{r}$ +1= $\frac{1}{2}$		⇒ 15 - 23x + 9x	$x^2 - x^3 = 0$
	\Rightarrow r + $\frac{1}{r} = \frac{7}{2} - 1 = \frac{5}{2}$		\Rightarrow x ³ - 9x ² + 23x	x - 15 = 0 (2)
			Let the roots of (2) be	a - d, a, a + d.
	1 1		• - • • • • • • • •	-b
	\Rightarrow r + $\frac{1}{r}$ = 2 + $\frac{1}{2}$ by observation		$S_1 = a - a + a + a + a = a$	a
	1		⇒3a = 9	
	\therefore r = 2 or $\frac{1}{2}$		\Rightarrow a = 3	d
			s ₃ = (a - d) (a) (a + d) =	-u = — a
	If r = 2, the required roots are $\frac{2}{2}$, 2, 2(2)		\Rightarrow 3(9 - d ²) = 15	ŭ
	= 1, 2, 4.		\rightarrow 0 d ² - $\frac{15}{-5}$	
			\Rightarrow 9 - u	
4.	Show that the condition that the roots of $x^3 + 3px^2 + 3qx + r = 0$ may be in G.P. is $p^3r = q^3$.		\Rightarrow d ² = 4	
A:	Given that the roots of $x^3 + 3px^2 + 3qx + r = 0$		⇒d = <u>+</u> 2	
	(1) are in G.P.		If d = 2, the roots of (2), are 3 - 2, 3, 3 + 2
	Let the roots be $\frac{\alpha}{\beta}$, α , α β .			= 1, 3, 5.
	α) -d			1 1
	$\left(\frac{\overline{\beta}}{\beta}\right)(\alpha)(\alpha\beta) = \frac{1}{a}$		Hence the roots of the g	iven equation are 1, $\frac{-}{3}$, $\frac{-}{5}$.
	$\Rightarrow \alpha^3 = -r$			
	$\Rightarrow \alpha^3 + r = 0$ (2)	6.	Given that the roots are in H.P. show that	of x ³ + 3px ² + 3qx + r = 0 2a ³ = 4(3pa - r).
	substituting x = α in (1),	A:	Let $f(x) = x^3 + 3px^2 + 3$	sqx + r = 0
	$\alpha^3 + 3p\alpha^2 + 3q\alpha + r = 0$		Given that roots of f(x)	= 0 are in H.P.
	$\Rightarrow (\alpha^3 + r) + 3\alpha(p\alpha + q) = 0$		\rightarrow Boots of $f(1)$	ara in A. P.
	\Rightarrow 0 + 3 α (p α + q) = 0		\Rightarrow Roots of $\left[\frac{-}{x}\right] = 0$	

 $f\left(\frac{1}{r}\right) = 0 \implies \frac{1}{r^3} + \frac{3p}{r^2} + \frac{3q}{r} + r = 0$ \Rightarrow rx³ + 3qx² + 3px + 1 = 0 Let the roots of this equation be a - d, a, a + d. sum = a - d + a + a + d = $-\frac{3q}{r}$. \Rightarrow 3a = $-\frac{3q}{r}$. $\Rightarrow a = \frac{-q}{r}$. Since a is root, $ra^{3} + 3qa^{2} + 3pa + 1 = 0$. $\Rightarrow r\left(\frac{-q}{r}\right)^3 + 3q\left(\frac{-q}{r}\right)^2 + 3p\left(\frac{-q}{r}\right) + 1 = 0$ $\Rightarrow \frac{-q^3}{r^2} + \frac{3q^3}{r^2} - \frac{3pq}{r} + 1 = 0$ $=\frac{2q^3-3pqr+r^2}{r^2}=0$ \Rightarrow 2q³ - 3pqr + r² = 0 \Rightarrow 2q³ = 3pgr - r². $\therefore 2q^3 = r(3pq - r).$ 7. Solve the equation $18x^3 + 81x^2 + 121x + 60 =$ 0, given that one root is equal to half the sum of the remaining roots. A: Let α , β , γ be the roots such that $\beta = \frac{\alpha + \gamma}{2}$ $\Rightarrow \alpha + \gamma = 2\beta$ Now $s_1 = \alpha + \beta + \gamma = \frac{-b}{2}$ $\Rightarrow 2\beta + \beta = \frac{-81}{18}$ \Rightarrow 3 $\beta = \frac{-9}{2}$ $\Rightarrow \beta = \frac{-3}{2}$ $\therefore \alpha + \gamma = -3$ Also $s_3 = \alpha \beta \gamma = \frac{-d}{c}$ $\Rightarrow \alpha \gamma \left(\frac{-3}{2}\right) = \frac{-60}{18}$

6

 $\Rightarrow \alpha \gamma = \frac{20}{9}$ The quadratic equation, whose roots are α , γ is $\mathbf{x}^2 - (\alpha + \gamma) \mathbf{x} + \alpha \gamma = \mathbf{0}.$ $\Rightarrow x^2 - (-3)x + \frac{20}{9} = 0$ \Rightarrow 9x² + 27x + 20 = 0 P = 9.20 \Rightarrow 9x² + 12x + 15x + 20 = 0 = 3.3.4.5 $\Rightarrow 3x(3x+4) + 5(3x+4) = 0$ = 12 . 15 \Rightarrow (3x + 4) (3x + 5) = 0 \Rightarrow x = $\frac{-4}{3}, \frac{-5}{3}$ Hence, the required roots of the given Cubic equation are $\frac{-4}{3}, \frac{-3}{2}, \frac{-5}{3}$. 8. Solve $x^3 - 9x^2 + 14x + 24 = 0$ given that two of the roots are in the ratio 3 : 2. A: Given that two of the roots of $x^3 - 9x^2 + 14x + 24$ MS 0 are in the ratio 3 : 2. Let the roots be 3α , 2α , γ . $s_1 = 3\alpha + 2\alpha + \gamma = 9$ $\Rightarrow \gamma = 9 - 5\alpha$ ----- (1) $s_{2} = (3\alpha) (2\alpha) + (2\alpha) (\gamma) + \gamma (3\alpha) = 14$ \Rightarrow 6 α^2 + 2 $\alpha\gamma$ + 3 $\alpha\gamma$ = 14 $\Rightarrow 6\alpha^2 + 5\alpha\gamma = 14$ ----- (2) $s_{2} = (3\alpha) (2\alpha) (\gamma) = -24$ $\Rightarrow 6\alpha^2\gamma = -24$ $\Rightarrow \alpha^2 \gamma = -4$ ------ (3) From (1) & (2), $6\alpha^2 + 5\alpha (9 - 5\alpha) = 14$ \Rightarrow 6 α^2 + 45 α - 25 α^2 - 14 = 0 \Rightarrow -19 α^2 + 45 α - 14 = 0 P = 19.14 \Rightarrow 19 α^2 - 45 α + 14 = 0 = 19.2.7 \Rightarrow 19 α^2 - 38 α - 7 α + 14 = 0 = 38.7 \Rightarrow 19 α (α - 2) - 7(α - 2) = 0 \Rightarrow (19 α - 7) (α - 2) = 0 $\Rightarrow \alpha = 2, \frac{7}{19}$ If $\alpha = 2$, then $\gamma = 9 - 5(2) = -1$.

Theory of Equations

Substituting α , γ values in LHS of (3), 10. Solve the equation $x^4 - 5x^3 + 5x^2 + 5x - 6 = 0$, $\alpha^2 \gamma = 2^2 (-1)$ the product of two roots being 3. A: Product of two roots of $x^4 - 5x^3 + 5x^2 + 5x - 6 = 0$ is 3. = -4 = RHS, which is satisfied. Let α , β , γ , δ be the roots with $\alpha\beta$ = 6. Whereas $\alpha = \frac{7}{19}$ does not satisfy equation (3). $s_4 = \alpha \beta \gamma \delta = \frac{e}{c}$ Hence, the required roots of given cubic equation 3γδ = -6 are 3(2), 2(2), -1 γδ = -2 ----- (1) = 6, 4, -1. $s_1 = \alpha + \beta + \gamma + \delta = \frac{-b}{a} = 5$ ----- (2) 9. Solve the equation $x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$, the sum of two roots being zero. A: Sum of two roots of $x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$ is $s_3 = \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = \frac{-d}{2}$ zero. Let the roots α , $-\alpha$, γ , δ $s_1 = \alpha - \alpha + \gamma + \delta = 2$ $\Rightarrow \alpha\beta(\gamma + \delta) + \gamma\delta(\alpha + \beta) = -5$ $\gamma + \delta = 2$ \Rightarrow 3(γ + δ) - 2(α + β) = -5 $\mathbf{s}_{3} = \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = \frac{-\mathbf{d}}{\mathbf{a}}$ \Rightarrow 3(α + β + γ + δ) - 5(α + β) = -5 \Rightarrow 3(5) - 5(α + β) = -5 \Rightarrow - $\alpha^2\gamma$ - $\alpha^2\delta$ + $\alpha\gamma\delta$ - $\alpha\gamma\delta$ = -6 \Rightarrow 15 + 5 = 5(α + β) $\Rightarrow \alpha^2(\gamma + \delta) = 6$ $\Rightarrow \alpha + \beta = 4, \gamma + \delta = 5 - 4 = 1.$ $\Rightarrow \alpha^2 = 3$ ١M $\alpha = \pm \sqrt{3}$. α + β = 4, $\alpha\beta$ = 3 $\gamma + \delta = 1, \gamma \delta = -2$ $s_4 = (\alpha) (-\alpha) (\gamma) (\delta) = \frac{e}{\alpha}$ $\mathbf{x}^2 - (\alpha + \beta)\mathbf{x} + \alpha\beta = \mathbf{0}$ $\mathbf{x}^2 - (\gamma + \delta)\mathbf{x} + \gamma\delta = \mathbf{0}$ $x^2 - 4x + 3 = 0.$ \Rightarrow -3 $\gamma\delta$ = -21 $x^2 - x - 2 = 0$ (x - 1) (x - 3) = 0 $x^2 - 2x + x - 2 = 0$ $\Rightarrow \gamma \delta = 7.$ $\alpha = 1, \beta = 3$ x(x - 2) + 1(x - 2) = 0The quadratic equation whose roots are γ , δ is $x^2 - (\gamma + \delta)x + \gamma \delta = 0$ (x + 1) (x - 2) = 0 \Rightarrow x² - 2x + 7 = 0 \Rightarrow x = $\frac{-b \pm \sqrt{b^2 - 4ac}}{}$ $\gamma = -1, \delta = 2$ Hence the required roots of the given biquadratic 2a equation are 1, 3, -1, 2. $=\frac{2\pm\sqrt{(-2)^2-4(1)(7)}}{2(1)}$ 11. Solve the equation $x^4 + 4x^3 - 2x^2 - 12x + 9 = 0$, if it has two pairs of equal roots. $=\frac{2\pm\sqrt{-24}}{2}$ A: Given that $x^4 + 4x^3 - 2x^2 - 12x + 9 = 0$ has two pairs of equal roots. Let the roots be α , α , β , β . $=\frac{2\pm 2\sqrt{6}i}{2}$ $s_1 = \alpha + \alpha + \beta + \beta = -4$ $\Rightarrow 2(\alpha + \beta) = -4$ $= 1 \pm \sqrt{6}$ i $\Rightarrow \alpha + \beta = -2$ Hence, the required roots of the given equation $s_3 = \alpha^2\beta + \alpha^2\beta + \alpha\beta^2 + \alpha\beta^2 = 12$ are $\sqrt{3}$, $-\sqrt{3}$, $1+\sqrt{6}$ i, $1-\sqrt{6}$ i. $\Rightarrow 2\alpha\beta(\alpha + \beta) = 12$ $\Rightarrow \alpha\beta(\alpha + \beta) = 6$ $\Rightarrow \alpha\beta(-2) = 6$ $\Rightarrow \alpha\beta = -3$ 7

AIMSTUTORIAL

The quadratic equation whose roots are α , β is $x^2 - (\alpha + \beta) x + \alpha\beta = 0$ $\Rightarrow x^2 + 2x - 3 = 0$ $\Rightarrow x^2 + 3x - x - 3 = 0$ $\Rightarrow x(x + 3) -1 (x + 3) = 0.$ $\Rightarrow (x + 3) (x - 1) = 0$ Hence the required roots of the given biqudratic equation are -3, -3, 1, 1.	13. Solve the equation $x^4 + 2x^3 - 5x^2 + 6x + 2 = 0$, given that one root of it is $1 + i$. A: For the equation $x^4 + 2x^3 - 5x^2 + 6x + 2 = 0$, one root is $1 + i$. So, the other root is $1 - i$. The quadratic equation whose roots are $1 + i$, $1 - i$ is $x^2 - (1 + i + 1 - i)x + (1 + i)(1 - i) = 0$ $\Rightarrow x^2 - 2x + 2 = 0$ By synthetic division,		
12. Find the roots of <math>x^4 - 16x^3 + 86x^2 - 176x + 105 = 0. A: Given equation is $f(x) = x^4 - 16x^3 + 86x^2 - 176x + 105 = 0$ Now $f(1) = 1 - 16 + 86 - 176 + 105$ = 192 - 192 = 0. So, 1 is a root of $f(x) = 0$. By Synthetic division, $\frac{\begin{vmatrix} 1 & -16 & 86 & -176 & 105 \\ 1 & 0 & 1 & -15 & 71 & -105 \\ \hline 1 & -15 & 71 & -105 & 0 \end{vmatrix}$ Now, the given equation can be written as $(x - 1) (x^3 - 15x^2 + 71x - 105) = 0$ Let $g(x) = x^3 - 15x^2 + 71x - 105$ $g(1) \neq 0, g(2) \neq 0, g(3) = 0.$ So, 3 is a root of $g(x) = 0$.</math>	$\begin{vmatrix} 1 & 2 & -5 & 6 & 2 \\ 2 & 0 & 2 & 8 & 2 & 0 \\ -2 & 0 & 0 & -2 & -8 & -2 \\ \hline 1 & 4 & 1 & 0 & 0 \end{vmatrix}$ Remainder is 0, Quotient is x ² + 4x + 1. Now the given equation can be written as $(x^2 - 2x + 2) (x^2 + 4x + 1) = 0$ $x^2 + 4x + 1 = 0$ $x^2 + 4x + 1 = 0$ $x = \frac{-4 \pm \sqrt{16 - 4}}{2}$ $= \frac{-4 \pm 2\sqrt{3}}{2}$ $= -2 \pm \sqrt{3}$ Hence the required roots of the given biquadratic equation are 1 + i, 1 - i, $-2 + \sqrt{3}$, $-2 - \sqrt{3}$. 14. Find the multiple roots of the equation $x^5 - 3x^4 - 5x^3 + 27x^2 - 32x + 12 = 0$.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A: Given equation is $f(x) = x^{5} - 3x^{4} - 5x^{3} + 27x^{2} - 32x + 12 = 0$ Differentiating f(x) w.r.t. x, $f'(x) = 5x^{4} - 12x^{3} - 15x^{2} + 54x - 32$		
Now $I(x) = 0$ can be written as	t'(1) = 5 - 12 - 15 + 54 - 32		
(x - 1) (x - 3) (x2 - 12x + 35) = 0	= 59 - 59		
$x^2 - 12x + 35 = 0$	= 0.		
(x - 5) (x - 7) = 0	Also f(1) = 1 - 3 - 5 + 27 - 32 + 12		
x = 5, 7.	= 40 - 40		
Hence, the required roots of the given biquadratic equation are 1, 3, 5, 7.	= 0. Since $f'(1) = 0$, $f(1) = 0$, so 1 is a multiple root of order 2 for the given equation. By Synthetic division		

	1	-3	-5	27	-32	12
1	0	1	-2	-7	20	-12
	1	-2	-7	20	-12	0
1	0	1	-1	-8	12	
	1	- 1	- 8	12	0	

Now the given equation can be written as

$$(x - 1) (x - 1) (x3 - x2 - 8x + 12) = 0$$

Let
$$g(x) = x^3 - x^2 - 8x + 12$$

differentiating w.r.t. x,

$$g'(x) = 3x^2 - 2x - 8$$

Now $g'(1) \neq 0$

g'(2) = 12 - 4 - 8 = 0 Also g(2) = 8 - 4 - 16 + 12 = 0.

Since g'(2) = 0, g(2) = 0, so 2 is a multiple root of order 2 for the cubic equation $x^3 - x^2 - 8x + 12 = 0$

$$s_1 = 2 + 2 + \gamma = \frac{1}{a} = 1$$

 $\gamma = 1 - 4 = -3$

Hence the required roots of the given 5^{th} degree equation are 1, 1, 2, 2, -3.

15. Find the algebraic equation of degree 5 whose roots are the translates of roots of $x^5 + 4x^3 - x^2 + 11 = 0$ by -3.

A: Given equation is $f(x) = x^5 + 4x^3 - x^2 + 11 = 0$. Here the roots are translated by '-3', so the transformed equation is f(x + 3) = 0. By Horner's method,

	1	0	4	-1	0	11
3	0	3	9	39	114	342
	1	3	13	38	114	353=A5
3	0	3	18	93	393	
	1	6	31	131	$507 = A_4$	
3	0	3	27	174		
	1	9	58	305=A ₃		
3	0	3	36			
	1	12	94=A ₂			
3	0	3				
	1=A ₀	15=A ₁				
			_			

∴ Required transformed equation is

 $x^5 + 15x^4 + 94x^3 + 305x^2 + 507x + 353 = 0.$

16. Transform $x^4 + 4x^3 + 2x^2 - 4x - 2 = 0$ into another equation in which the coefficient of second highest power of x is zero and find the transformed equation.

A: Given equation is $f(x) = x^4 + 4x^3 + 2x^2 - 4x - 2 = 0$.

Comparing this with $p_0x^4 + p_1x^3 + p_2x^2 + p_3x + p_4 = 0$. Here $p_0 = 1$, $p_1 = 4$, n = 4 (degree)

To eliminate the second term, f(x) = 0 is transformed to f(x + h) = 0 where h is given by

$$h = \frac{-p_1}{n.p_2} = \frac{-4}{4(1)} = -1$$

 \therefore Required transformed equation is f(x - 1) = 0.

By Horner's method

$$f(x - 1) = A_0 x^4 + A_1 x^3 + A_2 x^2 + A_3 x + A_4$$

	1	4	2	-4	-2	
-1	0	-1	-3	1	3	
	1	3	-1	-1	$1 = A_4$	
-1	0	-1	-2	3		
	1	2	-3	0 = A ₃	(AIM	IS)
-1	0	-1	-1			
	1	1	-4 = A ₂			
-1	0	-1				
	1 = A ₀	$0 = A_{1}$				

:. Required transformed equation is $x^4 - 4x^2 + 1 = 0$.

17.Solve 2x^5 + x^4 - 12x^3 - 12x^2 + x + 2 = 0. A: Given equation is $2x^5 + x^4 - 12x^3 - 12x^2 + x + 2 = 0.$

It is a reciprocal equation of first class and odd degree. So -1 is a root of it.

By Synthetic division,

Now the given equation can be written as $(x + 1) (2x^4 - x^3 - 11x^2 - x + 2) = 0.$

Consider
$$2x^4 - x^3 - 11x^2 - x + 2 = 0$$
. $\div x^2$

$$\Rightarrow 2x^2 - x - 11 - \frac{1}{x} + \frac{2}{x^2} = 0.$$
$$\Rightarrow 2\left(x^2 + \frac{1}{x^2}\right) - \left(x + \frac{1}{x}\right) - 11 = 0.$$

Theory of Equations

Put $x + \frac{1}{x} = z \implies x^2 + \frac{1}{x^2} = z^2 - 2.$ Now the above equation becomes, $\Rightarrow 2(z^2 - 2) - z - 11 = 0.$ $\Rightarrow 2z^2 - z - 15 = 0.$ $\Rightarrow 2z^2 - 6z + 5z - 15 = 0.$ $\Rightarrow 2z(z - 3) + 5(z - 3) = 0.$ z - 3 = 0 $x + \frac{1}{x} - 3 = 0.$ $x^2 - 3x + 1 = 0.$ $x = \frac{3 \pm \sqrt{9 - 4}}{2}$ $= \frac{3 \pm \sqrt{5}}{2}$ 2x(x + 2) + 1(x + 2) = 0. (x + 2)(2x + 1) = 0. $x = \frac{-1}{2}, -2$

Hence the roots of the given 5th degree equation

are -1, $\frac{3 \pm \sqrt{5}}{2}$, $\frac{-1}{2}$, -2.

18.Solve the equation

 $6x^6 - 25x^5 + 31x^4 - 31x^2 + 25x - 6 = 0.$

A: This is a reciprocal equation of 2nd class and even degree. So 1, -1 are the roots of it.

By Synthetic division,

	6	-25	31	0	-31	25	-6
1	0	6	-19	12	12	-19	6
	6	-19	12	12	-19	6	0
-1	0	- 6	25	-37	25	-6	
	6	- 25	37	-25	6	0	

Now the given equation can be written as $(x - 1) (x + 1) (6x^4 - 25x^3 + 37x^2 - 25x + 6) = 0.$ Consider $6x^4 - 25x^3 + 37x^2 - 25x + 6 = 0 <math>\div x^2$ $\Rightarrow 6x^2 - 25x + 37 - \frac{25}{x} + \frac{6}{x^2} = 0.$ $6\left(x^2 + \frac{1}{x^2}\right) - 25\left(x + \frac{1}{x}\right) + 37 = 0.$

Put
$$x + \frac{1}{x} = z \implies x^2 + \frac{1}{x^2} = z^2 - 2.$$

Now the above equation becomes,
 $\Rightarrow 6(z^2 - 2) - 25z + 37 = 0.$
 $\Rightarrow 6z^2 - 25z + 25 = 0.$
 $\Rightarrow 6z^2 - 15z - 10z + 25 = 0.$
 $\Rightarrow 3z(2z - 5) - 5(2z - 5) = 0.$
 $\Rightarrow 3z(2z - 5) - 5(2z - 5) = 0.$
 $3z - 5 = 0.$
 $3\left(x + \frac{1}{x}\right) - 5 = 0.$
 $3x^2 - 5x + 3 = 0.$
 $x = \frac{5 \pm \sqrt{25 - 36}}{2(3)}.$
 $= \frac{5 \pm \sqrt{11}i}{6}.$
 $2x(x - 2) - 1(x - 2) = 0.$
 $x = 2, \frac{1}{2}.$

Hence the required roots of the given 6th degree

reciprocal equation are -1, 1, $\frac{5 \pm \sqrt{11}i}{6}$, 2, $\frac{1}{2}$.

LEVEL - II (VSAQ)

- 1. Form the monic polynomial equation of degree 3 whose roots are 2, 3 and 6.
- A: The polynomial equation whose roots 2, 3, 6 is (x 2) (x-3) (x 6) = 0.

$$\Rightarrow (x^2 - 5x + 6) (x - 6) = 0$$

 $\Rightarrow x^3 - 6x^2 - 5x^2 + 30x + 6x - 36 = 0$

$$\Rightarrow$$
 x³ - 11² + 36x - 36 = 0.

- 2. If 1, 1, α are the roots of $x^3 6x^2 + 9x 4 = 0$ then find ' α '.
- A: Given equation is $x^3 6x^2 + 9x 4 = 0$
 - Given that 1, 1, α are the roots of given equation then s₁ = 1 + 1 + α = - p₁ \Rightarrow 2 + α = - (- 6) $\Rightarrow \alpha$ = 6 - 2 $\Rightarrow \alpha$ = 4].

AIMSTUTORIAL

3. If a, b, c are the roots of $x^3 - px^2 + qx - r = 0$ then find $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$. A: Given equation is $x^3 - px^2 + qx - r = 0$(1). Given that 'a, b, c' are the roots of (1), then a + b + c = p, ab + bc + ca = q, abc = r. $\therefore \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{b^2c^2 + a^2c^2 + a^2b^2}{a^2b^2c^2}$ $=\frac{\left(bc+ac+ab\right)^2-2abc\left(a+b+c\right)}{\left(abc\right)^2}=\frac{q^2-2rp}{r^2}.$ 4. If α , β , γ are the roots of $x^3 - ax^2 + bx + c = 0$, then find $\Sigma \alpha^2 \beta + \Sigma \alpha \beta^2$. A:Given that α , β , γ are the roots of $x^3 + ax^2 + bx + c$ = 0 then $s_1 \Rightarrow \alpha + \beta + \gamma = -a$ $s_2 \Rightarrow \alpha\beta + \beta\gamma + \gamma\alpha = b$ $s_{\alpha} \Rightarrow \alpha \beta \gamma = -c$ $\Sigma \alpha^2 \beta + \Sigma \alpha \beta^2 = \alpha^2 \beta + \beta^2 \gamma + \gamma^2 \alpha + \alpha \beta^2 + \beta \gamma^2 + \gamma \alpha^2.$ $= (\alpha + \beta + \gamma) (\alpha \beta + \beta \gamma + \gamma \alpha) - 3\alpha \beta \gamma$ = (-a)(b) - 3(-c) $= s_1 s_2 - 3 s_3 = 3c - ab.$ 5. Find the equation whose roots are the cubes of the roots of $x^3 + 3x^2 + 2 = 0$. A: Let $f(x) = x^3 + 3x^2 + 2$. Formula : The equation whose roots are the cubes of the roots of f(x) = 0 is $f(\sqrt[3]{x}) = 0$. $\Rightarrow \left(\sqrt[3]{x}\right)^3 + 3\left(\sqrt[3]{x}\right)^2 + 2 = 0 \Rightarrow x + 3\left(x^{2/3}\right) + 2 = 0 \; .$ \Rightarrow (x + 2) = -3x^{2/3} [cubing on both sides]

$$\Rightarrow (x+2)^{3} = (-3x^{2/3})^{3}$$

= x³ + 2³ + 3(x²)(2) + 3x (2²) = -27x²
= x³ + 8 + 6x² + 12x + 27x² = 0
$$\Rightarrow \boxed{x^{3} + 33x^{2} + 12x + 8 = 0}$$

LEVEL - II (LAQ)

1. Solve the equation $x^5 - 5x^4 + 9x^3 - 9x^2 + 5x - 1 = 0$

A: Given equation $x^5 - 5x^4 + 9x^3 - 9x^2 + 5x - 1 = 0$. This is a reciprocal equation of 2nd class and odd degree.

So, 1 is a root of this equation. Therefore 'x - 1' is a factor of it By synthetic division.

1	1	-5	9	-9	5	-1
	0	1	-4	5	-4	1
	1	-4	5	-4	1	0

Now the given equation can be written as

$$(x-1)(x^4-4x^3+5x^2-4x+1)=0$$

consider, $x^4 - 4x^3 + 5x^2 - 4x + 1 = 0$ On dividing this equation by x^2 , we get

$$x^{2} - 4x + 5 - \frac{4}{x} + \frac{1}{x^{2}} = 0$$
i.e. $\left(x^{2} + \frac{1}{x^{2}}\right) - 4\left(x + \frac{1}{x}\right) + 5 = 0$.
Put $x + \frac{1}{x} = z \Rightarrow x^{2} + \frac{1}{x^{2}} = z^{2} - 2$
Now the above equation becomes
 $\Rightarrow z^{2} - 2 - 4z + 5 = 0$
 $\Rightarrow z^{2} - 4z + 3 = 0$
 $\Rightarrow (z - 3) (z - 1) = 0$
 $\Rightarrow z = 1 \text{ or } 3$
Case: 2 If $z = 3$
 $\Rightarrow x + \frac{1}{x} = 1$ $\Rightarrow x + \frac{1}{x} = 3$
 $\Rightarrow x^{2} - x + 1 = 0$ $\Rightarrow x^{2} - 3x + 1 = 0$
 $\Rightarrow x = \frac{1 \pm \sqrt{1 - 4}}{2}$ $\therefore x = \frac{3 \pm \sqrt{9 - 4}}{2}$
 $\Rightarrow \frac{1 \pm \sqrt{-3}}{2}$ $\Rightarrow \frac{3 \pm \sqrt{5}}{2}$