1. The measures of dispersion are (1) Range (2) Quartile deviation (3) Mean deviation (4) Variance (5) Standard deviation
2. In a given series of values (data), the difference of maximum (greatest) value and minimum (least) value is called range
3. The arithmetic average of absolute values of the deviations of the variates measured from an average mean or median (or mode) is called mean deviation about mean or median (or mode)
4. Mean deviation for ungrouped data :

Mean deviation about mean $=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|$, where $\bar{x}=$ mean
Mean deviation about median $=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-M\right|$, where $M=$ median
5. Mean deviation for grouped data

Mean deviation about mean $=\frac{\sum_{i=1}^{n} f_{i}\left|x_{i}-\bar{x}\right|}{\sum_{i=1}^{n} f_{i}}=\frac{1}{N} \sum_{i=1}^{n} f_{i}\left|x_{i}-\bar{x}\right|$, where $N=\sum_{i=1}^{n} f_{i}$
Mean deviation about median $=\frac{1}{N} \sum_{i=1}^{n} f_{i}\left|x_{i}-M\right|$, where $N=\sum_{i=1}^{n} f_{i}$
6. The mean of the squares of the deviations of the variates from their arithmetic mean is called variance. It is denoted by $\sigma^{2}$. The positive square root of variance is called standard deviation and it is denoted by $\sigma$.
7. Variance and standard deviation for ungrouped data :

Variance, $\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}{ }_{i}-\bar{x}^{2}$
Standard deviation $\sigma=\sqrt{\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]}=\sqrt{\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2}\right]}$
8. Variance and standard deviation of a discrete frequency distribution:

Variance, $\sigma^{2}=\frac{1}{N} \sum_{i=1}^{n} f_{i}\left(x_{i}-\bar{x}\right)^{2}$ where $N=\sum_{i=1}^{n} f_{i}$
Standard deviation, $\sigma=\sqrt{\left[\frac{1}{N} \sum_{i=1}^{n} f_{i}\left(x_{i}-\bar{x}\right)^{2}\right]}$ or $\sigma=\sqrt{\frac{1}{N} \sum_{i=1}^{n}\left[f_{i} x_{i}-\left(f_{i} x_{i}\right)^{2}\right]}$
9. Standard deviation for continuous frequency distribution:

$$
\sigma=\frac{1}{N} \sqrt{N \sum f_{i} x_{i}^{2}-\left(\sum f_{i} x_{i}\right)^{2}}
$$

Variance,

$$
\sigma=\frac{h}{N} \sqrt{N \sum f_{i} y_{i}^{2}-\left(\sum f_{i} y_{i}\right)^{2}}
$$

where $y_{i}=\frac{x_{i}-A}{h}$ and $h$ is the length of class interval.
10. Coefficient of variation $=\frac{\sigma}{(\bar{x})} \times 100$.
11. If each of the observations $x_{1}, x_{2}, \ldots \ldots \ldots \ldots \ldots, x_{n}$ is increased by $k$, where $k$ is a positive or negative number, then the variance remains unchanged.
12. If each observation in a data is multiplied by a constant $k$, then the variance of the resulting observations is $\mathrm{k}^{2}$ times that of the variance of original observations.

## LEVEL - I (VSAQ)

1. Find the mean deviation from the mean of the following discrete data: 3, 6, 10, 4, 9, 10 .

A: Mean of the data $3,6,10,4,9,10$ is

$$
\begin{aligned}
\overline{\mathrm{x}} & =\frac{3+6+10+4+9+10}{6} \\
& =\frac{42}{6} \\
& =7
\end{aligned}
$$

$\therefore$ Mean deviation from the mean

$$
\begin{aligned}
& =\frac{\sum_{i=1}^{6}\left|x_{i}-\bar{x}\right|}{n} \\
& =\frac{4+1+3+3+2+3}{6} \\
& =\frac{16}{6} \\
& =2.67 .
\end{aligned}
$$

2. Compute the mean deviation about the median of the data $6,7,10,12,13,4,12,16$. A:Ascending order of the given data is $6,7,10,12,12,13,16$.

$$
\begin{aligned}
\text { Median } M & =\frac{x_{4}+x_{5}}{2} \\
& =\frac{10+12}{2} \\
& =11 .
\end{aligned}
$$

$\therefore$ Mean deviation from the median

$$
\begin{aligned}
& =\frac{\sum_{i=1}^{8}\left(x_{i}-M\right)}{8} \\
& =\frac{7+5+4+1+1+1+2+5}{8} \\
& =\frac{26}{8} \\
& =3.25 .
\end{aligned}
$$

3. Find the variance and standard deviation of the data $5,12,3,18,6,8,2,10$.

Mean $\overline{\mathrm{x}}=\frac{5+12+3+18+6+8+2+10}{8}$

$$
\bar{x}=\frac{64}{8}=8
$$

Variance $\sigma^{2}=\frac{\sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)^{2}}{n}$

$$
\begin{gathered}
=\frac{9+16+25+100+4+36+4}{8} \\
=\frac{194}{8} \\
=24.25 . \\
\text { Standard deviation } \sigma=\sqrt{24.25} \\
\quad=4.95 .
\end{gathered}
$$

4. The coefficient of variation of two distributions are $\mathbf{6 0}$ and $\mathbf{7 0}$ and their standard deviations are 21 and 16 respectively. Find their arithmetic means.
A: Let $\bar{x}$ and $\bar{y}$ be the means of given two distributions
Coefficient of variation C.V. $=\frac{\sigma}{\bar{x}} \times 100$

$$
\begin{aligned}
60 & =\frac{21}{\bar{x}}(100) \\
\Rightarrow \bar{x} & =35 .
\end{aligned}
$$

For the second distribution C.V. $=\frac{\sigma}{\bar{y}} \times 100$

$$
\begin{aligned}
70 & =\frac{16}{y} \times 100 \\
\Rightarrow \bar{y} & =22.85
\end{aligned}
$$

5. The variance of 20 observations is 5 . If each of the observations is multiplied by 2 , find the variance of the resulting observations.
A: We know that if each observation in a data multiplied by a constant $k$, then the variance of the resulting observations is $\mathrm{k}^{2}$ times that of the variance of original observations.
Here each of the observation is multiplied by 2 .
$\therefore$ Variance of resulting observations

$$
\begin{aligned}
& =2^{2}(5) \\
& =4(5) \\
& =20
\end{aligned}
$$

6. If each of the observations $x_{1}, x_{2}, \ldots \ldots . x_{n}$ is increased by $k$, where $k$ is a positive or negative number, then show that the variance remains unchanged.
A: For the observations $x_{1}, x_{2}, \ldots \ldots . . . . x_{n}$,
Mean $\overline{\mathrm{x}}=\frac{\sum_{i=1}^{n} \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}$

Variance $\sigma_{1}^{2}=\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{n}}$
Mean of new observations $\bar{y}=\frac{\sum_{i=1}^{n}\left(x_{i}+k\right)}{n}$

$$
\begin{aligned}
& =\frac{\sum_{i=1}^{n} x_{i}}{n}+\frac{k n}{n} \\
& =\bar{x}+k
\end{aligned}
$$

$\therefore$ Variance of new observations $\sigma_{2}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n}$

$$
\begin{aligned}
& =\frac{\sum_{i=1}^{n}\left[x_{i}+k-\left(x_{i}+k\right)\right]^{2}}{n} \\
& =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n} \\
& =\sigma_{1}^{2} .
\end{aligned}
$$

Thus the variance of new observations is the same as that of the original observations.

## LEVEL - I (LAQ)

1. Find the mean deviation about the mean for the data :

| $\mathrm{x}_{\mathrm{i}}$ | 2 | 5 | 7 | 8 | 10 | 35 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{i}}$ | 6 | 8 | 10 | 6 | 8 | 2 |


| $\mathrm{x}_{\mathrm{i}}$ | $\mathrm{f}_{\mathrm{i}}$ | $\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ | $\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$ | $\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$ |
| :--- | :---: | :---: | :---: | :---: |
| 2 | 6 | 12 | 6 | 36 |
| 5 | 8 | 40 | 3 | 24 |
| 7 | 10 | 70 | 1 | 10 |
| 8 | 6 | 48 | 0 | 0 |
| 10 | 8 | 80 | 2 | 16 |
| 35 | 2 | 70 | 27 | 54 |
|  | 40 | 320 |  | 140 |

Arithemetic mean $\bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{320}{40}=8$
Mean deviation about the mean $=\frac{\sum \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{140}{40}=3.5$

## 4

2. Find the mean deviation from the median for the following data :

| $\mathrm{x}_{\mathrm{i}}$ | 6 | 9 | 3 | 12 | 15 | 13 | 21 | 22 |
| :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: | :---: |
| $\mathrm{f}_{\mathrm{i}}$ | 4 | 5 | 3 | 2 | 5 | 4 | 4 | 3 |

Arranging $x_{i}$ 's in ascending order, given table can be rewritten as

| $\mathrm{x}_{\mathrm{i}}$ | $\mathrm{f}_{\mathrm{i}}$ | $\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right\|$ | $\mathrm{f}_{\mathrm{i}}\left\|\mathbf{x}_{\mathbf{i}}-\mathbf{M}\right\|$ |
| :--- | :---: | :---: | :---: |
| 3 | 3 | 10 | 30 |
| 6 | 4 | 7 | 28 |
| 9 | 5 | 4 | 20 |
| 12 | 2 | 1 | 2 |
| 13 | 4 | 0 | 0 |
| 15 | 5 | 2 | 10 |
| 21 | 4 | 8 | 32 |
| 22 | 3 | 9 | 27 |

Here median is the average of $\frac{N}{2}, \frac{N}{2}+1^{\text {th }}$ observations

$$
\begin{aligned}
M & =\frac{\sum f_{i}\left|x_{i}-\bar{x}\right|}{N} \\
& =\frac{149}{30}=4.97 .
\end{aligned}
$$

3. Find the mean deviation from the mean of the following data, using the step deviation method.

| Marks | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of students | 6 | 5 | 8 | 15 | 7 | 6 | 3 |


| Class <br> interval | No. of <br> students <br> $\mathbf{f}_{i}$ | Midvalue <br> $\mathbf{x}_{\mathbf{i}}$ | $\mathbf{d}_{\mathbf{i}}=\frac{\mathbf{x}_{\mathbf{i}}-\mathbf{A}}{\mathbf{h}}$ | $\mathbf{f}_{\mathbf{i}} \mathbf{d}_{\mathbf{i}}$ | $\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$ | $\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0-10$ | 6 | 5 | -3 | -18 | 28.4 | 170.4 |
| $10-20$ | 5 | 15 | -2 | -10 | 18.4 | 92.0 |
| $20-30$ | 8 | 25 | -1 | -8 | 8.4 | 67.2 |
| $30-40$ | 15 | 35 | 0 | 0 | 1.6 | 24.0 |
| $40-50$ | 7 | 45 | 1 | 7 | 11.6 | 81.2 |
| $50-60$ | 6 | 55 | 2 | 12 | 21.6 | 129.6 |
| $60-70$ | 3 | 65 | 3 | 9 | 31.6 | 94.8 |
|  | $\mathrm{~N}=50$ |  |  | $\Sigma \mathbf{f}_{\mathbf{i}} \mathbf{d}_{\mathbf{i}}=-\mathbf{8}$ |  | 659.2 |

5. Calculate the variance and standard deviation for the discrete frequency distribution :

| $\mathrm{x}_{\mathrm{l}}$ | 4 | 8 | 11 | 17 | 20 | 24 | 32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{i}}$ | 3 | 5 | 9 | 5 | 4 | 3 | 1 |

We shall construct the following table :

| $\mathrm{x}_{\mathrm{i}}$ | $\mathrm{f}_{\mathrm{i}}$ | $\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ | $\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}$ | $\left(\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right)^{\mathbf{2}}$ | $\mathbf{f}_{\mathbf{i}}\left(\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right)^{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 3 | 12 | -10 | 100 | 300 |
| 8 | 5 | 40 | -6 | 36 | 180 |
| 11 | 9 | 99 | -3 | 9 | 81 |
| 17 | 5 | 85 | 3 | 9 | 45 |
| 20 | 4 | 80 | 6 | 36 | 144 |
| 24 | 3 | 72 | 10 | 100 | 300 |
| 32 | 1 | 32 | 18 | 324 | 324 |
|  | 30 | 420 |  |  | 1374 |

Here $\sum f_{i} x_{i}=420, N=30$
Mean $\overline{\mathbf{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\mathrm{N}}=\frac{420}{30}=14$
Variance $\sigma^{2}=\frac{\sum \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{~N}}=\frac{1374}{30}=45.8$.
Standard deviation $\sigma=\sqrt{45.8}=6.77$.
6. Calculate the variance and standard deviation of the following continuous frequency distribution :

| C.I. | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 3 | 7 | 12 | 15 | 8 | 3 | 2 |

Now we shall construct the following table with the given data :

| Class <br> Interval | Frequency <br> $\mathbf{f}_{\mathrm{i}}$ | Midpoint <br> $\mathbf{x}_{\mathrm{i}}$ | $\mathbf{y}_{\mathbf{i}}=\frac{\mathbf{x}_{\mathbf{i}}-\mathbf{A}}{\mathbf{h}}$ | $\mathbf{y}_{\mathbf{i}}^{\mathbf{2}}$ | $\mathbf{f}_{\mathrm{i}} \mathbf{y}_{\mathrm{i}}$ | $\mathbf{f}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}^{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $30-40$ | 3 | 35 | -3 | 9 | -9 | 27 |
| $40-50$ | 7 | 45 | -2 | 4 | -14 | 28 |
| $50-60$ | 12 | 55 | -1 | 1 | -12 | 12 |
| $60-70$ | 15 | 65 | 0 | 0 | 0 | 0 |
| $70-80$ | 8 | 75 | 1 | 1 | 8 | 8 |
| $80-90$ | 3 | 85 | 2 | 4 | 6 | 12 |
| $90-100$ | 2 | 95 | 3 | 9 | 6 | 18 |
|  | 50 |  |  |  | -15 | 105 |

6

Take assumed origin A as 65
$\mathrm{h}=$ length of the class $=10$
Mean $\overline{\mathbf{x}}=A+\left(\frac{\sum f_{i} y_{i}}{N}\right) h=65+\frac{(-15)(10)}{50}=62$
Variance $\sigma^{2}=\frac{h^{2}}{N^{2}}\left[N \sum f_{i} y_{i}^{2}-\left(\sum f_{i} y_{i}\right)^{2}\right]$
$=\frac{100}{2500}\left[50(105)-(-15)^{2}\right]$
$=\frac{1}{25}[5250-225]=201$
Standard deviation $\sigma=\sqrt{201}=14.18$.
7. The following table gives the daily wages of workers in a factory. Compute the standard deviation and the coefficient of variation of the wages of the workers.

| Wages | $125-175$ | $175-225$ | $225-275$ | $275-325$ | $325-375$ | $375-425$ | $425-475$ | $475-525$ | $525-575$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of <br> workers | 2 | 22 | 19 | 14 | 3 | 4 | 6 | 1 | 1 |

We shall construct the following table with the given data:

| Class <br> interval | Midpoint | Frequency <br> $f_{i}$ | $\mathbf{y}_{\mathbf{i}}=\frac{\mathbf{x}_{\mathbf{i}}-\mathbf{A}}{\mathbf{h}}$ | $\mathbf{y}_{\mathbf{i}}^{2}$ | $\mathrm{f}_{\mathrm{i}} \mathbf{y}_{\mathbf{i}}$ | $\mathbf{f}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}^{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $125-175$ | 150 | 2 | -4 | 16 | -8 | 32 |
| $175-225$ | 200 | 22 | -3 | 9 | -66 | 198 |
| $225-275$ | 250 | 19 | -2 | 4 | -38 | 76 |
| $275-325$ | 300 | 14 | -1 | 1 | -14 | 14 |
| $325-375$ | 350 | 3 | 0 | 0 | 0 | 0 |
| $375-425$ | 400 | 4 | 1 | 1 | 4 | 4 |
| $425-475$ | 450 | 6 | 2 | 4 | 12 | 24 |
| $475-525$ | 500 | 1 | 3 | 9 | 3 | 9 |
| $525-575$ | 550 | 1 | 4 | 16 | 4 | 16 |
|  |  | 72 |  |  | -103 | 373 |

Taking assumed origin A as 350, $\mathrm{h}=50$
Mean $\overline{\mathbf{x}}=A+\left(\frac{\sum f_{i} y_{i}}{N}\right) h=350+\left(\frac{-103}{72}\right)(50)=278.47$.

Variance $\sigma^{2}=\frac{h^{2}}{N^{2}}\left[N \sum f_{i} y_{i}^{2}-\left(\sum f_{i} y_{i}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{2500}{72 \times 72}\left[72(373)-(-103)^{2}\right] \\
\sigma & =88.52 .
\end{aligned}
$$

Coefficient of variation $=\frac{\sigma}{\overline{\mathrm{X}}} \times 100=\frac{88.52}{278.47} \times 100=31.79$.
8. The scores of two cricketers $A$ and $B$ in 10 innings are given below. Find who is better run getter and who is a more consistent player :

| Scores of A : $\mathrm{x}_{\mathrm{i}}$ | 40 | 25 | 19 | 80 | 38 | 8 | 67 | 121 | 66 | 76 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scores of $\mathrm{B}: \mathrm{y}_{\mathrm{i}}$ | 28 | 70 | 31 | 0 | 14 | 111 | 66 | 31 | 25 | 4 |

A: For cricketer A: Mean $\overline{\mathrm{x}}=\frac{540}{10}=54$.
For cricketer B: Mean $\bar{y}=\frac{380}{10}=38$.

| $\mathbf{x}_{\mathbf{i}}$ | $\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}$ | $\left(\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right)^{\mathbf{2}}$ | $\mathrm{y}_{\mathbf{i}}$ | $\mathbf{y}_{\mathbf{i}}-\overline{\mathbf{y}}$ | $\left(\mathbf{y}_{\mathbf{i}}-\overline{\mathbf{y}}\right)^{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | -4 | 196 | 28 | -10 | 100 |
| 25 | 29 | 841 | 70 | 32 | 1024 |
| 19 | -35 | 1225 | 31 | -7 | 49 |
| 80 | 26 | 676 | 0 | -38 | 1444 |
| 38 | -16 | 256 | 14 | -24 | 575 |
| 8 | -46 | 2116 | 111 | 73 | 5329 |
| 67 | 13 | 169 | 66 | 28 | 784 |
| 121 | 67 | 4489 | 31 | -7 | 49 |
| 66 | 12 | 144 | 25 | -13 | 163 |
| 76 | 22 | 484 | 4 | -34 | 1156 |
| $\sum \mathbf{x}_{\mathbf{i}}=540$ |  | 10596 | $\sum \mathbf{y}_{\mathbf{i}}=\mathbf{3 8 0}$ |  | 10680 |

Standard deviation of scores of $A, \sigma_{x}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}}=\sqrt{\frac{10596}{10}}=\sqrt{1059.6}=32.55$
Standard deviation of scores of $B, \sigma_{y}=\sqrt{\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n}}=\sqrt{\frac{10680}{10}}=\sqrt{1068}=32.68$

Coefficient of Variation of $\mathrm{A}=\frac{\sigma_{\mathrm{x}}}{\mathrm{x}} \times 100=\frac{32.55}{54} \times 100=60.28$.
Coefficient of Variation of $B=\frac{\sigma_{y}}{y} \times 100=\frac{32.68}{38} \times 100=86$.
Since $\overline{\mathbf{x}}>\overline{\mathbf{y}}$, cricketers A is a better run getter.
Also C.V. of $A<C . V$. of $B$, Cricketer $A$ is also a more consistent player.
9. The mean of 5 observations is 4.4. Their variance is 8.24 . If three of the observations are $\mathbf{1 , 2}$ and 6. Find the other two observations.
A: Let the missing two observations be $\mathrm{x}, \mathrm{y}$.
Now, mean $=4.4$
$\Rightarrow \frac{1+2+6+x+y}{5}=4.4$
$\Rightarrow x+y+9=22$
$\Rightarrow x+y=13$
$\Rightarrow \mathrm{y}=13-\mathrm{x}$ (1)
Also variance $\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}=8.24$
$\Rightarrow \frac{(1-4.4)^{2}+(2-4.4)^{2}+(6-4.4)^{2}+(x-4.4)^{2}+(13-x-4.4)^{2}}{5}=8.24$
$\Rightarrow(-3.4)^{2}+(-2.4)^{2}+1.6^{2}+(x-4.4)^{2}+(8.6-x)^{2}=41.20$
$\Rightarrow 11.56+5.76+2.56+x^{2}-8.8 x+19.36+73.96-17.2 x+x^{2}=41.20$
$\Rightarrow 2 x^{2}-26 x+72=0$.
$\Rightarrow x^{2}-13 x+36=0$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}-9 \mathrm{x}+36=0$
$\Rightarrow x(x-4)-9(x-4)=0$
$\Rightarrow(\mathrm{x}-4)(\mathrm{x}-9)=0$.
$\Rightarrow x=4$ or 9 .
So the missing two observations are 4,9.

## LEVEL - II (VSAQ)

1. Find the mean deviation from the mean of the following discrete data : $6,7,10,12,13,4,12,16$. Mean of the data $=\frac{6+7+10+12+13+4+12+16}{8}$.

$$
\begin{aligned}
\overline{\mathrm{x}} & =\frac{80}{8} \\
& =10 .
\end{aligned}
$$

$\therefore$ Mean deviation from the mean $=\frac{\sum_{i=1}^{8}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|}{8}$

$$
\begin{aligned}
& =\frac{4+3+0+2+3+6+2+6}{8} \\
& =\frac{26}{8}=3.25 .
\end{aligned}
$$

2. Find the mean deviation about the median for the data : 4, 6, 9, 3, 10, 13, 2.

A: The ascending order of the data is $2,3,4,6,9,10,13$.
Median $M=x_{4}=6$.
$\therefore$ Mean deviation from the median $=\frac{\sum_{i=1}^{7}\left|x_{i}-M\right|}{7}$
$=\frac{4+3+2+0+3+4+7}{7}$
$\frac{23}{7}$
$=3.29$.
3. Find the variance for the discrete data : 6, 7, 10, 12, 13, 4, 8, 12.

A: $\quad$ Mean $=\frac{6+7+10+12+13+4+8+12}{8}$

$$
=\frac{72}{8}
$$

$$
=9 .
$$

Variance $\sigma^{2}=\frac{\sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)^{2}}{8}$

$$
\begin{aligned}
& =\frac{9+4+1+9+16+25+1+9}{8} \\
& =\frac{74}{8} \\
& =9.25 .
\end{aligned}
$$

