- 1. The measures of dispersion are (1) Range (2) Quartile deviation (3) Mean deviation (4) Variance (5) Standard deviation
- 2. In a given series of values (data), the difference of maximum (greatest) value and minimum (least) value is called **range**
- 3. The arithmetic average of absolute values of the deviations of the variates measured from an average mean or median (or mode) is called **mean deviation about mean or median** (or mode)
- 4. Mean deviation for ungrouped data:

Mean deviation about mean =
$$\frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$$
, where \overline{x} = mean

Mean deviation about median =
$$\frac{1}{n}\sum_{i=1}^{n}\left|x_{i}-M\right|$$
, where M = median

5. Mean deviation for grouped data

$$\text{Mean deviation about mean} = \frac{\sum\limits_{i=1}^{n} f_i \left| x_i - \overline{x} \right|}{\sum\limits_{i=1}^{n} f_i} = \frac{1}{N} \sum\limits_{i=1}^{n} f_i \left| x_i - \overline{x} \right|, \text{ where } N = \sum\limits_{i=1}^{n} f_i$$

Mean deviation about median =
$$\frac{1}{N} \sum_{i=1}^{n} f_i |x_i - M|$$
, where $N = \sum_{i=1}^{n} f_i$

- 6. The mean of the squares of the deviations of the variates from their arithmetic mean is called variance. It is denoted by σ^2 . The positive square root of variance is called standard deviation and it is denoted by σ .
- 7. Variance and standard deviation for ungrouped data:

Variance,
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2$$

Standard deviation
$$\sigma = \sqrt{\left[\frac{1}{n}\sum_{i=1}^{n}\left(x_{i} - \overline{x}\right)^{2}\right]} = \sqrt{\left[\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} - \overline{x}^{2}\right]}$$

8. Variance and standard deviation of a discrete frequency distribution:

Variance,
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{n} f_i \left(x_i - \overline{x} \right)^2$$
 where $N = \sum_{i=1}^{n} f_i$

$$\text{Standard deviation, } \sigma = \sqrt{ \left[\frac{1}{N} \sum_{i=1}^{n} f_{i} \left(x_{i} - \overline{x} \right)^{2} \right]} \\ \text{or} \\ \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{n} \left[f_{i} x_{-i}^{2} - \left(f_{i} | x_{-i} \right)^{2} \right]}$$

9. Standard deviation for continuous frequency distribution:

Variance,
$$\sigma = \frac{1}{N} \sqrt{N \sum_{i} f_{i} x_{i}^{2} - (\sum_{i} f_{i} x_{i})^{2}}}{\sigma = \frac{h}{N} \sqrt{N \sum_{i} f_{i} y_{i}^{2} - (\sum_{i} f_{i} y_{i})^{2}}}} \quad \text{where } y_{i} = \frac{x_{i} - A}{h} \text{ and h is the length of class interval.}$$

- 10. Coefficient of variation = $\frac{\sigma}{(\bar{x})} x 100$.
- 11. If each of the observations x_1 , x_2 ,, x_n is increased by k, where k is a positive or negative number, then the variance remains unchanged.
- 12. If each observation in a data is multiplied by a constant k, then the variance of the resulting observations is k² times that of the variance of original observations.

LEVEL - I (VSAQ)

- 1. Find the mean deviation from the mean of the following discrete data: 3, 6, 10, 4, 9, 10.
- A: Mean of the data 3, 6, 10, 4, 9, 10 is

$$\overline{x} = \frac{3+6+10+4+9+10}{6}$$
$$= \frac{42}{6}$$

= 7

.. Mean deviation from the mean

$$= \frac{\sum_{i=1}^{6} |x_i - \overline{x}|}{n}$$

$$= \frac{4+1+3+3+2+3}{6}$$

$$= \frac{16}{6}$$

$$= 2.67.$$

2. Compute the mean deviation about the median of the data 6, 7, 10, 12, 13, 4, 12, 16. A:Ascending order of the given data is 6, 7, 10, 12, 13, 16.

Median M =
$$\frac{x_4 + x_5}{2}$$

= $\frac{10 + 12}{2}$
= 11.

:. Mean deviation from the median

$$= \frac{\sum_{i=1}^{8} (x_i - M)}{8}$$

$$= \frac{7 + 5 + 4 + 1 + 1 + 1 + 2 + 5}{8}$$

$$= \frac{26}{8}$$

$$= 3.25$$

3. Find the variance and standard deviation of the data 5, 12, 3, 18, 6, 8, 2, 10.

Mean
$$\overline{x} = \frac{5+12+3+18+6+8+2+10}{8}$$

$$\overline{x} = \frac{64}{8} = 8$$

Variance
$$\sigma^2 = \frac{\sum\limits_{i=1}^8 \left(x_i - \overline{x}\right)^2}{n}$$

$$= \frac{9 + 16 + 25 + 100 + 4 + 36 + 4}{8}$$

$$= \frac{194}{8}$$

$$= 24.25.$$

Standard deviation $\sigma = \sqrt{24.25}$ = 4.95.

- 4. The coefficient of variation of two distributions are 60 and 70 and their standard deviations are 21 and 16 respectively. Find their arithmetic means.
- A: Let $\overline{\chi}$ and \overline{y} be the means of given two distributions

Coefficient of variation
$$C.V. = \frac{\sigma}{\overline{x}} \times 100$$

$$60 = \frac{21}{\overline{x}} (100)$$

$$\Rightarrow \overline{x} = 35$$
.

For the second distribution C.V. = $\frac{\sigma}{\overline{y}}$ x 100

$$70 = \frac{16}{y} \times 100$$

$$\Rightarrow \overline{y} = 22.85$$
.

- 5. The variance of 20 observations is 5. If each of the observations is multiplied by 2, find the variance of the resulting observations.
- A: We know that if each observation in a data multiplied by a constant k, then the variance of the resulting observations is k² times that of the variance of original observations.

Here each of the observation is multiplied by 2 .

:. Variance of resulting observations

$$= 2^2 (5)$$

$$=4(5)$$

- 6. If each of the observations x_1 , x_2 , x_n is increased by k, where k is a positive or negative number, then show that the variance remains unchanged.
- A: For the observations x_1, x_2, \dots, x_n

Mean
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Variance
$$\sigma_1^2 = \frac{\sum \left(x_i - \overline{x}\right)^2}{n}$$

Mean of new observations
$$\overline{y} = \frac{\sum\limits_{i=1}^{n} \left(x_i + k\right)}{n}$$

$$= \frac{\sum_{i=1}^{n} x_i}{n} + \frac{kn}{n}$$
$$= \overline{x} + k$$

.: Variance of new observations
$$\sigma_2^2 = \frac{\sum\limits_{i=1}^n \left(y_i - \overline{y}\right)^2}{n}$$

$$=\frac{\sum\limits_{i=1}^{n}\!\left[x_{i}+k-\!\left(x_{i}+k\right)\right]^{2}}{n}$$

$$=\frac{\sum\limits_{i=1}^{n}\!\left(x_{i}-\overline{x}\right)^{2}}{n}$$

$$= \sigma_1^2$$
.

Thus the variance of new observations is the same as that of the original observations.

LEVEL - I (LAQ)

1. Find the mean deviation about the mean for the data:

X _i	2	5	7	8	10	35
f,	6	8	10	6	8	2

X _i	f _i	f _i x _i	$ \mathbf{x}_{i} - \overline{\mathbf{x}} $	$f_i x_i - \overline{x} $
2	6	12	6	36
5	8	40	3	24
7	10	70	1	10
8	6	48	0	0
10	8	80	2	16
35	2	70	27	54
	40	320		140

Arithemetic mean
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{320}{40} = 8$$

Mean deviation about the mean =
$$\frac{\sum f_i |x_i - \overline{x}|}{\sum f_i} = \frac{140}{40} = 3.5$$

2. Find the mean deviation from the median for the following data:

X _i	6	9	3	12	15	13	21	22
f,	4	5	3	2	5	4	4	3

Arranging x,'s in ascending order, given table can be rewritten as

•	. 0 1	0 , 0	
X _i	f _i	x _i - M	$f_i \mathbf{x}_i - \mathbf{M} $
3	3	10	30
6	4	7	28
9	5	4	20
12	2	1	2
13	4	0	0
15	5	2	10
21	4	8	32
22	3	9	27

$$N = 30$$

$$\sum f_i |x_i - \overline{x}| = 149$$

Here median is the average of $\frac{N}{2}$, $\frac{N}{2}$ + 1 th observations

$$M = \frac{\sum f_i |x_i - \overline{x}|}{N}$$
$$= \frac{149}{30} = 4.97$$

3. Find the mean deviation from the mean of the following data, using the step deviation method.

Marks	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
No. of students	6	5	8	15	7	6	3

Class interval	No. of students	Midvalue X _i	$d_i = \frac{x_i - A}{h}$	f _i d _i	$ \mathbf{x}_i - \overline{\mathbf{x}} $	$f_i x_i - \overline{x} $
0 - 10	6	5	- 3	- 18	28.4	170.4
10 - 20	5	15	- 2	- 10	18.4	92.0
20 - 30	8	25	- 1	- 8	8.4	67.2
30 - 40	15	35	0	0	1.6	24.0
40 - 50	7	45	1	7	11.6	81.2
50 - 60	6	55	2	12	21.6	129.6
60 - 70	3	65	3	9	31.6	94.8
	N = 50			$\sum f_i d_i = -8$		659.2

5. Calculate the variance and standard deviation for the discrete frequency distribution :

X _I	4	8	11	17	20	24	32	
f	3	5	9	5	4	3	1	

We shall construct the following table:

X _i	f _i	f _i x _i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	$f_i(x_i - \overline{x})^2$
4	3	12	- 10	100	300
8	5	40	- 6	36	180
11	9	99	- 3	9	81
17	5	85	3	9	45
20	4	80	6	36	144
24	3	72	10	100	300
32	1	32	18	324	324
	30	420			1374

Here
$$\sum f_i x_i = 420$$
, N = 30

Mean
$$\bar{\mathbf{x}} = \frac{\sum f_i x_i}{N} = \frac{420}{30} = 14$$

Variance
$$\sigma^2 = \frac{\sum f_i (x_i - \overline{x})^2}{N} = \frac{1374}{30} = 45.8$$
.

Standard deviation $\sigma = \sqrt{45.8} = 6.77$.

6. Calculate the variance and standard deviation of the following continuous frequency distribution:

			_				
C.I.	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80	80 - 90	90 - 100
Frequency	3	7	12	15	8	3	2

Now we shall construct the following table with the given data:

Class Interval	Frequency f _i	Midpoint x _i	$y_i = \frac{x_i - A}{h}$	y _i ²	f _i y _i	f _i y _i ²
30 - 40	3	35	- 3	9	- 9	27
40 - 50	7	45	- 2	4	- 14	28
50 - 60	12	55	- 1	1	- 12	12
60 - 70	15	65	0	0	0	0
70 - 80	8	75	1	1	8	8
80 - 90	3	85	2	4	6	12
90 - 100	2	95	3	9	6	18
	50				- 15	105

Take assumed origin A as 65

h = length of the class = 10

Mean
$$\bar{\mathbf{x}} = A + \left(\frac{\sum f_i y_i}{N}\right) h = 65 + \frac{(-15)(10)}{50} = 62$$

Variance
$$\sigma^2 = \frac{h^2}{N^2} \left[N \sum_i f_i y_i^2 - \left(\sum_i f_i y_i \right)^2 \right]$$

$$=\frac{100}{2500}\Big[50(105)-(-15)^2\Big]$$

$$=\frac{1}{25}\left[5250-225\right]=201$$

Standard deviation $\sigma = \sqrt{201} = 14.18$.

7. The following table gives the daily wages of workers in a factory. Compute the standard deviation and the coefficient of variation of the wages of the workers.

Wages	125-175	175 - 225	225-275	275 - 325	325 - 375	375 - 425	425 - 475	475 - 525	525 - 575
No. of	2	22	19	14	3	4	6	1	1
workers									

We shall construct the following table with the given data:

Class interval	Midpoint	Frequency f _i	$y_i = \frac{x_i - A}{h}$	y _i ²	f _i y _i	f _i y _i ²
125 - 175	150	2	- 4	16	- 8	32
175 - 225	200	22	- 3	9	- 66	198
225 - 275	250	19	- 2	4	- 38	76
275 - 325	300	14	- 1	1	- 14	14
325 - 375	350	3	0	0	0	0
375 - 425	400	4	1	1	4	4
425 - 475	450	6	2	4	12	24
475 - 525	500	1	3	9	3	9
525 - 575	550	1	4	16	4	16
	•	72			- 103	373

Taking assumed origin A as 350, h = 50

Mean
$$\bar{\mathbf{x}} = A + \left(\frac{\sum f_i y_i}{N}\right) h = 350 + \left(\frac{-103}{72}\right) (50) = 278.47$$
.

Variance
$$\sigma^2 = \frac{h^2}{N^2} \left[N \sum_i f_i y_i^2 - \left(\sum_i f_i y_i \right)^2 \right]$$

= $\frac{2500}{72 \times 72} \left[72 (373) - (-103)^2 \right]$
 $\sigma = 88.52.$

Coefficient of variation =
$$\frac{\sigma}{\overline{x}} \times 100 = \frac{88.52}{278.47} \times 100 = 31.79$$

8. The scores of two cricketers A and B in 10 innings are given below. Find who is better run getter and who is a more consistent player:

Scores of A : x _i	40	25	19	80	38	8	67	121	66	76
Scores of B : y _i	28	70	31	0	14	111	66	31	25	4

A: For cricketer A: Mean
$$\overline{x} = \frac{540}{10} = 54$$
.

For cricketer B : Mean
$$\overline{y} = \frac{380}{10} = 38$$
.

					
X _i	$\mathbf{x}_{i} - \overline{\mathbf{x}}$	$\left(\mathbf{x}_{i} - \overline{\mathbf{x}}\right)^2$	y _i	$\mathbf{y}_{i} - \overline{\mathbf{y}}$	$(y_i - \overline{y})^2$
40	- 4	196	28	- 10	100
25	29	841	70	32	1024
19	- 35	1225	31	- 7	49
80	26	676	0	- 38	1444
38	- 16	256	14	- 24	575
8	- 46	2116	111	73	5329
67	13	169	66	28	784
121	67	4489	31	- 7	49
66	12	144	25	- 13	163
76	22	484	4	- 34	1156
$\sum \mathbf{x_i} = 540$)	10596	$\sum y_i = 380$		10680

Standard deviation of scores of A,
$$\sigma_x = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}} = \sqrt{\frac{10596}{10}} = \sqrt{1059.6} = 32.55$$

Standard deviation of scores of B,
$$\sigma_y = \sqrt{\frac{\sum (y_i - \overline{y})^2}{n}} = \sqrt{\frac{10680}{10}} = \sqrt{1068} = 32.68$$

Coefficient of Variation of A =
$$\frac{\sigma_x}{x} \times 100 = \frac{32.55}{54} \times 100 = 60.28$$
.

Coefficient of Variation of B =
$$\frac{\sigma_y}{y} \times 100 = \frac{32.68}{38} \times 100 = 86$$
.

Since $\overline{\mathbf{x}} > \overline{\mathbf{y}}$, cricketers A is a better run getter.

Also C.V. of A < C.V. of B, Cricketer A is also a more consistent player.

- 9. The mean of 5 observations is 4.4. Their variance is 8.24. If three of the observations are 1, 2 and 6. Find the other two observations.
- A: Let the missing two observations be x, y.

Now, mean
$$= 4.4$$

$$\Rightarrow \frac{1+2+6+x+y}{5} = 4.4$$

$$\Rightarrow$$
 x + y + 9 = 22

$$\Rightarrow$$
 x + y = 13

$$\Rightarrow$$
 y = 13 - x (1)

Also variance
$$\frac{\sum (x_i - \overline{x})^2}{n} = 8.24$$

$$\Rightarrow \frac{(1-4.4)^2 + (2-4.4)^2 + (6-4.4)^2 + (x-4.4)^2 + (13-x-4.4)^2}{5} = 8.24$$

$$\Rightarrow$$
 (-3.4)² + (-2.4)² + 1.6² + (x - 4.4)² + (8.6 - x)² = 41.20

$$\Rightarrow$$
 11.56 + 5.76 + 2.56 + x^2 - 8.8 x + 19.36 + 73.96 - 17.2 x + x^2 = 41.20

$$\Rightarrow$$
 2x² - 26x + 72 = 0.

$$\Rightarrow$$
 x² - 13x + 36 = 0

$$\Rightarrow$$
 x² - 4x - 9x + 36 = 0

$$\Rightarrow$$
 x (x - 4) - 9(x - 4) = 0

$$\Rightarrow$$
 (x - 4) (x - 9) = 0.

$$\Rightarrow$$
 x = 4 or 9.

So the missing two observations are 4,9.

LEVEL - II (VSAQ)

1. Find the mean deviation from the mean of the following discrete data: 6, 7, 10, 12, 13, 4, 12, 16.

Mean of the data =
$$\frac{6+7+10+12+13+4+12+16}{8}$$

$$\overline{x} = \frac{80}{8}$$

$$\therefore \text{ Mean deviation from the mean } = \frac{\sum\limits_{i=1}^{8} \left| x_i - \overline{x} \right|}{8}$$

$$= \frac{4+3+0+2+3+6+2+6}{8}$$
$$= \frac{26}{8} = 3.25.$$

- 2. Find the mean deviation about the median for the data: 4, 6, 9, 3, 10, 13, 2.
- A: The ascending order of the data is 2, 3, 4, 6, 9, 10, 13. Median $M = x_4 = 6$.

... Mean deviation from the median =
$$\frac{\sum\limits_{i=1}^{7} \left| x_i - M \right|}{7}$$

$$=\frac{4+3+2+0+3+4+7}{7}$$

$$\frac{23}{7}$$
 = 3.29.

3. Find the variance for the discrete data: 6, 7, 10, 12, 13, 4, 8, 12.

A: Mean =
$$\frac{6+7+10+12+13+4+8+12}{8}$$

$$=\frac{72}{8}$$
$$=9.$$

Variance
$$\sigma^2 = \frac{\sum\limits_{i=1}^{8} (x_i - \overline{x})^2}{8}$$

$$=\frac{9+4+1+9+16+25+1+9}{8}$$

$$=\frac{74}{8}$$

* * * * * *