4. THEORYOF EQUATMNS

DEFINITIONS, CONCEPTS AND FORMULAE

1. If α, β, γ are the roots of $a x^{3}+b x^{2}+c x+d=0$, then
i) $\mathrm{S}_{1}=\alpha+\beta+\gamma=\frac{-b}{a}$
ii) $\mathrm{s}_{2}=\alpha \beta+\beta \gamma+\gamma \alpha=\frac{\mathrm{c}}{\mathrm{a}}$
iii) $\mathrm{S}_{3}=\alpha \beta \gamma=\frac{-\mathrm{d}}{\mathrm{a}}$

Required cubic equation is $x^{3}-s_{1} x^{2}+S_{2} x-s_{3}=0$
2. If $\alpha, \beta, \gamma, \delta$ are the roots of $a x^{4}+b x^{3}+c x^{2}+d x+e=0$, then
i) $\mathrm{s}_{1}=\alpha+\beta+\gamma+\delta=\frac{-\mathrm{b}}{\mathrm{a}}$
ii) $\mathrm{S}_{2}=\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta=\frac{\mathrm{c}}{\mathrm{a}}$
iii) $S_{3}=\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=\frac{-d}{a}$
iv) $\mathrm{s}_{4}=\alpha \beta \gamma \delta=\frac{\mathrm{e}}{\mathrm{a}}$

Required biquadratic equation is $\mathrm{x}^{4}-\mathrm{s}_{1} \mathrm{x}^{3}+\mathrm{s}_{2} \mathrm{x}^{2}-\mathrm{s}_{3} \mathrm{x}+\mathrm{s}_{4}=0$
3. For a cubic equation, when the roots are
i) in A.P, then they are taken as a-d, a, a+d
ii) in G.P, then they are taken as $a / r, a, a r$.
iii) in H.P, then they are taken as $\frac{1}{a-d}, \frac{1}{a}, \frac{1}{a+d}$
4. For a biquadratic equation, if the roots are
i) in A.P, then they are taken as a-3d, a-d, a+d, $a+3 d$
ii) in G.P, then they are taken as $\frac{a}{r^{3}}, \frac{a}{r} a r, a r^{3}$
iii) in H.P, then they are taken as $\frac{1}{a-3 d}, \frac{1}{a-d}, \frac{1}{a+d}, \frac{1}{a+3 d}$
5. If $f^{\prime}(\alpha)=0$ and $f(\alpha)=0$, then α is a multiple root of order 2 for the algebraic equation $f(x)=0$.
6. If $f^{\prime \prime}(\alpha)=0$ and $f(\alpha)=0$, then α is a multiple root of order 3 for the algebraic equation $f(x)=0$
7. In an equation with rational co-efficients, irrational roots occur in pairs of conjugate surds.
8. In an equation with real coefficients, imaginary roots occur in conjugate pairs.
9. Remainder theorem : If $f(x)$ is a polynomial, then the remainder of $f(x)$ when divided by $x-a$ is $f(a)$.
10. Factor theorem: If $f(x)$ is a polynomial and $f(a)=0$ then $x-a$ is a factor of $f(x)$.
11. Horner's method: If $f(x)$ is a polynomial function of degree 5, then
$f(x+h)=A_{0} x^{5}+A_{1} x^{4}+A_{2} x^{3}+A_{3} x^{2}+A_{4} x+A_{5}$
where $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ are the remainders of $f(x)$ when divided by $(x-h)^{5},(x-h)^{4},(x-h)^{3},(x-h)^{2}$, $(x-h)$ respectively and A_{0} is the coefficient of AinMS $f(x)$.
12. For a cubic equation
i) $\sum \alpha^{2} \beta=s_{1} s_{2}-3 s_{3}$
ii) $\sum \alpha^{3} \beta^{3}=s_{2}^{3}-3 s_{1} s_{2} s_{3}+3 s_{3}^{2}$
13. For a biquadratic equation:
i) $\sum \alpha^{2} \beta=s_{1} s_{2}-3 s_{3}$
ii) $\sum \alpha^{2} \beta \gamma=\mathrm{s}_{1} \mathrm{~s}_{3}-4 \mathrm{~s}_{4}$
14. Consider $f(x)=p_{0} x^{n}+p_{1} x^{n-1}+\ldots . .+p_{n}=0$
i) To eliminate the second term, $f(x)=0$ is transformed

$$
\text { to } f(x+h)=0 \text { where } h=\frac{-p_{1}}{n \cdot p_{0}}
$$

ii) To eliminate the third term, $f(x)=0$ is transformed to $f(x+h)=0$ where h is given by $\frac{n(n-1)}{2} p_{0} h^{2}+(n-1) p_{1} h+p_{2}=0$.
15. An equation $f(x)=0$ is said to be a reciprocal equation if $\frac{1}{\alpha}$ is a root of $f(x)=0$ whenever α is a root of $f(x)=0$
16. A R.E. $f(x)=p_{0} x^{n}+p_{1} x^{n-1}+\ldots . .+p_{n}=0$ is said to be a reciprocal equation of first class if $p_{i}=p_{n-i}$ for all i.
17. A R.E. $f(x)=p_{0} x^{n}+p_{1} x^{n-1}+\ldots .+p_{n}=0$ is said to be a reciprocal equation of second class if $p_{i}=-p_{n-i}$ for all i.
18. If $f(x)=0$ is a reciprocal equation first class and odd degree, then ' -1 ' is a root of $f(x)=0$.
19. If $f(x)=0$ is a reciprocal equation of second class and odd degree, then ' 1 ' is a root of $f(x)=0$.
20. If $f(x)=0$ is a reciprocal equation of second class and even degree, then $1,-1$ are roots of $f(x)=0$.
21. The transformed equation whose roots are negatives of roots of $f(x)=0$ is $f(-x)=0$.
22. The T.E. whose roots are multiplied by $k(\neq 0)$ of the roots of $f(x)=0$ is $f\left(\frac{x}{k}\right)=0$.
23. The T.E. whose roots are reciprocals of the roots of $f(x)=0$ is $f\left(\frac{1}{x}\right)=0$.
24. The T.E. whose roots exceed by h than those of $f(x)=0$ is $f(x-h)=0$.
25. The T.E. whose roots are diminished by h than those of $f(x)=0$ is $f(x+h)=0$
26. The T.E. whose roots are squares of the roots of $f(x)=0$ is obtained by eliminating square root from $f(\sqrt{x})=0$.
27. The T.E. whose roots are cubes of the roots of $f(x)$ $=0$ is obtained by eliminating cube root from $f(\sqrt[3]{x})=0$.

LEVEL - I (VSAQ)

1. Form a polynomial equation of lowest degree, whose roots are 1, -1, 3 .
A: Polynomial equation of lowest degree whose roots are $1,-1,3$ is $(x-1)(x+1)(x-3)=0$
$\Rightarrow\left(x^{2}-1\right)(x+3)=0$
$\Rightarrow x^{3}-3 x^{2}-x+3=0$.
2. Form a polynomial equation with rational coefficients and whose roots are $2 \pm \sqrt{3}, \mathbf{1} \pm \mathbf{2 i}$.

A: Given roots are $2 \pm \sqrt{3}, 1 \pm 2 i$.

Required biquadratic equation is
$\left[x^{2}-(2+\sqrt{3}+2-\sqrt{3}) x+(2+\sqrt{3})(2-\sqrt{3})\right]$
$\left[x^{2}-(1+2 i+1-2 i) x+(1+2 i)(1-2 i)\right]=0$
$\Rightarrow\left(\mathrm{x}^{2}-4 \mathrm{x}+1\right)\left(\mathrm{x}^{2}-2 \mathrm{x}+5\right)=0$
$\Rightarrow \mathrm{x}^{4}-2 \mathrm{x}^{3}+5 \mathrm{x}^{2}-4 \mathrm{x}^{3}+8 \mathrm{x}^{2}-20 \mathrm{x}+\mathrm{x}^{2}-2 \mathrm{x}+5=0$
$\Rightarrow x^{4}-6 x^{3}+14 x^{2}-22 x+5=0$.
3. If $-1,2, \alpha$ are the roots of $2 x^{3}+x^{2}-7 x-6=0$, then find α.
A: Given that $-1,2, \alpha$ are the roots of $2 x^{3}+x^{2}-7 x-6$ $=0$
$\Rightarrow \mathrm{s}_{1}=\alpha+\beta+\gamma=-\mathrm{b} / \mathrm{a}$
$\Rightarrow-1+2+\alpha=-1 / 2$
$\Rightarrow \alpha=-3 / 2$.
4. If the product of the roots of the equation $4 x^{3}+16 x^{2}-9 x-a=0$ is 9 , then find a.
A: Product of the roots of $4 x^{3}+16 x^{2}-9 x-a=0 \approx 9 M S$
$\Rightarrow \mathrm{S}_{3}=\alpha \beta \gamma=-\mathrm{d} / \mathrm{a}=9$
$\Rightarrow-(-\mathrm{a}) / 4=9$
$\Rightarrow a=36$.
5. If α, β and 1 are the roots of $x^{3}-2 x^{2}-5 x+6=$ 0 , then find α and β.
A: Given $\alpha, \beta, 1$ are the roots of $x^{3}-2 x^{2}-5 x+6=0$
$\Rightarrow s_{1}=\alpha+\beta+1=2$
$\Rightarrow \alpha+\beta=1$.
Also $\mathrm{s}_{3}=\alpha \beta \gamma=\alpha \beta(1)=-\mathrm{d} / \mathrm{a}=-6 / 1=-6$
$\Rightarrow \alpha \beta=-6$
By observation $\alpha=3, \beta=-2$.
6. If $1,-2,3$ are the roots of $x^{3}-2 x^{2}+a x+6=0$, then find a.
A: Given that 1 is a root of $x^{3}-2 x^{2}+a x+6=0$
$\Rightarrow 1-2+a+6=0$
$\Rightarrow \mathrm{a}=-5$.
7. Solve the equation $x^{3}-3 x^{2}-6 x+8=0$, given that the roots are in A.P.
A: Let the roots be $a-d, a, a+d$.
$s_{1}=a-d+a+a+d=3$
$\Rightarrow 3 a=3 \Rightarrow a=1$
$\mathrm{s}_{3}=(\mathrm{a}-\mathrm{d})(\mathrm{a})(\mathrm{a}+\mathrm{d})=-8$
$\Rightarrow(1-d)(1)(1+d)=-8$
$\Rightarrow 1-\mathrm{d}^{2}=-8$
$\Rightarrow d^{2}=9$
$\therefore \mathrm{d}= \pm 3$
If $\mathrm{d}=3$, the roots are $1-3,1,1+3$

$$
\text { i.e }-2,1,4 \text {. }
$$

8. Find s_{1}, s_{2}, s_{3} and s_{4} for the equation
$8 x^{4}-2 x^{3}-27 x^{2}+6 x+9=0$.
A: Given equation is $8 x^{4}-2 x^{3}-27 x^{2}+6 x+9=0$
Comparing this with $a x^{4}+b x^{3}+c x^{2}+d x+e=0$.
$\mathrm{s}_{1}=-\frac{\mathrm{b}}{\mathrm{a}}=\frac{2}{8}=\frac{1}{4}$
$\mathrm{S}_{2}=\frac{\mathrm{c}}{\mathrm{a}}=\frac{-27}{8}$
$s_{3}=-\frac{d}{a}=\frac{-6}{8}=\frac{-3}{4}$
$\mathrm{s}_{4}=\frac{\mathrm{e}}{\mathrm{a}}=\frac{9}{8}$.
9. Solve the equation $x^{3}-3 x^{2}-16 x+48=0$, one root being 3 .
A: Given equation is $x^{3}-3 x^{2}-16 x+48=0$
$\mathrm{s}_{1}=3+\beta+\gamma=3$
$\Rightarrow \beta+\gamma=0$
$\mathrm{s}_{3}=3(\beta)(\gamma)=-48$
$\Rightarrow \beta \gamma=-16$
The quadratic equation whose roots are β, γ is $x^{2}-(\beta+\gamma) x+\beta \gamma=0$
$\Rightarrow \mathrm{x}^{2}-(0) \mathrm{x}-16=0$
$x= \pm 4$.
\therefore The other two roots are 4, -4.
10.If $1,2,3,4$ are the roots of $x^{4}+a x^{3}+b x^{2}+c x+d$ $=0$, then find the values of a, b, c, d.
A: Given that 1, 2, 3, 4 are the roots of
$x^{4}+a x^{3}+b x^{2}+c x+d=0$.
$\Rightarrow \mathrm{a}=-\mathrm{s}_{1}=-(\alpha+\beta+\gamma+\delta)=-(1+2+3+4)=-10$
$\mathrm{b}=\mathrm{s}_{2}=\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta$

$$
\begin{aligned}
& =1(2)+1(3)+1(4)+2(3)+2(4)+3(4)=35 \\
c & =-s_{3}=-(\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta) \\
& =-(1.2 \cdot 3+1.2 .4+1.3 .4+2.3 .4)=-50 \\
d & =s_{4}=\alpha \beta \gamma \delta=1.2 .3 .4=24 \\
\therefore & a=-10, b=35, c=-50, d=24
\end{aligned}
$$

11. If α, β, γ are the roots of $\mathbf{x}^{3}+\mathbf{p} \mathbf{x}^{2}+\mathbf{q x}+\mathbf{r}=\mathbf{0}$, then find $\alpha^{2}+\beta^{2}+\gamma^{2}$.
A: Given that α, β, γ are the roots of $x^{3}+p x^{2}+q x+r=0$.
Now $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)$

$$
\begin{aligned}
& =(-p)^{2}-2(q) \\
& =p^{2}-2 q .
\end{aligned}
$$

12. If α, β, γ are the roots of $\mathbf{x}^{3}+\mathbf{p} \mathbf{x}^{2}+\mathbf{q x}+\mathbf{r}=\mathbf{0}$, then find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
A: We know that

$$
\alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma=(\alpha+\beta+\gamma)\left[\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right]
$$

$\Rightarrow \alpha^{3}+\beta^{3}+\gamma^{3}=(\alpha+\beta+\gamma)\left[(\alpha+\beta+\gamma)^{2}-3(\alpha \beta+\beta \gamma+\gamma \alpha)\right]+3 \alpha \beta$,

$$
\begin{align*}
& =(-p)\left[(-p)^{2}-3(q)\right]+3(-r) \\
& =3 p q-p^{3}-3 r .
\end{align*}
$$

13. If α, β, γ are the roots of $x^{3}-2 x^{2}+3 x-4=0$, then find $\Sigma \alpha^{2} \beta^{2}$
A: Given that α, β, γ are the roots of $x^{3}-2 x^{2}+3 x-4=0$

$$
\begin{aligned}
\Sigma \alpha^{2} \beta^{2} & =\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2} \\
& =(\alpha \beta+\beta \gamma+\gamma \alpha)^{2}-2(\alpha \beta \cdot \beta \gamma+\beta \gamma \cdot \gamma \alpha+\gamma \alpha \cdot \alpha \beta) \\
& =(\alpha \beta+\beta \gamma+\gamma \alpha)^{2}-2 \alpha \beta \gamma(\beta+\gamma+\alpha) \\
& =3^{2}-2(4)(2) \\
& =9-16 \\
& =-7 .
\end{aligned}
$$

14. Find the quotient and remainder, when $2 x^{5}-3 x^{4}+5 x^{3}-3 x^{2}+7 x-9$ divided by $\mathrm{x}^{2}-\mathrm{x}-3$.
A: By synthetic division, dividing
$2 x^{5}-3 x^{4}+5 x^{3}-3 x^{2}+7 x-9$ is by $x^{2}-x-3$

1	2	-3	5	-3	7	-9
0	2	-1	10	4	0	
3	0	0	6	-3	30	12
	2	-1	10	4	41	3

Required quotient is $2 x^{3}-x^{2}+10 x+4$ and the remainder is $41 x+3$.
15. Find the polynomial equation of degree 4 whose roots are negatives of the roots of $x^{4}-6 x^{3}+7 x^{2}-2 x+1=0$
A: Required transformed equation is $f(-x)=0$
$\Rightarrow(-x)^{4}-6(-x)^{3}+7(-x)^{2}-2(-x)+1=0$
$\Rightarrow x^{4}+6 x^{3}+7 x^{2}+2 x+1=0$.
16. Find the algebraic equation whose roots are 3 times the roots of $x^{3}+2 x^{2}-4 x+1=0$.
A: Given equation is $f(x)=x^{3}+2 x^{2}-4 x+1=0$.
Required transformed equation is $f(x / 3)=0$
$\Rightarrow \frac{x^{3}}{27}+\frac{2 x^{2}}{9}-\frac{4 x}{3}+1=0$
$\Rightarrow x^{3}+6 x^{2}-36 x+27=0$.
17. If α, β, γ are the roots of the equation $x^{3}+2 x^{2}-4 x-3=0$, find the equation whose roots are $\frac{\alpha}{3}, \frac{\beta}{3}, \frac{\gamma}{3}$.
A: Given equation is $f(x)=x^{3}+2 x^{2}-4 x-3=0$
Required transformed equation is $f(3 x)=0$
$\Rightarrow 27 x^{3}+2\left(9 x^{2}\right)-4(3 x)-3=0$
$\Rightarrow 9 x^{3}+6 x^{2}-4 x-1=0$.
18. Find the equation whose roots are squares of the roots of $x^{3}+3 x^{2}-7 x+6=0$.
A: Given equation is $f(x)=x^{3}+3 x^{2}-7 x+6=0$.
Required transformed equation is $f(\sqrt{x})=0$
$\Rightarrow(\sqrt{x})^{3}+3(\sqrt{x})^{2}-7 \sqrt{x}+6=0$
$\Rightarrow x \sqrt{x}+3 x-7 \sqrt{x}+6=0$
$\Rightarrow \sqrt{x}(x-7)=-(3 x+6)$
Squaring on both sides,
$\Rightarrow x\left(x^{2}-14 x+49\right)=9 x^{2}+36 x+36$
$\Rightarrow x^{3}-14 x^{2}+49 x-9 x^{2}-36 x-36=0$
$\Rightarrow x^{3}-23 x^{2}+13 x-36=0$.

LEVEL - I (LAQ)

1. Solve $4 x^{3}-24 x^{2}+23 x+18=0$, given that the roots are in A.P.
A: Given that the roots of $4 x^{3}-24 x^{2}+23 x+18=0$ are in A.P.
Let the roots be $a-d, a, a+d$.
Sum of the roots $a-d+a+a+d=\frac{-b}{a}$

$$
\begin{aligned}
& \Rightarrow 3 a=\frac{24}{4} \\
& \Rightarrow a=\frac{6}{3}=2
\end{aligned}
$$

Product of the roots $(a-d)(a)(a+d)=\frac{-d}{a}$

$$
\begin{aligned}
& \Rightarrow(2-d)(2)(2+d)=\frac{-18}{4} \\
& \Rightarrow 4-\mathrm{d}^{2}=\frac{-9}{4} \\
& \Rightarrow \mathrm{~d}^{2}=4+\frac{9}{4}=\frac{25}{4} \\
& \Rightarrow \mathrm{~d}= \pm \frac{5}{2}
\end{aligned}
$$

Hence the roots of the given equation are

$$
\begin{aligned}
& 2-\frac{5}{2}, 2,2+\frac{5}{2} \\
& =\frac{-1}{2}, 2, \frac{9}{2} .
\end{aligned}
$$

2. If the roots of the equation $x^{3}+3 p x^{2}+3 q x+r$ $=0$ are in A.P., then show that $2 p^{3}-3 p q+r=0$.
A: Given that the roots of $x^{3}+3 p x^{2}+3 q x+r=0---$
(1) are in A.P.

Let the roots be $a-d, a, a+d$.
Sum of the roots $a-d+a+a+d=\frac{-b}{a}$

$$
\begin{aligned}
& \Rightarrow 3 a=-3 p \\
& \Rightarrow a=-p
\end{aligned}
$$

Substituting $x=-p$ in (1), we get
$(-p)^{3}+3 p(-p)^{2}+3 q(-p)+r=0$
$\Rightarrow-p^{3}+3 p^{3}-3 p q+r=0$
$\Rightarrow 2 p^{3}-3 p q+r=0$.
3. Solve the equation $x^{3}-7 x^{2}+14 x-8=0$, given that the roots are in geometric progression.
A: Given that the roots of $x^{3}-7 x^{2}+14 x-8=0$ are in G.P.

Let the roots be $\frac{a}{r}$, a, ar

$$
\begin{aligned}
& s_{3}=\left(\frac{a}{r}\right)(a)(a r)=\frac{-d}{a} \\
& \Rightarrow a^{3}=8 \\
& \Rightarrow a=2 \\
& s_{1}=\frac{a}{r}+a+a r=\frac{-b}{a} \\
& \Rightarrow 2\left(r+\frac{1}{r}+1\right)=7 \\
& \Rightarrow r+\frac{1}{r}+1=\frac{7}{2} \\
& \Rightarrow r+\frac{1}{r}=\frac{7}{2}-1=\frac{5}{2} \\
& \Rightarrow r+\frac{1}{r}=2+\frac{1}{2} \text { by observation } \\
& \quad \therefore r=2 \text { or } \frac{1}{2}
\end{aligned}
$$

If $r=2$, the required roots are $\frac{2}{2}, 2,2(2)$

$$
=1,2,4
$$

4. Show that the condition that the roots of $x^{3}+3 p x^{2}+3 q x+r=0$ may be in G.P. is $p^{3} r=q^{3}$.
A: Given that the roots of $x^{3}+3 p x^{2}+3 q x+r=0---$ (1) are in G.P.

Let the roots be $\frac{\alpha}{\beta}, \alpha, \alpha \beta$.

$$
\begin{align*}
& \left(\frac{\alpha}{\beta}\right)(\alpha)(\alpha \beta)=\frac{-d}{a} \\
& \Rightarrow \alpha^{3}=-r \\
& \Rightarrow \alpha^{3}+r=0 \quad------ \tag{2}
\end{align*}
$$

substituting $x=\alpha$ in (1),

$$
\begin{aligned}
& \alpha^{3}+3 p \alpha^{2}+3 q \alpha+r=0 \\
& \Rightarrow\left(\alpha^{3}+r\right)+3 \alpha(p \alpha+q)=0 \\
& \Rightarrow 0+3 \alpha(p \alpha+q)=0
\end{aligned}
$$

$\Rightarrow p \alpha+q=0$
$\Rightarrow p \alpha=-q$
Cubing on both sides,
$p^{3} \alpha^{3}=-q^{3}$
$\Rightarrow p^{3}(-r)=-q^{3}$
$\Rightarrow p^{3} r=q^{3}$ is the required condition.
5. Solve the equation $15 x^{3}-23 x^{2}+9 x-1=0$, given that the roots are in H.P.
A: Given that the roots of
$f(x)=15 x^{3}-23 x^{2}+9 x-1=0$ \qquad (1) are in H.P.
\Rightarrow Roots of $f\left(\frac{1}{x}\right)=0$ are in A.P.
$f\left(\frac{1}{x}\right)=\frac{15}{x^{3}}-\frac{23}{x^{2}}+\frac{9}{x}-1=0$
$\Rightarrow 15-23 x+9 x^{2}-x^{3}=0$
$\Rightarrow x^{3}-9 x^{2}+23 x-15=0$

Let the roots of (2) be $a-d, a, a+d$.
$s_{1}=a-d+a+a+d=\frac{-b}{a}$
$\Rightarrow 3 \mathrm{a}=9$
$\Rightarrow \mathrm{a}=3$
$S_{3}=(a-d)(a)(a+d)=\frac{-d}{a}$
$\Rightarrow 3\left(9-d^{2}\right)=15$
$\Rightarrow 9-\mathrm{d}^{2}=\frac{15}{3}=5$
$\Rightarrow d^{2}=4$
$\Rightarrow d= \pm 2$
If $d=2$, the roots of (2), are $3-2,3,3+2$

$$
=1,3,5
$$

Hence the roots of the given equation are $1, \frac{1}{3}, \frac{1}{5}$.
6. Given that the roots of $x^{3}+3 p x^{2}+3 q x+r=0$ are in H.P, show that $2 q^{3}=4(3 p q-r)$.
A: Let $f(x)=x^{3}+3 p x^{2}+3 q x+r=0$
Given that roots of $f(x)=0$ are in H.P.
\Rightarrow Roots of $\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=0$ are in A.P.

AIMSTUTORIAL

$$
\begin{aligned}
f\left(\frac{1}{x}\right)=0 & \Rightarrow \frac{1}{x^{3}}+\frac{3 p}{x^{2}}+\frac{3 q}{x}+r=0 \\
& \Rightarrow r x^{3}+3 q x^{2}+3 p x+1=0
\end{aligned}
$$

Let the roots of this equation be $a-d, a, a+d$.
sum $=a-d+a+a+d=-\frac{3 q}{r}$.
$\Rightarrow 3 \mathrm{a}=-\frac{3 \mathrm{q}}{\mathrm{r}}$.
$\Rightarrow \mathrm{a}=\frac{-\mathrm{q}}{\mathrm{r}}$.
Since a is root, $r^{3}+3 q a^{2}+3 p a+1=0$.
$\Rightarrow r\left(\frac{-q}{r}\right)^{3}+3 q\left(\frac{-q}{r}\right)^{2}+3 p\left(\frac{-q}{r}\right)+1=0$
$\Rightarrow \frac{-q^{3}}{r^{2}}+\frac{3 q^{3}}{r^{2}}-\frac{3 p q}{r}+1=0$
$=\frac{2 q^{3}-3 p q r+r^{2}}{r^{2}}=0$
$\Rightarrow 2 q^{3}-3 p q r+r^{2}=0$
$\Rightarrow 2 q^{3}=3 p q r-r^{2}$.
$\therefore 2 q^{3}=r(3 p q-r)$.
7. Solve the equation $18 x^{3}+81 x^{2}+121 x+60=$ 0 , given that one root is equal to half the sum of the remaining roots.

A: Let α, β, γ be the roots such that $\beta=\frac{\alpha+\gamma}{2}$
$\Rightarrow \alpha+\gamma=2 \beta$
Now $\mathrm{s}_{1}=\alpha+\beta+\gamma=\frac{-\mathrm{b}}{\mathrm{a}}$
$\Rightarrow 2 \beta+\beta=\frac{-81}{18}$
$\Rightarrow 3 \beta=\frac{-9}{2}$
$\Rightarrow \beta=\frac{-3}{2}$
$\therefore \alpha+\gamma=-3$
Also $s_{3}=\alpha \beta \gamma=\frac{-d}{\mathrm{a}}$
$\Rightarrow \alpha \gamma\left(\frac{-3}{2}\right)=\frac{-60}{18}$
$\Rightarrow \alpha \gamma=\frac{20}{9}$
The quadratic equation, whose roots are α, γ is
$x^{2}-(\alpha+\gamma) x+\alpha \gamma=0$.
$\Rightarrow x^{2}-(-3) x+\frac{20}{9}=0$
$\Rightarrow 9 x^{2}+27 x+20=0$
$P=9.20$
$\Rightarrow 9 x^{2}+12 x+15 x+20=0$
= 3.3.4.5
$\Rightarrow 3 x(3 x+4)+5(3 x+4)=0$
$\Rightarrow(3 x+4)(3 x+5)=0$
$\Rightarrow x=\frac{-4}{3}, \frac{-5}{3}$
Hence, the required roots of the given Cubic equation are $\frac{-4}{3}, \frac{-3}{2}, \frac{-5}{3}$.
8. Solve $x^{3}-9 x^{2}+14 x+24=0$ given that two of the roots are in the ratio 3:2.
A: Given that two of the roots of $x^{3}-9 x^{2}+14 x+$ AMSS 0 are in the ratio $3: 2$.

Let the roots be $3 \alpha, 2 \alpha, \gamma$.
$\mathrm{s}_{1}=3 \alpha+2 \alpha+\gamma=9$

$$
\begin{equation*}
\Rightarrow \gamma=9-5 \alpha \tag{1}
\end{equation*}
$$

$s_{2}=(3 \alpha)(2 \alpha)+(2 \alpha)(\gamma)+\gamma(3 \alpha)=14$
$\Rightarrow 6 \alpha^{2}+2 \alpha \gamma+3 \alpha \gamma=14$
$\Rightarrow 6 \alpha^{2}+5 \alpha \gamma=14$
$\mathrm{s}_{3}=(3 \alpha)(2 \alpha)(\gamma)=-24$
$\Rightarrow 6 \alpha^{2} \gamma=-24$
$\Rightarrow \alpha^{2} \gamma=-4$
From (1) \& (2), $6 \alpha^{2}+5 \alpha(9-5 \alpha)=14$

$$
\Rightarrow 6 \alpha^{2}+45 \alpha-25 \alpha^{2}-14=0
$$

$$
\Rightarrow-19 \alpha^{2}+45 \alpha-14=0
$$

$$
P=19.14
$$

$$
\Rightarrow 19 \alpha^{2}-45 \alpha+14=0 \quad=19.2 .7
$$

$$
\Rightarrow 19 \alpha^{2}-38 \alpha-7 \alpha+14=0=38.7
$$

$$
\Rightarrow 19 \alpha(\alpha-2)-7(\alpha-2)=0
$$

$$
\Rightarrow(19 \alpha-7)(\alpha-2)=0
$$

$$
\Rightarrow \alpha=2, \frac{7}{19}
$$

If $\alpha=2$, then $\gamma=9-5(2)=-1$.

Substituting α, γ values in LHS of (3),
$\alpha^{2} \gamma=2^{2}(-1)$
$=-4$
$=$ RHS, which is satisfied.
Whereas $\alpha=\frac{7}{19}$ does not satisfy equation (3).
Hence, the required roots of given cubic equation are 3(2), 2(2), -1
$=6,4,-1$.
9. Solve the equation $x^{4}-2 x^{3}+4 x^{2}+6 x-21=0$, the sum of two roots being zero.
A: Sum of two roots of $x^{4}-2 x^{3}+4 x^{2}+6 x-21=0$ is zero. Let the roots $\alpha,-\alpha, \gamma, \delta$
$\mathrm{s}_{1}=\alpha-\alpha+\gamma+\delta=2$

$$
\gamma+\delta=2
$$

$\mathrm{s}_{3}=\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=\frac{-\mathrm{d}}{\mathrm{a}}$
$\Rightarrow-\alpha^{2} \gamma-\alpha^{2} \delta+\alpha \gamma \delta-\alpha \gamma \delta=-6$
$\Rightarrow \alpha^{2}(\gamma+\delta)=6$
$\Rightarrow \alpha^{2}=3$

$$
\alpha= \pm \sqrt{3} .
$$

$\mathrm{s}_{4}=(\alpha)(-\alpha)(\gamma)(\delta)=\frac{\mathrm{e}}{\mathrm{a}}$
$\Rightarrow-3 \gamma \delta=-21$
$\Rightarrow \gamma \delta=7$.
The quadratic equation whose roots are γ, δ is

$$
x^{2}-(\gamma+\delta) x+\gamma \delta=0
$$

$\Rightarrow \mathrm{x}^{2}-2 \mathrm{x}+7=0$
$\Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(7)}}{2(1)}$

$$
=\frac{2 \pm \sqrt{-24}}{2}
$$

$$
=\frac{2 \pm 2 \sqrt{6} i}{2}
$$

$$
=1 \pm \sqrt{6} i
$$

Hence, the required roots of the given equation are $\sqrt{3},-\sqrt{3}, 1+\sqrt{6} i, 1-\sqrt{6} i$.
10. Solve the equation $x^{4}-5 x^{3}+5 x^{2}+5 x-6=0$, the product of two roots being 3 .
A: Product of two roots of $x^{4}-5 x^{3}+5 x^{2}+5 x-6=0$ is 3 . Let $\alpha, \beta, \gamma, \delta$ be the roots with $\alpha \beta=6$.

$$
\begin{align*}
& \mathrm{s}_{4}=\alpha \beta \gamma \delta=\frac{\mathrm{e}}{\mathrm{a}} \\
& 3 \gamma \delta=-6 \\
& \gamma \delta=-2-----(1) \tag{1}\\
& \mathrm{s}_{1}=\alpha+\beta+\gamma+\delta=\frac{-b}{\mathrm{a}}=5-----(1 \tag{2}\\
& \mathrm{s}_{3}=\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=\frac{-d}{\mathrm{a}} \\
& \Rightarrow \alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta)=-5 \\
& \Rightarrow 3(\gamma+\delta)-2(\alpha+\beta)=-5 \\
& \Rightarrow 3(\alpha+\beta+\gamma+\delta)-5(\alpha+\beta)=-5 \\
& \Rightarrow 3(5)-5(\alpha+\beta)=-5 \\
& \Rightarrow 15+5=5(\alpha+\beta) \\
& \Rightarrow \alpha+\beta=4, \gamma+\delta=5-4=1 .
\end{align*}
$$

$\alpha+\beta=4, \alpha \beta=3 \quad \gamma+\delta=1, \gamma \delta=-2$
$x^{2}-(\alpha+\beta) x+\alpha \beta=0 \quad x^{2}-(\gamma+\delta) x+\gamma \delta=0$
$x^{2}-4 x+3=0$.

$$
x^{2}-x-2=0
$$

$(x-1)(x-3)=0$
$\alpha=1, \beta=3$

$$
x^{2}-2 x+x-2=0
$$

$$
\begin{aligned}
& x(x-2)+1(x-2)=0 \\
& (x+1)(x-2)=0 \\
& \gamma=-1, \delta=2
\end{aligned}
$$

Hence the required roots of the given biquadratic equation are 1, 3, -1, 2 .
11. Solve the equation $x^{4}+4 x^{3}-2 x^{2}-12 x+9=0$, if it has two pairs of equal roots.
A: Given that $x^{4}+4 x^{3}-2 x^{2}-12 x+9=0$ has two pairs of equal roots.
Let the roots be $\alpha, \alpha, \beta, \beta$.
$\mathrm{s}_{1}=\alpha+\alpha+\beta+\beta=-4$
$\Rightarrow 2(\alpha+\beta)=-4$
$\Rightarrow \alpha+\beta=-2$
$\mathrm{s}_{3}=\alpha^{2} \beta+\alpha^{2} \beta+\alpha \beta^{2}+\alpha \beta^{2}=12$
$\Rightarrow 2 \alpha \beta(\alpha+\beta)=12$
$\Rightarrow \alpha \beta(\alpha+\beta)=6$
$\Rightarrow \alpha \beta(-2)=6$
$\Rightarrow \alpha \beta=-3$

The quadratic equation whose roots are α, β is
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}-3=0$
$\Rightarrow x^{2}+3 x-x-3=0$
$\Rightarrow x(x+3)-1(x+3)=0$.
$\Rightarrow(x+3)(x-1)=0$
Hence the required roots of the given biqudratic equation are $-3,-3,1,1$.
12. Find the roots of $x^{4}-16 x^{3}+86 x^{2}-176 x+105=0$.

A: Given equation is
$f(x)=x^{4}-16 x^{3}+86 x^{2}-176 x+105=0$
Now $f(1)=1-16+86-176+105$

$$
\begin{aligned}
& =192-192 \\
& =0 .
\end{aligned}
$$

So, 1 is a root of $f(x)=0$.
By Synthetic division,

	1	-16	86	-176	105
1	0	1	-15	71	-105
	1	-15	71	-105	0

Now, the given equation can be written as
$(x-1)\left(x^{3}-15 x^{2}+71 x-105\right)=0$
Let $g(x)=x^{3}-15 x^{2}+71 x-105$
$g(1) \neq 0, g(2) \neq 0, g(3)=0$.
So, 3 is a root of $g(x)=0$.

3 | 1 | -15 | 71 | -105 | |
| ---: | ---: | ---: | ---: | ---: |
| 3 | 0 | 3 | -36 | 105 |
| | 1 | -12 | 35 | 0 |

Now $f(x)=0$ can be written as

$$
\begin{gathered}
(x-1)(x-3)\left(x^{2}-12 x+35\right)=0 \\
x^{2}-12 x+35=0 \\
(x-5)(x-7)=0 \\
x=5,7
\end{gathered}
$$

Hence, the required roots of the given biquadratic equation are 1, 3, 5, 7 .
13. Solve the equation $x^{4}+2 x^{3}-5 x^{2}+6 x+2=0$, given that one root of it is $1+i$.
A: For the equation $x^{4}+2 x^{3}-5 x^{2}+6 x+2=0$, one root is $1+\mathrm{i}$.
So, the other root is $1-\mathrm{i}$.
The quadratic equation whose roots are
$1+i, 1-i$ is $\quad x^{2}-(1+i+1-i) x+(1+i)(1-i)=0$
$\Rightarrow x^{2}-2 x+2=0$
By synthetic division,

	1	2	-5	6	2
2	0	2	8	2	0
-2	0	0	-2	-8	-2
	1	4	1	0	0

Remainder is 0 ,
Quotient is $x^{2}+4 x+1$.
Now the given equation can be written as

$$
\begin{aligned}
\left(x^{2}-2 x+2\right) & \left(x^{2}+4 x+1\right)=0 \\
& x^{2}+4 x+1=0 \\
& x=\frac{-4 \pm \sqrt{16-4}}{2} \\
& =\frac{-4 \pm 2 \sqrt{3}}{2} \\
& =-2 \pm \sqrt{3}
\end{aligned}
$$

Hence the required roots of the given biquadratic equation are $1+i, 1-i,-2+\sqrt{3},-2-\sqrt{3}$.
14. Find the multiple roots of the equation $x^{5}-3 x^{4}-5 x^{3}+27 x^{2}-32 x+12=0$.
A: Given equation is
$f(x)=x^{5}-3 x^{4}-5 x^{3}+27 x^{2}-32 x+12=0$
Differentiating $f(x)$ w.r.t. x,
$f^{\prime}(x)=5 x^{4}-12 x^{3}-15 x^{2}+54 x-32$
$f^{\prime}(1)=5-12-15+54-32$

$$
=59-59
$$

$$
=0
$$

Also $f(1)=1-3-5+27-32+12$

$$
\begin{aligned}
& =40-40 \\
& =0 .
\end{aligned}
$$

Since $f^{\prime}(1)=0, f(1)=0$, so 1 is a multiple root of order 2 for the given equation.
By Synthetic division

	1	-3	-5	27	-32	12
1	0	1	-2	-7	20	-12
	1	-2	-7	20	-12	0
1	0	1	-1	-8	12	
	1	-1	-8	12		0

Now the given equation can be written as
$(x-1)(x-1)\left(x^{3}-x^{2}-8 x+12\right)=0$
Let $g(x)=x^{3}-x^{2}-8 x+12$
differentiating w.r.t. x,

$$
g^{\prime}(x)=3 x^{2}-2 x-8
$$

Now $\mathrm{g}^{\prime}(1) \neq 0$

$$
g^{\prime}(2)=12-4-8=0
$$

Also $g(2)=8-4-16+12=0$.
Since $g^{\prime}(2)=0, g(2)=0$, so 2 is a multiple root of order 2 for the cubic equation $x^{3}-x^{2}-8 x+12=0$

$$
\begin{gathered}
s_{1}=2+2+\gamma=\frac{b}{a}=1 \\
\gamma=1-4=-3
\end{gathered}
$$

Hence the required roots of the given $5^{\text {th }}$ degree equation are 1, 1, 2, 2, -3 .
15. Find the algebraic equation of degree 5 whose roots are the translates of roots of $x^{5}+4 x^{3}-x^{2}+11=0$ by -3.
A: Given equation is $f(x)=x^{5}+4 x^{3}-x^{2}+11=0$.
Here the roots are translated by ' -3 ', so the transformed equation is $f(x+3)=0$.
By Horner's method,

	1	0	4	-1	0	11
3	0	3	9	39	114	342
3	1	3	13	38	114	$353=A_{5}$
	0	3	18	93	393	
3	1	6	31	131	$507=\mathrm{A}_{4}$	
	0	3	27	174		
3	1	9	58	$305=A_{3}$		
	0	3	36			
3		12	$94=\mathrm{A}_{2}$			
	0	3				
	$=A_{0}$	$15=A$				

\therefore Required transformed equation is

$$
x^{5}+15 x^{4}+94 x^{3}+305 x^{2}+507 x+353=0
$$

16. Transform $x^{4}+4 x^{3}+2 x^{2}-4 x-2=0$ into another equation in which the coefficient of second highest power of x is zero and find the transformed equation.
A: Given equation is $f(x)=x^{4}+4 x^{3}+2 x^{2}-4 x-2=0$.
Comparing this with $p_{0} x^{4}+p_{1} x^{3}+p_{2} x^{2}+p_{3} x+p_{4}=0$.
Here $p_{0}=1, p_{1}=4, n=4$ (degree)
To eliminate the second term, $f(x)=0$ is transformed to $f(x+h)=0$ where h is given by

$$
h=\frac{-p_{1}}{n \cdot p_{0}}=\frac{-4}{4(1)}=-1
$$

\therefore Required transformed equation is $\mathrm{f}(\mathrm{x}-1)=0$.
By Horner's method

\therefore Required transformed equation is $\mathrm{x}^{4}-4 \mathrm{x}^{2}+1=0$.
17. Solve $2 x^{5}+x^{4}-12 x^{3}-12 x^{2}+x+2=0$.

A: Given equation is $2 x^{5}+x^{4}-12 x^{3}-12 x^{2}+x+2=0$.
It is a reciprocal equation of first class and odd degree. So -1 is a root of it.
By Synthetic division,

$$
\begin{array}{l|rrrrrr}
& 2 & 1 & -12 & -12 & 1 & 2 \\
-1 & 0 & -2 & 1 & 11 & 1 & -2 \\
\hline & 2 & -1 & -11 & -1 & 2 & 0
\end{array}
$$

Now the given equation can be written as $(x+1)\left(2 x^{4}-x^{3}-11 x^{2}-x+2\right)=0$.

Consider $2 x^{4}-x^{3}-11 x^{2}-x+2=0 . \quad \div x^{2}$
$\Rightarrow 2 \mathrm{x}^{2}-\mathrm{x}-11-\frac{1}{\mathrm{x}}+\frac{2}{\mathrm{x}^{2}}=0$.
$\Rightarrow 2\left(x^{2}+\frac{1}{x^{2}}\right)-\left(x+\frac{1}{x}\right)-11=0$.

Put $x+\frac{1}{x}=z \Rightarrow x^{2}+\frac{1}{x^{2}}=z^{2}-2$.
Now the above equation becomes,

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow 2\left(z^{2}-2\right)-z-11=0 . \\
\Rightarrow 2 z^{2}-z-15=0 . \\
\Rightarrow 2 z^{2}-6 z+5 z-15=0 . \\
\Rightarrow 2 z(z-3)+5(z-3)=0 . \\
z-3=0
\end{array} \\
& \begin{array}{l|l}
x+\frac{1}{x}-3=0 . & 2 z+5=0 . \\
x x^{2}-3 x+1=0 . & 2\left(x+\frac{1}{x}\right)+5=0 . \\
x=\frac{3 \pm \sqrt{9-4}}{2} & 2 x^{2}+5 x+2=0 . \\
=\frac{3 \pm \sqrt{5}}{2} & \begin{array}{l}
2 x^{2}+4 x+x+2=0 . \\
\\
\end{array} \\
\begin{array}{ll}
& (x+x+2)+1(x+2)=0 . \\
& \left.x=\frac{-1}{2},-2 x+1\right)=0 .
\end{array}
\end{array} .
\end{aligned}
$$

Hence the roots of the given $5^{\text {th }}$ degree equation are $-1, \frac{3 \pm \sqrt{5}}{2}, \frac{-1}{2},-2$.

18.Solve the equation

$6 x^{6}-25 x^{5}+31 x^{4}-31 x^{2}+25 x-6=0$.
A: This is a reciprocal equation of $2^{\text {nd }}$ class and even degree. So 1, -1 are the roots of it.
By Synthetic division,

	6	-25	31	0	-31	25	-6
1	0	6	-19	12	12	-19	6
	6	-19	12	12	-19	6	$\boxed{0}$
-1	0	-6	25	-37	25	-6	
	6	-25	37	-25	6	0	

Now the given equation can be written as $(x-1)(x+1)\left(6 x^{4}-25 x^{3}+37 x^{2}-25 x+6\right)=0$.

Consider $6 x^{4}-25 x^{3}+37 x^{2}-25 x+6=0 \quad \div x^{2}$
$\Rightarrow 6 x^{2}-25 \mathrm{x}+37-\frac{25}{\mathrm{x}}+\frac{6}{\mathrm{x}^{2}}=0$.
$6\left(x^{2}+\frac{1}{x^{2}}\right)-25\left(x+\frac{1}{x}\right)+37=0$.

Put $x+\frac{1}{x}=z \Rightarrow x^{2}+\frac{1}{x^{2}}=z^{2}-2$.
Now the above equation becomes,

$$
\begin{aligned}
& \Rightarrow 6\left(z^{2}-2\right)-25 z+37=0 \text {. } \\
& \Rightarrow 6 z^{2}-25 z+25=0 \text {. } \\
& \Rightarrow 6 z^{2}-15 z-10 z+25=0 . \\
& \Rightarrow 3 z(2 z-5)-5(2 z-5)=0 \text {. } \\
& \Rightarrow(3 z-5)(2 z-5)=0 \text {. } \\
& 3 z-5=0 . \quad 2 z-5=0 \text {. } \\
& 3\left(x+\frac{1}{x}\right)-5=0 \text {. } \\
& 3 x^{2}-5 x+3=0 . \\
& x=\frac{5 \pm \sqrt{25-36}}{2(3)} \text {. } \\
& =\frac{5 \pm \sqrt{11} \mathrm{i}}{6} \text {. } \\
& 2\left(x+\frac{1}{x}\right)-5=0 \text {. } \\
& 2 x^{2}-5 x+2=0 \text {. } \\
& 2 x^{2}-4 x-x+2=0 . \\
& 2 x(x-2)-1(x-2)=0 \text {. } \\
& (x-2)(2 x-1)=0 \text {. } \\
& x=2, \frac{1}{2} \text {. }
\end{aligned}
$$

AIMS

Hence the required ropts of the given $6^{\text {th }}$ degree reciprocal equation are $-1,1, \frac{5 \pm \sqrt{11} i}{6}, 2, \frac{1}{2}$.

LEVEL - II (VSAQ)

1. Form the monic polynomial equation of degree 3 whose roots are 2, 3 and 6 .

A: The polynomial equation whose roots $2,3,6$ is $(x-2)(x-3)(x-6)=0$.
$\Rightarrow\left(x^{2}-5 x+6\right)(x-6)=0$
$\Rightarrow \mathrm{x}^{3}-6 \mathrm{x}^{2}-5 \mathrm{x}^{2}+30 \mathrm{x}+6 \mathrm{x}-36=0$
$\Rightarrow x^{3}-11^{2}+36 x-36=0$.
2. If $1,1, \alpha$ are the roots of $x^{3}-6 x^{2}+9 x-4=0$ then find ' α '.

A: Given equation is $x^{3}-6 x^{2}+9 x-4=0$
Given that $1,1, \alpha$ are the roots of given equation then $\mathrm{s}_{1}=1+1+\alpha=-\mathrm{p}_{1}$
$\Rightarrow 2+\alpha=-(-6)$
$\Rightarrow \alpha=6-2$
$\Rightarrow \alpha=4$.
3. If a, b, c are the roots of $x^{3}-p x^{2}+q x-r=0$ then find $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$.
A: Given equation is $x^{3}-p x^{2}+q x-r=0$.
Given that ' a, b, c ' are the roots of (1), then

$$
\begin{aligned}
& a+b+c=p, a b+b c+c a=q, a b c=r . \\
& \therefore \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{b^{2} c^{2}+a^{2} c^{2}+a^{2} b^{2}}{a^{2} b^{2} c^{2}} \\
& =\frac{(b c+a c+a b)^{2}-2 a b c(a+b+c)}{(a b c)^{2}}=\frac{q^{2}-2 r p}{r^{2}} .
\end{aligned}
$$

4. If α, β, γ are the roots of $\mathbf{x}^{3}-\mathbf{a} \mathbf{x}^{2}+\mathbf{b x}+\mathbf{c}=\mathbf{0}$, then find $\Sigma \alpha^{2} \beta+\Sigma \alpha \beta^{2}$.
A:Given that α, β, γ are the roots of $x^{3}+a x^{2}+b x+c$ $=0$ then

$$
\begin{aligned}
& \mathrm{s}_{1} \Rightarrow \alpha+\beta+\gamma=-\mathrm{a} \\
& \mathrm{~s}_{2} \Rightarrow \alpha \beta+\beta \gamma+\gamma \alpha=\mathrm{b} \\
& \mathrm{~s}_{3} \Rightarrow \alpha \beta \gamma=-\mathrm{c} \\
& \Sigma \alpha^{2} \beta+\Sigma \alpha \beta^{2}=\alpha^{2} \beta+\beta^{2} \gamma+\gamma^{2} \alpha+\alpha \beta^{2}+\beta \gamma^{2}+\gamma \alpha^{2} . \\
& =(\alpha+\beta+\gamma)(\alpha \beta+\beta \gamma+\gamma \alpha)-3 \alpha \beta \gamma \\
& =(-\mathrm{a})(\mathrm{b})-3(-\mathrm{c}) \\
& =\mathrm{s}_{1} \mathrm{~s}_{2}-3 \mathrm{~s}_{3}=3 \mathrm{c}-\mathrm{ab} .
\end{aligned}
$$

5. Find the equation whose roots are the cubes of the roots of $x^{3}+3 x^{2}+2=0$.
A: Let $f(x)=x^{3}+3 x^{2}+2$.
Formula : The equation whose roots are the cubes of the roots of $f(x)=0$ is $f(\sqrt[3]{x})=0$.

$$
\begin{aligned}
& \Rightarrow(\sqrt[3]{x})^{3}+3(\sqrt[3]{x})^{2}+2=0 \Rightarrow x+3\left(x^{2 / 3}\right)+2=0 . \\
& \Rightarrow(x+2)=-3 x^{2 / 3} \text { [cubing on both sides] } \\
& \Rightarrow(x+2)^{3}=\left(-3 x^{2 / 3}\right)^{3} \\
& =x^{3}+2^{3}+3\left(x^{2}\right)(2)+3 x\left(2^{2}\right)=-27 x^{2} \\
& =x^{3}+8+6 x^{2}+12 x+27 x^{2}=0 \\
& \Rightarrow x^{3}+33 x^{2}+12 x+8=0
\end{aligned}
$$

LEVEL - II (LAQ)

1. Solve the equation $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$

A: Given equation $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$. This is a reciprocal equation of 2 nd class and odd degree.
So, 1 is a root of this equation.
Therefore ' $x-1$ ' is a factor of it
By synthetic division.

1	1	-5	9	-9	5	-1
	0	1	-4	5	-4	1
	1	-4	5	-4	1	$\underline{0}$

Now the given equation can be written as $(x-1)\left(x^{4}-4 x^{3}+5 x^{2}-4 x+1\right)=0$
consider, $x^{4}-4 x^{3}+5 x^{2}-4 x+1=0$
On dividing this equation by x^{2}, we get

$$
x^{2}-4 x+5-\frac{4}{x}+\frac{1}{x^{2}}=0
$$

i.e. $\left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)+5=0$.

Put $x+\frac{1}{x}=z \Rightarrow x^{2}+\frac{1}{x^{2}}=z^{2}-2$
Now the above equation becomes
$\Rightarrow z^{2}-2-4 z+5=0$
$\Rightarrow z^{2}-4 z+3=0$
$\Rightarrow(z-3)(z-1)=0$
$\Rightarrow z=1$ or 3
Case:1. If $z=1$
Case: 2 If $z=3$
$\Rightarrow x+\frac{1}{x}=1$
$\Rightarrow x+\frac{1}{x}=3$
$\Rightarrow \mathrm{x}^{2}-\mathrm{x}+1=0$
$\Rightarrow x^{2}-3 x+1=0$
$\Rightarrow x=\frac{1 \pm \sqrt{1-4}}{2}$
$\therefore x=\frac{3 \pm \sqrt{9-4}}{2}$
$\Rightarrow \frac{1 \pm \sqrt{-3}}{2}$
$\Rightarrow \frac{3 \pm \sqrt{5}}{2}$
$\Rightarrow \frac{1 \pm i \sqrt{3}}{2}$

