DEFINITIONS, CONCEPTS AND FORMULAE

Random variable:

1. Let S be the sample space of a radom experiment. A real valued function $X: S \rightarrow R$ is called a random variable.
2. Let $X: S \rightarrow R$ be a descrete random variable with range $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. If $\Sigma x_{i} P\left(X=x_{i}\right)$ exists, then $\Sigma x_{i} P\left(X=x_{r}\right)$ is called the 'mean' of the random vairable X. It is denoted by μ or \bar{x}. If $\Sigma\left(x_{i}-\mu\right)^{2} P\left(X=x_{r}\right)$ exists, then $\Sigma\left(x_{i}-\mu\right)^{2} P\left(X=x_{r}\right)$ is called variance of the random variable X. It is denoted by σ^{2}.
3. $\sum_{i=1}^{n} P\left(X=X_{i}\right)=1$.
4. $\sum_{i=1}^{\infty} P\left(X=X_{i}\right)=1$.
5. Mean of the random variable $\mu=\sum_{i=1}^{n} x_{i} P\left(X=x_{i}\right)$.
6. Variance $\sigma^{2}=\sum_{i=1}^{n} x_{i}^{2} P\left(X=x_{i}\right)-\mu^{2}$.
7. Standard deviation $=\sqrt{\text { Variance }}$.

Binomial distribution:

8. A discrete random variable X is said to follow a binomial distribution with parameters n and p where $0<p<1$ if $P(X=r)={ }^{n} C_{r} q^{n-r} p^{r}$ where $r=0,1,2, \ldots, n$.
9. If X is a binomial variate with parameters n, p, then it is described by writing $X \sim B(n, p)$.
10. n, p are the parameters of the binomial distribution.
11. $P(X=r)={ }^{n} C_{r} q^{n-r} p^{r}$ where $p+q=1$
12. $B \cdot D$ is $(q+p)^{n}$
13. Mean of X is $n p$.
14. Variance of X is npq.
15. Standard deviation $=\sqrt{n p q}$.

Poisson distribution:

16. Let $\lambda>0$ be a real number. A random variable X with range $\{0,1,2, \ldots$.$\} is said to follow poisson$ distribution with parameter λ if
$P(X=r)=\frac{e^{-\lambda} \lambda^{r}}{r!}$ for $r=0,1,2, \ldots \ldots \ldots$.
17. λ is the only parameter of the poisson distribution.
18. $P(X=r)=\frac{e^{-\lambda} \lambda^{r}}{r!}$ where $r=0,1,2$ \qquad ∞.
19. Mean $=\lambda$.
20. Variance $=\lambda$.
21. Standard deviation $=\sqrt{\lambda}$.

LEVEL - I (VSAQ)

1. The probability distribution of a random variable X is

$X=x$	0	1	2	3
$P(X=x)$	k	$3 k$	$3 k$	k

Find the value of k and the mean of X.
A : Given that X is a random variable.
$\Rightarrow \sum_{i=1}^{3} P\left(X=x_{i}\right)=1$
$\Rightarrow \mathrm{k}+3 \mathrm{k}+3 \mathrm{k}+\mathrm{k}=1$
$\Rightarrow 8 \mathrm{k}=1$
$\Rightarrow \mathrm{k}=1 / 8$
Let μ be the mean of X.

$$
\begin{aligned}
\therefore \mu & =\sum_{i=1}^{3} x_{i} P\left(x=x_{i}\right) \\
& =0(k)+1(3 k)+2(3 k)+3(k) \\
& =12 k \\
& =\frac{12}{8}=\frac{3}{2} \\
\therefore k & =1 / 8, \mu=3 / 2
\end{aligned}
$$

2. A random variable X has the range $\{1,2,3 \ldots \ldots$.$\} If P(X=r)=\frac{C^{r}}{r!}$ for $r=1,2,3$,, then find C.
A : Given that X is a common variable

$$
\begin{aligned}
& \Rightarrow \sum_{r=1}^{\infty} P(x=r)=1 \\
& \Rightarrow \sum_{r=1}^{\infty} \frac{C^{r}}{r!}=1 \\
& \frac{C}{1!}+\frac{C^{2}}{2!}+\frac{C^{3}}{3!}+\ldots . . \infty=1
\end{aligned}
$$

Adding 1 on bothsides,

$$
\begin{aligned}
& 1+\frac{C}{1!}+\frac{\mathrm{C}^{2}}{2!}+\ldots \ldots=1+1 \\
& \Rightarrow \mathrm{e}^{\mathrm{c}}=2 \\
& \Rightarrow \mathrm{C}=\log _{\mathrm{e}} 2 .
\end{aligned}
$$

3. Find the constant C, so that $f(x)=C\left(\frac{2}{3}\right)^{x}, x=1,2,3 \ldots \ldots$ is the probability distribution function of a discrete random variable X.
A : Given that X is a discrete random variable

$$
\begin{aligned}
& \Rightarrow \sum_{x=1}^{\infty} f(x)=1 \\
& \Rightarrow \sum_{x=1}^{\infty} \mathrm{C}\left(\frac{2}{3}\right)^{x}=1 \\
& \Rightarrow C\left[\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\ldots . . \infty\right]=1 \\
& \Rightarrow C\left[\frac{\frac{2}{3}}{1-\frac{2}{3}}\right]=1 \quad \because S_{\infty}=\frac{a}{1-r} \\
& \Rightarrow 2 C=1 \\
& \therefore C=\frac{1}{2} .
\end{aligned}
$$

4. For a binomial ditribution with mean 6 and variance 2, Find the first two terms of hte distribution..

A: Let n, p be the paremeters of the binomial distribution.

$$
\begin{aligned}
& n p=6, n p q=2 . \\
& q=\frac{n p q}{n p}=\frac{2}{6}=\frac{1}{3} . \\
& \Rightarrow p=1-q=1-1 / 3=2 / 3 .
\end{aligned}
$$

Also $n p=6$
$\Rightarrow n \times 2 / 3=6$
$\Rightarrow n=9$
First two terms of the binomial distribution are
$P(X=0), P(X=1)$
$={ }^{9} \mathrm{C}_{0}\left(\frac{1}{3}\right)^{9}\left(\frac{2}{3}\right)^{0},{ }^{9} \mathrm{C}_{1}\left(\frac{1}{3}\right)^{8}\left(\frac{2}{3}\right)^{1}$
$=\frac{1}{3^{9}}, \frac{2}{3^{7}}$.
5. The mean and variance of a binomial distribution are 4 and 3 respectively. Find $P(X \geq 1)$
A: Let n, p be the parameters of the binomial distribution. $n p=4, n p q=3$
$\mathrm{q}=\frac{\mathrm{npq}}{\mathrm{np}}=\frac{3}{4}$
$\Rightarrow \mathrm{p}=1-\mathrm{q}=11-\frac{3}{4}=\frac{1}{4}$
Also np $=4$
n. 1/4 / 4
$\mathrm{n}=16$
Required probability $\mathrm{P}(\mathrm{X} \geq 1)$

$$
\begin{aligned}
& =\sum_{r=1}^{16} P(X=r) \\
& =\sum_{r=1}^{16}{ }^{16} C_{r}\left(\frac{3}{4}\right)^{16-r}\left(\frac{1}{4}\right)^{r} .
\end{aligned}
$$

6. If the mean and variance of a binomial variate
X are 2. 4 and 1. 44 respectively, then find p and n .
A: Let n, p be the parameter of the binomial distribution.
Given that $\mathrm{np}=2.4, \mathrm{npq}=1.44$
$\mathrm{q}=\frac{\mathrm{npq}}{\mathrm{np}}=\frac{1.44}{2.4}=\frac{144}{240}=\frac{12}{20}=\frac{3}{5}$
$\Rightarrow \mathrm{p}=1-\mathrm{q}=1-\frac{3}{5}=\frac{2}{5}$
Also $n p=2.4$
$\Rightarrow \mathrm{n}\left(\frac{2}{5}\right)=2.4$
$\Rightarrow \mathrm{n}=6 \quad \because \mathrm{n}=6, \mathrm{p}=2 / 5$
7. X follows Poisson distribution such that $P(X=1)=3 P(X=2)$. Find the variance of X.
A: Let X be the parameter of the poisson distribution. Given that $P(X=1)=3 P(X=2)$

$$
\begin{gathered}
\Rightarrow \frac{\mathrm{e}^{-\lambda} \lambda^{1}}{1!}=3 \frac{\mathrm{e}^{-\lambda} \lambda^{2}}{2!} \\
\Rightarrow 1=\frac{3 \lambda}{2} \\
\Rightarrow \lambda=\frac{2}{3}
\end{gathered}
$$

Variance of $X=\frac{2}{3}$.
8. A poisson variate X satisties $P(X=1)=P(X=2)$. Find $P(X=5)$.
A : Let λ be the parameter of the poisson distribution.
Given that $P(X=1)=P(X=2)$

$$
\begin{aligned}
& \Rightarrow \frac{e^{-\lambda} \lambda^{1}}{1!}=\frac{e^{-\lambda} \lambda^{2}}{2!} \\
& \Rightarrow 1=\frac{\lambda}{2} \\
& \Rightarrow \lambda=2
\end{aligned}
$$

Now $P(X=5)=\frac{e^{-\lambda} \lambda^{5}}{5!}$

$$
\begin{aligned}
& =\frac{\mathrm{e}^{-2} \cdot 2^{5}}{5!} \\
& =\frac{32 \mathrm{e}^{-2}}{120} \\
& =\frac{4 \mathrm{e}^{-2}}{15}
\end{aligned}
$$

LEVEL - I (LAQ)

1. If $X: S \rightarrow R$ is a discrete random variable with range $\left\{x_{1}, x_{2}, x_{3}, \ldots ..\right\} ; \mu$ is mean and σ^{2} is variance of X, then prove that $\sigma^{2}+\mu^{2}=\Sigma x_{1}^{2} P\left(X=x_{i}\right)$.
A: Proof:
Given that $X: S \rightarrow R$ is a discrete random variable with range $\left\{x_{1}, x_{2}, x_{3}, \ldots ..\right\}$ Since X is a discrete random variable, $\sum_{i=1}^{\infty} P\left(X=x_{i}\right)=1$

By the definition, mean $\mu=\sum_{i=1}^{\infty} P\left(X=x_{i}\right)$

By the definition, variance

$$
\begin{aligned}
\sigma^{2}= & \sum_{i=1}^{\infty}\left(x_{i}-\mu\right)^{2} P\left(X=x_{i}\right) \\
\sigma^{2}= & \sum_{i=1}^{\infty}\left(x_{i}^{2}-2 \mu x_{i}+\mu^{2}\right) P\left(X=x_{i}\right) \\
= & \sum_{i=1}^{\infty} x_{i}^{2} P\left(X=x_{i}\right)-2 \mu \sum_{i=1}^{\infty} x_{i} P\left(X=x_{i}\right) \\
& \quad+\mu^{2} \sum_{i=1}^{\infty} P\left(X=x_{i}\right) \\
= & \sum_{i=1}^{\infty} x_{i}^{2} P\left(X=x_{i}\right)-2 \mu(\mu)+\mu^{2}(1) \\
= & \sum_{i=1}^{\infty} x_{i}^{2} P\left(X=x_{i}\right)-\mu^{2} \\
\therefore & \sigma^{2}+\mu^{2}=\sum_{i=1}^{\infty} x_{i}^{2} P\left(X=x_{i}\right) .
\end{aligned}
$$

2. | $X=x_{i}$ | -2 | -1 | 0 | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $P\left(X=x_{i}\right)$ | 0.1 | k | 0.2 | $2 k$ | 0.3 | k |

is the probability distribution of a random variable X. Find the value of k and the variance of X.
A : Given that X is a random variable.
Let μ be the mean and σ^{2} be the variance of X.

$$
\begin{aligned}
& \text { Here } \sum_{i=-2}^{3} P\left(X=x_{i}\right)=1 \\
& \Rightarrow 0.1+\mathrm{k}+0.2+2 \mathrm{k}+0.3+\mathrm{k}=1 \\
& \Rightarrow 4 \mathrm{k}+0.6=1 \\
& \Rightarrow 4 \mathrm{k}=1-0.6=0.4 \\
& \Rightarrow \mathrm{k}=0.1
\end{aligned}
$$

$$
\begin{aligned}
\text { Mean } \mu & =\sum_{i=-2}^{3} P\left(X=x_{i}\right) \\
& =(-2)(0.1)-1(0.1)+0(0.2)+1(0.2) \\
& \quad+2(0.3)+3(0.1) \\
& =0.8
\end{aligned}
$$

We know that

$$
\begin{aligned}
& \begin{aligned}
\sigma^{2}+\mu^{2}= & \sum_{i=-2}^{3} P\left(X=x_{i}\right) \\
\sigma^{2}+0.8^{2} & =(-2)^{2}(0.1)+(-1)^{2}(0.1)+0^{2}(0.2) \\
& +\left(1^{2}\right)(0.2)+2^{2}(0.3)+3^{2}(0.1)
\end{aligned} \\
& \qquad \begin{aligned}
\sigma^{2} & =2.80-0.64 \\
\sigma^{2} & =2.16
\end{aligned} \\
& \text { Hence } k=
\end{aligned}
$$

3. The Probability distribution of a random variable X is given below.

$X=x_{i}$	1	2	3	4	5
$P\left(X=x_{i}\right)$	k	$2 k$	$3 k$	$4 k$	$5 k$

Find the value of k and the mean and variance of X.
A: Given that X is a random variable

$$
\begin{aligned}
& \Rightarrow \sum_{i=1}^{5} P\left(X=x_{i}\right)=1 \\
\Rightarrow & k+2 k+3 k+4 k+5 k=1 \\
\Rightarrow & 15 k=1 \\
\Rightarrow & k=\frac{1}{15}
\end{aligned}
$$

Let μ be the mean and σ^{2} be the variance of X

$$
\begin{aligned}
\mu & =\sum_{i=1}^{5} P\left(X=x_{i}\right) \\
& =1(k)+2(2 k)+3(3 k)+4(4 k)+5(5 k) \\
& =k+4 k+9 k+16 k+25 k \\
& =55 k \\
& =\frac{55}{15} \\
& =\frac{11}{3} . \\
\sigma^{2} & =\sum_{i=1}^{5} x_{i}^{2} P\left(X=x_{i}\right)-\mu^{2}
\end{aligned}
$$

$$
=1(k)+4(2 k)+9(3 k)+16(4 k)+25(5 k)-\left(\frac{11}{3}\right)^{2}
$$

$$
=225 \mathrm{k}-\frac{121}{9}
$$

$$
=225\left(\frac{1}{15}\right)-\frac{121}{9}
$$

$$
=15-\frac{121}{9}
$$

$$
=\frac{135-121}{9}
$$

$$
=\frac{14}{9} .
$$

4. A random variable X has the following probability distribution.

$X=x_{i}$	0	1	2	3	4	5	6	7
$P\left(X=x_{i}\right)$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Find (i) k (ii) the mean (iii) $\mathrm{P}(0<\mathrm{X}<5)$
A: Given that X is a random variable

$$
\begin{aligned}
& \sum_{i=0} P\left(X=x_{i}\right)=1 \\
\Rightarrow & 0+k+2 k+2 k+3 k+k^{2}+2 k^{2}+7 k^{2}+k=1
\end{aligned}
$$

$\Rightarrow 10 \mathrm{k}^{2}+9 \mathrm{k}-1=0$
$\Rightarrow 10 \mathrm{k}^{2}+10 \mathrm{k}-\mathrm{k}-1=0$
$\Rightarrow 10 \mathrm{k}(\mathrm{k}+1)-1(\mathrm{k}+1)=0$
$\Rightarrow(\mathrm{k}+1)(10 \mathrm{k}-1)=0$
$k=-1$ is false
$\Rightarrow k=\frac{1}{10}$.
Let μ be the mean of X.

$$
\begin{aligned}
\mu= & \sum_{i=0}^{7} x_{i} P\left(X=x_{i}\right) \\
= & 0(0)+1(0.1)+2(0.2)+3(0.2)+4(0.3)+5(0.01) \\
& \quad+6(0.02)+7(0.17) \\
= & 0.1+0.4+0.6+1.2+0.05+0.12+1.19 \\
= & 3.66
\end{aligned}
$$

$$
P(0<x<5)
$$

$$
=P(X=1)+P(X=2)+P(X=3)+P(X=4)
$$

$$
=k+2 k+2 k+3 k
$$

$=8 \mathrm{k}$
$=8(0.1)$
$=0.8$.
5. The range of random variable X is $\{0,1,2\}$.

Given that $P(X=0)=3 C^{3}, P(X=1)=4 C-10 C^{2}$, $P(X=2)=5 C-1$.
Find (i) the value of C,
(ii) $\mathrm{P}(\mathrm{X}<1)$
(iii) $P(1<X \leq 2)$
(iv) $\mathrm{P}(0<\mathrm{X} \leq 3)$

A: Given that range of random variable X is $\{0,1,2\}$.
$P(X=0)=3 C^{3}, P(X=1)=4 C-10 C^{2}, P(X=2)=5 C-1$
Since X is a random variable,

$$
\begin{aligned}
& \sum_{i=0} P\left(X=x_{i}\right)=1 \\
\Rightarrow & P(X=0)+P(X=1)+P(X=2)=1 \\
\Rightarrow & 3 C^{3}+4 C-10 C^{2}+5 C-1=1 \\
\Rightarrow & 3 C^{3}-10 C^{2}+9 C-2=0
\end{aligned}
$$

Clearly $\mathrm{C}=1$ satisfies this equation

By Synthetic division,

1 | 3 | -10 | 9 | -2 |
| :---: | :---: | :---: | :---: |
| 0 | 3 | -7 | 2 |
| 3 | -7 | 2 | 0 |

Now the above equation becomes,

$$
(C-1)\left(3 C^{2}-7 C+2\right)=0
$$

$\Rightarrow \mathrm{C}=1,3 \mathrm{C}^{2}-6 \mathrm{C}-\mathrm{C}+2=0$

$$
\begin{aligned}
& \Rightarrow 3 C(C-2)-1(C-2)=0 \\
& \Rightarrow(C-2)(3(-1)=0
\end{aligned}
$$

$\therefore C=1,2, \frac{1}{3}$.
C = 1, 2 are not possible.
SO, the value of $C=\frac{1}{3}$.
ii) $P(X<1)=P(X=0)$

$$
\begin{aligned}
& =3 \mathrm{C}^{3} \\
& =3\left(\frac{1}{3}\right)^{3} \\
& =\frac{1}{9} .
\end{aligned}
$$

iii) $P(1<x \leq 2)=P(X=2)$

$$
\begin{aligned}
& =5 C-1 \\
& =\frac{5}{3}-1 \\
& =\frac{2}{3} .
\end{aligned}
$$

iv) $P(0<X \leq 3)=P(X=1)+P(X=2)$

$$
\begin{aligned}
& =\frac{2}{9}+\frac{2}{3} \\
& =\frac{8}{9} .
\end{aligned}
$$

6. If X is a random variable with the probablity distribution $P(X=k)=\frac{(k+1) C}{2^{k}}(k=0,1,2, \ldots$.

then find C ?

A: Here, we use the folowing :
Sum of the infinite A.G.P $(|r|<1)$.
$a(1)+(a+d) r+(a+2 d) r^{2}+\ldots . . \infty$
$=\frac{a}{1-r}+\frac{d r}{(1-r)^{2}}$
Given that X is a random variable with
$P(X=k)=\frac{(k+1) C}{2^{k}}, k=0,1,2 \ldots$
$\Rightarrow \sum_{k=0}^{\infty} P(X=k)$
$\Rightarrow \sum_{k=0}^{\infty} \frac{(k+1) C}{2^{k}}=1$.
$\Rightarrow C \sum_{k=0}^{\infty}(k+1) \cdot \frac{1}{2^{k}}=1$
$\Rightarrow C\left[1.1+2 \cdot \frac{1}{2}+3 \cdot \frac{1}{2^{2}}+4 \cdot \frac{1}{2^{3}}+\ldots \ldots \ldots . . \infty\right]=1$
Here $a=1, d=1, r=\frac{1}{2}$
$\Rightarrow C\left[\frac{a}{1-r}+\frac{d r}{(1-r)^{2}}\right]=1$
$\Rightarrow C\left[\frac{1}{1-\frac{1}{2}}+\frac{1 \cdot \frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}\right]=1$
$\Rightarrow C\left[\frac{1}{\frac{1}{2}}+\frac{\frac{1}{2}}{\frac{1}{4}}\right]=1$
$\Rightarrow C[2+2]=1$
$\Rightarrow 4 \mathrm{C}=1$
$C=\frac{1}{4}$.
7. If the mean and variance of a binomial variate X are 2.4 and 1.44 respectively find $P(1<X$ $\leq 1.4)$.
A: Let n, p be the parameters of the binomial distribution.
Given that $n p=24, n p q=1.44$
Now $\mathrm{q}=\frac{\mathrm{npq}}{\mathrm{np}}=\frac{1.44}{1.4}=\frac{144}{240}=\frac{12}{20}=\frac{3}{5}$
$\therefore \mathrm{p}=1-\mathrm{q}=1-\frac{3}{5}=\frac{2}{5}$
Also $n p=2.4$
$\Rightarrow \mathrm{n}\left(\frac{2}{5}\right)=2.4$
$\Rightarrow \mathrm{n}=6$
Required probablity $\mathrm{P}(1<\mathrm{X} \leq 4)$
$=P(X=2)+P(X=3)+P(X=4)$
$={ }^{6} \mathrm{C}_{2}\left(\frac{3}{5}\right)^{4}\left(\frac{2}{5}\right)^{2}+{ }^{6} \mathrm{C}_{3}\left(\frac{3}{5}\right)^{3}\left(\frac{2}{5}\right)^{3}+{ }^{6} \mathrm{C}_{4}\left(\frac{3}{5}\right)^{2}\left(\frac{2}{5}\right)^{4}$
$=\frac{15(81) 4}{5^{6}}+\frac{20(27)(8)}{5^{6}}+\frac{15(9)(16)}{5^{6}}$
$=\frac{972+864+432}{5^{5}}$
$=\frac{2268}{3125}$.
8. If the difference between the mean and the variance of a binomial distribution is $\frac{5}{9}$, then
find the probablity for the event of 2 successes, when the experiment is conducted 5 times.
A: Let n, p be the parameters of the binomial distribution.
Given that $\mathrm{n}=5$,
$n p-n p q=\frac{5}{9}$
$5 p(1-q)=\frac{5}{9}$
$\mathrm{p}^{2}=\frac{1}{9}$
$p=\frac{1}{3}$
Required probablity is
$P(X=2)={ }^{5} C_{2}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{2}$
$=10\left(\frac{8}{27}\right)\left(\frac{1}{9}\right)$
$=\frac{80}{243}$.
9. One in nine ships is likely to be wrecked when they set on sail. When 6 ships are set on sail, find the probablity for
(i) atleast one will arrive safely,
(ii) exactly three will arrive safely.
A : Let X be the number of ships arriving safely, when six ships are set on sail. X follows binomial distribution,

Let n, p be the parameter.
the $n=6, q=\frac{1}{9}$
$\Rightarrow \mathrm{p}=1-\mathrm{q}=1-\frac{1}{9}=\frac{8}{9}$
(i) Probablity that atleast one ship will arrive safely
$=P(X \geq 1)$
$=1-P(X=0)$
$=1-{ }^{6} \mathrm{C}_{0}\left(\frac{1}{9}\right)^{6}\left(\frac{8}{9}\right)^{0}$
$=1-\frac{1}{9^{6}}$
(ii) Probablity that exactly three ships will arrive safely
$=P(X=3)$
$={ }^{6} \mathrm{C}_{3}\left(\frac{1}{9}\right)^{3}\left(\frac{8}{9}\right)^{3}$
$=20\left(\frac{8^{3}}{9^{6}}\right)$.
10. In the experiment of tossing a coin \mathbf{n} times, if the variable X denotes the number of heads and $P(X=4), P(X=5), P(X=6)$ are in A.P, then find n.
A: Let X denotes the number of heads, when a coin is tossed for n times.
Clearly X follows binomial distribution.
Let n, p be the parameters of binomial distribution.
Here $p=\frac{1}{2}$

$$
q=1-p=1-\frac{1}{2}=\frac{1}{2}
$$

Given that $P(X=4), P(X=5), P(X=6)$ are in A.P

$$
\begin{gathered}
\Rightarrow{ }^{n} C_{4}\left(\frac{1}{2}\right)^{n-4}\left(\frac{1}{2}\right)^{4},{ }^{n} C_{5}\left(\frac{1}{2}\right)^{n-5}\left(\frac{1}{2}\right)^{5} \\
{ }^{n} C_{6}\left(\frac{1}{2}\right)^{n-6}\left(\frac{1}{2}\right)^{6} \text { are in A.P. }
\end{gathered}
$$

$\Rightarrow{ }^{n} C_{4} \cdot \frac{1}{2^{n}},{ }^{n} C_{5} \cdot \frac{1}{2^{n}},{ }^{n} C_{6} \frac{1}{2^{n}}$ are in A.P
$\Rightarrow{ }^{n} C_{4},{ }^{n} C_{5},{ }^{n} C_{6}$, are in A.P
$\Rightarrow 2 .{ }^{n} C_{5}={ }^{n} C_{4}+{ }^{n} C_{6}$
$\Rightarrow 2 \cdot \frac{n!}{(n-5)!5!}=\frac{n!}{(n-4)!4!}+\frac{n!}{(n-6)!6!}$
$\Rightarrow \frac{2}{(n-5)(n-6)!5(4!)}=\frac{1}{(n-4)(n-5)(n-6)!4!}$
$+\frac{1}{(n-6)!6(5)(4!)}$
$\Rightarrow \frac{2}{5(n-5)}=\frac{1}{(n-4)(n-5)}+\frac{1}{30}$

$$
\begin{aligned}
& \Rightarrow \frac{2}{5(n-5)}=\frac{30+n^{2}-9 n+20}{(n-4)(n-5)} \\
& \Rightarrow 12(n-4)=30+n^{2}-9 n+20 \\
& \Rightarrow 12 n-48=30+n^{2}-9 n+20 \\
& \Rightarrow n^{2}-21 n+98=0 \\
& \Rightarrow n^{2}-7 n-14 n+98=0 \\
& \Rightarrow n(n-7)-14(n-7)=0 \\
& \Rightarrow n=7 \text { or } 14 .
\end{aligned}
$$

11.

$X=x$	-3	-2	-1	0	1	2	3
$P(X=x)$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{3}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

is the probability distribution of a random variable X. Find the variance of X.
A: Let μ be the mean and σ^{2} be the variance of random variable X.

Mean $\mu=\sum_{i=-3}^{3} x_{i} P\left(X=x_{i}\right)$

$$
\begin{aligned}
& =(-3)\left(\frac{1}{9}\right)+(-2)\left(\frac{1}{9}\right)+(-1)\left(\frac{1}{9}\right)+0\left(\frac{1}{3}\right)+1\left(\frac{1}{9}\right)+2\left(\frac{1}{9}\right)+3\left(\frac{1}{9}\right) \\
& \quad=0 \\
& \therefore \text { Mean } \mu=0 \\
& \text { We know that }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\sigma^{2}= & \sum_{i=-3}^{3} x_{i}^{2} P\left(X=x_{i}\right)-\mu^{2} \\
= & (-3)^{2}\left(\frac{1}{9}\right)+\left(-2^{2}\right)\left(\frac{1}{9}\right)+\left(-1^{2}\right)\left(\frac{1}{9}\right)+0^{2}\left(\frac{1}{3}\right) \\
& \quad+\left(1^{2}\right)\left(\frac{1}{9}\right)+\left(2^{2}\right)\left(\frac{1}{9}\right)+3^{2}\left(\frac{1}{9}\right)-0^{2} \\
= & 9 \cdot \frac{1}{9}+4 \cdot \frac{1}{9}+1 \cdot \frac{1}{9}+0+1 \cdot \frac{1}{9}+4 \cdot \frac{1}{9}+9 \cdot \frac{1}{9}-0 \\
= & \frac{1}{9}(9+4+1+1+4+9) \\
= & \frac{28}{9} .
\end{aligned} .
\end{aligned}
$$

Hence variance of X is $\frac{28}{9}$

LEVEL - II (VSAQ)

1. The probability that a person choose at random is left handed (in hand writing) is 0.1 . What is the probability that in a group of 10 people, there is one who is left handed.
A: Here $n=10, p=0.1=\frac{1}{10}, q=0.9=\frac{9}{10}$.
\therefore The required probability that exactly one out of 10 is left handed is $P(X=1)={ }^{10} C_{1} p^{1} q^{10-1}$.

$$
=10 \cdot\left(\frac{1}{10}\right)^{1} \cdot\left(\frac{9}{10}\right)^{9}=\left(\frac{9}{10}\right)^{9}
$$

2. It is given that 10% of the electric bulbs manufactured by a company are defective. In a sample of 20 bulbs, find the probability that more than 2 are defective.

A: Let X be number of defective bulbs in the sample of 20 bulbs.

The probability that a bulb will be defective is
$p=\frac{10}{100}=\frac{1}{10}$, Hence $q=1-\frac{1}{10}=\frac{9}{10}$
Now, X follows the binomial distribution with parameters $\mathrm{n}=20, \mathrm{p}=\frac{1}{10}, \mathrm{q}=\frac{9}{10}$.
\therefore The required probability is

$$
\begin{aligned}
P(X>2) & =\sum_{k=3}^{20}{ }^{20} C_{k}\left(\frac{1}{10}\right)^{k}\left(\frac{9}{10}\right)^{20-k} \\
& =\sum_{k=3}^{20}{ }^{20} C_{k} \cdot \frac{9^{20-k}}{10^{20}}
\end{aligned}
$$

3. On an average, rain falls on 12 days in every 30 days, find the probability that, rain will fall on just 3 days of a given week.
A : Let X be the number of days rain falls in a week. The probability that rain will fall on a day.
$\mathrm{p}=\frac{12}{30}=\frac{2}{5}$, Hence $\mathrm{q}=1-\frac{2}{5}=\frac{3}{5}$.
Now, X follows the binomial distribution with parameters $\mathrm{n}=7, \mathrm{p}=\frac{2}{5}, \mathrm{q}=\frac{3}{5}$
\therefore The required probability is
$P(X=3)={ }^{7} C_{3}\left(\frac{2}{5}\right)^{3}\left(\frac{3}{5}\right)^{4}=35 \cdot \frac{2^{3} \cdot 3^{4}}{5^{7}}$
4. In a book of 450 pages, there are 400 typographical errors. Assuming that the number of errors per page follow the Poisson law, find the probability that a random sample of 5 pages will contain no typographical error.

A: Let the average number of errors per page in the book is $\lambda=\frac{400}{450}=\frac{8}{9}$.
The probability that a page contain ' r ' errors is
$P(X=r)=\frac{e^{-\lambda} \lambda^{r}}{r!}$
The probability that a page contain no errors is
$P(X=0)=\frac{e^{-\lambda} \lambda^{r}}{r!}=e^{-8 / 9}$.
\therefore The required probability that a random sample of 5 pages will contain no error is

$$
[\mathrm{P}(\mathrm{X}=0)]^{5}=\left[\mathrm{e}^{-8 / 9}\right]^{5}
$$

5. Deficiency of red cells in the blood cells is determined by examining a specimen of blood under a microscope, Suppose a small volume contains on an average 20 red cells for normal persons. Using the poisson distribution, find the probability that a specimen of blood taken from a normal person will contain less than 15 red cells.

A: Here $\lambda=20$.
Let $P(X=r)$ denote the probability that a specimen taken from a normal person will contain ' r ' red cells.
\therefore The required probability is
$P(X<15)=\sum_{r=0}^{14} P(X=r)=\sum_{r=0}^{14} \frac{e^{-20} 20^{r}}{r!}$.
6. In a city, 10 accidents take place in a span of 50 days. Assuming that the number of accidents follows the Poisson distribution, find the probability that there will be 3 or more accidents in a day.

A: Here $\lambda=\frac{10}{50}=0.2$
The required probability is
AIMS
$P(X \geq 3)=1-[P(X=0)+P(X=1)+P(X=2)]$

$$
\begin{aligned}
& =1-\left[\frac{e^{-0.2}(0.2)^{0}}{0!}+\frac{e^{-0.2}(0.2)^{1}}{1!}+\frac{e^{-0.2}(0.2)^{2}}{2!}\right] \\
& =1-\left[\frac{1}{e^{0.2}}+\frac{1}{5 e^{0.2}}+\frac{1}{50 e^{0.2}}\right]=1-\frac{61}{50 \mathrm{e}^{0.2}}
\end{aligned}
$$

LEVEL - II (LAQ)

1. The range of a random variable X is $\{1,2$, $3, \ldots\}$ and $\mathrm{P}(\mathrm{X}=\mathrm{k})=\frac{C^{k}}{k!}, \mathrm{k}=1,2,3, \ldots \ldots$. Find the value of C and $\mathrm{P}(0<\mathrm{X}<3)$.
A. Given that X is a random variable

$$
\begin{aligned}
& \Rightarrow \sum_{\mathrm{k}=1}^{\infty} \mathrm{P}(\mathrm{X}=\mathrm{k})=1 \\
& \Rightarrow \sum_{\mathrm{k}=1}^{\infty} \frac{\mathrm{C}^{\mathrm{k}}}{\mathrm{k}!}=1 \\
& \Rightarrow \frac{C}{1!}+\frac{C^{2}}{2!}+\frac{C^{3}}{3!}+\ldots . \infty=1
\end{aligned}
$$

Adding 1 on both sides

$$
\begin{aligned}
& \Rightarrow 1+\frac{C}{1!}+\frac{C^{2}}{2!}+\frac{C^{3}}{3!}+\ldots \infty=1+1 \\
& \Rightarrow \quad e^{C}=2 \\
& \Rightarrow \quad C=\log _{\mathrm{e}} 2
\end{aligned}
$$

ii) $P(0<X<3)$

$$
\begin{aligned}
\Rightarrow \mathrm{P}(\mathrm{X} & =1)+\mathrm{P}(\mathrm{X}=2) \\
& =\frac{C}{1!}+\frac{C^{2}}{2!} \\
& =\log _{\mathrm{e}} 2+\left(\log _{e} 2\right)^{2} .
\end{aligned}
$$

2. A cubical die is thrown. Find the mean and variance of X, giving the number on the face that shows up.
A : Let X be the number on the face that shows up when a die is thrown. Here X is a random variable. Probability distribution of X is shown below.

$X=x_{i}$	1	2	3	4	5	6
$P\left(X=x_{i}\right)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Let μ be the mean and σ^{2} be the variance of X

$$
\begin{aligned}
\mu & =\sum_{i=1}^{6} x_{i} P\left(X=x_{i}\right) \\
& =1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right) \\
& =\frac{21}{6} \\
& =\frac{7}{2} .
\end{aligned}
$$

$$
\sigma^{2}=\sum_{i=1}^{6} x_{i}^{2} P\left(X=x_{i}\right)-\mu^{2}
$$

$$
=1^{2}\left(\frac{1}{6}\right)+2^{2}\left(\frac{1}{6}\right)+3^{2}\left(\frac{1}{6}\right)+4^{2}\left(\frac{1}{6}\right)+5^{2}\left(\frac{1}{6}\right)
$$

$$
+6^{2}\left(\frac{1}{6}\right)-\left(\frac{7}{2}\right)^{2}
$$

$$
=\frac{91}{6}-\frac{49}{4}
$$

$$
=\frac{182-147}{12}
$$

$$
=\frac{35}{12} .
$$

