Contents

Chapter 1 Functions
Number System and Inequalities
 Number System
 Intervals
 Some Facts About Inequalities
 Generalized Method of Intervals
 Frequently Used Inequalities
 Sign Scheme of \(F(x) = f_1(x)f_2(x)f_3(x) \ldots f_n(x) \)
Function
 Definition of Function
 Function as a Set of Ordered Pairs
 Distinction Between a Relation and a Function by Graphs
 Domain, Co-Domain, Range
Different Types of Functions
 Quadratic Function
 Modulus Function
 Trigonometric Functions
 Inverse Trigonometric Functions
 Exponential and Logarithmic Functions
 Greatest Integer and Fractional Part Function
 Signum Function
 Functions of the Form \(f(x) = \max\{g_1(x), g_2(x), \ldots, g_n(x)\} \)
 or \(f(x) = \min\{g_1(x), g_2(x), \ldots, g_n(x)\} \)
Different Types of Mappings (Functions)
 One-One and Many-One Functions
 Onto and Into Functions
 Number of Functions (Mappings)
Even and Odd Functions
 Even Function
 Odd Function
 Extension of Domain
Periodic Functions
 Important Facts about Periodic Functions
Composite Function
 Properties of Composite Functions
Inverse Functions
 Properties of Inverse Functions
Identical Function
Transformation of Graphs
Miscellaneous Solved Problems

1.1 Exercises
 Subjective Type
 Objective Type
 Multiple Correct Answers Type
 Reasoning Type
 Linked Comprehension Type
 Matrix-Match Type
 Integer Type
 Archives

Answers and Solutions
 Subjective Type
 Objective Type
 Multiple Correct Answers Type
 Reasoning Type
 Linked Comprehension Type
 Matrix-Match Type
 Integer Type
 Archives

Chapter 2 Limits
Concept of Limits
 Formal Definition of Limit
 Neighbourhood (NBD) of a Point
 Left- and Right-Hand Limits
 Existence of Limit
 Indeterminate Forms
 Difference between Limit of Function at \(x = a \) and \(f(a) \)
Algebra of Limits
 Sandwich Theorem for Evaluating Limits
 Use of Expansions in Evaluating Limits
 Some Important Expansions
Evaluation of Algebraic Limits
 Direct Substitution Method
 Factorization Method
 Rationalization Method
 Evaluation of Algebraic Limit
 Using Some Standard Limits
 Evaluation of Algebraic Limits at Infinity
 Evaluation of Trigonometric Limits
 Evaluation of Exponential and Logarithmic Limits
Chapter 4 Methods of Differentiation
4.1
Geometrical Meaning of a Derivative
4.2
Standard Derivatives
4.3
Some Standard Substitutions
4.3
Differentiation of Inverse Trigonometric Functions
4.4
Theorems on Derivatives
4.5
Differentiation of Composite Functions (Chain Rule)
4.6
Differentiation of Implicit Functions
4.8
Differentiation of Functions in Parametric Form
4.9
Differentiation Using Logarithm
4.10
Differentiation of One Function w.r.t. Other Function
4.11
Differentiation of Determinants
4.12
Higher Order Derivatives
4.13
Problems Based on First Definition of Derivative
4.14
Miscellaneous Solved Problems
4.15
Exercises
4.18
Subjective Type
4.18
Objective Type
4.19
Multiple Correct Answers Type
4.24
Reasoning Type
4.24
Linked Comprehension Type
4.25
Matrix-Match Type
4.26
Integer Type
4.27
Archives
4.27
Answers and Solutions
4.29
Subjective Type
4.29
Objective Type
4.33
Multiple Correct Answers Type
4.42
Reasoning Type
4.44
Linked Comprehension Type
4.44
Matrix-Match Type
4.46
Integer Type
3.46
Archives
4.50

Chapter 3 Continuity and Differentiability
3.1
Continuity
3.2
Definition of Continuity of a Function
3.2
Directional Continuity
3.2
Continuity in Interval
3.2
Types of Discontinuity
3.3
Removable Discontinuity
3.3
Non-removable Discontinuity
3.3
Continuity of Special Types of Functions
3.8
Continuity of Functions in Which Greatest Integer Function is Involved
3.8
Continuity of Functions in Which Signum Function is Involved
3.9
Continuity of Functions Involving Limit \(\lim_{x \to a} a^x \)
3.9
Continuity of Functions in which \(f(x) \) is Defined Differently for Rational and Irrational Values of \(x \)
3.10
Continuity of Composite Functions
3.10
Intermediate Value Theorem
3.12
Differentiability
3.12
Existence of Derivative
3.12
Differentiability and Continuity
3.12
How Can a Function Fail to be Differentiable
3.13
Differentiability Using First Definition of Derivatives
3.14
Differentiability Using Theorems on Differentiability
3.14
Differentiability Using Graphs
3.14
Differentiability by Differentiation
3.17
Exercises
3.18
Subjective Type
3.18

Exercises
2.22

Answers and Solutions
2.32

Chapter 3 Continuity and Differentiability
2.32

Exercises
2.22

Answers and Solutions
2.22

Chapter 4 Methods of Differentiation
2.22

Answers and Solutions
2.32

Chapter 3 Continuity and Differentiability
2.27

Differentiation of Composite Functions (Chain Rule)
2.46

Differentiation of Implicit Functions
2.48

Differentiation of Functions in Parametric Form
2.49

Differentiation Using Logarithm
2.10

Differentiation of One Function w.r.t. Other Function
2.11

Differentiation of Determinants
2.12

Higher Order Derivatives
2.13

Problems Based on First Definition of Derivative
2.14

Miscellaneous Solved Problems
2.15

Exercises
2.27

Answers and Solutions
2.29

Chapter 3 Continuity and Differentiability
2.29

Exercises
2.30

Answers and Solutions
2.31

Chapter 3 Continuity and Differentiability
2.32

Exercises
2.36

Answers and Solutions
2.36

Chapter 3 Continuity and Differentiability
2.37

Exercises
2.39

Answers and Solutions
2.39

Chapter 3 Continuity and Differentiability
2.40

Exercises
2.49

Answers and Solutions
2.49

Chapter 3 Continuity and Differentiability
2.51

Exercises
2.54

Answers and Solutions
2.54

Chapter 3 Continuity and Differentiability
2.58

Exercises
2.58

Answers and Solutions
2.58
CHAPTER 5 Application of Derivatives: Tangents and Normals, Rate Measure

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation of Tangents and Normals</td>
<td>5.2</td>
</tr>
<tr>
<td>Tangent From an External Point</td>
<td>5.3</td>
</tr>
<tr>
<td>Condition for Which Given Line is Tangent or Normal to the Given Curve</td>
<td>5.4</td>
</tr>
<tr>
<td>Length of Tangent, Normal, Sub-Tangent and Sub-Normal</td>
<td>5.5</td>
</tr>
<tr>
<td>Angle between the Curves</td>
<td>5.6</td>
</tr>
<tr>
<td>Miscellaneous Applications</td>
<td>5.7</td>
</tr>
<tr>
<td>Shortest Distance between Two Curves</td>
<td>5.8</td>
</tr>
<tr>
<td>Interpretation of (dy/dx) as a Rate Measurer</td>
<td>5.9</td>
</tr>
<tr>
<td>Approximations</td>
<td>5.11</td>
</tr>
<tr>
<td>Mean Value Theorems</td>
<td>5.12</td>
</tr>
<tr>
<td>Rolle’s Theorem</td>
<td>5.12</td>
</tr>
<tr>
<td>Lagrange’s Mean Value Theorem</td>
<td>5.14</td>
</tr>
<tr>
<td>Cauchy’s Mean Value Theorem</td>
<td>5.15</td>
</tr>
<tr>
<td>Exercises</td>
<td>5.16</td>
</tr>
<tr>
<td>Subjective</td>
<td>5.16</td>
</tr>
<tr>
<td>Objectives</td>
<td>5.17</td>
</tr>
<tr>
<td>Multiple Correct Answers Type</td>
<td>5.20</td>
</tr>
<tr>
<td>Reasoning Type</td>
<td>5.21</td>
</tr>
<tr>
<td>Link Comprehension Type</td>
<td>5.21</td>
</tr>
<tr>
<td>Matrix-Match Type</td>
<td>5.22</td>
</tr>
<tr>
<td>Integer Type</td>
<td>5.23</td>
</tr>
<tr>
<td>Archives</td>
<td>5.23</td>
</tr>
<tr>
<td>Answers and Solutions</td>
<td>5.24</td>
</tr>
<tr>
<td>Subjective</td>
<td>5.24</td>
</tr>
<tr>
<td>Objective</td>
<td>5.28</td>
</tr>
<tr>
<td>Multiple Correct Answers Type</td>
<td>5.35</td>
</tr>
<tr>
<td>Reasoning Type</td>
<td>5.37</td>
</tr>
<tr>
<td>Link Comprehension Type</td>
<td>5.38</td>
</tr>
<tr>
<td>Matrix-Match Type</td>
<td>5.39</td>
</tr>
<tr>
<td>Integer Type</td>
<td>5.40</td>
</tr>
<tr>
<td>Archives</td>
<td>5.42</td>
</tr>
</tbody>
</table>

Chapter 6 Monotonicity and Maxima-Minima of Functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotonicity: Introduction</td>
<td>6.1</td>
</tr>
<tr>
<td>Monotonicity of a Function at a Point</td>
<td>6.2</td>
</tr>
<tr>
<td>Monotonicity in an Interval</td>
<td>6.2</td>
</tr>
<tr>
<td>Separating the Intervals of Monotonicity</td>
<td>6.2</td>
</tr>
<tr>
<td>Point of Inflection</td>
<td>6.5</td>
</tr>
<tr>
<td>Inequalities Using Monotonicity</td>
<td>6.6</td>
</tr>
<tr>
<td>Extremum</td>
<td>6.7</td>
</tr>
<tr>
<td>Introduction</td>
<td>6.8</td>
</tr>
<tr>
<td>Basic Theorem of Maxima and Minima</td>
<td>6.8</td>
</tr>
<tr>
<td>Tests for Local Maximum/Minimum</td>
<td>6.8</td>
</tr>
<tr>
<td>When (f(x)) is Differentiable at (x = a)</td>
<td>6.9</td>
</tr>
<tr>
<td>When (F(x)) is not Differentiable at (x = a)</td>
<td>6.9</td>
</tr>
<tr>
<td>Concept of Global Maximum/Minimum</td>
<td>6.12</td>
</tr>
<tr>
<td>Global Maximum/Minimum in ([a, b])</td>
<td>6.14</td>
</tr>
</tbody>
</table>

Chapter 7 Indefinite Integration

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration as Reverse Process of Differentiation</td>
<td>7.1</td>
</tr>
<tr>
<td>Elementary Integration</td>
<td>7.2</td>
</tr>
<tr>
<td>Fundamental Integration Formulae</td>
<td>7.2</td>
</tr>
<tr>
<td>Properties of Indefinite Integration</td>
<td>7.3</td>
</tr>
<tr>
<td>Some More Standard Formulae</td>
<td>7.7</td>
</tr>
<tr>
<td>Integration by Substitutions</td>
<td>7.8</td>
</tr>
<tr>
<td>Bi-quadratic Form</td>
<td>7.13</td>
</tr>
<tr>
<td>Some Standard Trigonometric Substitutions</td>
<td>7.14</td>
</tr>
<tr>
<td>Integration by Parts</td>
<td>7.16</td>
</tr>
<tr>
<td>Theorem</td>
<td>7.16</td>
</tr>
<tr>
<td>Integration by Cancellation</td>
<td>7.18</td>
</tr>
<tr>
<td>Integration by Partial Fractions</td>
<td>7.20</td>
</tr>
<tr>
<td>Some Definitions</td>
<td>7.20</td>
</tr>
<tr>
<td>Integrations of Irrational Functions</td>
<td>7.23</td>
</tr>
<tr>
<td>Standard Formulae</td>
<td>7.21</td>
</tr>
<tr>
<td>Miscellaneous Solved Problems</td>
<td>7.25</td>
</tr>
<tr>
<td>Exercise</td>
<td>7.26</td>
</tr>
<tr>
<td>Answers and Solutions</td>
<td>7.35</td>
</tr>
<tr>
<td>Subjective</td>
<td>7.26</td>
</tr>
<tr>
<td>Objective</td>
<td>7.27</td>
</tr>
<tr>
<td>Multiple Correct Answers Type</td>
<td>7.33</td>
</tr>
<tr>
<td>Reasoning Type</td>
<td>7.34</td>
</tr>
<tr>
<td>Link Comprehension Type</td>
<td>7.34</td>
</tr>
<tr>
<td>Matrix-Match Type</td>
<td>7.35</td>
</tr>
<tr>
<td>Integer Type</td>
<td>7.36</td>
</tr>
<tr>
<td>Archives</td>
<td>7.37</td>
</tr>
</tbody>
</table>
Chapter 8 Definite Integration

Definite Integration
- Definite Integral as the Limit of a Sum (Integration by First Principle Rule)
- Second Fundamental Theorem of Integral Calculus
- Geometrical Interpretation of the Definite Integral

Properties of Definite Integrals
- Property I
- Property II
- Property III
- Property IV
- Property V
- Important Result
- Property VI
- Property VII

Definite Integration of Odd and Even Functions
- Property I
- Property II

Definite Integration of Periodic Functions
- Property I
- Property II
- Property III

Leibnitz's Rule
- Property I
- Property II
- Property III
- Property IV

Solved Problems

Exercises
- Subjective Type
- Objective Type
- Multiple Correct Answers Type
- Reasoning Type
- Linked Comprehension Type
- Matrix-Match Type
- Integer Type
- Archives

Answers and Solutions
- Subjective Type
- Objective Type
- Multiple Correct Answers Type
- Reasoning Type
- Linked Comprehension Type
- Matrix-Match Type

Chapter 9 Area

Different Cases of Bounded Area
- Curve Tracing
- Some Standard Area
- Area Bounded by Curves While Integrating Along y-axis

Exercises
- Subjective Type
- Objective Type
- Multiple Correct Answers Type
- Reasoning Type
- Linked Comprehension Type
- Matrix-Match Type
- Integer Type
- Archives

Answers and Solutions
- Subjective Type
- Objective Type
- Multiple Correct Answers Type
- Reasoning Type
- Linked Comprehension Type
- Matrix-Match Type

Chapter 10 Differential Equations

Differential Equations of First Order and First Degree

Order and Degree of Differential Equation

Formation of Differential Equations

Solution of a Differential Equation

Method of Variable Separation

Differential Equations Reducible to the Separable Variable Type

Homogeneous Equations
- Equations Reducible to the Homogenous Form
- Bernoulli's Equation
- Differential Equation Reducible to the Linear Form

General Form of Variable Separation
- Geometrical Applications of Differential Equation
- Finding Orthogonal Trajectories
- Statistical Applications of Differential Equation
- Physical Applications of Differential Equation

Exercises
- Subjective Type
- Objective Type
- Multiple Correct Answers Type
- Reasoning Type
- Linked Comprehension Type
- Matrix-Match Type
- Integer Type
- Archives

Answers and Solutions
- Subjective Type
- Objective Type
- Multiple Correct Answers Type
- Reasoning Type
- Linked Comprehension Type
- Matrix-Match Type
Objective

Answers and Solutions
Multiple Correct Answers Type
Reasoning Type
Linked Comprehension Type

10.26 Matrix-Match Type
10.44 Integer Type
10.46 Archives

Appendix: Solutions to Concept Application
Exercises A.1-A.65
Preface

While the paper-setting pattern and assessment methodology have been revised many times over and newer criteria devised to help develop more aspirant-friendly engineering entrance tests, the need to standardize the selection processes and their outcomes at the national level has always been felt. The Joint Entrance Examination (JEE) to India’s prestigious engineering institutions (IITs, IIITs, NITs, ISM, IISERs, and other engineering colleges) aims to serve as a common national-level engineering entrance test, thereby eliminating the need for aspiring engineers to sit through multiple entrance tests.

While the methodology and scope of an engineering entrance test are prone to change, there are two basic objectives that any test needs to serve:

1. The objective to test an aspirant’s caliber, aptitude, and attitude for the engineering field and profession.
2. The need to test an aspirant’s grasp and understanding of the concepts of the subjects of study and their applicability at the grassroots level.

Students appearing for various engineering entrance examinations cannot bank solely on conventional shortcut measures to crack the entrance examination. Conventional techniques alone are not enough as most of the questions asked in the examination are based on concepts rather than on just formulae. Hence, it is necessary for students appearing for joint entrance examination to not only gain a thorough knowledge and understanding of the concepts but also develop problem-solving skills to be able to relate their understanding of the subject to real-life applications based on these concepts.

This series of books is designed to help students to get an all-round grasp of the subject so as to be able to make its useful application in all its contexts. It uses a right mix of fundamental principles and concepts, illustrations which highlight the application of these concepts, and exercises for practice. The objective of each book in this series is to help students develop their problem-solving skills/accuracy, the ability to reach the crux of the matter, and the speed to get answers in limited time. These books feature all types of problems asked in the examination—be it MCQs (one or more than one correct), assertion-reason type, matching column type, comprehension type, or integer type questions. These problems have skillfully been set to help students develop a sound problem-solving methodology.

Not discounting the need for skilled and guided practice, the material in the books has been enriched with a number of fully solved concept application exercises so that every step in learning is ensured for the understanding and application of the subject. This whole series of books adopts a multi-faceted approach to mastering concepts by including a variety of exercises asked in the examination. A mix of questions helps stimulate and strengthen multi-dimensional problem-solving skills in an aspirant.

It is imperative to note that this book would be as profound and useful as you want it to be. Therefore, in order to get maximum benefit from this book, we recommend the following study plan for each chapter.

Step 1: Go through the entire opening discussion about the fundamentals and concepts.
Step 2: After learning the theory/concept, follow the illustrative examples to get an understanding of the theory/concept.
Overall the whole content of the book is an amalgamation of the theme of mathematics with ahead-of-time problems, which equips the students with the knowledge of the field and paves a confident path for them to accomplish success in the JEE.

With best wishes!

G. Tewani
Functions

- Number System and Inequalities
- Function
- Different Types of Functions
- Different Types of Mappings (functions)
- Even and Odd Functions
- Periodic Functions
- Composite Function
- Inverse Function
- Identical Function
- Transformation of Graphs
NUMBER SYSTEM AND INEQUALITIES

Number System

Natural Numbers
The set of numbers \(\{1, 2, 3, 4, ... \} \) is called natural numbers, and is denoted by \(N \), i.e., \(N = \{1, 2, 3, ... \} \).

Integers
The set of numbers \(\{..., -3, -2, -1, 0, 1, 2, 3, ... \} \) is called integers, and the set is denoted by \(I \) or \(Z \).

Here, we represent
- Positive integers \(\{1, 2, 3, 4, ... \} = \) Natural numbers
- Negative integers \(\{..., -4, -3, -2, -1 \} = \) Whole numbers
- Non-negative integers (or \(N_0 \)) \(\{0, 1, 2, 3, 4, ... \} = \) Whole numbers
- Non-positive integers \(\{..., -3, -2, -1, 0 \} = \) Whole numbers

Rational Numbers
A number which can be written as \(\frac{a}{b} \), where \(a \) and \(b \) are integers, \(b \neq 0 \) and H.C.F. of \(a \) and \(b \) is 1, is called a rational number, and a set of rational numbers is denoted by \(Q \).

Note:
- Every integer is a rational number as it could be written as \(Q = \frac{a}{b} \) (where \(b = 1 \)).
- All recurring decimals are rational numbers; e.g., \(n = 0.3333... = \frac{1}{3} \).
- Two consecutive rational numbers is meaningless.
- The set of rational numbers cannot be expressed in roster form.

Irrational Numbers
Those values which could be neither terminated nor expressed as recurring decimals are irrational numbers (i.e., such numbers cannot be expressed in \(\frac{a}{b} \) form). Their set is denoted by \(Q^c \) (i.e., complement of \(Q \)), e.g., \(\sqrt{2}, \pi, -\frac{1}{\sqrt{3}}, 2 + \sqrt{2}, ... \)

Real Numbers
The set of numbers that contains both rational and irrational numbers is called real numbers and is denoted by \(R \). As from the above definitions, it could be shown that real numbers can be expressed on number line with respect to origin as

Intervals
The set of numbers between any two real numbers is called interval. The following are the types of interval.

Closed Interval
\[x \in [a, b] = \{x : a \leq x \leq b \} \]

Open Interval
\[x \in (a, b) \text{ or }]a, b[= \{x : a < x < b \} \]

Semi-Open or Semi-Closed Interval
\[x \in [a, b] \text{ or } (a, b] = \{x : a \leq x < b \} \]
\[x \in]a, b] \text{ or } [a, b) = \{x : a < x \leq b \} \]

Some Facts About Inequalities
The following are some very useful points to remember:

- \(a \leq b \) \(\Rightarrow \) either \(a < b \) or \(a = b \)
- \(a < b \) and \(b < c \) \(\Rightarrow a < c \)
- \(a < b \) \(\Rightarrow -a > -b \), i.e., the inequality sign reverses if both sides are multiplied by a negative number
- \(a < b \) and \(c < d \) \(\Rightarrow a + c < b + d \) and \(a - d < b - c \)
- \(a < b \) \(\Rightarrow ka < kb \) if \(k > 0 \) and \(ka > kb \) if \(k < 0 \)
- \(0 < a < b \) \(\Rightarrow a' < b' \) if \(r > 0 \) and \(a' > b' \) if \(r < 0 \)
- \(a + \frac{1}{a} \geq 2 \) for \(a > 0 \) and equality holds for \(a = 1 \)
- \(a + \frac{1}{a} \leq -2 \) for \(a < 0 \) and equality holds for \(a = -1 \)
- \(\text{If } x > 2 \Rightarrow 0 < \frac{1}{x} < \frac{1}{2} \)
- \(\text{If } x < -3 \Rightarrow -\frac{1}{3} < \frac{1}{x} < 0 \)
- \(\text{If } x < 2, \text{ then we must consider } -\infty < x < 0 \text{ or } 0 < x < 2 \)

(as for \(x = 0 \), \(\frac{1}{x} \) is not defined), then
\[
\lim_{x \to \infty} \frac{1}{x} > \frac{1}{x^2} > \frac{1}{x^3} \text{ or } \lim_{x \to 0^+} \frac{1}{x} > \frac{1}{x^2} \geq 1
\]
\[
\Rightarrow 0 > \frac{1}{x} > -\infty \text{ or } \Rightarrow \frac{1}{x} > \frac{1}{x^2} > \frac{1}{2}
\]
\[
\Rightarrow \frac{1}{x} \in (-\infty, 0) \cup \left(\frac{1}{2}, \infty\right)
\]

I. Squaring an inequality:
If \(a < b\), then \(a^2 < b^2\) does not follow always:

Consider the following illustrations:
' 2 < 3 \Rightarrow 4 < 9, but -4 < 3 \Rightarrow 16 > 9

Also if \(x > 2\) \(\Rightarrow x^2 > 4\), but for \(x < 2\) \(\Rightarrow x^2 \geq 0\)
If \(2 < x < 4 \Rightarrow 4 < x^2 < 16\)
If \(-2 < x < 4 \Rightarrow 0 \leq x^2 < 16\)
If \(-5 < x < 4 \Rightarrow 0 \leq x^3 < 25\)

Generalized Method of Intervals

Let \(F(x) = (x-a_1)^{k_1}(x-a_2)^{k_2} \cdots (x-a_n)^{k_n}\).

Here \(k_1, k_2, \ldots, k_n \in \mathbb{Z}\) and \(a_1, a_2, \ldots, a_n\) are fixed real numbers satisfying the condition
\(a_1 < a_2 < a_3 < \cdots < a_{n-1} < a_n\).

For solving \(F(x) > 0\) or \(F(x) < 0\), consider the following algorithm:

- We mark the numbers \(a_1, a_2, \ldots, a_n\) on the number axis and put plus sign in the interval on the right of the largest of these numbers, i.e., on the right of \(a_n\).
- Then we put plus sign in the interval on the left of \(a_n\) if \(k_n\) is an even number and minus sign if \(k_n\) is an odd number.
- In the next interval, we put a sign according to the following rule:
 - When passing through the point \(a_{n-1}\) the polynomial \(F(x)\) changes sign if \(k_{n-1}\) is an odd number. Then we consider the next interval and put a sign in it using the same rule.
- Thus we consider all the intervals. The solution of the inequality \(F(x) > 0\) is the union of all intervals in which we put plus sign and the solution of the inequality \(F(x) < 0\) is the union of all intervals in which we put minus sign.

Frequently Used Inequalities

a. \((x-a)(x-b) < 0 \Rightarrow x \in (a, b)\), where \(a < b\)

b. \((x-a)(x-b) > 0 \Rightarrow x \in (-\infty, a) \cup (b, \infty)\), where \(a < b\)

c. \(x^2 \leq a^2 \Rightarrow x \in [-a, a]\)

d. \(x^2 \geq a^2 \Rightarrow x \in (-\infty, -a) \cup [a, \infty)\)

e. If \(ax^2 + bx + c < 0, (a > 0) \Rightarrow x \in (\alpha, \beta)\), where \(\alpha < \beta\)

f. If \(ax^2 + bx + c > 0, (a > 0) \Rightarrow x \in (-\infty, \alpha) \cup (\beta, \infty)\), where \(\alpha < \beta\)

Example 1.1 Solve \((2x+1)(x-3)(x+7) < 0\).

Sol. \((2x+1)(x-3)(x+7) < 0\)

Sign scheme of \((2x+1)(x-3)(x+7)\) is as follows:

\[
\begin{array}{c|c|c|c}
& -7 & -1/2 & 3 \\
\hline
(2x+1) & + & - & + \\
(x-3) & - & - & - \\
(x+7) & + & + & + \\
\hline
F & 1.5
\end{array}
\]

Hence, solution is \((-\infty, -7) \cup (-1/2, 3)\).

Example 1.2 Solve \(\frac{2}{x} < 3\).

Sol. \(\frac{2}{x} < 3\)

\[
\Rightarrow \frac{2}{x} - 3 < 0
\]

(we cannot cross multiply with \(x\), as \(x\) can be negative or positive)

\[
\Rightarrow \frac{2 - 3x}{x} < 0
\]

\[
\Rightarrow \frac{3x - 2}{x} > 0
\]

\[
\Rightarrow \frac{(x - 2/3)}{x} > 0
\]

Sign scheme of \((x - 2/3)\) is as follows:

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
& 0 & 2/3 & 3 \\
\hline
+ & - & + \\
\hline
F & 1.6
\end{array}
\]

\(\Rightarrow x \in (-\infty, 0) \cup (2/3, \infty)\).

Example 1.3 Solve \(\frac{2x-3}{3x-5} \geq 3\).

Sol. \(\frac{2x-3}{3x-5} \geq 3\)

\[
\Rightarrow \frac{2x-3}{3x-5} - 3 \geq 0
\]

\[
\Rightarrow \frac{2x-3-9x+15}{3x-5} \geq 0
\]

\[
\Rightarrow \frac{-7x+12}{3x-5} \geq 0
\]

\[
\Rightarrow \frac{7x-12}{3x-5} \leq 0
\]

Sign scheme of \(\frac{7x-12}{3x-5}\) is as follows:

\[
\begin{array}{c|c|c|c|c}
& 5/3 & 12/7 \\
\hline
+ & - & + \\
\hline
F & 1.7
\end{array}
\]

\(\Rightarrow x \in (5/3, 12/7)\)

\(x = 5/3\) is not included in the solution as at \(x = 5/3\), denominator becomes zero.

Example 1.4 Solve \((x-1)^2 (x+4) < 0\).

Sol. \((x-1)^2 (x+4) < 0\)

Sign scheme of \((x-1)^2 (x+4)\) is as follows:
1.4 Calculus

\[
\begin{array}{c|c|c|c|c|c}
& - & + & - & + & - \\
\hline
-4 & 1 & & & & \\
\end{array}
\]

Fig. 1.8

Sign of expression does not change at \(x = 1 \) as \((x - 1) \) factor has even power.
Hence, solution of (1) is \(x \in (-\infty, -4) \).

Example 1.5 Solve \(x > \sqrt{(1-x)} \).

Sol. Given inequality can be solved by squaring both sides.
But sometimes squaring gives extraneous solutions that
do not satisfy the original inequality. Before squaring, we
must restrict \(x \) for which terms in the given inequality
are well-defined.

\[x > \sqrt{(1-x)} \]. Here \(x \) must be positive.
Here \(\sqrt{1-x} \) is defined only when \(1-x \geq 0 \) or \(x \leq 1 \)

\[
(1)
\]

Squaring the given inequality we get \(x^2 > 1-x \)

\[\Rightarrow x^2 + x - 1 > 0 \Rightarrow \left(x - \frac{-1-\sqrt{5}}{2} \right) \left(x - \frac{-1+\sqrt{5}}{2} \right) > 0 \]

\[\Rightarrow x < \frac{-1-\sqrt{5}}{2} \text{ or } x > \frac{-1+\sqrt{5}}{2} \]

(2)

From (1) and (2), \(x \in \left(\frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2} \right) \) (as \(x \) is +ve)

Example 1.6 Find the domain of \(f(x) = \sqrt{1-x^2} \).

Sol. \(f(x) = \sqrt{1-x^2} \)

\[\Rightarrow 1-x^2 \geq 0 \]
\[\Rightarrow 1-x^2 \leq 1 \]
\[\Rightarrow 1-x^2 \leq 1 \]
\[\Rightarrow x^2 \geq 0 \]
\[\Rightarrow x^2 \geq 0 \]
\[\Rightarrow x^2 \leq 1 \Rightarrow x \in [-1, 1]. \]

Sign Scheme of \(f(x) = f_1(x) f_2(x) f_3(x) \ldots f_n(x) \)

Put the values of \(x \), which are roots of the equation, \(f_1(x) = 0, f_2(x) = 0, \ldots, f_n(x) = 0 \) on the number line and follow the same procedure explained in the above problems.

Example 1.7 Solve \((x-1)(x+1) \cos x > 0 \), for \(x \in [-\pi, \pi] \).

Sol. Let \(f(x) = (x-1)(x+1) \cos x \)

\[
\begin{array}{c|c|c|c|c|c|c|c}
& - & + & - & + & - & + & - \\
\hline
-\pi & -\pi/2 & -1 & 1 & 1/2 & \pi & \pi/2 & \pi \\
\end{array}
\]

Fig. 1.9

\[\cos x = 0 \Rightarrow x = \pm \pi/2. \]

So, critical points are \(-\pi/2, -1, 1, \pi/2 \)

For \(x \in (\pi/2, \pi) \), \(\cos x < 0 \Rightarrow f(x) < 0 \)

At \(x = \pi/2 \), and \(x = 1, f(x) \) changes sign as shown in the
sign scheme.
At \(x = -1, f(x) \) does not change sign as \(|x + 1| > 0 \) for all \(x \).
Hence, \(f(x) > 0 \Rightarrow x \in (-\pi, -\pi/2) \cup (1, \pi/2). \)

Example 1.8 Find the domain of

\[
f(x) = \sqrt{x-4} - 2\sqrt{(x-5)} - \sqrt{x-4+2\sqrt{(x-5)}}
\]

Sol. \(f(x) = \sqrt{x-4} - 2\sqrt{(x-5)} - \sqrt{x-4+2\sqrt{(x-5)}} \)

\[= \sqrt{x-5} - 2\sqrt{(x-5)} + 1 - \sqrt{x-4+2\sqrt{(x-5)}} + 1 \]

\[= \sqrt{x-5} - 1] - \sqrt{x-5} + 1 \]

Hence domain is \([5, \infty) \)

Concept Application Exercise 1.1

Find the domain of the following functions:

1. \(f(x) = \frac{x-3}{(x+3)^2 - 4} \)
2. \(f(x) = \sqrt{2-x} - \frac{1}{\sqrt{9-x^2}} \)
3. \(f(x) = \frac{x-2}{x+2} + \frac{1-x}{1+x} \)
4. \(f(x) = \sqrt{\frac{2}{x^2 + x} - \frac{1}{x+1} - \frac{2x-1}{x^2+1}} \)
5. \(f(x) = \sqrt{x^2 - x^2} \)
6. Find the range of \(f(x) = \frac{x^2+1}{x^2+2} \)
7. Solve \(x(x^2-1)(x+2)(x-3)^2 \leq 0 \).

FUNCTION

Roughly speaking, term function is used to define the
dependence of one physical quantity on another, e.g., volume \(V \)
of a sphere of radius \(r \) is given by \(V = \frac{4}{3} \pi r^3 \). This dependence of
\(V \) on \(r \) would be denoted as \(V = f(r) \) and we would simply say that
\(V \) is a function of \(r \). Here \(f \) is purely a symbol (for that matter, any
other letter could have been used in place of \(f \)), and it is simply
used to represent the dependence of one quantity on the other.
Definition of Function

Function can be easily defined with the help of the concept of mapping. Let \(A \) and \(B \) be any two non-empty sets. “A function from \(A \) and \(B \) is a rule or correspondence that assigns to each element of set \(A \), one and only one element of set \(B \)”. Let the correspondence be \(f \). Then mathematically we write \(f: A \rightarrow B \) where \(y = f(x), x \in A \) and \(y \in B \). We say that \(y \) is the image of \(x \) under \(f \) (or \(x \) is the pre-image of \(y \)).

- A mapping \(f: A \rightarrow B \) is said to be a function if each element in the set \(A \) has an image in set \(B \). It is possible that a few elements in the set \(B \) are present which are not the images of any element in set \(A \).
- Every element in set \(A \) should have one and only one image. That means it is impossible to have more than one image for a specific element in set \(A \). Functions cannot be multi-valued (A mapping that is multi-valued is called a relation from \(A \) and \(B \)).

![Fig. 1.10](images/fig10.png)

Let us consider some other examples to make the above mentioned concepts clear.

a. Let \(f: R^+ \rightarrow R \) where \(y^2 = x \). This cannot be considered a function as each \(x \in R^+ \) would have two images namely \(\pm \sqrt{x} \). Hence, it does not represent a function. Thus, it would be a relation.

b. Let \(f: [-2, 2] \rightarrow R \), where \(x^2 + y^2 = 4 \). Here \(y = \pm \sqrt{4-x^2} \), that means for every \(x \in [-2, 2] \) we would have two values of \(y \) (except when \(x = \pm 2 \)). Hence, it does not represent a function.

c. Let \(f: R \rightarrow R \) where \(y = x^3 \). Here for each \(x \in R \) we would have a unique value of \(y \) in the set \(R \) (as cube of any two distinct real numbers are distinct). Hence, it would represent a function.

Function as a Set of Ordered Pairs

A function \(f: A \rightarrow B \) can be expressed as a set of ordered pairs in which each ordered pair is such that its first element belongs to \(A \) and second element is the corresponding element of \(B \).

As such a function \(f: A \rightarrow B \) can be considered as a set of ordered pairs \((a, f(a)) \) where \(a \in A \) and \(f(a) \in B \) which is the \(f \) image of \(a \). Hence, \(f \) is a subset of \(A \times B \).

As a particular type of relation, we can define a function as follows:

\[A \text{ relation } R \text{ from a set } A \text{ to a set } B \text{ is called a function if:} \]

- a. each element of \(A \) is associated with some element of \(B \)
- b. each element of \(A \) has unique image in \(B \)

Thus, a function \(f \) from a set \(A \) to a set \(B \) is a subset of \(A \times B \) in which each \(a \in A \) appears in one and only one ordered pair belonging to \(f \). Hence, a function \(f \) is a relation from \(A \) to \(B \) satisfying the following properties:

- a. \(f \subseteq A \times B \)
- b. \(\forall a \in A \Rightarrow (a, f(a)) \in f \)
- c. \((a, b) \in f \) and \((a, c) \in f \Rightarrow b = c \)

Thus, the ordered pairs of \(f \) must satisfy the property that each element of \(A \) appears in some ordered pair and no two ordered pairs have same first element.

Note:

Every function is a relation but every relation is not necessarily a function.

Distinction between a Relation and a Function by Graphs (Vertical Line Test)

![Fig. 1.11](images/fig11.png)

The above figures show the graph of two arbitrary curves. In Fig. 1.11(a), any line drawn parallel to \(y \)-axis would meet the curve at only one point. That means each element of \(A \) would have one and only one image. Thus, Fig. 1.11(a) represents the graph of a function.

In Fig. 1.11(b), certain line parallel to \(y \)-axis, (e.g., line \(L \)) would meet the curve in more than one points (A, B and C). Thus, element \(x_0 \) of \(A \) would have three distinct images. Thus, this curve does not represent a function.

Hence, if \(y = f(x) \) represents a function, lines drawn parallel to \(y \)-axis through different points corresponding to points of set \(X \) should meet the curve in one and only one point.

Consider the graph of following relations:

Equation of an ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) is a relation, which is a combination of two functions \(y = \pm b \sqrt{1 - \frac{x^2}{a^2}} \).

The upper branch represents function \(y = b \sqrt{1 - \frac{x^2}{a^2}} \) and the lower branch represents the function \(y = -b \sqrt{1 - \frac{x^2}{a^2}} \).
1.6 Calculus

Graph of a parabola $y^2 = x$

Graph of a hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)

Domain, Co-Domain, Range

Let \(f: A \to B \) be a function. In general, sets \(A \) and \(B \) could be any arbitrary non-empty sets. But at this level, we would confine ourselves only to real-valued functions. That means it would be invariably assumed that \(A \) and \(B \) are the subsets of real numbers.

Set \(A \) is called domain of the function \(f \).

Set \(B \) is called co-domain of the function \(f \).

The set of images of different elements of set \(A \) is called the range of the function \(f \). It is obvious that a range would be a subset of co-domain as we may have few elements in co-domain which are not the images of any element of set \(A \) (of course, these elements of co-domain will not be included in the range). Range is also called domain of variation. Domain of function \(f \) is normally represented as \(\text{Domain}(f) \). Range is represented as \(\text{Range}(f) \).

Note that sometimes domain of the function is not explicitly defined. In these cases, domain would mean the set of values of \(x \) for which \(f(x) \) assumes real values. For example, if \(y = f(x) \) then \(\text{Domain}(f) = \{ x : f(x) \text{ is a real number} \} \).

Rules for the Domain of a Function

a. \(\text{Domain}(f(x) + g(x)) = \text{Domain}(f(x) \cap \text{Domain}(g(x)) \)

b. \(\text{Domain}(f(x) \times g(x)) = \text{Domain}(f(x) \cap \text{Domain}(g(x)) \)

c. \(\text{Domain} \begin{pmatrix} f(x) \\ g(x) \end{pmatrix} = \text{Domain}(f(x)) \cap \{ x : g(x) \neq 0 \} \)
d. \(\text{Domain} \sqrt{f(x)} = \text{Domain}(f(x)) \cap \{ x : f(x) \geq 0 \} \)

Some Important Definitions

1. Polynomial function: If a function \(f \) is defined by \(f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0 \), where \(n \) is a non-negative integer and \(a_0, a_1, a_2, ..., a_n \) are real numbers and \(a_0 \neq 0 \), then \(f \) is called a polynomial function of degree \(n \).

2. Algebraic function: \(y \) is an algebraic function of \(x \), if it is a function that satisfies an algebraic equation of the form \(p_n(x) y^n + p_{n-1}(x) y^{n-1} + ... + p_1(x) y + p_0(x) = 0 \) where \(n \) is a positive integer and \(p_n(x) \), \(p_{n-1}(x) \), \(... \), \(p_1(x) \), \(p_0(x) \) are polynomials in \(x \). For example, \(x^3 + y^3 - 3xy = 0 \) or \(y = \sqrt[3]{x^2} \) is an algebraic function, since it satisfies the equation \(y^3 - x^2 = 0 \). Note that all polynomial functions are algebraic but converse is not true.

A function that is not algebraic is called Transcendental function.

3. Rational function: A function that can be written as the quotient of two polynomial functions is said to be a rational function.

If \(P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n \), and
\(Q(x) = b_0 + b_1 x + b_2 x^2 + ... + b_m x^m \) be two polynomial functions, then the function \(f \) is defined by \(f(x) = \frac{P(x)}{Q(x)} \) is a rational function of \(x \).

4. Explicit function: A function \(y = f(x) \) is said to be an explicit function of \(x \) if the dependent variable \(y \) can be expressed in terms of independent variable \(x \) only. For example, \(y = x - \cos x \), \(y = x + \log x - 2x^3 \).

5. Implicit function: A function \(y = f(x) \) is said to be an implicit function of \(x \) if \(y \) cannot be written in terms of \(x \) only. For example, \((i) \alpha x^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \), (ii) \(xy = \sin(x + y) \).

6. Bounded functions: A function \(f: \mathbb{R} \to \mathbb{R} \) is said to be bounded if \(|f(x)| \leq M \), where \(M \) is a finite positive real number.

7. Identity function: The function \(f: \mathbb{R} \to \mathbb{R} \) is called an identity function if \(f(x) = x \) for all \(x \in \mathbb{R} \).

DIFFERENT TYPES OF FUNCTIONS

Quadratic Function

Let \(f(x) = ax^2 + bx + c \), where \(a, b, c, \in \mathbb{R} \) and \(a \neq 0 \).

We have \(f(x) = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] \).
\[f(x) = a \left(x + \frac{b}{2a} \right)^2 - \frac{D}{4a^2} \implies \left(x + \frac{b}{2a} \right) \left(y - \frac{D}{4a} \right) = a \left(x + \frac{b}{2a} \right)^2. \]

Thus, \(y = f(x) \) represents a parabola whose axis is parallel to \(y \)-axis and vertex \(\left(-\frac{b}{2a}, -\frac{D}{4a} \right) \). For some values of \(x \), \(f(x) \) may be positive, negative or zero and for \(a > 0 \), the parabola opens upwards and for \(a < 0 \), the parabola opens downwards. This gives the following cases:

a. \(a > 0 \) and \(D < 0 \), so \(f(x) > 0 \) \(\forall \ x \in R \), i.e., \(f(x) \) is positive for all values of \(x \).

Range of function is \(\left[-\frac{D}{4a}, \infty \right) \)

\[x = -\frac{b}{2a} \] is a point of minima.

b. \(a < 0 \) and \(D < 0 \) so \(f(x) < 0 \) \(\forall \ x \in R \), i.e., \(f(x) \) is negative for all values of \(x \).

Range of function is \((-\infty, -\frac{D}{4a}] \)

\[x = -\frac{b}{2a} \] is a point of maxima.

c. \(a > 0 \) and \(D = 0 \), so \(f(x) \geq 0 \) \(\forall \ x \in R \), i.e., \(f(x) \) is positive for all values of \(x \) except at vertex where \(f(x) = 0 \).

d. \(a > 0 \) and \(D > 0 \)

Let \(f(x) = 0 \) have two real roots \(\alpha \) and were \(\beta \) (where \(\alpha < \beta \)) then.

\(f(x) > 0 \) \(\forall \ x \in (-\infty, \alpha) \cup (\beta, \infty) \) and \(f(x) < 0 \) \(\forall \ x \in (\alpha, \beta) \).

![Fig. 1.18](image)

Note: If \(f(x) \geq 0 \), \(\forall \ x \in R \Rightarrow a > 0 \) and \(D \leq 0 \)

and if \(f(x) \leq 0 \), \(\forall \ x \in R \Rightarrow a < 0 \) and \(D \leq 0 \).

Example 1.9 Find the range of \(f(x) = x^2 - x - 3 \).

Sol. \(f(x) = x^2 - x - 3 = \left(x - \frac{1}{2} \right)^2 - \frac{1}{4} - 3 = \left(x - \frac{1}{2} \right)^2 - \frac{13}{4} \)

Now \(\left(x - \frac{1}{2} \right)^2 \geq 0 \ \forall \ x \in R \Rightarrow \left(x - \frac{1}{2} \right)^2 - \frac{13}{4} \geq -\frac{13}{4} \),

\(\forall \ x \in R \)

Hence, range is \(\left[-\frac{13}{4}, \infty \right) \).

Example 1.10 Find the domain and range of

\[f(x) = \sqrt{x^2 - 3x + 2} \]

Sol. For domain \(x^2 - 3x + 2 \geq 0 \)

\(\Rightarrow (x - 1)(x - 2) \geq 0 \)

\(\Rightarrow x \in (-\infty, 1] \cup [2, \infty) \)

Now, \(f(x) = \sqrt{x^2 - 3x + 2} \)
1.8 Calculus

\[
\sqrt{\left(\frac{x-\frac{3}{2}}{2}\right)^2 + \frac{9}{4}}
\]

\[
= \sqrt{\left(\frac{x-\frac{3}{2}}{2}\right) - \frac{1}{4}}
\]

Now, the least permissible value of \(\left(\frac{x-\frac{3}{2}}{2}\right) - \frac{1}{4}\) is 0
when \(\left(\frac{x-\frac{3}{2}}{2}\right) = \frac{1}{2}\). Hence, the range is \([0, \infty)\).

Example 1.11 Find the range of the function \(f(x) = 6^x + 3^x + 6^x + 3^x + 2\).

Sol. \(f(x) = 6^x + 3^x + 6^x + 3^x + 2\)

\[= \left(\sqrt{6^x} - \sqrt{3^x}\right)^2 + \left(\sqrt{3^x} - \sqrt{3^x}\right)^2 + 6 \geq 6\,.
\]

Hence, the range is \([6, \infty)\).

Example 1.12 Find the domain and range of

\[f(x) = \sqrt{x^2 - 4x + 6}\,.
\]

Sol. \(x^2 - 4x + 6 = (x-2)^2 + 2\) which is always positive.
Hence, the domain is \(R\).

Now, \(f(x) = \sqrt{(x-2)^2 + 2}\)
The least value of \(f(x)\) is \(\sqrt{2}\) when \(x=2\).
Hence, the range is \([\sqrt{2}, \infty)\).

Example 1.13 Find the range of \(f(x) = \frac{x^2 - x + 1}{x^2 + x + 1}\).

Sol. Let \(y = \frac{x^2 - x + 1}{x^2 + x + 1}\)

\[\Rightarrow (1-y) x^2 - (1+y) x + 1 - y = 0\]
Now \(x\) is real, then \(D \geq 0\)

\[\Rightarrow (1+y)^2 - 4(1-y)^2 \geq 0\]
\[\Rightarrow (1+y-2+2y)(1+y-2-2y) \geq 0\]
\[\Rightarrow (3y-1)(3y-1) \geq 0\]

\[\Rightarrow 3\left(y - \frac{1}{3}\right)^2 (y-3) \leq 0\]

\[\Rightarrow \frac{1}{3} \leq y \leq 3 \Rightarrow\] The range is \(\left[\frac{1}{3}, 3\right]\).

Example 1.14 Find the complete set of values of \(a\) such that \(\frac{x^2 - x}{1-ax}\) attains all real values.

Sol. \(y = \frac{x^2 - x}{1-ax}\)

\[\Rightarrow x^2 - x = y - axy\]
\[\Rightarrow x^2 + (ay - 1) - y = 0\]

Since \(x\) is real \(\Rightarrow (ay - 1)^2 + 4y \geq 0\)
\[\Rightarrow a^2 y^2 + 2y(2-a) + 1 \geq 0 \forall y \in R\]
\[\Rightarrow a^2 > 0, 4(2-a)^2 - 4a^2 \leq 0 \Rightarrow 4 - 4a \leq 0 \Rightarrow a \in [1, \infty)\).

Concept Application Exercise 1.2

1. Find the range of \(f(x) = \frac{x^2 + 34x - 71}{x^2 + 2x - 7}\).
2. Find the range of \(f(x) = \sqrt{x - 1 + \sqrt{x} - x}\).
3. If \(f(x) = \sqrt{x^2 + ax + 4}\) is defined for all \(x\), then find the values of \(a\).
4. Find the domain and range of \(f(x) = \sqrt{3 - 2x - x^2}\).

Modulus Function

\[y = |x| = \begin{cases} x, & x \geq 0 \\ -x, & x < 0 \end{cases}\]

Domain: \(R\)
Range: \([0, \infty)\)
Nature: even function

![Fig. 1.21](image)

\[y = |x - a| = \begin{cases} x - a, & x \geq a \\ a - x, & x < a \end{cases}, \text{ where } a > 0\]

![Fig. 1.21(a)](image)

Properties of Modulus Function

a. \(|x| = a \Rightarrow\) Points on the real number line whose distance from origin is \(a\)
\[\Rightarrow x = \pm a\,.
\]

b. \(|x| \leq a \Rightarrow x^2 \leq a^2\)

![Diagram](image)
\[\Rightarrow \text{Points on the real number line whose distance from the origin is } a \text{ or less than } a \]
\[\Rightarrow -a \leq x \leq a; (a \geq 0). \]

\text{c. } |x| \geq a \Rightarrow x^2 \geq a^2
\[\Rightarrow x \leq -a \text{ or } x \geq a; (a \geq 0). \]

\text{d. } a \leq |x| \leq b \Rightarrow a^2 \leq x^2 \leq b^2
\[\Rightarrow x \in [-b, -a] \cup [a, b]. \]

\text{e. } |x + y| = |x| + |y| \Rightarrow x \text{ and } y \text{ have the same sign or at least one of } x \text{ and } y \text{ is zero or } xy \geq 0.

\text{f. } |x - y| = |x| - |y| \Rightarrow x \geq 0, y \geq 0 \text{ and } |x| \geq |y| \text{ or } |x| \leq 0, y \leq 0 \text{ and } |x| \geq |y|.

\text{g. } x + y \leq |x| + |y|.

\text{h. } x + y \geq |x| - |y|.

\textbf{Example 1.15} Solve \(|3x - 2| \leq \frac{1}{2} \).

\textbf{Sol.} \(|3x - 2| \leq \frac{1}{2} \)
\[\Rightarrow -\frac{1}{2} \leq 3x - 2 \leq \frac{1}{2} \]
\[\Rightarrow \frac{3}{2} \leq 3x \leq \frac{5}{2} \]
\[\Rightarrow \frac{1}{2} \leq x \leq \frac{5}{6} \]
\[\Rightarrow x \in [1/2, 5/6]. \]

\textbf{Example 1.16} Solve \(|x - 1| - 5| \geq 2.

\textbf{Sol.} \(|x - 1| - 5| \geq 2
\[\Rightarrow |x - 1| - 5 \geq -2 \text{ or } |x - 1| - 5 \geq 2 \]
\[\Rightarrow |x - 1| \leq 3 \text{ or } |x - 1| \geq 7 \]
\[\Rightarrow -3 \leq x - 1 \leq 3 \text{ or } x - 1 \leq -7 \text{ or } x - 1 \geq 7 \]
\[\Rightarrow -2 \leq x \leq 4 \text{ or } x \leq -6 \text{ or } x \geq 8 \]
\[\Rightarrow x \in (-\infty, -6] \cup [-4, 8]. \]

\textbf{Example 1.17} Solve \(-\frac{1}{|x|} \geq 1\), where \(x \in R, x \neq \pm 2\) or find the domain of \(f(x) = \frac{1 - |x|}{|x|-2}. \)

\textbf{Sol.} Given \(-\frac{1}{|x|} \geq 1\)
\[\Rightarrow \frac{1}{|x|} - 1 \geq 0 \]
\[\Rightarrow 1 - (|x| - 2) \geq 0 \]
\[\Rightarrow \frac{1 - |x|}{|x| - 2} \geq 0. \]

\[\Rightarrow \frac{|x| - 1}{|x| - 2} \leq 0 \]
\[\Rightarrow \frac{y - 1}{y - 2} \leq 0, \text{ where } y = |x|. \]
1.10 Calculus

Concept Application Exercise 1.3

1. Solve the following:
 a. $1 \leq |x - 2| \leq 3$
 b. $0 < |x - 3| \leq 5$
 c. $|x - 2| + |2x - 3| = |x - 1|$
 d. $\frac{|x - 3|}{|x + 1|} \leq 1$

2. Find the domain of
 a. $f(x) = \frac{1}{\sqrt{x - |x|}}$
 b. $f(x) = \frac{1}{\sqrt{x + |x|}}$

3. Find the set of real value(s) of a for which the equation $2x + 3 + |2x - 3| = ax + 6$ has more than two solutions.

4. If $a < b < c$, then find the range of $f(x) = |x - a| + |x - b| + |x - c|$.

5. Find the range of $f(x) = \sqrt{1 - \sqrt{x^2 - 6x + 9}}$.

Trigonometric Functions

1. $y = f(x) = \sin x$
 Domain $\rightarrow R$, Range $\rightarrow [-1, 1]$
 Period $\rightarrow 2\pi$
 Nature \rightarrow odd, many-one in its actual domain
 $\sin^2 x, |\sin x| \in [0, 1]$
 $\sin x = 0 \Rightarrow x = n\pi, n \in I$
 $\sin x = 1 \Rightarrow x = (4n + 1)\pi/2, n \in I$
 $\sin x = -1 \Rightarrow x = (4n - 1)\pi/2, n \in I$
 $\sin x = \sin \alpha \Rightarrow x = n\pi + (-1)^n \alpha, n \in I$
 $\sin x \geq 0 \Rightarrow x \in \bigcup_{n \in I} [2n\pi, \pi + 2n\pi]$

 ![Fig. 1.24](image)

2. $y = f(x) = \cos x$
 Domain $\rightarrow R$, Range $\rightarrow [-1, 1]$
 Period $\rightarrow 2\pi$
 Nature \rightarrow even, many-one in its actual domain
 $\cos^2 x, |\cos x| \in [0, 1]$
 $\cos x = 0 \Rightarrow x = (2n + 1)\pi/2, n \in I$
 $\cos x = 1 \Rightarrow x = 2n\pi, n \in I$
 $\cos x = -1 \Rightarrow x = (2n + 1)\pi, n \in I$
 $\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha, n \in I$
 $\cos x \geq 0 \Rightarrow x \in \bigcup_{n \in I} [2n\pi - \pi/2, 2n\pi + \pi/2]$

 ![Fig. 1.25](image)

3. $y = f(x) = \tan x$
 Domain $\rightarrow R - (2n + 1)\pi/2, n \in I$;
 Range $\rightarrow (-\infty, \infty)$
 Period $\rightarrow \pi$
 Nature \rightarrow odd, many-one in its actual domain
 Discontinuous at $x = (2n + 1)\pi/2, n \in I$
 $\tan^2 x, |\tan x| \in [0, \infty)$
 $\tan x = 0 \Rightarrow x = n\pi, n \in I$
 $\tan x = \tan \alpha \Rightarrow x = n\pi + \alpha, n \in I$

 ![Fig. 1.26](image)

4. $y = f(x) = \cot x$
 Domain $\rightarrow R - n\pi, n \in I$; Range $\rightarrow (-\infty, \infty)$;
 Period $\rightarrow \pi$
 Nature \rightarrow odd, many-one in its actual domain
 Discontinuous at $x = n\pi, n \in I$
 $\cot^2 x, |\cot x| \in [0, \infty)$
 $\cot x = 0 \Rightarrow x = (2n + 1)\pi/2, n \in I$

 ![Fig. 1.27](image)
5. \(y = f(x) = \sec x \)

 Domain \(\rightarrow \mathbb{R} - (2n+1)\pi/2, n \in \mathbb{I} \)

 Range \(\rightarrow (-\infty, -1] \cup [1, \infty) \)

 Period \(\rightarrow 2\pi \)

 \(\sec^2 x, |\sec x| \in [1, \infty) \)

 Nature \(\rightarrow \) even, many-one in its actual domain

6. \(y = f(x) = \cosec x \)

 Domain \(\rightarrow \mathbb{R} - n\pi, n \in \mathbb{I} \)

 Range \(\rightarrow (-\infty, -1] \cup [1, \infty) \)

 Period \(\rightarrow 2\pi \)

 \(\cosec^2 x, |\cosec x| \in [1, \infty) \)

 Nature \(\rightarrow \) odd, many-one in its actual domain

Important Result

\[
 f(x) = a \cos x + b \sin x = \sqrt{a^2 + b^2} \sin \left(x + \tan^{-1} \frac{a}{b} \right) \\
= \sqrt{a^2 + b^2} \cos \left(x - \tan^{-1} \frac{b}{a} \right).
\]

Proof:

Let \(a = r \sin \alpha, b = r \cos \alpha \)

\(\Rightarrow a^2 + b^2 = r^2 \) and \(\tan \alpha = \frac{a}{b} \)

Now, \(f(x) = r(\cos x \sin \alpha + \sin x \cos \alpha) \)

\(= r \sin(x + \alpha) = \sqrt{a^2 + b^2} \sin \left(x + \tan^{-1} \frac{a}{b} \right) \)

Since \(-1 \leq \sin \left(x + \tan^{-1} \frac{a}{b} \right) \leq 1 \)

\(\Rightarrow -\sqrt{a^2 + b^2} \leq \sqrt{a^2 + b^2} \sin \left(x + \tan^{-1} \frac{a}{b} \right) \leq \sqrt{a^2 + b^2} \)

\(\Rightarrow \) The range of \(f(x) = a \cos x + b \sin x \) is

\([-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2}] \).

Example 1.21 Find the domain of the function.

\[f(x) = \frac{1}{1 + 2\sin x}. \]

Sol. To define \(f(x) \), we must have \(1 + 2\sin x \neq 0 \)

\(\Rightarrow \sin x \neq -\frac{1}{2} \Rightarrow x \neq n\pi + (-1)^n \frac{7\pi}{6}, n \in \mathbb{Z} \)

Hence, the domain of the function is

\(R - \left\{ n\pi + (-1)^n \frac{7\pi}{6}, n \in \mathbb{Z} \right\} \).

Example 1.22 Solve \(\sin x > -\frac{1}{2} \) or find the domain of

\[f(x) = \frac{1}{\sqrt{1 + 2\sin x}}. \]

Sol. To define \(f(x) \), we must have \(1 + 2\sin x > 0 \) or \(\sin x > -\frac{1}{2} \).

The function \(\sin x \) has the least positive period \(\pi \). That is why it is sufficient to solve inequality of the form \(\sin x > a, \sin x \geq a, \sin x < a, \sin x \leq a \) first on the interval of length \(\pi \), and then get the solution set by adding numbers of the form \(2n\pi, n \in \mathbb{Z} \), to each of the solutions obtained on that interval.

Thus, let us solve this inequality on the interval

\([-\frac{\pi}{2}, \frac{3\pi}{2}] \).

From Fig. 1.30, \(\sin x > -\frac{1}{2} \) when \(-\frac{\pi}{6} < x < \frac{7\pi}{6} \)

Thus, on generalizing the above solution, we get

\(2n\pi - \frac{\pi}{6} < x < 2n\pi + \frac{7\pi}{6}, n \in \mathbb{Z} \).

Example 1.23 Find the number of solutions of \(\sin x = \frac{x}{10} \).

Sol. Here, let \(f(x) = \sin x \) and \(g(x) = \frac{x}{10} \). Also we know that

\(-1 \leq \sin x \leq 1 \Rightarrow -\frac{x}{10} \leq \sin x \leq \frac{x}{10} \Rightarrow -10 \leq x \leq 10 \).

Thus, sketch both the curves when \(x \in [-10, 10] \).
1.12 Calculus

Example 1.24 Find the number of solutions of the equation \(\sin x = x^2 + x + 1 \).

Sol. Let \(f(x) = \sin x \) and \(g(x) = x^2 + x + 1 = \left(x + \frac{1}{2} \right)^2 + \frac{3}{4} \), as shown in Fig. 1.32, which do not intersect at any point, therefore, there is no solution.

![Fig. 1.32](image)

Example 1.25 Find the range of \(f(x) = \sin^2 x - \sin x + 1 \).

Sol.

\[
f(x) = \sin^2 x - \sin x + 1 = \left(\sin x - \frac{1}{2} \right)^2 + \frac{3}{4}
\]

Now, \(-1 \leq \sin x \leq 1 \Rightarrow -\frac{3}{2} \leq \sin x - \frac{1}{2} \leq \frac{1}{2} \)

\[
\Rightarrow 0 \leq \left(\sin x - \frac{1}{2} \right)^2 \leq \frac{9}{4} \Rightarrow \frac{3}{4} \leq \sin^2 x - \frac{1}{2} \leq \frac{3}{4}
\]

Hence, the range is \(\left[\frac{3}{4}, 3 \right] \).

Example 1.26 Find the range of \(f(x) = \frac{1}{2 \cos x - 1} \).

Sol. \(-1 \leq \cos x \leq 1 \)

\[
\Rightarrow -2 \leq 2 \cos x \leq 2 \Rightarrow -3 \leq 2 \cos x - 1 \leq 1
\]

For \(\frac{1}{2 \cos x - 1} \), \(-3 \leq 2 \cos x - 1 < 0 \) or \(0 < 2 \cos x - 1 \leq 1 \)

\[
\Rightarrow -\infty < \frac{1}{2 \cos x - 1} \leq -\frac{1}{3} \text{ or } 1 \leq \frac{1}{2 \cos x - 1} < \infty
\]

Hence, the range is \(\left(-\infty, -\frac{1}{3} \right] \cup [1, \infty) \).

Example 1.27 Find the domain for \(f(x) = \sqrt{\cos(\sin x)} \).

Sol. \(f(x) = \sqrt{\cos(\sin x)} \) is defined if \(\cos(\sin x) \geq 0 \)

As we know, \(-1 \leq \sin x \leq 1 \) for all \(x \)

\(\cos \theta \geq 0 \)

\{Here, \(\theta = \sin x \) lies in the first and fourth quadrant\}

i.e., \(\cos(\sin x) \geq 0 \) for all \(x \)

i.e., \(x \in \mathbb{R} \)

Thus, the domain \(f(x) \) is \(\mathbb{R} \).

Example 1.28 If \(f(x) = \frac{\sin x}{\sqrt{1 + \tan^2 x}} - \frac{\cos x}{\sqrt{1 + \cot^2 x}} \), then find the range of \(f(x) \).

Sol.

\[
f(x) = \frac{\sin x}{\sec x} - \frac{\cos x}{\csc x} = \sin x |\cos x| - \cos x |\sin x|
\]

Clearly, the domain of \(f(x) \) is \(R \sim \left\{ n\pi, \pi/2, 3\pi/2, \pi \right\} \) and period of \(f(x) \) is \(2\pi \).

\[
f(x) = \begin{cases}
0, & x \in (0, \pi/2) \\
-\sin 2x, & x \in (\pi/2, \pi) \\
0, & x \in (3\pi/2, 2\pi) \\
\sin 2x, & x \in (\pi, 3\pi/2)
\end{cases}
\]

\(\Rightarrow \) The range of \(f(x) \) is \((-1, 1) \).

Example 1.29 Find the range of \(f(x) = |\sin x| + |\cos x| \), \(x \in \mathbb{R} \).

Sol. \(f(x) = |\sin x| + |\cos x| \) \(\forall x \in \mathbb{R} \).

Clearly \(f(x) > 0 \).

Also, \(f^2(x) = \sin^2 x + \cos^2 x + |2 \sin x \cos x| = 1 + |2 \sin x| \)

\(\Rightarrow 1 \leq f^2(x) \leq 2 \)

\(\Rightarrow 1 \leq f(x) \leq \sqrt{2} \).

Example 1.30 Find the range of \(f(\theta) = 5 \cos \theta + 3 \cos \left(\theta + \frac{\pi}{3} \right) + 3 \).

Sol. \(f(\theta) = 5 \cos \theta + 3 \cos \left(\theta + \frac{\pi}{3} \right) + 3 \)

\[
= 5 \cos \theta + \frac{3}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3
\]
Concept Application Exercise 1.4

1. Find the domain of \(f(x) = \sqrt{\sin x + \sqrt{16 - x^2}} \).

2. Solve (a) \(\tan x < 2 \), (b) \(\cos x \leq -\frac{1}{2} \).

3. Prove that the least positive value of \(x \), satisfying \(\tan x = x + 1 \), lies in the interval \(\left(\frac{\pi}{4}, \frac{\pi}{2} \right) \).

4. Find the range of \(f(x) = \sec \left(\frac{\pi}{4} \cos^2 x \right) \), where \(-\infty < x < \infty\).

5. If \(x \in [1, 2] \), then find the range of \(f(x) = \tan x \).

6. Find the range of \(f(x) = \frac{1}{1 - 3\sqrt{1 - \sin^2 x}} \).

Inverse Trigonometric Functions

\(f(x) = \sin^{-1} x \)

Domain: \([-1, 1]\),

Range: \(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \)

\(\sin^{-1}(\sin x) = x \), for all \(x \in [-\pi/2, \pi/2] \)

\(\sin(\sin^{-1} x) = x \), for all \(x \in [-1, 1] \)

\(\sin^{-1}(-x) = -\sin^{-1}(x) \), for all \(x \in [-1, 1] \)

\(f(x) = \cos^{-1} x \)

Domain: \([-1, 1]\)

Range: \([0, \pi] \)

\(\cos^{-1}(\cos x) = x \), for all \(x \in [0, \pi] \)

\(\cos(\cos^{-1} x) = x \), for all \(x \in [-1, 1] \)

\(\cos^{-1}(-x) = \pi - \cos^{-1} x \), for all \(x \in [-1, 1] \)

\(f(x) = \tan^{-1} x \)

Domain: \(R \)

Range: \(\left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \)

\(\tan^{-1}(\tan x) = x \), for all \(x \in (-\pi/2, \pi/2) \)

\(\tan(\tan^{-1} x) = x \), for all \(x \in R \)

\(\tan^{-1}(-x) = -\tan^{-1} x \), for all \(x \in R \)

\(f(x) = \cot^{-1} x \)

Domain: \(R \)

Range: \((0, \pi) \)

\(\cot^{-1}(\cot x) = x \), for all \(x \in (0, \pi) \)

\(\cot(\cot^{-1} x) = x \), for all \(x \in R \)

\(\cot^{-1}(-x) = \pi - \cot^{-1} x \), for all \(x \in R \)

\(f(x) = \sec^{-1} x \)

Domain: \((\infty, -1] \cup [1, \infty)\)

Range: \([0, \pi] - \{\pi/2\}\)

\(\sec^{-1}(\sec x) = x \), for all \(x \in [0, \pi] - \{\pi/2\} \)

\(\sec(\sec^{-1} x) = x \), for all \(x \in (\infty, -1] \cup [1, \infty) \)

\(\sec^{-1}(-x) = \pi - \sec^{-1} x \), for all \(x \in (\infty, -1] \cup [1, \infty) \)
1.14 Calculus

Example 1.33 Find the domain of \(f(x) = \sqrt{\cos^{-1} x - \sin^{-1} x} \).

Sol. We must have \(\cos^{-1} x \geq \sin^{-1} x \)
\[\Rightarrow \frac{\pi}{2} - \sin^{-1} x \geq \sin^{-1} x \]
\[\Rightarrow \frac{\pi}{2} \geq 2\sin^{-1} x \]
\[\Rightarrow \sin^{-1} x \leq \frac{\pi}{4} \text{, but } \frac{\pi}{2} \leq \sin^{-1} x \]
\[\Rightarrow -\frac{\pi}{2} \leq \sin^{-1} x \leq \frac{\pi}{4} \]
\[\Rightarrow \sin\left(-\frac{\pi}{2}\right) \leq x \leq \sin\frac{\pi}{4} \]
\[\Rightarrow \sin x \text{ is increasing function in } \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \]
\[\Rightarrow x \in \left[-1, \frac{1}{\sqrt{2}}\right] \).

Example 1.34 Find the range of \(\tan^{-1}\left(\frac{2x}{1+x^2}\right) \).

Sol. First, we must get the range of \(\frac{2x}{1+x^2} = y \)
We have \(xy^2 - 2x + y = 0 \)
Since \(x \) is real, \(D \geq 0 \Rightarrow 4 - 4y^2 \geq 0 \Rightarrow -1 \leq y \leq 1 \)
\[\Rightarrow \tan^{-1}(y) \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \text{ (as tan x is an increasing function)} \]

Example 1.35 Find the domain for \(f(x) = \sin^{-1}\left(\frac{1+x^2}{2x}\right) \).

Sol. \(f(x) = \sin^{-1}\left(\frac{1+x^2}{2x}\right) \) is defined for \(-1 \leq \frac{1+x^2}{2x} \leq 1 \), or
\[\left|\frac{1+x^2}{2x}\right| \leq 1 \]
\[\Rightarrow |x|^2 \leq |2x|, \text{ for all x.} \]
\[\Rightarrow 1 + x^2 \leq |2x|, \text{ for all x} \]
\[\Rightarrow x^2 - 2|x| + 1 \leq 0 \]
\[\Rightarrow (x-1)^2 \leq 0 \]
\[\Rightarrow |x| = 1 \Rightarrow |x-1| = 0 \]
But \((x-1)^2 \) is always either positive or zero. Thus, \((x-1)^2 = 0 \Rightarrow |x| = 1 \Rightarrow x = \pm 1 \).
Thus, the domain for \(f(x) \) is \([-1, 1]\).

Example 1.36 Find the range of \(f(x) = \cot^{-1}(2x-x^2) \).

Sol. Let \(\theta = \cot^{-1}(2x-x^2), \text{ where } \theta \in (0, \pi) \)
\[\Rightarrow \cot\theta = 2x-x^2, \text{ where } \theta \in (0, \pi) \]
\[\Rightarrow \cot\theta = 1 -(1-2x+x^2), \text{ where } \theta \in (0, \pi) \]
\[\Rightarrow \cot\theta = 1 -(1-x)^2, \text{ where } \theta \in (0, \pi) \]
\[\Rightarrow \cot \theta \leq 1, \text{ where } \theta \in (0, \pi) \]
\[\Rightarrow \frac{\pi}{4} \leq \theta < \pi. \]
\[\Rightarrow \text{The range of } f(x) \in \left[\frac{\pi}{4}, \pi \right). \]

Concept Application Exercise 1.5

1. Find the domain of the following functions:
 a. \(f(x) = \frac{\sin^{-1} x}{x} \)
 b. \(f(x) = \sin^{-1}(x - 1) - 2 \)
 c. \(f(x) = \cos^{-1}(1 + 3x + 2x^2) \)
 d. \(f(x) = \frac{\sin^{-1}(x - 3)}{\sqrt{9 - x^2}} \)
 e. \(f(x) = \cos^{-1}\left(\frac{6 - 3x}{4}\right) + \csc^{-1}\left(\frac{x - 1}{2}\right) \)
 f. \(f(x) = \frac{\sec^{-1}\left(\frac{2}{x}\right)}{4} \)

2. Find the range of \(f(x) = \tan^{-1}\left(\sqrt{x^2 - 2x + 2}\right) \).

3. Find the range of \(f(x) = \sqrt{\cos^{-1}\left(\sqrt{1 - x^2} - \sin^{-1} x\right)} \).

4. Find the range of the function, \(f(x) = \cot^{-1}\log_{0.5}(x^4 - 2x^2 + 3) \).

Exponential and Logarithmic Functions

Exponential Function

\[y = a^x, \ a > 1 \]

Domain \(\rightarrow R \)
Range \(\rightarrow (0, \infty) \)
Nature \(\rightarrow \) Non-periodic
One \(\rightarrow \) One
Neither odd nor even
Monotonically increasing, \((a > 1) \)
Monotonically decreasing, \((0 < a < 1) \)

Logarithmic Function

Logarithm function is the inverse of exponential function.

Hence, the domain and range of the logarithmic functions are range and domain of exponential function, respectively.

Also, the graph of function can be obtained by taking the mirror image of the graph of the exponential function in the line \(y = x \).

\[y = \log_a x, \ a > 0 \text{ and } a \neq 1 \]

Domain \(\rightarrow (0, \infty) \)
Range \(\rightarrow (-\infty, \infty) \)
Period \(\rightarrow \) non-periodic
Nature \(\rightarrow \) neither odd nor even

Properties of Logarithmic Function

For \(x, y > 0 \) and \(a > 0, a \neq 2 \)

1. \(\log_a (xy) = \log_a x + \log_a y \)
2. \(\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y \)
3. \(\log_a (x^b) = b \log_a x \)
4. \(\log_a y^b = \frac{b}{a} \log_a y \)
5. If \(\log_a x > \log_a y \), then \(x > y \), if \(a > 1 \)
6. If \(\log_a x = y \), then \(x = a^y \)
7. If \(\log_a x > y \), then \(x > a^y \), if \(a > 1 \)
8. \(a^{\log_a x} = x \)
9. \(\log_a x = \frac{\log x}{\log a} \)
10. \(\log_a x > 0 \Rightarrow x > 1 \) and \(a > 1 \) or \(0 < x < 1 \) and \(0 < a < 1 \).

Example 1.37 Find the domain of \(f(x) = \sqrt{\frac{1-5^x}{7^x-7}} \).

Sol. We must have \(g(x) = \frac{1-5^x}{7^x-7} \geq 0 \) \(\Rightarrow \frac{5^x-1}{7^x-7} \leq 0 \)

Now \(5^x - 1 = 0 \Rightarrow x = 0 \) and \(7^x - 7 = 0 \Rightarrow x = -1 \)
The sign scheme of \(g(x) \) is

\[
\begin{array}{c|c|c|c|c|c}
\text{Sign of } g(x) & -1 & 0 & + & -
\end{array}
\]

Hence, from the sign scheme of \(g(x) \),
\(x \in (\infty, -1) \cup (0, \infty) \).

Example 1.38 Find the domain of
\(f(x) = (0.625)^{x-4} - (1.6)^{2(x+8)} \).

Sol. Clearly, \((0.625)^{x-4} \geq (1.6)^{2(x+8)} \)
\(\Rightarrow \frac{5^{x-4}}{8} \leq \frac{8^{x+8}}{5} \)
\(\Rightarrow \frac{5^{x-4}}{8} \leq \frac{8^{x+8}}{5} \)
\(\Rightarrow 3x - 4 \geq 8 \Rightarrow x \geq \frac{5}{3} + 6 \leq 4 \leq 0 \)
\(\Rightarrow -4 \leq x \leq -1 \)
Hence, the domain of function \(f(x) \) is \(x \in [-4, -1] \).

Example 1.39 Find the range of
\[a. f(x) = \log_2 \sin x \]
\[b. f(x) = \log_3 (5-4x-x^2) \]

a. \(f(x) = \log_2 \sin x \) is defined if \(\sin x \in (0, 1] \)
for which \(\log_2 \sin x \in (-\infty, 0] \).

b. \(f(x) = \log_3 (5-4x-x^2) \)
\(= \log_3 (9-(x-2)^2) \)
\(f(x) \) is defined if \(9-(x-2)^2 > 0 \), but \(9-(x-2)^2 \leq 9 \)
\(\Rightarrow 0 < (x-2)^2 \leq 9 \)
\(\Rightarrow -\infty < \log_3 (9-(x-2)^2) \leq \log_3 9 \)
Hence, the range is \((-\infty, 2] \).

Example 1.40 Find the domain of
\(f(x) = \log_{10} \log_2 \log_{2\pi} (\tan^{-1} x)^{-1} \).

Sol. We must have \(\log_{2\pi} (\tan^{-1} x)^{-1} > 0 \)
\(\Rightarrow \log_{2\pi} (\tan^{-1} x)^{-1} > 1 \)
\(\Rightarrow 0 < (\tan^{-1} x)^{-1} < 2/\pi \)
\(\Rightarrow \pi/2 < \tan^{-1} x < \infty \), which is not possible.
Hence, the domain is \(\phi \).

Example 1.41 Find the domain and range of
\(f(x) = \sqrt{\log_3 (\cos (\sin x))} \).

Sol. \(f(x) = \sqrt{\log_3 (\cos (\sin x))} \)
\(f(x) \) is defined only if \(\log_3 (\cos (\sin x)) \geq 0 \)
\(\Rightarrow \cos (\sin x) \geq 1 \)
\(\Rightarrow \cos (\sin x) = 1 \) as \(-1 \leq \cos \theta \leq 0 \)
\(\Rightarrow \sin x = 0 \Rightarrow x = n\pi, n \in I \).
Hence, the domain consists of the multiples of \(\pi \), i.e., Domain
\(= \{n\pi, n \in I\} \).
Also, the range is \(\{0\} \).

Example 1.42 Solve \(\log_5 (x^2 - 1) \leq 0 \).

Sol. Given \(\log_5 (x^2 - 1) \leq 0 \)
If \(x > 1 \), then
\(\Rightarrow 0 < x^2 - 1 \leq 1 \)
\(\Rightarrow 1 < x^2 \leq 2 \)
\(\Rightarrow x \in [-\sqrt{2}, 1) \cup (1, \sqrt{2}] \)
\(\Rightarrow x \in (1, \sqrt{2}] \)
If \(0 < x < 1 \Rightarrow x^2 - 1 \geq 1 \Rightarrow x^2 \geq 2 \)
\(\Rightarrow x \in (-\sqrt{2}, 1) \cup [\sqrt{2}, \infty) \)
\(\Rightarrow x = \phi \)
Thus, \(x \in (1, \sqrt{2}] \).

Example 1.43 Find the number of solutions of \(2^x + 3^x + 4^x - 5^x = 0 \).

Sol. \(2^x + 3^x + 4^x - 5^x = 0 \)
\(\Rightarrow \left(\frac{2}{5} \right)^x + \left(\frac{3}{5} \right)^x + \left(\frac{4}{5} \right)^x = 1 \)
Now, the number of solution of the equation is equal to
number of times
\(y = \left(\frac{2}{5} \right)^x + \left(\frac{3}{5} \right)^x + \left(\frac{4}{5} \right)^x \) and \(y = 1 \) intersect.

From the graph, the equation has only one solution.
Example 1.44 Find the domain of \(f(x) = \sin^{-1}(\log_3(x^2/4)) \).

\[
\text{Sol. We have } f(x) = \sin^{-1}\left\{ \log_3\left(\frac{x^2}{4} \right) \right\}.
\]

Since the domain of \(\sin^{-1}x \) is \([-1, 1]\),

Therefore, \(f(x) = \sin^{-1}\left\{ \log_3\left(\frac{x^2}{4} \right) \right\} \) is defined,

\[
\text{if } -1 \leq \log_3\left(\frac{x^2}{4} \right) \leq 1
\]

\[
\Rightarrow 9^{-1} \leq \frac{x^2}{4} \leq 9^1
\]

\[
\Rightarrow \frac{4}{9} \leq x^2 \leq 36
\]

\[
\Rightarrow \frac{2}{3} \leq |x| \leq 6
\]

\[
\Rightarrow x \in \left[-6, -\frac{2}{3} \right] \cup \left[\frac{2}{3}, 6 \right].
\]

Hence, the domain of \(f(x) \) is \(\left[-6, -\frac{2}{3} \right] \cup \left[\frac{2}{3}, 6 \right] \).

Example 1.45 Find the domain of function \(f(x) = \log_4\{\log_3(18x-x^2-77)\} \).

\[
\text{Sol. We have } f(x) = \log_4\{\log_3(18x-x^2-77)\}.
\]

Since \(\log_3 x \) is defined for all \(x > 0 \). Therefore, \(f(x) \) is defined if

\[
\log_3(18x-x^2-77) > 0 \text{ and } 18x-x^2-77 > 0
\]

\[
\Rightarrow \log_3(18x-x^2-77) > 5^0 \text{ and } x^2 - 18x + 77 < 0
\]

\[
\Rightarrow \log_3(18x-x^2-77) > 1 \text{ and } (x-11)(x-7) < 0
\]

\[
\Rightarrow 18x-x^2-77 > 3^1 \text{ and } 7 < x < 11
\]

\[
\Rightarrow 18x-x^2-80 > 0 \text{ and } 7 < x < 11
\]

\[
\Rightarrow x^2 - 18x + 80 < 0 \text{ and } 7 < x < 11
\]

\[
\Rightarrow (x-10)(x-8) < 0 \text{ and } 7 < x < 11
\]

\[
\Rightarrow 8 < x < 10 \text{ and } 7 < x < 11
\]

\[
\Rightarrow 8 < x < 10
\]

\[
\Rightarrow x \in (8, 10).
\]

Hence, the domain of \(f(x) \) is \((8, 10) \).

Example 1.46 Find the domain of \(f(x) = \sqrt{\log_{0.4}\left(\frac{x-1}{x+5} \right)} \).

\[
\text{Sol. } f(x) = \sqrt{\log_{0.4}\left(\frac{x-1}{x+5} \right)} \text{ exists if } \log_{0.4}\left(\frac{x-1}{x+5} \right) \geq 0 \text{ and }
\]

\[
\frac{x-1}{x+5} > 0.
\]

\[
\Rightarrow \frac{x-1}{x+5} \leq (0.4)^0 \text{ and } \frac{x-1}{x+5} > 0
\]

\[
\Rightarrow \frac{x-1}{x+5} \leq 1 \text{ and } \frac{x-1}{x+5} > 0
\]

\[
\Rightarrow x > 0 \text{ and } x > 0
\]

\[
\Rightarrow \text{Thus, the domain } f(x) \in (1, \infty).
\]

Concept Application Exercise 1.6

Find the domain of the following functions: (1 to 7)

1. \(f(x) = \sqrt{4^x + 8^3(x-2) - 13 - 2^2(x-1)} \)

2. \(f(x) = \sin^{-1}(\log_2x) \)

3. \(f(x) = \log_{10}(x^2-11x+24) \)

4. \(f(x) = \frac{3}{4-x^2} + \log_{10}\left(x^2 - x \right) \)

5. \(f(x) = \frac{\log_{0.3}\left| \frac{x-2}{x} \right|}{\log_{0.3}\left| x \right|} \)

6. \(f(x) = \frac{\log_{10}\left(\frac{\log_{10}x}{2(3 - \log_{10}x)} \right)}{\log_{10}\left(x^2 - 7x + 13 \right)} \)

7. \(f(x) = \frac{1}{\sqrt{\log_{10}(x^2 - 7x + 13)}} \)

8. Find the range of \(f(x) = \log_2\left(\frac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}} \right) \).

Greatest Integer and Fractional Part Function

Greatest Integer Function (Floor Value Function)

\(y = f(x) = \lfloor x \rfloor \) (Greatest integer \(\leq x \))

\[
\text{Graph of } y = \lfloor x \rfloor
\]

Properties

- Domain \(\rightarrow R \); Range \(\rightarrow Z \);
- \(\lfloor x \rfloor = \lfloor n \in \mathbb{Z} \Rightarrow x \in [n, n+1) \)
1.18 Calculus

- \(x - 1 < [x] \leq x \)
- \([x] + [y] = 0\), if \(x, y \in \mathbb{Z}\)
- \([-x] + [x] = -1\), if \(x \notin \mathbb{Z}\)
- \([x] \geq n \Rightarrow x \geq n, n \in \mathbb{Z}\)
- \([x] < n \Rightarrow x < n - 1, n \in \mathbb{Z}\)
- \([x] > n \Rightarrow x \geq n + 1, n \in \mathbb{Z}\)

\[[x] \geq 2 \Rightarrow x \in [2, \infty) \]
\[[x] > 3 \Rightarrow [x] \geq 4 \Rightarrow x \in [4, \infty) \]
\[[x] \leq 3 \Rightarrow x \in (-\infty, 4) \]

\[\frac{x}{n} + \frac{x + 1}{n} + \frac{x + 2}{n} + \ldots + \frac{x + n - 1}{n} = [x], n \in \mathbb{N} \]

\[\text{or } [x] + \left[\frac{x + 1}{n} \right] + \left[\frac{x + 2}{n} \right] + \ldots + \left[\frac{x + n - 1}{n} \right] = \left[\frac{nx}{n} \right] \]

Fractional Part Function

\[y = f(x) = \{x\} = x - [x] \]

Properties

- Domain \(\rightarrow \mathbb{R} \); Range \(\rightarrow (0, 1) \); Period \(\rightarrow 1 \).
- \([x + y] = [x] + [y] \), if \(0 \leq [x] + [y] < 1\)
- \([x + y] = [x] + [y] + 1, 1 \leq [x] + [y] < 2\)
- \((x) + [y] = 0 \) if \(x \in \mathbb{I}\)
- \([y] + [x] = 1 \) if \(x \notin \mathbb{I}\)

Example 1.47 Find the domain of

\[f(x) = \sqrt{[x] - 1} + \sqrt{[x]} \]

Sol. Given \(f(x) = \sqrt{[x] - 1} + \sqrt{[x]} \)

\[\Rightarrow f(x) \text{ is defined when } [x] - 1 \geq 0 \text{ and } 4 - [x] \geq 0 \]
\[\Rightarrow 1 \leq [x] \leq 4 \text{ or } 1 \leq x < 5. \]

Hence, the domain of \(f(x) = D_f = [1, 5] \).

Example 1.48 Find the domain and range of \(f(x) = \sin^{-1} [x] \)

Sol. \(f(x) = \sin^{-1} [x] \) is defined if \(-1 \leq [x] \leq 1 \)

\[\Rightarrow [x] = -1, 0, 1 \]
\[\Rightarrow x \in [-1, 2) \]

\(\Rightarrow \text{Range is } \{-\pi/2, 0, \pi/2\} \)

Example 1.49 Find the domain and range of \(f(x) = \log \{x\} \)

Sol. We know that \(0 \leq \{x\} < 1 \forall x \in \mathbb{R} \)

Now when \(\{x\} = 0 \), \(\log \{x\} \) is not defined. So \(x \) cannot be integer. Hence, the domain is \(R - \mathbb{I} \).

Now for \(0 < \{x\} < 1 \) \(\log \{x\} < 0 \Rightarrow \text{Range is } (-\infty, 0) \)

Example 1.50 Find the range of \(f(x) = \lfloor \sin \{x\} \rfloor \) where \(\{\} \) represents the fractional part function, \([\cdot] \) represents greatest the integer function.

Sol. \(f(x) = \lfloor \sin \{x\} \rfloor \)

Here, \(\{x\} \) can take all its possible values and sine function is defined for all real values.

Hence, \(0 \leq \{x\} < 1 \)

\[\Rightarrow 0 \leq \sin \{x\} < 1 \]

\[\Rightarrow \{\sin \{x\}\} = 0 \]

Hence, the range is \(\{0\} \).

Example 1.51 Solve \(2x = x + \{x\} \), where \([\cdot] \) and \(\{\cdot\} \) denote the greatest integer function and fractional part, respectively.

Sol. Given \(2[x] = x + \{x\} \)

\[\Rightarrow 2x = x + 2[\{x\}] \]

\[\Rightarrow \{x\} = \frac{x}{2} \]

\[\Rightarrow 0 \leq \frac{x}{2} < 1 \]

\[\Rightarrow 0 \leq x < 2 \]

\[\Rightarrow [x] = 0, 1. \]

For \([x] = 0\), we get \(\{x\} = 0 \Rightarrow x = 0 \)

For \([x] = 1\), we get \(\{x\} = \frac{1}{2} \Rightarrow x = \frac{3}{2} \).

Example 1.52 Find the range of \(f(x) = \frac{x - [x]}{1 - [x] + x} \), where \([\cdot]\)

represents the greatest integer function.

Sol. \(f(x) = \frac{x - [x]}{1 - [x] + x} = \frac{x}{1 + [x]} \)

Now, \(0 \leq [x] < 1 \)

\[\Rightarrow 1 \leq [x] + 1 < 2 \]

\[\Rightarrow \frac{1}{2} < \frac{1}{1 + [x]} \leq 1 \]

\[\Rightarrow -1 \leq -\frac{1}{1 + [x]} < -\frac{1}{2} \]

\[\Rightarrow 0 \leq -\frac{1}{1 + [x]} < \frac{1}{2} \]

Example 1.53 Solve the system of equation in \(x, y, \) and \(z \) satisfying the following equations

\[x + y + z = 3.1 \]
\[\{x\} + y + \{z\} = 4.3 \]
\[[x] + \{y\} + z = 5.4 \]

(where \([\cdot]\) denotes the greatest integer function and \(\{\cdot\}\) denotes fractional part.)
Sol. Adding all the three equations \(2(x + y + z) = 12.8\) or
\[x + y + z = 6.4\]
(1)
Adding first two equations, we get \(x + y + z + \{y\}\) + \(\{x\}\) = 7.4
(2)
Adding 2nd and 3rd equations, we get \(x + y + z + \{z\}\) + \(\{y\}\) = 9.7
(3)
Adding 1st and 4th equations, we get \(x + y + z + \{x\}\) + \(\{z\}\) = 8.5
(4)
From (1) and (2), \([y]\) + \(\{x\}\) = 1
From (1) and (3), \([z]\) + \(\{y\}\) = 3.3
From (1) and (4), \([x]\) + \(\{z\}\) = 2.1
\[\Rightarrow [x] = 2, [y] = 1, [z] = 3, \{x\} = 0, \{y\} = 0.3 \text{ and } \{z\} = 0.1\]
\[\Rightarrow x = 2, y = 1.3, z = 3.1.\]

Example 1.54 Solve \(x^2 - 4 - [x] = 0\) is (where \([.\]) denotes the greatest integer function).

Sol. The best method to solve such system is graphical one.
Given equation is \(x^2 - 4 = [x]\)
Then, the solutions of the equation are values of \(x\) where graph \(y = x^2 - 4\) and \(y = [x]\) intersect.

![Graph of \(y = x^2 - 4\) and \(y = [x]\)](image)

From the graph, it is seen that graph intersects when \(x^2 - 4 = 2\) and \(x^2 - 4 = -2\)
\[\Rightarrow x^2 = 6 \text{ or } x^2 = 2\]
\[\Rightarrow x = \sqrt{6} \text{ or } -\sqrt{2}\]

Example 1.55 If \(f(x) = \begin{cases} \lfloor x \rfloor, & 0 \leq \lfloor x \rfloor < 0.5 \\ \lfloor x \rfloor + 1, & 0.5 \leq \lfloor x \rfloor < 1 \end{cases}\) then prove that \(f(x) = -f(-x)\) (where \([.\] and \(\{\}\) represent the greatest integer function and fractional part function).

Sol. \(-f(x) = \begin{cases} [-x], & 0 \leq \{-x\} < 0.5 \\ [-x] + 1, & 0.5 \leq \{-x\} < 1 \end{cases}\)
\[= \begin{cases} [-x], & \{x\} = 0 \\ -[-x], & 0 < \{-x\} < 0.5 \\ -[-x] + 1, & 0.5 < \{-x\} < 1 \end{cases}\]
\[= \begin{cases} [-x], & \{x\} = 0 \\ -[-x], & 0 < \{x\} < 0.5 \\ -[-x] + 1, & 0.5 < \{x\} < 1 \end{cases}\]

Concept Application Exercise 1.7

In the following questions:
([.] and \(\{\}\) represent the greatest integer function and fractional part function, respectively).

1. Solve \([x] - 5[x] + 6 = 0\).
2. If \(y = 3[x] + 1 = 4[x - 1] - 10\), then find the value of \([x+2y]\).
3. Find the domain of \(a, f(x) = \frac{1}{\sqrt{x-[x]}}, \quad b, f(x) = \frac{1}{\log|x|}, \quad c, f(x) = \log\{x\}\).
4. Find the domain of \(f(x) = \frac{1}{\sqrt{[|x|]-1}}\).
5. Find the domain of \(f(x) = \frac{1}{\log_3(1-4x^2)}\).
6. Find the range of \(f(x) = \cos(\log|x|)\).
7. Find the domain and range of \(f(x) = \cos^{-1}\left(\frac{[x]}{x}\right)\).
8. Find the range of \(f(x) = \log(\sin x)\).
9. Solve: \((x - 2)[x] = \{x\} - 1\) (where \([x]\) and \(\{x\}\) denotes the greatest integer function less than or equal to \(x\) and fractional part function respectively).

Signum Function
\[y = f(x) = \text{sgn}(x)\]

![Graph of \(y = \text{sgn}(x)\)](image)

\[
\text{sgn}(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \text{ or } x > 0 \\ 0, & x = 0 \end{cases}
\]

\[
\text{sgn}(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}
\]

Domain \(\rightarrow R\); Range \(\rightarrow \{-1, 0, 1\}\);
1.20 Calculus

Nature: Many one, odd function

In general, \(\text{sgn}(f(x)) = \begin{cases} \frac{|f(x)|}{f(x)}, & f(x) \neq 0 \\ 0, & f(x) = 0 \end{cases} \)

or \(\text{sgn}(f(x)) = \begin{cases} -1, & f(x) < 0 \\ 0, & f(x) = 0 \\ 1, & f(x) > 0 \end{cases} \)

Example 1.56 Write the equivalent (piecewise) definition of \(f(x) = \text{sgn}(\sin x) \).

\[
\begin{align*}
\text{Sol. } & \quad \text{sgn}(\sin x) =
\begin{cases}
-1, & \sin x < 0 \\
0, & \sin x = 0 \\
1, & \sin x > 0
\end{cases} \\
= & \begin{cases}
-1, & x \in [(2n+1)\pi, (2n+2)\pi), n \in \mathbb{Z} \\
0, & x = n\pi, n \in \mathbb{Z} \\
1, & x \in (2n\pi, (2n+1)\pi), n \in \mathbb{Z}
\end{cases}
\end{align*}
\]

Fig. 1.50

Example 1.57 Find the range of \(f(x) = \text{sgn}(x^2 - 2x + 3) \).

\[
\begin{align*}
\text{Sol. } & \quad x^2 - 2x + 3 = (x-1)^2 + 1 > 0 \quad \forall \ x \in \mathbb{R} \Rightarrow f(x) = \text{sgn}(x^2 - 2x + 3) = 1 \\
\text{Hence, the range is } & \quad \{1\}.
\end{align*}
\]

Functions of the Form \(f(x) = \max\{g_1(x), g_2(x), \ldots, g_n(x)\} \) or \(f(x) = \min\{g_1(x), g_2(x), \ldots, g_n(x)\} \)

Let's consider the function \(f(x) = \max\{x, x^2\} \)

To write the equivalent definition of the function, first draw the graph of \(y = x \) and \(y = x^2 \).

Now from the graph, we can see that

For \(x \in (-\infty, 0) \), the graph of \(y = x^2 \) lies above the graph of \(y = x \), or \(x^2 > x \).

For \(x \in (0, 1) \), the graph of \(y = x^2 \) lies above the graph of \(y = x^2 \) or \(x > x^2 \).

For \(x \in (1, \infty) \), the graph of \(y = x^2 \) lies above the graph of \(y = x^3 \) or \(x^3 > x \).

Hence, we have \(f(x) = \begin{cases} x^2, & x < 0 \\
x, & 0 \leq x \leq 1 \\
 x^3, & x > 0
\end{cases} \)

For \(f(x) = \min\{x, x^2\} \), we have \(f(x) = \begin{cases} x, & x < 0 \\
x^2, & 0 \leq x \leq 1 \\
x, & x > 0
\end{cases} \)

Example 1.58 If \(f: R \rightarrow R, g: R \rightarrow R \) be the two given functions, then prove that \(\min\{f(x) - g(x), 0\} = f(x) - \min\{g(x) - f(x), f(x) - g(x)\} \).

\[
\begin{align*}
\text{Sol. } h(x) & = \min\{f(x) - g(x), 0\} \\
= & \begin{cases} 0, & f(x) > g(x) \\
2(f(x) - g(x)), & f(x) \leq g(x)
\end{cases} \\
= & \begin{cases} -(f(x) - g(x)) - |f(x) - g(x)|, & f(x) > g(x) \\
-(f(x) - g(x)) + |f(x) - g(x)|, & f(x) \leq g(x)
\end{cases} \\
\therefore \quad h(x) & = f(x) - g(x) - |g(x) - f(x)|.
\end{align*}
\]

Example 1.59 Draw the graph of the function \(f(x) = \max\{\sin x, \cos 2x\} \), \(x \in [0, 2\pi] \). Write the equivalent definition of \(f(x) \) and find the range of the function.

\[
\begin{align*}
\text{Sol. } & \quad \sin x = \cos 2x \\
\Rightarrow & \quad \sin x = 1 - 2\sin^2 x \\
\Rightarrow & \quad 2\sin^2 x + \sin x - 1 = 0 \\
\Rightarrow & \quad (2\sin x - 1)(\sin x + 1) = 0 \\
\Rightarrow & \quad \sin x = \frac{1}{2} \text{ or } \sin x = -1 \\
\Rightarrow & \quad x = \frac{\pi}{6}, \frac{5\pi}{6} \text{ or } x = \pi
\end{align*}
\]

\[
\begin{align*}
\text{Fig. 1.52}
\end{align*}
\]

From the graph \(f(x) = \begin{cases}
\cos 2x, & 0 \leq x < \frac{\pi}{6} \\
\sin x, & \frac{\pi}{6} \leq x < \frac{5\pi}{6} \\
\cos 2x, & \frac{5\pi}{6} \leq x \leq 2\pi
\end{cases} \)

Also range of the function is \([-1, 1]\).
Methods to Determine One-One and Many-One

- **a.** Let \(x_1, x_2 \in \text{domain of } f \) and if \(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) \) for every \(x_1, x_2 \) in the domain, then \(f \) is one-one else many-one.

- **b.** Conversely, if \(f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \) for every \(x_1, x_2 \) in the domain, then \(f \) is one-one else many-one.

- **c.** If the function is entirely increasing or decreasing in the domain, then \(f \) is one-one else many-one.

- **d.** Any continuous function \(f(x) \) that has at least one local maxima or local minima is many-one.

- **e.** All even functions are many-one.

- **f.** All polynomials of even degree defined in \(R \) have at least one local maxima or minima and hence are many-one in the domain \(R \). Polynomials of odd degree can be one-one or many-one.

- **g.** If \(f \) is a rational function, then \(f(x_1) = f(x_2) \) will always be satisfied when \(x_1 = x_2 \) in the domain. Hence, we can write \(f(x_1) - f(x_2) = (x_1 - x_2) g(x_1, x_2) \) where \(g(x_1, x_2) \) is some function in \(x_1 \) and \(x_2 \). Now, if \(g(x_1, x_2) = 0 \) gives some solution which is different from \(x_1 = x_2 \) and lies in the domain, then \(f \) is many-one else one-one.

Example 1.60 Let \(f: R \rightarrow R \) where \(f(x) = \frac{x^2 + 4x + 7}{x^2 + x + 1} \). Is \(f(x) \) one-one?

Sol. Let \(f(x_1) = f(x_2) \)

\[
\Rightarrow \frac{x_1^2 + 4x_1 + 7}{x_1^2 + x_1 + 1} = \frac{x_2^2 + 4x_2 + 7}{x_2^2 + x_2 + 1} \\
\Rightarrow (x_1 - x_2)(2x_1 + 2x_2 + x_1^2 + x_2^2 + 1) = 0 \\
\]

One solution is obviously \(x_1 = x_2 \)

Let us consider \(2x_1 + 2x_2 + x_1^2 + x_2^2 + 1 = 0 \)

Here, we have got a relation between \(x_1 \) and \(x_2 \) and for each value of \(x_1 \) in the domain we get a corresponding value of \(x_2 \) which may or may not be same as \(x_1 \). Let us check this out:

If \(x_1 = 0 \), we get \(x_2 = -1/2 \neq x_1 \) and both lie in the domain of \(f \). Hence, we have two different values \(x_1 = 0 \) and \(x_2 = -1/2 \) for which \(f(x) \) has the same value.

That is, \(f(0) = f(-1/2) = 7 \) and hence \(f \) is many-one.

Example 1.61 If \(f: X \rightarrow [1, \infty) \) be a function defined as \(f(x) = 1 + 3x^3 \). Find the super set of all the sets \(X \) such that \(f(x) \) is one-one.

Sol. Note that \(f(x) \geq 1 \)

\[
\Rightarrow 1 + 3x^3 \geq 1 \\
\Rightarrow x^3 \geq 0 \\
\Rightarrow x \in [0, \infty).
\]
Moreover, for \(x_1, x_2 \in [0, \infty), x_1 \neq x_2\)
\[\Rightarrow 1 + 3x_1^3 \neq 1 + 3x_2^3\]
\[\Rightarrow f(x_1) \neq f(x_2)\]
Thus, \(f: [1, \infty)\) is one-one for \(x \in [0, \infty)\).

Onto and Into Functions

Let \(f: X \rightarrow Y\) be a function. If each element in the co-domain \(Y\) has at least one pre-image in the domain \(X\), that is, for every \(y \in Y\) there exists at least one element \(x \in X\) such that \(f(x) = y\), then \(f\) is onto. In other words, the range of \(f = Y\) for onto functions.

On the other hand, if there exists at least one element in the co-domain \(Y\) which is not an image of any element in the domain \(X\), then \(f\) is into.

Onto function is also called **surjective function** and a function which is both one-one and onto is called **bijective function**.

For example, \(f: R \rightarrow R\) where \(f(x) = \sin x\) is into.

\(f: R \rightarrow R\) where \(f(x) = ax^3 + b\) is onto where \(a \neq 0, b \in R\).

Note that a function will be either onto or into.

<table>
<thead>
<tr>
<th>Description</th>
<th>Equivalent to number of ways in which (n) different balls can be distributed among (r) persons if</th>
<th>Number of functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Total number of functions</td>
<td>Any one can get any number of objects</td>
<td>(r^n)</td>
</tr>
<tr>
<td>2. Total number of one-to-one function</td>
<td>Each gets exactly 1 object or permutation of (n) different objects taken (r) at a time</td>
<td>(\binom{n}{r} = \frac{n!}{r!(n-r)!}, r \leq n)</td>
</tr>
<tr>
<td>3. Total number of many-one functions</td>
<td>At least one gets more than one ball</td>
<td>(r^n - \binom{n}{r} = \frac{n!}{r!(n-r)!}, r < n)</td>
</tr>
<tr>
<td>4. Total number of onto functions</td>
<td>Each gets at least one ball</td>
<td>(r^n - \binom{r}{1}C_1(r-1)^n + \binom{r}{2}C_2(r-2)^n - \binom{r}{3}C_3(r-3)^n + \cdots)</td>
</tr>
<tr>
<td>5. Total number of into function</td>
<td>(r^n)</td>
<td>(r^n)</td>
</tr>
<tr>
<td>6. Total number of constant functions</td>
<td>All the balls are received by any one person</td>
<td>(r)</td>
</tr>
</tbody>
</table>

Example 1.62 Let \(f: R \rightarrow R\) where \(f(x) = \sin x\). Show that \(f\) is into.

Sol. Since the co-domain of \(f\) is the set \(R\), whereas the range of \(f\) is the interval \([-1, 1]\), hence \(f\) is into.

Can you make it onto?

The answer is ‘yes’, if you redefine the co-domain.

Let \(f\) be defined from \(R\) to another set \(Y = [-1, 1]\), i.e., \(f: R \rightarrow Y\) where \(f(x) = \sin x\), then \(f\) is onto as range \(f(x) = [-1, 1] = Y\).

Example 1.63 Let \(f: N \rightarrow Z\) be a function defined as \(f(x) = x - 1000\). Show that \(f\) is an into function.

Sol. Let \(f(x) = y = x - 1000\)
\[\Rightarrow x = y + 1000 = g(y)\] (say)
Here, \(g(y)\) is defined for each \(y \in I\), but \(g(y) \notin N\) for \(y \leq 1000\). Hence, \(f\) is into.
Example 1.64 Let \(A = \{x: -1 \leq x \leq 1\} = B \) be a mapping \(f: A \to B \).

Then, match the following columns:

<table>
<thead>
<tr>
<th>Column I (Function)</th>
<th>Column II (Type of mapping)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p. (f(x) =</td>
<td>x</td>
</tr>
<tr>
<td>q. (f(x) = x^2)</td>
<td>b. many-one</td>
</tr>
<tr>
<td>r. (f(x) = x^3)</td>
<td>c. onto</td>
</tr>
<tr>
<td>s. (f(x) = [x]) where ([\cdot]) represents greatest integer function</td>
<td>d. into</td>
</tr>
<tr>
<td>t. (f(x) = \sin \frac{\pi x}{2})</td>
<td></td>
</tr>
</tbody>
</table>

Sol. p. \(f(x) = |x| \)

![Graph](image1)

Fig. 1.55

The graph shows that \(f(x) \) is many-one, as the straight line parallel to x-axis and cuts at two points. Here, the range for \(f(x) \in [0, 1] \) which is clearly a subset of co-domain, i.e., \([0, 1] \subset [-1, 1]\). Thus, into.

Hence, function is many-one-into, therefore neither injective nor surjective.

q. \(f(x) = x|x| = \begin{cases} x^2, & x \geq 0 \\ -x^2, & x < 0 \end{cases} \)

![Graph](image2)

Fig. 1.56

The graph shows that \(f(x) \) is one-one, as the straight line parallel to x-axis cuts only at one point.
Here, the range \(f(x) \in [-1, 1] \).
Thus, range = co-domain.
Hence, onto.
Therefore, \(f(x) \) is one-one and onto or (bijective).

r. \(f(x) = x^3 \)

![Graph](image3)

Fig. 1.58

The graph shows that \(f(x) \) is one-one onto (i.e., bijective) (as explained in the above example).

s. \(f(x) = [x] \)

![Graph](image4)

Fig. 1.59

The graph shows that \(f(x) \) is one-one and onto as range = co-domain.
Therefore, \(f(x) \) is bijective.

Example 1.65 Show \(f: R \to R \) defined by \(f(x) = (x - 1)(x - 2)(x - 3) \) is surjective but not injective.

Sol.

![Graph](image5)

Fig. 1.60
Graphically, \(y = f(x) = (x-1)(x-2)(x-3) \), which is clearly many-one and onto.

Example 1.66 If the function \(f: R \rightarrow A \) given by \(f(x) = \frac{x^2}{x^2+1} \) is surjection, then find \(A \).

Sol. The domain of \(f(x) \) is all real numbers.
Since, \(f: R \rightarrow A \) is surjective, therefore \(A \) must be the range of \(f(x) \).
Let \(f(x) = y \)

\[
\Rightarrow y = \frac{x^2}{x^2+1} \\
\Rightarrow x^2y + y = x^2 \\
\Rightarrow x = \frac{y}{1-y} \text{ exists if } \frac{y}{1-y} \geq 0 \\
\begin{array}{ccc}
0 & + & + \\
1 & - & -
\end{array}
\]

Fig. 1.61

\(\Rightarrow 0 \leq y < 1 \). Hence, \(A \in [0, 1) \).

Example 1.67 If \(f: R \rightarrow R \) be a function such that \(f(x) = x^3 + x^2 + 3x + \sin x \). Then identify the type of function.

Sol. \(f(x) = x^3 + x^2 + 3x + \sin x \)

\(\Rightarrow f'(x) = 3x^2 + 2x + 3 + \cos x \)

\[= 3 \left(x + \frac{1}{3} \right)^2 + \frac{8}{9} \]

\((-\cos x) > 0 \) as \(3 \left(x + \frac{1}{3} \right)^2 + \frac{8}{9} \)

\(\Rightarrow f(x) \) is strictly increasing and hence one-one.

Also \(\lim_{x \to \infty} f(x) = \infty \) and \(\lim_{x \to -\infty} f(x) = -\infty \). Thus, the range of \(f(x) \) is \(R \), hence onto.

Example 1.68 If \(f: R \rightarrow R, f(x) = \begin{cases} x \mid x \mid - 4 & , x \in O \\
\mid x \mid - \sqrt{3}, & x \notin O \end{cases} \), then identify the type of function.

Sol. \(f(2) = f(3/4) \Rightarrow \) many-to-one function and \(f(x) \neq \sqrt{3} \ \forall x \in R \) \Rightarrow \) into function.

Concept Application Exercise 1.9

1. Which of the following functions from \(Z \) to itself are bijections?
 a. \(f(x) = x^3 \)
 b. \(f(x) = x + 2 \)
 c. \(f(x) = 2x + 1 \)
 d. \(f(x) = x^2 + x \)

2. If \(f: N \rightarrow Z \) \(f(n) = \begin{cases} \frac{n-1}{2}, & \text{when } n \text{ is odd} \\
\frac{n}{2}, & \text{when } n \text{ is even} \end{cases} \) identify the

Even and Odd Functions

Even Function
A function \(y = f(x) \) is said to be an even function if \(f(-x) = f(x) \ \forall x \in D_f \).

Graph of an even function \(y = f(x) \) is symmetrical about the \(y \)-axis, i.e., if point \((x, y)\) lies on the graph then \((-x, y)\) also lies on the graph.

![Graph of an even function](attachment:graph.png)

Odd Function
A function \(y = f(x) \) is said to be an odd function if \(f(-x) = -f(x) \ \forall x \in D_f \).

Graph of an odd function \(y = f(x) \) is symmetrical in opposite quadrants, i.e., if point \((x, y)\) lies on the graph then \((-x, -y)\) also lies on the graph.

![Graph of an odd function](attachment:graph.png)
Properties of Odd and Even Functions
- Sometimes, it is easy to prove that \(f(x) - f(-x) = 0 \) for even functions and \(f(x) + f(-x) = 0 \) for odd functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Even</th>
<th>Odd</th>
<th>Neither Even Nor Odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) = x^2)</td>
<td>Even</td>
<td>Odd</td>
<td>Neither even nor odd</td>
</tr>
<tr>
<td>(f(x) = \sin x)</td>
<td>Odd</td>
<td>Even</td>
<td>Neither even nor odd</td>
</tr>
</tbody>
</table>

Example 1.69 Which of the following functions is (are) even, odd or neither

a. \(f(x) = x^3 \sin x \)

b. \(f(x) = \sqrt{1+x^2} - \sqrt{1-x^2} \)

c. \(f(x) = \log \left(\frac{1-x}{1+x} \right) \)

d. \(f(x) = \log \left(\frac{1}{x+\sqrt{1+x^2}} \right) = -f(x) \), hence \(f(x) \) is odd.

e. \(f(x) = \sin x - \cos x \)

f. \(f(x) = \frac{e^x + e^{-x}}{2} \)

Solution

a. \(f(-x) = (-x)^3 \sin (-x) = -x^3 \sin x = -f(x) \), hence \(f(x) \) is odd.

b. \(f(-x) = \sqrt{1+(-x)^2} - \sqrt{1-(-x)^2} = -f(x) \), hence \(f(x) \) is odd.

c. \(f(-x) = \log \left(\frac{1-(-x)}{1+(-x)} \right) = \log \left(\frac{1+x}{1-x} \right) \)

Example 1.70 Prove that \(f(x) \) given by \(f(x+y) = f(x) + f(y) \) for every \(x \in R \) is an odd function.

Solution

Given \(f(x+y) = f(x) + f(y) \) for every \(x \in R \) \(\forall x \in R \) (1)
Replace \(y \) by \(-x\), we have \(f(x-x) = f(x) + f(-x) \)
\(\Rightarrow f(x) + f(-x) = 0 \) (2)
Now put \(x = y = 0 \) in (1), we have \(f(0+0) = f(0) + f(0) \)
\(\Rightarrow f(0) = 0 \).
1.26 Calculus

Then from (2), \(f(x) + f(-x) = 0 \). Hence, \(f(x) \) is an odd function.

Extension of Domain

Let a function be defined on a certain domain which is entirely non-negative (or non-positive). The domain of \(f(x) \) can be extended to the set \(X = \{ x : x \in \text{domain of } f(x) \} \) in two ways:

a. **Even extension**: The even extension is obtained by defining a new function \(f(-x) \) for \(x \in X \), such that \(f(-x) = f(x) \).

b. **Odd extension**: The odd extension is obtained by defining a new function \(f(-x) \) for \(x \in X \), such that \(f(-x) = -f(x) \).

Example 1.71

If \(f(x) = \begin{cases} x^3 + x^2 & \text{for } 0 \leq x \leq 2 \\ x + 2 & \text{for } 2 < x \leq 4 \end{cases} \). Then find the even and odd extension of \(f(x) \).

Sol. For even extension \(f(x) = f(-x) \)

\[
f(x) = \begin{cases} x^3 + x^2 & 0 \leq x \leq 2 \\ x + 2 & 2 < x \leq 4 \end{cases}
\]

\[
= \begin{cases} -x^3 + (-x)^2 & -x \geq 2 \\ -x + 2 & -4 \leq x < -2 \\ -x^3 + x^2 & -2 \leq x \leq 0 \end{cases}
\]

The odd extension of \(f(x) \) is as follows:

\[
h(x) = \begin{cases} x - 2 & -4 \leq x < -2 \\ x^3 - x^2 & -2 \leq x \leq 0 \end{cases}
\]

Example 1.72

Let the function \(f(x) = x^3 + x + \sin x - \cos x + \log(1 + |x|) \) be defined on the interval \([0, 1]\). Define functions \(g(x) \) and \(h(x) \) in \([-1, 0]\) satisfying \(g(-x) = -f(x) \) and \(h(-x) = f(x) \) for all \(x \in [0, 1] \).

Sol. Clearly, \(g(x) \) is the odd extension of the function \(f(x) \) and \(h(x) \) is the even extension.

Since \(x^3, \cos x, \log(1 + |x|) \) are even functions and \(x, \sin x \) are odd functions.

\[
g(x) = -x^3 + x + \sin x + \cos x - \log(1 + |x|)
\]

and \(h(x) = x^3 - x^3 - \sin x - \cos x + \log(1 + |x|) \)

Clearly, this function satisfies the restriction of the problem.

Concept Application Exercise 1.10

Identify the following functions whether odd or even or neither

1. \(f(x) = (g(x) - g(-x))^3 \)
2. \(f(x) = \log \left(\frac{x^4 + x^2 + 1}{x^3 + x + 1} \right) \)
3. \(f(x) = x g(x) g(-x) + \tan(\sin x) \)
4. \(f(x) = \cos \left| x \right| + \left\lfloor \frac{\sin x}{2} \right\rfloor \)

PERIODIC FUNCTIONS

A function \(f: X \rightarrow Y \) is said to be a periodic function if there exists a positive real number \(T \) such that \(f(x + T) = f(x) \), for all \(x \in X \). The least of all such positive numbers \(T \) is called the principal period or simply period of \(f \). All periodic functions can be analyzed over an interval of one period within the domain as the same pattern shall be repetitive over the entire domain.

In other words, a function is said to be periodic function if its each value is repeated after a definite interval.

Here, the least positive value of \(T \) is called the fundamental period of the function. Clearly, \(f(x) = f(x + T) = f(x + 2T) = f(x + 3T) = \ldots \)

Important Facts about Periodic Functions

- If \(f(x) \) is periodic with period \(T \), then \(af(x + b) + c \) where \(a, b, c \in R \) \(a \neq 0 \) is also periodic with period \(T \).
- If \(f(x) \) is periodic with period \(T \), then \(f(ax + b) \) where \(a, b, c \in R \) \(a \neq 0 \) is also periodic with period \(\frac{T}{|a|} \).

Proof: Consider \(a > 0 \)

Let \(f(x + T) = f(x) \) and \(f(ax + T') = f(ax) \)

\[
\Rightarrow f(ax + b + aT') = f(ax + b)
\]

\[
\Rightarrow f(y + aT) = f(y + T)
\]

\[
\Rightarrow T - |aT'| = T' = |a|
\]

(\(*\) period is always positive),

- Let \(f(x) \) has period \(p = m/n \) (m, n ∈ N and co-prime) and \(g(x) \) has period \(q = r/s \) (r, s ∈ N and co-prime) and let \(t \) be the LCM of \(p \) and \(q \), i.e., \(t = \frac{\text{LCM of } (m, r)}{\text{HCF of } (n, s)} \).

Then \(t \) will be the period of \(f + g \), provided there does not exist a positive number \(k (< t) \) for which \(f(x + k) + g(x + k) = f(x) + g(x) \), else \(k \) will be the period. The same rule is applicable for any other algebraic combination of \(f(x) \) and \(g(x) \).

LCM of \(p \) and \(q \) exists if \(p \) and \(q \) are rational quantities. If \(p \) and \(q \) are irrational, then LCM of \(p \) and \(q \) does not exist unless they have same irrational surd. LCM of rational and irrational is not possible.

- \(\sin n^2 x, \cos n^2 x, \cosec n^2 x \) and sec \(n^2 x \) have period \(2\pi \) if \(n \) is odd and \(\pi \) if \(n \) is even.

- \(\tan n^2 x \) and \(\cot n^2 x \) have period \(\pi \) whether \(n \) is odd or even.

- A constant function is periodic but does not have a well-defined period.
- If \(g \) is periodic, then \(fog \) will always be a periodic function. Period of \(fog \) may or may not be the period of \(g \).
- A continuous periodic function is bounded.
- If \(f(x) \), \(g(x) \) are periodic functions with periods \(T_1 \), \(T_2 \), respectively, then, we have \(h(x) = f(x) + g(x) \) has period as
 a. LCM of \(\{T_1, T_2\} \); if \(f(x) \) and \(g(x) \) cannot be interchanged by adding a least positive number less than the LCM of \(\{T_1, T_2\} \).
 b. \(k \); if \(f(x) \) and \(g(x) \) can be interchanged by adding a least positive number \(k \) < LCM of \(\{T_1, T_2\} \).

For example, consider the function \(f(x) = |\sin x| + |\cos x| \), \(|\sin x| \) and \(|\cos x| \) have period \(\pi \), hence according to the rule of LCM period of \(f(x) \) is \(\pi \).

But \(\frac{x + \pi}{2} = \frac{\sin \left(\frac{x + \pi}{2}\right)}{2} + \frac{\cos \left(\frac{x + \pi}{2}\right)}{2} \)

\(= |\cos x| + |\sin x| \). Hence, period of \(f(x) \) is \(\pi/2 \).

Example 1.73 Find the periods (if periodic) of the following functions, \(\lceil . . \rceil \) denotes the greatest integer function.

a. \(f(x) = e^{\log(\sin x)} + \tan^3 x \cdot \csc (3x - 5) \)

b. \(f(x) = x - |x - b|, b \in R \)

c. \(f(x) = \frac{|\sin x + \cos x|}{|\sin x| + |\cos x|} \)

d. \(f(x) = \tan \frac{\pi}{2}[x] \)

Sol.

a. \(f(x) = e^{\log(\sin x)} + \tan^3 x \cdot \csc (3x - 5) \)

Period of \(e^{\log(\sin x)} \) is \(2\pi \), \(\tan^3 x \) is \(\pi \), \(\csc (3x - 5) \) is \(\frac{2\pi}{3} \)

\(\therefore \) period is LCM of \(\left\{ \frac{2\pi}{3}, \pi, \pi \right\} = 2\pi \).

b. \(f(x) = x - |x - b| = b + \{x\}, \{. \} \) is 1 \(\Rightarrow f(x) \) has period 1.

c. \(f(x) = \frac{|\sin x + \cos x|}{|\sin x| + |\cos x|} \)

Since period of \(|\sin x + \cos x|\) is \(\pi \) and period of \(|\sin x| + |\cos x|\) is \(\pi/2 \).

Hence, period of \(f(x) \) is LCM of \(\left\{ \frac{\pi}{2}, \pi \right\} = \pi \).

d. \(f(x) = \tan \frac{\pi}{2}[x] \Rightarrow \tan \frac{\pi}{2}[x + T] = \tan \frac{\pi}{2}[x] \)

\(\Rightarrow \frac{\pi}{2} \cdot x + T = n\pi + \frac{\pi}{2} \cdot x \)

\(\Rightarrow T = \pi T = \pi \) (least positive value).

Example 1.74 Find the period if \(f(x) = \sin x + \{x\} \), where \(\{x\} \) is the fractional part of \(x \).

Sol. Here \(\sin x \) is periodic with period \(2\pi \), \(\{x\} \) is periodic with \(1 \).

LCM of \(2\pi \) (irrational) and \(1 \) (rational) does not exist. Thus, \(f(x) \) is not periodic.

Example 1.75 If \(f(x) = \sin x + \cos ax \) is a periodic function, show that \(a \) is a rational number.

Sol. Period of \(\sin x = \frac{2\pi}{1} \) and period of \(\cos ax = \frac{2\pi}{|a|} \)

\(\therefore \) period of \(\sin x + \cos ax \) = LCM of \(\frac{2\pi}{1} \) and \(\frac{2\pi}{|a|} \)

\(= \frac{2\pi}{\text{HCF of } 1 \text{ and } a} = \frac{2\pi}{\lambda} \text{ where } \lambda \text{ is the HCF of } 1 \text{ and } a \).

Since \(\lambda \) is the HCF of \(1 \) and \(a \). \(\frac{1}{\lambda} \text{ and } \frac{|a|}{\lambda} \) should be both integers

Suppose \(\frac{1}{\lambda} = p \) and \(\frac{|a|}{\lambda} = q \), then \(\frac{|a|}{\lambda} = \frac{q}{p} \) where

\(p, q \in \mathbb{Z} \),

i.e., \(|a| = \frac{q}{p} \).

Hence, \(a \) is the rational number.

Example 1.76 Discuss whether the function \(f(x) = \sin (\cos x + x) \) is periodic or not, if yes then what is its period.

Sol. Clearly, \(f(x + 2\pi) = \sin(\cos(2\pi + x) + x) = \sin(2\pi + (x + \cos x)) = \sin(x + \cos x) \)

Hence, period is \(2\pi \).

Example 1.77 Find the period of \(\cos(\cos x) + \cos(\sin x) \).

Sol. Clearly, the domain of the function is \(R \)

Let \(f(x) = f(x + T) \), for all \(x \)

\(\Rightarrow f(0) = f(T) \)

\(\Rightarrow \cos 1 + 1 = \cos(\cos T) + \cos(\sin T) \)

Clearly, \(T = \frac{\pi}{2} \) satisfies the equation, hence period is \(\frac{\pi}{2} \).

Example 1.78 Find the period of the function satisfying the relation \(f(x) + f(x + 3) = 0 \) \(\forall x \in \mathbb{R} \).

Sol.

Given \(f(x) + f(x + 3) = 0 \) \(\forall x \in \mathbb{R} \)

Replace \(x \) by \(x + 3 \),

We have \(f(x + 3) + f(x + 6) = 0 \)

From (1) and (2), \(f(x) = f(x + 6) \).

Hence, the function has period 6.

Concept Application Exercise 1.11

1. Match the column

<table>
<thead>
<tr>
<th>Column I (Function)</th>
<th>Column II (Period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p. (f(x) = \sin^2 x + \cos^4 x)</td>
<td>a. (\pi/2)</td>
</tr>
<tr>
<td>q. (f(x) = \cos^4 x + \sin^4 x)</td>
<td>b. (\pi)</td>
</tr>
<tr>
<td>r. (f(x) = \sin^2 x + \cos^4 x)</td>
<td>c. (2\pi)</td>
</tr>
<tr>
<td>s. (f(x) = \cos^4 x - \sin^4 x)</td>
<td></td>
</tr>
</tbody>
</table>
2. Which of the following functions is not periodic?
 a. $|\sin 3x | + \sin^2 x$
 b. $\cos \sqrt{x} + \cos^2 x$
 c. $\cos 4x + \tan^2 x$
 d. $\cos 2x + \sin x$

3. Let $[x]$ denote the greatest integer less than or equal to x. If the function $f(x) = \tan(\sqrt{[n]} x)$ has period $\frac{\pi}{3}$, then find the values of n.

4. Find the period of
 a. $\frac{|\sin 4x| + |\cos 4x|}{|\sin 4x - \cos 4x| + |\sin 4x + \cos 4x|}$
 b. $f(x) = \sin \frac{\pi x}{n} - \cos \frac{\pi x}{n+1}!
 c. f(x) = x + \tan \frac{x}{2} + \tan \frac{x}{2^2} + \tan \frac{x}{2^3} + \ldots$
 \[+\sin \frac{x}{\sqrt{2^1}} + \tan \frac{x}{2^3}\]

5. If $f(x) = \lambda |\sin x| + \lambda^2 |\cos x| + g(\lambda)$ has the period equal to $\pi/2$, then find the value of λ.

6. If $f(x)$ satisfying the relation $f(x) + f(x + 4) = f(x + 2) + f(x + 6)$ for all x, then prove that $f(x)$ is periodic and find its period.

Composite Function

![Fig. 1.64](image)

Let A, B and C be three non-empty sets.

Let $f : A \to B$ and $g : B \to C$ be two functions, then $gof : A \to C$.

This function is called composition of f and g, given by $gof(x) = g(f(x)) \forall x \in A$.

Thus, the image of every $x \in A$ under the function gof is the g-image of the f-image of x.

The gof is defined only if $\forall x \in A$, $f(x)$ is an element of the domain of g so that we can take its g-image.

The range of f must be a subset of the domain of g in gof.

Properties of Composite Functions

a. The composition of functions is not commutative in general, i.e., $fog \neq gof$.

b. The composition of functions is associative i.e., if $h : A \to B$, $g : B \to C$ and $f : C \to D$ be three functions, then $(fog)oh = fo(goh)$.

c. The composition of any function with the identity function is the function itself, i.e., $f : A \to B$ then $f(1_A) = f$ where 1_A and 1_B are the identity functions of A and B, respectively.

d. If $f : A \to B$ and $g : B \to C$ are one-one, then $gof : A \to C$ is also one-one.

Proof:

Suppose $gof(x_i) = gof(x_j)$

$\Rightarrow g(f(x_i)) = g(f(x_j))$

$\Rightarrow f(x_i) = f(x_j)$ as g is one-one

$\Rightarrow x_i = x_j$ as f is one-one

Hence, gof is one-one.

e. If $f : A \to B$ and $g : B \to C$ are onto, then $gof : A \to C$ is also onto.

Proof:

Given an arbitrary element $z \in C$, there exists a pre-image y under g such that $g(y) = z$, since g is onto. Further, for $y \in B$, there exists an element x in A with $f(x) = y$, since f is onto.

Therefore, $gof(x) = g(f(x)) = g(y) = z$, showing that gof is onto.

f. If $gof(x)$ is one-one, then $f(x)$ is necessarily one-one but $g(x)$ may not be one-one.

Consider the function $f(x)$ and $g(x)$ as shown in the following figure.

![Fig. 1.65](image)

Here f is one-one, but g is many-one. But $g(f(x))$: $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$ is one-one.

g. If $gof(x)$ is onto, then $g(x)$ is necessarily onto but $f(x)$ may not be onto.

![Fig. 1.66](image)

Here, f is into and g is onto. But $gof(x)$: $\{(1, 1), (2, 2), (3, 3), (4, 3)\}$ is onto.

Thus, it can be verified in general that gof is one-one implies that f is one-one. Similarly, gof is onto implies that g is onto.

Example 1.79

Let $f : \{2, 3, 4, 5\} \to \{3, 4, 5, 9\}$ and $g : \{3, 4, 5, 9\} \to \{7, 11, 15\}$ be functions defined as $f(2) = 3$, $f(3) = 4$, $f(4) = f(5) = 5$ and $g(3) = g(4) = 7$ and $g(5) = g(9) = 11$. Find gof.

Sol. We have $gof(2) = g(f(2)) = g(3) = 7$, $gof(3) = g(f(3)) = g(4) = 7$, $gof(4) = g(f(4)) = g(5) = 11$ and $gof(5) = g(5) = 11$.

Example 1.80

Let $f(x)$ and $g(x)$ be bijective functions where $f : \{a, b, c, d\} \to \{1, 2, 3, 4\}$ and $g : \{3, 4, 5, 6\} \to \{w, x, y, z\}$, respectively. Then, find the number of elements in the range set of $g(f(x))$.

Sol. The range of \(f(x) \) for which \(g(f(x)) \) is defined is \(\{3, 4\} \). Hence, the domain of \(g \{f(x)\} \) has two elements.

Example 1.81. Let \(f(x) = ax + b \) and \(g(x) = cx + d \), \(a \neq 0, c \neq 0 \). Assume \(a = 1, b = 2 \). If \((fog)(x) = (gof)(x) \) for all \(x \), what can you say about \(c \) and \(d \)?

Solution.

\[(fog)(x) = f(g(x)) = a(cx + d) + b \]
\[(gof)(x) = g(f(x)) = c(ax + b) + d \]

Given that \((fog)(x) = (gof)(x) \) and at \(a = 1, b = 2 \)
\[cx + d + 2 = cx + 2c + d \Rightarrow c = 1 \text{ and } d \text{ is arbitrary.} \]

Example 1.82. Suppose that \(g(x) = 1 + \sqrt{x} \) and \(f(g(x)) = 3 + 2\sqrt{x} + x \), then find the function \(f(x) \).

Solution.

\[g(x) = 1 + \sqrt{x} \text{ and } f(g(x)) = 3 + 2\sqrt{x} + x \]
\[\Rightarrow f(1 + \sqrt{x}) = 3 + 2\sqrt{x} + x \]

Put \(1 + \sqrt{x} = y \Rightarrow x = (y - 1)^2 \)

Then \(f(y) = 3 + 2(y - 1) + (y - 1)^2 = 2 + y^2 \).

Therefore, \(f(x) = 2 + x^2 \).

Example 1.83. The function \(f(x) \) is defined in \([0, 1]\). Find the domain of \(f(tan x) \).

Solution.

Here, \(f(x) \) is defined in \([0, 1]\).

\[x \in [0, 1], \text{ i.e., the only value of } x \text{ that we can substitute lies between } [0, 1] \]

For \(f(tan x) \) to be defined, we must have \(0 \leq tan x \leq 1 \) (as \(x \) replaced by \(tan x \))

i.e., \(n\pi \leq x \leq n\pi + \frac{\pi}{4}, n \in Z \) \hspace{1cm} [in general]

Thus, the domain for \(f(tan x) \) is \([n\pi, n\pi + \frac{\pi}{4}], n \in Z \).

Example 1.84. \(f(x) = \begin{cases} x + 1, & x \leq 0 \\ x^2 + 1, & x > 0 \end{cases} \) and \(g(x) = \begin{cases} x^3, & x < 1 \\ x^2 - x, & x \geq 1 \end{cases} \), then find \(f(g(x)) \) and find its domain and range.

Solution.

\[f(g(x)) = \begin{cases} (g(x) + 1), & g(x) < 0 \\ (g(x))^2, & g(x) \geq 0 \end{cases} \]

\[= \begin{cases} x^3 + 1, & x^3 < 0, x < 1 \\ 2x^2 - 1, & x < 0, x \geq 1 \end{cases} \]

\[= \begin{cases} x^3 + 1, & x \leq 0 \\ x^2, & 0 \leq x < 1 \end{cases} \]

\[= \begin{cases} (2x - 1)^2, & 2x - 1 \geq 0, x \geq 1 \end{cases} \]

For \(x < 0, x^3 + 1 \in (-\infty, 1) \)

For \(0 \leq x < 1, x^6 \in [0, 1] \)

For \(x \geq 1, (2x - 1)^2 \in [1, \infty) \)

Hence, the range is \(R \) and function is many-one.

Concept Application Exercise 1.12

1. If \(f \) be the greatest integer function and \(g \) be the modulus function, then find the value of \((gof)(\frac{-5}{3}) - (fog)(\frac{-5}{3}) \).

2. Let \(f(x) = \begin{cases} 1 + x, & x < -1 \\ \lfloor x \rfloor, & x \geq -1 \end{cases} \) where \(\lfloor . \rfloor \) denotes the greatest integer function. Then find the value of \(f(-2.3) \).

3. If \(f(x) = \log \left(\frac{1 + x}{1 - x} \right) \), then prove that \(f \left(\frac{2x}{1 + x^2} \right) = 2f(x) \).

4. If the domain for \(y = f(x) \) is \([-3, 2]\), find the domain of \(g(x) = f(\lfloor x \rfloor) \) where \(\lfloor . \rfloor \) denotes the greatest integer function.

5. Let \(f \) be a function defined on \([0, 2]\), then the domain of \(f(g(x)) = f(9x^2 - 1) \).

6. \(f(x) = \begin{cases} \log_e x, & 0 < x < 1 \\ x^2 - 1, & x \geq 2 \end{cases} \) and \(g(x) = \begin{cases} x + 1, & x < 2 \\ x^2 - 1, & x \geq 2 \end{cases} \), then find \(f(g(x)) \).

7. Let \(f(x) = \tan x, g(f(x)) = f(x - \frac{\pi}{4}) \) where \(f(x) \) and \(g(x) \) are real-valued functions. Prove that \(f(g(x)) = \tan \left(x - \frac{\pi}{4} \right) \).

8. A function \(f \) has domain \([-1, 2]\) and range \([0, 1]\). Find the domain and range of the function \(g \) defined by \(g(x) = 1 - f(x + 1) \).

Inverse Functions

If \(f : A \rightarrow B \) be a function defined by \(y = f(x) \) such that \(f \) is both one-one and onto, then there exists a unique function \(g : B \rightarrow A \) such that for each \(y \in B, g(y) = x \) if and only if \(y = f(x) \). The function \(g \) so defined is called the inverse of \(f \) and denoted by \(f^{-1} \). Also if \(g \) is the inverse of \(f \), then \(f \) is the inverse of \(g \) and the two functions \(f \) and \(g \) are said to be inverses of each other.

The condition for the existence of inverse of a function is that the function must be one-one and onto. Whenever an inverse function is defined, the range of the original function becomes the domain of the inverse function and the domain of the original function becomes the range of the inverse function.

Properties of Inverse Functions

- The inverse of bijective function is unique and bijective.
- Let \(f : A \rightarrow B \) be a function such that \(f \) is bijective and \(g : B \rightarrow A \) is inverse of \(f \), then \(f \circ g = I_A \) = identity function of set \(A \).
- If \(f \circ g \) then either \(f^{-1} = g \) or \(g^{-1} = f \) and \(f(g(x)) = x \).

Fig. 1.67

If \(f : A \rightarrow B \) be a function defined by \(y = f(x) \) such that \(f \) is both one-one and onto, then there exists a unique function \(g : B \rightarrow A \) such that for each \(y \in B, g(y) = x \) if and only if \(y = f(x) \). The function \(g \) so defined is called the inverse of \(f \) and denoted by \(f^{-1} \). Also if \(g \) is the inverse of \(f \), then \(f \) is the inverse of \(g \) and the two functions \(f \) and \(g \) are said to be inverses of each other.

The condition for the existence of inverse of a function is that the function must be one-one and onto. Whenever an inverse function is defined, the range of the original function becomes the domain of the inverse function and the domain of the original function becomes the range of the inverse function.

Properties of Inverse Functions

- The inverse of bijective function is unique and bijective.
- Let \(f : A \rightarrow B \) be a function such that \(f \) is bijective and \(g : B \rightarrow A \) is inverse of \(f \), then \(f \circ g = I_A \) = identity function of set \(A \).
- If \(f \circ g \) then either \(f^{-1} = g \) or \(g^{-1} = f \) and \(f(g(x)) = x \).

Fig. 1.67

If \(f : A \rightarrow B \) be a function defined by \(y = f(x) \) such that \(f \) is both one-one and onto, then there exists a unique function \(g : B \rightarrow A \) such that for each \(y \in B, g(y) = x \) if and only if \(y = f(x) \). The function \(g \) so defined is called the inverse of \(f \) and denoted by \(f^{-1} \). Also if \(g \) is the inverse of \(f \), then \(f \) is the inverse of \(g \) and the two functions \(f \) and \(g \) are said to be inverses of each other.

The condition for the existence of inverse of a function is that the function must be one-one and onto. Whenever an inverse function is defined, the range of the original function becomes the domain of the inverse function and the domain of the original function becomes the range of the inverse function.

Properties of Inverse Functions

- The inverse of bijective function is unique and bijective.
- Let \(f : A \rightarrow B \) be a function such that \(f \) is bijective and \(g : B \rightarrow A \) is inverse of \(f \), then \(f \circ g = I_A \) = identity function of set \(A \).
- If \(f \circ g \) then either \(f^{-1} = g \) or \(g^{-1} = f \) and \(f(g(x)) = x \).
1.30 Calculus

- If f and g are two bijective functions such that $f : A \to B$ and $g : B \to C$, then $gof : A \to C$ is bijective.
 Also $(gof)^{-1} = f^{-1}g^{-1}$.
- Graphs of $y = f(x)$ and $y = f^{-1}(x)$ are symmetrical about $y = x$ line and intersect on line $y = x$ or $f(x) = f^{-1}(x) = x$ whenever graphs intersect.

![Graphs of $y = f(x)$ and $y = f^{-1}(x)$](image)

Fig. 1.68

But in the case of the function $f(x) = \begin{cases} x + 4, & x \in [1, 2] \\ -x + 7, & x \in [5, 6] \end{cases}$

$f^{-1}(x) = \begin{cases} x - 4, & x \in [5, 6] \\ 7 - x, & x \in [1, 2] \end{cases}$

$y = f(x)$ and $y = f^{-1}(x)$ intersect at $(3/2, 11/2)$ and $(11/2, 3/2)$ which do not lie on the line $y = x$.

![Graphs of $y = f(x)$ and $y = f^{-1}(x)$](image)

Fig. 1.69

Example 1.87 Which of the following functions has inverse function?

a. $f : Z \to Z$ defined by $f(x) = x + 2$

b. $f : Z \to Z$ defined by $f(x) = 2x$

c. $f : Z \to Z$ defined by $f(x) = x$

d. $f : Z \to Z$ defined by $f(x) = |x|$

Sol. Functions in options a and c are both one-one and have range Z, i.e., onto, hence invertible. $f : Z \to Z$ defined by $f(x) = 2x$ is one-one but has only even integers in the range, hence not onto.

$f : Z \to Z$ defined by $f(x) = |x|$ is many-one and has range $N \cup \{0\}$.

Thus, both the functions are not invertible.

Example 1.88 Let $A = R - \{3\}, B = R - \{1\}$ and let $f : A \to B$ defined by $f(x) = \frac{x - 2}{x - 3}$. Is f invertible? Explain.

Sol. Let $x_1, x_2 \in AC$ and $f(x_1) = f(x_2)$

\[\implies \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3} \]
\[\implies x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 3x_2 - 3x_1 + 6 \]
\[\implies x_1 = x_2 \]
\[\implies f \text{ is one-one.} \]

To find whether f is onto or not, first let us find the range of f.

Let $y = f(x) = \frac{x - 2}{x - 3}$

\[\implies xy - 3y = x - 2 \]
\[\implies x(y - 1) = 3y - 2 \]
\[\implies x = \frac{3y - 2}{y - 1} \]

x is defined if $y \neq 1$, i.e., the range of f is $R - \{1\}$ which is also the co-domain of f.

Also, for no value of y, x can be 3, i.e., if we put

\[3 = x = \frac{3y - 2}{y - 1} \]
\[\implies 3y - 3 = 3y - 2 \implies -3 = -2 \text{ not possible. Hence, } f \text{ is onto.} \]

Example 1.89 Let $f : R \to R$ be defined by $f(x) = (e^x - e^{-x})/2$. Is $f(x)$ invertible? If so, find its inverse.

Sol. Let us check for inevitability of $f(x)$

(a) One-one

Let $x_1, x_2 \in R$ and $x_1 < x_2$

\[\implies e^{x_1} < e^{x_2} (\because e > 1) \]

Also $x_1 < x_2 \implies -x_2 < -x_1$

\[\implies e^{-x_2} < e^{-x_1} (\because e > 1) \]

\[(1) + (2) \implies \frac{1}{2}(e^{x_1} - e^{-x_1}) < \frac{1}{2}(e^{x_2} - e^{-x_2}) \implies f(x_1) < f(x_2). \]

i.e. f is one-one.

(b) Onto

As $x \to \infty, f(x) \to \infty$

Similarly, as $x \to -\infty, f(x) \to -\infty$, i.e., $-\infty < f(x) < \infty$ so long as $x \in (-\infty, \infty)$.
Hence, the range of \(f \) is same as the set \(R \). Therefore, \(f(x) \) is onto.

Since \(f(x) \) is both one-one and onto, \(f(x) \) is invertible.

(c) To find \(f^{-1} \)

\[
y = f(x) = \frac{(e^x - e^{-x})}{2}
\]

\[
\Rightarrow e^x - e^{-x} = 2y
\]

\[
\Rightarrow e^{2x} - 2ye^x - 1 = 0
\]

\[
\Rightarrow e^x = \frac{2y \pm \sqrt{4y^2 + 4}}{2} = \frac{y \pm \sqrt{y^2 + 1}}{2}
\]

\[
\Rightarrow e^x = y + \sqrt{y^2 + 1}
\]

(as \(y - \sqrt{y^2 + 1} \) < 0 for all \(y \) and \(e^x \) is always positive)

\[
\Rightarrow x = \log_e \left(y + \sqrt{y^2 + 1} \right)
\]

\[
f^{-1}(x) = \log_e \left(x + \sqrt{x^2 + 1} \right)
\]

Example 1.90 If \(f(x) = (ax^2 + b)^3 \), then find the function \(g \) such that \(f(g(x)) = g(f(x)) \).

Sol. \(f(g(x)) = g(f(x)) \)

\[
f(x) = (ax^2 + b)^3
\]

If \(g(x) = f^{-1}(x) \)

\[
y = (ax^2 + b)^3 \Rightarrow \sqrt[3]{\frac{y - b}{a}} = x
\]

\[
g(x) = \sqrt[3]{\frac{y - b}{a}}
\]

Example 1.91 If \(f(x) = 3x - 2 \) and \((gf)^{-1}(x) = x - 2 \), then find the function \(g(x) \).

Sol. \(f(x) = 3x - 2 \)

\[
f^{-1}(x) = \frac{x + 2}{3}
\]

Now \((gf)^{-1}(x) = x - 2 \)

\[
\Rightarrow f^{-1}(g^{-1}(x)) = x - 2
\]

\[
g^{-1}(x) + 2
\]

\[
\Rightarrow g^{-1}(x) = 3x - 8
\]

\[
g(x) = \frac{x + 8}{3}
\]

Example 1.92 Find the inverse of \(f(x) = \begin{cases} x, & x < 1 \\ x^2, & 1 \leq x \leq 4 \\ 8\sqrt{x}, & x > 4 \end{cases} \)

Sol. Given \(f(x) = \begin{cases} x, & x < 1 \\ x^2, & 1 \leq x \leq 4 \\ 8\sqrt{x}, & x > 4 \end{cases} \)

Example 1.93 Solve the equation \(x^2 - x + 1 = \frac{1}{2} + \sqrt{x - \frac{3}{4}} \), where \(x \geq \frac{3}{4} \).

Sol. \(f(x) = x^2 - x + 1 \)

and \(g(x) = \frac{1}{2} + \sqrt{x - \frac{3}{4}} \)

are inverse of one another so \(f(x) = g(x) \).

When \(f(x) = x \)

\[
\Rightarrow x^2 - x + 1 = x
\]

\[
\Rightarrow x = 1
\]

Concept Application Exercise 1.13

Find the inverse of the following functions:

1. \(f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} + 2 \)
2. \(f: \mathbb{R} \rightarrow (-\infty, 1) \) is given by \(f(x) = 1 - 2^x \)
3. Let \(f: \{2, 3\} \rightarrow \{0, 1\} \) be defined by \(f(x) = x - [x] \), where \([\cdot]\) represents greatest integer function.
4. \(f: \mathbb{Z} \rightarrow \mathbb{Z} \) be defined by \(f(x) = [x + 1] \), where \([\cdot]\) denotes the greatest integer function.
5. \(f(x) = \begin{cases} x^2 - 1, & x < 2 \\ x^2 + 3, & x \geq 2 \end{cases} \)
6. \(f: [-1, 1] \rightarrow [-1, 1] \) defined by \(f(x) = x|x| \)
7. \(f: (-\infty, 1) \rightarrow \left[\frac{1}{2}, \infty \right) \), where \(f(x) = 2^{x - 2} \)

IDENTICAL FUNCTION

Two functions \(f \) and \(g \) are said to be identical if

a. The domain of \(f \) = the domain of \(g \), i.e., \(D_f = D_g \)
1.32 Calculus

b. The range of \(f \) is the range of \(g \).

c. \(f(x) = g(x) \), \(\forall \ x \in D_f \) or \(x \in D_g \), e.g., \(f(x) = x \) and \(g(x) = \sqrt{x^2} \) are not identical functions as \(D_f = D_g \) but \(R_f = R_g = [0, \infty) \).

Example 1.94
Find the values of \(x \) for which the following functions are identical.

a. \(f(x) = x \) and \(g(x) = \frac{1}{1/x} \)

b. \(f(x) = \cos x \) and \(g(x) = \frac{1}{\sqrt{1 + \tan^2 x}} \)

c. \(f(x) = \frac{\sqrt{9 - x^2}}{\sqrt{x - 2}} \) and \(g(x) = \sqrt{\frac{9 - x^2}{x - 2}} \)

d. \(f(x) = \tan^{-1} x + \tan^{-1} \frac{1}{x} \) and \(g(x) = \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \) for \(x \in [-1, 1] \).

Hence, the functions are identical if \(x \in (0, 1] \)

TRANSFORMATION OF GRAPHS

a. \(f(x) \) transforms to \(f(x) \pm a \) (where \(a \) is +ve)

That is, \(f(x) \rightarrow f(x) + a \) shift the given graph of \(f(x) \) upward through \(a \) units.

\(f(x) \rightarrow f(x) - a \), shift the given graph of \(f(x) \) downward through \(a \) units.

Graphically, it could be stated as

\[y = f(x) + a \]
\[y = f(x) \]
\[y = f(x) - a \]

b. \(f(x) \) transforms to \(f(x-a) \)

That is, \(f(x) \rightarrow f(x-a) \); \(a \) is positive. Shift the graph of \(f(x) \) through \(a \) unit towards right.

That is, \(f(x) \rightarrow f(x+a) \); \(a \) is positive. Shift the graph of \(f(x) \) through \(a \) units towards left.

Graphically, it could be stated as

\[y = f(x + a) \]
\[y = f(x) \]
\[y = f(x-a) \]

Example 1.95
Plot \(y = |x|, y = |x - 2| \) and \(y = |x + 2| \).

Sol. As discussed \(f(x) \rightarrow f(x-a) \); shift towards right.

\[y = |x-2| \] is shifted 2 units towards right.

Also \(y = |x+2| \) is shifted 2 units towards left.

\[y = -x \]
\[y = -x+2 \]
\[y = x \]
\[y = x+2 \]

\[y = x-2 \]
c. \(f(x) \) transforms to \(f(ax) \)

\[
\begin{align*}
 y &= f(2x) \quad y = f(x) \quad y = f(x/2) \\
 &
\end{align*}
\]

Fig. 1.74

That is, \(f(x) \rightarrow f(ax); \ a > 1 \).
Shrink (or contract) the graph of \(f(x) \) \(a \) times along the \(x \)-axis.

Again \(f(x) \rightarrow f\left(\frac{1}{a}x\right); \ a > 1 \), stretch (or expand) the graph of \(f(x) \) \(a \) times along the \(x \)-axis.
Graphically, it could be stated as shown in Fig. 1.74.

Example 1.96 Plot \(y = \sin x \) and \(y = \sin 2x \).

Sol. Here \(y = \sin 2x \), shrink (or contract) the graph of \(\sin x \) by factor of 2 along the \(x \)-axis.

Fig. 1.75

From Fig. 1.75, \(\sin x \) is periodic with period \(2\pi \) and \(\sin 2x \) with period \(\pi \).

Example 1.97 Plot \(y = \sin x \) and \(y = \sin \frac{x}{2} \).

Sol. Here \(y = \sin \left(\frac{x}{2}\right) \); stretch (or expand) the graph of \(\sin x \), 2 times along the \(x \)-axis.

Fig. 1.76

From Fig. 1.76, \(\sin x \) is periodic with period \(2\pi \) and \(\sin \left(\frac{x}{2}\right) \) is periodic with period \(4\pi \).

d. \(f(x) \) transforms to \(y = af(x) \)

It is clear that the corresponding points (points with same \(x \) co-ordinates) would have their ordinates in the ratio of \(1 : a \).

Fig. 1.77

Example 1.98 Consider the function \(f(x) = \begin{cases} 2x + 3, & x \leq 1 \\ -x^2 + 6, & x > 1 \end{cases} \)

Then draw the graph of the function \(y = f(x) \), \(y = f(|x|) \), \(y = |f(x)| \) and \(y = |f(|x|)| \).

Sol. From Fig. 1.78, \(y = f(x) \) is a piecewise linear function.

Fig. 1.78

Example 1.99 Plot \(y = \sin x \) and \(y = 2 \sin x \).

Sol. We know \(y = \sin x \) and \(f(x) \rightarrow af(x) \)

\[
\begin{align*}
 &
\end{align*}
\]

Fig. 1.79

\(\Rightarrow \) Stretch the graph of \(f(x) \) \(a \) times along the \(y \)-axis.
\(\therefore \ y = 2 \sin x \).
\(\Rightarrow \) Stretch the graph of \(\sin x \), 2 times along \(y \)-axis.
e. \(f(x) \) transforms to \(f(-x) \)

That is, \(f(x) \rightarrow f(-x) \)
To draw \(y = f(-x) \), take the image of the curve \(y = f(x) \) in the \(y \)-axis as plane mirror.

Or
Turn the graph of \(f(x) \) by \(180^\circ \) about the \(y \)-axis.
Graphically, it is shown as
Example 1.100 Plot the curve \(y = \log_{e}(-x) \).

Sol. Here \(y = \log_{e}(-x) \); take mirror image of \(y = \log_{e}x \) about \(y \)-axis. Graphically, it is shown as

![Graph of \(y = \log_{e}(-x) \) and \(y = \log_{e}x \)](image)

f. \(f(x) \) transforms to \(-f(x)\)

That is, \(f(x) \to -f(x) \)

To draw \(y = -f(x) \), take image of \(y = f(x) \) in the \(x \)-axis as plane mirror.

Or

Turn the graph of \(f(x) \) by 180° about \(x \)-axis.

g. \(f(x) \) transforms to \(-f(-x)\)

That is, \(f(x) \to -f(-x) \)

To draw \(y = -f(-x) \), take image of \(f(x) \) about \(y \)-axis to obtain \(f(-x) \) and then the image of \(f(-x) \) about \(x \)-axis to obtain \(-f(-x)\).

\[f(x) \to -f(-x) \]

\[\Rightarrow a. \text{Image about } y \text{-axis} \]

\[b. \text{Image about } x \text{-axis} \]

Graphically, it is shown as

![Graph of \(y = -f(-x) \) and \(y = f(x) \)](image)

h. \(f(x) \) transforms to \(y = |f(x)| \)

\[|f(x)| = f(x) \text{ if } f(x) \geq 0 \text{ and } |f(x)| = -f(x) \text{ if } f(x) < 0. \]

It means that the graph of \(f(x) \) and \(|f(x)| \) would coincide if \(f(x) \geq 0 \) and the parts where \(f(x) < 0 \) would get inverted in the upward direction.

Figure 1.82 would make the procedure clear.

Example 1.101 Draw the graph for \(y = |\log_{e}x| \).

Sol. To draw graph for \(y = |\log_{e}x| \), we have to follow two steps:

a. Leave the (+ve) part of \(y = \log_{e}x \) as it is.

b. Take images of (-ve) part of \(y = \log_{e}x \), i.e., the part below \(x \)-axis in the \(x \)-axis as plane mirror. Graphically, it is shown as

![Graph of \(y = \log_{e}x \) and \(y = |\log_{e}x| \)](image)

\(y = \log_{e}x \) is differentiable for all \(x \in (0, \infty) \) (Fig. 1.84(a))

\(y = |\log_{e}x| \) is clearly differentiable for all \(x \in (0, \infty) \) - \{1\} as at \(x = 1 \) there is a sharp edge (Fig. 1.84(b)).

Example 1.102 Sketch the graph for \(y = |\sin x| \).

Sol. Here \(y = \sin x \) is known.

\[\therefore \text{To draw } y = |\sin x|, \text{ we take the mirror image (in } x \text{-axis) of} \]

the part of the graph of \(\sin x \) which lies below \(x \)-axis.

![Graph of \(|\sin x| \) and Image of the part below \(x \)-axis](image)

From the above figure, it is clear

\(y = |\sin x| \) is differentiable for all \(x \in R - \{n\pi; \ n \in \text{integer}\} \).

i. \(f(x) \) transforms to \(f(|x|) \)

That is, \(f(x) \to f(|x|) \)

If we know \(y = f(x) \), then to plot \(y = f(|x|) \), we would follow two steps:

a. Leave the graph lying right side of the \(y \)-axis as it is.

b. Take the image of \(f(x) \) in the right of \(y \)-axis with \(y \)-axis as the plane mirror and the graph of \(f(x) \) lying left-side of the \(y \)-axis (if it exists) is omitted.

Or

Neglect the curve for \(x < 0 \) and take the images of curves for \(x \geq 0 \) about \(y \)-axis.
Example 1.103 Sketch the curve $y = \log |x|$.

Sol. As we know, the curve $y = \log x$.

\[y = \log |x| \] could be drawn in two steps:

a. Leave the graph lying right side of y-axis as it is.

b. Take the image of $f(x)$ in the y-axis as plane mirror.

\[y = \log x \]

Fig. 1.87

j. Drawing the graph of $|y| = f(x)$ from the known graph of $y = f(x)$

Clearly, $|y| \geq 0$, if $f(x) < 0$, graph of $|y| = f(x)$ would not exist. And if $f(x) \geq 0$, $|y| = f(x)$ would give $y = \pm f(x)$. Hence, the graph of $|y| = f(x)$ would exist only in the regions where $f(x)$ is non-negative and will be reflected about x-axis only in those regions. Regions where $f(x) < 0$ will be neglected.

\[y = f(x) \]

Fig. 1.88

Example 1.104 Sketch the curve $|y| = (x - 1)(x - 2)$.

Sol.

\[y = f(x) \]

Fig. 1.90

k. Drawing the graph of $y = |f(x)|$ from the known graph of $y = f(x)$

It is clear that if $n \leq f(x) < n + 1$, $n \in I$ then $|f(x)| = n$. Thus, we would draw lines parallel to the x-axis passing through different integral points. Hence, the values of x can be obtained so that $f(x)$ lies between two successive integers.

This procedure can be clearly understood from Fig. 1.90.

Concept Application Exercise 1.14

1. Draw the graph of the following functions: (1 to 5)
 - $f(x) = \sin |x|$
 - $f(x) = |x - 1|$
 - $f(x) = |x - 2| - 3$
 - $f(x) = \tan x$
 - $f(x) = |x^2 - 3x + 2|$
 - $f(x) = |x - 2|$
 - $f(x) = |x - 1|$

7. Solve $\left| \frac{x^2}{x - 1} \right| \leq 1$ using the graphical method.

8. Which of the following pair(s) of function have same graphs?

 a. $f(x) = \frac{\sec x - \tan x}{\cos x - \cot x}, g(x) = \cos x + \frac{\sin x}{\sec x}$
 b. $f(x) = \sgn(x^2 - 6x + 10)$,
 \[g(x) = \sgn \left(\cos^2 x + \sin^2 \left(x + \frac{\pi}{3} \right) \right), \] where \(\sgn \) denotes signum function.
 c. $f(x) = e^{\ln(x^2 + 3x + 3)}$, $g(x) = x^2 + 3x + 3$
 d. $f(x) = \frac{\sin x}{\cos x} + \frac{\cos x}{\sec x}, g(x) = 2\cos^2 x$

MISCELLANEOUS SOLVED PROBLEMS

1. Let $f: X \to Y$ be a function defined by $f(x)$
 \[f(x) = a \sin \left(x + \frac{\pi}{4} \right) + b \cos x + c. \] If f is both one-one and onto, find sets X and Y.

 Sol. $f(x) = a \sin \left(x + \frac{\pi}{4} \right) + b \cos x + c$
1.36 Calculus

\[f(x) = a \left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \right) + b \cos x + c \]

\[f(x) = \frac{a}{\sqrt{2}} \sin x + \left(\frac{a}{\sqrt{2}} + b \right) \cos x + c \]
(1)

Let \(\left(\frac{a}{\sqrt{2}} \right) = r \cos \alpha \), \(\left(\frac{a}{\sqrt{2}} + b \right) = r \sin \alpha \)

\(f(x) = r \left[\cos \alpha \sin x + \sin \alpha \cos x \right] + c \)

\(f(x) = r \left[\sin \left(x + \alpha \right) \right] + c \)

where \(r = \sqrt{a^2 + \sqrt{2}ab + b^2} \)

and \(\alpha = \tan^{-1} \left(\frac{a + b \sqrt{2}}{a} \right) \).
(2)

For \(f \) to be one-one, we must have \(-\pi/2 \leq x + \alpha \leq \pi/2 \). Thus,

\(\text{domain} \in \left[-\frac{\pi}{2} - \alpha, \frac{\pi}{2} - \alpha \right] \) and \(\text{range} \in [c - r, c + r] \).

Or \(X = \left[-\frac{\pi}{2} - \alpha, \frac{\pi}{2} - \alpha \right] \) and \(Y = [c - r, c + r] \).

2. Find the set of all solutions of the equation \(2^{2^y} - [2^{y-1} - 1] = 2^{y-1} + 1 \).

\(\text{Sol. Here, } 2^{2^y} - [2^{y-1} - 1] = 2^{y-1} + 1 \).

Case I: \(y < 0 \)

\[2^y + (2^{y-1} - 1) = 2^{y-1} + 1; \]

as \(y < 0 \)

\[\left| y \right| = -y \]

and \(|2^{y-1} - 1| = -(2^{y-1} - 1) \).

\[\Rightarrow 2^y = 2 \]

Hence, \(y = -1 \), which is true when \(y < 0 \).
(1)

Case II: \(0 \leq y < 1 \)

\[2^y + (2^{y-1} - 1) = 2^{y-1} + 1; \]

as \(0 \leq y < 1 \)

\[\left| y \right| = y \]

and \(|2^{y-1} - 1| = -(2^{y-1} - 1) \).

\[\Rightarrow 2^y = 2 \]

\[\Rightarrow y = 1, \text{ which shows no solution as } 0 \leq y < 1. \]
(2)

Case III: \(y \geq 1 \)

\[2^y - (2^{y-1} - 1) = 2^{y-1} + 1 \]

\[\Rightarrow 2^y = 2^{y-1} + 2^{y-1}; \]

as \(y \geq 1 \)

\[\left| y \right| = y \]

and \(|2^{y-1} - 1| = (2^{y-1} - 1) \).

\[\Rightarrow 2^y = 2^y, \text{ which is an identity, therefore it is true } \forall \ y \geq 1 \]

(3)

Hence, from (1), (2) and (3) the solution of the set is \(\{ y : y \geq 1 \cup y = -1 \} \).

3. Let \(x \in \left(0, \frac{\pi}{2} \right) \), then find the domain of the function

\[f(x) = \frac{1}{\sqrt{-\log_{\sin x} \tan x}}. \]

\(\text{Sol. Here, } x \in \left(0, \frac{\pi}{2} \right) \)

\[\Rightarrow 0 < \sin x < 1 \]

and we know \(\log_a x < b \Rightarrow x > a^b, \text{ if } 0 < a < 1 \)

\[x < a^b, \text{ if } a > 1 \]
(2)

Thus, \(f(x) = \frac{1}{\sqrt{-\log_{\sin x} \tan x}} \) exists, if \(\log_{\sin x} \tan x > 0 \)

\[\Rightarrow \log_{\sin x} \tan x < 0 \]

[as inequality sign changes on multiplying by -ve]

\[\Rightarrow \tan x > (\sin x)^b \]

[using (1) and (2)]

\[\Rightarrow x > 1 \]

\[\Rightarrow x \in \left(\frac{\pi}{4}, \frac{\pi}{2} \right). \]

(3)

4. Find whether the given function is even or odd function,

where \(f(x) = \frac{x \sin x + \tan x}{\left[\frac{x + \pi}{\pi} \right] - \frac{1}{2}} \), where \([\] \) denotes the greatest integer function.

\(\text{Sol.} \)

\[f(x) = \frac{x \sin x + \tan x}{\frac{x + \pi}{\pi} - \frac{1}{2}} = \frac{x \sin x + \tan x}{\frac{x}{\pi} + 1 - \frac{1}{2}} \]

\[= \frac{x \sin x + \tan x}{\frac{x}{\pi} + 0.5} \]

\[\Rightarrow f(-x) = -\frac{x \sin(-x) + \tan(-x)}{\frac{x}{\pi} + 0.5} \]

\(\Rightarrow f(-x) = \frac{x \sin x + \tan x}{\frac{x}{\pi} + 0.5} \text{, } x \neq n\pi \)

\[= \frac{1}{-1} \left(\frac{x}{\pi} + 0.5 \right) \]

\[\Rightarrow f(-x) = \left\{ \begin{array}{ll}
\frac{x \sin x + \tan x}{\frac{x}{\pi} + 0.5} & , \ x \neq n\pi \\
0 & , \ x = n\pi
\end{array} \right. \]

Hence, \(f(-x) = -\left(\frac{x \sin x + \tan x}{\frac{x}{\pi} + 0.5} \right) \text{ and } f(-x) = 0. \)
\(f(-x) = -f(x) \). Hence, \(f(x) \) is an odd function if \(x \neq n\pi \) and \(f(x) = 0 \) if \(x = n\pi \) is both even and odd function.

5. Let \(f(x) \) be periodic and \(k \) be a positive real number such that \(f(x + k) + f(x) = 0 \) for all \(x \in R \). Prove that \(f(x) \) is a periodic with period 2k.

Sol. We have \(f(x + k) + f(x) = 0, \forall x \in R \)

\[\Rightarrow f(x + 2k) = -f(x), \forall x \in R. \text{ Put } x = x + k \]

\[\Rightarrow f(x + 2k) = -f(x), \forall x \in R \text{ (as } f(x + k) = -f(x)) \]

\[\Rightarrow f(x + 2k) = f(x), \forall x \in R \]

which clearly shows that \(f(x) \) is periodic with period 2k.

6. If \(f(x) \) be a polynomial function satisfying \(f(x) f\left(\frac{1}{x}\right) \)

\[= f(x) + f\left(\frac{1}{x}\right) \text{ and } f(4) = 65. \text{ Then find } f(6). \]

Sol. Let \(f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \cdots + a_n x + a_n \)

Then, \(f(x) f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \)

\[= \left(a_0 x^n + a_1 x^{n-1} + \cdots + a_n \right) \left(a_0 x^{-n} + a_1 x^{-n+1} + \cdots + a_n x^{-n} \right) \]

On comparing the coefficient of \(x^n \), we have \(a_0 a_n = a_0 \)

\[\Rightarrow a_n = 1 \] (as \(a_0 \neq 0 \))

On comparing the coefficient of \(x^{n-1} \), we have \(a_0 a_{n-1} + a_n a_1 = a_1 \)

\[\Rightarrow a_0 a_{n-1} + a_1 = a_1 \] (as \(a_n = 1 \))

\[\Rightarrow a_0 a_{n-1} = 0 \]

\[\Rightarrow a_{n-1} = 0 \] (as \(a_0 \neq 0 \))

Similarly, \(a_{n-1} = a_{n-2} = \cdots = a_1 = 0 \)

and \(a_0 = \pm 1 \)

\[\therefore f(x) = \pm x^n + 1, f(4) = \pm 4^n + 1 \]

\[\Rightarrow 4^n + 1 = 65 \] (as \(f(4) = 65 \))

\[\Rightarrow 4^n = 64 \]

\[\Rightarrow n = 3. \]

So, \(f(x) = x^3 + 1. \) Hence, \(f(6) = 6^3 + 1 = 217. \)

7. Consider a real-valued function \(f(x) \) satisfying 2 \(f(xy) = (f(x))^2 + (f(y))^2 \) for all \(x, y \in R \) and \(f(1) = a \) where \(a \neq 1 \). Prove that \((a - 1) \sum_{i=1}^{n} f(i) = a^{n+1} - a. \)

Sol. We have \(2(f(xy)) = (f(x))^2 + (f(y))^2 \)

Replacing \(y \) by 1, we get \(2f(x) = f(x) + (f(1))^2 \Rightarrow f(x) = a^x \)

\[\Rightarrow \sum_{i=1}^{n} f(i) = a + a^2 + \cdots + a^n = a^{n+1} - a \]

\[\Rightarrow (a - 1) \sum_{i=1}^{n} f(i) = a^{n+1} - a. \]

8. If \(f(x+y+1) = (\sqrt{f(x)} + \sqrt{f(y)})^2 \) and \(f(0) = 1, \forall x, y \in R. \) Determine \(f(n), n \in N. \)

Sol. Given \(f(x+y+1) = (\sqrt{f(x)} + \sqrt{f(y)})^2 \)

Putting \(x = y = 0, \)

\[\Rightarrow f(1) = (\sqrt{f(0)} + \sqrt{f(0)})^2 = (1+1)^2 = 2^2. \]

Again putting \(x = 0, y = 1 \)

\[\Rightarrow f(2) = (\sqrt{f(0)} + \sqrt{f(1)})^2 = (1+2)^2 = 3^2. \]

and for \(x = 1, y = 1 \)

\[f(3) = (\sqrt{f(1)} + \sqrt{f(1)})^2 = (2+2)^2 = 4^2. \]

Hence, \(f(n) = (n+1)^2. \)

9. Check whether the function defined by \(f(x + \lambda) = 1 + \sqrt{2f(x) - f^2(x)} \) \(\forall x \in R \) is periodic or not. If yes, then find its period. \((\lambda > 0) \)

Sol. For the function to be true, \(2f(x) - f^2(x) \geq 0 \)

\[\Rightarrow f(x) (f(x) - 2) \leq 0 \Rightarrow 0 \leq f(x) \leq 2 \]

and from the given function, \(f(x + \lambda) \geq 1 \Rightarrow f(x) \geq 1 \)

(1)

From (1) and (2), we have \(1 \leq f(x) \leq 2 \)

Again, we have \((f(x + \lambda) - 1)^2 = 2f(x) - f^2(x) \)

\[\Rightarrow \{f(x + \lambda) - 1\}^2 = 1 + \{2f(x) - f^2(x) - 1\} \]

\[\Rightarrow \{f(x + \lambda) - 1\}^2 = 1 - \{f(x) - 1\}^2 \]

(3)

Replacing \(x \) by \(x + \lambda \), we get

\[\{f(x + 2\lambda) - 1\}^2 = 1 - \{f(x + \lambda) - 1\}^2 \]

(4)

Subtracting (3) from (4), we get

\[\{f(x + 2\lambda) - 1\}^2 = \{f(x) - 1\}^2 \]

\[\Rightarrow \{f(x + 2\lambda) - 1\} = \{f(x) - 1\} \text{ (since } 1 \leq f(x) \leq 2 \)

\[\Rightarrow f \text{ is periodic with period } 2\lambda. \]

10. If for all real values of \(u \) and \(v \), \(2f(uw) \cos v = f(u + v) + f(u - v) \), prove that for all real values of \(x \)

a. \(f(x) + f(-x) = 2a \cos x \)

b. \(f(\pi - x) + f(-x) = 0 \)

c. \(f(\pi - x) + f(x) = 2b \sin x \)

Deduce that \(f(x) = a \cos x + b \sin x \), where \(a, b \) are arbitrary constants.

Sol. Given \(2f(uw) \cos v = f(u + v) + f(u - v) \)

Putting \(u = 0 \) and \(v = x \) in (1), we get \(f(x) + f(-x) = 2f(0) \cos x = 2a \cos x \)

a is an arbitrary constant.

Now putting \(u = \frac{\pi}{2} - x \) and \(v = \frac{\pi}{2} \) in (1), we get

\[f(\pi - x) + f(-x) = 0 \]

(3)

Again putting \(u = \pi/2 \) and \(v = \pi/2 - x \) in (1), we get

\[f(\pi - x) + f(x) = 2f(\pi/2) \sin x = 2b \sin x \]

(4)

\(b \) is an arbitrary constant.

Adding (2) and (4), we get
1.38 Calculus

\[2f(x) + f(\pi - x) + f(-x) = 2a \cos x + 2b \sin x \]
\[\Rightarrow 2f(x) + 0 = 2a \cos x + 2b \sin x \]
\[\therefore f(x) = a \cos x + b \sin x. \]

[From (3)]

11. Let \(f(x) = \frac{9^x}{9^x + 3} \). Show \(f(x) + f(1 - x) = 1 \), and hence evaluate

\[f \left(\frac{1}{1996} \right) + f \left(\frac{2}{1996} \right) + f \left(\frac{3}{1996} \right) + \ldots + f \left(\frac{1995}{1996} \right). \]

Sol. \(f(x) = \frac{9^x}{9^x + 3} \) \hspace{1cm} (1)

and \(f(1-x) = \frac{9^{1-x}}{9^{1-x} + 3} \)

\[\Rightarrow f(1-x) = \frac{9}{9^x + 3} = \frac{3}{3+9^x} \]

\[\Rightarrow f(1-x) = \frac{3}{3+9^x} \] \hspace{1cm} (2)

Adding (1) and (2), we get \(f(x) + f(1-x) \)

\[= \frac{9^x}{9^x + 3} + \frac{3}{3+9^x} = 1 \]

\[\Rightarrow f(x) + f(1-x) = 1 \] \hspace{1cm} (3)

Now, putting \(x = \frac{1}{1996}, \frac{2}{1996}, \frac{3}{1996}, \ldots, \frac{998}{1996} \) in (3), we get

\[f \left(\frac{1}{1996} \right) + f \left(\frac{1995}{1996} \right) = 1, f \left(\frac{2}{1996} \right) + f \left(\frac{1994}{1996} \right) = 1, \]

\[f \left(\frac{3}{1996} \right) + f \left(\frac{1993}{1996} \right) = 1 \]

\[\vdots \]

\[f \left(\frac{997}{1996} \right) + f \left(\frac{998}{1996} \right) = 1, f \left(\frac{998}{1996} \right) + f \left(\frac{998}{1996} \right) = 1 \]

or \(f \left(\frac{998}{1996} \right) = \frac{1}{2} \)

Adding all the above expression, we get

\[f \left(\frac{1}{1996} \right) + f \left(\frac{2}{1996} \right) + \cdots + f \left(\frac{1995}{1996} \right) \]

12. Let \(f(x) \) be defined on \([-2, 2]\) and is given by

\[f(x) = \begin{cases} -1, & -2 \leq x \leq 0 \\ x-1, & 0 < x \leq 2 \end{cases} \]

and \(g(x) = |f(x)| + |f(x)| \).

Then find \(g(x) \).

Sol. We have

\[f(x) = \begin{cases} -1, & -2 \leq x \leq 0 \\ x-1, & 0 < x \leq 2 \end{cases} \]

\[\Rightarrow f(|x|) = \begin{cases} -1, & -2 \leq |x| \leq 0 \\ |x|-1, & 0 \leq |x| \leq 2 \end{cases} \]

\[\Rightarrow f(|x|) = |x|-1, & 0 \leq |x| \leq 2 \]

(as \(-2 \leq |x| < 0 \) is not possible)

\[\Rightarrow f(|x|) = \begin{cases} -x-1, & -2 \leq x \leq 0 \\ x-1, & 0 < x \leq 2 \end{cases} \]

again, \(f(x) = \begin{cases} -1, & -2 \leq x \leq 0 \\ x-1, & 0 < x \leq 2 \end{cases} \)

\[\Rightarrow |f(x)| = \begin{cases} 1, & -2 \leq x \leq 0 \\ |x|-1, & 0 < x \leq 2 \end{cases} \]

\[\Rightarrow |f(x)| = \begin{cases} (x-1), & 0 < x \leq 1 \\ +(x-1), & 1 < x \leq 2 \end{cases} \]

\[\therefore g(x) = f(|x|) + |f(x)| \] can be expressed as

\[g(x) = \begin{cases} -(x-1)+1, & -2 \leq x \leq 0 \\ (x-1)+(1-x), & 0 \leq x \leq 1 \\ (x-1)+(x-1), & 1 \leq x \leq 2 \end{cases} \]

[using (1) and (2)]

\[\Rightarrow g(x) = \begin{cases} -x, & -2 \leq x \leq 0 \\ 0, & 0 < x \leq 1 \\ 2(x-1), & 1 < x \leq 2 \end{cases} \]

13. For what integral value of \(n \), is \(3\pi \) period of the function \(\cos (nx) \sin \left(\frac{5x}{n} \right) \)?
Sol. Let \(f(x) = \cos nx \sin \left(\frac{5x}{n} \right) \)

- \(f(x) \) is periodic
- \(f(x + \lambda) = f(x) \) where \(\lambda \) is period.
- \(\cos (nx + n\lambda) \sin \left(\frac{5x + 5\lambda}{n} \right) = \cos nx \sin \left(\frac{5x}{n} \right) \)

at \(x = 0 \), \(\cos n\lambda \sin \left(\frac{5\lambda}{n} \right) = 0 \)

If \(\cos n\lambda = 0 \)
- \(n\lambda = r\pi + \frac{\pi}{2}, r \in I \)
- \(n(3\pi) = r\pi + \frac{\pi}{2} \) (\(\therefore \lambda = 3\pi \))
- \(3n - r = \frac{1}{2} \) (Impossible).

Again, let \(\sin \left(\frac{5\lambda}{n} \right) = 0 \)

- \(\frac{5\lambda}{n} = p\pi \) \((p \in I) \)
- \(\frac{5(3\pi)}{n} = p\pi \) (\(\therefore \lambda = 3\pi \))
- \(n = \frac{15}{p} \)

For \(p = \pm 1, \pm 3, \pm 5, \pm 15 \)
- \(n = \pm 15, \pm 5, \pm 3, \pm 1 \) (\(\therefore n \in I \))

15. If \(f(x) = -1 + |x - 2|, 0 \leq x \leq 4 \) and \(g(x) = 2 - |x|, -1 \leq x \leq 3 \). Then find \((fog)(x) \) and \((gof)(x) \).

Sol. We have

\[
(fog)(x) = \begin{cases}
1 - x, & 0 \leq x \leq 2 \\
-3, & 2 < x \leq 4
\end{cases}
\]

and \(\begin{cases}
2 + x, & -1 \leq x \leq 0 \\
-2, & 0 < x \leq 3
\end{cases} \)

\[
(gof)(x) = \begin{cases}
1 - g(x), & 0 \leq g(x) \leq 2 \\
g(x) - 3, & 2 < g(x) \leq 4
\end{cases}
\]

\[
(fog)(x) = \begin{cases}
1 - (2 + x), & 0 \leq 2 + x \leq 2 \text{ and } -1 \leq x \leq 0 \\
2 + x - 3, & 2 < 2 + x \leq 4 \text{ and } -1 \leq x \leq 0 \\
1 - (2 - x), & 0 \leq 2 - x \leq 2 \text{ and } 0 < x \leq 3 \\
2 - x - 3, & 2 < 2 - x \leq 4 \text{ and } 0 < x \leq 3
\end{cases}
\]

\[
(gof)(x) = \begin{cases}
1 - x, & -2 \leq x \leq 0 \text{ and } -1 \leq x \leq 0 \\
x - 1, & 0 < x \leq 2 \text{ and } -1 \leq x \leq 0 \\
-1 + x, & 0 \leq x \leq 2 \text{ and } 0 < x \leq 3 \\
-x - 1, & 0 < x < 0 \text{ and } 0 < x \leq 3
\end{cases}
\]

\[
(fog)(x) = \begin{cases}
1 - x, & -2 \leq x \leq 0 \text{ and } -1 \leq x \leq 0 \\
x - 1, & 0 < x \leq 2 \text{ and } -1 \leq x \leq 0 \\
-1 + x, & 0 \leq x \leq 2 \text{ and } 0 < x \leq 3 \\
-x - 1, & 0 < x < 0 \text{ and } 0 < x \leq 3
\end{cases}
\]

\[
(gof)(x) = \begin{cases}
2 + f(x), & -1 \leq f(x) \leq 0 \\
2 - f(x), & 0 < f(x) \leq 3
\end{cases}
\]

\[
(fog)(x) = \begin{cases}
3 - x, & 1 \leq x \leq 2 \text{ and } 0 \leq x \leq 2 \\
1 + x, & 2 \leq x \leq 3 \text{ and } 2 < x \leq 4 \\
x - 1, & 3 \leq x \leq 4 \text{ and } 2 < x \leq 4
\end{cases}
\]

\[
(gof)(x) = \begin{cases}
3 - x, & 1 \leq x \leq 2 \text{ and } 0 \leq x \leq 2 \\
1 + x, & 2 \leq x \leq 3 \text{ and } 2 < x \leq 4 \\
x - 1, & 3 \leq x \leq 4 \text{ and } 2 < x \leq 4
\end{cases}
\]
EXERCISES

1.40 Calculus

Subjective Type Solutions on page 1.57

1. Write explicit functions of \(y \) defined by the following equations and also find domains of definitions of the given implicit functions:
 a. \(x + |y| = 2y \)
 b. \(e^{x} - e^{-y} = 2x \)
 c. \(10^{x} + 10^{y} = 10 \)
 d. \(x^2 - \sin^{-1}y = \frac{\pi}{2} \)
2. Let \(g(x) = \sqrt{x - 2k}, \forall \; 2k \leq x < 2 \; (k + 1), \) where \(k \) is integer, check whether \(g(x) \) is periodic or not.
3. Let \(f(x) = x^2 - 2x, \; x \in R \) and \(g(x) = f(\sin x) - 1 + f(\sin x) - f(\sin x) \). Show that \(g(x) \geq 0 \; \forall \; x \in R \).
4. If \(f \) and \(g \) are two distinct linear functions defined on \(R \) such that they map \([-1, 1]\) onto \([0, 2]\) and \(h : R \rightarrow \{-1, 0, 1\} \) defined by \(h(x) = \frac{f(x)}{g(x)} \) then show that \(|h(h(x))| > 2 \).
5. Let \(f(x) = \begin{cases} x^2 - 4x + 3, & x < 3 \\ x - 3, & x \geq 3 \end{cases} \) and \(g(x) = \begin{cases} x^2 + 2x + 2, & x \geq 4 \\ x - 4, & x < 4 \end{cases} \). Describe the function \(f/g \) and find its domain.
6. Let \(f(x) = \log_{2}\log_{3}\log_{4}\log_{5}(\sin x + a^2) \). Find the set of values of \(a \) for which domain of \(f(x) \) is.
7. A certain polynomial \(P(x), x \in R \) when divided by \(x - a, \) \(x - b, \) \(x - c \) leaves remainders \(a, \; b, \; c \), respectively. Then find the remainder when \(P(x) \) is divided by \(x - a, \; x - b, \; x - c \) (\(a, \; b, \; c \) are distinct).
8. Let \(R = \{(x, y) : x, \; y \in R, \; x^2 + y^2 \leq 25\} \) and \(R' = \{(x, y) : x, \; y \in R, \; y^2 \geq 4 - x^2\} \), then find the domain and range of \(R \cap R' \).
9. If \(f \) is a polynomial function satisfying \(2 + f(x)f(y) = f(x) + f(y) + f(xy), \; \forall \; x, \; y \in R \) and if \(f(2) = 5 \), then find the value of \(f(f(2)) \).
10. If \(f(a - x) = f(a + x) \) and \(f(b - x) = f(b + x) \) for all real \(x \), where \(a, \; b \) \((a > b) \) are constants, then prove that \(f(x) \) is a periodic function.
11. If \(p, \; q \) are positive integers, \(f \) is a function defined for positive numbers and attains only positive values, such that \(f(x^{-y}) = x^p y^q \), then prove that \(p^2 = q \).
12. If \(f: [0, \infty) \rightarrow \mathbb{R} \) is a function such that \(f(x + 1) = f(x) \) for all \(x \), then prove that \(f(x) \) is periodic and find its period.
13. If \(a, \; b \) be two fixed positive integers such that \(f(a + x) = b + [3^a - 1 - 3^b f(x) + 3^b f(x - f(x)^3)]^{1/\alpha} \) for all real \(x \), then prove that \(f(x) \) is periodic and find its period.
14. Let \(f(x, y) \) be a periodic function, satisfying the condition \(f(x, y) = f(2x + 2y, 2y - 2x) \forall \; x, \; y \in R \) and let \(g(x) \) be a function defined as \(g(x) = f(2^x, 0) \). Prove that \(g(x) \) is periodic function and find its period.

15. Let \(f: R \rightarrow R, \; f(x) = \frac{x - a}{(x - b)(x - c)}, \; b > c \). If \(f \) is onto, then prove that \(a \in (b, c) \).
16. Show that there exists no polynomial \(f(x) \) with integral coefficients which satisfy \(f(a) = b, \; f(b) = c, \; f(c) = a \), where \(a, \; b, \; c \) are distinct integers.
17. Consider the function \(f(x) = \begin{cases} x - [x] - \frac{1}{2} & \text{if } x \notin I \\ 0 & \text{if } x \in I \end{cases} \) where \([\cdot] \) denotes the fractional integral function and \(I \) is the set of integers. Then find \(g(x) = \max \{x^2, f(x), [x]\}; \; -2 \leq x \leq 2 \).
18. Determine all functions \(f: R \rightarrow R \) such that \(f(x - f(y)) = f(x) + f(y) + f(x) - 1 \), \(\forall \; x, \; y \in R \).
19. Let \(f(x) = (2 \cos x - 1)(2 \cos 2x - 1)(2 \cos 2^2 x - 1) \ldots (2 \cos 2^{n-1} x - 1) \) (where \(n \geq 1 \)). Then prove that \(\sum_{r=1}^{2n-1} 2f(\frac{r}{2n}) = 1 \) \(\forall \; k \in I \).
20. If \(f(x) = \frac{a^x}{a^2 + \sqrt{a}} \) \((a > 0) \), then find the value of \(\sum_{r=1}^{2n-1} 2f(\frac{r}{2n}) \).

Objective Type Solutions on page 1.60

Each question has four choices a, b, c, and d, out of which only one is correct.

1. The function \(f: N \rightarrow N \) (\(N \) is the set of natural numbers) defined by \(f(n) = 2n + 3 \) is
 a. surjective only
 b. injective only
 c. bijective
 d. None of these
2. The function \(f(x) = \sin \left(\log(\sqrt{x} + \sqrt{x^2}) \right) \) is
 a. even function
 b. odd function
 c. neither even nor odd
 d. periodic function
3. If \(x \) is real, then the value of the expression \(\frac{x^2 + 14x + 9}{x^2 + 2x + 3} \) lies between
 a. 5 and 4
 b. 5 and 4
 c. -5 and 4
 d. None of these
4. The function \(f: R \rightarrow R \) is defined by \(f(x) = \cos^2 x + \sin^4 x \) for \(x \in R \), then the range of \(f(x) \) is
 a. \(\left[\frac{3}{4}, 1 \right] \)
 b. \(\left[\frac{3}{4}, 1 \right] \)
 c. \(\left[\frac{3}{4}, 1 \right] \)
 d. \(\left[\frac{3}{4}, 1 \right] \)
5. The domain of the function \(f(x) = \log_{3} x(x^2 - 1) \) is
 a. \((-3, -1) \cup (1, \infty) \)
 b. \([-3, -1) \cup [1, \infty) \)
6. The domain of the function \(f(x) = \log\left(\frac{5x-x^2}{4}\right)^{1/2} \) is
 a. \(-\infty < x < \infty \)
 b. \(1 \leq x \leq 4 \)
 c. \(4 \leq x \leq 16 \)
 d. \(-1 \leq x \leq 1 \)

7. The domain of the function \(f(x) = \sin^{-1}(3-x) \) is
 a. \([2, 4] \)
 b. \((2, 3) \cup (3, 4] \)
 c. \([2, \infty) \)
 d. \((-\infty, -3) \cup [2, \infty) \)

8. The domain of \(f(x) = \log|x| \) is
 a. \((0, \infty) \)
 b. \((1, \infty) \)
 c. \((0, 1) \cup (1, \infty) \)
 d. \((-\infty, 1) \)

9. The domain of \(f(x) = \frac{\log_2(x^3+3x+2)}{x^2+3x+2} \) is
 a. \(R \)
 b. \((-\infty, -2) \cup (-2, \infty) \)
 c. \(R \)
 d. \((-\infty, -2) \cup (-2, \infty) \)

10. Let \(f: \left[-\frac{\pi}{3}, \frac{2\pi}{3} \right] \rightarrow [0, 4] \) be a function defined as \(f(x) = \sqrt{3} \sin x - \cos x + 2 \). Then \(f^{-1}(x) \) is given by
 a. \(\sin^{-1}\left(\frac{x-2}{2}\right) - \frac{\pi}{6} \)
 b. \(\sin^{-1}\left(\frac{x-2}{2}\right) + \frac{\pi}{6} \)
 c. \(\frac{2\pi}{3} + \cos^{-1}\left(\frac{x-2}{2}\right) \)
 d. None of these

11. If \(F(n+1) = \frac{2F(n)+1}{2n} \) for \(n = 1, 2, \ldots \) and \(F(1) = 2 \), then \(F(101) \) is
 a. 52
 b. 49
 c. 48
 d. 51

12. The domain of the function \(f(x) = \frac{1}{\sqrt[10]{10} C_{x-1} - 3 \times 3^{10} C_{x}} \) contains the points
 a. 9, 10, 11
 b. 9, 10, 12
 c. all natural numbers
 d. None of these

13. The domain of the function \(f(x) = \frac{x}{\sqrt{\sin(x) - \cos(x)}} \) is
 a. \(e^{2x}, e^{2x+1/(2\pi)} \)
 b. \(e^{2x+1/(4\pi)} \)
 c. \(e^{2x+3/(4\pi)} \)
 d. None of these

14. If \(f \) is a function such that \(f(0) = 2, f(1) = 3 \) and \(f(x+2) = 2f(x) + f(x+1) \) for every real \(x \), then \(f(5) \) is
 a. 7
 b. 13
 c. 1
 d. 5

15. The range of \(f(x) = \sin^{-1}\left(\frac{x^2+1}{x^2+2}\right) \) is
 a. \([0, \pi/2]\)
 b. \((0, \pi/6]\)
 c. \([\pi/6, \pi/2]\)
 d. None of these

16. The function \(f(x) = \frac{\sec^{-1}x}{\sqrt{x-[x]}} \), where \([x]\) denotes the greatest integer less than or equal to \(x \), is defined for all \(x \in \)
 a. \(R \)
 b. \(\{(-1, 1) \cup \{n \in \mathbb{Z}\}\} \)
 c. \(R \)
 d. \(\{-2, 6\} \cup (2, 3) \)

17. The domain of \(f(x) = \cos^{-1}\left(\frac{2-x}{4}\right) + \log(x-3) \) is
 a. \([-2, 6]\)
 b. \([-6, 2) \cup (2, 3) \)
 c. \([-6, 2) \cup (2, 3) \)
 d. \([-2, 2) \cup (2, 3) \)

18. The domain of the function \(f(x) = \sqrt{\log\left(\frac{1}{\sin(x)}\right)} \) is
 a. \([-\pi, \pi]\)
 b. \([n\pi \mid n \in Z]\)
 c. \([-\pi, \pi]\)
 d. \((-\infty, \infty)\)

19. The domain of the function \(f(x) = \log_2\left(-\log_{1/2}\left(1 + \frac{1}{x^{1/4}}\right)\right) \) is
 a. \((0, 1]\)
 b. \([0, \pi]\)
 c. \([\pi \pi \pi]\)
 d. \((1, \infty)\)

20. The range of \(f(x) = \sin^{-1}\left(\sqrt{x^2+x+1}\right) \) is
 a. \([0, \pi]\)
 b. \([0, \pi/2]\)
 c. \([\pi/2, \pi]\)
 d. \([-1/2, 1/2]\)

21. If \(f(x) = \max\left\{x^2, x^2, \frac{1}{64}\right\} \forall x \in [0, \infty) \), then
 a. \(f(x) = \left\{\begin{array}{ll}
 \frac{1}{64}, & 0 \leq x \leq \frac{1}{4} \\
 x^2, & x > 1
 \end{array}\right. \)
 b. \(f(x) = \left\{\begin{array}{ll}
 x^2, & 0 \leq x \leq 1 \\
 x^3, & x > 1
 \end{array}\right. \)
 c. \(f(x) = \left\{\begin{array}{ll}
 x^2, & \frac{1}{8} \leq x \leq 1 \\
 x^3, & x > 1/8
 \end{array}\right. \)
 d. \(f(x) = \left\{\begin{array}{ll}
 \frac{1}{64}, & 0 \leq x \leq \frac{1}{8} \\
 x^3, & x > 1/8
 \end{array}\right. \)

22. If the period of \(\cos(\sin(x)) \) is \(n \pi \), then \(n \) is equal to
 a. 3
 b. 6
 c. 3
 d. None of these

23. The number of real solutions of the equation \(\log_{0.5} |x| = 2 |x| \) is
 a. 1
 b. 2
 c. 0
 d. None of these

24. The period of the function \(\sin\frac{x}{2} + \cos\frac{x}{5} \) is
 a. \(2\pi \)
 b. \(10\pi \)
 c. \(8\pi \)
 d. \(5\pi \)

25. If \(f(x) = \sqrt{x^m}, n \in \mathbb{N} \) is an even function, then \(m \) is
 a. even integer
 b. odd integer
 c. any integer
 d. \(f(x) \text{-even is not possible} \)
26. If \(f \) is periodic, \(g \) is polynomial function and \(f(g(x)) \) is periodic and \(g(2) = 3, g(4) = 7 \) then \(g(6) \) is
 a. 13
 b. 15
 c. 11
 d. None of these

27. The period of function \(2^x + \sin \pi x + 3^x + 2 \pi x \) (where \(x \) denotes the fractional part of \(x \)) is
 a. 2
 b. 1
 c. 3
 d. None of these

28. The equation \(|x| + a = 4\) can have four distinct real solutions for \(x \) if \(a \) belongs to the interval
 a. \((-\infty, -4)\)
 b. \((-\infty, 0)\)
 c. \([4, \infty)\)
 d. None of these

29. Given the function \(f(x) = \frac{a^x + a^{-x}}{2} \) (where \(a > 2 \)). Then \(f(x+y) + f(x-y) = \)
 a. \(2f(x) \cdot f(y)\)
 b. \(f(x) + f(y)\)
 c. \(\frac{f(x)}{f(y)}\)
 d. None of these

30. If \(\log(x^2 - 6x + 11) \leq 1 \), then exhaustively range of values of \(x \) is
 a. \((-\infty, 2) \cup (4, \infty)\)
 b. \((2, 4)\)
 c. \((-\infty, 1) \cup (1, 3) \cup (4, \infty)\)
 d. None of these

31. The domain of the function \(f(x) = \sqrt{x^2 - [x]^2} \), where \([x]\) is the greatest integer less than or equal to \(x \), is
 a. \(\mathbb{R} \)
 b. \([0, \infty)\)
 c. \((-\infty, 0]\)
 d. None of these

32. The range of the function \(f(x) = \frac{|x - 1| + |x - 2|}{|x - 1| + |x - 2|} \), \(-1 \leq x \leq 3\), is
 a. \([1, 3]\)
 b. \([1, 5]\)
 c. \([3, 5]\)
 d. None of these

33. Which of the following functions is inverse to itself?
 a. \(f(x) = \frac{1-x}{1+x} \)
 b. \(f(x) = \text{sgn}(x) \)
 c. \(f(x) = 2^{a^{x-1}} \)
 d. None of these

34. A function \(F(x) \) satisfies the functional equation \(x^2 F(x) + F(1-x) = 2x - x^2 \) for all real \(x \). \(F(x) \) must be
 a. \(x^2 \)
 b. \(1 - x^2 \)
 c. \(1 + x^2 \)
 d. \(x^2 + x + 1 \)

35. If \(f(x) = \begin{cases} \frac{x^2 \sin \frac{\pi x}{2}}{2}, & |x| < 1 \\ x, & |x| \geq 1 \end{cases} \) then \(f(x) \) is
 a. an even function
 b. an odd function
 c. periodic function
 d. None of these

36. Function \(f: (-\infty, -1) \to (0, e^5) \) defined by \(f(x) = e^{x^2 - 3x + 2} \) is
 a. many-one and onto
 b. many-one and into
 c. one-one and onto
 d. one-one and into

37. If \(f(x) = \frac{1}{x} \), \(g(x) = \frac{1}{x^2} \) and \(h(x) = x^2 \)
 a. \(f \circ g \circ x^2 \)
 b. \(x \neq 0, h(g(x)) = \frac{1}{x^2} \)
 c. \(f \circ g \circ x^2 \)
 d. None of these

38. If \([x]\) and \(\{x\}\) represent the integral and fractional parts of \(x \), respectively, then the value of \(\sum_{r=1}^{2000} \{x+r\} \) is
 a. \(x \)
 b. \(\{x\} \)
 c. \(x + 2001 \)
 d. None of these

39. If \(f(x) \) is a polynomial satisfying \(f(1/x) = f(x) + f(1/x) \) and \(f(3) = 28 \), then \(f(4) \) is equal to
 a. 63
 b. 65
 c. 17
 d. None of these

40. The values of \(b \) and \(c \) for which the identity \(f(x+1) - f(x) = 8x+3 \) is satisfied, where \(f(x) = bx^2 + cx + d \), are
 a. \(b = 2, c = 1 \)
 b. \(b = 4, c = -1 \)
 c. \(b = -1, c = 4 \)
 d. \(b = -1, c = 1 \)

41. Let \(f: R \to R, g: R \to R \) be two given functions such that \(f \) is injective and \(g \) is surjective, then which of the following is injective?
 a. \(g \circ f \)
 b. \(f \circ g \)
 c. \(g \circ g \)
 d. None of these

42. \(f: \mathbb{N} \to \mathbb{N} \) where \(f(x) = x - (-1)^x \) then \(f \) is
 a. one-one and into
 b. many-one and into
 c. one-one and onto
 d. many-one and onto

43. If \(g(x) = x^2 + x - 2 \) and \(\frac{1}{2} \text{gof}(x) = 2x^2 - 5x + 2 \), then which is not a possible \(f(x) \)?
 a. \(2x - 3 \)
 b. \(-2x + 2 \)
 c. \(x - 3 \)
 d. None of these

44. If \(f: R \to R \) is an invertible function such that \(f(x) \) and \(f^{-1}(x) \) are symmetric about the line \(y = -x \), then
 a. \(f(x) \) is odd
 b. \(f(x) \) and \(f^{-1}(x) \) may not be symmetric about the line \(y = x \)
 c. \(f(x) \) may not be odd
 d. None of these

45. Let \(f: N \to N \) defined by \(f(x) = x^2 + x + 1 \), \(x \in N \), then \(f \) is
 a. One-one onto
 b. Many-one onto
 c. One-one but not onto
 d. None of these

46. Let \(f: X \to Y \) such that \(f(x) = \sin x + \cos \pi x + 2 \sqrt{2} \) is invertible. Then which of the following is not possible?
 a. \(\left[\frac{3\pi}{4}, 4 \right] \to [\sqrt{2}, 3\sqrt{2}] \)
 b. \(\left[\frac{3\pi}{4}, 4 \right] \to [\sqrt{2}, 3\sqrt{2}] \)
 c. \(\left[\frac{3\pi}{4}, 3\pi \right] \to [\sqrt{2}, 3\sqrt{2}] \)
 d. None of these
47. If \(f(x) = ax^3 + bx^2 + cx - s \), \(a, b, c \) are real constants and \(f(-7) = 5 \), then the range of \(f(x) + 7 \cos x \) is
 a. \([-34, 0]\) b. [0, 34] c. [-34, 34] d. None of these

48. If \(f(x) = \frac{\sin(|x|\pi)}{x^2 + x + 1} \), where \([\cdot]\) denotes the greatest integer function, then
 a. \(f \) is one-one b. \(f \) is not one-one and non-constant c. \(f \) is a constant function d. None of these

49. Let \(S \) be the set of all triangles and \(R^* \) be the set of positive real numbers. Then the function \(f: S \rightarrow R^* \) where area of \(\Delta \) is
 a. injective but not surjective b. surjective but not injective c. injective as well surjective d. neither injective nor surjective

50. The graph of \(y - x \) against \(y + x \) is shown

 ![Graph](image1.png)

Which one of the following shows the graph of \(y \) against \(x \)?
 a. ![Graph](image2.png) b. ![Graph](image3.png) c. ![Graph](image4.png) d. ![Graph](image5.png)

51. If \(g: [-2, 2] \rightarrow R \) where \(f(x) = x^3 + \tan x + \left[\frac{x^2 + 1}{P}\right] \) is an odd function, then the value of parametric \(P \) where \([\cdot]\) denotes the greatest integer function is
 a. \(-5 < P < 5\) b. \(P < 5\) c. \(P > 5\) d. None of these

52. If \(f \left(2x + \frac{y}{8}, 2x - \frac{y}{8} \right) = xy \), then \(f(m, n) + f(n, m) = 0 \)
 a. only when \(m = n \) b. only when \(m \neq n \) c. only when \(m = -n \) d. for all \(m \) and \(n \)

53. If \(f(x+y) = f(x) + f(y) - xy - 1 \) \(V \ x, y \in R \) and \(f(1) = 1 \), then the number of solutions of \(f(n) = n, n \in N \) is
 a. 0 b. 1 c. 2 d. more than 2

54. The range of the function \(f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \)
 a. \((\infty, -1)\) b. [0, 1] c. \((-1, 0]\) d. \((-1, 1)\)

55. If \(f: R \rightarrow R \) is a function satisfying the property \(f(2x + 3) + f(2x + 7) = 2, \forall x \in R \), then the fundamental period of \(f(x) \) is
 a. 7 b. 4 c. 8 d. 12

56. Let \(f: R \rightarrow \left[0, \frac{\pi}{2}\right] \) defined by \(f(x) = \tan^{-1}(x^2 + x + a) \), then
 a. \([0, \infty) \) b. [2, 1] c. \(\left[\frac{1}{4}, \infty\right) \) d. None of these

57. The domain of the function \(f(x) = 1 \sqrt{\{3x\}} \) \{\sin(\pi x)\} \}
 where \(\{\cdot\} \) denotes the fractional part, is
 a. \([0, \pi]\) b. \((2n + 1) \pi/2, n \in Z\) c. \([0, \pi]\) d. None of these

58. \(f(x) = \frac{\cos x}{\left(\frac{2x}{\pi}\right)^2 + 2} \) where \(x \) is not an integral multiple of \(\pi \)
 and \([\cdot]\) denotes the greatest integer function is
 a. An odd function b. Even function c. Neither odd nor even d. None of these

59. Let \(f(x) = ((a)^2 - 5(a) + 4)x^2 - (6(a)^2 - 5(a) + 1)x - (\tan x)\times \text{sgn} x \) be an even function for all \(x \in R \), then the sum of all possible values of \(\text{sgn} a \) is (where \([\cdot]\) and \{\cdot\} denote greatest integer function and fractional part functions, respectively)
 a. \(\frac{17}{6} \) b. \(\frac{53}{6} \) c. \(\frac{31}{3} \) d. \(\frac{35}{3} \)

60. Let \(f: [-10, 10] \rightarrow R \), where \(f(x) = \sin x + [x^2/a] \) be an odd function. Then the set of values of parameter \(a \) is/are
 a. \((-10, 10) \sim \{0\} \) b. \((0, 10) \) c. \((100, \infty) \) d. \((10, 10) \)

61. The function \(f \) satisfies the functional equation \(3f(x) + 2f\left(\frac{x + 59}{x - 1}\right) = 10x + 30 \) for all \(x \neq 1 \). The value of \(f(7) \) is
 a. 8 b. 4 c. -8 d. 11

62. The period of the function \(f(x) = [6x + 7] + \cos \pi x - 6x \), where \([\cdot]\) denotes the greatest integer function, is
 a. 3 b. \(2\pi \) c. 2 d. None of these

63. If the graph of the function \(f(x) = \frac{x^2 - 1}{x^n(a^n + 1)} \) is symmetrical about the \(y \)-axis, then \(n \) equals
 a. 2 b. \(\frac{2}{3} \) c. \(\frac{1}{4} \) d. \(\frac{1}{3} \)

64. If \(f(x) \) is an even function and satisfies the relation \(x^2 f(x) = g(x) \) where \(g(x) \) is an odd function, then \(f(5) \) equals
 a. 0 b. \(\frac{50}{75} \) c. \(\frac{49}{75} \) d. None of these

65. If \(f(x + y) = f(x), f(y) \) for all \(x, y \) and \(f(0) \neq 0 \), then the function \(g(x) = \frac{f(x)}{1 + (f(x))^2} \) is
 a. Even function b. Odd function c. Odd if \(f(x) > 0 \) d. Neither even nor odd
66. Possible values of a such that the equation $x^2 + 2ax + a = \sqrt{a^2 + x - \frac{1}{16}} - \frac{1}{16} \geq -a$, has two distinct real roots are given by
 a. $[0, 1]$
 b. $[-\infty, 0)$
 c. $[0, \infty)$
 d. $\left(\frac{3}{4}, \infty\right)$

67. Let $g(x) = f(x) - 1$. If $f(x) + f(1-x) = 2 \forall x \in R$, then $g(x)$ is symmetrical about
 a. Origin
 b. The line $x = \frac{1}{2}$
 c. The point $(1, 0)$
 d. The point $\left(\frac{1}{2}, 0\right)$

68. Domain (D) and range (R) of $f(x) = \sin^{-1}(\cos^{-1}[x])$ where $[.]$ denotes the greatest integer function is
 a. $D = \{x \in [1, 2), R \in (0, 1] \setminus \{0\}$
 b. $D = \{x \in [0, 1], R \in [-1, 0, 1)$
 c. $D = \{x \in [-1, 1], R \in \left[0, \sin^{-1}\left(\frac{\pi}{2}\right), \sin^{-1}(\pi)\right]\}$
 d. $D = \{x \in [-1, 1], R \in \left[0, \sin^{-1}\left(\frac{\pi}{2}\right), \sin^{-1}(\pi)\right]\}$

69. If $f(x + 1) + f(x - 1) = 2f(x)$ and $f(0) = 0$, then $f(n)$, $n \in N$, is
 a. $n/\sin^{-1}\{x\}$
 b. $\{f(1)\}$
 c. 0
 d. None of these

70. The range of the function f defined by $f(x) = \left[\frac{1}{\sin^{-1}\{x\}}\right]$ (where $[.]$ and $\{\}$ respectively denote the greatest integer and the fractional part functions) is
 a. I, the set of integers
 b. N, the set of natural numbers
 c. W, the set of whole numbers
 d. $\{1, 2, 3, 4, \ldots\}$

71. If $[\cos^{-1}x] + [\cot^{-1}x] = 0$, where $[.]$ denotes the greatest integer function, then the complete set of values of x is
 a. $(\cos 1, 1)$
 b. $(\cos 1, \cot 1)$
 c. $(\cot 1, 1)$
 d. $(0, \cot 1)$

72. If $f(x)$ and $g(x)$ are periodic functions with period 7 and 11, respectively. Then the period of $F(x) = f(x) g\left(\frac{x}{5}\right) - g(x)$ is
 a. 177
 b. 222
 c. 433
 d. 1155

73. The period of the function

 \[f(x) = \sin^2 x \sin^{-1}\left(x + \frac{\pi}{3}\right) + \cos x \cos\left(x + \frac{\pi}{3}\right) \]
 (where c is constant)
 a. 1
 b. $\frac{\pi}{2}$
 c. π
 d. Cannot be determined

74. If $f(x) + f(y) = f(x) + y \forall x, y \in R$ and $f(0) = 1$, then the value of $f(7)$ is
 a. 1
 b. 7
 c. 6
 d. 8

75. Let $f(x) = \sqrt{x - \{x\}}$ (where $\{\}$ denotes the fractional part of x) and X, Y are its domain and range, respectively, then
 a. $x \in (-\infty, \frac{1}{2}) \cup \{0, \infty\}$ and $Y \in [\frac{1}{2}, \infty)$
 b. $x \in (-\infty, -\frac{1}{2}) \cup \{0, \infty\}$ and $Y \in [\frac{1}{2}, \infty)$
 c. $X \in (-\infty, -\frac{1}{2}) \cup \{0, \infty\}$ and $Y \in (0, \infty)$
 d. None of these

76. Let f be a function satisfying $x f(x) = \frac{f(x)}{y}$ for all positive real numbers x and y if $f(30) = 20$, then the value of $f(40)$ is
 a. 15
 b. 20
 c. 40
 d. 60

77. The domain of the function $f(x) = \sqrt{\ln_{[0,1]}(x^2 + 4x + 4)}$ is
 a. $[-3, -1] \cup [1, 2]$
 b. $(-2, -1) \cup [2, \infty)$
 c. $(-\infty, -3) \cup (-2, -1) \cup (2, \infty)$
 d. None of these

78. The range of $f(x) = [1 + \sin x] + \left[\frac{2 + \sin \frac{x}{2}}{3} + \frac{3 + \sin \frac{x}{3}}{4}\right]$ + ... + \left[\frac{n + \sin \frac{x}{n}}{n}\right] \forall x \in [0, \pi]$, where $[.]$ denotes the greatest integer function, is
 a. $\left[\frac{n^2 + n - 2}{2}, \frac{n(n + 1)}{2}\right]$
 b. $\left[\frac{n(n + 1)}{2}\right]$
 c. $\left[\frac{n^2 + n - 2}{2}, \frac{n(n + 1)}{2}, \frac{n^2 + n + 2}{2}\right]$
 d. $\left[\frac{n(n + 1)}{2}, \frac{n^2 + n + 2}{2}\right]$

79. The total number of solutions of $[x]^2 = x + 2 \{x\}$, where $[.]$ and $\{\}$ denote the greatest integer function and fractional part, respectively, is equal to
 a. 2
 b. 4
 c. 6
 d. None of these

80. The domain of $f(x) = \sqrt{2x^2 - 3 \{x\}}$ is $[-1, 1]$, where $\{\}$ denotes the fractional part in $[-1, 1]$, is
 a. $[-1, 1] - \{\frac{1}{2}\}$
 b. $[-1, 1] - \{\frac{1}{2}\}$
 c. $[-1, 1] - \{\frac{1}{2}\}$
 d. $[-1, 1] - \{\frac{1}{2}\}$
81. The range of \(\sin^{-1}\left[\frac{x^2 + 1}{2}\right] + \cos^{-1}\left[\frac{x^2 - 1}{2}\right] \), where \([\cdot]\) denotes the greatest integer function, is

a. \(\left[\frac{\pi}{2}, \pi\right] \)

b. \(\{\pi\} \)

c. \(\left\{\frac{\pi}{2}\right\} \)

d. None of these

82. If the period of \(\frac{\cos(\sin(nx))}{\tan\left(\frac{x}{n}\right)} \), \(n \in \mathbb{N} \) then \(n = \)

a. 3

b. 2

c. 6

d. 1

83. The domain of \(f(x) = \ln\left(\frac{(a + b)x + c}{x}\right) \), where \(a > 0, b^2 - 4ac = 0 \), is (where \([\cdot]\) represents greatest integer function).

a. \((-1, \infty) \)

b. \((1, \infty) \)

c. \((-1, 1) \)

d. None of these

84. The period of \(f(x) = \left[n + \frac{2x}{2a}\right] + \left[3x + \frac{4x}{2a}\right] + \cdots + \left[nx - \frac{(n+1)x}{2}\right] \), where \(n \in \mathbb{N} \), is (where \([\cdot]\) represents greatest integer function)

a. \(n \)

b. 1

c. \(\frac{n}{2} \)

d. None of these

85. If \(f \left(\frac{x + \frac{1}{2}}{2}\right) + f \left(\frac{x - \frac{1}{2}}{2}\right) = f(x) \) for all \(x \in \mathbb{R} \), then the period of \(f(x) \) is

a. 1

b. 2

c. 3

d. 4

86. \(f: \mathbb{R}^2 \to \mathbb{R}, f(x) + 2x f\left(\frac{1}{x}\right) = 2(x + 1) \), then \(f(99) \) is equal to

a. 40

b. 30

c. 50

d. 60

87. \(f: X \to Y \), where \(X \) and \(Y \) are sets containing natural numbers, \(f(x) = \frac{x + 5}{x + 2} \) then the number of elements in the domain and range of \(f(x) \) are respectively

a. 1 and 1

b. 2 and 2

c. 2 and 1

d. 1 and 2

88. If \(f(x) = \begin{cases} x^2 & \text{for } x \geq 0 \\ x & \text{for } x < 0 \end{cases} \), then \(fof(x) \) is given by

89. If the graph of \(y = f(x) \) is symmetrical about lines \(x = 1 \) and \(x = 2 \), then which of the following is true?

a. \(f(x + 1) = f(x) \)

b. \(f(x + 3) = f(x) \)

c. \(f(x + 2) = f(x) \)

d. None of these

90. Let \(f(x) = x + 2|x + 1| + 2|x - 1| \). If \(f(x) = k \) has exactly one real solution, then the value of \(k \) is

a. 3

b. 0

c. 1

d. 2

91. The domain of \(f(x) = \sin^{-1}\left[2x^2 - 3\right] \), where \([\cdot]\) denotes the greatest integer function, is

a. \(\left[-\frac{\sqrt{3}}{2}, \frac{3}{2}\right] \)

b. \(\left[-\frac{3}{2}, \frac{1}{2}\right] \)

c. \(\left[-\frac{3}{2}, \frac{1}{2}\right] \)

d. None of these

92. The range of \(f(x) = \cos^{-1}\left(\frac{1 + x^2}{2x}\right) + \sqrt{2 - x^2} \) is

a. \(\left[0, 1 + \frac{\pi}{2}\right] \)

b. \(\{0, 1 + \pi\} \)

c. \(\left[1, 1 + \frac{\pi}{2}\right] \)

d. None of these

93. If \(f(x) = \begin{cases} x, \text{if } x \text{ is rational} \\ 1 - x, \text{if } x \text{ is irrational} \end{cases} \), then \(f(f(x)) \) is

a. \(x \forall x \in \mathbb{R} \)

b. \(\{x, x \text{ is irrational} \} \)

c. \(\{1, 1 + \pi\} \)

d. None of these

94. The range of \(f(x) = \left[\sin x + \left|\cos x\right|\right] \), where \([\cdot]\) denotes the greatest integer function, is

a. \(\{0\} \)

b. \(\{0, 1\} \)

c. \(\{1\} \)

d. None of these

95. If \(f(x) = \log_2\left(x^2 + e \right) \), then the range of \(f(x) \) is

a. \((0, 1) \)

b. \([0, 1] \)

c. \((0, 1) \)

d. \((0, 1) \)
1.46 Calculus

96. The domain of the function \(f(x) = \frac{1}{\sqrt{4x - |x^2 - 10x + 9|}} \) is

\[a. \ (7 - \sqrt{40}, 7 + \sqrt{40}) \quad b. \ (0, 7 + \sqrt{40}) \quad c. \ (7 - \sqrt{40}, \infty) \quad d. \ None \ of \ these \]

97. If the function \(f : [1, \infty) \to [1, \infty) \) is defined by \(f(x) = 2^{|x-1|} \), then \(f^{-1}(x) \) is

\[a. \ \left(\frac{1}{2} \right)^{|x-1|} \quad b. \ \frac{1}{2} \left(1 + \sqrt{1 + 4 \log_2 x} \right) \quad c. \ \frac{1}{2} \left(1 - \sqrt{1 + 4 \log_2 x} \right) \quad d. \ None \ of \ these \]

98. The number of roots of the equation \(x \sin x = 1 \), \(x \in [-2\pi, 0) \cup (0, 2\pi] \), is

\[a. \ 2 \quad b. \ 3 \quad c. \ 4 \quad d. \ 0 \]

99. The number of solutions of \(2 \cos x = |\sin x| \), \(0 \leq x \leq 4\pi \), is

\[a. \ 0 \quad b. \ 2 \quad c. \ 4 \quad d. \ Infinite \]

100. If \(af(x+1) + bf \left(\frac{1}{x+1} \right) = x, x \neq -1, a \neq b \), then \(f(2) \) is equal to

\[a. \ \frac{2a+b}{2a^2 - b^2} \quad b. \ \frac{a}{a^2 - b^2} \quad c. \ \frac{a+2b}{a^2 - b^2} \quad d. \ None \ of \ these \]

101. The number of solutions of \(\tan x = -mx = 0 \), \(m > 1 \) in \(\left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \) is

\[a. \ 1 \quad b. \ 2 \quad c. \ 3 \quad d. \ m \]

102. The range of \(f(x) = |\sin x + |\cos x + |\tan x + [|\sec x|]|| \) is \(x \in (0, \pi/4) \), where \([\cdot]\) denotes the greatest integer function \(\leq x \), is

\[a. \ \{0, 1\} \quad b. \ \{-1, 0, 1\} \quad c. \ \{1\} \quad d. \ None \ of \ these \]

103. If \(f(3x + 2) + f(3x + 29) = 0 \ \forall \ x \in R \), then the period of \(f(x) \) is

\[a. \ 7 \quad b. \ 8 \quad c. \ 10 \quad d. \ None \ of \ these \]

104. Let \(f(x) = \begin{cases} \sin x + \cos x, & 0 < x < \frac{\pi}{2} \\ a, & x = \frac{\pi}{2} \\ \tan^2 x + \sec x, & \frac{\pi}{2} < x < \pi \end{cases} \) then its odd extension is

\[\begin{cases} -\tan^2 x - \sec x, & -\pi < x < -\frac{\pi}{2} \\ -a, & x = -\frac{\pi}{2} \\ -\sin x + \cos x, & -\frac{\pi}{2} < x < 0 \end{cases} \]

\[\text{(a)} \]

105. If \(f \) and \(g \) are one-one function then

\[a. \ f+g \ is \ one-one \quad b. \ fg \ is \ one-one \quad c. \ fog \ is \ one-one \quad d. \ None \ of \ these \]

106. The domain of \(f(x) = (0, 1) \), then, domain of \(f(e^x) + f(\ln |x|) \) is

\[a. \ (-1, e) \quad b. \ (1, e) \quad c. \ (-e, 1) \quad d. \ None \ of \ these \]

107. The domain of \(f(x) = \frac{1}{\sqrt{\cos x + \cos x}} \) is

\[a. \ [-2n\pi, 2n\pi], n \in Z \quad b. \ (2n\pi, 2n+1\pi], n \in Z \quad c. \ \frac{(4n+1)\pi}{2} \quad d. \ \frac{(4n-1)\pi}{2} \]

108. If \(f(2x + 3y) + f(2x - 7y) = 20x \), then \(f(x, y) \) equals

\[a. \ 7y - 3x \quad b. \ 7x + 3y \quad c. \ 3x - 7y \quad d. \ x - ky \]

109. Let \(X = \{a_1, a_2, \ldots, a_6\} \) and \(Y = \{b_1, b_2, b_3\} \). The number of functions \(f \) from \(X \) to \(Y \) such that \(f \) is onto and there are exactly three elements \(x \in X \) such that \(f(x) = b_1 \) is

\[a. \ 75 \quad b. \ 90 \quad c. \ 100 \quad d. \ 120 \]

110. Let \(f : R \to R \) and \(g : R \to R \) be two one-one and onto functions such that they are the mirror images of each other about the line \(y = a \). If \(h(x) = f(x) + g(x) \), then \(h(x) \) is

\[a. \ One-one \ and \ onto \quad b. \ Only \ one-one \ and \ onto \quad c. \ Only \ onto \ but \ not \ one-one \quad d. \ Neither \ one-one \ nor \ onto \]

111. If \(f(x) = -\frac{2x}{e^x}, g(x) = |\sin x| - |\cos x| \) and \(\phi(x) = f(x)g(x) \) (where \([\cdot]\) denotes the greatest integer function) then the respective fundamental periods of \(f(x), g(x) \) and \(\phi(x) \) are
112. Let \(f(n) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \), then\(f(1) + f(2) + f(3) + \cdots + f(n) \) is equal to
\[
\text{a. } nf(n) - 1 \\
\text{b. } (n + 1)f(n) - n \\
\text{c. } (n + 1)f(n) + n \\
\text{d. } nf(n) + n
\]

113. Let \(f(x) = e^{ix} \) and \(g(x) = e^{ix} \), \(x \in R \) where \{ \} and \[\] denotes the fractional and integral part functions, respectively. Also \(h(x) = \log(f(x)) + \log(g(x)) \) then for real \(x \), \(h(x) \) is
\[
\text{a. } \text{An odd function.} \\
\text{b. } \text{An even function.} \\
\text{c. } \text{Neither an odd nor an even function.} \\
\text{d. } \text{Both odd as well as even function.}
\]

114. Let \(f_1(x) = \begin{cases} 1, & x \geq 1 \\
0, & \text{otherwise} \end{cases} \)
\[f_2(x) = f_1(-x) \] for all \(x \)
\[f_3(x) = -f_2(x) \] for all \(x \)
\[f_4(x) = f_3(-x) \] for all \(x \)

Which of the following is necessarily true?
\[
\text{a. } f_1(x) = f_4(x) \text{ for all } x \\
\text{b. } f_2(x) = -f_3(x) \text{ for all } x \\
\text{c. } f_2(-x) = f_3(x) \text{ for all } x \\
\text{d. } f_2(x) + f_3(x) = 0 \text{ for all } x
\]

115. The number of solutions of the equation \(\sqrt{x + [y]} = 2 \cos x \), where \(y = \frac{1}{3} [\sin x + [\sin x + [\sin x]]] \) (where \([\cdot]\) denotes the greatest integer function) is
\[
\text{a. } 4 \\
\text{b. } 2 \\
\text{c. } 3 \\
\text{d. } 53
\]

116. The sum of roots of the equation \(\cos^{-1} (\cos x) = [x] \), \([\cdot]\) denotes the greatest integer function is
\[
\text{a. } 2\pi + 3 \\
\text{b. } \pi + 3 \\
\text{c. } \pi - 3 \\
\text{d. } 2\pi - 3
\]

117. The range of
\[f(x) = \sqrt{1 - \cos x} \sqrt{1 - \cos x} \sqrt{1 - \cos x} \sqrt{\ldots \infty} \]
is
\[
\text{a. } [0, 1] \\
\text{b. } [0, 1/2] \\
\text{c. } [0, 2] \\
\text{d. } \text{None of these}
\]

118. Let \(h(x) = [kx + 5] \), the domain of \(f(x) \) is \([-5, 7] \), the domain of \(f(h(x)) \) is \([-6, 1] \) and the range of \(h(x) \) is the same as the domain of \(f(x) \), then the value of \(k \)
\[
\text{a. } 1 \\
\text{b. } 2 \\
\text{c. } 3 \\
\text{d. } 4
\]

119. The range of \(f(x) = (x + 1)(x + 2)(x + 3)(x + 4) + 5 \) for \(x \in [-6, 6] \) is
\[
\text{a. } [4, 5045] \\
\text{b. } [0, 5045] \\
\text{c. } [-20, 5045] \\
\text{d. } \text{None of these}
\]

120. The exhaustive domain of
\[f(x) = \sqrt{x^2 - x^3 + x^4 - x + 1} \]
is
\[
\text{a. } [0, 1] \\
\text{b. } [1, \infty) \\
\text{c. } (-\infty, 1] \\
\text{d. } R
\]

121. The range of \(f(x) = \sec^{-1} (\log_5 \tan x + \log_x 3) \) is
\[
\text{a. } \left[\frac{\pi}{3}, \frac{2\pi}{3} \right] \\
\text{b. } \left[0, \frac{\pi}{2} \right] \\
\text{c. } \left(\frac{2\pi}{3}, \pi \right] \\
\text{d. } \text{None of these}
\]

122. The range of the function \(f(x) = \frac{7 - x}{x - 3} \) is
\[
\text{a. } \{1, 2, 3\} \\
\text{b. } \{1, 2, 3, 4, 5, 6\} \\
\text{c. } \{1, 2, 3, 4, 5\} \\
\text{d. } \text{None of these}
\]

123. A real-valued function \(f(x) \) satisfies the functional equation \(f(x - y) = f(x)f(y) - f(a - x)f(a + y) \), where \(a \) is a given constant and \(f(0) = 1 \). \(f(2a - x) \) is equal to
\[
\text{a. } f(x) \\
\text{b. } -f(x) \\
\text{c. } f(-x) \\
\text{d. } f(a) + f(a - x)
\]

Each question has four choices a, b, c, and d, out of which one or more answers are correct.

1. Let \(f(x) = \max \{1 + \sin x, 1 - \cos x\} \), \(x \in [0, 2\pi] \) and \(g(x) = \max \{1, |x - 1|\} \), \(x \in R \), then
\[
\text{a. } g(f(0)) = 1 \\
\text{b. } g(f(1)) = 1 \\
\text{c. } f(g(1)) = 1 \\
\text{d. } f(g(0)) = 1 + \sin 1
\]

2. Which of the following functions are identical?
\[
\text{a. } f(x) = \ln x^2 \text{ and } g(x) = 2 \ln x \\
\text{b. } f(x) = \log_e x \text{ and } g(x) = \frac{1}{\log_e x} \\
\text{c. } f(x) = \sin (\cos^{-1} x) \text{ and } g(x) = \cos (\sin^{-1} x) \\
\text{d. } \text{None of these}
\]

3. Which of the following function/functions have the graph symmetrical about the origin?
\[
\text{a. } f(x) \text{ given by } f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right) \\
\text{b. } f(x) \text{ given by } f(x) + f(y) = f(x)f(y) \forall x, y \in R \\
\text{c. } f(x) \text{ given by } f(x+y) = f(x)+f(y) \forall x, y \in R \\
\text{d. } \text{None of these}
\]

4. If the function \(f \) satisfies the relation \(f(x + y) + f(x - y) \)
\[
= 2f(x)f(y) \forall x, y \in R \text{ and } f(0) \neq 0, \text{ then}
\]
\[
\text{a. } f(x) \text{ is an even function} \\
\text{b. } f(x) \text{ is an odd function} \\
\text{c. } \text{If } f(2) = a \text{ then } f(-2) = a \\
\text{d. } \text{If } f(4) = b \text{ then } f(-4) = -b
\]

5. Consider the function \(y = f(x) \) satisfying the condition
\[
f\left(\frac{x+1}{x}\right) = x^2 + \frac{1}{x^2} \left(x \neq 0\right), \text{ then}
\]
\[
\text{a. domain of } f(x) \text{ is } R \\
\text{b. domain of } f(x) = R \setminus (-2, 2)
\]
6. Let \(f(x) + f(y) = f(\sqrt{x-y^2} + y\sqrt{1-x^2}) \) (\(f(x) \) is not identically zero). Then
 a. \(f(4x^3 - 3x) + 3f(x) = 0 \)
 b. \(f(4x^3 - 3x) = 3f(x) \)
 c. \(f(2x\sqrt{1-x^2}) + 2f(x) = 0 \)
 d. \(f(2x\sqrt{1-x^2}) = 2f(x) \)

7. Consider the real-valued function satisfying \(2f(\sin x) + f(\cos x) = x \). Then
 a. domain of \(f(x) \) is \(R \)
 b. domain of \(f(x) \) is \([-1, 1]\)
 c. range of \(f(x) \) is \[\left(-\frac{2\pi}{3}, \frac{\pi}{3} \right) \]
 d. range of \(f(x) \) is \(R \)

8. If \(f(x) \) satisfies the relation \(f(x + y) = f(x) + f(y) \) for all \(x, y \in R \) and \(f(1) = 5 \), then
 a. \(f(x) \) is an odd function
 b. \(f(x) \) is an even function
 c. \(\sum_{r=1}^{m} f(r) = 5m^2 + 1 \)
 d. \(\sum_{r=1}^{m} f(r) = \frac{5m(m + 2)}{3} \)

9. Let \(f(x) = \begin{cases} x^2 - 4x + 3, & x < 3 \\ x - 4, & x \geq 3 \end{cases} \)
 \(g(x) = \begin{cases} x - 3, & x < 4 \\ x^2 + 2x + 2, & x \geq 4 \end{cases} \)
then, which of the following is/are true?
 a. \((f + g)(3.5) = 3\)
 b. \(f(g(3)) = 3\)
 c. \((g)(2) = 1\)
 d. \((f - g)(4) = 0\)

10. \(f(x) = x^2 - 2ax + a(a + 1), f: [a, \infty) \rightarrow [a, \infty) \). If one of the solutions of the equation \(f(x) = f^{-1}(x) \) is 5049, then the other may be
 a. 5051
 b. 5048
 c. 5052
 d. 5050

11. Which of the following function is/are periodic
 a. \(f(x) = \begin{cases} 1, & x \text{ is rational} \\ 0, & x \text{ is irrational} \end{cases} \)
 b. \(f(x) = \begin{cases} \lfloor x \rfloor; & 2n \leq x < 2n + 1 \\ \frac{1}{2}; & 2n + 1 \leq x < 2n + 2 \end{cases} \) where \(\lfloor \rfloor \) denotes the greatest integer function, \(n \in Z \)
 c. \(f(x) = (-1)^{\lfloor \frac{2x}{3} \rfloor}, \text{ where } \lfloor \rfloor \text{ denotes the greatest integer function} \)
 d. \(f(x) = x - \lfloor x + 3 \rfloor + \tan \left(\frac{\pi x}{2} \right), \text{ where } \lfloor \rfloor \text{ denotes the greatest integer function, and } a \text{ is a rational number} \)

12. If \(f: R^+ \rightarrow R^+ \) is a polynomial function satisfying the functional equation \(f(f(x)) = 6x - f(x) \), then \(f(17) \) is equal to
 a. 17
 b. 51
 c. 34
 d. 34

13. Let \(f: R \rightarrow R \) be a function defined by \(f(x + 1) = \frac{f(x) - 5}{f(x) - 3} \)
 \(\forall x \in R \). Then which of the following statement(s) is/are true?
 d. \(f(2006) = f(2018) \)

14. Let \(f(x) = \sec^{-1}[1 + \cos^2 x] \) where \([\] denotes the greatest integer function. Then
 a. the domain of \(f \) is \(R \)
 b. the domain of \(f \) is \([1, 2]\)
 c. the domain of \(f \) is \([1, 2]\)
 d. the range of \(f \) is \([\sec^{-1}1, \sec^{-2}2]\)

15. Which of the following pairs of functions is/are identical?
 a. \(f(x) = \tan \left(\tan^{-1}x \right) \) and \(g(x) = \cot \left(\cot^{-1}x \right) \)
 b. \(f(x) = \text{sgn}(x) \) and \(g(x) = \text{sgn}(\text{sgn}(x)) \)
 c. \(f(x) = \cos^2x \cdot \cos^2x \) and \(g(x) = \cos^2x - \cos^2x \)
 d. \(f(x) = e^{\sec^{-1}x} \) and \(g(x) = \sec^{-1}x \)

16. \(f: R \rightarrow [-1, \infty) \) and \(f(x) = \ln(\lfloor |\sin 2x| + |\cos 2x| \rfloor) \) (where \(\lfloor \rfloor \) is the greatest integer function).
 a. \(f(x) \) has range \(Z \)
 b. \(f(x) \) is periodic with fundamental period \(\pi/4 \)
 c. \(f(x) \) is invertible in \(\left[0, \frac{\pi}{4} \right] \)
 d. \(f(x) \) is into function

17. Which of the following is/are not a function ([] and { } denotes the greatest integer and fractional part functions respectively)?
 a. \(\frac{1}{\ln(1 - \lfloor x \rfloor)} \)
 b. \(\frac{x!}{\{x\}} \)
 c. \(\frac{\ln(x-1)}{\sqrt{(1-x^2)}} \)
 d. \(\frac{\ln(x-1)}{\sqrt{(1-x^2)}} \)

18. If the following functions are defined from \([-1, 1]\) to \([-1, 1]\), select those which are not objective
 a. \(\sin(\sin^{-1}x) \)
 b. \(\frac{2}{\pi} \sin^{-1}(\sin x) \)
 c. \(\text{sgn}(x) \ln(e^x) \)
 d. \(x^2 \cdot \text{sgn}(x) \)

19. If \(f: R \rightarrow N \cup \{0\} \), where \(f \) (area of triangle joining points \(P(5, 0), Q(8, 4) \) and \(R(x, y) \) such that the angle \(PRO \) is a right angle) = number of triangle. Then, which of the following is true?
 a. \(f(5) = 4 \)
 b. \(f(7) = 0 \)
 c. \(f(6.25) = 2 \)
 d. \(f(x) \) is into

20. If \(f(x) \) is a polynomial of degree \(n \) such that \(f(0) = 0, f(1) = \frac{1}{2}, \ldots, f(n) = \frac{n}{n+1} \), then the value of \(f(n+1) \) is
S A 21. \(f(x) = \frac{3}{4} x + 1 \), and \(f^n(x) \) be defined as \(f^2(x) = f(f(x)) \),
and for \(n \geq 2 \), \(f^{n+1}(x) = f(f^n(x)) \). If \(\lambda = \lim_{n \to \infty} f^n(x) \), then
a. \(\lambda \) is independent of \(x \)
b. \(\lambda \) is a linear polynomial in \(x \)
c. the line \(y = \lambda \) has slope 0
d. the line \(4y = \lambda \) touches the unit circle with centre at the origin.

22. The domain of the function
\[
\log \left(\frac{\log_{\sin x}(x^2 - 8x + 23) - 3}{\log_2 |\sin x|} \right)
\]
contains which of the following interval / intervals.
a. \((3, \pi)\)
b. \((\pi, 3)\)
c. \(\left(\frac{3\pi}{2}, 5\right)\)
d. None of these

S A 23. Let \(f(x) = \text{sgn}(\cot^{-1}x) + \tan \left(\frac{\pi}{2} [x] \right) \), where \([x]\) is the greatest integer function less than or equal to \(x \). Then
which of the following alternatives is/are true?
a. \(f(x) \) is many one but not even function
b. \(f(x) \) is periodic function
c. \(f(x) \) is bounded function
d. Graph of \(f(x) \) remains above the \(x \)-axis

Reasoning Type
Solutions on page 1.75

Each question has four choices a, b, c and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2.
a. if both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT 1.
b. if both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1.
c. if STATEMENT 1 is TRUE and STATEMENT 2 is FALSE.
d. if STATEMENT 1 is FALSE and STATEMENT 2 is TRUE.

1. Statement 1: \(f(x) = \log x \) cannot be expressed as a sum of odd and even function.
 Statement 2: \(f(x) = \log x \) is neither odd nor even function.
 a. TRUE
 b. TRUE

2. Statement 1: If \(g(x) = f(x) - 1 \). If \(f(x) + f(1-x) = 2 \) \(\forall x \in R \), then \(g(x) \) is symmetrical about the point \((1/2, 0)\).
 Statement 2: If \(g(-x) = g(a + x) \) \(\forall x \in R \), then \(g(x) \) is symmetrical about the point \((a, 0)\).
 a. TRUE
 b. TRUE

3. Consider the function satisfying the relation
\[
\frac{2 \tan x}{1 + \tan^2 x} = \frac{1 + \cos 2x}{(\sec^2 x + 2 \tan x)}
\]
 a. \(f(x) = \sin(x) \)
 b. \(f(x) = \cos(x) \)
 c. \(f(x) = \tan(x) \)
 d. \(f(x) = \cot(x) \)

4. Consider the function if \(f(x) = \sin(kx) + \{x\} \), where \(\{x\} \) represents the fractional part function.
 Statement 1: \(f(x) \) is periodic for \(k = m\pi \) where \(m \) is a rational number.
 Statement 2: The sum of two periodic functions is always periodic.
 a. TRUE
 b. TRUE

5. Statement 1: Function \(f(x) = x^2 + \tan^{-1}x \) is a non-periodic function.
 Statement 2: The sum of two non-periodic function is always non-periodic.
 a. TRUE
 b. TRUE

6. Statement 1: If \(x \in [1, \sqrt{3}] \), then the range of \(f(x) = \tan^{-1}x \) is \([\pi/4, \pi/3]\).
 Statement 2: If \(x \in [a, b] \), then the range of \(f(x) \) is \([f(a), f(b)]\).
 a. TRUE
 b. TRUE

7. Statement 1: \(f: N \to R, f(x) = \sin x \) is a one-one function.
 Statement 2: The period of \(\sin x \) is \(2\pi \) and \(2\pi \) is an irrational number.
 a. FALSE
 b. TRUE

8. Statement 1: A continuous surjective function \(f: R \to R \), \(f(x) \) can never be a periodic function.
 Statement 2: For a surjective function \(f: R \to R, f(x) \) to be periodic, it should necessarily be a discontinuous function.
 a. TRUE
 b. TRUE

9. Statement 1: The solution of equation \(||x^2 - 5x + 4| - |2x - 3|| - |x^2 - 3x + 1| \) is \(x \in (-\infty, 1] \cup \left[\frac{3}{2}, 4 \right] \).
 Statement 2: If \(x + y = |x| + |y| \), then \(x, y \geq 0 \).
 a. TRUE
 b. TRUE

10. Consider \(f \) and \(g \) be real-valued functions such that \(f(x + y) + f(x - y) = 2f(x) \cdot g(y) \forall x, y \in R \).
 Statement 1: If \(f(x) \) is not identically zero and \(|f(x)| \leq 1 \) \(\forall x \in R \), then \(g(y) \leq 1 \) \(\forall y \in R \).
 Statement 2: For any two real numbers \(x \) and \(y \), \(|x + y| \leq |x| + |y| \).
 a. TRUE
 b. TRUE

11. Statement 1: \(f(x) = \cos(x^2 - \tan x) \) is a non-periodic function.
 Statement 2: \(x^2 - \tan x \) is a non-periodic function.
 a. TRUE
 b. TRUE

12. Statement 1: The period of function \(f(x) = \sin \{x\} \) is 1, where \(\{\} \) represents fractional part function.
 Statement 2: \(g(x) = \{x\} \) has period 1.
 a. TRUE
 b. TRUE

13. Statement 1: If \(f: R \to R, y = f(x) \) is periodic and continuous function, then \(y = f(x) \) cannot be onto.
 Statement 2: A continuous periodic function is bounded.
 a. TRUE
 b. TRUE

14. Consider the functions \(f(x) = \log_2 x \) and \(g(x) = 2x + 3 \).
 Statement 1: \(f(g(x)) \) is a one-one function.
 Statement 2: \(g(x) \) is a one-one function.
 a. TRUE
 b. TRUE

15. Consider the functions \(f: R \to R, f(x) = x^2 \) and \(g: R \to R, g(x) = 3x + 4 \).
 Statement 1: \(f(g(x)) \) is an onto function.
 Statement 2: \(g(x) \) is an onto function.
 a. TRUE
 b. TRUE

16. Statement 1: \(f(x) = \sin x \) and \(g(x) = \cos x \) are identical functions.
 Statement 2: Both the functions have the same domain and range.
 a. TRUE
 b. TRUE

17. Statement 1: The period of \(f(x) = \sin x \) is \(2\pi \) \(\Rightarrow \) the period of \(g(x) = |\sin x| \) is \(\pi \).
 Statement 2: The period of \(f(x) = \cos x \) is \(2\pi \) \(\Rightarrow \) the period of \(g(x) = |\cos x| \) is \(\pi \).
 a. TRUE
 b. TRUE
18. Statement 1: \(f(x) = \sqrt{ax^2 + bx + c} \) has a range \([0, \infty)\) if \(b^2 - 4ac > 0 \).

Statement 2: \(ax^2 + bx + c = 0 \) has real roots if \(b^2 - 4ac > 0 \).

19. Statement 1: If \(f(x) = \cos x \) and \(g(x) = x^2 \), then \(f(g(x)) \) is an even function.

Statement 2: If \(f(g(x)) \) is an even function, then both \(f(x) \) and \(g(x) \) must be even function.

20. Statement 1: The graph of \(y = \sec^2 x \) is symmetrical about \(y \)-axis.

Statement 2: The graph of \(y = \tan x \) is symmetrical about origin.

For Problems 7–9

Let \(f : N \to R \) be a function satisfying the following conditions, \(f(1) = 1/2 \) and \(f(1) + 2, f(2) + 3, f(3) + \ldots + n f(n) = n(n + 1) \). \(f(n) \) for \(n \geq 2 \).

7. The value of \(f(1003) = \frac{1}{K} \), where \(K \) equals

8. The value of \(f(999) \) is \(\frac{1}{K} \), where \(K \) equals
 a. 999 b. 1000 c. 1998 d. 2000

9. \(f(1), f(2), f(3), f(4), \ldots \) represents a series of
 a. an A.P.
 b. a G.P.
 c. a H.P.
 d. An arithmetico-geometric

For Problems 10–12

If \((f(x))^2 \times \int \frac{1-x}{1+x} \) \(\text{dx} \), \(\forall x \in D_f \), then

10. \(f(x) \) is equal to
 a. \(4x^{2/3} \left(\frac{1+x}{1-x} \right)^{1/3} \)
 b. \(x^{1/3} \left(\frac{1-x}{1+x} \right)^{1/3} \)
 c. \(x^{2/3} \left(\frac{1-x}{1+x} \right)^{1/3} \)
 d. \(x \left(\frac{1+x}{1-x} \right)^{1/3} \)

11. The domain of \(f(x) \) is
 a. \([0, \infty) \)
 b. \(R - \{1\} \)
 c. \((-\infty, \infty) \)
 d. None of these

12. The value of \(f(9/7) \) is
 a. \(8(9/7)^{2/3} \)
 b. \(4(9/7)^{1/3} \)
 c. \(-8(9/7)^{2/3} \)
 d. None of these

For Problems 13–15

\(f(x) = \begin{cases} x-1 & x \leq 0 \\ x^2 & 0 \leq x \leq 1 \end{cases} \) and \(g(x) = \sin x \). Consider the functions

\(h_1(x) = f(\lfloor g(x) \rfloor) \) and \(h_2(x) = |f(g(x))| \).

13. Which of the following is not true about \(h_1(x) \)?
 a. It is periodic function with period \(\pi \)
 b. Range is \([0, 1]\)
 c. Domain is \(R \)
 d. None of these

14. Which of the following is not true about \(h_2(x) \)?
 a. Domain is \(R \)
 b. It periodic function with period \(2\pi \)
 c. Range is \([0, 1]\)
 d. None of these

15. For \(h_1(x) \) and \(h_2(x) \) are identical function, then which of the following is not true?
 a. Domain of \(h_1(x) \) and \(h_2(x) \), \(x \in [2n\pi, (2n + 1)\pi], n \in Z \)
 b. Range of \(h_1(x) \) and \(h_2(x) \) is \([0, 1]\)
 c. Period of \(h_1(x) \) and \(h_2(x) \) is \(\pi \)
 d. None of these
For Problems 16–18
If \(a_0 = x, a_{n+1} = f(a_n), \) where \(n = 0, 1, 2, \ldots, \) then answer the following questions.

16. If \(f(x) = \sqrt[n]{a - x^n}, x > 0, m \geq 2, m \in \mathbb{N}. \) Then
 a. \(a_n = x, n = 2k + 1, \) where \(k \) is integer
 b. \(a_n = f(x) \) if \(n = 2k, \) where \(k \) is integer
 c. Inverse of \(a_n \) exists for any value of \(n \) and \(m \)
 d. None of these

17. If \(f(x) = \frac{1}{1 - x}, \) then which of the following is not true?
 a. \(a_n = \frac{1}{1 - x} \) if \(n = 3k + 1 \)
 b. \(a_n = x \) if \(n = 3k + 2 \)
 c. \(a_n = x \) if \(n = 3k \)
 d. None of these

18. If \(f: R \rightarrow R \) be given by \(f(x) = 3 + 4x \) and \(a_n = A + Bx, \) then which of the following is not true?
 a. \(A + B + 1 = 2^{2n+1} \)
 b. \(|A - B| = 1 \)
 c. \(\lim_{n \to \infty} A = -1 \)
 d. None of these

For Problems 19–21
Let \(f(x) = f_1(x) - 2f_2(x), \)
where \(f_1(x) = \begin{cases} \min \{x^2, |x|\}, & x \leq 1 \\ \max \{x^2, |x|\}, & x > 1 \end{cases} \)
and \(f_2(x) = \begin{cases} \min \{x^2, |x|\}, & x > 1 \\ \max \{x^2, |x|\}, & x \leq 1 \end{cases} \)
and \(g(x) = \begin{cases} \min \{f(t) : -3 \leq t \leq x, -3 \leq x < 0\} & 0 \leq x \leq 3 \\ \max \{f(t) : 0 \leq t \leq x, 0 \leq x \leq 3\} & x \leq 0 \end{cases} \)

19. For \(-3 \leq x \leq -1,\) the range of \(g(x) \) is
 a. \([-1, 3]\)
 b. \([-1, -15]\)
 c. \([-1, 9]\)
 d. None of these

20. For \(x \in (-1, 0), f(x) + g(x) \) is
 a. \(x^2 - 2x + 1 \)
 b. \(x^2 + 2x - 1 \)
 c. \(x^2 + 2x + 1 \)
 d. \(x^2 - 2x - 1 \)

21. The graph of \(y = g(x) \) in its domain is broken at
 a. 1 point
 b. 2 points
 c. 3 points
 d. None of these

For Problems 22–24
Let \(f(x) = \begin{cases} 2x + a, & x \geq -1 \\ bx^2 + 3, & x < -1 \end{cases} \)
and \(g(x) = \begin{cases} x + 4, & 0 \leq x \leq 4 \\ -3x - 2, & -2 < x < 0 \end{cases} \)

22. \(g(f(x)) \) is not defined if
 a. \(a \in (10, \infty), b \in (5, \infty) \)
 b. \(a \in (4, 10), b \in (5, \infty) \)
 c. \(a \in (10, \infty), b \in (0, 1) \)
 d. \(a \in (4, 10), b \in (1, 5) \)

23. If the domain of \(g(f(x)) \) is \([-1, 4]\), then
 a. \(a = 1, b > 5 \)
 b. \(a = 2, b > 7 \)
 c. \(a = 2, b > 10 \)
 d. \(a = 0, b \in R \)

24. If \(a = 2 \) and \(b = 3, \) then the range of \(g(f(x)) \) is
 a. \((-2, 8]\)
 b. \((0, 8]\)
 c. \([4, 8]\)
 d. \([-1, 8]\)

For Problems 25–27
Let \(f: R \rightarrow R \) is a function satisfying \(f(2 - x) = f(2 + x) \) and \(f(20 - x) = f(x), \forall x \in R. \) For this function \(f, \) answer the following.

25. If \(f(0) = 5, \) then the minimum possible number of values of \(x \) satisfying \(f(x) = 5, \forall x \in [0, 170], \) is
 a. 21
 b. 12
 c. 11
 d. 22

26. The graph of \(y = f(x) \) is not symmetrical about
 a. symmetrical about \(x = 2 \)
 b. symmetrical about \(x = 10 \)
 c. symmetrical about \(x = 8 \)
 d. None of these

27. If \(f(2) \neq f(6), \) then the
 a. fundamental period of \(f(x) \) is \(1 \)
 b. fundamental period of \(f(x) \) may be \(1 \)
 c. period of \(f(x) \) cannot be \(1 \)
 d. fundamental period of \(f(x) \) is \(8 \)

For Problems 28–30
Consider two functions \(f(x) = \begin{cases} [x], & -2 \leq x \leq -1 \\ |x| + 1, & -1 < x \leq 2 \end{cases} \)
and \(g(x) = \begin{cases} [x], & -\pi \leq x < 0 \\ \sin x, & 0 \leq x \leq \pi \end{cases} \)
where \([.\) denotes the greatest integer function.

28. The exhaustive domain of \(g(f(x)) \) is
 a. \([0, 2]\)
 b. \([-2, 0]\)
 c. \([-2, 2]\)
 d. \([-1, 2]\)

29. The range of \(g(f(x)) \) is
 a. \([\sin 3, \sin 1]\)
 b. \([\sin 3, 1] \cup [-2, -1, 0]\)
 c. \([\sin 1, 1] \cup [-2, -1]\)
 d. \([\sin 1, 1]\)

30. The number of integral points in the range of \(g(f(x)) \) is
 a. 2
 b. 4
 c. 3
 d. 5

Matrix-Match Type

Solutions on page 1.79

Each question contains statements given in two columns which have to be matched.

Statements a, b, c, d in column I have to be matched with statements p, q, r, s in column II. If the correct match is a-p, a-s, b-q, b-r, c-p, c-q and d-s, then the correctly bubbled 4x4 matrix should be as follows:
1. The function \(f(x) \) is defined on the interval \([0, 1]\).

Then match the following columns:

<table>
<thead>
<tr>
<th>Column I: Function</th>
<th>Column II: Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(\tan x))</td>
<td>p. (\left[2n\pi - \frac{\pi}{2}, 2n\pi + \frac{\pi}{2} \right], n \in \mathbb{Z})</td>
</tr>
<tr>
<td>b. (f(\sin x))</td>
<td>q. (\left[2n\pi, 2n\pi + \frac{\pi}{6} \right] \cup \left[2n\pi + \frac{5\pi}{6}, (2n+1)\pi \right], n \in \mathbb{Z})</td>
</tr>
<tr>
<td>c. (f(\cos x))</td>
<td>r. ([2n\pi, (2n+1)\pi], n \in \mathbb{Z})</td>
</tr>
<tr>
<td>d. (f(2\sin x))</td>
<td>s. (\left[n\pi, n\pi + \frac{\pi}{4} \right], n \in \mathbb{Z})</td>
</tr>
</tbody>
</table>

2. Column I: Function	Column II: Type of function
a. \(f(x) = (\text{sgn } x)^\text{sgn } x, x \neq 0, n \text{ is an odd integer} \)	p. odd function
b. \(f(x) = \frac{x}{e^x-1} + \frac{1}{2} \)	q. even function
c. \(f(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ 1, & \text{if } x \text{ is irrational} \end{cases} \)	r. neither odd nor even function
d. \(f(x) = \max\{\tan x, \cot x\} \)	s. periodic

3. Column I: Functions	Column II: Values of \(x \) for which both the functions in any option of the column I are identical
a. \(f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right), g(x) = 2\tan^{-1}x \)	p. \(x \in \{-1, 1\} \)
b. \(f(x) = \sin^{-1}(\sin x) \) and \(g(x) = \sin(\sin^{-1}x) \)	q. \(x \in [-1, 1] \)
c. \(f(x) = \log_{10} 25 \) and \(g(x) = \log_{10} 5 \)	r. \(x \in (-1, 1) \)
d. \(f(x) = \sec^{-1}x + \csc^{-1}x, g(x) = \sin^{-1}x + \cos^{-1}x \)	s. \(x \in (0, 1) \)

4. Column I	Column II
a. \(f: R \to \left[\frac{3\pi}{4}, \pi\right] \) and \(f(x) = \cot^{-1}(2x - x^2 - 2), \) then \(f(x) \) is	p. one-one
b. \(f: R \to R \) and \(f(x) = e^{\ln x} \) where \(p, q \in \mathbb{R} \), then \(f(x) \) is	q. into
c. \(f: R^+ \to [4, \infty] \) and \(f(x) = 4 + 3x^4 \), then \(f(x) \) is	r. many-one
d. \(f: X \to X \) and \(f(f(x)) = x \forall x \in X \), then \(f(x) \) is	s. onto

5. Let \(f: R \to R \) and \(g: R \to R \) be functions such that \(f(g(x)) \) is a one-one function.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Then (g(x))</td>
<td>p. must be one-one</td>
</tr>
<tr>
<td>b. Then (f(x))</td>
<td>q. may not be one-one</td>
</tr>
<tr>
<td>c. If (g(x)) is onto then (f(x))</td>
<td>r. may be many-one</td>
</tr>
<tr>
<td>d. If (g(x)) is into then (f(x))</td>
<td>s. must be many-one</td>
</tr>
</tbody>
</table>
6. | Column I: Function | Column II: Period |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(x) = \cos (\sin x -</td>
<td>\cos x</td>
</tr>
<tr>
<td>b. (f(x) = \cos (\tan x + \cot x) \cdot \cos (\tan x - \cot x))</td>
<td>q. (\pi/2)</td>
</tr>
<tr>
<td>c. (f(x) = \sin^{-1} (\sin x) + e^{\sin x})</td>
<td>r. (4\pi)</td>
</tr>
<tr>
<td>d. (f(x) = \sin^3 x \sin 3x)</td>
<td>s. (2\pi)</td>
</tr>
</tbody>
</table>

7. \{\} denotes the fractional part function and \([\cdot]\) denotes the greatest integer function:

<table>
<thead>
<tr>
<th>Column I: (Function)</th>
<th>Column II: (Period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(x) = \cos^3 x + x -</td>
<td>x</td>
</tr>
<tr>
<td>b. (f(x) = \cos 2\pi (2x) + \sin 2\pi (2x))</td>
<td>q. (1/4)</td>
</tr>
<tr>
<td>c. (f(x) = \sin 3\pi [x] + \tan \pi [x])</td>
<td>r. (1/2)</td>
</tr>
<tr>
<td>d. (f(x) = 3x - [3x + a] - b), where (a, b \in \mathbb{R})</td>
<td>s. (1)</td>
</tr>
</tbody>
</table>

8. | Column I: (Function) | Column II: (Range) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(x) = \log_3 (5 + 4x - x^2))</td>
<td>p. function not defined</td>
</tr>
<tr>
<td>b. (f(x) = \log_3 (2x^2 - 4x - 3))</td>
<td>q. ([0, \infty))</td>
</tr>
<tr>
<td>c. (f(x) = \log_3 (2x^2 - 4x + 5))</td>
<td>r. ((-\infty, 2])</td>
</tr>
<tr>
<td>d. (f(x) = \log_3 (4x - x^2 - x))</td>
<td>s. (R)</td>
</tr>
</tbody>
</table>

9. | Column I: Equation | Column II: Number of roots |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (x^2 \tan x = 1, x \in [0, 2\pi])</td>
<td>p. 5</td>
</tr>
<tr>
<td>b. (2^{\cos x} =</td>
<td>\sin x</td>
</tr>
<tr>
<td>c. (x) is a polynomial of degree 5 with real coefficients such that (f(</td>
<td>x</td>
</tr>
<tr>
<td>d. (\frac{</td>
<td>x</td>
</tr>
</tbody>
</table>

[Integer Type

Solutions on page 181

1. Let \(f \) be a real-valued invertible function such that \(f\left(\frac{2x-3}{x-2}\right) = 5x - 2, x \neq 2 \). Then the value of \(f^{-1}(13) \) is

2. Number of values of \(x \) for which \(|x^2 - x + 4| - 2 - |x - 3| = x^2 + x - 12 \) is

3. Let \(f(x) = 3x^2 - 7x + c \), where ‘\(c \)’ is a variable coefficient and \(x > \frac{7}{6} \). Then the value of \([c] \) such that \(f(x) \) touches \(f^{-1}(x) \) is (where \([\cdot] \) represents greatest integer function)

4. Number of integral values of \(x \) for which
\[
\frac{\pi}{2\tan^{-1}x} - 4\frac{(x-4)(x-10)}{x! - 1 - (x-1)!} < 0
\]

5. Let \(f : \mathbb{R}^+ \to \mathbb{R} \) be a function which satisfies \(f(x) \cdot f(y) = f(xy) + 2\left(1 + \frac{1}{x} + \frac{1}{y}\right) \) for \(x, y > 0 \), then possible value of \(f(1/2) \) is

6. A continuous function \(f(x) \) on \(\mathbb{R} \to \mathbb{R} \) satisfies the relation \(f(x) + f(2x + y) + 3y = f(3x - y) + 2x^2 + 1 \) for \(\forall x, y \in \mathbb{R} \), then the value of \(f(4) \) is

7. Let \(a > 2 \) be a constant. If there are just 18 positive integers satisfying the inequality \((x-a)(x-2a)(x-a^2) < 0 \), then the value of \(a \) is

8. Number of integers in the domain of function, satisfying
\[
f(x) + f(x^{-1}) = \frac{x^3 + 1}{x}, \text{ is}
\]

9. \(f : \mathbb{R} \to \mathbb{R} \) if \(f(x^2 + x + 3) + 2f(x^2 - 3x + 5) = 6x^2 - 10x + 17 \forall x \in \mathbb{R} \), then the value of \(f(5) \) is

10. If \(f(x) \) is an odd function and \(f(1) = 3 \), and \(f(x + 2) = f(x) + f(2) \), then the value of \(f(3) \) is

11. Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous onto function satisfying \(f(x) + f(-x) = 0, \forall x \in \mathbb{R} \).
If \(f(-3) = 2 \) and \(f(5) = 4 \) in \([-5, 5] \), then the minimum number of roots of the equation \(f(x) = 0 \) is

12. Number of integral values of \(x \) for which the function \(
\sqrt{\sin x + \cos x + \sqrt{7x - x^2 - 6}}
\) is defined.
13. Suppose that \(f \) is an even, periodic function with period 2, and that \(f(x) = x \) for all \(x \) in the interval \([0, 1]\). The value of
\[10f(3.14) \] is (where \([\cdot]\) represents the greatest integer function).

14. If \(f(x) = \sqrt{4 - x^2} + \sqrt{x^2 - 1} \), then the maximum value of
\(f(f(x))^2 \) is
\[\frac{x + 1}{x^2 + 1} \] can be written as the sum of an even function \(g(x) \) and an odd function \(h(x) \). Then the value of \([g(0)] \) is
\(T \) is the period of the function \(f(x) = [8x + 7] + |\tan 2\pi x - 8x| \) (where \([\cdot]\) denotes the greatest integer function), then the value of \(1/T \) is
\(a, b, \) and \(c \) are non-zero rational numbers, then the sum of
all the possible values of \(\frac{|a|}{a} + \frac{|b|}{b} + \frac{|c|}{c} \) is
\(f(2x) \left(1 - f \left(\frac{1}{2x} \right) \right) + f(16x^2) = (f(-2) - f(4xy)) \forall x, y \in R \) and \(f(0) = 255, f(10) = 1 \), then the value of \([f(2) + 1]/2 \) is
\(f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right) + \cos x \cos \left(x + \frac{\pi}{3} \right) \) and \(g \left(\frac{5}{4} \right) = 1 \) then \((gof)(x) \) is
\(E = \{1, 2, 3, 4\} \) and \(F = \{1, 2\} \). If \(N \) is number of onto functions from \(E \) to \(F \), then the value of \(N/2 \) is
the function \(f \) is continuous and has the property \(f(f(x)) = 1 - x \), then the value of \(f \left(\frac{1}{4} \right) + f \left(\frac{3}{4} \right) \) is
number of integral values of \(x \) satisfying the inequality
\[\left(\frac{3}{4} \right) \leq \frac{27}{64} \]
\(\frac{6x + 10 - x^2}{4} \)
\(f(x) = n + 3, n \in \text{odd} \), \(n/2, n \in \text{even} \). Suppose \(k \in \text{odd} \) and \(f(f(k))) = 27 \), then the sum of digits of \(k \) is
if \(\theta \) be the fundamental period of function \(f(x) = \sin^{99} x + \sin^{99} \left(x + \frac{2\pi}{3} \right) + \sin^{99} \left(x + \frac{4\pi}{3} \right) \), then complex number \(z = x + i \sin \theta \) lies in the quadrant number.
\(x = \frac{4}{9} \) satisfy the equation \(\log_2(x^2 + 2x + 3) > \log_2(2x + 3) \), then sum of all possible distinct values of \([x] \) is
where \([\cdot]\) represents greatest integer function
\(4^4 = 2^{2} + 2 + 5 + [\sin y], x, y, b \in R \), then the possible value of \(b \) is
\(f(x) = x_2 > x_1 \Rightarrow f(x_2) > f(x_1), \forall x_1, x_2 \in N \) and
\(f(f(n)) = 3n, \forall n \in N \), then \(f(2) = 2 \)
number of integral values of \(a \) for which \(f(x) = \log \left(\log_{13} \left(\log_8 \left(\sin x + a \right) \right) \right) \) be defined for every real value of \(x \)
\(f(x) = \sin^2 x - \cos^2 x \) and \(g(x) = 1 + \frac{1}{2} \tan^{-1} |x| \), then the number of values of \(x \) in interval \([-10\pi, 8\pi] \) satisfying the equation \(f(x) = \text{sgn}(g(x)) \) is
\(f(x) = \frac{x^2}{x} + bx + cx^2 + dx^3 + ex^4 + fx^5 + gx^6 + hx^7 + ix^8 \) \(x \neq 0 \). If \(f(5) = 2 \), then the value of \(|f(-5)|/4 \) is

Subjective
1. Find the domain and range of the function \(f(x) = \frac{x^2}{1 + x^2} \). Is the function one-to-one? (IIT-JEE, 1978)
2. Draw the graph of \(y = |x|^{1/2} \) for \(-1 \leq x \leq 1 \) (IIT-JEE, 1978)
3. If \(f(x) = x^9 - 6x^8 - 2x^7 + 12x^6 + x^4 - 7x^3 + 6x^2 - x - 3 \), find \(f(6) \). (IIT-JEE, 1979)
4. Let \(f \) be a one-one function with domain \(\{x, y, z\} \) and range \(\{1, 2, 3\} \). It is given that exactly one of the following statements is true and the remaining two are false \(f(x) = 1 \), \(f(y) \neq 1 \), \(f(z) = 2 \) determine \(f^{-1}(1) \). (IIT-JEE, 1982)
5. Find the natural number \(a \) for which \(\sum_{k=1}^{n} f(a + k) = 16(2^n - 1) \), where the function \(f \) satisfies the relation \(f(x + y) = f(x)f(y) \) for all natural numbers \(x, y \) and further \(f(1) = 2 \). (IIT-JEE, 1992)
6. Let \(\{x\} \) and \([x]\) denote the fractional and integral part of a real number \(x \), respectively. Solve \(4\{x\} = x + [x] \). (IIT-JEE, 1992)
7. A function \(f: R \rightarrow R \) is defined by \(f(x) = ax^2 + 6x - 8\) \(x \neq 2, x \in R \). Find the interval of values of \(\alpha \) for which \(f \) is onto. Is the function one-to-one for \(\alpha = 3 \)? Justify your answer. (IIT-JEE, 1996)

Objective

Fill in the blanks
1. The values of \(f(x) = 3 \sin \left(\frac{\pi^2}{16} - x^2 \right) \) lie in the interval,
(IIT-JEE, 1983)
2. The domain of the function \(f(x) = \sin^{-1} \left(\log_2 \frac{x^2}{2} \right) \) is given by
(IIT-JEE, 1984)
3. Let \(A \) be a set of \(n \) distinct elements. Then the total number of distinct functions from \(A \) to \(A \) is
(IIT-JEE, 1985)
4. If \(f(x) = \log \left(\frac{\sqrt{x^2 + 4} - x^2}{1 - x} \right) \), then the domain of \(f(x) \) is
(IIT-JEE, 1985)
5. There are exactly two distinct linear functions, \(f \) and \(g \), which map \([-1, 1]\) onto \([0, 2]\).

6. If \(f \) is an even function defined on the interval \((-5, 5)\), then four real values of \(x \) satisfying the equation \(f(x) = \frac{x + 1}{x + 2} \) are \(-1\), \(-2\), \(1\), \(2\).

7. If \(f(x) = \sin^{2}x + \sin^{2}\left(x + \frac{\pi}{3}\right) + \cos x \cos\left(x + \frac{\pi}{3}\right) \) and \(g \left(\frac{5}{4} \right) = 1 \), then \((g \circ f)(x) = \frac{8(3)^{x-2}}{1 - 3^{2(x-1)}} \).

8. The domain of the function \(f(x) = \sin^{-1}\left(\frac{8(3)^{x-2}}{1 - 3^{2(x-1)}} \right) \) is \(\text{True or False} \)

1. If \(f(x) = (a - x^2)^n \) where \(a > 0 \) and \(n \) is a positive integer, then \(f(f(x)) = x \).

2. The function \(f(x) = \frac{x^2 + 4x + 30}{x^2 - 8x + 18} \) is not onto.

3. If \(f_1(x) \) and \(f_2(x) \) are defined on the domain \(D_1 \) and \(D_2 \) respectively, then \(f_1(x) + f_2(x) \) is defined on \(D_1 \cup D_2 \).

4. True or False

5. If \(f(x) = \cos(\log_e x) \), then \(f(x)f(y) - \frac{1}{2} \left[f\left(\frac{x}{y} \right) + f(xy) \right] \) has the value 1/2 or 1/2.

6. The domain of definition of the function \(y = \frac{1}{\log_{10}(1-x)} + \sqrt{x + 2} \) is \(\text{a.} (-3, -2) \text{ excluding } -2.5 \) \(\text{b.} [0, 1] \text{ excluding 0.5} \) \(\text{c.} [-2, 1] \text{ excluding } 0 \) \(\text{d.} \text{None of these} \) (IIT-JEE, 1983)

7. Which of the following functions is periodic?

\(a. f(x) = x - [x] \) where \([x]\) denotes the largest integer less than or equal to the real number \(x \)

\(b. f(x) = \sin\frac{1}{x} \) for \(x \neq 0 \), \(f(0) = 0 \)

\(c. f(x) = x \cos x \)

\(d. \text{None of these} \) (IIT-JEE, 1983)

8. If the function \(f : [1, \infty) \to [1, \infty) \) is defined by \(f(x) = 2^{x-1} \), then \(f^{-1}(x) \) is \(a. \left(\frac{1}{2} \right)^{(x-1)} \) \(b. \frac{1}{2}(1 + \sqrt{4 \log_2 x}) \)

\(c. \frac{1}{2} \left(1 - \sqrt{4 \log_2 x} \right) \)

\(d. \text{Not defined} \) (IIT-JEE, 1992)

9. Let \(f(x) = \sin x \) and \(g(x) = \log|x| \). If the ranges of the composition function \(f \circ g \) and \(g \circ f \) are \(R_1 \) and \(R_2 \) respectively, then \(a. R_1 = \{ x : -1 \leq x < 1 \}, R_2 = \{ x : -\infty < x < 0 \} \)

\(b. R_1 = \{ x : -\infty < x < 0 \}, R_2 = \{ x : -\infty < x < 0 \} \)

\(c. R_1 = \{ x : -1 < x < 1 \}, R_2 = \{ x : -\infty < x < 0 \} \)

\(d. R_1 = \{ x : -1 < x < 1 \}, R_2 = \{ x : -\infty < x < 0 \} \) (IIT-JEE, 1994)

10. Let \(f(x) = (x + 1)^2 - 1, x \geq -1 \). Then the set \(\{ x : f(x) = f^{-1}(x) \} \) is \(a. \{ 0, -1, -3 + i\sqrt{3}, -3 - i\sqrt{3} \} \)

\(b. \{ 0, 1, -1 \} \)

\(c. \{ 0, -1 \} \)

\(d. \text{Empty} \) (IIT-JEE, 1995)

11. Let \(f(x) \) be defined for all \(x > 0 \) and be continuous. Let \(f(x) \) satisfy \(f\left(\frac{x}{y} \right) = f(x) - f(y) \) for all \(x, y \) and \(f(e^0) = 1 \). Then

\(a. f(x) \) is bounded \(\quad b. f\left(\frac{1}{x} \right) \to 0 \text{ as } x \to 0 \)

\(c. x f(x) \to 1 \text{ as } x \to 0 \)

\(d. f(x) = \log x \) (IIT-JEE, 1995)

12. The domain of definition of the function \(f(x) \) given by the equation \(2^x + 2^y = 2 \) is \(a. 0 < x \leq 1 \)

\(b. 0 \leq x \leq 1 \)

\(c. -\infty < x < 0 \)

\(d. -\infty < x < 1 \) (IIT-JEE, 2000)

13. Let \(g(x) = 1 + x - [x] \) and \(f(x) = \left\{ \begin{array}{ll} 0, & x = 0, \text{Then for all } x, \\end{array} \right. \)

\(1, & x > 0 \)

\(f(g(x)) \) is equal to (where \([\cdot]\) represents greatest integer function)

\(a. x \quad b. 1 \)

\(c. f(x) \quad d. g(x) \) (IIT-JEE, 2001)

14. If \(f : [1, \infty) \to [2, \infty) \) is given by \(f(x) = x + \frac{1}{x} \), then \(f^{-1}(x) \) equals \(a. (3, -2) \text{ excluding } -2.5 \) \(b. [0, 1] \text{ excluding 0.5} \)

\(c. [-2, 1] \text{ excluding 0} \)

\(d. \text{None of these} \) (IIT-JEE, 2001)
15. The domain of definition of \(f(x) = \log_2 \left(\frac{x + 3}{x^2 + 3x + 2} \right) \) is
a. \(R - (-1, -2) \)
 b. \((-2, \infty) \)
 c. \(R - (-1, -2, -3) \)
 d. \((-3, \infty) - (-1, -2) \)
 (IIT-JEE, 2001)

16. Let \(E = \{1, 2, 3, 4\} \) and \(F = \{1, 2\} \). Then the number of onto functions from \(E \) to \(F \) is
a. 14
 b. 16
 c. 12
 d. 8
 (IIT-JEE, 2001)

17. Let \(f(x) = \frac{\alpha x}{x + 1}, x \neq -1 \). Then for what value of \(\alpha \) is \(f(f(x)) = x \)?
a. \(\sqrt{2} \)
 b. \(-\sqrt{2} \)
 c. 1
 d. -1
 (IIT-JEE, 2001)

18. Suppose \(f(x) = (x + 1)^2 \) for \(x \geq -1 \). If \(g(x) \) is the function whose graph is the reflection of the graph of \(f(x) \) with respect to the line \(y = x \), then \(g(x) \) equals
a. \(-\sqrt{x - 1}, x \geq 0 \)
 b. \(\frac{1}{(x + 1)^2}, x > -1 \)
 c. \(\sqrt{x + 1}, x \geq -1 \)
 d. \(\sqrt{x - 1}, x \geq 0 \)
 (IIT-JEE, 2002)

19. Let function \(f: R \rightarrow R \) be defined by \(f(x) = 2x + \sin x \) for \(x \in R \), then \(f \) is
a. one-to-one and onto
 b. one to one but NOT onto
 c. onto but NOT one-to-one
 d. neither one-to-one nor onto
 (IIT-JEE, 2002)

20. If \(f: [0, \infty) \rightarrow [0, \infty) \), and \(f(x) = \frac{\sqrt{x}}{1 + x} \), then \(f \) is
a. one-one and onto
 b. one-one but not onto
 c. onto but not one-one
 d. neither one-one nor onto
 (IIT-JEE, 2003)

21. The domain of definition of the function \(f(x) = \sqrt{\sin^{-1}(2x) + \frac{\pi}{6}} \) for real-valued \(x \) is
a. \(\left[\frac{1}{4}, \frac{1}{2} \right] \)
 b. \(\left[\frac{1}{2}, \frac{1}{4} \right] \)
 c. \(\left[\frac{1}{2}, \frac{1}{4} \right] \)
 d. \(\left[\frac{1}{4}, \frac{1}{2} \right] \)
 (IIT-JEE, 2003)

22. The range of the function \(f(x) = \frac{x^2 + 2}{x^2 + x + 1} \), \(x \in R \), is
a. \((1, \infty) \)
 b. \((1, 11/7) \)
 c. \((1, 7/3) \)
 d. \((1, 7/5) \)
 (IIT-JEE, 2003)

23. If \(f(x) = \sin x + \cos x, g(x) = x^2 - 1 \), then \(g(f(x)) \) is invertible in the domain
a. \([0, \frac{\pi}{2}] \)
 b. \([-\frac{\pi}{4}, \frac{\pi}{4}] \)
 c. \([-\frac{\pi}{2}, \frac{\pi}{2}] \)
 d. \([0, \pi] \)
 (IIT-JEE, 2004)

24. If the functions \(f(x) \) and \(g(x) \) are defined on \(R \rightarrow R \) such that \(f(x) = \begin{cases} 0, & x \in \text{rational} \\ x, & x \in \text{irrational} \end{cases} \)
and \(g(x) = \begin{cases} 0, & x \in \text{irrational} \\ x, & x \in \text{rational} \end{cases} \)
then \((f - g)(x) \) is
a. one-one and onto
 b. neither one-one nor onto
 c. one-one but not onto
 d. onto but not one-one
 (IIT-JEE, 2005)

25. \(X \) and \(Y \) are two sets and \(f: X \rightarrow Y \). If \(f(c) = y; c \subset X \), \(y \subset Y \) and \(f^{-1}(d) = x; d \subset Y \), \(x \subset X \), then the true statement is
a. \(f(f^{-1}(b)) = b \)
 b. \(f^{-1}(f(a)) = a \)
 c. \(f(f^{-1}(b)) = b \subset y \)
 d. \(f^{-1}(f(a)) = a, a \subset x \)
 (IIT-JEE, 2005)

Multiple choice questions with one or more than one correct answer

1. If \(y = f(x) = \frac{x + 2}{x - 1} \) then
a. \(x = f(y) \)
 b. \(f(1) = 3 \)
 c. \(y \) increases with \(x \) for \(x < 1 \)
 d. \(f \) is a rational function of \(x \)
 (IIT-JEE, 1984)

2. Let \(g(x) \) be a function defined on \([-1, 1] \). If the area of the equilateral triangle with two of its vertices at \((0, 0) \) and \((x, g(x)) \) is \(\sqrt{3}/4 \) then the function \(g(x) \) is
a. \(g(x) = \pm \sqrt{1 - x^2} \)
 b. \(g(x) = \sqrt{1 - x^2} \)
 c. \(g(x) = -\sqrt{1 - x^2} \)
 d. \(g(x) = \sqrt{1 + x^2} \)
 (IIT-JEE, 1989)

3. If \(f(x) = \cos[\pi^2]x + \cos[-\pi^2]x \), where \([x]\) stands for the greatest integer function, then
a. \(f\left(\frac{\pi}{2}\right) = -1 \)
 b. \(f(\pi) = 1 \)
 c. \(f(-\pi) = 0 \)
 d. \(f\left(\frac{\pi}{4}\right) = 1 \)
 (IIT-JEE, 1991)

4. If \(f(x) = 3x - 5 \), then \(f^{-1}(x) \)
a. is given by \(\frac{1}{3x-5} \)
 b. is given by \(\frac{x+5}{3} \)
 c. does not exist because \(f \) is not one-one
 d. does not exist because \(f \) is not onto
 (IIT-JEE, 1998)
Match the following type

This question contains statements given in two columns which have to be matched. Statements a, b, c, d in Column I have to be matched with statements p, q, r, s in Column II. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct match is a–p, a–s, b–q, b–r, c–q and d–s, then the correctly bubbled 4 × 4 matrix should be as follows:

\[
\begin{array}{cccc}
p & q & r & s \\
a & p & q & r \\
b & p & q & r \\
c & p & q & r \\
d & p & q & r \\
\end{array}
\]

1. Let \(f(x) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6} \)

Match of expressions/statements in Column I with expressions/statements in Column II

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. If (-1 < x < 1), then (f(x)) satisfies (p. 0 < f(x) < 1)</td>
<td></td>
</tr>
<tr>
<td>b. If (1 < x < 2), then (f(x)) satisfies (q. f(x) < 0)</td>
<td></td>
</tr>
<tr>
<td>c. If (3 < x < 5), then (f(x)) satisfies (r. f(x) > 0)</td>
<td></td>
</tr>
<tr>
<td>d. If (x > 5), then (f(x)) satisfies (s. f(x) < 1)</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

\[
\begin{align*}
\Rightarrow & \quad y = \sin(x^2 - \pi/2) \\
D_{f} & = R \\
2. & \quad g(x) = \sqrt{x - 2k}, \forall 2k \leq x < 2(k + 1), \text{where } k \in \mathbb{Z}, \text{integer} \\
\Rightarrow & \quad g(x) = \\
\begin{align*}
\cdots \\
\sqrt{x + 2}, & -2 \leq x < 0 \\
\sqrt{x}, & 0 \leq x < 2 \\
\sqrt{x - 2}, & 2 \leq x < 4 \\
\sqrt{x - 4}, & 4 \leq x < 6 \\
\cdots \\
\end{align*}
\Rightarrow & \quad g \text{ is periodic with period } 2
\end{align*}
\]

3. Given \(f(x) = x^2 - 2x = (x - 1)^2 - 1 \)

\[
\Rightarrow & \quad g(x) = f(f(x) - 1) + f(5 - f(x)) \\
& = f((x - 1)^2 - 2 + 6 - (x - 1)^2) \\
& = ((x - 1)^2 - 2 - 1 + 6 - (x - 1)^2)^2 - 1 \\
& = (x - 1)^4 - 6(x - 1)^2 + 9 + (x - 1)^4 \\
& = 10(x - 1)^2 + 7(1 - 1) \\
& = 10(x - 1)^2 + 75 - 1
\]

ANSWERS AND SOLUTIONS
4. Let two linear functions be \(f(x) = ax + b \) and \(g(x) = cx + d \).
They map \([-1, 1]\) to \([0, 2]\) and mapping is onto.
\(f(-1) = 0 \) and \(f(1) = 2 \) and \(g(-1) = 2 \) and \(g(1) = 0 \)
\(a + b = 0 \) and \(a + b = 2 \)
and \(-c + d = 2 \) and \(c + d = 0 \)
\(a = b = 1 \) and \(c = -1, d = 1 \)
\(f(x) = x + 1 \) and \(g(x) = -x + 1 \)
\(h(x) = \frac{x + 1}{1 - x} \Rightarrow h(h(x)) = \frac{\frac{x + 1}{1 - x} + 1}{1 - \frac{x + 1}{1 - x}} = \frac{1}{x} \)
\(h(h(1/x)) = x \)
\(|h(h(x)) + h(1/x)| = |x + 1/x| > 2. \)

5. \(f(x) = \begin{cases} x^2 - 4x + 3, & x < 3 \\ x - 4, & x \geq 3 \end{cases} \)
\(g(x) = \begin{cases} x - 3, & x < 3 \\ x^2 + 2x + 2, & x \geq 4 \end{cases} \)
\(f(x) = \begin{cases} x^2 - 4x + 3, & x < 3 \\ x - 4, & 3 \leq x < 4 \\ x - 4, & x \geq 4 \end{cases} \)
\(g(x) = \begin{cases} x - 3, & x < 3 \\ x^2 + 2x + 2, & x \geq 4 \end{cases} \)

From (1) and (2), we have
\[
\frac{f(x)}{g(x)} = \begin{cases}
\frac{x^2 - 4x + 3}{x - 3}, & x < 3 \\
\frac{x - 4}{x - 3}, & 3 < x < 4 \\
\frac{x - 4}{x^2 + 2x + 2}, & x \geq 4
\end{cases}
\]

Clearly, \(f(x)/g(x) \) is not defined at \(x = 3 \), hence the domain is \(R \setminus \{3\} \).

6. Given \(f(x) = \log_3 \log_5 \log_9 (\sin x + a^2) \)
f(x) is defined only if \(\log_3 \log_5 (\sin x + a^2) > 0 \), \(\forall x \in R \)
\(\log_3 (\sin x + a^2) > 1, \forall x \in R \)
\(\log_3 (\sin x + a^2) > 4, \forall x \in R \)
\((\sin x + a^2) > 5^4, \forall x \in R \)
\(a^2 > 625 - \sin x, \forall x \in R \)
\(a^2 \) must be greater than maximum value of \(625 - \sin x \) which is 626 (when \(\sin x = -1 \))
\(a^2 > 626 \)
\(a \in (-\sqrt{626}, -\sqrt{626} \cup \sqrt{626}, \infty) \)

7. By remainder theorem, \(P(a) = a, P(b) = b \) and \(P(c) = c \).
Let the required remainder be \(R(x) \), then \(P(x) = (x - a)(x - b)(x - c) \cdot Q(x) + R(x) \), where \(R(x) \) is a polynomial of degree at most 2.
We get \(R(a) = a, R(b) = b \) and \(R(c) = c \).
So, the equation \(R(x) - x = 0 \) has three roots \(a, b \) and \(c \).
But its degree is at most 2. So, \(R(x) - x \) must be zero polynomial (or identity). Hence, \(R(x) = x \).

8. \[
\text{Fig. 1.93}
\]
The equation \(x^2 + y^2 = 25 \) represents a circle with centre \((0, 0)\) and radius 5 and the equation \(y = \frac{4}{9} x^2 \) represents a parabola with vertex \((0, 0)\). Hence, \(R \cap R' \) is the set of points indicated in the figure = \{ \((x, y): -3 \leq x \leq 3, 0 \leq y \leq 5 \) \}. Thus, the domain \(R \cap R' = [-3, 3] \) and the range \(R \cap R' = [0, 5] \).

9. Put \(y = \frac{1}{x} \)
\(2 + f(x) f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) + f(1) \) \((1) \)
Now put \(x = 1 \)
\(2 + f(1)^2 = 3f(1) \)
\(f(1) = 3 \) or \(2 \)
But \(f(1) \neq 1 \), otherwise from the given relation \(2 + f(x) f(1) = f(x) + f(1) + f(x) \) or \(f(x) = 1 \), which is not possible as given that \(f(2) = 5 \).
Hence, \(f(1) = 2 \).
\(\Rightarrow \) From (1), we have \(f(x) f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \)
\(\Rightarrow f(x) = \pm x^n + 1 \)
\(\Rightarrow f(2) = \pm 2^n + 1 = 5 \)
\(\Rightarrow 2^n = 4 \Rightarrow n = 2 \)
\(\Rightarrow f(x) = x^2 + 1 \)
\(\Rightarrow f(2) = f(5) = 26 \)

10. \(f(x) = f(b + (x - b)) = f(b - (x - b)) = f(2b - x) = f(a + (2b - x - a)) = f(a - (2b - x - a)) = f(2a - 2b + x) \)
Hence, \(f(x) \) is periodic with period \(2a - 2b \).
11. Given \(f(xf(y)) = x^p y^q \)

\[
\Rightarrow x = \left(\frac{f(xf(y))}{y^{q/p}} \right)^{1/p}
\]

Let \(xf(y) = 1 \Rightarrow x = \frac{1}{f(y)} \), then from (1)

\[
f(y) = \frac{y^{q/p}}{f(1)^{1/p}}
\]

\[
\Rightarrow f(1) = 1
\]

\[
\Rightarrow f(y) = y^{q/p}
\]

Now, \(f(xy^{q/p}) = x^p y^q \). Put \(y^{q/p} = z \), we get

\[
f(xz) = (xz)^p
\]

\[
\Rightarrow f(x) = x^p
\]

From (2) and (3) \(x^p = x^{q/p} \Rightarrow p^2 = q \).

12. \(f(x+1) + f(x) = \sqrt{3} f(x) \)

Putting \(x + 2 \) for \(x \) in relation (1) we get

\[
f(x+1) + f(x+3) = 3f(x+2)
\]

From (1) and (2), we get

\[
f(x+1) + 2f(x+1) + f(x+3) = \sqrt{3} (f(x) + f(x+2))
\]

\[
= \sqrt{3} \left(\sqrt{3} f(x+1) \right)
\]

\[
= 3f(x+1)
\]

\[
\Rightarrow f(x+1) + f(x+3) = f(x+1)
\]

Putting \(x + 2 \) for \(x \) in relation (3), we get

\[
f(x+1) + f(x+5) = f(x+3)
\]

Adding (3) and (4) in \(f(x+1) = -f(x+5) \)

Now, put \(x + 1 \) for \(x \), we get

\[
f(x+6) = f(x+1)
\]

Put \(x + 6 \) in place of \(x \) in (5), we get

\[
f(x+12) = -f(x+12)
\]

\[
\therefore \text{the period of } f(x) \text{ is } 12.
\]

13. \(f(a + x) = b + \left(1 + b^2 - 3b^2 (f(x))^2 - (f(x))^3 \right)^{1/3} \)

\[
= b + \left[1 - (f(x) - b)^3\right]^{1/3}
\]

\[
\Rightarrow f(a + x) - b = \left[1 - (f(x) - b)^3\right]^{1/3}
\]

\[
\Rightarrow \phi(a + x) = \left[1 - \phi(x)^3\right]^{1/3}
\]

where \(\phi(x) = f(x) - b \)

\[
\Rightarrow \phi(2a + x) = \left[1 - \phi(x + a)^3\right]^{1/3} = \phi(x) \text{ from (1)}
\]

\[
\Rightarrow f(x + 2a) - b = f(x) - b
\]

\[
\Rightarrow f(x + 2a) = f(x)
\]

\[
\therefore \text{f(x) is periodic with period 2a.}
\]

14. \(f(x, y) = f(2x + 2y, 2y - 2x) \)

(Replacing \(x \) by \(2x + 2y \) and \(y \) by \(2y - 2x \))

\[
f(x, y) = f(2(2x + 2y) + 2(2y - 2x), 2(2y - 2x) - 2(2x + 2y))
\]

\[
f(x, y) = f(8x, -8y) = f(8(-8x), -8(8y))
\]

\[
= f(64x, -64y)
\]

\[
= f(-64(-64x), -64y(-64y)) = f(2^{12} x, 2^{12} y)
\]

\[
f(x, 0) = f(2^{12} x, 0)
\]

\[
f(2^x, 0) = f(2^{12}, 2^x, 0) = f(2^{12} + y, 0)
\]

\[
\Rightarrow g(y) = g(y + 12)
\]

Hence, \(g(x) \) is periodic and its period is 12.

15. \(y = \frac{x - a}{(x - b)(x - c)} \Rightarrow yx^2 - \{(b + c)y + 1\}x + bcy + a = 0 \)

Now \(x \) is real, \(\Rightarrow D \geq 0 \)

\[
[(b + c)y + 1]^2 - 4(ybcy - a) \geq 0, \forall y \in R,
\]

(as given that \(f(x) \) is an onto function)

\[
(b - c)^2 y^2 - 2(b + c - 2a) y + 1 \geq 0, \forall y \in R
\]

\[
D \leq 0
\]

\[
4(b + c - 2a)^2 - 4(b - c)^2 \leq 0
\]

\[
(b + c - 2a + b + c)(b + c - 2a - b - c) \leq 0
\]

\[
(c - a)(b - a) \leq 0
\]

\[
c \leq a \text{ and } b \geq a \text{ or } b \leq b \geq c \text{ and } c \geq a \text{ and } b \leq a
\]

\[
c \leq b \text{ (as } b > c)
\]

\[
\Rightarrow a \in (b, c)
\]

16. \(f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n, a_i \in I (i = 0, 1, 2, \ldots, n) \)

Now, \(f(a) = a_0 + a_1 a + a_2 a^2 + \ldots + a_n a^n = b \)

\[
f(b) = a_0 + a_1 b + a_2 b^2 + \ldots + a_n b^n = c
\]

\[
f(x) = a_0 + a_1 c + a_2 c^2 + \ldots + a_n c^n = a
\]

\[. f(a) - f(b) = (a - b) f_1 (a, b) = b - c, \]

where \(f_1 (a, b) \) is an integer

Similarly, \((b - c) f_1 (b, c) = c - a \)

and \((c - a) f_1 (c, a) = a - b \)

Multiplying all these, we get \(f_1 (a, b) f_1 (b, c) f_1 (c, a) = 1 \)

\[
\Rightarrow f_1 (a, b) = f_1 (b, c) = f_1 (c, a) = 1
\]

\[
\Rightarrow a - b = b - c, c - a = a - b \text{ and } c - a = a - b
\]

\[
\Rightarrow a = b \text{ which is a contradiction.}
\]

Hence, no such polynomial exists.

17. Clearly, from graph \(g(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{4} < x < 0 \\ 1 + x, & 0 \leq x < 1 \\ x^2, & 1 \leq x \leq 2 \end{cases} \)
18. Given \(f(x-x'(y)) = f(f(y)) + x(x') + f(x) - 1 \)
\[(1) \]
Putting \(x = f(y) = 0 \), then \(f(0) = f(0) + 0 + f(0) - 1 \)
\[\therefore \ f(0) = 1 \]
(2)
Again putting \(x = f(y) = \lambda \) in \((1)\)
Then \(f(0) = f(\lambda) + \lambda^2 + f(\lambda) - 1 \)
\[\Rightarrow \quad 1 = 2f(\lambda) + \lambda^2 - 1 \quad \text{(from (2))} \]
\[\therefore \ f(\lambda) = \frac{2 - \lambda^2}{2} = 1 - \frac{\lambda^2}{2} \]

Hence, \(f(x) = 1 - \frac{x^2}{2} \) is the unique function.

19. Since \(f(x) = (2 \cos x - 1)(2 \cos 2x - 1)(2 \cos 2^2 x - 1) \ldots \)
\[(2 \cos x + 1)(2 \cos x - 1)(2 \cos 2x - 1)x \ldots \]
\[\therefore \ f(x) = \frac{(2 \cos 2^{n-1} x - 1)}{(2 \cos x + 1)} \]
\[(4 \cos^2 x - 1)(2 \cos 2x - 1)(2 \cos 2^2 x - 1) \]
\[\ldots \frac{(2 \cos 2^{n-1} x - 1)}{(2 \cos x + 1)} \]
\[(2 \cos 2x + 1)(2 \cos 2x - 1)(2 \cos 2^2 x - 1) \]
\[\ldots \frac{(2 \cos 2^{n-1} x - 1)}{(2 \cos x + 1)} \]
\[(4 \cos^2 2x - 1)(2 \cos 2^2 x - 1) \ldots (2 \cos 2^{n-1} x - 1) \]
\[(2 \cos 2x + 1)(2 \cos 2x - 1)(2 \cos 2^2 x - 1) \]
\[(2 \cos 2^{n-1} x - 1) \]

Proceeding in similarly way
\[f(x) = \frac{(2 \cos 2^{n-1} x + 1)(2 \cos 2^{n-1} x - 1)}{(2 \cos x + 1)} \]
\[= \frac{(4 \cos^2 2^{n-1} - 1)}{(2 \cos x + 1)} \]
\[= \frac{2 \cos 2^{n-1} x + 1}{2 \cos x + 1} \]
\[\Rightarrow \quad f\left(2^{n-1} \pi k\right) = \frac{2 \cos \left(2^{n-1} \pi k\right) + 1}{2 \cos \left(2^{n-1} \pi k\right) + 1} \]

20. \(f(x) = \frac{a^x}{a^x + \sqrt{a}} \)
\[\Rightarrow \quad f(1-x) = \frac{a^{1-x}}{a^{1-x} + \sqrt{a}} = \frac{a^1}{a^1 + \sqrt{a}a^x} = \frac{\sqrt{a}}{a + \sqrt{a}} \]
\[\Rightarrow \quad f(x) + f(1-x) = 1 \]

Also, \(f\left(\frac{1}{2}\right) = \frac{1}{2} \)
\[\Rightarrow \quad \sum_{r=1}^{2n} 2f\left(\frac{r}{2n}\right) \]
\[= 2 + f\left(\frac{n}{2n}\right) + f\left(\frac{n+1}{2n}\right) + \ldots \]
\[+ f\left(\frac{2n-1}{2n}\right) \]
\[= 2 \left[\left[f\left(\frac{1}{2n}\right) + f\left(\frac{2n-1}{2n}\right) \right] + \left[f\left(\frac{2}{2n}\right) + f\left(\frac{2n-2}{2n}\right) \right] + \ldots \right] \]
\[\Rightarrow \quad 2 \left[f\left(\frac{1}{2n}\right) + f\left(\frac{1}{2n}\right) + \ldots \right] = 2(1 + 1 + \ldots + (n-1) \text{ times}) + 1 \]
\[= 2n-1 \]

Objective Type

1.b. \(f: N \rightarrow N, f(n) = 2n + 3 \).
Here, the range of the function is \(\{5, 6, 7, \ldots\} \) or \(N - \{1, 2, 3, 4\} \)
which is a subset of \(N \) (co-domain).
Hence, function is onto.
Also, it is clear that \(f(n) \) is one-one or injective.
Hence, \(f(n) \) is injective only.

2.b. \(f(x) = \sin\left(\log(x + \sqrt{1+x^2})\right) \)
\[\Rightarrow \quad f(-x) = \sin[\log(-x + \sqrt{1+x^2})] \]
\[\Rightarrow \quad f(-x) = \sin \log \left((\sqrt{1+x^2} - x)\frac{(\sqrt{1+x^2} + x)}{(\sqrt{1+x^2} + x)} \right) \]
\[\Rightarrow \quad f(-x) = \sin \log \left(\frac{1}{x + (\sqrt{1+x^2})} \right) \]
\[f(-x) = \sin \left(-\log(x + \sqrt{1 + x^2}) \right) \]
\[f(-x) = -\sin \left(\log(x + \sqrt{1 + x^2}) \right) \]
\[f(-x) = -f(x) \]
\[f(x) \text{ is an odd function.} \]

3. \(\frac{x^2 + 14x + 9}{x^2 + 2x + 3} = y \)
\[x^2 + 14x + 9 = x^2y + 2xy + 3y \]
\[x^2(y - 1) + 2x(y - 7) + (3y - 9) = 0 \]
Since \(x \) is real,
\[4(y - 7)^2 - 4(3y - 9)(y - 1) > 0 \]
\[4(y^2 + 49 - 14y) - 4(3y^2 - 9 - 12y) > 0 \]
\[(y + 5)(y - 4) < 0 \]
\[y \text{ lies between } -5 \text{ and } 4. \]

4. \(y = f(x) = \cos^2 x + \sin^4 x \)
\[y = f(x) = \cos^2 x + \sin^2 x(1 - \cos^2 x) \]
\[y = \cos^2 x + \sin^2 x - \sin^2 x \cos^2 x \]
\[y = 1 - \frac{1}{4} \sin^2 2x \]
\[\frac{3}{4} \leq f(x) \leq 1 \quad (\because 0 \leq \sin^2 2x \leq 1) \]
\[f(x) \in [3/4, 1] \]

5. \(f(x) \) is to be defined when \(x^2 - 1 > 0 \) and \(3 + x > 0 \) and \(3 + x \neq 1 \)
\[x^2 > 1 \text{ and } x > -3 \text{ and } x \neq -2 \]
\[x < -1 \text{ or } x > 1 \text{ and } x > -3 \text{ and } x \neq -2 \]
\[D_f = (-3, -2) \cup (-2, -1) \cup (1, \infty) \]

6. \(q(x) = \left[\frac{\log_{10} \left(\frac{5x - x^2}{4} \right) }{4} \right]^{1/2} \quad (1) \)
From (1), clearly \(f(x) \) is defined for those values of \(x \) for which \(\log_{10} \left(\frac{5x - x^2}{4} \right) \geq 0 \)
\[\left(\frac{5x - x^2}{4} \right) \geq 0 \]
\[\left(\frac{5x - x^2}{4} \right) \geq 1 \]
\[x^2 - 5x + 4 \leq 0 \]
\[(x - 1)(x - 4) \leq 0 \]
Hence, the domain of the function is \([1, 4] \).

7.b. \(f(x) = \frac{\sin^{-1}(3-x)}{\log(|x|-2)} \)
Let \(g(x) = \sin^{-1}(3-x) \)
\[\Rightarrow -1 \leq 3 - x \leq 1 \]
The domain of \(g(x) \) is \([2, 4] \)
and let \(h(x) = \log(|x|-2) \)
\[\Rightarrow |x|-2 > 0 \text{ or } |x| > 2 \]
\[\Rightarrow x < -2 \text{ or } x > 2 \]
\[\Rightarrow (-\infty, -2) \cup (2, \infty) \]
We know that
\[f(g(x)) = \frac{f(x)}{g(x)} \quad \forall x \in D_1 \cap D_2 - \{ x \in R : g(x) = 0 \} \]
\[\Rightarrow \text{the domain of } f(x) = \{2, 4\} - \{3\} = \{2, 3\} \cup \{3, 4\} \]

8. \(f(x) = \log|\log x| \)
\(f(x) \) is defined if \(|\log x| > 0 \text{ and } x > 0 \text{ or } x < 0 \), i.e., if \(x > 0 \) and \(x \neq 1 \)
\[\Rightarrow x \in (0, 1) \cup (1, \infty) \]

9.d. \(x + 3 > 0 \text{ and } x^2 + 3x + 2 > 0 \)
\[\Rightarrow x > -2 \text{ and } x+1 \neq 0, \text{ i.e., } x \neq -1, -2 \]
\[\Rightarrow \text{The domain } = (-3, -1) \cup (-1, \infty) \]

10. \(y = f(x) = \sqrt{3} \sin x - \cos x + 2 = 2 \sin \left(x - \frac{\pi}{6} \right) + 2 \quad (1) \)
Since \(f(x) \) is one-one and onto, \(f \) is invertible.
From (1)
\[\sin \left(x - \frac{\pi}{6} \right) = \frac{y - 2}{2} \]
\[x = \sin^{-1} \left(\frac{y - 2}{2} + \frac{\pi}{6} \right) \]
\[f^{-1}(x) = \sin^{-1} \left(\frac{x - 2}{2} + \frac{\pi}{6} \right) \]

11.a. \(F(n+1) = \frac{2F(n)+1}{2} \implies F(n+1) = F(n) = \frac{1}{2} \)
Put \(n = 1, 2, 3, \ldots, 100 \) and add, we get
\[F(101) - F(1) = 100 \times \frac{1}{2} \]
\[= 50 \]
\[\therefore F(101) = 52 \]

12.d. Given function is defined if \(10^{C_{x-1}} > 3 \cdot 10^x \)
\[\Rightarrow \frac{1}{11 - x} > \frac{3}{x} \quad \Rightarrow 4x > 33 \]
\[\Rightarrow x > 9 \text{ but } x \leq 10 \quad \Rightarrow x = 9, 10. \]

13. For the domain \(\sin (\ln x) > \cos (\ln x) \) and \(x > 0 \)
\[2\pi n + \frac{\pi}{4} < \ln x < 2\pi n + \frac{5\pi}{4}, n \in N \cup \{0\} \]

14. Put \(x = 0 \quad \Rightarrow f(2) = 2f(0) - f(1) = 2 \times 2 - 3 = 1 \)
Put \(x = 1 \quad \Rightarrow f(3) = 6 - 1 = 5 \)
Put \(x = 2 \quad \Rightarrow f(4) = 2f(2) - f(3) = 2 \times 1 - 5 = -3 \)
Put \(x = 3 \quad \Rightarrow f(5) = 2f(3) - f(4) = 2(5) - (-3) = 13. \)

15.c. Here, \[\frac{x^2 + 1}{x^2 + 2} = \frac{1}{\frac{x^2 + 2}{x^2 + 2} + 1} \]
1.62 Calculus

Now, \(2 \leq x^2 + 2 < \infty \) for all \(x \in R \)

\[
\Rightarrow \frac{1}{2} \geq \frac{1}{x^2 + 2} > 0
\]

\[
\Rightarrow -\frac{1}{2} \leq -\frac{1}{x^2 + 2} < 0
\]

\[
\Rightarrow \frac{1}{2} \leq 1 - \frac{1}{x^2 + 2} < 1
\]

\[
\Rightarrow \frac{\pi}{6} \leq \sin^{-1}\left(1 - \frac{1}{x^2 + 2}\right) < \frac{\pi}{2}
\]

16. b. The function \(\sec^{-1} x \) is defined for all \(x \in R - (-1, 1) \)
and the function \(\frac{1}{\sqrt{x-[x]}} \) is defined for all \(x \in R-Z \)
So the given function is defined for all \(x \in R - \{(-1, 1) \cup \{n \mid n \in Z}\} \).

17. b. \(\cos^{-1}\left(\frac{2-|x|}{4}\right) \) exists if \(-1 \leq \frac{2-|x|}{4} \leq 1 \)

\[
\Rightarrow -6 \leq -|x| \leq 2
\]

\[
\Rightarrow -2 \leq |x| \leq 6
\]

\[
\Rightarrow -6 \leq x \leq 6
\]

The function \([\log (3 - x)]^{-1} = \frac{1}{\log(3-x)}\)
is defined if \(3 - x > 0\) and \(x \neq 2\), i.e., if \(x \neq 2\) and \(x < 3\).
Thus, the domain of the given function is \([x | -6 \leq x \leq 6] \cap \{x | x \neq 2, x < 3\} = [-6, 2) \cup (2, 3)\).

18. b. \(f(x) \) is defined for \(\log\left(\frac{1}{|\sin x|}\right) \geq 0 \)

\[
\Rightarrow \frac{1}{|\sin x|} \geq 1 \text{ and } |\sin x| \neq 0.
\]

\[
\Rightarrow |\sin x|
eq 0 \quad \quad \left[\because \frac{1}{|\sin x|} \geq 1 \text{ for all } x\right]
\]

\[
\Rightarrow x \neq n\pi, n \in Z
\]

Hence, the domain of \(f(x) = R - \{n\pi : n \in Z\} \).

19. a. \(f(x) \) is defined if \(-\log_{1/2} \left(1 + \frac{1}{x^{1/4}}\right) - 1 > 0 \)

\[
\Rightarrow \log_{1/2} \left(1 + \frac{1}{x^{1/4}}\right) < -1
\]

\[
\Rightarrow 1 + \frac{1}{x^{1/4}} > \left(\frac{1}{2}\right)^{-1}
\]

\[
\Rightarrow \frac{1}{x^{1/4}} > 1
\]

\[
\Rightarrow 0 < x < 1
\]

20. c. For the function to get defined \(0 \leq x^2 + x + 1 \leq 1\),

but \(x^2 + x + 1 \geq \frac{3}{4} \Rightarrow \sqrt{\frac{3}{2}} \leq \sqrt{x^2 + x + 1} \leq 1 \)

\[
\Rightarrow \frac{\pi}{3} \leq \sin^{-1}(\sqrt{x^2 + x + 1}) \leq \frac{\pi}{2}
\]

21. c.

![Graph of y = x^3, y = x^2, and y = 1/64](Fig. 1.95)

Clearly, from the graph \(f(x) = \begin{cases} \frac{1}{64}, & 0 \leq x \leq \frac{1}{8} \\ 2x^2, & \frac{1}{8} < x \leq 1 \\ x^3, & x > 1 \end{cases} \)

22. c. The period of \(\cos(n \pi x) \) is \(\frac{\pi}{n} \) and the period of \(\tan\left(\frac{x}{n}\right) \) is \(\pi n \).

Thus, \(6\pi = \text{LCM} \left(\frac{\pi}{n}, \pi n\right) \).

By checking for the different values of \(n, n = 6 \).

23. b. Draw the graph of \(y = \log_{0.5} |x| \) and \(y = 2|x| \)

![Graph of y = log_0.5(x) and y = 2|x|](Fig. 1.96)

Clearly, from the graph, there are two solutions.

24. b. \(f(x) = \left|\sin^3\frac{x}{2}\right| + \left|\cos^5\frac{x}{2}\right| \)

The period of \(\sin^3\frac{x}{2} \) is \(2\pi \)

\[
\Rightarrow \text{The period of } \sin^3\frac{x}{2} \text{ is } \frac{2\pi}{1/2} = 4\pi
\]

\[
\Rightarrow \text{The period of } \sin^3\frac{x}{2} \text{ is } 2\pi
\]

The period of \(\cos^5\frac{x}{2} \) is \(2\pi \)

\[
\Rightarrow \text{The period of } \cos^5\frac{x}{2} \text{ is } \frac{2\pi}{1/5} = 10\pi
\]

\[
\Rightarrow \text{The period of } \cos^5\frac{x}{2} \text{ is } 5\pi
\]
Now the period of \(f(x) = \text{LCM of } (2\pi, 10\pi) = 10\pi. \)

25. a. Given \(\sqrt[n]{x^n} = x^m, n \in N \) is an even function where \(m \in I. \)

\[f(x) = f(-x) \]
\[\Rightarrow \sqrt[n]{x^n} = \sqrt[n]{(-x)^n} \]
\[\Rightarrow x^n = (-x)^m \]
\[\Rightarrow m \text{ is an even integer} \]
\[\Rightarrow m = 2k, k \in I \]

26. c. From the given data \(g(x) \) must be linear function

Hence, \(g(x) = ax + b \)

Also \(g(2) = 2a + b = 3 \) and \(g(4) = 4a + b = 7 \)

Solving, we get \(a = 2 \) and \(b = -1 \)

Hence, \(g(x) = 2x - 1 \)

Then, \(g(6) = 11. \)

27. a. The period of \(\sin \pi x \) and \(\cos 2\pi x \) is 2 and 1, respectively.

The period of \(2^x \) is 1

The period of \(3^{2x} \) is 2

Hence, the period of \(f(x) \) is LCM of 1 and 2 = 2.

28. a. \(|x - 2| + a = \pm 4 \)

\[\Rightarrow |x - 2| = \pm 4 - a \]

For 4 real roots, \(4 - a > 0 \) and \(-4 - a > 0 \)

\[\Rightarrow a \in (-\infty, -4) \]

29. a. We have \(f(x + y) + f(x - y) \)

\[= \frac{1}{2} [a^{x+y} + a^{-x-y} + a^{x-y} + a^{-x+y}] \]

\[= \frac{1}{2} [a^{x+y} + a^{x-y} + a^{-x+y} + a^{-x-y}] \]

\[= \frac{1}{2} (a^{x+y} + a^{-x-y}) (a^{x-y} + a^{-x+y}) = 2(f(x)f(y)) \]

30. d. \(\log_3 (x^2 - 6x + 11) \leq 1 \)

\[\Rightarrow 0 < x^2 - 6x + 11 \leq 3 \]

\[\Rightarrow x \in [2, 4] \]

31. d. \(x^2 - |x|^2 \geq 0 \Rightarrow x^2 \geq |x|^2 \)

This is true for all positive values of \(x \) and all negative integer \(x. \)

32. b.

![Fig. 1.97](downloaded from jeemain.guru)

Clearly, from the graph, the range is \([1, f(-1)] = [1, 5] \)

If \(x < 1, f(x) = -(x - 1) - (x - 2) = -2x + 3. \)

In this interval, \(f(x) \) is decreasing.

If \(1 \leq x < 2, f(x) = x - 1 - (x - 2) = 1 \)

In this interval, \(f(x) \) is constant.

If \(2 \leq x \leq 3, f(x) = x - 1 + x - 2 = 2x - 3. \)

In this interval, \(f(x) \) is increasing.

\[\therefore \text{max } f(x) = \text{the greatest among } f(-1) \text{ and } f(3) = 5, \min f(x) = f(1) = 1 \]

So, the range is \([1, 5]. \)

33. a. By checking for different function, we find that for \(f(x) = \frac{1-x}{1+x}, f^{-1}(x) = f(x). \)

34. b. \(x^2F(x) + F(1 - x) = 2x - x^4 \)

Replacing \(x \) by \(1 - x, \) we get

\[\Rightarrow (1 - x)^2F(1 - x) + F(x) = 2(1 - x) - (1 - x)^4 \]

Eliminating \(F(1 - x) \) from (1) and (2), we get \(F(x) = 1 - x^2. \)

35. b. \(f(-x) = \begin{cases} \sin \frac{\pi(-x)}{2}, & |x| < 1 \\ (-x)^2, & |x| \geq 1 \end{cases} \)

\[\Rightarrow f(-x) = \begin{cases} \sin \frac{x}{2}, & |x| < 1 \\ -x^2, & |x| \geq 1 \end{cases} \]

\[= -f(x). \]

36. d. \(f(x) = e^{x^2 - 3x + 2} \)

Let \(g(x) = x^3 - 3x + 2; g'(x) = 3x^2 - 3 = 3(x^2 - 1) \)

\[g'(x) \geq 0 \text{ for } x \in (-\infty, -1] \]

\[\therefore f(x) \text{ is increasing function} \]

Now, the range of \(f(x) = (0, e^2] \)

But co-domain is \((0, e^2]. \)

\[\therefore f(x) \text{ is an into function.} \]

37. c. \(f(x) = \frac{1}{x}, g(x) = \frac{1}{x^2} \) and \(h(x) = x^2 \)

\[f(g(x)) = x^2, x \neq 0 \]

\[h(g(x)) = \frac{1}{x} = (g(x))^2, x \neq 0 \]

38. c. \[\sum_{r=1}^{2000} \frac{x+r}{2000} = \sum_{r=1}^{2000} \frac{x}{2000} = 2000 \frac{\{x\}}{2000} = \{x\}. \]

39. b. \(f(x) = x^3 + 1 \)

\[\Rightarrow f(3) = 3^3 + 1 = 28 \]

\[\Rightarrow 3^n = 27 \]

\[\therefore n = 3 \]

\[\Rightarrow f(4) = 4^3 + 1 = 65. \]

40. b. \(f(x+1) - f(x) = 8x + 3 \)

\[\Rightarrow b(x+1)^2 + c(x+1) + d) - bx^2 + cx + d = 8x + 3 \]

\[\Rightarrow b(x+1)^2 - 8x^2 + c + d = 8x + 3 \]

\[\Rightarrow b(2x+1) + c = 8x + 3. \]

On comparing co-efficient of \(x \) and constant term, we get \(2b = 8 \) and \(b + c = 3 \)

then \(b = 4 \) and \(c = -1. \)
41. **d.** If \(f \) is injective and \(g \) is surjective

\[\Rightarrow \] \(fog \) is injective

\[\Rightarrow \] \(fof \) is injective.

42. **c.** \(f(x) = \begin{cases} x-1, & x \text{ is even} \\ x+1, & x \text{ is odd} \end{cases} \), which is clearly one-one and onto.

43. \[\frac{1}{2} (gof)(x) = 2x^2 - 5x + 2 \quad \text{or} \quad \frac{1}{2} g(f(x)) = 2x^2 - 5x + 2 \]

\[\therefore [(f(x))^2 + f(x) - 2] = 2[2x^2 - 5x + 2] \]

\[\Rightarrow f(x)^2 + f(x) - (4x^2 - 10x + 6) = 0 \]

\[\therefore f(x) = \frac{-1 \pm \sqrt{1 + 4(4x^2 - 10x + 6)}}{2} \]

\[= \frac{-1 \pm \sqrt{(16x^2 - 40x + 25)}}{2} = \frac{-1 \pm (4x - 5)}{2} \]

\[= 2x - 3 \text{ or } 2x + 2 \]

44. **a.** Since \(f(x) \) and \(f^{-1}(x) \) are symmetric about the line \(y = -x \).

If \((\alpha, \beta)\) lies on \(y = f(x) \) then \((-\beta, -\alpha)\) on \(y = f^{-1}(x) \)

\[\therefore (-\alpha, -\beta) \text{ lies on } y = f(x) \]

\[\Rightarrow y = f(x) \text{ is odd.} \]

45. **c.** Let \(x, y \in N \) such that \(f(x) = f(y) \)

Then \(f(x) = f(y) \)

\[\Rightarrow x^2 + x + 1 = y^2 + y + 1 \]

\[\Rightarrow (x-y)(x+y+1) = 0 \]

\[\Rightarrow x = y \text{ or } x = -(y-1) \notin N \]

\[\therefore f \text{ is one-one.} \]

Also, \(f(x) \) does not take all positive integral values. Hence \(f \) is into.

46. **c.** \(f(x) = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right) + 2\sqrt{2} \)

or, \(f(x) = \sqrt{2} \cos \left(x - \frac{\pi}{4}\right) + 2\sqrt{2} \)

\[\Rightarrow Y = \left[\sqrt{2}, 3\sqrt{2} \right] \text{ and } X = \left[\frac{-3\pi}{4}, \frac{\pi}{4} \right] \text{ or } \left[\frac{5\pi}{4}, \frac{-\pi}{4} \right] \]

47. **a.** \(f(7) + f(-7) = -10 \)

\[\Rightarrow f(7) = -17 \]

\[\Rightarrow f(7) + 17 \cos x = -17 + 17 \cos x \text{ which has the range } [-34, 0]. \]

48. **c.** \(f(x) = \frac{\sin[x] \pi}{x^2 + x + 1} \)

Let \([x] = n \in \text{ integer} \)

\[\Rightarrow \sin[x] \pi = 0 \]

\[\Rightarrow f(x) = 0 \]

\[\Rightarrow f(x) \text{ is constant function.} \]

49. **b.** Two triangles may have equal areas

\[\therefore f \text{ is not one-one.} \]

Since each positive real number can represent area of a triangle.

\[\therefore f \text{ is onto.} \]

50. **c.** \(\frac{y-x}{y+x} = k \quad (k > 1); \quad y-x = k(y+x) \)

\[\Rightarrow y(1+k) = x(1+k) \]

\[\Rightarrow y = \frac{1+k}{1-k} x, \text{ where } \frac{1+k}{1-k} < -1 \]

51. **c.** \(g(x) = x^3 + \tan x + \left[\frac{x^2 + 1}{P} \right] \)

\[\Rightarrow g(-x) = (-x)^3 + \tan (-x) + \left[\frac{(-x)^2 + 1}{P} \right] \]

\[\Rightarrow g(-x) = -x^3 - \tan x + \left[\frac{x^2 + 1}{P} \right] \]

\[\Rightarrow g(x) + g(-x) = 0 \]

because \(g(x) \) is a odd function.

\[\therefore \left(-x^3 - \tan x + \left[\frac{x^2 + 1}{P} \right] \right) + \left(- \left[\frac{x^2 + 1}{P} \right] \right) = 0 \]

\[\Rightarrow 2 \left[\frac{x^2 + 1}{P} \right] = 0 \Rightarrow 0 \leq \frac{x^2 + 1}{P} < 1 \]

Now \(x \in [-2, 2] \)

\[\Rightarrow 0 \leq \frac{5}{P} < 1 \Rightarrow P > 5 \]

52. **d.** Let \(2x + \frac{y}{8} = \alpha \quad \text{and} \quad 2x - \frac{y}{8} = \beta \), then \(x = \frac{\alpha + \beta}{4} \) and \(y = 4(\alpha - \beta) \).

Given, \(f \left(2x + \frac{y}{8} \right) = f \left(2x - \frac{y}{8} \right) = xy \)

\[\Rightarrow f(\alpha, \beta) = \alpha^2 - \beta^2 \]

\[\Rightarrow f(m, n) + f(n, m) = m^2 - n^2 + n^2 - m^2 = 0 \text{ for all } m, n \]

53. **b.** Given \(f(x+y) = f(x) + f(y) - xy - 1 \quad \forall x, y \in R \)

\[f(1) = 1 \]

\[f(2) = f(1+1) = f(1) + f(1) - 1 - 1 = 0 \]

\[f(3) = f(2+1) = f(2) + f(1) - 2, 1-1 = -2 \]

\[f(n+1) = f(n) + f(1) - n - 1 = f(n) - n < f(n) \]

Thus, \(f(1) < f(2) > f(3) > \ldots \) and \(f(1) = 1 \)

\[\therefore f(1) = 1 \text{ and } f(n) < 1, \text{ for } n > 1 \]

Hence, \(f(n) = n, n \in N \) has only one solution \(n = 1 \).

54. **c.** \(f(x) = \begin{cases} \frac{e^x - e^{-x}}{e^x + e^{-x}}, & x < 0 \\ 0, & x \geq 0 \end{cases} \)

Clearly, \(f(x) \) is identically zero if \(x \geq 0 \)

If \(x < 0 \), let \(y = f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^x}{e^x + e^{-x}} = \frac{1+y}{1-y} \)

\[\therefore x < 0 \implies e^{2x} < 1 \implies 0 < e^{2x} < 1 \]

\[\therefore 0 < 1+y < 1 \]
\[
\Rightarrow \frac{1+y}{1-y} > 0 \quad \text{and} \quad \frac{1+y}{1-y} < 1
\]
\[\Rightarrow (y+1)(y-1) < 0 \quad \text{and} \quad \frac{2y}{1-y} < 0
\]
\[\Rightarrow -1 < y < 1 \quad \text{and} \quad y < 0 \quad \text{or} \quad y > 1
\]
\[\Rightarrow -1 < y < 0
\]
(2)

Combining (1) and (2), we get \(-1 < y \leq 0 \Rightarrow \text{Range} = (-1, 0].

55. c. \[f(2x+3) + f(2x+7) = 2\] (1)

Replace \(x\) by \(x+2\), \(f(2x+7)+f(2x+11) = 2\) (2)

from (1) – (2) we get \(f(2x+3) – f(2x+11) = 0\)

\[\Rightarrow f(2x+3) = f(2x+11)
\]

\[\Rightarrow f(2x+3) = f(2(x+4)+3)
\]

Period of \(f(x)\) is 8

56. c. Since co-domain = \([0, \pi/2] \]

\[\Rightarrow \text{for } f \text{ to be onto, the range } = \left[0, \frac{\pi}{2}\right]
\]

This is possible only when \(x^2 + x + a \geq 0 \forall x \in R\)

\[\Rightarrow 1^2 - 4a \leq 0 \Rightarrow a \geq \frac{1}{4}
\]

57. d. \(f(x) = \frac{1}{\sqrt{\sin x} + \sqrt{\sin(x + \pi)}} = \frac{1}{\sqrt{\sin x} + \sqrt{-\sin x}}
\]

Now \(\{\sin x\} + \{-\sin x\} = \begin{cases} 0, & \sin x \text{ is an integer} \\ 1, & \sin x \text{ is not an integer} \end{cases}
\]

For \(f(x)\) to get defined \(\{\sin x\} + \{-\sin x\} \neq 0\)

\[\Rightarrow \sin x \neq n \pi \quad \text{or} \quad \sin x \neq \pm 1
\]

\[\Rightarrow x \neq \frac{n \pi}{2}, n \in I
\]

Hence, the domain is \(R - \left\{ \frac{n \pi}{2} / n \in I \right\}\).

58. a. \(f(-x) = \cos(-x) = \cos x\)

\[
\left[\frac{-2x}{\pi} \right] + \frac{1}{2} - \frac{2x}{\pi} + \frac{1}{2} = \frac{\cos x}{\pi}
\]

\(\Rightarrow f(-x) = -\frac{\cos x}{\pi + 1} = -f(x)
\]

\[\Rightarrow f(x) \text{ is an odd function.}
\]

59. d. \(f(x) = ax^3 - bx + (\tan x) \quad \text{sgn} \quad x
\]

\[\Rightarrow f(-x) = f(x)
\]

\[\Rightarrow -ax^3 - bx - \tan x \quad \text{sgn} \quad x = ax^3 - bx - (\tan x) \quad \text{sgn} \quad x
\]

\[\Rightarrow 2(-ax^2 - bx) = 0 \quad \forall \quad x \in R
\]

\[\Rightarrow a = 0 \quad \text{and} \quad b = 0
\]

\[\Rightarrow [a]^2 - 5[a] + 4 = 0 \quad \text{and} \quad 6[a]^2 - 5[a] + 1 = 0
\]

\[\Rightarrow (3x - 1)(2x - 1) = 0
\]

\[\Rightarrow x = \frac{1}{3}, \frac{1}{2}, 1, 2, 4, \frac{1}{3}, 4, \frac{1}{2}
\]

Sum of values of \(a = \frac{35}{3}
\]

60. d. Since \(f(x)\) is an odd function, \(\left[\frac{x^2}{a} \right] = 0 \quad \forall \quad x \in [-10, 10]
\]

\[\Rightarrow 0 \leq \frac{x^2}{a} < 1 \quad \forall \quad x \in [-10, 10] \Rightarrow a > 100.
\]

61. b. \(3f(x) + 2f \left(\frac{x + 59}{x - 1} \right) = 10x + 30
\]

For \(x = 7, 3f(7) + 2f(11) = 70 + 30 = 100.
\]

For \(x = 11, 3f(11) + 2f(7) = 140.
\]

\[\frac{f(7)}{20} = \frac{f(11)}{220} = \frac{-1}{9 - 4} \Rightarrow f(7) = 4.
\]

62. c. \(f(x) = [6x + 7] + \cos \pi x - 6x
\]

\[= [6x + 7] + \cos \pi x - 6x
\]

\[= 7 + \cos \pi x - [6x]
\]

{6x} has the period 1/6 and \(\cos \pi x\) has the period 2,
then the period of \(f(x) = \text{LCM of 2 and 1/6 which is 2}
\]
Hence, the period is 2.

63. d. \(f(x) = \frac{a^x - 1}{x^n (a^x + 1)}
\]

\(f(x)\) is symmetrical about y-axis

\[\Rightarrow f(x) = f(-x)
\]

\[\Rightarrow \frac{a^x - 1}{x^n (a^x + 1)} = \frac{a^{-x} - 1}{x^n (a^{-x} + 1)}
\]

\[\Rightarrow \frac{a^x - 1}{x^n (a^x + 1)} = \frac{1 - a^x}{(a^x + 1) x^n} \Rightarrow x^n = (1 - a^x)
\]

\[\Rightarrow \text{the value of } n \text{ which satisfy this relation is } \frac{1}{3}.
\]

64. a. \(x^2 f(x) - 2f \left(\frac{1}{x} \right) = g(x) \quad \text{and} \quad 2f \left(\frac{1}{x} \right) - 4x^2 f(x) = 2x^2 \quad g \left(\frac{1}{x} \right)
\]

(Replacing \(x\) by \(\frac{1}{x}\)

\[\Rightarrow 3x^2 f(x) = g(x) + 2x^2 \quad g \left(\frac{1}{x} \right)
\]

(Eliminating \(f \left(\frac{1}{x} \right)\)

\[\Rightarrow f(x) = -\left(\frac{g(x) + 2x^2 \quad g \left(\frac{1}{x} \right)}{3x^2} \right)
\]

\(\Rightarrow g(x) \text{ and } x^2 \text{ are odd and even functions, respectively.}
\]

So, \(f(x)\) is an odd function. But \(f(x)\) is given even

\[\Rightarrow f(x) = 0 \quad \forall x \text{ Hence, } f(5) = 0.
\]

65. a. Given \(f(x+y) = f(x) \quad f(y)\). Put \(x = y = 0\), then \(f(0) = 1\).

Put \(y = -x\), then \(f(0) = f(x) \quad f(-x) \Rightarrow f(-x) = \frac{1}{f(x)}
\]

Now, \(g(x) = \left(\frac{f(x)}{1 + f(x)} \right)^2
\]
1.66 Calculus

\[g(x) = \frac{f(-x)}{1 + \left[f(-x) \right]^2} = \frac{1}{f(x)} \frac{1}{1 + \left[\frac{1}{f(x)} \right]^2} \]

\[= \frac{f(x)}{1 + \left[f(x) \right]^2} = g(x) \]

66. d. The equation is \(x^2 + 2ax + \frac{1}{16} = -a + \sqrt{a^2 + x} - \frac{1}{16} \)

\[\Rightarrow f(x) = f^{-1}(x) \]

which has the solution if \(x^2 + 2ax + \frac{1}{16} = x \)

\[\Rightarrow x^2 + (2a - 1)x + \frac{1}{16} = 0 \]

For real and distinct roots \((2a - 1)^2 - 4 \cdot \frac{1}{16} \geq 0 \)

\[\Rightarrow 2a - 1 \leq \frac{1}{2} \text{ or } 2a - 1 \geq \frac{1}{2} \Rightarrow a \leq \frac{1}{4} \text{ or } a \geq \frac{3}{4} \]

67. d. \(f(x) - 1 + f(1 - x) - 1 = 0 \); so \(g(x) = g(1 - x) = 0 \)

Replacing \(x \) by \(x + \frac{1}{2} \), we get \(g \left(\frac{1}{2} + x \right) + g \left(\frac{1}{2} - x \right) = 0 \).

\[\text{So, it is symmetrical about } \left(\frac{1}{2}, 0 \right). \]

68. a. When \(x = 0 \) we have \(\sin^{-1}(\cos^{-1}0) = \sin^{-1}(\pi/2) \), not defined.

When \(x = 1 \) we have \(\sin^{-1}(\cos^{-1}1) = \sin^{-1}(\pi/2) \), not defined.

69. a. Putting \(x = 1, f(2) + f(0) = 2f(1) \Rightarrow f(2) = 2f(1) \)

Putting \(x = 2, f(3) + f(1) = 2f(2) \)

\[\Rightarrow f(3) = 2 \times 2f(1) - f(1) = 3f(1) \]

Thus, \(f(n) = nf(1) \) for \(n = 1, 2, \ldots, n \)

\[f(n + 1) = (n + 1)f(1) \]

\[\Rightarrow f(n + 1) = nf(1) + f(1) \]

70. d. \(\{ x \} \in [0, 1) \) as \(f(x) \) is defined if \(\{ x \} \neq 0 \)

\[\Rightarrow \frac{1}{\sin \{ x \}} \in \left(-\infty, \frac{1}{\sin \{ x \}} \right) \]

Note that \(1 < \frac{\pi}{3} \Rightarrow \sin 1 < \sin \frac{\pi}{3} = 0.866 \Rightarrow \frac{1}{\sin 1} > 1.155 \).

71. c. We have \(\cos^{-1}x \geq 0 \forall x \in [-1, 1] \)

and \(\cot^{-1}x \geq 0 \forall x \in R \)

Hence, \(\cos^{-1}x + [\cot^{-1}x] = 0 \)

\[\Rightarrow [\cot^{-1}x] = [\cos^{-1}x] = 0 \]

If \(\cos^{-1}x = 0 \Rightarrow x \in (\cos 1, 1] \)

\[\text{If } [\cot^{-1}x] = 0 \Rightarrow x \in (\cot 1, \infty) \]

\[\Rightarrow x \in (\cot 1, 1] \]

72. d. The period of \(f(x) \) is \(7 \Rightarrow \) The period of \(f \left(\frac{x}{3} \right) \) is \(\frac{7}{1/3} = 21 \)

The period of \(g(x) \) is \(11 \Rightarrow \) The period of \(g \left(\frac{x}{5} \right) \) is \(\frac{11}{1/5} = 55 \)

Hence, \(T_1 = \text{period of } f(x)g \left(\frac{x}{3} \right) = 7 \times 11 \times 3 \times 5 = 1155. \)

\[\therefore \text{Period of } F(x) = \text{LCM} \{T_1, T_2\} = \text{LCM} \{385, 231\} = 7 \times 11 \times 3 \times 5 = 1155. \]

73. d. \(\sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right) + \cos x \cos \left(x + \frac{\pi}{3} \right) \)

\[= \sin^2 x + \left(\sin x + \frac{\sqrt{3} \cos x}{2} \right)^2 + \cos x \left(\cos x - \frac{\sqrt{3} \sin x}{2} \right) \]

\[= \sin^2 x + \frac{\sin^2 x}{4} + \frac{3 \cos^2 x}{4} + \frac{\cos^2 x}{2} \]

\[= \frac{5 \sin^2 x}{4} + \frac{5 \cos^2 x}{4} = \frac{5}{4}. \]

Hence, \(f(x) = \frac{5}{4} \) is constant, which is periodic whose period cannot be determined.

74. a. \(f(x + y) = f(x) + y, f(0) = 1 \)

Putting \(y = 0, \) we get \(f(x + f(0)) = f(x) + 0 \)

\[\Rightarrow f(x + 1) = f(x) \forall x \in R \]

Thus, \(f(x) \) is the period with \(1 \) as one of its period.

\[\Rightarrow f(7) = f(6) = f(5) = \ldots = f(1) = (0) = 1. \]

75. c. \(f(x) = [\sqrt{|x| - \{x\}}] \) is defined if \(|x| \geq \{x\} \)

\[\Rightarrow x \in \left(-\infty, -\frac{1}{2} \right] \cup [0, \infty) \Rightarrow y \in [0, \infty). \]

\[\text{Fig. 1.98} \]
76. a.
\[f(xy) = \frac{f(x)}{y} \]
\[\Rightarrow f(y) = \frac{f(\frac{1}{y})}{y} \]
(putting \(x = 1 \))
\[\Rightarrow f(30) = \frac{f(\frac{1}{30})}{30} \quad \text{or} \quad f(1) = 30 \times f(30) = 30 \times 20 = 600. \]
Now, \(f(40) = \frac{f(\frac{1}{40})}{40} = \frac{600}{40} = 15. \)

77. c. Case I
0 < |x| < 1 \Rightarrow 1 < |x| < 2, then
\[x^2 + 4x + 4 \leq 1 \]
\[\Rightarrow x^2 + 4x + 3 \leq 0 \]
\[\Rightarrow -3 \leq x \leq -1 \]
So, \(x \in (-2, -1) \) \hspace{1cm} (1)

Case II
\[|x| > 1 \Rightarrow |x| > 2, \text{ then } x^2 + 4x + 4 \geq 1 \]
\[\Rightarrow x^2 + 4x + 3 > 0 \]
\[\Rightarrow x \geq -1 \text{ or } x < -3 \]
So, \(x \in (-\infty, -3) \cup (2, \infty) \)
From (1) and (2), \(x \in (-\infty, -3) \cup (-2, -1) \cup (2, \infty) \). \hspace{1cm} (2)

78. d. \(f(x) = \frac{n(n+1)}{2} + \left[\sin \frac{x}{2} \right] + \left[\sin \frac{x}{3} \right] + \ldots + \left[\sin \frac{x}{n} \right] \)
Thus, the range of \(f(x) = \left\{ \frac{n(n+1)}{2}, \frac{n(n+1)}{2} + 1 \right\} \) as \(x \in [0, \pi] \).

79. b. \[[x]^2 = x + 2(x) \]
\[[x]^2 = [x] + 3(x) \]
\[\{x\} = \frac{[x]^2 - [x]}{3} \]
\[0 \leq \frac{[x]^2 - [x]}{3} < 1 \]
\[0 \leq [x]^2 - [x] < 3 \]
\[[x] \in \left(\frac{1 - \sqrt{3}}{2}, 0 \right) \cup \left[\frac{1 + \sqrt{3}}{2} \right) \]
\[[x] = -1, 0, 1, 2 \]
\[\{x\} = \frac{2}{3}, 0, 0, \frac{2}{3}, \ldots \] (respectively)
\[x = \frac{1}{3}, 0, 1, \frac{8}{3} \]

80. b. We must have
\[2[x]^2 - 3[x] + 1 \geq 0 \Rightarrow [x] \geq 1 \text{ or } \{x\} \leq 1/2. \]
Thus, we have \(0 \leq \{x\} \leq 1/2 \Rightarrow x \in \left[n, n + \frac{1}{2} \right], n \in I. \)

81. b. \[\left[x^2 + \frac{1}{2} \right] = \left[x^2 - \frac{1}{2} + 1 \right] = 1 + \left[x^2 - \frac{1}{2} \right] \]
Thus, from domain point of view,
\[\left[x^2 - \frac{1}{2} \right] = 0, -1 \Rightarrow \left[x^2 + \frac{1}{2} \right] = 1, 0 \]
\[\Rightarrow f(x) = \sin^{-1}(1) + \cos^{-1}(0) \text{ or } \sin^{-1}(0) + \cos^{-1}(-1) \]
\[\Rightarrow f(x) = \{ \pi \} \]

82. c. The period of \(\cos(nx) \) is \(\frac{\pi}{n} \) and the period of \(\tan \left(\frac{x}{n} \right) \)
\[\frac{\pi}{n} \]
is \(\pi n \).
Thus, \[6\pi = \text{LCM} \left(\frac{\pi}{6}, \frac{\pi}{3} \right) \]
\[\Rightarrow 6\pi = \frac{\pi}{n} \lambda_1 \Rightarrow n = \frac{\lambda_1}{6}, \text{ and } 6\pi = \lambda_2 \pi n \Rightarrow n = \frac{6}{\lambda_2}, \lambda_1, \lambda_2 \in I^+ \]
From \(n = \frac{6}{\lambda_2} \Rightarrow n = 6, 3, 2, 1. \)
Clearly, for \(n = 6 \), we get the period of \(f(x) \) to be \(6\pi \).

83. a. We must have \(ax^2 + (a + b)x + c > 0 \)
\[\Rightarrow ax^2 + bx(x + 1) + c(x + 1) > 0 \]
\[\Rightarrow (x + 1)(ax^2 + bx + c) > 0 \]
\[\Rightarrow a(x + 1) \left(x + \frac{b}{2a} \right)^2 > 0 \text{ as } b^2 = 4ac \]
\[\Rightarrow x > -1 \text{ and } x \neq -\frac{b}{2a} \]

84. b. \(f(x) = [x] + (2x) + [3x] + \ldots + \lfloor nx \rfloor - (x + 2x + 3x + \ldots + nx) \)
\[= -((x) + (2x) + (3x) + \ldots + (nx)) \]
The period of \(f(x) = \text{LCM} \left(\frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n} \right) = 1. \)

85. c. \(f \left(x + \frac{1}{2} \right) + f \left(x - \frac{1}{2} \right) = f(x) \)
\[\Rightarrow f(x + 1) + f(x) = f \left(x + \frac{1}{2} \right) \]
\[\Rightarrow f(x + 1) + f \left(x - \frac{1}{2} \right) = f(x) \]
\[\Rightarrow f(x + 3) = f \left(x + \frac{3}{2} \right) = f(x) \]
\[\therefore f(x) \text{ is periodic with period } 3. \]

86. c. \(f(x) + 3x f \left(\frac{1}{x} \right) = 2(x + 1) \)
Replacing \(x \) by \(\frac{1}{x} \), we get
\[f \left(\frac{1}{x} \right) + 3 \frac{1}{x} f(x) = 2 \left(\frac{1}{x} + 1 \right) \]
\[\Rightarrow xf \left(\frac{1}{x} \right) + 3f(x) = 2(x + 1) \]
From (1) and (2), we have \(f(x) = \frac{x + 1}{2} \)

\[\Rightarrow f(99) = 50 \]

87.a. Let \(y = \frac{x + 5}{x + 2} = 1 + \frac{3}{x + 2} \Rightarrow x = 1 \)

Also, \(y - 1 = \frac{3}{x + 2} \Rightarrow x + 2 = \frac{3}{y - 1} \)

\[\Rightarrow x = -2 + \frac{3}{y - 1} \]

\[\Rightarrow y = 2 \text{ only as } x \text{ and } y \text{ are natural numbers.} \]

88.d. \(f(f(x)) = \begin{cases} (f(x))^2, & \text{for } f(x) \geq 0 \\ f(x), & \text{for } f(x) < 0 \end{cases} \)

\[\begin{align*}
(x^2, & \ x^2 \geq 0, \ x \geq 0 \\
& = \begin{cases}
(x^4, & x \geq 0 \\
(x^2, & x < 0, \ x \geq 0 \\
(x, & x < 0) \end{cases} \end{align*} \]

89.c. From the given data

\[f(1-x) = f(1+x) \quad \text{(1)} \]

and \(f(2-x) = f(2+x) \quad \text{(2)} \)

In (2) replacing \(x \) by \(1+x \), we have

\[f(1-x) = f(3+x) \]

\[\Rightarrow f(1+x) = f(3+x) \quad \text{[from (1)]} \]

\[\Rightarrow f(x) = f(2+x) \]

90.a. Let \(f(x) = x^2 + [x+1] + 2[x-1] \)

\[\Rightarrow f(x) = \begin{cases}
-2x + 2x + 1, & x < -1 \\
x + 2x + 1 - 2x + 1, & -1 \leq x < 1 \\
x + 2x + 1 + 2x - 1, & x \geq 1 \\
-3x, & x < -1 \\
x + 4, & -1 \leq x \leq 1 \\
5x, & x > 1 \\
\end{cases} \]

or \(f(x) = \begin{cases}
x + 1, & x < -1 \\
x + 1, & -1 \leq x \leq 1 \\
5, & x > 1 \\
\end{cases} \)

Graph of \(y = f(x) \) is as shown. Clearly \(y = x \) can intersect \(y = f(x) \) at exactly one point only if \(k = 3 \)

91.d. We must have \(-1 \leq [2x^2 - 3] \leq 1 \)

\[\Rightarrow -1 \leq 2x^2 - 3 < 2 \Rightarrow 1 \leq x^2 < \frac{5}{2} \]

\[\Rightarrow x \in \left(-\sqrt{\frac{5}{2}}, -1 \right) \cup \left(1, \sqrt{\frac{5}{2}} \right) \]

92.c. \(\cos^{-1}\left(\frac{1 + x^2}{2x} \right) \) is defined if \(\frac{1 + x^2}{2x} \leq 1 \) and \(x \neq 0 \)

\[\Rightarrow 1 + x^2 - 2|\mathbf{x}| \leq 0 \]

\[\Rightarrow (|\mathbf{x}| - 1)^2 \leq 0 \]

\[\Rightarrow x = 1, -1 \]

Thus, the domain of \(f(x) \) is \(\{1, -1\} \). Hence, the range is \(\{1, 1 + \pi\} \).

93.a. \(f(f(x)) = \begin{cases} f(x), & f(x) \text{ is rational} \\
1 - f(x), & f(x) \text{ is irrational} \end{cases} \)

\[\Rightarrow f(f(x)) = \begin{cases} x, & x \text{ is rational} \\
1 - (1-x), & x \text{ is irrational} \end{cases} \]

94.c. \(y = |\sin x| + |\cos x| \)

\[\Rightarrow y^2 = 1 + |\sin 2x| \]

\[\Rightarrow 1 \leq y^2 \leq 2 \]

\[\Rightarrow y \in [1, \sqrt{2}] \]

\[\Rightarrow f(x) = 1 \forall x \in R \]

95.d. \(f(x) = \ln \left(\frac{x^2 + e}{x^2 + 1} \right) = \ln \left(\frac{x^2 + 1 + e - 1}{x^2 + 1} \right) = \ln \left(1 + \frac{e - 1}{x^2 + 1} \right) \)

Now, \(1 \leq x^2 + 1 < \infty \)

\[\Rightarrow 0 < \frac{1}{x^2 + 1} \leq 1 \Rightarrow 0 < \frac{e - 1}{x^2 + 1} \leq e - 1 \]

\[\Rightarrow 1 < 1 + \frac{e - 1}{x^2 + 1} \leq e \Rightarrow 0 < \ln \left(1 + \frac{e - 1}{x^2 + 1} \right) \leq 1 \]

Hence, the range is \((0, 1] \).

96.d. \(f(x) = \frac{1}{\sqrt{4x - [x^2 - 10x + 9]}} \)

For \(f(x) \) to be defined \([x^2 - 10x + 9] < 4x \)

\[\Rightarrow x^2 - 10x + 9 < 4x \text{ and } x^2 - 10x + 9 > -4x \]

\[\Rightarrow x^2 - 14x + 9 < 0 \text{ and } x^2 - 6x + 9 > 0 \]

\[\Rightarrow x \in (7 - \sqrt{40}, 7 + \sqrt{40}) \text{ and } x \in R \{-3\} \]

\[\Rightarrow x \in (7 - \sqrt{40}, -3) \cup (-3, 7 + \sqrt{40}) \]

97.b. Given \(y = 2^{x-(i)} \)

\[\Rightarrow x(x - 1) = \log_2 y \]

\[\Rightarrow x^2 - x - \log_2 y = 0 \]

\[\Rightarrow x = \frac{1 \pm \sqrt{1 + 4\log_2 y}}{2} \]

Only \(x = \frac{1 + \sqrt{1 + 4\log_2 y}}{2} \) lies in the domain.

\[\Rightarrow f^{-1}(x) = \frac{1 + \sqrt{1 + 4\log_2 y}}{2} \]

98.c. \(x \sin x = 1 \)

\[\Rightarrow y = \sin x = \frac{1}{x} \]

Root of equation (1) will be given by the point(s) of intersection of the graphs \(y = \sin x \) and \(y = \frac{1}{x} \). Graphically, it is clear that we get four roots.
99.c. See the graph of \(y = 2 \cos x \) and \(y = |\sin x| \). Their points of intersection represent the solution of the given equation.

For \(m > 1 \), the line \(y = mx \) lies below \(y = x \) in \((-\frac{\pi}{2}, 0) \) and above \(y = x \) in \((0, \frac{\pi}{2}) \). Thus graphs of \(y = \tan x \) and \(y = mx, m > 1 \), meet at three points including \(x = 0 \) \(\in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \) independent of \(m \).

102.c. Given \(f(x) = (\sin x + [\cos x + [\tan x + [\sec x]]) \)
\[= \sin x + [\cos x + (\tan x + [\sec x]] \]
\[= \sin x + p, \text{ where } p = [\cos x + (\tan x + [\sec x]] \]
\[= \sin x + [\cos x + (\tan x + [\sec x]] \]
\[= \sin x + (\cos x + (\tan x + [\sec x)] \]

Now, for \(x \in (0, \pi/4), \sin x \in \left(0, \frac{\pi}{2}\right), \cos x \in \left(\frac{1}{\sqrt{2}}, 1\right) \),
\(\tan x \in (0, 1), \sec x \in \left(1, \sqrt{2}\right) \)
\(\Rightarrow [\sin x] = 0, [\cos x] = 0, [\tan x] = 0 \) and \([\sec x] = 1 \)
\(\Rightarrow \) The range of \(f(x) \) is \(1 \).

103.d. \(f(3x+2)+f(3x+29)=0 \)
Replacing \(x \) by \(x + 9 \), we get
\[f(3(x+9)+2)+f(3(x+9)+29)=0 \]
\(\Rightarrow f(3x+29)+f(3x+56)=0 \) \(\tag{2} \)
From (1) and (2), we get
\[f(3x+2)=f(3x+56) \]
\(\Rightarrow f(3x+2)=f(3x+18)+2 \)
\(\Rightarrow f(x) \) is periodic with period 54.

104.b. For odd function
\[f(x) = -f(-x) \]
\[= \begin{cases}
\sin(-x) + \cos(-x) & 0 \leq -x < \pi/2 \\
-a, & -x = \pi/2 \\
tan^2(-x) + \cos ec(-x), & \pi/2 < -x < \pi
\end{cases}
\]
\[= \begin{cases}
\sin x - \cos x, & -\pi/2 < x \leq 0 \\
-a, & x = \pi/2 \\
tan^2 x + \cos ec x, & -\pi < x < -\pi/2
\end{cases}
\]

105.c. (a) \(f(x) = \sin x \) and \(g(x) = \cos x, x \in [0, \pi/2] \)

Here, both \(f(x) \) and \(g(x) \) are one-one functions, but \(h(x) = f(x) + g(x) = \sin x + \cos x \) is many-one as \(h(0) = h(\pi/2) = 1 \).

(b) \(h(x) = f(x) g(x) = \sin x \cos x = \frac{\sin 2x}{2} \) is many-one, as \(h(0) = h(\pi/2) = 0 \).
(c) It is a fundamental property.
1.70 Calculus

106.c. \(f(x) \) is defined for \(x \in (0, 1) \)
\[f(e^x) + f(\ln|x|) \text{ is defined for,} \]
\[0 < e^x < 1 \text{ and } 0 < \ln|x| < 1 \]
\[\Rightarrow \quad \infty < x < 0 \text{ and } 1 < |x| < e \]
\[\Rightarrow \quad x \in (-\infty, 0) \text{ and } x \in (-e, -1) \cup (1, e) \]
\[\Rightarrow \quad x \in (-e, -1) \]

107.d. \[|\cos x| + \cos x = \begin{cases} 0, & \cos x \leq 0 \\ 2\cos x, & \cos x > 0 \end{cases} \]

For \(f(x) \) to defined \(\cos x > 0 \)
\[\Rightarrow x \in \left(\frac{(4n-1)\pi}{2}, \frac{(4n+1)\pi}{2}\right) \text{ } n \in \mathbb{Z} \text{ (1st and 4th quadrant).} \]

108.b. Let \(2x + 3y = m \) and \(2x - 7y = n \)
\[\Rightarrow \quad y = \frac{m-n}{10} \text{ and } x = \frac{7m+3n}{20} \]
\[\Rightarrow f(m, n) = 7m + 3n \]
\[\Rightarrow f(x, y) = 7x + 3y \]

109.d. Image \(b_1 \) is assigned to any three of the six pre-images in \(6C_3 \) ways.

Rest two images can be assigned to remaining three pre-images in \(2^3 - 2 \) ways (as function is onto).

Hence number of functions are \(6C_3 \times (2^3 - 2) = 20 \times 6 = 120 \)

110.d. \(y = f(x) \) and \(y = g(x) \) are mirror image of each other about line \(y = a \)

\[y = g(x) \]
\[g(b) - a = a - f(b) \]
\[f(b) + g(b) = 2a \text{ (constant)} \]

Hence \(h(x) \) is constant function. Thus it is neither one-one nor onto.

111.c. Clearly \(f(x + \pi) = f(x), \ g(x + \pi) = g(x) \) and \(\phi \left(\frac{x + \pi}{2} \right) = (−1) f(\phi) \)
\[= (-1)f(x) \]
\[= (−1) g(x) \phi = \phi(x). \]

112.b. In the sum \(f(1) + f(2) + f(3) + \cdots + f(n) \), \(1 \) occurs \(n \) times,
\[\frac{1}{2} \text{ occurs } (n-1) \text{ times, } \frac{1}{3} \text{ occurs } (n-2) \text{ times and so on} \]
\[\therefore f(1) + f(2) + f(3) + \cdots + f(n) \]
\[= n \cdot 1 + (n-1) \cdot \frac{1}{2} + (n-2) \cdot \frac{1}{3} + \cdots \cdot 1 \cdot \frac{1}{n} \]
\[= n \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \right) - \left(\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots + \frac{n-1}{n} \right) \]
\[= nf(n) - \left[(1 - \frac{1}{2}) + (1 - \frac{1}{3}) + \left(1 - \frac{1}{4} \right) + \cdots + \left(1 - \frac{1}{n} \right) \right] \]

113.a. \(h(x) = \log(f(x), g(x)) = \log e^{[y]} \cdot [y] = [y] = e^{[y]} \cdot \text{sgn} x \)
\[\Rightarrow \quad h(x) = e^{[y]} \cdot \text{sgn} x = \begin{cases} \frac{e^x, \text{ } x > 0}{} \\ 0, \text{ } x = 0 \\ \frac{-e^x, \text{ } x < 0}{} \end{cases} \]
\[\Rightarrow h(-x) = \begin{cases} \frac{e^{-x}, \text{ } x < 0}{} \\ 0, \text{ } x = 0 \\ \frac{-e^{-x}, \text{ } x > 0}{} \end{cases} \]
\[\Rightarrow h(x) + h(-x) = 0 \text{ for all } x. \]

114.b.

![Graph of y = f_1(x) and y = f_2(x)](image)

115.d. \[[y + [y]] = 2 \cos x \]
\[\Rightarrow \quad [y + [y]] = 2 \cos x \text{ (} \because [x + n] = [x] + n \text{ if } n \in \mathbb{I} \)
\[\Rightarrow 2[y] = 2 \cos x \Rightarrow [y] = \cos x \]

Also \[y = \frac{1}{3} \left[\sin x + [\sin x + [\sin x]] \right] \]
\[= \frac{1}{3} \left[3\sin x \right] \]
\[= [\sin x] \]

From (1) and (2)
\[[[\sin x]] = \cos x \]
\[\Rightarrow [\sin x] = \cos x \]

![Graph of y = cos x](image)

The number of solutions is 0.
116.a. \(\cos^{-1}(\cos x) = [x] \)

Fig. 1.106

The solutions are clearly 0, 1, 2, 3 and 3 = 2\(\pi \) - x or \(x = 2\pi - 3 \).

117.e. Given \(f(x) = \sqrt{(1 - \cos x)(1 - \cos x)(1 - \cos x)} \ldots \infty \)

\[f(x) = (1 - \cos x)^{\frac{1}{2}}(1 - \cos x)^{\frac{1}{4}}(1 - \cos x)^{\frac{1}{8}} \ldots \infty \]

\[f(x) = (1 - \cos x)^{\frac{1}{2^{n}}} \]

\[f(x) = 1 - \cos x \]

The range of \(f(x) \) is \([0, 2)\).

118.b. \(-5 \leq kx + 5 \leq 7\)

\[-12 \leq kx \leq 2\] where \(-6 \leq x \leq 1\)

\[-6 \leq \frac{k}{2} \leq 1\] where \(-6 \leq x \leq 1\)

\(k = 2\) \(\because\) the range of \(h(x) \) is the domain of \(f(x) \)

119.a. Let \(g(x) = (x + 1)(x + 2)(x + 3)(x + 4) \)

The rough graph of \(g(x) \) is given as

```
-4 -3 -2
```

Further, \(x^{12} - x^{9} + x^{4} - x + 1 = (1 - x) + x^{4}(1 - x^{5}) + x^{12} \) is also satisfied by \(x \in \{0, 1\} \).

Hence, the domain is \(R \).

121.a. \(f(x) = \sec^{-1}\left(\frac{\log_{3} \tan x + 1}{\log_{3} \tan x} \right) \)

Now for \(\log_{3} \tan x \) to get defined, \(\tan x \in (0, \infty) \)

\(\log_{3} \tan x \in (-\infty, \infty) \) or \(\log_{3} \tan x \in R \)

Also \(x + \frac{1}{x} \leq -2 \) or \(x + \frac{1}{x} \geq 2 \)

\(\log_{3} \tan x + \frac{1}{\log_{3} \tan x} \leq -2 \) or

\(\log_{3} \tan x + \frac{1}{\log_{3} \tan x} \geq 2 \)

\(\sec^{-1}\left(\frac{\log_{3} \tan x + 1}{\log_{3} \tan x} \right) \leq \sec^{-1}(-2) \) or

\(\sec^{-1}\left(\frac{\log_{3} \tan x + 1}{\log_{3} \tan x} \right) \geq \sec^{-1}2 \)

\(f(x) \leq \frac{2\pi}{3} \) or \(f(x) \geq \frac{\pi}{3} \)

\(f(x) \in \left[\frac{\pi}{3}, \frac{2\pi}{3} \right) \cup \left(\frac{\pi}{2}, \frac{2\pi}{3} \right] \)

122.a. We have \(f(x) = \frac{(7 - x)}{(10 - 2x)} \)

```
10
```

We must have \(7 - x > 0 \), \(x \geq 3 \) and \(7 - x \geq 3 - x \)

\(x < 7, x \geq 3 \) and \(x \leq 5 \)

\(3 \leq x \leq 5 \)

\(x = 3, 4, 5 \)

Now, \(f(3) = \frac{4!}{41} = 1, f(4) = \frac{3!}{2!} = 3, f(5) = \frac{2!}{0!} = 2 \)

Hence, \(R_{f} = \{1, 2, 3\} \).

123.b. We have \(f(x - y) = f(x)f(y) - f(a - x)f(a + y) \)

Putting \(x = a \) and \(y = a - x \), we get

\(f(a - x) = f(a)f(x - a) - f(0)f(x) \) (1)

Putting \(x = 0, y = 0 \), we get

\(f(0) = f(0)f(0) - f(a)f(a) \)

\(f(0) = (f(0))^{2} - (f(a))^{2} \)

\(1 = (1)^{2} - (f(a))^{2} \)

\(f(a) = 0 \)

\(f(2a - x) = f(x) \)

Multiple Correct Answers Type

1.a, b, d.

\(f(0) = \max\{1 + \sin 0, 1, 1 - \cos 0\} = 1 \)

\(g(0) = \max\{1, 0 - 1\} = 1 \)
1.72 Calculus

\[f(1) = \max \{ 1 + \sin 1, 1, 1 - \cos 1 \} = 1 + \sin 1 \]
\[g(f(0)) = g(1) = \max \{ 1, 1 - 1 \} = 1 \]
\[f(g(0)) = f(1) = 1 + \sin 1 \]
\[g(f(1)) = g(1 + \sin 1) = \max \{ 1, 1 + \sin 1 - 1 \} = 1 \]

2. b, c.
(a) For \(f(x) = \log^2 x, x^2 > 0 \Rightarrow x \in R - \{ 0 \} \)
For \(g(x) = 2 \log x, x > 0 \)
Hence, \(f(x) \) and \(g(x) \) are not identical.

(b) \(f(x) = \log_x e = \frac{1}{\log_e x} = g(x) \)
Hence, the functions are identical.

(c) \(f(x) = \sin(\cos^{-1} x) = \sin(\frac{\pi}{2} - \sin^{-1} x) = \cos(\sin^{-1} x) \)
\[= g(x) \]
Hence, the functions are identical.

3. a, b, c.
\[f(x) + f(y) = f\left(\frac{x+y}{1-xy} \right) \]
Replace \(y \) by \(-x \Rightarrow f(x) + f(-x) = f(0) \) \(\text{(1)} \)
Put \(x = y = 0 \Rightarrow f(0) + f(0) = f(0) \Rightarrow f(0) = 0 \)
\[\Rightarrow f(x) + f(-x) = 0 \quad \text{(from (1))} \]
Hence, \(f(x) \) is an odd function.
\[f(x) + f(y) = f\left(\sqrt{1-x^2} + y \sqrt{1-x^2} \right) \]
Replace \(y \) by \(-x \Rightarrow f(x) + f(-x) = f(0) \) \(\text{(2)} \)
Putting \(x = y = 0 \Rightarrow f(0) + f(0) = f(0) \Rightarrow f(0) = 0 \Rightarrow f(x) + f(-x) = 0 \)
\[\text{from (2)} \]
Hence, \(f(x) \) is an odd function.
\[f(x + y) + f(y) = 2f(x) \cdot f(y) \]
Putting \(x = y = 0 \Rightarrow f(0) + f(0) = 2f(0) \cdot f(0) \Rightarrow f(0) = 1 \) (as \(f(0) \neq 0) \)
\[\Rightarrow f(-y) = f(y) \quad \text{(from (2))} \]
Hence, the function is even. Then \(f(-2) = f(2) = a. \)

5. b, d.
\[f\left(\frac{x+1}{x} \right) = x^2 + \frac{1}{x^2} \]
\[\Rightarrow f\left(\frac{x+1}{x} \right) = x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x} \right)^2 - 2 \]
\[\Rightarrow f(y) = y^2 - 2 \]
Now \(y = x + \frac{1}{x} \geq 2 \) or \(\leq -2 \)
Hence, the domain of the function is \((-\infty, -2] \cup [2, \infty) \)
Also for these values of \(y, y^2 \geq 4 \Rightarrow y^2 - 2 \geq 2. \)
Hence, the range of the function is \([2, \infty). \)

6. a, d.
Given \(f(x) + f(y) = x \sqrt{1-y^2} + y \sqrt{1-x^2} \) \(\text{(1)} \)
Replace \(y \) by \(x \Rightarrow f(x) = f\left(2x \sqrt{1-x^2} \right) \)
\[3f(x) = f(x) + 2f(x) \]
\[= f(x) + f\left(2x \sqrt{1-x^2} \right) \]
\[= f\left(x \sqrt{1-4x^2(1-x^2)} + 2x \sqrt{1-x^2} \sqrt{1-x^2} \right) \]
\[= f\left(x \sqrt{(2x^2-1)^2 + 2x(1-x^2)} \right) \]
\[= f\left(x \sqrt{2x^2-1} + 2x - 2x^2 \right) \]
\[= f\left(2x^3 x + 2x - 2x^2 \right) \text{ or } f\left(x - 2x^3 + 2x - 2x^2 \right) \]
\[= f(x) \text{ or } f(3x - 4x^3) \]
\[\Rightarrow f(x) = 0 \text{ or } 3f(x) = f(3x - 4x^3) \]
Consider \(3f(x) = f(3x - 4x^3) \)
Replace \(x \) by \(-x \), we get
\[f(3x) = f(4x^3 - 3x) \]
Also \(f(x) + f(-x) = f(0) \)
Putting \(x = y = 0 \) in (1), we have \(f(0) = 0 \Rightarrow f(x) + f(-x) = 0, \) thus
\(f(x) \) is an odd function.
Now from \(2 - 3f(x) = f(4x^3 - 3x) \)
\[\Rightarrow f(4x^3 - 3x) + 3f(x) = 0 \]

7. b, c.
Given \(2f(\sin x) + f(\cos x) = x \) \(\text{(1)} \)
Replace \(x \) by \(\frac{x}{2} \)
\[\Rightarrow 2f(\cos x) + f(\sin x) = \frac{x}{2} - x \]
Eliminating \(f(\cos x) \) from (1) and (2), we get
\[\Rightarrow 3f(\sin x) = 3x - \frac{\pi}{2} \]
\[\Rightarrow f(\sin x) = x - \frac{\pi}{6} \]
\[\Rightarrow f(x) = \sin^{-1} x - \frac{\pi}{6} \]
\[f(x) \text{ has the domain } [-1, 1] \]
Also, \(\sin^{-1} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \Rightarrow \sin^{-1} x - \frac{\pi}{6} \in \left[-\frac{2\pi}{3}, -\frac{\pi}{3} \right] \)

8. a, c.
\[f(2) = f(1 + 1) = 2f(1) = 10 \]
\[f(3) = f(2 + 1) = f(2) + f(1) = 10 + 5 = 15 \]
Then, \(f(n) = 5n \)
\[\Rightarrow \sum_{r=1}^{m} f(r) = \sum_{r=1}^{m} r = \frac{5m(m + 1)}{2} \]
Replace \(y \) by \(-x \), we get \(f(0) = f(x) + f(-x) \)
Also putting \(x = y = 0 \Rightarrow f(0) = f(0) + f(0) \Rightarrow f(0) = 0 \)
\[\Rightarrow f(x) + f(-x) = 0, \text{ hence, the function is odd.} \]
9. a, b, c.

\[(f + g)(3.5) = f(3.5) + g(3.5) = (-0.5) + 0.5 = 0\]
\[f(0) = 3\]
\[(g)(2) = f(2)g(2) = (-1) \times (-1) = 1\]
\[(f - g)(4) = f(4) - g(4) = 0 - 26 = -26\]

10. b, d.

\[f(x) = x^2 - 2ax + a(a + 1)\]
\[f(x) = (x - a)^2 + a, \ x \in [a, \infty)\]

Let \(y = (x - a)^2 + a\) clearly \(y \geq a\)

\[\Rightarrow (x - a)^2 = y - a\]

\[\Rightarrow x = a + \sqrt{y - a}\]

\[\therefore f^{-1}(x) = a + \sqrt{x - a}\]

Now \(f(x) = f^{-1}(x)\)

\[\Rightarrow (x - a)^2 + a = a + \sqrt{x - a}\]

\[\Rightarrow (x - a)^4 = (x - a)\]

\[\Rightarrow x = a \text{ or } (x - a)^3 = 1\]

\[\Rightarrow x = a \text{ or } x = a + 1\]

If \(a = 5049\), then \(a + 1 = 5050\)

If \(a + 1 = 5049\), then \(a = 5048\).

11. a, b, c, d.

\[f(x) = \begin{cases} 1, \ x \text{ is rational} \\ 0, \ x \text{ is irrational} \end{cases}\]

\[\Rightarrow f(x) = \begin{cases} 1, \ x + k \text{ is rational} \\ 0, \ x + k \text{ is irrational} \end{cases}\]

where \(k\) is any rational number

\[\Rightarrow f(x + k) = \begin{cases} 1, \ x \text{ is rational} \\ 0, \ x \text{ is irrational} \end{cases}\]

\[\Rightarrow f(x + k) = f(x)\]

\[\Rightarrow f(x) \text{ is periodic function, but its fundamental period cannot be determined}\]

\[f(x) = \begin{cases} x - [x], & 2n \leq x < 2n + 1 \\ 1/2, & 2n + 1 \leq x < 2n + 2 \end{cases}\]

Draw the graph from which it can be verified that period is 2.

\[f(x) = \begin{cases} 2x, & x \leq 0 \\ \frac{2x}{\pi}, & x > 0 \end{cases}\]

12. b, c.

\[f(x) \text{ must be a linear function, let } f(x) = ax + b\]

\[\Rightarrow f(ax + b) = 6x - ax - b\]

\[\Rightarrow a(ax + b) + b = 6x - ax - b\]

\[\Rightarrow a^2 = 6 - a \text{ and } ab + b = -b\]

\[\Rightarrow a = 2 \text{ or } -3 \Rightarrow b = 0\]

\[\Rightarrow f(x) = 2x \text{ or } -3x \Rightarrow f(17) = 34 \text{ or } -51\]

13. a, b, c, d.

\[f(x + 1) = \frac{f(x) - 5}{f(x) - 3}\]

\[\Rightarrow f(x)f(x + 1) - 3f(x + 1) = f(x) - 5\]

\[\Rightarrow f(x) = \frac{3f(x + 1) - 5}{f(x + 1) - 1}\]

Replacing \(x\) by \((x - 1)\), we get

\[f(x - 1) = \frac{3f(x) - 5}{f(x) - 1}\]

Using (1), \(f(x + 2) = \frac{f(x + 1) - 5}{f(x + 1) - 3} = \frac{f(x) - 5}{f(x) - 3}\)

\[= 2f(x) - 5\]

\[3\]

Using (2), \(f(x - 2) = \frac{3f(x - 1) - 5}{f(x - 1) - 1} = \frac{3f(x) - 5}{f(x) - 1}\)

\[= 2f(x) - 5\]

Using (3) and (4), we have \(f(x + 2) = f(x - 2)\)

\[\Rightarrow f(x + 4) = f(x) \Rightarrow f(x) \text{ is periodic with period 4}\]

14. a, d.

\[f(x) = \sec^{-1}[1 + \cos^2 x]\]

\[f(x) \text{ is defined if } [1 + \cos^2 x] \leq -1 \text{ or } [1 + \cos^2 x] \geq 1\]

\[\Rightarrow [\cos^2 x] \leq -2 \text{ (not possible) or } [\cos^2 x] \geq 0\]

\[\Rightarrow \cos^2 x \geq 0 \Rightarrow x \in R\]

Now \(0 \leq \cos^2 x \leq 1 \Rightarrow 1 \leq 1 + \cos^2 x \leq 2\)

\[\Rightarrow [1 + \cos^2 x] = 1, 2\]
17. a, b, c.
\[
f(x) = \tan(\tan^{-1}x) = x \text{ for all } x \text{ and } g(x) = \cot(\cot^{-1}x) = x \text{ for all } x
\]
Hence, this pair is identical functions.
\[
f(x) = \text{sgn}(x) \text{ and } g(x) = \text{sgn}^{-1}(x) \text{ have domain } R
\]
f(x) has range \{-1, 0, 1\} and g(x) = \text{sgn}^{-1}(x) \text{ has range } \{-1, 0, 1\}
Also, \(f(x) = g(x) \) for any x, then this pair is identical functions
\[
g(x) = \cot^2x - \cos^2x = \cos^2x(\cosec^2x - 1) = \cos^2x \cot^2x = f(x)
\]
\[
f(x) = e^{\log_{e^x}} \text{ has the domain } [1, \infty), \text{ whereas } \]
g(x) = \text{sec}^{-1}x \text{ has the domain } (-\infty, -1) \cup [1, \infty).
Hence, this pair is not identical functions.

18. b, c, d.
\[
f(x) = \frac{1}{\ln(1 - |x|)} \text{ is defined if } [1 - |x|] > 0 \text{ and } 1 - |x| \neq 1
\]
\[
\Rightarrow \ [1 - |x|] \geq 2 \Rightarrow 1 - |x| \geq 2 \Rightarrow |x| \leq -1 \text{ which is not possible.}
\]
f(x) = \frac{x!}{[x]} \text{. Here } x! \text{ is defined only when } x \text{ is natural number, but } [x] \text{ becomes zero for these values of } x \text{. Hence, } f(x) \text{ is not defined in this case.}

19. a, b, c, d.
Since \(\angle PRQ = \pi/2 \) and points \(P, Q, R \) lie on the circle with \(PQ \) as diameter.
Also \(PQ = 5 \)
Now, the maximum area of the triangle is \(A_{\text{max}} = \frac{1}{2} \left(\frac{5}{2} \right)^2 = 6.25 \)
For area = 5, we have four symmetrical positions of point \(R \) (shown as \(R_1, R_2, R_3, R_4 \))
For area = 6.25 we have exactly two points.
For area = 7, no such points exist.

20. a, b.
\[
(x + 1)f(x) - x \text{ is a polynomial degree } n + 1
\]
\[
\Rightarrow (x + 1)f(x) - x = k(x) [x - 1] [x - 2] \ldots [x - n] \quad (i)
\]
\[
\Rightarrow [n + 2]f(n + 1) - (n + 1) = k(n + 1)!
\]
Also, \(1 = k(-1)(-2) \ldots ((n - 1)) \) (Putting \(x = -1 \) in (i))
\[
\Rightarrow 1 = k(-1)^n(n + 1)!
\]
\[
\Rightarrow (n + 2)f(n + 1) - (n + 1) = (-1)^{n+1}
\]
\[
\Rightarrow f(n + 1) = 1, \text{ if } n \text{ is odd and } -\frac{n}{n + 2}, \text{ if } n \text{ is even.}
\]

21. a, b, c.
\[
f^2(x) = \left(\frac{3}{4} x + 1 \right) = \frac{3}{4} \left(\frac{3}{4} x + 1 \right) + 1 = \left(\frac{3}{4} \right)^2 \Rightarrow \left(\frac{3}{4} \right) \Rightarrow \left(\frac{3}{4} \right) + 1
\]
\[
f^3(x) = \left(\frac{3}{4} \right)^3 = \frac{3}{4} \left[f^2(x) + 1 \right]
\]
\[
= \frac{3}{4} \left[\left(\frac{3}{4} \right)^2 + 1 \right] + 1
\]
\[
= \frac{3}{4} \left(\frac{3}{4} \right)^2 + \frac{3}{4} + 1
\]
\[
= \frac{3}{4} \left(\frac{3}{4} \right)^2 + \frac{3}{4} + 1
\]
\[
\therefore f^n(x) = \left(\frac{3}{4} \right)^n = \left(\frac{3}{4} \right)^n + \left(\frac{3}{4} \right)^{n-2} + \left(\frac{3}{4} \right) + 1
\]
\[
= \left(\frac{3}{4} \right)^n + 1 - \left(\frac{3}{4} \right)^n
\]
\[
\therefore \lambda = \lim_{n \to \infty} \left(\frac{3}{4} \right)^n = 0 + 4 = 4
\]
22. a, b, c.

\[f(x) = \frac{x^2 - 8x + 23}{8} \]

\[\Rightarrow \log_{\sin x} \left(\frac{x^2 - 8x + 23}{8} \right) > 0 \]

This is true if \(|\sin x| \neq 0, 1 \) and \(x^2 - 8x + 23 < 1 \)

Now, \(\frac{x^2 - 8x + 23}{8} < 1 \Rightarrow x^2 - 8x + 15 < 0 \)

\[\Rightarrow x \in (3, 5) - \left(\pi, \frac{3\pi}{2} \right) \]

Domain: \((\pi, \frac{3\pi}{2}) \cup \left(\frac{3\pi}{2}, 5 \right) \).

23. a, b, c, d.

\[f(x) = \text{sgn}(\cot^{-1} x) + \tan \left(\frac{\pi}{2} \left[x \right] \right) \]

\[\text{sgn}(\cot^{-1} x) \text{ is defined when } \cot^{-1} x \text{ is defined, which is for } \forall x \in R. \]

\[\tan \left(\frac{\pi}{2} [x] \right) \text{ is defined when } \frac{\pi}{2} [x] \neq \frac{2n+1}{2} \pi, \text{ where } n \in Z \]

\[\Rightarrow [x] \neq 2n + 1 \Rightarrow x \in [2n + 1, 2n + 2) \]

Hence domain of \(f(x) \) is \(\bigcup_{n \in Z} [2n, 2n + 1) \).

Also \(\cot^{-1} x > 0, \forall x \in R \).

Then \(f(x) = 1 + \tan \left(\frac{\pi}{2} \left[x \right] \right) = 1 \)

\[\Rightarrow f(x) = 1, x \in D_f \]

From graph \(f(x) \) is periodic with period 2.

Reasoning Type

1.b. A function which can be expressed as a sum of odd and even function need not to be odd or even. But \(f(x) = \log e^x \) is not defined for \(x < 0 \), hence statement 2 is true but not correct explanation of statement 1.

2.a. \(f(x) - 1 + f(1 - x) - 1 = 0 \); so \(g(x) + g(1 - x) = 0 \)

Replacing \(x \) by \(x + \frac{1}{2} \), we get \(g \left(\frac{1}{2} + x \right) + g \left(\frac{1}{2} - x \right) = 0 \).

So it is symmetrical about \(\left(\frac{1}{2}, 0 \right) \).

3.d. \[f \left(\frac{2\tan x}{1 + \tan^2 x} \right) = \frac{1 + \cos 2x}{2} \left(\sec^2 x + 2 \tan x \right) \]

\[\Rightarrow f \left(\tan 2x \right) = \frac{2\cos^2 x(\sec^2 x + 2 \tan x)}{2} \]

\[= 1 + \frac{\sin 2x}{1 + \sin 2x} \]

\[\Rightarrow f(y) = 1 + y \text{ where } y = \sin 2x, \text{ now } \sin 2x \in [-1, 1] \]

\[\Rightarrow (y) \in [0, 2] \]

Hence, statement 1 is false but statement 2 is true.

4. c. \(\sin(kx) \) has period \(\frac{\pi}{k} \) and period of \(\{x\} \) is 1

Now LCM of \(\frac{\pi}{k} \) and 1 exists only if \(k \) is a rational multiple of \(\pi \) (as LCM of rational and irrational number does not exist). Hence, statement 1 is true.

But statement 2 is false as sum of two periodic function is not necessarily periodic. Consider \(f(x) = \sin x + \{x\} \).

5. c. Obviously, \(f(x) = x^2 + \tan^{-1} x \) is non-periodic, but sum of two non-periodic function is not always non-periodic, as \(f(x) = x \) and \(g(x) = -[x] \), where \([\cdot]\) represents the greatest integer function.

\[f(x) + g(x) = x - [x] = \{x\} \text{ is a periodic function } \{\cdot\} \text{ represents the fractional part function.} \]

6. c. \(f(x) = \tan^{-1} x \) is an increasing function, then the range of function is \([\tan^{-1} 3, \tan^{-1} \sqrt{3}] = [\pi/4, \pi/3] \).

Hence, statement 1 is true. But statement 2 is not true in general. For non-monotonic function, statement 2 is false.

7. a. For any integer \(k \), we have \(f(k) = f(2n \pi + k) \) where \(n \in Z \),

\[2n \pi + k \text{ is not integer, hence } f(x) \text{ is one-one.} \]

8. a. Consider \(f(x) = \tan x \), which is surjective, periodic but discontinuous.

9. b. \[||x^2 - 5x + 4| - |2x - 3|| = |x^2 - 3x + 1| \]

\[\Rightarrow ||x^2 - 5x + 4| - |2x - 3|| = |(x^2 - 5x + 4) - (2x - 3)| \]

\[\Rightarrow (x^2 - 5x + 4)(2x - 3) \leq 0 \]

\[\Rightarrow (x - 1)(2x - 3)(x - 4) \leq 0 \]

\[\Rightarrow x \in (-\infty, 1] \cup \left[\frac{3}{2}, 4 \right] \]

Hence, statement 1 is true.

Statement 2 is true as it is the property of modulus function but is not a correct explanation of statement 1.

10. a. Let \(\max |f(x)| = M \) where \(0 < M \leq 1 \) (since \(f \) is not identically zero and \(|f(x)| \leq 1 \forall x \in R \))

Now, \(f(x + y) + f(x - y) = 2f(x) \cdot g(y) \)

\[\Rightarrow 2 |f(x) \cdot g(y)| = |f(x + y) + f(x - y)| \]

\[\Rightarrow 2 |f(x)| |g(y)| \leq |f(x + y) + f(x - y)| \leq M + M \]

\[\Rightarrow |g(y)| \leq M \text{ for } y \in R. \]

11. b. Obviously, both the statements are true but statement 2 is not a correct explanation of statement 1, as \(\text{function } f(x) = \cos(2x + 3) \) which is periodic though \(g(x) = 2x + 3 \) is non-periodic.

12. b. Obviously, both the statements are true but statement 2 is not a correct explanation of statement 1, as for \(f(x) = \cos(\sin x) \) the period is \(\pi \), where \(\sin x \) has period \(2 \pi \).

Thus, the period of \(f(g(x)) \) is not always same as that of \(g(x) \).
13. a. It is a fundamental concept.
14. b. Both the statements are true, but statement 2 is not a correct explanation of statement 1 as \(f(g(x)) \) is one-one when \(g(x) \) is one-one and \(f(x) \) is many-one.
15. b. Both the statements are true, but statement 2 is not a correct explanation of statement 1, as for \(f(g(x)) \) is onto it is necessary that \(f(x) \) is onto, but there is no restriction on \(g(x) \).
16. d. Statement 1 is false, though \(f(x) = \sin x \) and \(g(x) = \cos x \) have same domain and range, \(\cos x = \sin x \) does not hold for all \(x \in R \).
However, the statement 2 is true:

17. a.
18. d. If \(b^2 - 4ac > 0 \) then \(ax^2 + bx + c = 0 \) has real distinct roots \(\alpha \), \(\beta \).
If \(a > 0 \), then for \(f(x) = \frac{\sqrt{ax^2 + bx + c}}{2a} \) to get defined, \(ax^2 + bx + c \geq 0 \), then the range of \(f(x) \) is \([0, \infty)\) (as \(b^2 - 4ac > 0 \))

![Fig. 1.112](image)

If \(a < 0 \), then for \(f(x) \) to get defined, \(ax^2 + bx + c \geq 0 \), then the range of \(f(x) \) is \([0, -\frac{b}{2a}]\) (as \(b^2 - 4ac > 0 \))

![Fig. 1.113](image)

Hence, statement 1 is false, but statement 2 is true.
19. c. \(f(g(x)) \) can be even also when one of them is even and other is odd.
20. a. Obviously, the graph of \(y = \tan x \) is symmetrical about origin, as it is an odd function.
Also derivative of an odd function is an even function, and \(\sec^2 x \) is derivative of \(\tan x \), hence both the statements are true, and statement 2 is a correct explanation of statement 1.

Linked Comprehension

Type

For Problems 1–3

1.e, 2.e, 3.b

Sol.

\[f(x) = \begin{cases} x + 1, & x \leq 1 \\ 2x + 1, & 1 < x \leq 2 \end{cases} \]

\[g(x) = \begin{cases} x^2, & -1 \leq x < 2 \\ x + 2, & 2 \leq x \leq 3 \end{cases} \]

\[f(x) = \begin{cases} g(x) + 1, & g(x) \leq 1 \\ 2g(x) + 1, & 1 < g(x) \leq 2 \end{cases} \]

\[f(g(x)) = \begin{cases} x^2 + 1, & x^2 \leq 1, \quad -1 \leq x < 2 \\ x + 2 + 1, & x + 2 \leq 1, \quad 2 \leq x \leq 3 \\ 2x^2 + 1, & 1 < x^2 \leq 2, \quad -1 \leq x < 2 \\ 2(x + 2) + 1, & 1 < x + 2 \leq 2, \quad 2 \leq x \leq 3 \end{cases} \]

\[f(g(x)) = \begin{cases} x^2 + 1, & -1 \leq x \leq 1 \\ 2x^2 + 1, & 1 < x \leq \sqrt{2} \end{cases} \]

1. c. Hence, the domain of \(f(x) \) is \([-1, \sqrt{2}]\).
2. c. For \(-1 \leq x \leq 1\), we have \(x^2 \in [0, 1] \Rightarrow x^2 + 1 \in [1, 2] \)

For \(1 < x \leq \sqrt{2} \), we have \(x^2 \in (1, 2] \Rightarrow 2x^2 + 1 \in (3, 5] \)

Hence, the range is \([1, 2) \cup (3, 5]\).
3. b. For \(f(g(x)) = 2 \Rightarrow x^2 + 1 = 2 \) and \(2x^2 + 1 = 2 \Rightarrow x = \pm 1 \) or \(x = \pm \frac{1}{\sqrt{2}} \)

\[\Rightarrow x = \pm 1 \text{ only. Hence, 2 roots} \]

For Problems 4–6

4. b, 5.c, 6.d

Sol.

\[f(x) + f\left(\frac{x - 1}{x}\right) = 1 + x \quad (1) \]

In (1) replace \(x \) by \(\frac{x - 1}{x} \), we have \(f\left(\frac{x - 1}{x}\right) + f\left(\frac{x - 1}{x}\right) \)

\[= 1 + \frac{x - 1}{x} \]

\[\Rightarrow f\left(\frac{x - 1}{x}\right) + f\left(\frac{1}{1 - x}\right) = 1 + \frac{x - 1}{x} \quad (2) \]

Now from (1) - (2), we have \(f(x) - f\left(\frac{1}{1 - x}\right) = x - \frac{x - 1}{x} \)

\[= \frac{1}{1 - x} - \frac{1 - x}{1 - x} \quad (3) \]

In (3) replace \(x \) by \(\frac{1}{1 - x} \), we have \(f\left(\frac{1}{1 - x}\right) - f\left(\frac{x - 1}{x}\right) = \frac{1}{1 - x} - x \)

\[= \frac{1}{1 - x} - \frac{1 - x}{1 - x} \quad (4) \]

or \(f\left(\frac{1}{1 - x}\right) - f\left(\frac{x - 1}{x}\right) = \frac{1}{1 - x} - x \)
Now from $(1) + (3) + (4)$, we have $2f(x) = 1 + x + x - \frac{x-1}{x} + \frac{1}{1-x} - x$

\[\Rightarrow f(x) = \frac{x^3 - x^2 - 1}{2x(x-1)} \]

\[f(x) = \frac{x^3 - x^2 - 1}{2x(x-1)} \]

4.b. \[g(x) = \frac{x^3 - x^2 - 1}{x(x-1)} - x + 1 \]

\[= \frac{x^2 - x - 1}{x(x-1)} \]

Now for $y = \sqrt{g(x)}$, we must have $x^2 - x - 1 \geq 0$ or

\[\left(\frac{x^2 - 1}{2} \right) \left(\frac{-1+\sqrt{5}}{2} \right) \geq 0 \]

\[\Rightarrow x \in \left(-\infty, \frac{-1-\sqrt{5}}{2} \right) \cup (0, 1) \cup \left[\frac{1+\sqrt{5}}{2}, \infty \right) \]

5.c. $y = g(x) = \frac{x^2 - x - 1}{x(x-1)} \Rightarrow (y-1)x^2 + (1-y)x + 1 = 0$

Now x is real, \[\Rightarrow D \geq 0 \Rightarrow (1-y)^2 - 4(y-1) \geq 0 \]

\[\Rightarrow (y-1)(y-5) \geq 0 \]

\[\Rightarrow y \in (-\infty, 1) \cup [5, \infty) \]

6.d. $g(x) = 1 \Rightarrow \frac{x^2 - x - 1}{x(x-1)} = 1 \Rightarrow x - 1 = -x$, which has no solutions.

For Problems 7–9

7.d. 8.c, 9.c

Sol.

Here,

\[f(1) + 2f(2) + 3f(3) + \cdots + nf(n) = n(n+1)f(n) \]

for $n \geq 2$ \hspace{1cm} (1)

Replacing n by $n + 1$, we get

\[f(1) + 2f(2) + 3f(3) + \cdots + (n+1)f(n+1) = (n+1)(n+2)f(n+1) \]

From $2\mathbf{(2)} - 1\mathbf{(1)}$, we get

\[(n+1)f(n+1) = (n+1)(n+2)f(n+1) - nf(n) \]

\[\Rightarrow f(n) = (n+2)f(n+1) - f(n) \]

\[\Rightarrow nf(n) = (n+2)f(n+1) - f(n) \]

Putting $n = 2, 3, 4, \ldots$, we get

$2f(2) = 3f(3) = 4f(4) = \ldots = nf(n)$

From $1\mathbf{(1)} + 2\mathbf{(2)} + 3\mathbf{(3)} + \cdots + nf(n) = n(n+1)f(n)$

\[\Rightarrow f(1) + (n-1)nf(n) = n(n+1)f(n) \]

\[\Rightarrow f(1) = 2nf(n) \]

\[\Rightarrow f(n) = \frac{f(1)}{2n} = \frac{1}{2n} \]

7.d. $f(1003) = \frac{1}{2(1003)} = \frac{1}{2006}$

8.c. $f(999) = \frac{1}{2(999)} = \frac{1}{1998}$

9.c. $f(1), f(2), f(3), \ldots$ are in H.P.\[\frac{1}{1}, \frac{1}{2}, \frac{1}{6}, \frac{1}{8}, \ldots \] are in H.P.

For Problems 10–11

10. a, 11.b, 12.c

Sol. \[\left(f(x) \right)^2 \left(\frac{1-x}{1+x} \right) = 64x \]

Putting $\frac{1-x}{1+x} = y$, or $x = \frac{1-y}{1+y}$, we get

\[\left\{ f \left(\frac{1-y}{1+y} \right) \right\} \cdot f(y) = 64 \left(\frac{1-y}{1+y} \right) \]

\[\Rightarrow f(x) \cdot \left(\frac{1-x}{1+x} \right)^2 = 64 \left(\frac{1-x}{1+x} \right) \]

(2)

From $(1)^2/(2)$, we get

\[f(x) \cdot \left(\frac{1-x}{1+x} \right)^2 = \frac{(64x)^2}{f(x)} \]

\[\Rightarrow \left\{ f(x) \right\} = 64x^2 \left(\frac{1+x}{1-x} \right) \]

\[\Rightarrow f(x) = 4x^2 \left(\frac{1+x}{1-x} \right)^{3/2} \]

For Problems 13–15

13.d, 14.c, 15.c

Sol. \[|g(x)| = |\sin x|, x \in R \]

\[f(g(x)) = |\sin x|, -1 \leq \sin x < 0 \]

\[= \sin^2 x, x \in R \]

\[\left(|\sin x| \right)^2, 0 \leq |\sin x| \leq 1 \]

\[f(g(x)) = |\sin x|, -1 \leq \sin x < 0 \]

\[\left(\sin^2 x \right), 0 \leq \sin x \leq 1 \]

\[\left(\sin x \right), (2n+1)\pi < x < 2n\pi, n \in Z \]

\[\sin^2 x, 2n\pi \leq x \leq (2n+1)\pi \]
13. d. Clearly \(h_1(x) = f'(\log(x)) = \sin^2x \) has period \(n \pi \), range \([0, 1]\) and domain \(R \).

14. c. \(h_2(x) = |f(g(x))| \) has domain \(R \).

\[
[f(g(x))] = \begin{cases}
1 - \sin x, & (2n+1)\pi < x < 2n\pi \\
\sin^2 x, & 2n\pi \leq x \leq (2n+1)\pi, n \in Z
\end{cases}
\]

Fig. 1.114

Also from the graph, it is periodic with period \(2\pi \) and has range \([0, 2]\).

15. c. For \(h_1(x) = h_2(x) = \sin^2x, x \in [2n\pi, (2n+1)\pi], n \in Z \) and has range \([0, 1]\) for the common domain.
Also, the period is \(2\pi \) (from the graph).

For Problems 16–18

16. d, 17.d, 18.c

Sol. Given \(a_{n+1} = f(a_n) \)

Now \(a_1 = f(a_0) = f(x) \)
\[
\Rightarrow a_2 = f(a_1) = f(f(a_0)) = fof(x)
\]
\[
\Rightarrow a_n = fofofof ... f(x) \quad \text{n times}
\]

16. d. \(a_1 = f(x) = (a - x^m)^{1/m} \)
\[
\Rightarrow a_2 = f(f(x)) = [(a - x^m)^{1/m} - x^m]^{1/m} = x
\]
\[
\Rightarrow a_3 = f(f(f(x))) = f(x)
\]
Obviously, the inverse does not exist when \(m \) is even and \(n \) is odd.

17. d.

Now if \(f(x) = \frac{1}{1-x} \) \(\Rightarrow fof(x) = \frac{1}{1 - \frac{1}{1-x}} = \frac{x-1}{x} \)
\[
\Rightarrow fofof(x) = \frac{1-x}{x} = x
\]
\[
\Rightarrow a_n = fofof ... of(x) = \frac{x-1}{x} \quad \text{of n times}
\]
\[
= \frac{x-1}{x} \quad \text{if } n = 3k+1
\]
\[
= \frac{x}{x} \quad \text{if } n = 3k+2
\]
\[
= x \quad \text{if } n = 3k
\]

18. c. Since \(a_1 = g(x) = 3 + 4x \)
\[
\Rightarrow a_2 = g(g(x)) = g(3 + 4x) = 3 + 4(3 + 4x) = (4x - 1) + 4x
\]
\[
\Rightarrow a_3 = g(g^2(x)) = g(15 + 4^2x) = 3 + 4(15 + 4^2x) = 63 + 4^3x = (4^3 - 1) + 4^3x
\]
Similary, we get \(a_n = (4^n - 1) + 4^n x \)
\[
\Rightarrow A + B + 1 = 2^n + 1, |A - B| = 1 \quad \text{and } \lim_{n \to \infty} \frac{4^n - 1}{4^n}
\]
\[
= \lim_{n \to \infty} \left(1 - \frac{1}{4^n} \right) = 1
\]

For Problems 19–21

19.a, 20.b, 21.a

Sol. 19. a \(f_1(x) = x^2 \) and \(f_2(x) = |x| \)
\[
\Rightarrow f(x) = f_1(x) - 2f_2(x) = x^2 - 2|x|
\]

Graph of \(f(x) \)

Fig. 1.115

\[
g(x) = \begin{cases}
 f(x), & -3 \leq x < -1 \\
 -1, & -1 \leq x < 0 \\
 0, & 0 \leq x < 2 \\
 f(x), & 2 < x \leq 3
\end{cases}
\]
\[
= \begin{cases}
 x^2 + 2x, & -3 \leq x < -1 \\
 -1, & -1 \leq x < 0 \\
 0, & 0 \leq x \leq 2 \\
 x^2 - 2x, & 2 < x \leq 3
\end{cases}
\]
The range of \(g(x) \) for \([-3, -1]\) is \([-1, 3]\).

20.b. For \(x \in (-1, 0) \), \(f(x) + g(x) = x^2 + 2x - 1 \).

21. a. Obviously, the graph is broken at \(x = 0 \).

For Problems 22–24

22.a, 23.d, 24.c

Sol. 22. a.
\(g(f(x)) \) is not defined if
(i) \(-2 + a > 8 \) and (ii) \(b + 3 > 8 \)
\(a > 10 \) and \(b > 5 \)

23. d.
\(x \in [-1, 2] \)
\[
\Rightarrow -1 \leq x \leq 2
\]
\[
\Rightarrow -2 \leq 2x \leq 4
\]
\[
\Rightarrow -2 + a \leq 2x + a \leq 4 + a
\]
\[
\Rightarrow -2 + a \leq -2 \text{ and } 4 + a \leq 4, i.e., a = 0
\]
\(b \) can take any value.
24. c.
If \(a = 2, b = 3\)

\[
 f(x) = \begin{cases}
 2x + 2 & : x \geq -1 \\
 3x^2 + 3 & : x < -1
\end{cases}
\]

The range of \(f(x)\) is \([0, \infty)\).

For Problems 25–27

25. c. 26.c, 27.c

Solt. \(f(2-x) = f(2+x)\)

Replace \(x\) by \(2-x\), \(\Rightarrow f(x) = f(4-x)\) \hspace{1cm} (1)

Also given \(f(20-x) = f(x)\) \hspace{1cm} (2)

From (1) and (2), \(f(4-x) = f(20-x)\)

Replace \(x\) by \(4-x\), \(\Rightarrow f(x) = f(x + 16)\)

Hence, the period of \(f(x)\) is 16.

25. c. Given \(f(0) = 5\).

26. c. \(f(2-x) = f(2+x)\)

\[y = f(x) \text{ is symmetrical about } x = 2 \]

Also \(f(20-x) = f(x)\)

\[f(20-10+x) = f(10+x) \]

\[f(10-x) = f(10+x) \]

\[y = f(x) \text{ is symmetrical about } x = 10 \]

27. c. If \(f\) is a period, then \(f(x) = f(x+1)\), \(\forall x \in \mathbb{R}\)

\[f(2) = f(3) = f(4) = f(5) = f(6) \]

which contradicts the given hypotheses that \(f(2) \neq f(6)\)

\[\therefore 1 \text{ cannot be period of } f(x). \]

For Problems 28–30

28. c. 29. c, 30. b

Solt. \(g(f(x)) = \begin{cases}
 [f(x)] & : -\pi \leq f(x) < 0 \\
 \sin f(x) & : 0 \leq f(x) \leq \pi \\
 [\lceil x \rceil] & : -\pi \leq [x] < 0 \\
 \lceil x \rceil + 1 & : -\pi \leq [x] + 1 < 0 \\
 \sin [x] & : 0 \leq [x] \leq \pi \\
 \sin [x] + 1 & : 0 \leq [x] + 1 \leq \pi \\
 [x] & : -2 \leq x \leq -1 \\
 \sin [x] + 1 & : -1 \leq x \leq 2
\end{cases}\]

Hence, the domain is \([-2, 2]\).

Also for \(-2 \leq x \leq -1\)

and for \(-1 < x \leq 2\)

\[\Rightarrow \sin (|x| + 1) \in [\sin 3, 1] \]

Hence, the range is \([-2, -1] \cup [\sin 3, 1]\)

Also for \(y \in [\sin 3, 1], [y] = 0, 1\)

Hence, the number of integral points in the range is 4.

Matrix-Match Type

1. a \(\rightarrow s; b \rightarrow r; c \rightarrow p; d \rightarrow q;\)

\(f(x)\) is defined if \(0 \leq \tan x \leq 1\)

\[\Rightarrow x \in \left[n\pi, n\pi + \frac{\pi}{4} \right], n \in I \]

\(f(x)\) is defined if \(0 \leq \sin x \leq 1\)

\[\Rightarrow x \in \left[2n\pi, (2n+1)\pi \right], n \in I \]

\(f(x)\) is defined if \(0 \leq \cos x \leq 1\)

\[\Rightarrow x \in \left[2n\pi - \frac{\pi}{2}, 2n\pi + \frac{\pi}{2} \right], n \in I \]

\(f(2\sin x)\) is defined if \(0 \leq 2\sin x \leq 1\)

\[\Rightarrow 2n\pi \leq (2n+1)\pi, (2n+1)\pi \]

2. a \(\rightarrow p; b \rightarrow q; c \rightarrow q, s; d \rightarrow p, r;\)

a. \(f(x) = \left\{ \begin{array}{ll}
 (1)^{-1} & : x > 0 \\
 (-1)^{-1} & : x < 0 \\
 1, x > 0 \\
 -1, x < 0
\end{array} \right.\)

Hence, \(f(x)\) is an odd function.

b. \(f(x) = \frac{x}{e^x - 1} + \frac{x}{2} + 1\)

\[\Rightarrow f(-x) = \frac{-x}{e^{-x} - 1} = \frac{x e^x - x}{e^x - 1} + 1 = \frac{x e^x - x}{e^x - 1} + 1 \\
 = \frac{x e^x - x + x}{e^x - 1} + 1 = \frac{x}{e^x - 1} + 1 \]

\(f(x)\)

c. \(f(x) = \begin{cases} 0, & \text{If } x \text{ is rational} \\
 1, & \text{If } x \text{ is irrational} \end{cases}\)

\[\Rightarrow f(-x) = \begin{cases} 0, & \text{If } -x \text{ is rational} \\
 1, & \text{If } -x \text{ is irrational} \end{cases} = \begin{cases} 0, & \text{If } x \text{ is rational} \\
 1, & \text{If } x \text{ is irrational} \end{cases} = f(x) \]

d. \(f(x) = \max\{\tan x, \cot x\}\)

From the graph of function it can be verified that \(f(x)\) is neither odd nor even.

Hence, \(f(x)\) is an odd function.

Also \(f(x + \pi) = \max\{\tan(x + \pi), \cot(x + \pi)\}\)

\[= \max\{\tan x, \cot x\} \]

Hence, \(f(x)\) is periodic with period \(\pi\).

3. a \(\rightarrow n, s; b \rightarrow p, q, r, s; c \rightarrow s, d \rightarrow p;\)

a. \(\tan^{-1}\left(\frac{2x}{1-x^2} \right) \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \)

\(\Rightarrow 2\tan^{-1} x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \)
5. a → p; b → q, r; c → p; d → q, r.

Since \(f(g(x)) \) is a one-one function

\[f(g(x_1)) \neq f(g(x_2)) \text{ whenever } g(x_1) = g(x_2) \]
\[(g(x_1)) \neq (g(x_2)) \text{ whenever } x_1 \neq x_2 \]
\[g(x) \text{ is one-one.} \]

If \(f(x) \) is not one-one, then \(f(x) = y \) is satisfied by

\[x = x_1, x_2 \]

\[f(x_1) = f(x_2) = y \text{ also if } g(x) \text{ is onto, then} \]

let \(g(x_1) = x_1 \) and \(g(x_2) = x_2 \)

\[f(g(x_1)) = f(g(x_2)) \]
\[f(g(x)) \text{ cannot be one-one.} \]

6. a → q; b → q; c → s; d → p.

a. \(f(x + \pi/2) = \cos[(x + \pi/2) - (x + \pi/2)] \)
\[= \cos(x + \pi/2 - x) \]
\[= \cos(x - \pi/2) \]
\[= \cos(x) \]
\[= f(x) \]

b. \((x + \pi/2) = \cos[\tan x + \cot x] \)
\[= \cos[\tan x + \cot x] \]
\[= \cos(x) \]
\[= f(x) \]

c. The period of \(\sin^{-1}(x) \) is \(2\pi \). The period of \(e^{mx} \) is \(\pi \).
The period of \(f(x) = LCM(2\pi, \pi) = 2\pi \)

7. a → s; b → r; c → s; d → p.

a. \(f(x) = e^{\cos \pi x} = e^{\cos \pi x} \cdot \cos \pi x \)
\[\cos \pi x \text{ and } \cos \pi x \text{ has period 1} \]
\[x - [x] = [x] \text{ has period 1} \]
Then the period of \(f(x) \) is 1.

b. \(f(x) = \cos(3x + \pi/2) = \sin 2\pi(2x) \)
The period \(2\pi \) is 1/2, then the period of \(f(x) \) is 1/2.

c. Clearly, \(\tan \pi x = 0 \quad \forall \ x \in R \) and the period of \(\sin 3\pi x \) is equal to 1.

The period of \(f(x) \) is 1.

8. a → r; b → s; c → q; d → p.

a. \(f(x) = \log_{10} (5 + 4x - x^2) \)
\[= \log_{10}(9 - (x - 2)^2) \]

b. \[(x)^2 + (y)^2 = 1 \]
\[= 1 \]
\[= (x)^2 + (y)^2 = 1 \]
\[= 1 \]
\[= 1 \]
Now \(-\infty < 9 - (x - 2)^3 \leq 9\)

But for \(f(x)\) to be defined, \(0 < 9 - (x - 2)^3 \leq 9\)

\[\Rightarrow -\infty < \log_3(9 - (x - 2)^3) \leq \log_3 9 \]

\[\Rightarrow -\infty < \log_3(9 - (x - 2)^3) \leq 2 \]

Hence, the range is \((-\infty, 2]\).

\[\text{b. } f(x) = \log_3(x^2 - 4x - 5) \]

\[\log((x-2)^2 - 9) \]

For \(f(x)\) to be defined, \(0 < (x - 2)^2 - 9 < \infty\)

\[\Rightarrow \lim_{x \to 0} \log x < \log_3((x-2)^2 - 9) < \lim_{x \to \infty} \log x \]

\[\Rightarrow -\infty < f(x) < \infty \]

Hence, the range is \(R\).

\[\text{c. } f(x) = \log_3(x^2 - 4x + 5) \]

\[= \log_3((x-2)^2 + 1) \]

\((x-2)^2 + 1 \in [1, \infty)\)

\[\Rightarrow \log_3((x-2)^2 + 5) \in [0, \infty). \]

\[\text{d. } (x) = \log_3(4x - 5 - x^2) \]

\[= \log_3(-5 - (x^2 - 4x)) \]

\[= \log_3(-1 - (x - 2)^2) \]

Now, \(-1 - (x - 2)^2 < 0\) for all \(x\)

Hence, the function is not defined.

9. \(a \to q \to b \to s \to c \to p \to d \to s. \)

\[p. \ y = \tan x = \frac{1}{x^2} \]

From the graph, it is clear that it will have two real roots

\[\text{Fig. 1.118} \]

\[q. \ \text{See the graphs of } y = 2^{\cos x} \text{ and } y = |\sin x|. \text{ Two curves meet at four points for } x \in [0, 2\pi]. \]

\[\text{Fig. 1.119} \]

So, the equation \(2^{\cos x} = |\sin x|\) has four solutions.

\[r. \ \text{Given that } f(|x|) = 0 \text{ has 8 real roots } \Rightarrow f(x) = 0 \text{ has 4 positive roots.} \]

Since \(f(x)\) is a polynomial of degree 5, \(f(x)\) cannot have even number of real roots.

\[\Rightarrow f(x) \text{ has all the five roots real and one root is negative.} \]

\[s. \ 7^{(|5 - |x|)|} = 1. \]

\[\Rightarrow |5 - |x|| = 7^{-|x|} \]

Draw the graph of \(y = 7^{-|x|}\) and \(y = |5 - |x||\)

\[\text{Fig. 1.120} \]

From the graph, the number of roots is 4.

\[\text{Integer Type} \]

1.(3) We have \(f\left(\frac{2x - 3}{x - 2}\right) = 5x - 2 \Rightarrow f^{-1}(5x - 2) = \frac{2x - 3}{x - 2}\)

Let \(5x - 2 = 13\), then \(x = 3\)

Hence \(f^{-1}(13) = \frac{2(3)}{3 - 2} = 3\)

2.(1) \[\left|\begin{array}{c} \left|\begin{array}{c} x^2 - x + 4 \end{array}\right| - 2 \end{array} \right| - 3 = x^2 + x - 12 \]

\[\Rightarrow \left|\begin{array}{c} x^2 - x + 2 \end{array} \right| - 3 = x^2 + x - 12 \]

\[\Rightarrow \left|\begin{array}{c} x^2 - x - 1 \end{array} \right| = x^2 + x - 12 \]

\[\Rightarrow 2x = 11 \]

\[\Rightarrow x = 11/2 \]

3.(5) \(f(x)\) and \(f^{-1}(x)\) can only intersect on the line \(y = x\) and therefore \(y = x\) must be tangent at the common point of tangency.

\[\therefore \ 3x^2 - 7x + c = x \]

\[\Rightarrow 3x^2 - 8x + c = 0 \]

This equation must have equal roots

\[\Rightarrow 64 - 12c = 0 \]

\[\Rightarrow c = \frac{64}{12} = \frac{16}{3} \]

4.(5) \(x! - (x - 1)! \neq 0 \Rightarrow x \in f^* - \{1\}\)

\[\frac{\pi}{2} \tan ^{-1} x > 4 \text{ as } \tan ^{-1} x < \frac{\pi}{2} \]

\[\Rightarrow \frac{(x - 4)(x - 10)}{(x - 1)(x - 1)} < 0 \]

\[\Rightarrow x \in \{5, 6, 7, 8, 9\} \]
5. (4) Put \(x = 1 \) and \(y = 1 \),
\[
f^2(1) - f(1) - b = 0
\]
\[\Rightarrow f(1) = 3 \text{ or } f(1) = -2\]
Now put \(y = 1\),
\[\Rightarrow f(x) \cdot f(1) = f(x) + 2 \left(\frac{1}{x} + 2 \right) = f(x) + 2 \left(\frac{2x + 1}{x} \right)\]
\[\Rightarrow f(x) \cdot f(1) - f(x) = 2 \left(\frac{2x + 1}{x} \right)\]
\[\Rightarrow f(1) = \frac{2(2x + 1)}{x(f(1) - 1)}\]
\[\Rightarrow f(x) = \frac{2(2x + 1)}{x(f(1) - 1)}\]
For \(f(1) = 3 \), \(f(x) = \frac{2x + 1}{x} \), \[\text{and for } x = -2, f(x) = \frac{2(2x + 1)}{-3x}\]
\[\Rightarrow f(1/2) = 4\]

6. (7) Let \(2x + y = 3x - y \) \(\Rightarrow 2y = x \) \(\Rightarrow y = \frac{x}{2}\)
\[\therefore \text{ Put } y = \frac{x}{2}\]
\[\Rightarrow f(x) + f \left(\frac{5x}{2} \right) + \frac{5x^2}{2} = f \left(\frac{5x}{2} \right) + 2x^2 + 1\]
\[\Rightarrow f(x) = 1 - \frac{x^2}{2}\]
\[\Rightarrow f(4) = -7\]

7. (5) As \(a > 2 \), hence \(a^2 > 2a > a > 2 \)
\[\text{now } (x-a)(x-2a)(x-a^2) < 0\]
\[\Rightarrow \text{ the solution set is as shown}\]

![Fig. 1.121](image)

between \((0, a)\) there are \((a-1)\) positive integers and between \((2a, a^2)\) there are \(a^2-2a-1\) integer
\[\therefore a^2 - 2a - 1 + a - 1 = 18 \Rightarrow a^2 - a - 20 = 0\]
\[\Rightarrow a = 5\]

8. (2) \(f(x) + f \left(\frac{1}{x} \right) = x^2 + \frac{1}{x}\)
\[\text{replacing } x \rightarrow \frac{1}{x}; f \left(\frac{1}{x} \right) + f(x) = \frac{1}{x^2} + x\]
\[\Rightarrow \frac{1}{x^2} + x = x^2 + \frac{1}{x}\]
\[\Rightarrow x - \frac{1}{x} = x^2 - \frac{1}{x^2}\]
\[\Rightarrow \left(x - \frac{1}{x} \right) = \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right)\]
\[\Rightarrow \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} - 1 \right) = 0\]

\[x = \frac{1}{x}; x + \frac{1}{x} = 1\text{ (rejected)}\]
Hence \(x = 1 \) or \(-1\)

9. (7) Obviously \(f \) is a linear polynomial
\[\text{Let } f(x) = ax + b \text{ hence } f(x^2 + x + 3) + 2f(x^2 - 3x + 5) = 6x^2 - 10x + 17\]
\[\Rightarrow [a(x^2 + x + 3) + b] + 2[a(x^2 - 3x + 5) + b] = 6x^2 - 10x + 17\]
\[\Rightarrow a + 2a = 6 \quad (1)\]
\[\Rightarrow a - 6a = -10 \quad (2)\]
\[\text{(comparing coeff. of } x^2 \text{ and coeff. of } x \text{ on both sides)}\]
\[a = 2\]
Again, \(3a + b + 10a + 2b = 17 \) (Comparing constant term)
\[\Rightarrow 6 + b + 20 + 2b = 17\]
\[\therefore f(x) = 2x - 3\]
\[\Rightarrow f(5) = 7\]

10. (9) Given \(f(x + 2) = f(x) + f(2) \)
\[\text{Put } x = -1, \text{ we have } f(-1) = f(-1) + f(2)\]
\[\Rightarrow f(1) = f(-1) + f(2) \quad (\text{as } f(x) \text{ is an odd function})\]
\[\Rightarrow f(2) = f(1) = 6\]
Now put \(x = 1 \),
\[\text{We have } f(3) = f(1) + f(2) = 3 + 6 = 9\]

11. (3) \(f(x) + f(-x) = 0\)
\[\Rightarrow f(x) \text{ is an odd function.}\]
\[\text{Since points } (-3, 2) \text{ and } (5, 4) \text{ lie on the curve, therefore}\]
\[\text{(3, -2) and (-5, -4) will also lie on the curve.}\]
\[\text{For minimum number of roots, graph of continuous function } f(x) \text{ is as follows:}\]

![Fig. 1.122](image)

From the above graph of \(f(x) \), it is clear that equation \(f(x) = 0 \) has at least three real roots.

12. (3) \(f(x) = \sqrt{\sin x + \cos x + \sqrt{7x - x^2 - 6}} \)
\[= \sqrt{\sin \left(x + \frac{\pi}{4} \right) + \sqrt{(x-6)(1-x)}}\]
\[\text{Now } f(x) \text{ is defined if } \sin \left(x + \frac{\pi}{4} \right) \geq 0 \text{ and } (x-6)(1-x) \geq 0\]
\[\Rightarrow 0 \leq x + \frac{\pi}{4} \leq \pi \text{ or } 2\pi \leq x + \frac{\pi}{4} \leq 3\pi \text{ and } 1 \leq x \leq 6\]
\[\Rightarrow -\frac{\pi}{4} \leq x \leq \frac{3\pi}{4} \text{ or } \frac{7\pi}{4} \leq x \leq \frac{11\pi}{4} \text{ and } 1 \leq x \leq 6\]
\[\Rightarrow x \in \left[-\frac{3\pi}{4}, \frac{3\pi}{4} \right] \cup \left[\frac{7\pi}{4}, \frac{11\pi}{4} \right] \]
\[\text{Integral values of } x \text{ are } x = 1, 2 \text{ and } 6\]

13. (8) Since \(f \) is periodic with period 2 and \(f(x) = x \) \(\forall x \in [0, 1] \)
also \(f(x) \) is even
\[\Rightarrow \text{symmetry about } y-\text{axis}\]
\[\therefore \text{graph of } f(x) \text{ is as shown}\]
18. (7) We have \(f(2x) - f(2x) f\left(\frac{1}{2x}\right) + f(16x^2) = f(-2) - f(4x^2) \)

Replacing \(y \) by \(\frac{1}{8x} \), we get

\[
\frac{f(2x) - f(2x) \left(\frac{1}{2x}\right)}{2} + f(2) = f(-2) - f\left(\frac{1}{2x}\right)
\]

\[
\therefore f(2x) + f\left(\frac{1}{2x}\right) = f(2x) f\left(\frac{1}{2x}\right)
\]

[As \(f(x) \) is even]

\[
\therefore f(2x) = 1 \pm (2x)^n
\]

\[
\Rightarrow f(x) = 1 \pm x^n
\]

Now \(f(4) = 1 \pm 4^n = -255 \) (Given)

Taking negative sign, we get \(256 - 4^n \Rightarrow n = 4 \)

Hence \(f(x) = 1 - x^4 \), which is an even function.

\[
\Rightarrow f(2) = -15
\]

19. (1) \(f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right) + \cos x \cos \left(x + \frac{\pi}{3} \right) \)

\[
= \sin^2 x + \frac{1}{4} \left(\sin x + \sqrt{3} \cos x \right)^2 + \frac{1}{2} \cos x \left(\cos x - \sqrt{3} \sin x \right)
\]

\[
= \frac{5}{4} \left(\sin^2 x + \cos^2 x \right) = \frac{5}{4}
\]

\[
g(f(x)) = g\left(\frac{5}{4}\right) = 1
\]

20. (7) From \(E \) to \(F \) we can define, in all, \(2 \times 2 \times 2 \times 2 = 16 \) functions (2 options for each element of \(E \) out of which 2 are into, when all the elements of \(E \) either map to 1 or to 2

\[
\therefore \text{Number of onto function} = 16 - 2 = 14
\]

21. (1) Given \(f(f(x)) = -x + 1 \)

Replacing \(x \rightarrow f(x) \)

\[
f(f(f(x))) = -f(x) + 1
\]

\[
f(1-x) = -f(x) + 1
\]

\[
f(x) + f(1-x) = 1
\]

22. (7) \(\left(\frac{3}{4}\right)^{6x+10-x^2} < \frac{27}{64} \)

\[
6x + 10 - x^2 > 3
\]

\[
x^2 - 6x - 7 < 0
\]

\[
(x + 1)(x - 7) < 0
\]

\[
0, 1, 2, 3, 4, 5, 6
\]

23. (6) \(k \) is odd

\[
f(k) = k + 3
\]

\[
f(f(k)) = \frac{k + 3}{2}
\]

If \(\frac{k + 3}{2} \) is odd \(\Rightarrow 27 = \frac{k + 3}{2} + 3 \Rightarrow k = 45 \) not possible

\[
\Rightarrow \frac{k + 3}{2} \text{ is even}
\]

\[
27 = f(f(k)) = f\left(\frac{k + 3}{2}\right) = \frac{k + 3}{4}
\]

\[
k = 105
\]
1.64 Calculus

verifying \(f(f(105)) = f(108) = f(54) = 27 \)

\[\therefore k = 105 \]

24.3 Clearly fundamental period is \(\frac{4\pi}{3} \), then \(x \) lies in the third quadrant.

25.1 \(\log_a (x^2 - x + 2) > \log_a (x^2 + 2x + 3) \)

Put \(x = \frac{4}{9} \), \(\log_a \left(\frac{142}{81} \right) > \log_a \left(\frac{299}{81} \right) \)

\[\therefore \frac{142}{81} < \frac{299}{81} \Rightarrow 0 < a < 1 \]

\(\Rightarrow \log_a (x^2 - x + 2) > \log_a (x^2 + 2x + 3) \) gives \(0 < x^2 - x + 2 < x^2 + 2x + 3 \)

\(x^2 - x + 2 > 0 \) and \(2x^2 - 3x - 1 < 0 \)

\(\Rightarrow \frac{3 - \sqrt{17}}{4} < x < \frac{3 + \sqrt{17}}{4} \)

26.4 (2x² - 4 - 2x + 4) + 1 + ||b - 1| - 3| = |\sin y|

\(\Rightarrow (2x - 2)^2 + 1 + ||b - 1| - 3| = |\sin y| \)

\(\Rightarrow (2x - 2)^2 + 1 + ||b - 1| - 3| = |\sin y| \)

LHS \(\leq 1 \) and RHS \(\leq 1 \)

\(\therefore 2x^2 + |b - 1| - 3 = 0 \)

\(\Rightarrow (b - 1) = \pm 3 \)

\(\Rightarrow b = 4, -2 \)

27.3 \(f(3n) = f(f(f(n))) = 3f(n), \forall n \in N \)

Put \(n = 1, f(3) = 3f(1) \)

If \(f(1) = 1 \), then \(f(f(f(1))) = f(1) = 1 \), but \(f(f(n)) = 3n \)

\(\Rightarrow f(f(1)) = 3 \) giving \(1 = 3 \) which is absurd.

\(\therefore f(2) = 2 \)

28.3 \(\log_3 \log_2 (\sin x + a) > 0 \)

\(\Rightarrow 0 < \log_2 (\sin x + a) < 1 \)

\(1 < (\sin x + a) < 7 \) \(\forall x \in R \) ["a" should be less than the minimum value of \(7 - \sin x \) and "a" must be greater than maximum value of \(1 - \sin x \)]

\(\Rightarrow 1 < \sin x < 2 < a < 6 \)

29.9 \(g(x) = \frac{1}{2} \tan^{-1} |x| + 1 \) \(\Rightarrow -\text{sgn} (g(x)) = 1 \)

\(\Rightarrow \sin^{21} x - \cos^{21} x = 1 \)

\(\Rightarrow \sin^2 x = 1 + \cos^2 x \) which is possible if \(\sin x = 1 \) and \(\cos x = 0 \)

\(\Rightarrow \sin x = 1, x = 2n\pi + \frac{\pi}{2} \)

hence \(-10\pi \leq 2n\pi + \frac{\pi}{2} \leq 8\pi \Rightarrow -21 \leq n \leq \frac{15}{4} \)

\(\Rightarrow -5 \leq n \leq 3 \)

Hence, number of values of \(x = 9 \).

30.7 \(f(x) = \frac{ax^8 + bx^6 + cx^4 + dx^2 + 15x + 1}{x} \)

\(\Rightarrow f(-5) = 30 - f(5) = 28 \)

Subjective

1. Since \(f(x) \) is defined and real for all real values of \(x \), therefore domain of \(f \) is \(R \).

Also, \(\frac{x^2}{1 + x^2} \geq 0 \), for all \(x \in R \)

and \(\frac{x^2}{1 + x^2} < 1 \) \(\Rightarrow x^2 < 1 + x^2 \) for all \(x \in R \)

\(\Rightarrow 0 \leq \frac{x^2}{1 + x^2} < 1 \Rightarrow 0 \leq f(x) < 1 \)

\(\Rightarrow \) The range of \(f \) is \([0, 1)\).

Also, since \(f(0) = f(-1) = 1/2 \)

\(\Rightarrow f \) is not one-to-one.

2. \(y = |x|^{1/2}, -1 \leq x \leq 1 \)

\(y = \begin{cases} \sqrt{-x}, & x < 0 \\ \sqrt{x}, & x \geq 0 \end{cases} \)

\(\Rightarrow y^2 = -x \) if \(-1 \leq x \leq 0\) and \(y^2 = x \) if \(0 \leq x \leq 1 \)

[Here \(y \) should be always taken +ve, as by definition, \(y \) is a +ve square root]

Clearly, \(y^2 = -x \) represents upper half of left-hand parabola (upper half as \(y \) is +ve) and \(y^2 = x \) represents upper half of right-hand parabola.

Therefore, the resulting graph is shown as

Fig. 1.124

3. \(f(x) = x^2 - 6x^3 - 2x^7 + 12x^6 + x^4 - 7x^3 + 6x^2 + x - 3 \)

Then \(f(6) = 6^9 - 6 \times 6^8 - 2 \times 6^7 + 12 \times 6^6 + 6^4 - 7 \times 6^3 + 6 \times 6^2 + 6 - 3 \)
\[
= 6^3 - 6^3 - 2 \times 6^2 + 2 \times 6^1 + 6^4 - 7 \times 6^3 + 6^1 + 6^2 - 3
\]
\[
= -6^3 + 6^3 - 6^2 + 6^1 + 6^4 - 6^1 + 6^2 - 3
\]
\[
= 3
\]

4. Case I
If \(f(x) \neq 2 \) is true, \(f(y) = 2 \) and \(f(z) \neq 1 \) are false, then \(f(x) = 1 \) or \(3 \), \(f(y) = 1 \) or \(3 \) and \(f(z) = 1 \)

\[\Rightarrow f \text{ is not one-one} \]

Case II
If \(f(x) \neq 2 \) is false, \(f(y) = 2 \) is true, \(f(z) \neq 1 \) is false, then \(f(x) = 2, f(y) = 2, f(z) = 1 \)

\[\Rightarrow \text{not possible} \]

Case III
If \(f(x) \neq 2 \) is false, \(f(y) = 2 \) is false, \(f(z) \neq 1 \) is true, then \(f(x) = 2, f(y) = 1 \) or \(3 \), \(f(z) = 2 \) or \(3 \)

\[\Rightarrow f(x) = 2, f(z) = 3, f(y) = 1. \]

5. Given that \(f(x + y) = f(x) f(y) \) \(\forall x, y \in \mathbb{N} \) and \(f(1) = 2 \)

\[f(2) = f(1+1) = f(1) f(1) = 2^2 \]

\[\Rightarrow f(3) = f(2+1) = f(2) f(1) = 2^2 \times 2 = 2^3 \]

Similarly, \(f(4) = 2^4, \ldots, f(n) = 2^n \)

\[\sum_{k=1}^{n} f(a+k) = \sum_{k=1}^{n} f(a) f(k) \]

\[= f(a) \sum_{k=1}^{n} f(k) \]

\[= f(a) [f(1) + f(2) + \ldots + f(n)] \]

\[= f(a) [2 + 2^2 + \ldots + 2^n] \]

\[= f(a) \left[2 \left(\frac{2^n - 1}{2 - 1} \right) \right] \]

From \(\sum_{k=1}^{n} f(a+k) = 16 \left(\frac{2^n - 1}{2 - 1} \right) \), \(f(a) = 8 = 2^3 \) \(\Rightarrow a = 3 \).

6. Given that \(4 \{x\} = x + [x] \)

where \([x] = \) greatest integer \(\leq x \) and \(\{x\} = \) fractional part of \(x \)

We know that \(x = [x] + \{x\} \), for any \(x \in \mathbb{R} \)

\[\Rightarrow 4 \{x\} = [x] + \{x\} + [x] \]

\[\Rightarrow 3 \{x\} = 2[x] \]

\[\Rightarrow \{x\} = \frac{3}{2} \{x\} \] \hspace{1cm} (1)

Now \(0 \leq \{x\} < 1 \)

\[\Rightarrow 0 \leq \frac{3}{2} \{x\} < \frac{3}{2} \]

\[\Rightarrow 0 \leq [x] < \frac{3}{2} \] \hspace{1cm} [Using equation (1)]

\[\Rightarrow [x] = 0, 1 \]

If \([x] = 0 \)

\[\Rightarrow \frac{3}{2} \{x\} = 0 \] \hspace{1cm} [Using equation (1)]

\[\Rightarrow \{x\} = 0 \Rightarrow x = 0 + 0 = 0 \]

If \([x] = 1 \), then

\[\frac{3}{2} \{x\} = 1 \] \hspace{1cm} [Using equation (1)]

\[\Rightarrow \{x\} = \frac{2}{3} \]

\[\Rightarrow x = 1 + \frac{2}{3} = \frac{5}{3} \]

Thus, \(x = 0, \frac{5}{3} \)

7. Let us put \(y = \frac{\alpha x^2 + 6x - 8}{\alpha + 6x - 8x^2} \)

\[\Rightarrow (\alpha + 6x - 8x^2) y = \alpha x^2 + 6x - 8 \]

\[\Rightarrow (\alpha + 8y)x^2 + (6 - 1 - \gamma)x - (8 + \alpha y) = 0 \]

Since \(x \) is real,

\[36(1 - \gamma)^2 - 4(\alpha + 8y)(8 + \alpha y) \geq 0 \]

\[\Rightarrow 9(1 - \gamma)^2 + (\alpha + 8y)(\alpha + 8y) \geq 0 \]

\[\Rightarrow y^2 (9 + 8\alpha) + y(46 + 2\alpha^2) + (9 + 8\alpha) \geq 0 \]

For (1) to hold for each \(y \in R, 9 + 8\alpha > 0 \) and \((46 + \alpha^2)^2 - 4 \cdot (9 + 8\alpha) \leq 0 \)

\[\Rightarrow \alpha > \frac{-9}{8} \text{ and } [46 + \alpha^2 - 2(9 + 8\alpha)] [46 + \alpha^2 + 2(9 + 8\alpha)] \leq 0 \]

\[\Rightarrow \alpha > \frac{-9}{8} \text{ and } (\alpha^2 - 16\alpha + 28)(\alpha^2 + 16\alpha + 64) \leq 0 \]

\[\Rightarrow \alpha > \frac{-9}{8} \text{ and } (\alpha - 2)(\alpha - 14)(\alpha + 8)^2 \leq 0 \]

\[\Rightarrow \alpha > \frac{-9}{8} \text{ and } 2 \leq \alpha \leq 14 \]

\[\Rightarrow 2 \leq \alpha \leq 14 \]

Thus, \(f(x) = \frac{\alpha x^2 + 6x - 8}{\alpha + 6x - 8x^2} \) will be onto if \(2 \leq \alpha \leq 14 \)

When \(\alpha = 3 \), \(f(x) = \frac{3x^2 + 6x - 8}{3 + 6x - 8x^2} \), in this case \(f(x) = 0 \) implies \(3x^2 + 6x - 8 = 0 \)

\[\Rightarrow x = \frac{-6 \pm \sqrt{36 + 96}}{6} = \frac{-6 \pm \sqrt{132}}{6} = \frac{-6 \pm 2\sqrt{33}}{6} = \frac{1}{3}(-3 \pm \sqrt{33}) \]

Thus, \(f\left[\frac{1}{3}(-3 + \sqrt{33})\right] = f\left[\frac{1}{3}(-3 - \sqrt{33})\right] = 0 \).

Therefore, \(f \) is not one-to-one.

Objective

Fill in the blanks

1. For the given function to be defined \(\frac{\pi^2}{16} - x^2 \geq 0 \)

\[\Rightarrow -\pi/4 \leq x \leq \pi/4 \]
1.86 Calculus

\[D_f = [-\pi/4, \pi/4] \]

Now for \(x \in [-\pi/4, \pi/4] \), \(\sqrt{\pi^2/16 - x^2} \in [0, \pi/4] \) and sine function increases on \([0, \pi/4]\)

\[\sin 0 \leq \sin \sqrt{\pi^2/16 - x^2} \leq \sin \pi/4 = \frac{1}{\sqrt{2}} \]

\[\Rightarrow 0 \leq 3 \sin \sqrt{\pi^2/16 - x^2} < \frac{3}{\sqrt{2}} \]

\[\Rightarrow f(x) \in \left[0, \frac{3}{\sqrt{2}} \right] \]

2. For \(f(x) \) to be defined, we must have \(-1 \leq \log_2 \left(\frac{x^2}{2} \right) \leq 1\)

\[\Rightarrow 2^{-1} \leq \frac{x^2}{2} \leq 2 \]

\[\Rightarrow 1 \leq x^2 \leq 4 \]

\[\Rightarrow x \in [-2, -1] \cup [1, 2] \]

3. Set \(A \) has \(n \) distinct elements.

Then to define a function from \(A \) to \(A \), we need to associate each element of set \(A \) to any one of the \(n \) elements of set \(A \). So, the total number of functions from set \(A \) to set \(A \) is equal to the number of ways of doing \(n \) job where each job can be done in \(n \) ways. The total number of such ways is \(n \times n \times n \times \ldots \times n \) times.

Hence, the total number of functions from \(A \) to \(A \) is \(n^n \).

Now for an onto function from \(A \) to \(A \), we need to associate each element of \(A \) to one and only one element of \(A \). So, the total number of onto functions from set \(A \) to \(A \) is equal to the number of ways of arranging \(n \) elements in the range (set \(A \)) keeping \(n \) elements fixed in domain (set \(A \)). \(n \) elements can be arranged in \(n! \) ways.

Hence, the total number of onto functions from \(A \) to \(A \) is \(n! \).

4. The given function is, \(f(x) = \sin \left(\ln \left(\frac{\sqrt{4-x^2}}{1-x} \right) \right) \)

Sine function is defined for all real numbers.

But logarithmic function is defined only for positive values.

Then \(\frac{\sqrt{4-x^2}}{1-x} > 0 \)

Also for \(x \in (-2, 1) \), \(\sin x \in (-1, 1) \) as shown in graph.

5. According to the given data, there can be two possible linear functions, one is increasing and other is decreasing. Clearly, from the diagram, the functions are \(f(x) = x + 1 \) or \(f(x) = -x + 1 \).

6. Given that \(f(x) = \frac{x+1}{x+2} \) and \(f \) is an even function

\[\Rightarrow f(x) = f(-x) = \frac{-x+1}{-x+2} \]

\[\Rightarrow x = \frac{-x+1}{-x+2} \Rightarrow x^2 - 3x + 1 = 0 \]

\[\Rightarrow x = \frac{3 \pm \sqrt{5}}{2} \]

Also \(f(-x) = f \left(\frac{x+1}{x+2} \right) \)

\[\Rightarrow \frac{x+1}{x+2} = -x \Rightarrow x^2 + 3x + 1 = 0 \]

\[\Rightarrow x = \frac{-3 \pm \sqrt{5}}{2} \]

\[\Rightarrow \quad \text{Four values of } x = \frac{3 + \sqrt{5}}{2}, \frac{3 - \sqrt{5}}{2}, \frac{-3 + \sqrt{5}}{2}, \frac{-3 - \sqrt{5}}{2} \]

7. \[f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right) + \cos x \cos \left(x + \frac{\pi}{3} \right) \]

\[= \sin^2 x + \frac{1}{4} \left(\sin x + \sqrt{3} \cos x \right)^2 \]

\[+ \frac{1}{2} \cos x \left(\cos x - \sqrt{3} \sin x \right) \]

\[= \frac{5}{4} \left(\sin^2 x + \cos^2 x \right) = \frac{5}{4} \]

\((g \text{ of } x = g[f(x)] = g(5/4) = 1 \)

8. For domain

\[-1 \leq \frac{-8.3^{x-2}}{1-3^{2(x-1)}} \leq 1 \]

\[\Rightarrow -1 \leq \frac{3^x - 3^{x-2}}{1-3^{2x-2}} \leq 1 \]

\[\Rightarrow \frac{3^x - 3^{x-2}}{1-3^{2x-2}} - 1 \leq 0 \]

\[\Rightarrow \frac{(3^x-1)(3^{x-2}-1)}{(3^{2x-2}-1)} \geq 0 \]

\[\Rightarrow x \in (-\infty, 0] \cup (1, \infty) \]
\[3^x - 3^{x-2}\]
\[\frac{1-3^{2x-2} + 1}{3^{x-2} - 1}(3^{x+1}) \geq 0\]
\[\Rightarrow x \in (-\infty, 1) \cup [2, \infty)\]
\[\text{So, } x \in (-\infty, 0] \cup [2, \infty)\]

True or false

1. \(f(x) = (a-x^n)^{1/n}, a > 0, n \text{ is } + \text{ve integer}\)
\[\Rightarrow f(f(x)) = f\left[\left(a-x^n\right)^{1/n}\right]\]
\[= \left[a - \left((a-x^n)^{1/n}\right)^{n/n}\right]\]
\[= \left(a-a+x^n\right)^{1/n} = x\]
\[\therefore \text{ Statement is true.}\]

2. \(f(x) = \frac{x^2+4x+30}{x^2-8x+18} = y\)
\[\text{For } y = 0, \text{ there is no pre-image } x \in R\]
\[\therefore f \text{ is not onto.}\]
\[\therefore \text{ Statement is True.}\]

3. We know that the sum of any two functions is defined only on the points where both \(f_1\) and \(f_2\) are defined, that is, \(f_1 + f_2\) is defined on \(D_1 \cap D_2\).
\[\therefore \text{ The given statement is false.}\]

Multiple choice questions with one correct answer

1. \(f(x) = x^2\) is many-one as \(f(1) = f(-1) = 1\).
\[\text{Also } f \text{ is into, as the range of function is } [0, \infty) \text{ which is subset of } R \text{ (co-domain).}\]
\[\therefore f \text{ is neither injective nor surjective.}\]

2. \(y = x^2 + (k-1)x + 9 = \left(x + \frac{k-1}{2}\right)^2 + 9 - \left(\frac{k-1}{2}\right)^2\)
\[\text{For entire graph to be above } x\text{-axis, we should have}\]
\[9 - \left(\frac{k-1}{2}\right)^2 > 0\]
\[\Rightarrow k^2 - 2k - 35 < 0 \Rightarrow (k-7)(k+5) < 0\]
\[\Rightarrow -5 < k < 7\]

3. \(f(x) = |x-1|\)
\[\Rightarrow f(x^2) = |x^2-1| \text{ and } (f(x))^2 = |x-1|^2 = x^2 - 2x + 1\]
\[\Rightarrow f(x^2) \neq (f(x))^2\]
\[\therefore \text{ Hence, option a is not true.}\]
\[\text{If } f(x+y) = f(x) + f(y) \Rightarrow |x+y-1| = |x-1| + |y-1|, \text{ which is absurd. Put } x = 2, y = 3 \text{ and verify.}\]
\[\therefore \text{ Hence, option b is not true.}\]

\[\text{Consider } f(|x|) = |f(x)|\]
\[\text{Put } x = -5, \text{ then } f(|-5|) = f(5) = 4 \text{ and } f(-5) = |-5-1| = 6.\]
\[\therefore \text{ c is not correct.}\]

4. \(c. \) Let \(|x-1| + |x-2| + |x-3| < 6\)
\[\Rightarrow |(x-1) + (x-2) + (x-3)| < |x-1| + |x-2| + |x-3| < 6\]
\[\Rightarrow |3x-6| < 6\]
\[\Rightarrow |x-2| < 2\]
\[\Rightarrow -2 < x-2 < 2\]
\[\Rightarrow 0 < x < 4\]
\[\therefore \text{ Hence, for } |x-1| + |x-2| + |x-3| \geq 6, x \leq 0 \text{ or } x \geq 4.\]

5. \(d. \) \(f(x) = \cos (\log x)\)
\[\Rightarrow f(x)f(y) = \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right]\]
\[= \cos (\log x) \cos (\log y) - \frac{1}{2} \left[\cos (\log x + \log y) \right] + \cos (\log x + \log y)\]
\[= \cos (\log x) \cos (\log y) - \frac{1}{2} [2\cos (\log x) \cos (\log y)]\]
\[= 0\]

6. \(c. \) \(y = \frac{1}{\log_{10}(1-x)} + \sqrt{x-2}\)
\[y = f(x) + g(x)\]
\[\text{Then, the domain of given function is } D_f \cap D_g\]
\[\text{Now, for the domain of } f(x) = \frac{1}{\log_{10}(1-x)}\]
\[\text{we know it is defined only when } 1-x > 0 \text{ and } 1-x \neq 1\]
\[\Rightarrow x < 1 \text{ and } x \neq 0 : \therefore D_f = (-\infty, 1) - \{0\}\]
\[\text{For the domain of } g(x) = \sqrt{x+2}\]
\[x+2 \geq 0 \Rightarrow x \geq -2\]
\[\therefore D_g = [-2, \infty)\]
\[\therefore \text{ common domain is } [-2, 1) - \{0\}\]

7. \(a. \) \(f(x) = \{x\} \text{ is periodic with period 1}\)
\[f(x) = \sin \frac{1}{x} \text{ for } x \neq 0, f(0) = 0 \text{ is non-periodic as}\]
\[g(x) = \frac{1}{x} \text{ is non-periodic}\]
\[\text{Also } f(x) = x \cos x \text{ is non-periodic as } g(x) = x \text{ is non-periodic.}\]

8. \(b. \) \(y = 2^{x(x-1)} \Rightarrow x^2 - x - \log_2 y = 0;\)
\[\Rightarrow x = \frac{1}{2} \left(1 \pm \sqrt{1+4 \log_2 y} \right)\]
\[\text{Since } x \in (1, \infty), \text{ we choose } x = \frac{1}{2} \left(1 + \sqrt{1+4 \log_2 y} \right)\]
\[\text{or } f^{-1}(x) = \frac{1}{2} \left(1 + \sqrt{1+4 \log_2 x} \right).\]
1.88 Calculus

9. d. We have \(f_2(x) = f(g(x)) = \sin(\log_{e} |x|) \)
\[\log_{e} |x| \text{ has range } R_{F} \text{ for which } \sin(\log_{e} |x|) \in [-1, 1] \]
\[: \quad R_{F} = \{-1 \leq u \leq 1\} \]
Also \(g_1(x) = g(g(x)) = \log_{e} |\sin x| \)
\[: \quad 0 \leq |\sin x| \leq 1 \]
\[\Rightarrow \quad -\infty < \log_{e} |\sin x| \leq 0 \]
\[\Rightarrow \quad R_{2} = \{v : -\infty < v \leq 0\} \]

10. c. Since \(f(x) = (x + 1)^2 - 1 \) is a continuous function, solution of \(f(x) = f^{-1}(x) \) lies on the line \(y = x \)
\[\Rightarrow \quad f(x) = f^{-1}(x) = x \]
\[\Rightarrow \quad (x + 1)^2 - 1 = x \]
\[\Rightarrow \quad x^2 + 2x + 1 = 0 \]
\[\Rightarrow \quad x = 0 \text{ or } -1 \]
\[\Rightarrow \quad The \text{ required set is } \{0, -1\}. \]

11. d. \(f(x) \) is continuous for all \(x > 0 \) and \(\int_{y} \frac{1}{y} dy = f(x) - f(y) \)
Also \(f(e) = 1 \)
\[\Rightarrow \quad Clearly, f(x) = \log_{e} x \text{ satisfies all these properties.} \]
\[: \quad f(x) = \log_{e} x, \text{ which is an unbounded function.} \]

12. d. It is given that \(2^x + 2^y = 2 \quad \forall x, y \in R \)
\[\Rightarrow \quad 2^x = 2 - 2^y \]
\[\Rightarrow \quad y = \log_{2}(2 - 2^x) \]
\[\Rightarrow \quad Function \text{ is defined only when } 2 - 2^x > 0 \text{ or } 2^x < 2 \]
\[\text{or } x < 1 \]

13. b. \(g(x) = 1 + \{x\}, f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases} \)
where \(\{x\} \) represents the fractional part function.
\[\Rightarrow \quad f(g(x)) = \begin{cases} 1, & 1 + \{x\} < 0 \\ 0, & 1 + \{x\} = 0 \\ 1, & 1 + \{x\} > 0 \end{cases} \]
\[\Rightarrow \quad f(g(x)) = 1 + \{x\} > 0 (\because 0 \leq \{x\} < 1) \]
\[\Rightarrow \quad f(g(x)) = 1 \quad \forall \ x \in R \]

14. a. \(f: [1, \infty) \rightarrow (2, \infty) \)
\[f(x) = x + \frac{1}{x} = y \]
\[\Rightarrow \quad x^2 - yx + 1 = 0 \]
\[\Rightarrow \quad x = \frac{y \pm \sqrt{y^2 - 4}}{2} \]
But given \(f: [1, \infty) \rightarrow [2, \infty) \)
\[: \quad x = \frac{y + \sqrt{y^2 - 4}}{2} \]
\[\Rightarrow \quad f^{-1}(x) = \frac{x + \sqrt{x^2 - 4}}{2} \]

15. d. \(\frac{\log_{2}(x + 3)}{x^2 + 3x + 2} \)
\[x^2 + 3x + 2 \neq 0 \text{ and } x + 3 > 0 \]
\[\Rightarrow \quad x \neq -1, -2 \text{ and } x > -3 \]
\[\therefore \quad D_f = (-3, \infty) \setminus (-1, -2) \]

16. a. From E to F we can define, in all, \(2 \times 2 \times 2 \times 2 = 16 \) functions
(2 options for each element of E) out of which 2 are into, when all the elements of E map to either 1 or 2
\[\therefore \quad No. \text{ of onto function} = 16 - 2 = 14. \]

17. d. \[f(x) = \frac{ax}{x+1}, \quad x \neq -1 \]
\[f(f(x)) = y \Rightarrow f(\frac{ax}{x+1}) = y \]
\[f\left(\frac{ax}{x+1} \right) = x \Rightarrow \frac{a^2}{x+1} = x \]
\[\Rightarrow \quad \frac{a^2}{x+1} = x \]
\[\Rightarrow \quad (a+1)x^2 + (1-a^2)x = 0 \quad (1) \]
\[\Rightarrow \quad a + 1 = 0 \text{ and } 1 - a^2 = 0 \]
\[\Rightarrow \quad a = -1 \]

18. d. Given that \(f(x) = (x + 1)^2, \quad x \geq -1 \)
Now if \(g(x) \) is the reflection of \(f(x) \) in the line \(y = x \), then \(g(x) \) is an inverse function of \(y = f(x) \).
\[\text{Given } y = (x + 1)^2 (x \geq -1 \text{ and } y \geq 0) \]
\[\Rightarrow \quad x = \pm \sqrt{y - 1} \]
\[\Rightarrow \quad g(x) = f^{-1}(x) = \sqrt{y - 1}, \quad x \geq 0 \]

19. a. Given that \(f(x) = 2x + \sin x, x \in R \)
\[\Rightarrow \quad f'(x) = 2 + \cos x \]
\[\text{but } -1 \leq \cos x \leq 1 \]
\[\Rightarrow \quad 1 \leq 2 + \cos x \leq 3 \]
\[\therefore \quad f'(x) > 0, \quad \forall x \in R \]
\[\Rightarrow \quad f(x) \text{ is strictly increasing and hence one-one.} \]
\[\text{Also as } x \rightarrow \infty, f(x) \rightarrow \infty \text{ and } x \rightarrow -\infty, f(x) \rightarrow -\infty \]
\[\therefore \quad Range \text{ of } f(x) = R = \text{co-domain of } f(x) \]
\[\Rightarrow \quad f(x) \text{ is onto} \]
Thus, \(f(x) \) is one-one and onto.

20. b. Given that \(f: [0, \infty) \rightarrow [0, \infty) \), \(f(x) = \frac{x}{x + 1} \)
\[\Rightarrow \quad f'(x) = \frac{1+x-x}{(1+x)^2} = \frac{1}{(1+x)^2} > 0, \quad \forall \ x \]
\[\therefore \quad f \text{ is an increasing function } \Rightarrow f \text{ is one-one} \]
\[\text{Also } D_f = [0, \infty). \]
\[\text{And for range let } \frac{x}{1+x} = y \Rightarrow x = \frac{y}{1-y} \]
\[\therefore \quad x \geq 0 \Rightarrow 0 \leq y < 1 \quad \therefore \quad R_f = [0, 1), \neq \text{ co-domain} \]
\[\therefore \quad f \text{ is not onto} \]
Hence, \(D_f \neq R_f \Rightarrow f \text{ is not onto.} \]

21. a. For \(f(x) = \sqrt{\sin^{-1}(2x) + \frac{\pi}{6}} \) to be defined and real
\[\sin^{-1}2x + \pi/6 \geq 0 \]
\[
\Rightarrow \sin^{-1} 2x \geq -\frac{\pi}{6}
\]

But we know that \(-\frac{\pi}{2} \leq \sin^{-1} 2x \leq \frac{\pi}{2}\)
(1)

Combining (1) and (2), \(-\frac{\pi}{6} \leq \sin^{-1} 2x \leq \frac{\pi}{2}\)
\(\Rightarrow -1/2 \leq 2x \leq 1\)
\(\Rightarrow -1/4 \leq x \leq 1/2\)
\[
\therefore D_f = \left[-\frac{1}{4}, \frac{1}{2} \right]
\]

22. c. We have
\(f(x) = \frac{x^2 + x + 2}{x^2 + x + 1} = 1 + \frac{1}{x^2 + x + 1}\)
\(= 1 + \frac{1}{x + \frac{1}{2}} + \frac{3}{x + \frac{3}{4}}\)

We can see here that as \(x \to \infty\), \(f(x) \to 1\) which is the minimum value of \(f(x)\).

Also \(f(x)\) is max when \((x + \frac{1}{2})^2 + \frac{3}{4}\) is minimum which is so when \(x = -1/2\).

\(\therefore f_{\max} = 1 + \frac{1}{3/4} = 7/3\)

\(\therefore R_y = \{1, 7/3\}\)

23. b. \(f(x) = \sin x + \cos x, g(x) = x^2 - 1\)

\(\Rightarrow g(f(x)) = (\sin x + \cos x)^2 - 1 = \sin 2x\)

Clearly, \(g(f(x))\) is invertible in \(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\)
\((\because \sin \theta\) is invertible when \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\)
\(\Rightarrow -\frac{\pi}{4} \leq x \leq \frac{\pi}{4}\).

24. a. We are given that

\[f: R \to R, f(x) = \begin{cases} 0, & x \in \text{rational} \\ x, & x \in \text{irrational} \end{cases}\]

\[g: R \to R, g(x) = \begin{cases} 0, & x \in \text{irrational} \\ x, & x \in \text{rational} \end{cases}\]

\(\therefore (f-g): R \to R\) such that

\(f-g)(x) = \begin{cases} -x, & x \in \text{rational} \\ x, & x \in \text{irrational} \end{cases}\)

Since \(f-g: R \to R\) for any \(x\) there is only one value of \((f(x)-g(x))\) whether \(x\) is rational or irrational. Moreover, as \(x \in R, f(x) - g(x)\) also belongs to \(R\). Therefore, \((f-g)\) is one-one onto.

25. d. Given that \(X\) and \(Y\) are two sets and \(f: X \to Y\). \(\{f(c) = y; c \in X, y \in Y\}\) and \(\{f^{-1} d = x; d \in Y, x \in X\}\).

The pictorial representation of given information is as shown

Since \(f^{-1} d = x\)

\(\Rightarrow f(x) = d\)

Now if \(a \subset x \Rightarrow f(a) \subset f(x) = d\)

\(\Rightarrow f^{-1}\{f(a)\} = a\)

\(\therefore f^{-1}\{f(a)\} = a, a \subset x\) is the correct option.

Multiple choice question with more than one answer

1. a, d. Given that \(f(x) = \frac{x + 2}{x-1}\)

\[a. \text{ Let } f(x) = \frac{x + 2}{x-1} = y \Rightarrow x + 2 = xy - y\]

\(\Rightarrow x = \frac{2+y}{y-1} \Rightarrow x = f(y)\)

\(\therefore a\) is correct.

b. \(f(1) \neq 3 \therefore b\) is not correct.

c. \(f'(x) = \frac{x-1-x-2}{(x-1)^2} = \frac{-3}{(x-1)^2} < 0\) for \(\forall x \in R - \{1\}\)

\(\Rightarrow f(x)\) is decreasing \(\forall x \neq 1\)

\(\therefore c\) is not correct.

d. \(f(x) = \frac{x + 2}{x-1}\) is a rational function of \(x\)

\(\therefore d\) is the correct answer.

Thus, we get that \(a, d\) are correct answer.

2. b, c. As \((0, 0)\) and \((x, g(x))\) are two vertices of an equilateral triangle; therefore, length of the side of \(\Delta\) is

\[= \sqrt{(x-0)^2 + (g(x)-0)^2} = \sqrt{x^2 + (g(x))^2}\]

\(\therefore\) The area of equilateral \(\Delta = \frac{\sqrt{3}}{4} \left(x^2 + (g(x))^2\right)\)

\[= \frac{\sqrt{3}}{4}\]

\(\Rightarrow g(x)^2 = 1 - x^2\)

\(\Rightarrow g(x) = \pm \sqrt{1 - x^2}\)

\(\therefore\) b, c are the correct answers as \(a\) is not a function (\(\because\) image of \(x\) is not unique).

3. a, c. \(f(x) = \cos [\pi^2] x + \cos [-\pi^2] x\)

We know \(9 < \pi^2 < 10\) and \(-10 < -\pi^2 < -9\)

\(\Rightarrow [\pi^2] = 9\) and \([-\pi^2] = -10\)
1.90 Calculus

\[f(x) = \cos 9x + \cos (-10x) \]
\[f(x) = \cos 9x + \cos 10x \]

a. \[f\left(\frac{\pi}{2}\right) = \cos \frac{9\pi}{2} + \cos 5\pi = -1 \] (true)

b. \[f(\pi) = \cos 9\pi + \cos 10\pi = -1 + 1 = 0 \] (false).

c. \[f(-\pi) = \cos (-9\pi) + \cos(-10\pi) = \cos 9\pi + \cos 10\pi = -1 + 1 = 0 \] (true)

d. \[f\left(\frac{\pi}{4}\right) = \cos \frac{9\pi}{4} + \cos \frac{5\pi}{2} = \cos \left(2\pi + \frac{\pi}{4}\right) + 0 \] (false)

Thus, a and c. are correct options.

4.b. \[f(x) = 3x - 5 \] (given)

Let \(y = f(x) = 3x - 5 \)
\[\Rightarrow y + 5 = 3x \Rightarrow x = \frac{y + 5}{3} \]
\[\Rightarrow f^{-1}(x) = \frac{x + 5}{3} \]

5.a. If \(f(x) = \sin^2 x \) and \(g(x) = \sqrt{x} \)

Now, \(f \circ g = f(g(x)) = f(\sqrt{x}) = \sin^2 \sqrt{x} \)

and \(g \circ f = g(f(x)) = g(\sin^2 x) = \sqrt{\sin^2 x} = |\sin x| \)

again if \(f(x) = \sin x \), \(g(x) = |x| \)

\(f \circ g = f(g(x)) = f(|x|) = |\sin x| \neq (\sin \sqrt{x})^2 \)

When \(f(x) = x^2 \), \(g(x) = \sin \sqrt{x} \)

\(f \circ g = f(g(x)) = f(\sin \sqrt{x}) = (\sin \sqrt{x})^2 \)

and \((g \circ f)(x) = g[f(x)] = g(x^2) = \sqrt{x^2} = |x| \neq |\sin x| \)

\(\therefore \) a is the correct option.

Match the following type

1. We have \(k f(x) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6} = \frac{(x-5)(x-1)}{(x-2)(x-3)} \)

\(a \rightarrow p, r, s. \)

If \(-1 < x < 1\), then \(f(x) = \frac{(-ve)(-ve)}{(-ve)(-ve)} = +ve \therefore f(x) > 0 \)

Also \(f(x) - 1 = \frac{-x-1}{x^2-5x+6} = -\frac{(x+1)}{(x-2)(x-3)} \)

For \(-1 < x < 1, f(x) - 1 = \frac{-(+ve)}{(-ve)(-ve)} = -ve \)

\(\Rightarrow f(x) - 1 < 0 \Rightarrow f(x) < 1 \)

\(\therefore 0 < f(x) < 1 \)

b. \(g, s. \)

if \(1 < x < 2 \) then \(f(x) = \frac{(-ve)(+ve)}{(-ve)(-ve)} = -ve \)

\(\therefore f(x) < 0 \) and so \(f(x) < 1 \)

c. \(q, s. \)

If \(3 < x < 5 \) then

\(f(x) = \frac{(-ve)(+ve)}{(+ve)(+ve)} = -ve \)

\(\therefore f(x) < 0 \) and so \(f(x) < 1 \)

d. \(p, r, s. \)

For \(x > 5, f(x) > 0 \)

Also \(f(x) - 1 = \frac{-(x+1)}{(x-2)(x-5)} < 0 \) for \(x > 5 \)

\(\Rightarrow f(x) < 1, \therefore 0 < f(x) < 1 \)
CHAPTER 2

Limits

- Concept of Limits
- Algebra of Limits
- Use of Expansions in Evaluating Limits
- Evaluation of Algebraic Limits
- Evaluation of Trigonometric Limits
- Evaluation of Exponential and Logarithmic Limits
- Limits of the form \(\lim_{x \to a} \frac{f(x)}{g(x)} \)
- L'Hôpital's Rule for Evaluating Limits
- Finding Unknowns when Limit is Given
CONCEPT OF LIMITS

Suppose \(f(x) \) is a real-valued function and \(c \) is a real number. The expression \(\lim_{x \to c} f(x) = L \) means that \(f(x) \) can be as close to \(L \) as desired by making \(x \) sufficiently close to \(c \). In such a case, we say that the limit of \(f \), as \(x \) approaches \(c \), is \(L \). Note that this statement is true even if \(f(c) \neq L \). Indeed, the function \(f(x) \) need not even be defined at \(c \). Two examples help illustrate this.

Consider \(f(x) = \frac{x}{x^2 + 1} \) as \(x \) approaches 2. In this case, \(f(x) \) is defined at 2, and it equals its limiting value 0.4.

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
f(1.9) & f(1.99) & f(1.999) & f(2) & f(2.001) & f(2.01) & f(2.1) \\
\hline
0.4121 & 0.4012 & 0.4001 & \to 0.4 & 0.3998 & 0.3998 & 0.3882 \\
\hline
\end{array}
\]

As \(x \) approaches 2, \(f(x) \) approaches 0.4 and hence we have \(\lim_{x \to 2} f(x) = 0.4 \). In the case where \(f(c) = \lim_{x \to c} f(x) \), \(f \) is said to be continuous at \(x = c \). But it is not always the case.

Consider \(g(x) = \begin{cases} \frac{x}{x^2 + 1} & \text{if } x \neq 2 \\ 0 & \text{if } x = 2 \end{cases} \)

This limit of \(g(x) \) as \(x \) approaches 2 is 0.4 (just as in \(f(x) \)), but \(\lim_{x \to 2} g(x) \neq g(2) \); \(g \) is not continuous at \(x = 2 \). Or, consider the case where \(f(x) \) is undefined at \(x = c \).

\[f(x) = \frac{x^2 - 1}{x^2 - 1}, \text{ in this case as } x \text{ approaches } 1, f(x) \text{ is undefined} \]

\[(0/0) \text{ at } x = 1 \text{ but the limit equals 2.} \]

Thus, \(f(x) \) can be made arbitrarily close to the limit of 2 just by making \(x \) sufficiently close to 1.

Formal Definition of Limit

Karl Weierstrass formally defined limit as follows:

Let \(f \) be a function defined on an open interval containing \(c \) (except possibly at \(c \)) and let \(L \) be a real number (Fig. 2.1).

\[
\lim_{x \to c} f(x) = L \text{ means that for each real } \varepsilon > 0 \text{ there exists a real } \delta > 0 \text{ such that for all } x \text{ with } 0 < |x - c| < \delta, \text{ we have } |f(x) - L| < \varepsilon \text{ or, symbolically,}
\]

\[\forall \varepsilon > 0, \exists \delta > 0, \forall x \ (0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon) \]

Compared to the informal discussion above, the fact that \(\varepsilon \) can be any arbitrarily small positive number corresponds to being able to bring \(f(x) \) as close to \(L \) as desired. The \(\delta \) marks some “sufficiently close” distance for values of \(x \) from \(c \) such that \(f(x) \) stays within a distance less than \(\varepsilon \) from the limit \(L \).

The formal \((\varepsilon, \delta)\) definition of limit is called the delta epsilon. Caution: It should be noted that this definition provides a way to recognize a limit without providing a way to calculate it. One often needs to find limit using informal methods especially when \(f(x) \) is discontinuous at \(c \), for example, when \(f \) is a ratio with a denominator that becomes 0 at \(c \). One can check that the result actually meets the Weierstrass definition in such cases.

Neighbourhood (NBD) of a Point

Let \(a' \) be a real number and let \(\delta \) be a positive real number. Then the set of all real numbers lying between \(a - \delta \) and \(a + \delta \) is called the neighbourhood of \(a' \) of radius \(\delta' \) and is denoted by \(N_\delta(a') \).

Thus, \(N_\delta(a) = (a - \delta, a + \delta) = \{x \in \mathbb{R} | a - \delta < x < a + \delta \} \)

The set \((a - \delta, a) \) is called the left NBD of \(a' \) and the set \((a, a + \delta) \) is known as the right NBD of \(a' \).

Left- and Right-Hand Limits

Let \(f(x) \) be a function with domain \(D \) and let \(a' \) be a point such that every NBD of \(a' \) contains infinitely many points of \(D \). A real number \(\ell \) is called left limit of \(f(x) \) at \(x = a \) iff for every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that \(a - \delta < x < a \Rightarrow |f(x) - \ell| < \varepsilon \) and we write \(\lim_{x \to a^\leftarrow} f(x) = \ell \).

Thus, \(\lim_{x \to a^\leftarrow} f(x) = \ell \), if \(f(x) \) tends to \(\ell \) as \(x \) tends to \(a' \) from the left-hand side.

Similarly, a real number \(\ell' \) is a right limit of \(f(x) \) at \(x = a \) iff for every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that \(a < x < a + \delta \Rightarrow |f(x) - \ell'| < \varepsilon \) and we write \(\lim_{x \to a^\rightarrow} f(x) = \ell' \).

In other words, \(\ell' \) is a right limit of \(f(x) \) at \(x = a \) iff \(f(x) \) tends to \(\ell' \) as \(x \) tends to \(a' \) from the right-hand side.

Existence of Limit

It follows from the discussions made in the previous two sections that \(\lim_{x \to a} f(x) \) exists if \(\lim_{x \to a^-} f(x) \) and \(\lim_{x \to a^+} f(x) \) exist and both are equal.

Thus, \(\lim_{x \to a} f(x) \text{ exists } \Leftrightarrow \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \).

For the functions such as \(f(x) = \cos^{-1} x \), \(\lim_{x \to 1} \cos^{-1} x \) does not exist as function is not defined towards right-hand side. However, \(\lim_{x \to 1} \cos^{-1} x \) exists, and is equal to 0.
Indeterminate Forms

If \(\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \), then \(\lim_{x \to a} \frac{f(x)}{g(x)} \) takes the form \(\frac{0}{0} \) which seems to be undefined or meaningless. In fact, in many cases this limit exists and has a finite value. The determination of limit in such a case is traditionally referred to as the evaluation of the indeterminate form \(\frac{0}{0} \) though literally speaking nothing is indeterminate involved here. Sometimes \(\frac{0}{0} \) is referred to as undetermined form or illusory form.

Consider \(\lim_{x \to a} \frac{f(x)}{g(x)} \). Let it take \(0 \) form.

<table>
<thead>
<tr>
<th>(\lim_{x \to a} f(x))</th>
<th>(\lim_{x \to a} g(x))</th>
<th>(\lim_{x \to a} \frac{f(x)}{g(x)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-100})</td>
<td>(10^{-1000})</td>
<td>(10^{900} \to \infty)</td>
</tr>
<tr>
<td>(10^{-1000})</td>
<td>(10^{-100})</td>
<td>(10^{-900} \to 0)</td>
</tr>
<tr>
<td>(2 \times 10^{-1000})</td>
<td>(10^{-1000})</td>
<td>(2)</td>
</tr>
<tr>
<td>(10^{-1000})</td>
<td>(-3 \times 10^{-1000})</td>
<td>(-1/3)</td>
</tr>
</tbody>
</table>

Thus, \(\lim_{x \to a} \frac{f(x)}{g(x)} \) can take any real value or simply \(\lim_{x \to a} f(x) \),

which cannot be determined by preliminary methods. Thus, this form is called indeterminate form.

Other Indeterminate Forms

1. \(\frac{\infty_1}{\infty_2} = \frac{1/\infty_2}{1/\infty_1} = 0 \)
2. \(0 \times \infty = 0 \)
3. \(0^0 \Rightarrow \log y = \log(0^0) \Rightarrow 0 \times \log(0) = 0 \times \infty \)
4. \(\infty^0 \Rightarrow \log y = \log(\infty^0) \Rightarrow 0 \times \log(\infty) = 0 \times \infty \)
5. \(1^\infty \Rightarrow \log y = \log(1^\infty) \Rightarrow \infty \times \log(1) = \infty \times 0 \)
6. \(\infty_1 - \infty_2 \) is also an indeterminate form as the \(\infty_1 \) and \(\infty_2 \) do not necessarily approach the same infinity.

Difference between Limit of Function at \(x = a \) and \(f(a) \)

<table>
<thead>
<tr>
<th>Case</th>
<th>(y = f(x))</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lim_{x \to a} f(x)) exists but (f(a)) does not exist</td>
<td>(f(x) = \frac{x^2-a^2}{x-a})</td>
<td>The value of function at (x = a) is of the form (\frac{0}{0}) which is indeterminate, i.e., (f(a)) does not exist. But (\lim_{x \to a} f(x) = \lim_{x \to a} \frac{f(x)}{x-a} = 2a). Hence, (\lim_{x \to a} f(x)) exists.</td>
</tr>
<tr>
<td>(\lim_{x \to a} f(x)) does not exist but (f(a)) exists</td>
<td>(f(x) = [x]) (where ([\cdot]) represents greatest integer function)</td>
<td>The value of function at (x = n (n \in \mathbb{N})) is (n), i.e., (f(n) = n). But (\lim_{x \to n} [x] = n - 1) and (\lim_{x \to n} f(x) = n). Hence, (\lim_{x \to n} [x]) does not exist.</td>
</tr>
<tr>
<td>(\lim_{x \to a} f(x)) and (f(a)) both exist and are equal</td>
<td>(f(x) = \begin{cases} \sin x, & x < 0 \ x, & x \geq 0 \end{cases})</td>
<td>The value of function at (x = 0) is 0, i.e., (f(0) = 0). Also (\lim_{x \to 0} f(x) = \lim_{x \to 0} \sin x = 0) and (\lim_{x \to 0} f(x) = \lim_{x \to 0} x = 0), i.e., (\lim_{x \to 0} f(x)) exist.</td>
</tr>
<tr>
<td>(\lim_{x \to a} f(x)) and (f(a)) both exist but are unequal</td>
<td>(f(x) = \begin{cases} x^2 - 9, & x \neq 3 \ 3, & x = 3 \end{cases})</td>
<td>The value of function at (x = 3) is 3, i.e., (f(3) = 3). Also (\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6) i.e., (\lim_{x \to 3} f(x)) exists. But (\lim_{x \to 3} f(x) \neq f(3)).</td>
</tr>
</tbody>
</table>

Thus, for limit to exist at \(x = a \), it is not necessary that function is defined at that point.
Example 2.1 Evaluate the left- and right-hand limits of the function \(f(x) = \begin{cases} \frac{|x-4|}{x-4}, & x \neq 4 \\ 0, & x = 4 \end{cases} \) at \(x = 4 \).

Sol. L.H.L. of \(f(x) \) at \(x = 4 \)

\[
\lim_{h \to 0^-} f(4 + h) = \lim_{h \to 0^-} \frac{|4 + h - 4|}{4 + h - 4} = \lim_{h \to 0^-} \frac{|h|}{4 + h - 4} = \lim_{h \to 0^-} \frac{h}{4 - h} = -1
\]

R.H.L. of \(f(x) \) at \(x = 4 \)

\[
\lim_{h \to 0^+} f(4 - h) = \lim_{h \to 0^+} \frac{|4 - h - 4|}{4 - h - 4} = \lim_{h \to 0^+} \frac{|-h|}{4 - h - 4} = \lim_{h \to 0^+} \frac{-h}{4 - h} = 1
\]

Example 2.2 Evaluate the left- and the right-hand limits of the function defined by \(f(x) = \begin{cases} 1 + x^2, & \text{if } 0 \leq x < 1 \\ 2 - x, & \text{if } x > 1 \end{cases} \) at \(x = 1 \). Also, show that \(\lim_{x \to 1} f(x) \) does not exist.

Sol. L.H.L. of \(f(x) \) at \(x = 1 \)

\[
\lim_{h \to 0^-} f(1 + h) = \lim_{h \to 0^-} (1 + (1 + h)^2) = \lim_{h \to 0^-} (2 + 2h + h^2) = 2
\]

R.H.L. of \(f(x) \) at \(x = 1 \)

\[
\lim_{h \to 0^+} f(1 - h) = \lim_{h \to 0^+} [2 - (1 + h)] = \lim_{h \to 0^+} (1 - h) = 1
\]

Clearly, \(\lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x) \)

So, \(\lim_{x \to 1} f(x) \) does not exist.

Example 2.3 Let \(f(x) = \begin{cases} \cos x, & \text{if } x \geq 0 \\ x + k, & \text{if } x < 0 \end{cases} \). Find the value of constant \(k \), given that \(\lim_{x \to 0} f(x) \) exists.

Sol. \(\lim_{x \to 0} f(x) \) exists

\[
\Rightarrow \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x)
\]

\[
\Rightarrow \lim_{x \to 0} x + k = \lim_{x \to 0} \cos x
\]

\[
0 + k = \cos 0
\]

\[
\Rightarrow k = 1.
\]

Concept Application Exercise 2.1

1. If \(f(x) = \begin{cases} x - |x|, & x \neq 0 \\ 2, & x = 0 \end{cases} \) show that \(\lim_{x \to 0} f(x) \) does not exist.

2. Show that \(\lim_{x \to 0} e^{1/x} - 1 \) does not exist.

3. Evaluate \(\lim_{x \to 0} \frac{3x + |x|}{7x - 5|x|} \).

4. If \(f(x) = \begin{cases} 1, & x = 0 \\ x^2, & x > 0 \end{cases} \), then find \(\lim_{x \to 0} f(x) \) if it exists.

5. Consider the following graph of the function \(y = f(x) \). Which of the following is/are correct?

![Graph](image)

- a. \(\lim_{x \to 1} f(x) \) does not exist
- b. \(\lim_{x \to 2} f(x) \) does not exist
- c. \(\lim_{x \to 3} f(x) = 3 \)
- d. \(\lim_{x \to 9} f(x) \) exists

ALGEBRA OF LIMITS

Let \(\lim_{x \to a} f(x) = \ell \) and \(\lim_{x \to a} g(x) = m \). If \(\ell \) and \(m \) exist, then

1. \(\lim_{x \to a} (f \pm g)(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = \ell \pm m \)

2. \(\lim_{x \to a} (f/g)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x) = \ell m \)

3. \(\lim_{x \to a} \left(f(g(x)) \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{\ell}{m} \), provided \(m \neq 0 \)

4. \(\lim_{x \to a} k f(x) = k \lim_{x \to a} f(x) \), where \(k \) is a constant

5. \(\lim_{x \to a} |f(x)| = \left| \lim_{x \to a} f(x) \right| = |\ell| \)

6. \(\lim_{x \to a} (f(x))^g(x) = \lim_{x \to a} f(x)^{\lim_{x \to a} g(x)} = \ell^m \)

7. \(\lim_{x \to a} f(g(x)) = \left(\lim_{x \to a} g(x) \right) = f(m) \), only if \(f \) is continuous at \(g(x) = m \)

In particular,

- a. \(\lim_{x \to a} \log f(x) = \log \left(\lim_{x \to a} f(x) \right) = \log \ell \)
b. \(\lim_{x \to a} e^{f(x)} = e^{\lim_{x \to a} f(x)} = e^1 \)

8. If \(\lim_{x \to a} f(x) = +\infty \) or \(-\infty \), then \(\lim_{x \to a} \frac{1}{f(x)} = 0. \)

9. If \(f(x) \leq g(x) \) for every \(x \) in the NBD of \(a \), then \(\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x) \).

Points to Remember

1. If \(\lim_{x \to c} f(x)g(x) \) exists, then we can have the following cases:
 a. Both \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) exist. Obviously, then \(\lim_{x \to c} f(x)g(x) \) exists.
 b. \(\lim_{x \to c} f(x) \) exists and \(\lim_{x \to c} g(x) \) does not exist.
 Consider \(f(x) = x; \ g(x) = \frac{1}{\sin x} \), now \(\lim_{x \to 0} f(x) \cdot g(x) \)
 exists. Also \(\lim_{x \to 0} f(x) = 0 \) exists but \(\lim_{x \to 0} g(x) \) does not exist.
 c. Both \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) do not exist.
 Let \(f \) be defined as \(f(x) = \begin{cases} 1 & \text{if } x \leq 0 \\ 2 & \text{if } x > 0 \end{cases} \). Let
 \(g(x) = \begin{cases} 1 & \text{if } x \leq 0 \\ 1 \text{ if } x > 0 \end{cases} \). Then, \(f(x) \cdot g(x) \) = \(x \), and so
 \(\lim_{x \to 0} f(x) \cdot g(x) \) exists, while \(\lim_{x \to 0} f(x) \) and \(\lim_{x \to 0} g(x) \) do not exist.

2. If \(\lim_{x \to c} [f(x) + g(x)] \) exists then we can have the following cases:
 a. If \(\lim_{x \to c} f(x) \) exists, then \(\lim_{x \to c} g(x) \) must exist.
 Proof: This is true as \(g = (f + g) - f \).
 Therefore, by the limit theorem, \(\lim_{x \to c} g(x) = \lim_{x \to c} (f(x) + g(x)) - \lim_{x \to c} f(x) \) which exists.
 b. Both \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) do not exist.
 Consider \(\lim_{x \to c} [x] \) and \(\lim_{x \to c} \{x\} \), where \([\cdot] \) and \(\{\cdot\} \) represent greatest integer and fractional part functions, respectively. Here both the limits do not exist but \(\lim_{x \to c} ([x] + \{x\}) = \lim_{x \to c} x = 1 \) exists.

Example 2.4 Let \(f(x) = \begin{cases} x + 1, & x > 0 \\ 2 - x, & x \leq 0 \end{cases} \) and \(g(x) = \begin{cases} x^2 - 2x - 2, & 1 \leq x < 2 \\ x + 3, & x \geq 2 \end{cases} \).

Find L.H.L. and R.H.L. of \(g(f(x)) \) at \(x = 0 \) and hence find \(\lim_{x \to 0} g(f(x)) \).

Sol. As \(x \to 0^- \Rightarrow f(x) \to f(0^-) = x \)

\(\Rightarrow \lim_{x \to 0^-} g(f(x)) = g(2^+) = -3 \)

Also as \(x \to 0^+ \Rightarrow f(x) \to f(0^+) = 1^+ \)

\(\Rightarrow \lim_{x \to 0^+} g(f(x)) = g(1^+) = -3 \)

Hence, \(\lim_{x \to 0} g(f(x)) \) exists and is equal to \(-3\)

\(\Rightarrow \lim_{x \to 0} g(f(x)) = -3 \)

Sandwich Theorem for Evaluating Limits

![Sandwich Theorem](image)

Fig. 2.2

If \(f(x) \leq g(x) \leq h(x) \) \(\forall \ x \in (a, \beta) - \{a\} \) and \(\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x) \) then \(\lim_{x \to a} g(x) = L \), where \(a \in (a, \beta) \)

Remarks

In the sandwich theorem, we assume that \(f(x) \leq g(x) \leq h(x) \) for all \(x \) near \(a \), "except possibly at \(a \". This means that it is not required that when \(x = a \), we have the inequality for the functions. That is, it is not required that \(f(a) \leq h(a) \). The reason is that we are dealing with limits as \(x \) approaches \(a \). So, we have \(x \) that is moving closer and closer to \(a \). As long as \(f(x) \leq g(x) \leq h(x) \) is true for all these \(x \), we can be sure the limit, i.e., the point where the function values are heading must behave as the sandwich theorem indicates. In particular, unless we are given extra information about the functions and their values at \(a \), the sandwich theorem does not allow us to make conclusions about functions values at \(a \). So, none of the following claims can be guaranteed by the assumptions in the sandwich theorem:

1. \(f(a) = g(a) = h(a) \) [Well, not even \(f(a) \leq g(a) \leq h(a) \)]
2. \(g(a) = \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \)
3. \(\lim_{x \to a} g(x) = g(a) \)

Example 2.5 Evaluate \(\lim_{x \to \infty} \frac{x + 7 \sin x}{-2x + 13} \) using sandwich theorem.

Sol. We know that \(-1 \leq \sin x \leq 1\) for all \(x \).

\(\Rightarrow -7 \leq 7 \sin x \leq 7 \)

\(\Rightarrow x - 7 \leq x + 7 \sin x \leq x + 7 \)

Dividing throughout by \(-2x + 13\), we get...
\[
\frac{x - 7}{-2x + 13} \geq \frac{x + 7}{-2x + 13} \geq \frac{x + 7}{-2x + 13} \text{ for all } x \text{ that are large.}
\]

[Why did we switch the inequality signs?]

Now, \[
\lim_{x \to \infty} \frac{x - 7}{-2x + 13} = \lim_{x \to \infty} \frac{1 - \frac{7}{x}}{-2 + \frac{13}{x}} = \frac{1 - 0}{-2 + 0} = -\frac{1}{2}
\]

and \[
\lim_{x \to \infty} \frac{x + 7}{-2x + 13} = \lim_{x \to \infty} \frac{1 + \frac{7}{x}}{-2 + \frac{13}{x}} = \frac{1 + 0}{-2 + 0} = -\frac{1}{2}
\]

Example 2.6

If \([\cdot]\) denotes the greatest integer function, then find the value of \(\lim_{n \to \infty} \frac{[x] + [2x] + \cdots + [nx]}{n^2}\).

Sol. \(nx - 1 < [nx] \leq nx\). Putting \(n = 1, 2, 3, \ldots, n\) and adding them,\[
x \Xi n - n < \sum [nx] \leq x \Xi n
\]

\[
\therefore \frac{\Sigma n}{n^2} - \frac{1}{n} < \frac{\sum [nx]}{n^2} \leq \frac{x \Sigma n}{n^2}
\]

Now, \[
\lim_{n \to \infty} \left\{ \frac{\Sigma n}{n^2} - \frac{1}{n} \right\} = x, \lim_{n \to \infty} \frac{\Sigma n}{n^2} - \lim_{n \to \infty} \frac{1}{n} = \frac{x}{2}
\]

\[
\lim_{n \to \infty} \left\{ \frac{\Sigma n}{n^2} \right\} = x \lim_{n \to \infty} \frac{\Sigma n}{n^2} = \frac{x}{2}
\]

As the two limits are equal by equation (1), \(\lim_{n \to \infty} \frac{\sum [nx]}{n^2} = \frac{x}{2}\).

Example 2.7

Suppose that \(f\) is a function that \(2x^2 \leq f(x) \leq x(x^2 + 1)\) for all \(x\) that are near to 1 but not equal to 1. Show that this fact contains enough information for us to find \(\lim_{x \to 1} f(x)\). Also find this limit.

Sol. We see that \(\lim_{x \to 1} 2x^2 = 2(1)^2 = 2\)

and \(\lim_{x \to 1} x(x^2 + 1) = 1(1^2 + 1) = 2\)

This is enough for us to find \(\lim_{x \to 1} f(x)\).

Indeed, it follows from the Sandwich Theorem that \(\lim_{x \to 1} f(x) = 2\).

Example 2.8

Evaluate \(\lim_{n \to \infty} \frac{1}{1 + n^2} + \frac{1}{2 + n^2} + \cdots + \frac{n}{n + n^2}\).

Sol. \(P_n = \frac{1}{1 + n^2} + \frac{2}{2 + n^2} + \cdots + \frac{n}{n + n^2}\).

Now, \(P_n < \frac{1}{1 + n^2} + \frac{2}{1 + n^2} + \cdots + \frac{n}{1 + n^2}\)

\[
= \frac{1}{1 + n^2} (1 + 2 + 3 + \cdots + n)
\]

\[
= \frac{n(n + 1)}{2(1 + n^2)}
\]

Also, \(P_n > \frac{1}{n + n^2} + \frac{2}{n + n^2} + \cdots + \frac{n}{n + n^2}\)

\[
= \frac{n(n + 1)}{2(n + n^2)}
\]

Thus, \(\frac{n(n + 1)}{2(n + n^2)} < P_n < \frac{n(n + 1)}{2(1 + n^2)}\)

\[
\Rightarrow \lim_{n \to \infty} \frac{n(n + 1)}{2(n + n^2)} < \lim_{n \to \infty} P_n < \lim_{n \to \infty} \frac{n(n + 1)}{2(1 + n^2)}
\]

\[
= \frac{1}{2} \left(\lim_{n \to \infty} \frac{1 + \frac{1}{n}}{n + 1} \right) < \lim_{n \to \infty} P_n < \lim_{n \to \infty} \frac{1}{2} \left(\frac{1 + \frac{1}{n}}{n^2 + 1} \right)
\]

\[
\Rightarrow \frac{1}{2} < \lim_{n \to \infty} P_n < \frac{1}{2}
\]

\[
\Rightarrow \lim_{n \to \infty} P_n = \frac{1}{2}
\]

USE OF EXPANSIONS IN EVALUATING LIMITS

Some Important Expansions

Sometimes, following expansions are useful in evaluating limits.

Students are advised to learn these expansions.

1. \(\log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots (1 < x \leq 1)\)

2. \(\log(1 - x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \cdots (1 < x \leq 1)\)

3. \(e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots\)

4. \(e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots\)
5. \(a^2 = 1 + x (\log_e a) + \frac{x^2}{2!} (\log_e a)^2 + \ldots \)
6. \(\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots \)
7. \(\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots \)
8. \(\tan x = x + \frac{x^3}{3} + \frac{2}{15} x^5 + \ldots \)

Example 2.9 Evaluate \(\lim_{x \to 0} \frac{\sin x - x}{x^3} \).

Sol. \(\lim_{x \to 0} \frac{\sin x - x}{x^3} \quad (0 \quad 0 \quad \text{form}) \)

\[
= \lim_{x \to 0} \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots}{x^3} - x
= \lim_{x \to 0} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \right) - \frac{1}{3!} = \frac{-1}{6}
\]

Example 2.10 Evaluate \(\lim_{x \to 0} \frac{5 \sin x - 7 \sin 2x + 3 \sin 3x}{x^2 \sin x} \).

Sol. \(\lim_{x \to 0} \frac{5 \sin x - 7 \sin 2x + 3 \sin 3x}{x^2 \sin x} \)

\[
= \lim_{x \to 0} \frac{5 \left(x - \frac{x^3}{3!} + \cdots \right) - 7 \left(2x - \frac{(2x)^3}{3!} + \cdots \right) + 3 \left(3x - \frac{(3x)^3}{3!} + \cdots \right)}{x^2 \left(x - \frac{x^3}{3!} + \cdots \right)}
= \lim_{x \to 0} \frac{5 \frac{x^3}{3!} + 81x^3}{3!}
= \frac{5 + 56 - 81}{3!} = -5
\]

Example 2.11 Evaluate \(\lim_{x \to 0} \frac{(1 + x)^{1/x} - e + \frac{1}{2} e x}{x^2} \).

Sol. \((1 + x)^{1/x} = e^x \quad \frac{1}{1!} \log (1 + x) \quad \frac{1}{x^2} \left(x^2 - \frac{x^3}{2} + \frac{x^4}{3} - \cdots \right) \)

\[
= e - \frac{x^2}{2} + \frac{x^3}{3} - \cdots - e \cdot \frac{x^2}{2} + \frac{x^3}{3} - \cdots
\]

= \(e \left[1 + \left(-\frac{x}{2} + \frac{x^2}{3} - \cdots \right) + \frac{1}{2!} \left(-\frac{x}{2} + \frac{x^2}{3} - \cdots \right)^2 + \cdots \right] \)

\[
= e \left[1 - \frac{1}{2} + \frac{1}{24} x^2 - \cdots \right]
\]

Hence, \(\lim_{x \to 0} \frac{(1 + x)^{1/x} - e + \frac{1}{2} e x}{x^2} = \frac{11}{24} e \)

Concept Application: **Exercise 2.3**

Evaluate the following limits using the expansion formula of functions.

1. \(\lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5} \)
2. \(\lim_{x \to 0} \frac{\sin x + \log(1-x)}{x^2} \)
3. \(\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} \)

EVALUATION OF ALGEBRAIC LIMITS

Direct Substitution Method

Consider the following limits: (i) \(\lim_{x \to a} f(x) \) (ii) \(\lim_{x \to a} \frac{\Phi(x)}{\Psi(x)} \)

If \(f(a) \) and \(\frac{\Phi(a)}{\Psi(a)} \) exist and are fixed real numbers and \(\Psi(a) \neq 0 \) then we say that \(\lim_{x \to a} f(x) = f(a) \) and

\[
\lim_{x \to a} \frac{\Phi(x)}{\Psi(x)} = \frac{\Phi(a)}{\Psi(a)}.
\]

In other words, if the direct substitution of the point to which the variable tends to, we obtain a fixed real number, then the number obtained is the limit of the function. In fact, if the point to which the variable tends to is a point in the domain of the function, then the value of the function at that point is its limit.

Following examples will illustrate the above method:

1. \(\lim_{x \to 1} (3x^2 + 4x + 5) = 3(1)^2 + 4(1) + 5 = 12 \)
2. \(\lim_{x \to 2} \frac{x^2 - 4}{x + 3} = \frac{4 - 4}{2 + 3} = 0 \)

28 Calculus

Factorization Method

Consider \(\lim_{x \to a} \frac{f(x)}{g(x)} \)

If by substituting \(x = a \), \(\frac{f(x)}{g(x)} \) reduces to the form \(\frac{0}{0} \), then

\((x-a) \) is a factor of both \(f(x) \) and \(g(x) \). So, we first factorize \(f(x) \) and \(g(x) \) and then cancel out the common factor to evaluate the limit.

Example 2.12 Evaluate \(\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 4} \).

Sol. When \(x = 2 \), the expression \(\frac{x^2 - 5x + 6}{x^2 - 4} \) assumes the indeterminate form \(\frac{0}{0} \). Here, \((x-2) \) is a common factor in numerator and denominator. Factorizing the numerator and denominator, we have

\[
\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 4} = \lim_{x \to 2} \frac{(x-2)(x-3)}{(x+2)(x-2)}
\]

\(= \lim_{x \to 2} \frac{x-3}{x+2} = \frac{2-3}{2+2} = -\frac{1}{4} \)

Example 2.13 Evaluate \(\lim_{x \to 0} \left(\frac{2}{1-x^2} + \frac{1}{x-1} \right) \).

Sol. We have \(\lim_{x \to 0} \left(\frac{2}{1-x^2} + \frac{1}{x-1} \right) \) (\(\infty - \infty \) form)

\(= \lim_{x \to 0} \left(\frac{2}{1-x^2} - \frac{1}{1-x} \right) \)

When \(x = 1 \), the expression \(\frac{2}{1-x^2} - \frac{1}{1-x} \) assumes the form \(\infty - \infty \), so we need some simplification to express it in the form \(\frac{0}{0} \).

\[
\lim_{x \to 1} \left(\frac{2}{1-x^2} - \frac{1}{1-x} \right) = \lim_{x \to 1} \frac{2(1+x)}{1-x^2} = \lim_{x \to 1} \frac{2(1+x)}{(1-x)(1+x)} = \lim_{x \to 1} \frac{2}{1-x} = 2
\]

Example 2.14 Evaluate \(\lim_{x \to 0} \frac{x^2 + x \log_e x - \log_e x - 1}{(x^2 - 1)} \).

Sol. \(\lim_{x \to 0} \frac{x^2 + x \log_e x - \log_e x - 1}{(x^2 - 1)} \) (\(\infty - \infty \) form)

\(= \lim_{x \to 0} \frac{(x-1)(\log_e x + x + 1)}{(x+1)(x-1)} \) (\(0 \) form)

\(= \lim_{x \to 0} \frac{\log_e x + x + 1}{x+1} \)

Example 2.15 Evaluate \(\lim_{x \to 2} \frac{1}{1+\cos 4x} \).

Sol. \(\lim_{x \to \frac{\pi}{4}} \frac{1}{1+\cos 4x} \) (\(\infty / \infty \) form)

\(= \lim_{x \to \frac{\pi}{4}} \frac{(\sin x - \cos x)^2}{2\cos^2 2x} \) (\(\infty / \infty \) form)

\(= \lim_{x \to \frac{\pi}{4}} \frac{1}{2(\cos^2 x - \sin^2 x)^2} \) (\(\infty / \infty \) form)

\(= \lim_{x \to \frac{\pi}{4}} \frac{1}{2(\cos x + \sin x)^2} \) (\(\infty / \infty \) form)

Rationalization Method

This is particularly useful when either the numerator or the denominator or both involved expressions consist of squares roots and on substituting the value of \(x \) the rational expression takes the form \(\frac{0}{0} \).

Following examples illustrate the procedure.

Example 2.16 Evaluate \(\lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{x} \).

Sol. When \(x = 0 \), the expression \(\frac{\sqrt{2+x} - \sqrt{2}}{x} \) takes the form \(\frac{0}{0} \). Rationalizing the numerator, we have

\[
\lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{x} = \lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{x} \left(\frac{\sqrt{2+x} + \sqrt{2}}{\sqrt{2+x} + \sqrt{2}} \right)
\]

\(= \lim_{x \to 0} \frac{2+x-2}{x(\sqrt{2+x} + \sqrt{2})} \)

\(= \lim_{x \to 0} \frac{1}{x(\sqrt{2} + x + \sqrt{2})} = \frac{1}{2\sqrt{2}} \)

Example 2.17 Evaluate \(\lim_{x \to 3} \frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}} \).

Sol. \(\lim_{x \to 3} \frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}} \) (\(\infty / \infty \) form)

\(= \lim_{x \to 3} \frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}} \left(\frac{\sqrt{a+2x} + \sqrt{3x}}{\sqrt{a+2x} + \sqrt{3x}} \right) \)

\(= \lim_{x \to 3} \frac{a+2x-3x}{(\sqrt{3a+x} - 2\sqrt{x})(\sqrt{a+2x} + \sqrt{3x})} \)

\(= \lim_{x \to 3} \frac{a-x}{(\sqrt{3a+x} - 2\sqrt{x})(\sqrt{a+2x} + \sqrt{3x})} \)

\(= \lim_{x \to 3} \frac{a-x}{(\sqrt{3a+x} - 2\sqrt{x})(\sqrt{a+2x} + \sqrt{3x})} \) (\(\infty / \infty \) form)
\[
\lim_{x \to a} \frac{\sqrt{x^2 + 2x - \sqrt{3x}} \left(\sqrt{x + 2x + \sqrt{3x}}\right)}{(3a + x - 2\sqrt{x}) \left(3a + x + 2\sqrt{x}\right)} \quad (\text{form } 0 \over 0)
\]
\[
= \lim_{x \to a} \frac{\sqrt{3a + x + 2\sqrt{x}}}{\sqrt{a + 2x + \sqrt{3x}}}
\]
\[
= \lim_{x \to a} \frac{a + 2x - 3x}{3a + x - 4x} \cdot \frac{\sqrt{3a + x + 2\sqrt{x}}}{\sqrt{a + 2x + \sqrt{3x}}}
\]
\[
= \lim_{x \to a} \frac{\sqrt{3a + x + 2\sqrt{x}}}{3\sqrt{a + 2x + \sqrt{3x}}}
\]
\[
= \frac{\sqrt{3a + a + 2\sqrt{a}}}{3\sqrt{a + 2a + \sqrt{3a}}} = \frac{1}{3} \cdot \frac{4\sqrt{a}}{2\sqrt{3a}} = \frac{2}{3\sqrt{3}}
\]

Evaluation of Algebraic Limit Using Some Standard Limits

Recall the binomial expansion for any rational power

\[
(1 + x)^n = 1 + nx + \frac{n(n-1)}{2} x^2 + \frac{n(n-1)(n-2)}{3!} x^3 + \cdots
\]

where \(|x| < 1 \)

When \(x \) is infinitely small (approaching to zero) such that we can ignore higher powers of \(x \), then we have \((1 + x)^n = 1 + nx \) (approximately).

Following theorem will be used to evaluate some algebraic limits:

Theorem: If \(n \in \mathbb{Q} \), then

\[
\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}
\]

Proof: We have

\[
\lim_{x \to a} \frac{x^n - a^n}{x - a} = \lim_{h \to 0} \frac{(a + h)^n - a^n}{a + h - a}
\]

\[
= \lim_{h \to 0} \frac{a^n \left(\left(1 + \frac{h}{a} \right)^n - 1 \right)}{h}
\]

\[
= a^n \lim_{h \to 0} \frac{1 + \frac{h}{a} - 1}{h} \quad \text{[when } x \to 0, (1 + x)^n \to 1 + nx]\n\]

\[
= a^n \frac{n}{a} = na^{n-1}
\]

Example 2.18 Evaluate \(\lim_{x \to 2} \frac{x^{10} - 1024}{x^5 - 32} \).

Sol.

\[
\lim_{x \to 2} \frac{x^{10} - 1024}{x^5 - 32} = \lim_{x \to 2} \frac{x^{10} - 2^{10}}{x^5 - 2^5} = \lim_{x \to 2} \frac{x - 2}{x^5 - 2^5}
\]

\[
= \frac{10 \times 2^{10 - 1}}{5 \times 2^{5 - 1}} = 64
\]

Example 2.19 Evaluate \(\lim_{x \to a} \frac{(x + 2)^{5/3} - (a + 2)^{5/3}}{x - a} \).

Sol.

\[
\lim_{x \to a} \frac{(x + 2)^{5/3} - (a + 2)^{5/3}}{x - a}
\]

\[
= \lim_{y \to b} \frac{y^{5/3} - b^{5/3}}{y - b}, \text{ where } x + 2 = y \text{ and } a + 2 = b.
\]

\[
= \frac{5}{3} b^{5/3 - 1} = \frac{5}{3} b^{2/3} = \frac{5}{3} (a + 2)^{2/3}
\]

Example 2.20 If \(\lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = 80 \) and \(n \in \mathbb{N} \), then find the value of \(n \).

Sol. We have

\[
\lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = 80
\]

\[
\Rightarrow n 2^{n-1} = 80
\]

\[
\Rightarrow n 2^{n-1} = 5 \times 2^{5-1}
\]

\[
\Rightarrow n = 5
\]

Example 2.21 Evaluate \(\lim_{x \to 2} \frac{\sqrt{(x + 7) - 3\sqrt{(2x - 3)}}}{\sqrt{(x + 6) - 2\sqrt{(3x - 5)}}} \).

Sol. We have

\[
\lim_{x \to 2} \frac{\sqrt{(x + 7) - 3\sqrt{(2x - 3)}}}{\sqrt{(x + 6) - 2\sqrt{(3x - 5)}}} \quad (0 \over 0)
\]

Let \(x - 2 = t \) such that when \(x \to 2, t \to 0 \).

Then \(L = \lim_{t \to 0} \frac{\frac{1}{2} (t + 9)^{1/2} - 3(t + 1)^{1/2}}{\frac{1}{2} (t + 8)^{1/2} - 2(t + 1)^{1/2}} \quad (0 \over 0) \)

\[
= 3 \lim_{t \to 0} \frac{\left(1 + \frac{t}{9}\right)^{1/2} - (2t + 1)^{1/2}}{\left(1 + \frac{1}{8}\right)^{1/2} - (3t + 1)^{1/2}} \quad (0 \over 0)
\]
Evaluation of Algebraic Limits at Infinity

We know that \(\lim_{x \to \infty} \frac{1}{x} = 0 \) and \(\lim_{x \to \infty} \frac{1}{x^2} = 0 \).

Example 2.22 Evaluate \(\lim_{x \to \infty} \frac{ax^2 + bx + c}{dx^2 + ex + f} \).

Sol. Here the expression assumes the form \(\frac{\infty}{\infty} \). We notice that the highest power of \(x \) in both the numerator and denominator is 2. So we divide each term in both the numerator and denominator by \(x^2 \).

\[
\lim_{x \to \infty} \frac{ax^2 + bx + c}{dx^2 + ex + f} = \lim_{x \to \infty} \frac{a + \frac{b}{x} + \frac{c}{x^2}}{d + \frac{e}{x} + \frac{f}{x^2}} = \frac{a + 0 + 0}{d + 0 + 0} = \frac{a}{d}
\]

Example 2.23 Evaluate \(\lim_{x \to \infty} \frac{\sqrt{3x^2 - 1} - \sqrt{2x^2 - 1}}{4x + 3} \).

Sol. Dividing each term in the numerator and denominator by \(x \), we get

\[
\lim_{x \to \infty} \frac{\sqrt{3x^2 - 1} - \sqrt{2x^2 - 1}}{4x + 3} = \lim_{x \to \infty} \frac{\sqrt{3 - 1/x^2} - \sqrt{2 - 1/x^2}}{4 + 3/x} = \frac{\sqrt{3} - \sqrt{2}}{4}
\]

Example 2.24 Evaluate \(\lim_{x \to \infty} \frac{\sqrt{x} + c - \sqrt{x}}{x} \).

Sol. The given expression is in the form \(\infty - \infty \). So we first write it in the rational form \(\frac{f(x)}{g(x)} \).

We have

\[
\lim_{x \to \infty} \frac{\sqrt{x} + c - \sqrt{x}}{x} = \lim_{x \to \infty} \frac{(\sqrt{x} + c + \sqrt{x})(\sqrt{x} + c - \sqrt{x})}{\sqrt{x} + c + \sqrt{x}} = \lim_{x \to \infty} \frac{\sqrt{x}(x + c - x)}{\sqrt{x} + c + \sqrt{x}} = \lim_{x \to \infty} \frac{c\sqrt{x}}{\sqrt{x} + c + \sqrt{x}} \quad \text{(form } \infty \text{)}
\]

\[
= \lim_{x \to \infty} \frac{c}{\sqrt{1 + \frac{c}{x} + 1}} = \frac{c}{\sqrt{1 + 0 + 1}} = \frac{c}{2}
\]

Example 2.25 Evaluate \(\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} - 3\sqrt{x^3 + 1}}{\sqrt{x^4 + 1} - 5\sqrt{x^4 + 1}} \).

Sol. We have

\[
\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} - 3\sqrt{x^3 + 1}}{\sqrt{x^4 + 1} - 5\sqrt{x^4 + 1}} = \lim_{x \to 1} \frac{1 - 3\sqrt{x}}{1 - 5\sqrt{x}} = 0
\]

Example 2.26 Evaluate \(\lim_{x \to \infty} \left(\sqrt{25x^2 - 3x + 5x} \right) \).

Sol.

We have

\[
\lim_{x \to \infty} \left(\sqrt{25x^2 - 3x + 5x} \right) = \lim_{y \to \infty} \left(\sqrt{25y^2 + 3y - 5y} \right), \text{ where } y = \frac{1}{x}
\]

\[
= \lim_{y \to \infty} \frac{25y^2 + 3y - 25y^2}{\sqrt{25y^2 + 3y + 5y}} = \lim_{y \to \infty} \frac{3y}{\sqrt{25y^2 + 3y + 5y}}
\]

\[
= \lim_{y \to \infty} \frac{3}{\sqrt{25 + \frac{3}{y} + \frac{5}{y}}} = \frac{3}{5 + \frac{5}{10}} = \frac{3}{10}
\]

Concept Application Exercise 2.4

Evaluate the following limits:

1. \(\lim_{x \to 1} \frac{2x - 3}{x^2 + x - 3} \)

2. \(\lim_{x \to -100} \sum_{k=1}^{100} x^k - 100 \)

3. \(\lim_{x \to -1} \left[\sqrt{a^2 x^2 + ax + 1} - \sqrt{a^2 x^2 + 1} \right] \)

4. \(\lim_{x \to a} \frac{\sqrt{3x - a} - \sqrt{x + a}}{x - a} \)

5. \(\lim_{n \to \infty} \frac{(1^2 - 2^2 + 3^2 - 4^2 + 5^2 + \cdots + n \text{ terms})}{n^2} \)

6. \(\lim_{h \to 0} \frac{1}{h\sqrt{8 + h} - \frac{1}{2h}} \)
EVALUATION OF TRIGONOMETRIC LIMITS

(i) \[\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \] (where \(\theta \) is in radians)

Proof: Consider a circle of radius \(r \). Let \(O \) be the centre of the circle such that \(\angle AOB = \theta \), where \(\theta \) is measured in radians and its value is very small. Suppose the tangent at \(A \) meets \(OB \) produced at \(P \). From Fig. 2.3, we have

Area of \(\Delta OAB < \) Area of sector \(OAB < \) Area of \(\Delta OAP \)

\[\Rightarrow \frac{1}{2} OA \times OB \sin \theta < \frac{1}{2} (OA)^2 \theta < \frac{1}{2} OA \times AP \]

\[\Rightarrow \frac{1}{2} \ r^2 \sin \theta < \frac{1}{2} \ r^2 \frac{\theta}{\tan \theta} \]

[In \(\Delta OAP, AP = OA \tan \theta \)]

\[\Rightarrow \sin \theta < \theta < \tan \theta \]

\[\Rightarrow 1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta} \] \[\text{[} \because \theta \text{ is small} \Rightarrow \sin \theta > 0\] \[\text{]} \]

\[\Rightarrow 1 > \frac{\sin \theta}{\theta} > \cos \theta \]

\[\Rightarrow 1 > \lim_{\theta \to 0} \frac{\sin \theta}{\theta} > \lim_{\theta \to 0} \cos \theta \text{ or, } \lim_{\theta \to 0} \cos \theta < \lim_{\theta \to 0} \frac{\sin \theta}{\theta} < 1 \]

\[\Rightarrow 1 < \lim_{\theta \to 0} \frac{\sin \theta}{\theta} < 1 \]

\[\Rightarrow \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \] \[\text{(by sandwich theorem)}\]

(ii) \[\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1 \]

We have

\[\lim_{\theta \to 0} \tan \theta = \lim_{\theta \to 0} \sin \theta \frac{1}{\cos \theta} = \lim_{\theta \to 0} \sin \theta \cdot \lim_{\theta \to 0} \frac{1}{\cos \theta} = (1)(1) = 1 \]

(iii) \[\lim_{\theta \to a} \frac{\sin (\theta - a)}{\theta - a} = 1 \]

We have \[\lim_{\theta \to a} \frac{\sin (\theta - a)}{\theta - a} = \lim_{h \to 0} \frac{\sin (a + h - a)}{h} = \lim_{h \to 0} \frac{\sin h}{h} = 1 \]

(iv) \[\lim_{\theta \to a} \frac{\tan (\theta - a)}{\theta - a} = 1 \]

(v) \[\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1 \]

(vi) \[\lim_{x \to 0} \frac{\tan^{-1} x}{x} = 1 \]

Example 2.27 Evaluate the following limits

a. \[\lim_{x \to 0} \frac{\sin 3x}{x} \] \[\text{b. } \lim_{x \to 0} \frac{\sin ax}{x} \] \[\text{c. } \lim_{x \to 1} \frac{\sin (\log x)}{x - 1} \]

Sol.

a. We have \[\lim_{x \to 0} \frac{\sin 3x}{x} = 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3(1) = 3 \]

\[\Rightarrow \text{ } \lim_{x \to 0} \frac{\sin 3x}{3x} = 1 \]

b. We have

\[\lim_{x \to 0} \frac{\sin ax}{x} = \lim_{x \to 0} \frac{\sin ax}{bx} \cdot \frac{bx}{ax} = \left(\lim_{x \to 0} \frac{\sin bx}{bx} \right) \cdot a \cdot (1) = \frac{a}{1} = \frac{a}{b} \]

c. Given \(L = \lim_{x \to 1} \frac{\sin (\log x)}{x - 1} \)

Let \(\log x = t \) then

\[\Rightarrow L = \lim_{t \to 0} \frac{\sin t}{t} = 1 \]

Example 2.28 Evaluate \(\lim_{x \to 0} \frac{1}{x} \sin^{-1} \left(\frac{2x}{1 + x^2} \right) \)

Sol. We know that \(\sin^{-1} \left(\frac{2x}{1 + x^2} \right) = 2 \tan^{-1} x \), for \(-1 \leq x \leq 1\)

\[\Rightarrow \lim_{x \to 0} \frac{1}{x} \sin^{-1} \left(\frac{2x}{1 + x^2} \right) = \lim_{x \to 0} \frac{2 \tan^{-1} x}{x} = 2 \]

Example 2.29 Evaluate \(\lim_{x \to 0} \frac{1 - \cos 2x}{x^2} \).

Sol. We have \(\lim_{x \to 0} \frac{1 - \cos 2x}{x^2} = \frac{0}{0} \) form

\[= \lim_{x \to 0} \frac{2 \sin^2 x}{x^2} = 2 \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^2 = 2 \]

Example 2.30 Evaluate \(\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} \).
Example 2.33 Evaluate \(\lim_{x \to \infty} \frac{x^2 - x - 2}{x^2 - 2x - \sin(x - 2)} \).

Sol.
\[\lim_{x \to \infty} \frac{x^2 - x - 2}{x^2 - 2x - \sin(x - 2)} = \lim_{x \to \infty} \frac{(x-2)(x+1)}{x-2} \cdot \frac{1}{x-2} = \frac{2+1}{2-1} = 3 \]

Example 2.34 Evaluate \(\lim_{x \to \infty} \left(\tan^{-1} \frac{x+1}{x+4} - \frac{\pi}{4} \right) \).

Sol.
\[\lim_{x \to \infty} \tan^{-1} \frac{x+1}{x+4} = \lim_{x \to \infty} \tan^{-1} \left(1 + \frac{1}{x+4} \right) = \tan^{-1} 1 = \frac{\pi}{4} \]

Example 2.35 Using \(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \), prove that the area of circle of radius \(R \) is \(\pi R^2 \).

Fig. 2.4
Consider the regular polygon of \(n \) sides inscribed in a circle of radius \(R \) (Fig. 2.4).

Area of polygon = \(n \times (\text{area of } \triangle OA_1A_2) \)

\[
= n \times \frac{1}{2} OA_1OA_2 \sin(\angle A_1OA_2)
\]

\[
= \frac{n}{2} R^2 \sin \left(\frac{2\pi}{n} \right)
\]

Now circle is a regular polygon of infinite sides,

Then the area of circle = \(\lim_{n \to \infty} \frac{n}{2} R^2 \sin \left(\frac{2\pi}{n} \right) \)

\[
= \pi R^2 \lim_{n \to \infty} \frac{\sin \left(\frac{2\pi}{n} \right)}{\frac{2\pi}{n}}
\]

\[
= \pi R^2
\]

Concept Application Exercise 2.5

Evaluate the following limits

1. \(\lim_{x \to 0} \frac{\sin x}{x} \)

2. \(\lim_{x \to 0} \frac{1 - \cos mx}{1 - \cos nx} \)

3. \(\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \cos x - 1}{\cot x - 1} \)

4. \(\lim_{x \to 0} \cot 2x \csc 2x \)

5. \(\lim_{x \to 0} \frac{\tan 2x - x}{3x - \sin x} \)

6. \(\lim_{h \to 0} \frac{\sqrt{3} \sin \left(\frac{\pi}{6} + h \right) - \cos \left(\frac{\pi}{6} + h \right)}{\sqrt{3} h (\sqrt{3} \cos h - \sin h)} \)

7. \(\lim_{n \to \infty} n \cos \left(\frac{\pi}{4n} \right) \sin \left(\frac{\pi}{4n} \right) \)

8. \(\lim_{x \to 0} y^2 + \sin x \), where \((x, y) \to (0, 0)\) along the curve \(y = x^2 + \sin y^2 \), \(x = y^2 \)

9. \(\lim_{x \to 0} \frac{\cos^{-1} \left(\frac{1-x^2}{1+x^2} \right)}{\sin^{-1} x} \)

EVALUATION OF EXPONENTIAL AND LOGARITHMIC LIMITS

In order to evaluate these types of limits, we use the following standard results:

1. \(\lim_{x \to 0} \frac{a^x - 1}{x} = \log_a \)

Proof: \(\lim_{x \to 0} \frac{a^x - 1}{x} = \lim_{x \to 0} \frac{(1 + x \log a) + x^2 (\log a)^2 + \ldots}{1! + 2! \ldots} - 1 \)

\[
= \lim_{x \to 0} \frac{\log a + x(\log a)^2}{2! + \ldots} - 1
\]

\[
= \log_a
\]

2. \(\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \) (replace \(a \) by \(e \) in the above proof)

3. \(\lim_{x \to 0} \frac{\log(1 + x)}{x} = 1 \)

Proof:

\[
\lim_{x \to 0} \frac{\log(1 + x)}{x} = \lim_{x \to 0} \frac{x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots}{x}
\]

\[
= \lim_{x \to 0} \left(1 - \frac{x}{2} + \frac{x^2}{3} - \ldots \right) = 1
\]

Example 2.36 Evaluate \(\lim_{x \to 0} \frac{2^x - 1}{\sqrt{1 + x} - 1} \).

Sol. We have \(\lim_{x \to 0} \frac{2^x - 1}{\sqrt{1 + x} - 1} = \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1 + x} + 1} \) (0 form)

\[
= \lim_{x \to 0} \frac{\sqrt{1 + x} + 1}{\sqrt{1 + x} - 1} \left(\sqrt{1 + x} + 1 \right)
\]

\[
= \lim_{x \to 0} \frac{2^x - 1}{x} \frac{\sqrt{1 + x} + 1}{\sqrt{1 + x} - 1}
\]

\[
= (\log 2) 2 = \log 4
\]

Example 2.37 Evaluate \(\lim_{x \to 0} \frac{a^x - 1}{\sin \pi x} \).

Sol. We have \(\lim_{x \to 0} \frac{a^x - 1}{\sin \pi x} = \lim_{h \to 0} \frac{a^{h} - 1}{\sin \pi h} \) (0 form)

\[
= \lim_{h \to 0} \frac{a^{1+h} - 1}{\sin \pi (1+h)} = \lim_{h \to 0} \frac{a^h - 1}{\sin \pi h}
\]
\[
\lim_{h \to 0} \left(\frac{a^h - 1}{h} \right) = \frac{\pi h}{\sin \pi h} = -\frac{1}{\pi} \log a.
\]

Example 2.38 Evaluate \(\lim_{x \to 0} \frac{10^x - 2^x - 5^x + 1}{x \tan x} \).

Sol. We have \(\lim_{x \to 0} \frac{10^x - 2^x - 5^x + 1}{x \tan x} = \left(\frac{0}{0} \text{ form} \right) \)
\[
= \lim_{x \to 0} \frac{5^x - 2^x - 5^x + 1}{x \tan x}
= \lim_{x \to 0} \frac{(5^x-1)(2^x-1)}{x \tan x}
= \lim_{x \to 0} \frac{5^x-1}{x} \lim_{x \to 0} \frac{2^x-1}{\tan x}
= (\log 5)(\log 2)(1) = (\log 5)(\log 2)
\]

Example 2.39 Evaluate \(\lim_{x \to 0} \frac{3^{2x} - 2^{3x}}{x} \).

Sol. We have \(\lim_{x \to 0} \frac{3^{2x} - 2^{3x}}{x} = \left(\frac{0}{0} \text{ form} \right) \)
\[
= \lim_{x \to 0} \frac{\left(3^{2x} - 1\right) - \left(2^{3x} - 1\right)}{x}
= \lim_{x \to 0} \frac{\left(3^{2x} - 1\right) - \left(2^{3x} - 1\right)}{x}
= \lim_{x \to 0} \frac{\left(3^{2x} - 1\right)}{3x}
= 2 \log 3 - 3 \log 2 = \log 9 - \log 8 = \log \left(\frac{9}{8} \right)
\]

Example 2.40 Evaluate \(\lim_{x \to 0} \frac{x - 2}{x^2 \log_a(x-1)} \).

Sol. We have \(\lim_{x \to 0} \frac{x - 2}{x^2 \log_a(x-1)} = \left(\frac{0}{0} \text{ form} \right) \)
\[
= \lim_{x \to 0} \frac{h}{\log_a(1 + (x-2))}
= \lim_{h \to 0} \frac{h}{\log_a(1+h)} \quad (\text{Substituting } x = 2 + h)
= \log_a a
\]

ExaSmple 2.41 Evaluate \(\lim_{x \to a} \frac{\log x - \log a}{x - a} \).

Sol. Let \(x - a = h \), then if \(x \to a, h \to 0 \)
\[
= \lim_{x \to a} \frac{\log x - \log a}{x - a} = \left(\frac{0}{0} \text{ form} \right) \)
\[
= \lim_{h \to 0} \frac{(a + h) - \log a}{h}
= \lim_{h \to 0} \frac{1 + \frac{h}{a}}{a}
= \frac{1}{a}
\]

Example 2.42 Evaluate \(\lim_{x \to 0} \frac{\log(5 + x) - \log(5 - x)}{x} \).

Sol. We have \(\lim_{x \to 0} \frac{\log(5 + x) - \log(5 - x)}{x} = \left(\frac{0}{0} \text{ form} \right) \)
\[
= \lim_{x \to 0} \frac{\log \left(\frac{1 + \frac{x}{5}}{1 - \frac{x}{5}} \right)}{x}
= \lim_{x \to 0} \left\{ \log 5 + \log \left(1 + \frac{x}{5} \right) - \log 5 + \log \left(1 - \frac{x}{5} \right) \right\}
= \lim_{x \to 0} \frac{\log \left(1 + \frac{x}{5} \right) - \log \left(1 - \frac{x}{5} \right)}{x}
= \lim_{x \to 0} \left(\frac{1}{x} \log \left(1 + \frac{x}{5} \right) - \frac{1}{x} \log \left(1 - \frac{x}{5} \right) \right)
= \lim_{x \to 0} \frac{1}{x} \log \left(1 + \frac{x}{5} \right) + \lim_{x \to 0} \frac{1}{x} \log \left(1 - \frac{x}{5} \right)
= \frac{1}{5} + \frac{1}{5} = \frac{2}{5}
\]

Example 2.43 Let \(P_n = a^{P_{n-1}} - 1, \quad n = 2, 3 \ldots \) and let \(P_1 = a^2 - 1 \) where \(a \in \mathbb{R}^+ \), then evaluate \(\lim_{x \to 0} \frac{P_n}{x} \).

Sol. Clearly, if \(P_k \to 0 \Rightarrow P_{k+1} \to 0 \)
Now, as \(x \to 0 \Rightarrow P_1 \to 0 \Rightarrow P_2, P_3, P_4, \ldots \to 0 \)
\[
\Rightarrow \lim_{x \to 0} \frac{P_n}{x} = \lim_{x \to 0} \frac{P_n}{P_{n-1} \ldots P_1}
\]
Now, \(\lim_{x \to 0} \frac{P_k}{P_{k-1}} = \lim_{x \to 0} \frac{a^{P_{k-1}} - 1}{P_{k-1}} = \ln a \)
\[
\Rightarrow \text{Required limit} = (\ln a)^a
\]

Concept Application Exercise 2.6

Evaluate the following limits:
1. \(\lim_{x \to 0} \left[x (a^{1/x} - 1) \right], \quad a > 1 \)
2. \(\lim_{x \to 0} \frac{x^2 - x}{1 - \cos x} \)
3. \(\lim_{x \to 2} \frac{\sin (x^2 - 2)}{\log (x - 1)} \)
4. \(\lim_{x \to 0} \frac{e^x - \cos x}{x^2} \)
5. \(\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{x^2} \)
6. \[\lim_{x \to a} \frac{\log(x-a)}{\log(e^x-e^a)} \]

7. \[\lim_{x \to 0} \frac{a^{\tan x} - a^{\sin x}}{\tan x - \sin x}, \quad a > 0 \]

8. \[\lim_{x \to 0} \frac{(1-3^x - 4^x + 12^x)}{(2 \cos x + 7) - 3} \]

9. \[\lim_{x \to 0} \frac{(729)^x - (243)^x - (81)^x + 9^x + 3^x - 1}{x^3} \]

\[\text{Limits 2.15} \]

LIMITS OF THE FORM \(\lim (f(x))^{g(x)} \)

Form: \(0^0, \infty^0 \)

Let \[L = \lim_{x \to a} (f(x))^{g(x)} \]

\[\Rightarrow \log_e L = \log_e \left[\lim_{x \to a} (f(x))^{g(x)} \right] \]

\[= \lim_{x \to a} \log_e (f(x))^{g(x)} \]

\[= \lim_{x \to a} g(x) \log_e f(x) \]

\[= \lim_{x \to a} g(x) \log f(x) \]

Example 2.44 \[\lim_{x \to 0} x^{1/x} \] equals to

a. 0

b. 1

c. e

d. \(\infty \)

Sol. \[\lim_{x \to 0} x^{1/x} = e^0 = e \]

\[\begin{align*}
\lim_{x \to 0} \log x &= e \\
\lim_{x \to 0} \log x &= e \\
\lim_{x \to 0} \log x &= e \\
\lim_{x \to 0} x &= e \\
(\because x \text{ increases faster than } \log x \text{ when } x \to \infty) \]

\[= 0 \]

\[= 1 \]

Form: \(1^\infty \)

1. \[\lim_{x \to 0} (1 + x)^x = e \]

Proof: \[\lim_{x \to 0} (1 + x)^x = \left(1 + x + \frac{1}{x!} x - x^2 \right) + \frac{1}{x!} (1 - x) (1 + x) x^3 + \cdots \]

\[= \lim_{x \to 0} \left(1 + 1 + \frac{1}{2} - \frac{1}{x!} + \frac{1}{3} - \frac{1}{2^2} + \cdots \right) \]

\[= 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots = e \]

2. \[L = \lim_{x \to 0} f(x)^{g(x)} \]

Then \[L = \lim_{x \to 0} f(x)^{g(x)} \]

\[= \lim_{x \to 0} \left(1 + (f(x) - 1)^{1/(f(x)-1)} \right) \]

\[= \lim_{f(x) \to 1} \left(1 + (f(x)-1)^{1/(f(x)-1)} \right) \]

\[= e \]

Example 2.45 \[\lim_{x \to 0} (1 + x)^{\sec x} \]

\[= \lim_{x \to 0} \left[(1 + x)_{x}^{1} \right]^{x} \]

\[= \left[\lim_{x \to 0} (1 + x)_{x}^{1} \right]^{x} = e \]

Example 2.46 \[\lim_{x \to 0} (\cos x)^{\cot x} \]

\[= \lim_{x \to 0} \left[(1 + (\cos x - 1))_{x}^{1} \right]^{\cos x - 1} \]

\[= \left[\lim_{x \to 0} (1 + (\cos x - 1))_{x}^{1} \right]^{\cos x - 1} = e \]

Example 2.47 \[\lim_{x \to 0} \frac{(\sin x)^{x}}{x} \]

Sol. Since \[\lim_{x \to 0} \frac{\sin x}{x} = 1 \] and \[\lim_{x \to 0} \frac{\sin x}{x - \sin x} = \lim_{x \to 0} \frac{1}{\frac{x}{\sin x} - 1} = \frac{1}{1 - 1} = \infty \]

\[\Rightarrow \lim_{x \to 0} \frac{(\sin x)^{x}}{x} = \lim_{x \to 0} \frac{(\sin x)^{x}}{x} \cdot \frac{\sin x}{x - \sin x} \]

\[= e^{\lim_{x \to 0} \frac{\sin x}{x - \sin x}} = e^{-1} = \frac{1}{e} \]
Example 2.48 Evaluate \(\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{2/x} \); \(a, b, c > 0 \).

Sol. We have \(\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{2/x} \)

\[
= e^{\lim_{x \to 0} \frac{1}{x} \ln \left(\frac{a^x + b^x + c^x}{3} \right)}
= e^{\lim_{x \to 0} \frac{a^x \ln a + b^x \ln b + c^x \ln c}{x}}
= e^{(\ln a + \ln b + \ln c) \lim_{x \to 0} \frac{a^x \ln a + b^x \ln b + c^x \ln c}{x}}
= e^{(\ln a + \ln b + \ln c) \ln (abc)}
= (abc)^{\ln (abc)}
= (abc)^{1/3}
= (abc)^{1/3}.
\]

Example 2.49 The population of a country increases by 2% every year. If it increases \(k \) times in a century, then prove that \(\lfloor k \rfloor = 7 \), where \(\lfloor \cdot \rfloor \) represents the greatest integer function.

Sol. If the initial number of inhabitants of a given country is \(A \), then after a year the total population will amount to

\[
A + \frac{A}{100} = 2 \left(1 + \frac{1}{50} \right) A.
\]

After two years, the population will amount to

\[
\left(1 + \frac{1}{50} \right)^2 A.
\]

After 100 years, it will reach the total of

\[
\left(1 + \frac{1}{50} \right)^{100} A.
\]

it will have increased \(\left(1 + \frac{1}{50} \right)^{50} \) times.

Taking into account that \(\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e \), we can approximately consider that \(\left(1 + \frac{1}{50} \right)^{50} = e \).

Hence after 100 years the population of the country will have increased \(e^{50} = 7.39 \) times.

Hence \(\lceil k \rceil = \lfloor 7.39 \rfloor = 7 \).

Concept Application Exercise 2.7

Evaluate the following limits:

1. \(\lim_{x \to -x} \left(\frac{x + 2}{x + 1} \right)^{x^3} \)
2. \(\lim_{x \to \infty} \left(1 + \frac{1}{a + bx} \right)^{c + dx} \) where \(a, b, c, \) and \(d \) are positive.
3. \(\lim_{x \to 0} \left(1 + \frac{a^x}{x} \right) \)

L'Hôpital's Rule for Evaluating Limits

Rule: If \(\lim_{x \to a} f(x) \) takes \(0 \) or \(\infty \) form, then,

\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}
\]

where \(f'(x) = \frac{df(x)}{dx} \) and \(g'(x) = \frac{dg(x)}{dx} \).

Example 2.50 Let \(f(x) \) be a twice-differentiable function and \(f''(0) = 2 \), then evaluate

\[
\lim_{x \to 0} \frac{2f(x) - 3f(2x) + f(4x)}{x^2}.
\]

Sol. The given limit has \(\frac{0}{0} \) form.

Using L'Hôpital's rule, we have

\[
\lim_{x \to 0} \frac{2f(x) - 3f(2x) + f(4x)}{x^2} = \lim_{x \to 0} \frac{2f''(x) - 12f''(2x) + 16f''(4x)}{2} \quad \text{(using L'Hôpital's rule)}
\]

\[
= \frac{6f''(0)}{2} = 6.
\]

Example 2.51 If the graph of the function \(y = f(x) \) has a unique tangent at the point \((a, 0) \) through which the graph passes, then evaluate

\[
\lim_{x \to a} \log_e \left(1 + 6f(x) \right)
\]

Sol. From the question, \(f(a) = 0 \) and \(f(x) \) is differentiable at \(x = a \).

\[
\lim_{x \to a} \log_e \left(1 + 6f(x) \right) = \lim_{x \to a} \frac{1 + 6f(x)}{3f(x)} = 2 \times \frac{1}{1 + 6f(a)} = 2.
\]

Example 2.52 Evaluate \(\lim_{x \to 0} \log_{\tan^2 x} (\tan^2 2x) \).

Sol. \(L = \lim_{x \to 0} \log_{\tan^2 x} (\tan^2 2x) = \infty \) form

Using L'Hôpital's rule,

\[
L = \lim_{x \to 0} \frac{\log(\tan^2 x)}{\log(\tan^2 2x)}
\]

We have \(L = \lim_{x \to 0} \frac{\frac{1}{\tan^2 x} \cdot 2 \tan 2x \sec^2 2x \cdot \tan x \cdot 2 \tan x \cdot \sec^2 x}{2 \tan 2x \cdot \sec^2 2x} \times 2 \).
\[
\lim_{x \to 0} \frac{\sin 2x \cos 2x}{\sin x \cos x} = \lim_{x \to 0} \frac{\sin 2x \cos 2x}{\sin x \cos x} = \lim_{x \to 0} \frac{1}{2(\sin 2x \cos 2x)} = \lim_{x \to 0} \frac{1}{\sin 2x \cos 2x} = 1
\]

Example 2.53 Evaluate \(\lim_{x \to 0} x^n (\log x)^m, m, n \in N.\)

Sol. \(\lim_{x \to 0} x^n (\log x)^m = \lim_{x \to 0} \frac{(\log x)^m}{x^{-n}} = \infty\) (form)

\[
\lim_{x \to 0} \frac{n(\log x)^{m-1}}{x} = \frac{n(\log x)^{m-1}}{x} (\text{using L' Hopital's rule})
\]

\[
\lim_{x \to 0} \frac{n(n-1)(\log x)^{n-2}}{x^2} = \frac{n(n-1)(\log x)^{n-2}}{x^2} (\text{using L' Hopital's rule})
\]

\[
\lim_{x \to 0} \frac{n(n-1)(\log x)^{n-2}}{x^2} = \frac{n(n-1)(\log x)^{n-2}}{x^2} (\text{form})
\]

\[
= \lim_{x \to 0} \frac{n(n-1)}{x^2} = 0 (\text{differentiating } N \text{ and } D \text{ } n \text{ times})
\]

Example 2.54 Evaluate \(\lim_{x \to 0} \frac{\sin^{-1} x - \tan^{-1} x}{x^3}.\)

Sol. \(\lim_{x \to 0} \frac{\sin^{-1} x - \tan^{-1} x}{x^3} = \lim_{x \to 0} \frac{(1 + x^2) - \sqrt{1-x^2}}{3x^2 \sqrt{1-x^2} (1+x^2)} = \lim_{x \to 0} \frac{1}{3x^2 \sqrt{1-x^2} (1+x^2)} = \lim_{x \to 0} \frac{1}{3x^2 \sqrt{1-x^2} (1+x^2)} (\text{Rationalizing})
\)

\[
= \lim_{x \to 0} \frac{x^2 + 3x^2}{3x^2 \sqrt{1-x^2} (1+x^2)} = \lim_{x \to 0} \frac{x^2 + 3}{3x^2 \sqrt{1-x^2} (1+x^2)} = \frac{1}{2}
\]

Example 2.55 If \(\alpha_1, \alpha_2, \ldots, \alpha_n\) are the roots of equation \(x^a + na = 0\), show that \((\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3) \cdots (\alpha_1 - \alpha_n) = n(\alpha_i^{a+1} + a)\).

Sol. Since \(\alpha_1, \alpha_2, \ldots, \alpha_n\) are the roots of equation \(x^a + na = 0\), we have \(x^a + na = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)\)

\[
\Rightarrow x^a + na = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)
\]

\[
\Rightarrow \lim_{x \to \alpha_1} \frac{x^a + na - (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)}{x - \alpha_1} = \lim_{x \to \alpha_1} [(x - \alpha_2)(x - \alpha_3) \cdots (x - \alpha_n)]
\]

Example 2.56 If \(L = \lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3}\) be finite, then find the value of \(a\) and \(L\).

Sol. \(L = \lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3} = \lim_{x \to 0} \frac{2 \sin x \cos x + a \sin x}{x^3} = \lim_{x \to 0} \frac{2 \sin x \cos x + a \sin x}{x^3} = \lim_{x \to 0} \frac{2 \cos x + a}{x^2}\)

Now \(D\) tends to 0 when \(x \to 0\), then \(N\) also must tends to zero for which \(\lim_{x \to 0} (2 \cos x + a) = 0 \Rightarrow a = -2\).

Now, \(L = \lim_{x \to 0} \frac{2 \cos x - 2}{x^2} = -2 \lim_{x \to 0} \frac{\sin^2 x}{x^2} = -1\).

Example 2.57 If \(\lim_{x \to 0} \frac{\cos 4x + a \cos 2x + b}{x^4}\) is finite, find \(a\) and \(b\) using expansion formula.

Sol. \(\lim_{x \to 0} \frac{\cos 4x + a \cos 2x + b}{x^4}\) is finite

Using expansion formula for \(\cos 4x\) and \(\cos 2x\), we get

\[
\left(1 - \frac{(4x)^2}{2!} + \frac{(4x)^4}{4!}\right) + a\left(1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!}\right) + b = \text{finite}
\]
2.18 Calculus

\[
(1+a+b)(-8-2a)x^2 + \left(\frac{32}{3} + \frac{2}{3} \right) x^4 + \cdots \\
\Rightarrow \lim_{x \to 0} x^4 \\
\Rightarrow 1 + a + b = 0, \text{ and } \\
-8 - 2a = 0 \quad (1)
\]

Solving equations (1) and (2) for \(a \) and \(b \), we get

\(a = -4 \) and \(b = 3 \)

Also, \(L = \frac{32}{3} + \frac{2}{3} = \frac{32 - 8}{3} = 8. \)

Example 2.58 Find the values of \(a \) and \(b \) in order that

\[
\lim_{x \to 0} \frac{x(1+a \cos x) - b \sin x}{x^3} = 1 \text{ [using L'Hopital's rule].}
\]

Sol.
\[
\lim_{x \to 0} \frac{x(1+a \cos x) - b \sin x}{x^3} = 1 \quad (0 \text{ form})
\]

\[
\Rightarrow \lim_{x \to 0} \frac{1(1+a \cos x) + x(-a \sin x) - b \cos x}{3x^2} = 1
\]

\[
= \lim_{x \to 0} \frac{1+a \cos x - a \sin x - b \cos x}{3x^2}
\]

[using L' Hopital's rule]

Here numerator \(\to 1 + a - b \) and denominator \(\to 0 \) and limit

is a finite number \(1 \)

\[
\therefore 1 + a - b = 0, \quad (1)
\]

[If \(1 + a - b \neq 0 \), then limit will not be finite.]

\[
\Rightarrow \lim_{x \to 0} \frac{1+a \cos x - ax \sin x - b \cos x}{3x^2} = 1 \quad (0 \text{ form})
\]

\[
\Rightarrow \lim_{x \to 0} \frac{0 - a \sin x - x \sin x - ax \cos x + b \sin x}{6x} = 1 \quad (0 \text{ form})
\]

\[
\Rightarrow \lim_{x \to 0} \frac{-a \cos x - x \cos x - ax \sin x + x + b \cos x}{6}
\]

\[
\Rightarrow \frac{-3a + b}{6} = 1
\]

\[
\Rightarrow -3a + b = 6
\]

Solving equations (1) and (2), we get \(a = -\frac{5}{2}, b = -\frac{3}{2}. \)

Concept Application Exercise 2.9

1. If \(\lim_{x \to 0} \frac{ae^x - b}{x} \), then find the values of \(a \) and \(b \).
2. If \(\lim_{x \to \infty} \left[\frac{x^2 + 1}{x + 1} (ax + b) \right] = 0 \), then find the values of \(a \) and \(b \).
3. If \(\lim_{x \to 0} (1 + ax + bx^2)^{1/x} = e^3 \), then find the values of \(a \) and \(b \).

MISCELLANEOUS SOLVED PROBLEMS

1. \(\lim_{n \to \infty} (4^n + 5^n)^{1/n} \) is equal to
 a. 4
 b. 5
 c. e
 d. None of these
 Sol. b. Given limit = \(\lim_{n \to \infty} (4^n + 5^n)^{1/n} \)

\[
= \lim_{n \to \infty} \left(1 + \left(\frac{4}{5} \right)^n \right)^{1/n} = 5
\]

\[
\therefore \left(\frac{4}{5} \right)^n \rightarrow 0 \text{ as } n \rightarrow \infty
\]

2. \(\lim_{x \to \infty} \sqrt[3]{x + \sin x} \) is equal to
 a. 0
 b. 1
 c. -1
 d. None of these
 Sol. b. \(\lim_{x \to \infty} \sqrt[3]{x + \sin x} = \lim_{x \to \infty} \sqrt[3]{\frac{1 + \sin x}{x - \cos x}} = \lim_{x \to \infty} \sqrt[3]{1} = 1 \)

 [\because \text{ both } \lim_{x \to \infty} \frac{\sin x}{x} \text{ and } \lim_{x \to \infty} \frac{\cos x}{x} \text{ are equal to } 0]

3. \(\lim_{n \to \infty} \frac{n^p \sin^2(n!)}{n+1}, 0 < p < 1, \text{ is equal to} \)
 a. 0
 b. \(\infty \)
 c. 1
 d. None of these
 Sol. a. \(\lim_{n \to \infty} \frac{\sin^2(n!)}{n^{1-p} \left(1 + \frac{1}{n} \right)} = \text{ some number between } 0 \text{ and } 1 = 0 \)

4. Let \(f(x) = \begin{cases}
\cos|x|, & x \geq 0 \\
|x| + a, & x < 0
\end{cases} \) then the value of \(a \), so that

\(\lim f(x) \) exists, where \([x] \) denotes the greatest integer function \(\leq x \) is equal to
 a. 0
 b. -1
 c. 2
 d. 1
 Sol. d. Since \(\lim f(x) \) exists

\[
= \lim_{x \to 0} f(x) = \lim_{x \to 0} f(h) = \lim_{h \to 0} f(0 + h) = \lim_{h \to 0} (|0| + a) = \lim \cos[0 + h] = a = \cos 0 = 1
\]

\[
\therefore a = 1
\]

5. If \(3 - \frac{x^2}{12} \leq f(x) \leq 3 + \frac{x^3}{9} \) for all \(x \neq 0 \), then the value of \(\lim f(x) \) is equal to
 a. \(\frac{1}{3} \)
 b. 3
 c. -3
 d. -1/3
 Sol. b. According to the question

\[
\lim_{x \to \infty} \left(3 - \frac{x^2}{12} \right) \leq \lim f(x) \leq \lim_{x \to \infty} \left(3 + \frac{x^3}{9} \right)
\]

\[
\Rightarrow \lim_{x \to \infty} (3 - 0) \leq \lim f(x) \leq \lim_{x \to \infty} (3 + 0)
\]

Hence \(\lim f(x) = 3 \) (from sandwitch theorem).
6. \(\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{2^r} \), where \([\cdot]\) denotes the greatest integer function, is equal to
 a. 1
 b. 0
 c. Non-existent
 d. None of these

Sol. b. \(\sum_{r=1}^{n} \frac{1}{2^r} = \left(1 - \left(\frac{1}{2}\right)^n\right) \cdot \left(1 - \frac{1}{2}\right) = 1 - \left(\frac{1}{2}\right)^n \), which tends to 1 as \(n \to \infty \) (but in fact always remains less than 1). Thus,
 \(\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{2^r} = 0. \)

7. \(\lim_{x \to 5\pi/4} [\sin x + \cos x] \), where \([\cdot]\) denotes the greatest integer function, is equal to
 a. \(-2\)
 b. \(-1\)
 c. \(-3\)
 d. None of these

Sol. \(\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right) \)

For \(x \to \frac{5\pi}{4} + 0 \), \(\sqrt{2} \sin \left(x + \frac{\pi}{4}\right) \to -\sqrt{2} + 0 \)

and for \(x \to \frac{5\pi}{4} - 0 \)

\(\sqrt{2} \sin \left(x + \frac{\pi}{4}\right) \to -\sqrt{2} + 0 \)

This given limit will be equal to \(-2\).

8. \(\lim_{x \to 1} [\sin x] \), where \([\cdot]\) denotes the greatest integer function, is equal to
 a. 1
 b. 0
 c. Does not exist
 d. None of these

Sol. b. L.H.L. = \(\lim_{x \to 1^-} f(x) = \lim_{h \to 0} \frac{\sin(h)}{1 + [\sin(h)]} = \sin(0) = 0 \)

\(\therefore h > 0 \Rightarrow \cosh < 1 \)

R.H.L. = \(\lim_{x \to 1^+} f(x) = \lim_{h \to 0} \frac{\sin(h)}{1 + [\sin(h)]} = \sin(0) = 0 \)

\(\therefore \lim_{x \to 1} \frac{\sin(h)}{1 + [\sin(h)]} = 0 \)

9. \(\lim_{x \to 0} \frac{\sin x}{x} \), where \([\cdot]\) denotes the greatest integer function, is equal to
 a. 1
 b. 0
 c. Does not exist
 d. None of these

Sol. b. Since \(\frac{\sin x}{x} < 1 \)

\(\Rightarrow \frac{\sin x}{x} \) tends to 1 forms the values that are less than one as \(x \to 0 \).

Thus,
\(\lim_{x \to 0} \frac{\sin x}{x} = 0 \)

10. The value of \(\lim_{x \to \pi/6} \frac{2 - \sqrt{3} \cos x - \sin x}{6x - \pi} \) is
 a. 1/12
 b. 1/24
 c. 1/36
 d. 1/48

Sol. c. We have

\(\lim_{x \to \pi/6} \frac{2 - \sqrt{3} \cos x - \sin x}{6x - \pi} = \lim_{h \to 0} \frac{2 - \sqrt{3} \cos \left(\frac{\pi}{6} + h\right) - \sin \left(\frac{\pi}{6} + h\right)}{\left(6\left(\frac{\pi}{6} + h\right) - \pi\right)^2} \)

\(= \lim_{h \to 0} \frac{2 - \sqrt{3} \cos \frac{\pi}{6} \cos h - \sin \frac{\pi}{6} \sin h}{\cos \frac{\pi}{6} \cos h + \cos \frac{\pi}{6} \sin h} \)

\(= \lim_{h \to 0} \frac{2 - \frac{3}{2} \cos h + \frac{\sqrt{3}}{2} \sin h}{\frac{1}{2} \cos h - \frac{\sqrt{3}}{2} \sin h} \)

\(= \lim_{h \to 0} \frac{2 - \frac{3}{2} \cos h + \frac{\sqrt{3}}{2} \sin h}{\frac{1}{2} \cos h - \frac{\sqrt{3}}{2} \sin h} \)

\(= \lim_{h \to 0} \frac{2(1 - \cos h)}{36h^2} = \frac{1}{18} \lim_{h \to 0} \frac{2 \sin^2 \left(\frac{h}{2}\right)}{h^2} \)

\(= \frac{1}{9} \lim_{h \to 0} \left(\frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right)^2 \frac{1}{4} = \frac{1}{9} (1)^2 \times \frac{1}{4} = \frac{1}{36} \)

11. The value of \(\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} \) is
 a. \(\frac{1}{2\sqrt{2}} \)
 b. \(\frac{1}{8\sqrt{2}} \)
 c. \(\frac{1}{4\sqrt{2}} \)
 d. \(\frac{1}{4\sqrt{2}} \)

Sol. c. We have

\(\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} \)

\(= \lim_{x \to 0} \frac{2 - (1 + \cos x)}{\sin^2 x} \times \frac{1}{\sqrt{2} + \sqrt{1 + \cos x}} \)

\(= \lim_{x \to 0} \frac{1 - \cos x}{(1 + \cos x)(1 - \cos x)} \times \lim_{x \to 0} \frac{1}{\sqrt{2} + \sqrt{1 + \cos x}} \)

\(= \lim_{x \to 0} \frac{1}{2\sqrt{2}} \times \frac{1}{4\sqrt{2}} = \frac{1}{4\sqrt{2}} \)
12. If \(a_1 = 1 \) and \(a_{n+1} = \frac{4+3a_n}{3+2a_n} \), \(n \geq 1 \), and if \(\lim_{n \to \infty} a_n = n \), then the value of \(a \) is
 a. \(\sqrt{2} \)
 b. \(-\sqrt{2} \)
 c. 2
 d. None of these

Sol. a. We have \(a_{n+1} = \frac{4+3a_n}{3+2a_n} \)

\[\Rightarrow \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{4+3a_n}{3+2a_n} \]

\[\Rightarrow a = \frac{4+3a}{3+2a} \Rightarrow 2a^2 = 4 \Rightarrow a = \sqrt{2} \quad \text{(where} \quad \lim_{n \to \infty} a_n = a \quad \text{)} \]

\((a \neq -\sqrt{2} \) because each \(a_n > 0) \)

13. Evaluate \(\lim_{x \to 0} \frac{\sin x - x - x \cos x + x^2 \cot x}{x^3} \) (do not use either L'Hopital's rule or series expansion for \(\sin x \)), hence evaluate

\[\lim_{x \to 0} \frac{\sin x - x - x \cos x + x^2 \cot x}{x^3} \]

Sol. \(L = \lim_{x \to 0} \frac{x - \sin x}{x^3} \)

Replace \(x \) by \(3x \)

\[\Rightarrow L = \lim_{x \to 0} \frac{3x - \sin 3x}{(3x)^3} \]

\[= \lim_{x \to 0} \frac{3x - 3\sin x - 4\sin^3 x}{(3x)^3} \]

\[= \lim_{x \to 0} \left(\frac{3x - 3\sin x}{(3x)^3} + \frac{4\sin^3 x}{(3x)^3} \right) \]

\[= \lim_{x \to 0} \left(\frac{\sin x}{x^3} + \frac{4 \sin^3 x}{27x^3} \right) \]

\[= \frac{1}{9} L + \frac{4}{27} \]

\[\Rightarrow \frac{8}{9} L = \frac{4}{27} \]

\[\Rightarrow L = \frac{1}{6} \]

Also \(\lim_{x \to 0} \frac{\sin x - x - x \cos x + x^2 \cot x}{x^5} \)

\[= \lim_{x \to 0} \left(\frac{\sin x - x}{x^5} + \frac{x \cot x (x - \sin x)}{x^5} \right) \]

\[= \lim_{x \to 0} \left(\frac{\sin x - x}{x^5} (1 - x \cot x) \right) \]

\[\Rightarrow \sin x - x - x \cos x + x^2 \cot x \]

\[= \lim_{x \to 0} \frac{\sin x - x}{x} \cdot \frac{\tan x - x}{x} \cdot \frac{x}{\tan x} \]

\[= \frac{-1}{6} \cdot \frac{1}{3} \cdot \frac{1}{18} \] (Using expansions of \(\sin x \) and \(\tan x \))

14. Evaluate \(\lim_{n \to \infty} \frac{\pi \sqrt{n^2 + n}}{n} \), when \(n \) is an integer.

Sol. \(L = \lim_{n \to \infty} \frac{\pi \sqrt{n^2 + n}}{n} \)

\[= \frac{n \pi - \pi \sqrt{n^2 + n}}{n} \]

\[= \frac{n \pi}{n + \sqrt{n^2 + n}} \]

\[= \lim_{n \to \infty} \frac{\pi}{n + \sqrt{n^2 + n}} \]

\[= \pm \lim_{n \to \infty} \cos \left(\frac{\pi}{n + \sqrt{n^2 + n}} \right) \]

\[\Rightarrow L = \pm \frac{1}{2} \to 0 \]

15. Let the variable \(x_n \) be determined by the following law of formation:

\[x_0 = \sqrt{a} \]

\[x_1 = \sqrt{a + \sqrt{a}} \]

\[x_2 = \sqrt{a + \sqrt{a + \sqrt{a}}} \]

\[x_3 = \sqrt{a + \sqrt{a + \sqrt{a + \sqrt{a}}}} \]

Then, find the value of \(\lim_{n \to \infty} x_n \).

Sol. We have \(x_n^2 = a + x_{n-1} \)

\[\Rightarrow L^2 = a + L \] (as at infinity \(L = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n-1} \))
\[\Rightarrow L^2 - L - a = 0 \]

\[\Rightarrow L = \frac{1 \pm \sqrt{(1+4a)}}{2} \]

\[\Rightarrow L = \frac{1+\sqrt{(1+4a)}}{2} \] (as according to the question \(a > 0 \))

hence \(\frac{1-\sqrt{(1+4a)}}{2} < 0 \).

16. Evaluate \(\lim_{n \to \infty} \prod_{r=3}^{n} \left(\frac{r^3 - 8}{r^3 + 8} \right) \), where \(\prod \) represents the product of functions.

Sol. Let \(P = \lim_{n \to \infty} \prod_{r=3}^{n} \left(\frac{r^3 - 8}{r^3 + 8} \right) \)

\[= \lim_{n \to \infty} \prod_{r=3}^{n} \left(\frac{r-2}{r+2} \right) \times \prod_{r=3}^{n} \left(\frac{r^2 + 2r + 4}{r^2 - 2r + 4} \right) \]

\[= \lim_{n \to \infty} \left\{ \frac{1 \times 2 \times 3 \times 4 \times \cdots \times (n-2)}{(n-1)n(n+1)(n+2)} \right\} \times \left\{ \frac{n^2 - 2n + 4}{n^2 + 2n + 4} \right\} \]

\[= \lim_{n \to \infty} \left\{ \frac{1 \times 2 \times 3 \times 4}{(n-1)n(n+1)(n+2)} \times \frac{n^2 + 3}{n^2 - 4n + 7} \times \frac{n^2 + 2n + 4}{n^2 - 4n + 7} \right\} \]

\[= 2 \lim_{n \to \infty} \left\{ \frac{(n^2 + 3)(n^2 + 2n + 4)}{(n-1)n(n+1)(n+2)} \right\} \]

\[= \frac{2}{7} \lim_{n \to \infty} \left\{ \frac{1 + \frac{3}{n} + \frac{2}{n} + \frac{4}{n^2}}{1 + \frac{1}{n} + \frac{1}{n} + \frac{2}{n}} \right\} \]

\[= \frac{2}{7} \lim_{n \to \infty} \left\{ \frac{1 + 0 + 0 + 0}{1 + 0 + 0 + 0} \right\} = \frac{2}{7} \]

Hence \(P = \frac{2}{7} \).

17. If \([x] \) denotes the greatest integer \(\leq x \), then evaluate \(\lim_{n \to \infty} \frac{1}{n^3} \left(\sum_{r=1}^{n} \{ r^2 x - \{ r^2 x \} \} \right) \)

Sol. \(\lim_{n \to \infty} \frac{1}{n^3} \left(\sum_{r=1}^{n} \{ r^2 x - \{ r^2 x \} \} \right) = \lim_{n \to \infty} \left(\frac{n^2 x^2}{n^3} - \frac{n}{n^2} \sum_{r=1}^{n} \{ r^2 x \} \right) \)

\[= \lim_{n \to \infty} \left(\frac{x}{6} - \frac{1}{n^3} \sum_{r=1}^{n} \{ r^2 x \} \right) \]

\[= \frac{10 \cdot 1 \cdot 2}{6} = \frac{x}{3} \]

18. Find the integral value of \(n \) for which the limit \(\lim_{x \to 0} \frac{\cos^2 x - \cos x - e^x \cos x + e^x - \frac{x^3}{2}}{x^n} \) is a finite non-zero.

Sol. Given that \(\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \) and \(\lim_{x \to 0} \frac{e^x}{x} = 1 \),

\[\lim_{x \to 0} \frac{\frac{x^3}{2} + \frac{x^4}{2} + \frac{x^5}{24} + \cdots}{x^n} = \frac{x^3}{2} \]

\[\lim_{x \to 0} \frac{1}{x^n} = \frac{1}{x^n} \]

\[\lim_{x \to 0} \frac{\frac{x^3}{2} + \frac{x^4}{4} + \frac{x^5}{6} + \cdots}{x^n} \]

\[= \lim_{x \to 0} \left(\frac{x^3}{2} + \frac{x^4}{4} + \frac{x^5}{6} + \cdots \right) \]

\[= \text{non-zero if } n = 4 \]
Exercises

Subjective Type

Solutions on page 2.32

15. Evaluate \(\lim_{{x \to \infty}} \left(a_1^x + a_2^x + \cdots + a_n^x \right)^{\frac{1}{n}} \).

16. Evaluate \(\lim_{{x \to 0}} \frac{1 - \cos(1 - \cos x)}{x^4} \).

17. Evaluate \(\lim_{{x \to 0}} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right) \).

18. Evaluate \(\lim_{{x \to \infty}} \left\{ \frac{x}{x + \frac{\sqrt{x}}{\sqrt{x} + \sqrt[3]{x} + \cdots + \sqrt{n}} \cdots \sqrt{n}} \right\} \).

19. Evaluate \(\lim_{{x \to \pi/2}} \frac{\sin x - (\sin x)^{\sin x}}{x - \pi/2} \).

20. Evaluate \(\lim_{{n \to 0}} \frac{1}{\sin \left(\pi \sqrt{(\theta + 4) - \frac{2}{\theta}} \right)} \).

21. Evaluate the value of \(\lim_{{x \to \pi/2}} \tan^2 x \left(2 \sin^2 x + 3 \sin x + 4 - \sqrt{2} \sin x + 6 \sin x + 2 \right) \).

22. Evaluate \(\lim_{{x \to 1}} \frac{e^{(1 + x)^1/4}}{x^2} \).

23. Evaluate \(\lim_{{n \to \infty}} \frac{n^2 \left(1 - \cos \frac{1}{n} \right) \left(1 - \cos \frac{1}{n} \right) \cdots \left(1 - \cos \frac{1}{n} \right)}{4} \).

24. Evaluate \(\lim_{{n \to \infty}} \left(n + 2 \right)^2 \left(n + 2 \right)^3 \cdots \right) \).

25. Let \(f(x) = \lim_{{n \to \infty}} \left(\lim_{{m \to \infty}} \cos^2m (n \pi x) \right) \), where \(x \in R \), then prove that \(f(x) = \left\{ \begin{array}{l} 1, \text{if } x \text{ is rational} \\ 0, \text{if } x \text{ is irrational} \end{array} \right\} \).

26. At the endpoint and the midpoint of a circular arc \(AB \) tangent lines are drawn, and the point \(A \) and \(B \) are joined with a chord. Prove that the ratio of the areas of the triangles thus formed tends to 4 as the arc \(AB \) decreases infinitely.

27. \(T_1 \) is an isosceles triangle in circle \(C \). Let \(T_2 \) be another isosceles triangle inscribed in \(C \) whose base is one of the equal sides of \(T_1 \) and which overlaps the interior of \(T_1 \). Similarly, create isosceles triangle \(T_3 \) from \(T_2, T_3, \) and \(T_4 \), and so on. Prove that the triangle \(T_n \) approaches an equilateral triangle as \(n \to \infty \).

Objective Type

Solutions on page 2.36

Each question has four choices a, b, c, and d, out of which only one is correct.

1. If \(f(x) = 0 \) be a quadratic equation such that \(f(-\pi) = f(\pi) \) \(\lim_{{x \to \pi/2}} f(x) = -\frac{3\pi^2}{4} \), then \(\lim_{{x \to \pi}} f(x) \) is equal to
2. If \(f(x) = \frac{\cos x}{(1 - \sin x)^{1/3}} \), then
 a. \(\lim_{x \to \frac{\pi}{2}} f(x) = -\infty \)
 b. \(\lim_{x \to \frac{\pi}{2}} f(x) = \infty \)
 c. \(\lim_{x \to \frac{\pi}{2}} f(x) = 0 \)
 d. None of these

3. \(\lim_{x \to -\infty} \frac{x^2 \tan \frac{1}{x}}{\sqrt{8x^2 + 7x + 1}} \) is equal to
 a. \(\frac{1}{2\sqrt{2}} \)
 b. \(\frac{1}{2\sqrt{2}} \)
 c. \(\frac{1}{\sqrt{2}} \)
 d. Does not exist

4. \(\lim_{x \to 0} \left[\frac{\sin(\text{sgn}(x))}{(\text{sgn}(x))} \right] \), where \([\cdot]\) denotes the greatest integer function, is equal to
 a. 0
 b. 1
 c. -1
 d. Does not exist

5. \(\lim_{x \to -2} \frac{2 + 2x + \sin 2x}{(2x + \sin 2x)e^{\sin x}} \) is equal to
 a. 0
 b. 1
 c. -1
 d. Does not exist

6. Let \(\lim_{x \to 0} \frac{[x]^2}{x^2} = l \) and \(\lim_{x \to 0} \frac{[x^2]}{x^2} = m \), where \([\cdot]\) denotes the greatest integer, then
 a. \(l \) exists but \(m \) does not
 b. \(m \) exists but \(l \) does not
 c. both \(l \) and \(m \) exist
 d. neither \(l \) nor \(m \) exists

7. \(\lim_{x \to -1} \frac{x \sin(x - [x])}{x - 1} \), where \([\cdot]\) denotes the greatest integer function, is equal to
 a. 0
 b. -1
 c. Non-existent
 d. None of these

8. \(\lim_{x \to 0} \frac{1 + \tan x}{1 + \sin x} \csc x \) is equal to
 a. \(e \)
 b. \(\frac{1}{e} \)
 c. 1
 d. None of these

9. \(\lim_{x \to \infty} \frac{\sin^4 x - \sin^2 x + 1}{\cos^4 x - \cos^2 x + 1} \) is equal to
 a. 0
 b. 1
 c. \(\frac{1}{3} \)
 d. None of these

10. \(\lim_{x \to \infty} \left(\frac{x^3}{x^2 - 4} - \frac{x^2}{3x + 2} \right) \) is equal to
 a. Does not exist
 b. 1/3
 c. 0
 d. 2/9

11. If \(f(x) = \frac{2}{x-3}, \ g(x) = \frac{x-3}{x+4} \) and \(h(x) = -\frac{2(2x+1)}{x^2+x-12} \),
 then \(\lim_{x \to 3} [f(x) + g(x) + h(x)] \) is
 a. -2
 b. -1
 c. \(\frac{2}{7} \)
 d. 0

12. \(\lim_{x \to 1} \frac{xe^x - 1}{\cos x - 1} \) is equal to
 a. 0
 b. \(\infty \)
 c. -2
 d. 2

13. \(\lim_{n \to \infty} \frac{n(2n + 1)^2}{(n + 2)(n^2 + 3n - 1)} \) is equal to
 a. 0
 b. 2
 c. 4
 d. \(\infty \)

14. The value of \(\lim_{x \to \pi} \frac{1 + \cos^3 x}{\sin^2 x} \) is
 a. 1/3
 b. 2/3
 c. -1/4
 d. 3/2

15. \(\lim_{x \to 0} n^2 \left(x^{1/n} - x^{1/(n+1)} \right), x > 0 \), is equal to
 a. 0
 b. \(e^x \)
 c. \(\log\, x \)
 d. None of these

16. The value of \(\lim_{x \to 2} \frac{\sqrt{1+\sqrt{2+x}-\sqrt{3}}}{x-2} \) is
 a. \(\frac{1}{8\sqrt{3}} \)
 b. \(\frac{1}{4\sqrt{3}} \)
 c. 0
 d. None of these

17. \(\lim_{x \to 0} \frac{(2x + 1)^{10} - (4x - 1)^3}{(2x + 3)^{45}} \) is equal to
 a. 16
 b. 24
 c. 32
 d. 8

18. \(\lim_{x \to \infty} \left[\sqrt{x + \sqrt{x + \sqrt{x - \sqrt{x}}} \right] \) is equal to
 a. 0
 b. \(\frac{1}{2} \)
 c. \(\log 2 \)
 d. \(e^x \)

19. \(\lim_{x \to \infty} \frac{(x+1)^{10} + (x+2)^{10} + \cdots + (x+100)^{10}}{x^{10} + 10^{10}} \) is equal to
 a. 0
 b. 1
 c. 10
 d. 100
20. \(\lim_{x \to 0} \frac{x^a \sin^b x}{\sin(x^c)} \), where \(a, b, c \in \mathbb{R} \setminus \{0\} \), exists and has non-zero value, then
 a. \(a + c = b \)
 b. \(b + c = a \)
 c. \(a + b = c \)
 d. None of these

21. \(\lim_{x \to \pi/2} x \tan x - \left(\frac{\pi}{2} \right) \sec x \) is equal to
 a. 1
 b. -1
 c. 0
 d. None of these

22. If \(\lim_{x \to \infty} \left(\frac{x^3 + 1}{x^2 + 1} \right) = 2 \), then
 a. \(a = 1, b = 1 \)
 b. \(a = 1, b = 2 \)
 c. \(a = 1, b = -2 \)
 d. None of these

23. The value of \(\lim_{x \to 1} \frac{\tan \frac{\pi x}{2}}{} \) is
 a. \(e^{-\frac{\pi}{2}} \)
 b. \(e^{\frac{\pi}{2}} \)
 c. \(e^{2\pi} \)
 d. \(e^{-\frac{\pi}{2}} \)

24. \(\lim_{x \to 0} \frac{\sin x^n}{(\sin x)^m} \), \(m < n \) is equal to
 a. 1
 b. 0
 c. \(\frac{n}{m} \)
 d. None of these

25. \(\lim_{x \to 0} \frac{x^4 \left(\cot^4 x - \cot^2 x + 1 \right)}{\left(\tan^4 x - \tan^2 x + 1 \right)} \) is equal to
 a. 1
 b. 0
 c. 2
 d. None of these

26. \(\lim_{x \to \infty} \frac{1 - x}{e^{1+x}} \) is equal to
 a. \(e \)
 b. 0
 c. \(e^{-1} \)
 d. Does not exist

27. \(\lim_{x \to \pi} \frac{1 - x^2}{\sin 2\pi x} \) is equal to
 a. \(\frac{1}{2\pi} \)
 b. \(\frac{-1}{\pi} \)
 c. \(\frac{-2}{\pi} \)
 d. None of these

28. \(\lim_{x \to 0} \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \) is equal to
 a. 1
 b. 0
 c. 2
 d. None of these

29. \(\lim_{x \to \infty} \left(\frac{x^2 + 2x - 1}{2x^2 - 3x - 2} \right)^{2x+1} \) is equal to
 a. 0
 b. \(\infty \)
 c. 1/2
 d. None of these

30. \(\lim_{x \to \infty} \frac{2\sqrt{x} + 3\sqrt[3]{x} + 4\sqrt[4]{x} + \cdots + n\sqrt[n]{x}}{\sqrt{2x-3} + \sqrt[3]{2x-3} + \cdots + \sqrt[n]{2x-3}} \) is equal to
 a. 1
 b. \(\infty \)
 c. \(\sqrt{2} \)
 d. None of these

31. \(\lim_{y \to 0} \frac{(x+y) \sec (x+y) - x \sec x}{y} \) is equal to
 a. \(\sec x (x \tan x + 1) \)
 b. \(x \tan x + \sec x \)
 c. \(x \sec x + \tan x \)
 d. None of these

32. The value of \(\lim_{n \to \infty} \left(\cos \frac{x}{m} \right)^m \) is
 a. 1
 b. \(e \)
 c. \(e^{-1} \)
 d. None of these

33. \(\lim_{x \to 0} \left[\cot \left(\frac{\pi x}{2} \right) \right]^{[\cos (1-x)]} \) (where \([\cdot]\) represents the greatest integer function) is equal to
 a. 0
 b. 1
 c. \(\infty \)
 d. Does not exist

34. \(\lim_{n \to \infty} \left(\frac{n^2 - n + 1}{n^2 - n - 1} \right)^{n(n-1)} \) is equal to
 a. \(e \)
 b. \(e^2 \)
 c. \(e^{-1} \)
 d. 1

35. If \(f(x) = \lim_{n \to \infty} n(x^{1/n} - 1) \), then for \(x > 0, y > 0, f(xy) \) is equal to
 a. \(f(x)f(y) \)
 b. \(f(x) + f(y) \)
 c. \(f(x) - f(y) \)
 d. None of these

36. If \(\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) \) exists, then
 a. both \(\lim f(x) \) and \(\lim g(x) \) must exist
 b. \(\lim f(x) \) need not exist but \(\lim g(x) \) exists
 c. neither \(\lim f(x) \) nor \(\lim g(x) \) may exist
 d. \(\lim f(x) \) exists but \(\lim g(x) \) need not exist

37. If \(\lim_{n \to \infty} \frac{n^3}{n(x-2)^n + n^3(x+1) - 3^3} = \frac{1}{3} \), then the range of \(x \) is (where \(n \in \mathbb{N} \))
 a. \([2, 5) \)
 b. \((1, 5) \)
 c. \((-1, 5) \)
 d. \((-\infty, \infty) \)
38. The value of \(\lim_{x \to 2} \frac{2^x + 2^{3-x} - 6}{\sqrt{2^x} - 2^{1-x}} \) is

a. 16
 b. 8
 c. 4
 d. 2

39. \(\lim_{n \to \infty} \left(\frac{n}{n+1} + \sin \frac{1}{n} \right)^n \) (when \(\alpha \in \mathbb{Q} \)) is equal to

a. \(e^\alpha \)
 b. \(e^{-\alpha} \)
 c. \(e^{1-\alpha} \)
 d. \(e^{1+\alpha} \)

40. \(f(x) = \ln \left(\frac{x^2 + e^x}{\ln(x^4 + e^{2x})} \right) \). Then \(\lim_{n \to \infty} f(n) \) is equal to

a. 1
 b. 1/2
 c. 2
 d. None of these

41. \(\lim_{x \to 1} \frac{1 + \sin \pi \left(\frac{3x}{1 + x^2} \right)}{1 + \cos \pi x} \) is equal to

a. 0
 b. 1
 c. 2
 d. 4

42. \(\lim_{n \to \infty} \sum_{r=1}^{20} \cos^2 (n \pi + 10) \) is equal to

a. 0
 b. 1
 c. 19
 d. 20

43. The value of \(\lim_{x \to \infty} \frac{(2^x)^{1/3} - (3^x)^{1/3}}{x^{1/3}} \) (where \(n \in N \)) is

a. \(\log \left(\frac{2}{3} \right) \)
 b. 0
 c. \(n \log \left(\frac{2}{3} \right) \)
 d. Not defined

44. If \(f: (1, 2) \to \mathbb{R} \) satisfies the inequality \(\frac{\cos(2x - 4) - 33}{2} < f(x) < \frac{x^2}{2} \left| \frac{4x - 8}{x - 2} \right| \), \(\forall x \in (1, 2) \), then \(\lim_{x \to 2^-} f(x) \) is

a. 16
 b. Cannot be determined from the given information
 c. -16
 d. Does not exist

45. Let \(f(x) = \lim_{n \to \infty} \frac{1}{n} \left(\frac{3}{\pi} \arctan 2x \right)^{2n} + 5 \). Then the set of values of \(x \) for which \(f(x) = 0 \) is

a. \(|2x| > \sqrt{3} \)
 b. \(|2x| < \sqrt{3} \)
 c. \(|2x| \geq \sqrt{3} \)
 d. \(|2x| \leq \sqrt{3} \)

46. \(\lim_{x \to 0} \left\{ \left(1 + x^2\right)^{1/2} \right\} \) (where \(\{ \} \) denotes the fractional part of \(x \)) is equal to

a. \(e^{7/2} \)
 b. \(e^4 - 8 \)
 c. \(e^4 - 6 \)
 d. None of these

47. \(\lim_{x \to 0} \frac{\sin(x^2)}{\ln(\cos(2x^2 - x))} \) is equal to

a. 2
 b. -2
 c. 1
 d. -1

48. \(\lim_{x \to 1} \frac{1}{\sqrt{|x|} - \{x\}} \) (where \(\{ \} \) denotes the fractional part of \(x \)) is equal to

a. Does not exist
 b. 1
 c. \(\infty \)
 d. \(\frac{1}{2} \)

49. If \(f(x) = \begin{cases} x^2 \sin(1/x^2), & x \neq 0 \\ 0, & x = 0 \end{cases} \) \((n \in N) \), then

a. \(\lim_{x \to 0} f(x) \) exists for \(n > 1 \)
 b. \(\lim_{x \to 0} f(x) \) exists for \(n < 0 \)
 c. \(\lim_{x \to 0} f(x) \) does not exist for any value of \(n \)
 d. \(\lim_{x \to 0} f(x) \) cannot be determined

50. The value of \(\lim_{x \to 1} \frac{p - x^n}{1 - x^n} \) \((n \in N) \) equals

a. \(\frac{p}{q} \)
 b. \(\frac{pq}{2} \)
 c. \(\frac{p - q}{2} \)
 d. \(\sqrt{\frac{p}{q}} \)

51. \(\lim_{x \to \infty} \left(\frac{x^4 + x^2 + x + 1}{x^2 - x + 1} \right)^{1 - \cos(x + 1)/(x + 1)^2} \) is equal to

a. 1
 b. \((2/3)^{1/2} \)
 c. \((3/2)^{1/2}\)
 d. \(e^{1/2}\)

52. The value of \(\lim_{x \to \infty} \left(\frac{E_x - 4x}{x^3 - 8} \right) \) \((E_x = \sum_{k=1}^{x} k^2) \) is

a. 1/2
 b. 2
 c. 1
 d. None of these

53. \(\lim_{x \to \infty} \frac{e^{\sqrt{x^2 - 1}}}{2 \tan^{-1}(x^2 - \pi)} \) is equal to

a. 1
 b. -1
 c. \(\frac{1}{2} \)
 d. \(-\frac{1}{2}\)
54. The value of \(\lim_{x \to 0} \frac{1 + \sin x - \cos x + \log(1-x)}{x^3} \) is

a. \(\frac{1}{2} \)

b. \(\frac{1}{2} \)

c. 0

d. None of these

55. \(\lim_{x \to 0} \frac{\cos(tan x) - \cos x}{x^4} \) is equal to

a. 1/6

b. -1/3

c. 1/2

d. 1

56. If \(x_n = 3 \) and \(x_{n+1} = \sqrt{2 + x_n}, \ n \geq 1, \) then \(\lim_{n \to \infty} x_n \) is

a. -1

b. 2

c. \(\sqrt{3} \)

d. None of these

57. \(\lim_{x \to 0} \frac{1^{x} + 2^x + 3^x + \cdots + n^x}{n} \) is equal to

a. \((n!)^x \)

b. \((n!)^{\frac{x}{n}} \)

c. \(n! \)

d. \(\ln(n!) \)

58. The value of the limit \(\lim_{x \to 0^+} \frac{a^x - a^{-1/x}}{a^x + a^{-1/x}}, \ a > 1 \) is

a. \(\sqrt{a} \)

b. 2

c. -1

d. 0

59. Among (i) \(\lim_{x \to 0} \sec^{-1} \left(\frac{x}{\sin x} \right) \) and

(ii) \(\lim_{x \to 0} \sec^{-1} \left(\frac{\sin x}{x} \right) \)

a. (i) exists, (ii) does not exist

b. (i) does not exist, (ii) exists

c. both (i) and (ii) exist

d. neither (i) nor (ii) exists

60. If \(\lim_{x \to 0} x^n - \sin^2 x \) is non-zero finite, then \(n \) must be equal to

a. 4

b. 1

c. 2

d. 3

61. If \(\lim_{x \to 0} \frac{ae^{1/x+1} - 1}{2 - e^{1/x+1}} = \lim_{x \to 0} \sin \left(\frac{x^4 - 16}{x^5 + 32} \right) \), then \(a \) is

a. \(\sin \frac{3}{5} \)

b. 2

c. \(\sin \frac{2}{5} \)

d. \(\sin \frac{1}{5} \)

62. If \(\lim_{x \to \infty} (x+5) \tan^{-1}(x+5) - (x+1) \tan^{-1}(x+1) \) is equal to

a. \(\pi \)

b. \(2\pi \)

c. \(\pi/2 \)

d. None of these

63. \(\lim_{x \to 0} \frac{(1-x)(1-x^2)(1-x^3) \cdots (1-x^{2n})}{(1-x)(1-x^2)(1-x^3) \cdots (1-x^n)} \), \(n \in N \)

a. \(2^n P_n \)

b. \(2^n C_n \)

c. \((2n)! \)

d. None of these

64. The value of \(\lim_{x \to 0} \left(\frac{\left[100x \right] \sin x}{x} + \frac{\left[99 \sin x \right]}{x} \right) \)

(where \(\left[\cdot \right] \) represents the greatest integer function) is

a. 199

b. 198

c. 0

d. None of these

65. If \(\lim_{x \to 1} \frac{x - \cos \left(\sin^{-1} x \right)}{\sqrt{1 - \tan \left(\sin^{-1} x \right)}} \)

a. \(\frac{1}{\sqrt{2}} \)

b. \(\frac{1}{\sqrt{2}} \)

c. \(\sqrt{2} \)

d. \(-\sqrt{2} \)

66. The value of \(\lim_{x \to \frac{\pi}{2}} \frac{1 - \sqrt{x}}{\cos^{-2} x} \)

a. 4

b. 1/2

c. 2

d. 1/4

67. \(\lim_{x \to 1} \left[\min(x^2 - 4y + 11) \sin x \right] \) (where \(\left[\cdot \right] \) denotes the greatest integer function)

a. 5

b. 6

c. 7

d. Does not exist

68. \(\lim_{x \to \pi/2} \frac{\sin(x \cos x)}{\cos(x \sin x)} \)

a. 0

b. \(p/2 \)

c. \(p \)

d. \(2p \)

69. If \((x^3 \sin 3x + ax^2 + b) \) exists and is equal to 0, then

a. \(a = -3 \) and \(b = 9/2 \)

b. \(a = 3 \) and \(b = 9/2 \)

c. \(a = -3 \) and \(b = -9/2 \)

d. \(a = 3 \) and \(b = -9/2 \)

70. \(\lim_{x \to 0} \frac{x^n x^n}{x^n - \sin^2 x} \) is non-zero finite, then \(n \) is equal to

a. 1

b. 2

c. 3

d. None of these

71. \(\lim_{x \to 0} \frac{1 + x + x^2}{x(\ln x)} \) is equal to

a. 2

b. \(e^2 \)

c. \(e^3 \)

d. None of these

72. \(\lim_{x \to 0} \left(2^m + x \right)^{1/m} - \left(2^n + x \right)^{1/n} \)

a. \(\frac{1}{m2^n} \)

b. \(\frac{1}{m2^m} + \frac{1}{n2^n} \)

c. \(\frac{1}{m2^{m-1}} + \frac{1}{n2^{n-1}} \)

d. None of these

73. \(\lim_{x \to 0} \left[\left(1 - e^x \right) \sin x \right] \) (where \(\left[\cdot \right] \) represents the greatest integer function)

a. -1

b. 1

c. 0

d. Does not exist

74. Let \(f(x) = \begin{cases} x+1, & x > 0 \\ 2-x, & x \leq 0 \end{cases} \)

\(g(x) = \begin{cases} x^2 - 2x - 2, & 1 \leq x < 2 \end{cases} \), then \(\lim_{x \to 0} g(f(x)) \) is

a. \(x - 5 \)

b. \(x \geq 2 \)
5. Which of the following is true (\(\lfloor \cdot \rfloor \) denotes the fractional part of the function)?
 a. \(\lim_{x \to \infty} \log_2 x = \infty \)
 b. \(\lim_{x \to \infty} \frac{x}{x^2 + x - 2} = \infty \)
 c. \(\lim_{x \to \infty} \frac{x}{x^2 - x - 2} = -\infty \)
 d. \(\lim_{x \to \infty} \log_{0.5} x = \infty \)

6. If \((2 - x + a[x-1] + b[1+x]) \) exists, then \(a \) and \(b \) can take the values (where \([\cdot] \) denotes the greatest integer function)
 a. \(a = 1/3, b = 1 \)
 b. \(a = 1, b = -1 \)
 c. \(a = 9, b = -9 \)
 d. \(a = 2, b = 2/3 \)

\(\sqrt{7} \)

7. If \(L = \lim_{x \to \infty} \frac{2 \sin x - 1}{2 \sin x - 1} \), then
 a. limit does not exist when \(a = \pi/6 \)
 b. \(L = -1 \) when \(a = \pi \)
 c. \(L = 1 \) when \(a = \pi/2 \)
 d. \(L = 1 \) when \(a = 0 \)

8. \(f(x) = \lim_{x \to \infty} \frac{x}{x^n + 1} \), then
 a. \(f(1) + f(1) = 0 \)
 b. \(f(1) + f(1) + f(1) = 3/2 \)
 c. \(f(1) + f(1) + f(1) = -1 \)
 d. \(f(1) + f(1) = 0 \)

9. \(\lim_{x \to \infty} \frac{-3n + (-1)^n}{4n - (-1)^n} \) is equal to
 a. \(-3 \)
 b. 0 if \(n \) is even
 c. \(-3/4 \) if \(n \) is odd
 d. None of these

10. Given a real-valued function \(f \) such that

 \[f(x) = \begin{cases}
 \tan^2(x) & \text{for } x > 0 \\
 \frac{1}{(x^2 + [x])} & \text{for } x = 0
 \end{cases} \]

 where \([x] \) is the integral part and \(\{x\} \) is the fractional part of \(x \), then
 a. \(\lim_{x \to \infty} f(x) = 1 \)
 b. \(\lim_{x \to 0} f(x) = \cot 1 \)
 c. \(\cot^{-1} \left(\lim_{x \to 0} f(x) \right)^2 = 1 \)
 d. \(\tan^{-1} \left(\lim_{x \to 0} f(x) \right) = \frac{\pi}{4} \)

\(\sqrt{11} \) If \(f(x) = \frac{3x^2 + ax + a + 1}{x^2 + x - 2} \), then which of the following can be correct
 a. \(\lim_{x \to \infty} f(x) \) exists \(\Rightarrow a = -2 \)
 b. \(\lim_{x \to 2} f(x) \) exists \(\Rightarrow a = 13 \)
 c. \(\lim_{x \to 1} f(x) = 4/3 \)
 d. \(\lim_{x \to 2} f(x) = -1/3 \)
12. \(\lim_{n \to \infty} \frac{1}{1 + n \sin^2 \frac{\pi}{x}} \) is equal to
a. \(-1\) b. \(0\) c. \(1\) d. \(\infty\)

13. Let \(f(x) = \frac{x^2 - 9x + 20}{x - [x]} \) (where \([x]\) is the greatest integer not greater than \(x\)), then
a. \(\lim_{x \to 5^-} f(x) = 0 \)

b. \(\lim_{x \to 5^+} f(x) = 1 \)

c. \(\lim_{x \to 5} f(x) \) does not exist

d. None of these

14. Given \(\lim_{x \to 0} \frac{f(x)}{x^2} = 2 \), where \([\cdot]\) denotes greatest integer function, then
a. \(\lim_{x \to 0} [f(x)] = 0 \)

b. \(\lim_{x \to 0} [f(x)] = 1 \)

c. \(\lim_{x \to 0} \frac{[f(x)]}{x} \) does not exist

d. \(\lim_{x \to 0} \frac{[f(x)]}{x} \) exists

Each question has four choices a, b, c, and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2.

a. if both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT 1.
b. if both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1.
c. if STATEMENT 1 is TRUE and STATEMENT 2 is FALSE.
d. if STATEMENT 1 is FALSE and STATEMENT 2 is TRUE.

1. Statement 1: \(\lim_{x \to 0} \frac{\sin x}{x} = 0 \)

Statement 2: For \(x \in (-\delta, \delta) \), where \(\delta \) is positive and \(\delta \to 0 \), \(\tan x > x \).

2. Statement 1: \(\lim_{x \to a} \frac{\sin(f(x))}{x - a} \), where \(f(x) = ax^2 + bx + c \), is finite and non-zero, then \(\lim_{x \to a} \frac{e^{1/x} - 1}{e^{1/x} + 1} \) does not exist.

Statement 2: \(\lim_{x \to a} \frac{\sin(f(x))}{x - a} \) can take finite value only when it takes \(0 \) form.

3. Statement 1: \(\lim_{x \to 0} \sin^{-1} \{x\} \) does not exist (where \{\cdot\} denotes fractional part function).

Statement 2: \(\{x\} \) is discontinuous at \(x = 0 \).

4. Statement 1: If \(a \) and \(b \) are positive and \([x]\) denotes the greatest integer \(\leq x \), then \(\lim_{x \to a^-} \frac{x - [x]}{a - x} = b/a \).

5. Statement 1: \(\lim_{x \to \infty} \left(\frac{1}{x^3} + \frac{2}{x^3} + \frac{3^2}{x^3} + \cdots + \frac{x^2}{x^3} \right) \)

Statement 2: \(\lim_{x \to \infty} \left(f_1(x) + f_2(x) + \cdots + f_n(x) \right) \)

6. Statement 1: \(\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} \) does not exist.

Statement 2: \(f(x) = \frac{\sqrt{1 - \cos 2x}}{x} \) is not defined at \(x = 0 \).

7. Statement 1: \(\lim_{m \to \infty} \sin^{2m} (n! \pi x) = 0, m, n \in N \), when \(x \) is rational.

Statement 2: when \(n \to \infty \) and \(x \) is rational, \(n! \pi x \) is integer.

8. Statement 1: If \(f(x) = \left\{ \begin{array}{ll} x, & \text{if } x \text{ is rational} \\ 1-x, & \text{if } x \text{ is irrational} \end{array} \right. \), then \(\lim_{x \to 1/2} f(x) \) does not exist.

Statement 2: \(x \to 1/2 \) can be rational or irrational value.

9. Statement 1: If \(f(x) = \frac{(x-1)(x-2)}{(x-3)(x-4)} \), then \(\lim_{x \to \infty} \sin^{-1} f(x) \) exists, but \(\lim_{x \to \infty} \cos^{-1} f(x) \) does not exist.

Statement 2: \(\sin^{-1} x \) and \(\cos^{-1} x \) are defined for \(x \in [-1,1] \).

10. Statement 1: \(\lim_{x \to 0} \left(\frac{e^{1/x} - 1}{e^{1/x} + 1} \right) \)

Statement 2: \(\lim_{x \to 0} \left(\frac{e^{1/x} - 1}{e^{1/x} + 1} \right) \) does not exist.

11. Statement 1: If \(\lim_{x \to 0} \left(f(x) + \frac{\sin x}{x} \right) \) does not exist, then \(\lim_{x \to 0} f(x) \) does not exist.

Statement 2: \(\lim_{x \to 0} \sin \frac{x}{x} \) exists and has value 1.

12. Statement 1: If \(a_n \) be a sequence such that \(a_1 = 1 \) and \(a_{n+1} = \sin a_n \), then \(\lim_{n \to \infty} a_n = 0 \).
Statement 2: Since $x > \sin x \forall x > 0$.

13. Statement 1: $\lim_{x \to 0} \log_e \left(\frac{\sin x}{x} \right) = 0$.

Statement 2: $\lim_{x \to \infty} f(g(x)) = f(\lim_{x \to \infty} g(x))$.

Linked Comprehension Type

Solutions on page 2.48

Based upon each paragraph, three multiple choice questions have to be answered. Each question has four choices a, b, c and d, out of which only one is correct.

For Problems 1 – 3

Let $f(x) = \frac{\sin^{-1}(1-(x)) \cdot \cos^{-1}(1-(x))}{\sqrt{2x} \times (1-(x))}$, where $\{x\}$ denotes the fractional part of x.

1. $R = \lim_{x \to 0^+} f(x)$ is equal to
 a. $\frac{\pi}{2}$
 b. $\frac{\pi}{2\sqrt{2}}$
 c. $\frac{\pi}{\sqrt{2}}$
 d. $\sqrt{2\pi}$

2. $L = \lim_{x \to 0^-} f(x)$ is equal to
 a. $\frac{\pi}{2}$
 b. $\frac{\pi}{2\sqrt{2}}$
 c. $\frac{\pi}{\sqrt{2}}$
 d. $\sqrt{2\pi}$

3. Which of the following is true?
 a. $\cos L < \cos R$
 b. $\tan (2L) > \tan 2R$
 c. $\sin L > \sin R$
 d. None of these

For Problems 4 – 6

$A_i = \frac{x - a_i}{|x - a_i|}$, $i = 1, 2, ..., n$ and if $a_1 < a_2 < a_3 < ... < a_n$.

4. If $1 \leq m \leq n$, $m \in N$, then the value of
 a. $L = \lim_{x \to a_m} (A_1, A_2, ..., A_n)$
 b. always 1
 c. $(-1)^{m-1}$
 d. always -1

5. If $1 \leq m \leq n$, $m \in N$, then the value of
 a. $R = \lim_{x \to a_n} (A_1, A_2, ..., A_n)$
 b. always 1
 c. $(-1)^{n+1}$
 d. always -1

6. If $a_m < a_1$, $m \in N$, then
 a. If $a_m < a_1$, $m \in N$, then
 b. $\lim_{x \to a_m} (A_1, A_2, ..., A_n)$
 c. $(-1)^m$
 d. $(-1)^{n-m}$

For Problems 7 – 9

If $L = \lim_{x \to 0} \frac{\sin x + ae^x + be^{-x} + c \ln(1 + x)}{x^3} = \infty$

7. The value of L is
 a. $1/2$
 b. $-1/3$
 c. $-1/6$
 d. 3

8. Equation $ax^2 + bx + c = 0$ has
 a. real and equal roots
 b. complex roots
 c. unequal positive real roots
 d. unequal roots

9. The solution set of $|x + 1| - 2a < 4b$ is
 a. $[-2, 2]$ b. $[0, 2]$ c. $[-1, 1]$ d. $[-2, 1]$

For Problems 10 – 12

Let $a_1 > a_2 > a_3 > ... > a_n > 1$;

$p_1 > p_2 > p_3 > ... > p_n > 0$, such that $p_1 + p_2 + p_3 + ... + p_n = 1$.

Also $F(x) = (p_1a_1^x + p_2a_2^x + ... + p_na_n^x)^{1/x}$

10. $\lim_{x \to 0^+} F(x)$ equals
 a. $p_1 \ln a_1 + p_2 \ln a_2 + ... + p_n \ln a_n$
 b. $a_1^{p_1} + a_2^{p_2} + ... + a_n^{p_n}$
 c. $a_1^{p_1} \cdot a_2^{p_2} \cdot ... \cdot a_n^{p_n}$
 d. $\sum_{r=1}^{n} a_r p_r$

11. $\lim_{x \to 0^-} F(x)$ equals
 a. $\ln a_1$
 b. e^{a_1}
 c. a_1
 d. a_1

12. $\lim_{x \to -\infty} f(x)$ equals
 a. $\ln a_n$
 b. e^{a_n}
 c. a_1
 d. a_n

Matrix-Match Type

Solutions on page 2.48

Each question contains statements given in two columns which have to be matched. Statements a, b, c, d in column I have to be matched with statements p, q, r, s in column II. If the correct match are a-p, a-s, b-r, c-p, c-q and d-s, then the correctly bubbled 4×4 matrix should be as follows:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. If $L = \lim_{x \to 1} \frac{\sqrt{x} - 2}{(x+1)}$, then $12L =$</td>
<td>p. -2</td>
</tr>
<tr>
<td>b. If $L = \lim_{x \to \pi/4} \frac{\tan^2 x - \tan x}{\cos (x + \pi/4)}$, then $L/4 =$</td>
<td>q. 2</td>
</tr>
</tbody>
</table>
2.30 Calculus

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. If (L = \lim_{x \to \infty} \frac{(2x - 3)(\sqrt{x} - 1)}{2x^2 + x - 3}), then (20L =)</td>
<td>p. 198</td>
</tr>
<tr>
<td>d. If (L = \lim_{x \to \infty} \frac{\log x^n - [x]}{[x]}), where (n \in \mathbb{N}, ([x])) denotes greatest integer less than or equal to (x), then (-2L =)</td>
<td>q. 199</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\lim_{x \to 0} \left(100 \frac{\sin x}{x} + 100 \frac{\tan x}{x} \right))</td>
<td>r. 200</td>
</tr>
<tr>
<td>b. (\lim_{x \to 0} \left(100 \frac{x}{\sin x} + 100 \frac{\tan x}{x} \right))</td>
<td>s. 201</td>
</tr>
</tbody>
</table>

For each of the following, find the limit if it exists:

1. If \(f(x) = \begin{cases} \frac{x^2 + 2}{1 - x}, & x \geq 2 \\ \frac{2x}{3 - x}, & x < 2 \end{cases} \) and \(g(x) = \begin{cases} 2x, & x > 1 \\ 1 - x, & x < 2 \end{cases} \), then the value of \(\lim_{x \to 1} f(g(x)) \) is

2. If \(\lim_{x \to \infty} \left(1 + x + \frac{f(x)}{x} \right)^{\frac{3x}{x+1}} = e^3 \), then the value of \(\ln \left(\lim_{x \to 0} \left(1 + x + \frac{f(x)}{x} \right)^{\frac{3x}{x+1}} \right) \) is

3. If \(\lim_{x \to \infty} \left(1 + ax + bx^2 \right)^{\frac{x}{x+1}} = e^3 \), then the value of \(bc \) is

4. The value of \(\lim_{x \to 0} \left(\frac{x^n}{(n+1)^2} - \sqrt[n]{n} \right) \) is

5. If \(\lim_{x \to 0} \left[1 + x + \frac{f(x)}{x} \right]^{\frac{3x}{x+1}} = e^3 \), then the value of \(\lim_{x \to 0} \left[1 + x + \frac{f(x)}{x} \right]^{\frac{3x}{x+1}} \) is

6. \(\lim_{x \to 0} f(x) \), where \(\frac{2x^2 - 3x}{x} < f(x) < \frac{2x^2 + 5x}{x^2} \), is

7. If \(f(x) = \begin{cases} x - 1, & x \geq 1 \\ 2x^2 - 2, & x < 1 \end{cases} \), then \(g(x) = \begin{cases} x + 1, & x > 0 \\ 2x^2 + 1, & x \leq 0 \end{cases} \) and \(h(x) = |x| \), then find \(\lim_{x \to 0} f(g(h(x))) \)

8. If \(\lim_{x \to 0} f(x) \) exists and is finite and nonzero and if \(\lim_{x \to 0} \left(f(x) + \frac{3f(x) - 1}{f^2(x)} \right) = 3 \), then the value of \(\lim_{x \to 0} f(x) \) is

9. If \(L = \lim_{x \to 0} \frac{e^{-x^2/2} - \cos x}{x^3 \sin x} \) then the value of \(1/(4L) \) is

10. If \(L = \lim_{x \to 2} \frac{(10 - x)^{1/3} - 2}{x - 2} \), then the value of \(|1/(4L)| \) is

11. The value of \(\lim_{x \to -\infty} \frac{\log_x (\log_x x)}{e^{\sqrt{x}}} \) is

12. If \(L = \lim_{n \to \infty} \frac{2 \cdot 3^2 \cdot 2^3 \cdot 3^4 \cdots 2^{n-1} \cdot 3^n}{(n+1)!} \), then the value of \(L^4 \) is

13. If \(\lim_{x \to 1} \frac{a \sin (x - 1) + b \cos (x - 1) + 4}{x^2 - 1} = -2 \), then \(|a + b| \) is

14. Let \(\lim_{x \to 1} \frac{x^n - ax + a - 1}{(x - 1)^2} = f(a) \). Then the value of \(f(4) \) is

15. The integer \(n \), for which \(\lim_{x \to 0} \frac{(\cos x - 1)(\cos x - e^x)}{x^n} \) is a finite non-zero number, is

Integer Type

Solutions on page 2.51

1. The reciprocal of the value of \(\lim_{n \to \infty} \left(1 - \frac{1}{2^2} \right) \left(1 - \frac{1}{3^2} \right) \left(1 - \frac{1}{4^2} \right) \cdots \left(1 - \frac{1}{n^2} \right) \) is
16. If \(\lim_{x \to 0} \frac{1 - \cos x \cdot \log 3x - \log 4x \cdot \log 5x \cdots \log nx}{x^2} \) has the value equal to 10, then the value of \(n \) equals

17. \(f(x) = \frac{3x^2 + ax + a + 1}{x^2 + x - 2} \) and \(\lim_{x \to 0} f(x) \) exists, then the value of \(a - 4 \) is

18. If \(L = \lim_{x \to 0} \left(x - x^2 \log (1 + x) \right) \), then the value of \(8L \) is

19. Let \(S_n = 1 + 2 + 3 + \cdots + n \) and \(P_n = \frac{S_2}{S_2 - 1} \frac{S_4}{S_4 - 1} \frac{S_6}{S_6 - 1} \cdots \frac{S_n}{S_n - 1} \), where \(n \in N(n \geq 2) \).

Then \(\lim_{n \to \infty} P_n = \)

20. Let \(f''(x) \) be continuous at \(x = 0 \).

If \(\lim_{x \to 0} \frac{2f(x) - 3a \frac{f(2x)}{x} + bf(8x)}{\sin^2 x} \) exists and \(f(0) \neq 0 \), then \(f'(0) \neq 0 \), the value of \(3a/b \) is

Subjective

1. Evaluate \(\lim_{x \to 0} \frac{\sqrt{a + 2x} - \sqrt{3x}}{\sqrt{a + x} - 2x} \) \((a \neq 0) \). (IIT-JEE, 1978)

2. \(f(x) \) is the integral of \(\frac{2 \sin x - \sin 2x}{x^3} \), \(x \neq 0 \), find \(\lim_{x \to 0} f'(x) \) \(\text{where} \ \frac{df(x)}{dx} \).

(IIT-JEE, 1979)

3. Evaluate \(\lim_{h \to 0} \frac{(a + h)^2 \sin (a + h) - a^2 \sin a}{h} \). (IIT-JEE, 1980)

4. Use the formula \(\lim_{x \to 0} \frac{x^a - 1}{x} = \ln a \) to find \(\lim_{x \to 0} \frac{2^x - 1}{(1 + x)^{1/2} - 1} \).

(IIT-JEE, 1982)

5. Find \(\lim_{x \to \infty} \tan \left(\frac{\pi x}{4} + x \right)^{1/x} \).

(IIT-JEE, 1993)

Objective

Fill in the blanks

1. \(\lim_{x \to 1} (1 - x) \tan \frac{\pi x}{2} = \)

(IIT-JEE, 1984)

2. \(f(x) = \begin{cases} \sin x, & x \neq n\pi, n \in I \\ 2, & \text{otherwise} \end{cases} \) and \(g(x) = \begin{cases} x^2 + 1, & x \neq 0, 2 \\ 4, & x = 0 \end{cases} \) then \(\lim_{x \to 0} g(f(x)) \) is \(\)

(IIT-JEE, 1986)

3. \(\lim_{x \to \infty} \left[\frac{x^4 \sin \left(\frac{1}{x} \right)}{(1 + |x|)^3} \right] = \)

(IIT-JEE, 1987)

Multiple choice questions with one correct answer

1. If \(f(x) = \sqrt{\frac{x - \sin x}{x + \cos^2 x}} \), then \(\lim_{x \to \infty} f(x) \) is
 a. 0
 b. \(\infty \)
 c. 1
 d. None of these (IIT-JEE, 1979)

2. If \(G(x) = \sqrt{25 - x^2} \), then \(\lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} \) is
 a. \(\frac{1}{24} \)
 b. \(\frac{1}{5} \)
 c. \(-\sqrt{24} \)
 d. None of these (IIT-JEE, 1983)

3. \(\lim_{n \to \infty} \left(\frac{1}{n} + \frac{2}{n^2} + \ldots + \frac{n}{1 - n^2} \right) \) is equal to
 a. 0
 b. \(\frac{1}{2} \)
 c. \(-\frac{1}{2} \)
 d. None of these (IIT-JEE, 1984)

4. If \(f(x) = \begin{cases} \sin[x], & \text{for } [x] \neq 0 \\ 0, & \text{for } [x] = 0 \end{cases} \), where \([x]\) denotes the greatest integer less than or equal to \(x \), then \(\lim_{x \to 0} f(x) \) is
 a. 1
 b. 0
 c. \(-1\)
 d. None of these (IIT-JEE, 1985)

5. The value of \(\lim_{x \to 0} \sqrt{\frac{1}{2}(1 - \cos 2x)} \) is
 a. 1
 b. \(-1\)
 c. 0
 d. None of these (IIT-JEE, 1991)
6. \[\lim_{x \to 1} \frac{\sqrt{1 - \cos 2(x - 1)} - x - 1}{x - 1} \]
\[\begin{align*}
\text{a. exists and it equals } & \sqrt{2} \\
\text{b. exists and it equals } & -\sqrt{2} \\
\text{c. does not exist because } x - 1 & \to 0 \\
\text{d. does not exist because the left-hand limit is not equal to the right-hand limit} & \quad \text{(IIT-JEE, 1998)}
\end{align*} \]

7. \[\lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} \]
\[\begin{align*}
\text{a. } & 2 \\
\text{b. } & -2 \\
\text{c. } & 1/2 \\
\text{d. } & -1/2 & \quad \text{(IIT-JEE, 1999)}
\end{align*} \]

8. \[\lim_{x \to \infty} \frac{x - 3}{x + 2} \]
\[\begin{align*}
\text{a. } e & \\
\text{b. } e^{-1} & \\
\text{c. } e^3 & \\
\text{d. } e^2 & \quad \text{(IIT-JEE, 2000)}
\end{align*} \]

9. \[\lim_{x \to 0} \frac{\sin \left(\frac{\pi \cos^2 x}{x^2} \right)}{x^2} \]
\[\begin{align*}
\text{a. } & -\pi \\
\text{b. } & \pi \\
\text{c. } & \pi/2 \\
\text{d. } & 1 & \quad \text{(IIT-JEE, 2001)}
\end{align*} \]

10. The integer \(n \) for which \[\lim_{x \to 0} \frac{\cos x - 1}{\cos x - e^x} \]
is a finite non-zero number is
\[\begin{align*}
\text{a. } & 1 \\
\text{b. } & 2 \\
\text{c. } & 3 \\
\text{d. } & 4 & \quad \text{(IIT-JEE, 2002)}
\end{align*} \]

11. \[\lim_{x \to 0} \frac{(a - n) x - \tan x}{x^2} \sin nx = 0, \text{ where } n \text{ is non-zero real number, then } a \text{ is} \]
\[\begin{align*}
\text{a. } & 0 \\
\text{b. } & \frac{n + 1}{n} \\
\text{c. } & n \\
\text{d. } & \frac{n + 1}{n} & \quad \text{(IIT-JEE, 2003)}
\end{align*} \]

12. The value of \[\lim_{x \to 0} \left(\sin x \right)^{1/x} + (1 + x)^{\sin x} = 0 \]
where \(x \) is greater than 0 is
\[\begin{align*}
\text{a. } & 0 \\
\text{b. } & -1 \\
\text{c. } & 1 \\
\text{d. } & 2 & \quad \text{(IIT-JEE, 2006)}
\end{align*} \]

13. \[\lim_{x \to 0} [1 + x \tan (1 + b^2)]^{1/x} = 2b \sin^2 \theta, b > 0 \text{ smf } \theta \in (-\pi, \pi], \text{ then the value of } \theta \text{ is} \]
\[\begin{align*}
\text{a. } & \pm \frac{\pi}{4} \\
\text{b. } & \pm \frac{\pi}{3} \\
\text{c. } & \pm \frac{\pi}{6} \\
\text{d. } & \pm \frac{\pi}{2} & \quad \text{(IIT-JEE, 2011)}
\end{align*} \]

Multiple choice questions with one or more than one correct answers

1. Let \(L = \lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2} - \frac{x^2}{4}}{x^4} \), \(a > 0 \). If \(L \) is finite, then
\[\begin{align*}
\text{a. } & a = 2 \\
\text{b. } & a = 1 \\
\text{c. } & L = \frac{1}{64} \\
\text{d. } & L = \frac{1}{32} & \quad \text{(IIT-JEE, 2009)}
\end{align*} \]

Subjective Type

1. \[\lim_{x \to \frac{\pi}{4}} \frac{1 + \tan^3 x}{2 \cos^2 x - 1} \left(1 - \tan^3 x \right) \left(1 + \tan^2 x \right) \]
\[\begin{align*}
\text{Use } & a + b = \frac{a^3 + b^3}{a^2 - ab + b^2} \\
= & \lim_{x \to \frac{\pi}{4}} \frac{1 + \tan x}{-\cos 2x} \cdot \frac{1}{\left(1 - \tan^3 x \right) \left(1 + \tan^2 x \right)} \\
= & \left(-\frac{1}{3} \right) \cdot \frac{1}{\left(1 + \tan^2 x \right)} \\
= & \frac{1}{3} \quad \text{(IIT-JEE, 2002)}
\end{align*} \]

2. \[\lim_{x \to 0} \frac{e^{\sin x} - (1 + \sin x)}{x^2} \]
\[\lim_{x \to 0} \frac{e^h - (1 + h)}{h^2} \quad \text{(where } h = \sin x) \]
\[\lim_{h \to 0} \left(\frac{1 + h + \frac{h^2}{2!} - (1 + h)}{(\tan^{-1}(h))^2} \right) = \lim_{h \to 0} \frac{h^2}{2!} = \frac{1}{2} \]

3. \[\lim_{x \to 0} \frac{e^x - 1 - (e^{\cos x} - 1)}{(x + \sin x)} \]
\[\lim_{x \to 0} \left(\frac{e^x - 1}{x(1 + \sin x)} - \frac{(e^{\cos x} - 1)}{x \cos x (\sec x + \sin x)} \right) \]
\[\lim_{x \to 0} \frac{e^x - 1}{x(1 + \sin x)} - \lim_{x \to 0} \frac{(e^{\cos x} - 1)}{x \cos x (\sec x + \tan x)} \]
\[\frac{1}{2} \cdot \frac{1}{2} = 0 \]
4. \[\lim_{n \to \infty} \frac{1}{(\sin^{-1} x)^n + 1} = 1 \]
\[\Rightarrow (\sin^{-1} x)^n \to 0 \]
\[\Rightarrow 0 \leq \sin^{-1} x < 1 \]
\[\Rightarrow x \in [0, \sin 1) \]

5. We know that \(-1 \leq \cos x \leq 1\) for all \(x\).
\[\Rightarrow -2 \leq 2 \cos x \leq 2 \]
\[\Rightarrow 5x - 2 \leq 5 \cos x \leq 5x + 2 \]
Dividing by \(3x - 14\), we get
\[\frac{5x - 2}{3x - 14} \geq \frac{5 \cos x}{3x - 14} \geq \frac{5x + 2}{3x - 14} \]
(for large negative \(x\))

Now, \[\lim_{x \to -\infty} \frac{5x - 2}{3x - 14} = \lim_{x \to -\infty} \frac{5x + 2}{3x - 14} = \frac{5}{3} \]

It follows that \[\lim_{x \to -\infty} \frac{5 \cos x}{3x - 14} = \frac{5}{3} \]

6. As \(n \to \infty \), let \(\lim_{n \to \infty} \frac{f(n)}{n!} = \frac{f(n+1)}{n+1} = k \)

We have \[\frac{f(n+1)}{f(n)} = \frac{f(n) + 9}{f(n)} \]
\[\Rightarrow \lim_{n \to \infty} \frac{f(n+1)}{f(n)} = \lim_{n \to \infty} \frac{1}{2} \left(f(n) + \frac{9}{f(n)} \right) \]
\[\Rightarrow k = \frac{1}{2} \left(k + \frac{9}{k} \right) \Rightarrow k^2 = 9 \text{ or } k = 3. \]
\[\Rightarrow \lim_{n \to \infty} \frac{f(n)}{n} = 3 \]

7. Let \(P = \lim_{x \to 0} \frac{8}{x^8} \left(1 - \cos \frac{x^2}{4} \right) \left(1 - \cos \frac{x^2}{2} \right) \left(\frac{0}{f(x)} \text{ form} \right) \)
\[= \lim_{x \to 0} \frac{8}{x^8} \frac{8 \sin^2 \frac{x^2}{8} \sin^2 \frac{x^2}{4}}{8} \]
\[= \lim_{x \to 0} \frac{32 \sin^2 \frac{x^2}{8} \sin^2 \frac{x^2}{4}}{x^8} \frac{1}{16} \]
\[= \frac{1}{16} \]

8. Let \(P = \lim_{n \to \infty} n^2 \left\{ \left(1 - \cos \frac{1}{n} \right) \left(1 - \cos \frac{1}{n} \right) \left(1 - \cos \frac{1}{n} \right) \ldots \right\} \)

Putting \(\frac{1}{n} = x \), we get
\[P = \lim_{x \to 0} \frac{\sqrt{1 - \cos x} \sqrt{1 - \cos x} \sqrt{1 - \cos x} \ldots}{x^2} \]
\[= \lim_{x \to 0} \frac{(1 - \cos x)^{1/2} (1 - \cos x)^{1/2} \ldots}{x^2} \]

9. We know that \(\cos \theta \cos 2\theta \cos 4\theta \ldots \cos 2^{n-1}\theta = \frac{\sin 2^n \theta}{2^n \sin \theta} \)

Then \(\cos \frac{x}{2^n} \cos \frac{x}{4} \cos \frac{x}{8} \ldots \cos \frac{x}{2^n} = \frac{\sin x}{2^n \sin \frac{x}{2^n}} \)

Then \(L = \lim_{x \to \infty} \left\{ \cos \frac{x}{2^n} \cos \frac{x}{4} \cos \frac{x}{8} \ldots \cos \frac{x}{2^n} \right\} \)
\[= \lim_{n \to \infty} \frac{\sin x}{x} \left(\frac{x}{2^n} \right) = \lim_{n \to \infty} \frac{\sin x}{x} \frac{x}{2^n} = \frac{\sin x}{x} \]

10. \(ax^2 + bx + c = a(x-x_1)(x-x_2) \)
\[\Rightarrow \lim_{x \to x_1} \frac{1}{1 + \sin(ax^2 + bx + c)} \]
\[= \lim_{x \to x_1} \frac{1}{1 + \sin(a(x-x_1)(x-x_2))} \]
\[= e^{x_1-x_2} \]
\[= e^{x_1-x_2} \]

11. \(\lim_{x \to \infty} \left[\tan^{-1} \frac{x+1}{x+2} - \tan^{-1} \frac{x}{x+2} \right] \)
\[= \lim_{x \to \infty} \tan^{-1} \left(\frac{x+1}{x+2} - \frac{x}{x+2} \right) \]
\[= \lim_{x \to \infty} \tan^{-1} \left(\frac{x+2}{2x^2 + 5x + 4} \right) \]
\[= \lim_{x \to \infty} \frac{\tan^{-1} \frac{x+2}{2x^2 + 5x + 4}}{\frac{x(x+2)}{2x^2 + 5x + 4}} \]
\[= \lim_{x \to \infty} \frac{\tan^{-1} \frac{x+2}{2x^2 + 5x + 4}}{\frac{1}{2}} = 1 \times \frac{1}{2} = \frac{1}{2} \]

12. \(L = \lim_{x \to 0} \frac{2^x - x - 1}{x^2} \)

Let \(x = 2t \)
\[L = \lim_{t \to 0} \frac{2^{2t} - 2t - 1}{4t^2} \]
Calculus

\[L = \frac{1}{4} \left[\lim_{t \to 0} \left(\frac{2^t - 1}{t} \right)^2 \right] + \lim_{t \to 0} \left(\frac{2^t - t - 1}{t^2} \right) \]

\[\Rightarrow L = \frac{1}{4} \left[(\ln 2)^2 + 2L \right] \]

\[\Rightarrow \frac{L}{2} = \frac{1}{4} (\ln 2)^2 \]

\[\Rightarrow L = \frac{1}{2} (\ln 2)^2 \]

\[\left(\because \lim_{t \to 0} \frac{2^t - 1}{t} = \ln 2 \right) \]

13. Let \(f(x) = \frac{\sin x}{x} \)

\[\therefore \text{L.H.L.} = \lim_{x \to 0^-} f(x) \]

\[= \lim_{h \to 0} f(1 - h) \]

\[= \lim_{h \to 0} \frac{\sin(1 - h)}{1 - h} \]

\[= \lim_{h \to 0} \frac{\sin(1 - h)}{1 - h} \]

\[= \frac{\sin 1}{1} = \sin 1 \]

and R.H.L. = \(\lim_{x \to 0^+} f(x) \)

\[= \lim_{h \to 0} f(1 + h) \]

\[= \lim_{h \to 0} \frac{\sin(1 + h)}{1 + h} \]

\[= \lim_{h \to 0} \frac{\sin h}{h} = 1 \]

Hence L.H.L. \(\neq \) R.H.L.

Hence \(\lim_{x \to 0} \frac{\sin x}{x} \) does not exist.

14. \(\lim_{x \to 0^+} \left(\frac{1}{\sin^2 x} + 2^{1/\sin^2 x} + \ldots + n^{1/\sin^2 x} \right) \sin^2 x \)

Put \(\frac{1}{\sin^2 x} = t \geq 1 \)

\[\therefore \lim_{t \to +\infty} \left(t^{1/2} + t^{1/3} + \ldots + n^{1/2} \right) \]

\[= \lim_{t \to +\infty} \left(\frac{t^{1/2}}{n} + \frac{t^{1/3}}{n} + \ldots + 1 \right) \]

\[= n \lim_{t \to +\infty} \left(\frac{1^{1/2}}{n} + \frac{2^{1/3}}{n} + \ldots + 1 \right) \]

\[= n(0 + 0 + \ldots + 1)^{\infty} = n \]

15. Let \(x = \frac{1}{y} \), then

\[\lim_{y \to 0^+} \left(a_1^{1/y} + a_2^{1/y} + \ldots + a_n^{1/y} \right) \]

\[= \lim_{y \to 0^+} \left(\frac{a_1^y + a_2^y + \ldots + a_n^y}{n} \right)^{1/y} \]

\[= e^{\log a_1 + \log a_2 + \ldots + \log a_n} = e^{\log(a_1 a_2 \ldots a_n)} = a_1 a_2 \ldots a_n \]

16. \(1 - \cos(1 - \cos x) = 2 \sin^2 \left(\frac{1 - \cos x}{2} \right) = 2 \sin^2 \left(\frac{\sin^2 x}{2} \right) \)

\[\Rightarrow \lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^4} \]

\[= \lim_{x \to 0} \frac{2 \sin^2 \left(\frac{\sin^2 x}{2} \right)}{x^4} \]

\[= \lim_{x \to 0} \frac{2 \sin^2 \left(\frac{\sin^2 x}{2} \right)}{x^4} \cdot \frac{\sin^4 x}{x^2} = \frac{1}{8} \]

17. \(\lim_{x \to 0} \frac{1}{x^2} - \frac{1}{\sin^2 x} = \lim_{x \to 0} \frac{\sin^2 x - x^2}{x^2 \sin^2 x} \)

\[= \lim_{x \to 0} \frac{\left(x^2 - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots \right) + x \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots \right) - x}{x^2 \sin^2 x} \]

\[= \lim_{x \to 0} \frac{x^4 \left(\frac{\sin x}{x} \right)^2}{x^2} = \frac{1}{3} \]

18. Let \(y = \frac{x}{x^{2/3} + y} \)

\[\Rightarrow y^3 + (x^{5/3})^3 = 0 \]
\[
\begin{align*}
\therefore y &= \frac{-x^{5/3} + \sqrt{x^{10/3} + 4x^{5/3}}}{2} \\
&= \frac{-x^{5/3} + \sqrt{x^{10/3} + 4x^{5/3}}}{2} \\
&= \frac{4x^{5/3}}{2(\sqrt{x^{10/3} + 4x^{5/3}} + x^{5/3})} \\
&= \frac{2}{\sqrt{1 + \frac{4}{x^{5/3}}}} + 1 \\
\therefore \lim_{x \to 0} y &= \frac{2}{\sqrt{1 + 0 + 1}} = \frac{2}{2} = 1
\end{align*}
\]

19. Let \(t = \sin x \)

Then, \(P = \lim_{t \to 1} \frac{t - t'}{t - 1 - t + \ln t} \)

Using L'Hopital's rule

\(P = \lim_{t \to 1} \frac{1 - t'(1 + \ln t)}{0 - 1 + \frac{1}{t}} \)

Again using L'Hopital's rule, then

\[P = \lim_{t \to 1} \left[\frac{\left(\frac{1}{t} \right)' + (1 + \ln t) t' (1 + \ln t)}{0 - 0 - \frac{1}{t^2}} \right] = \frac{(1+1)}{-1} = 2 \]

20. \(\lim_{\theta \to \theta} \frac{\cos^2(1 - \cos^2(1 - \cos^2(1 - \cdots \cos^2 \theta))))}{\sin \left(\frac{\pi(\sqrt{\theta + 4})}{\theta} \right)} \)

\[= \lim_{\theta \to \theta} \frac{\cos^2 \left(\frac{\pi(\sqrt{\theta + 4})}{\theta} \right)}{\sin \left(\frac{\pi(\sqrt{\theta + 4})}{\theta} \right)} \]

\[= \lim_{\theta \to \theta} \frac{\cos^2 \left(\frac{\pi}{\theta} \lim_{\theta \to 0} \theta(\sqrt{\theta + 4} + 2) \right)}{\sin \left(\frac{\pi}{\theta} \right)} \]

\[= \frac{\cos^2(0)}{\sin \left(\frac{\pi}{4} \right)} = \sqrt{2} \]

21. \(\lim_{x \to \pi/2} \tan^2 x(\sqrt{2\sin^2 x + 3\sin x + 4} - \sqrt{\sin^2 x + 6\sin x + 2}) \)

\[= \lim_{x \to \pi/2} \frac{\tan^2 x(2\sin^2 x + 3\sin x + 4 - \sin^2 x - 6\sin x - 2)}{\sqrt{2\sin^2 x + 3\sin x + 4} + \sqrt{\sin^2 x + 6\sin x + 2}} \]

\[= \lim_{x \to \pi/2} \frac{\tan^2 x(\sin^2 x - 3\sin x + 2)}{\sin^2 x(\sin x - 1)(\sin x - 2)} \]

\[= \lim_{x \to \pi/2} \frac{-\sin^2 x(\sin x - 2)}{(1 + \sin x)(\sqrt{2\sin^2 x + 3\sin x + 4} + \sqrt{\sin^2 x + 6\sin x + 2})} \]

\[= \frac{1}{2(\sqrt{9 + \sqrt{9}})} = \frac{1}{12} \]

22. \(\lim_{x \to 1} \frac{x}{2^x} \)

\[= \lim_{x \to 1} \frac{\log x}{\cos \frac{\pi}{2^x}} \]

\[= \lim_{x \to 1} \frac{\log(1 + (x - 1))}{\sin \left(\frac{\pi}{2} \right)} \]

\[= \lim_{x \to 1} \frac{\log(1 + (x - 1))}{\left(\frac{\pi}{2} \right)} = \lim_{x \to 1} \frac{(x - 1)}{(\frac{\pi}{2} \cdot \frac{\pi}{2})} \]

\[= \lim_{x \to 1} \frac{(x - 1)}{\left(\frac{\pi}{2} \cdot \frac{\pi}{2} \right)} \]

\[= \left[\lim_{x \to 1} \frac{\log(1 + (x - 1))}{x - 1} = 1 \text{ and } \lim_{x \to 1} \frac{\sin \left(\frac{\pi}{2} \cdot \frac{\pi}{2} \right)}{x - 1} = 1 \right] \]

\[= \frac{2}{\pi \log 2} \]

23. \(\lim_{x \to 0} \frac{e^{x^2} - e^x}{x} \)

\[= \lim_{x \to 0} \frac{e^{x^2} - e^x}{x} = \lim_{x \to 0} \frac{\left(x^{2} + 3x + 4 \right)}{x} \]

\[= \lim_{x \to 0} \frac{e^{-e} \times e}{x} \]

\[= \lim_{x \to 0} \frac{e^{-e} \times e \times \left(x^2 + 3x + 4 \right)}{x} \]
236 Calculus

\[
\frac{\left(\frac{e^{x^2 + x^4}}{x + \frac{1}{x}}\right)}{1 - \left(\frac{1}{2} + \frac{1}{3} \ldots\right)} = -e \times \lim_{x \to 0} \left(\frac{x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}}{2\cdot3\cdot4\ldots}\right) = -\frac{e}{2}
\]

24. \[\lim_{n \to \infty} n^{-n} \left[(n+1)\left(\frac{n+1}{2}\right)\ldots\left(\frac{n+1}{2^{n-1}}\right)\right]^n = \lim_{n \to \infty} \frac{(n+1)^n}{n^n} \left(\frac{n+1}{2}\right)^n \ldots \left(\frac{n+1}{2^{n-1}}\right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{2n}\right)^{n/2} \ldots \left(1 + \frac{1}{2^{n-1}n}\right)^{n/2^{n-1}} = e^\frac{1}{2} = e^\frac{1}{2} = e^2 \]

25. We know that \(0 \leq \cos^2\left(n! \pi x\right) \leq 1\). Hence, \(\lim_{n \to \infty} \cos^2\left(n! \pi x\right) = 0\) or 1 according to \(n! \pi x\). If \(n! \pi x\) is integer, then \(n! \pi = \text{integer}\). Also, since \(n \to \infty\), then \(n! \pi = \text{integer}\) or \(n! \pi \neq \text{integer}\).

Hence, \(f(x) = 1, \text{if } x \text{ is rational}\)
\(= 0, \text{if } x \text{ is irrational}\).

26. \(\Delta_1 = \text{Area of } \triangle ABC = R^2 \sin \theta (\sec \theta - \cos \theta)\)
\(= R^2 \tan \theta (1 - \cos^2 \theta)\)

Area of \(\triangle CDE = \frac{R^2 (1 - \cos^2 \theta)}{\cos^2 \theta \cdot \tan \theta} = \Delta_2 \left[\frac{CM = R \sec \theta - R}{DM = CM \cos \theta}\right]\)

\[
\Delta_1 = \frac{\tan \theta (1 - \cos^2 \theta) \cos^2 \theta \tan \theta}{(1 - \cos^2 \theta)^2} = L \text{ (say)}
\]
\[
= \lim_{\theta \to 0} \frac{\tan^2 \theta \cos \theta (1 - \cos \theta)(1 + \cos \theta)}{(1 - \cos \theta)^2} = 1 \times 2 \lim_{\theta \to 0} \frac{\tan^2 \theta}{\theta^2} \times \frac{\theta^2}{1 - \cos \theta} = 4
\]

27. Let \(\theta\) be the base angle of \(T_1\), then base angle of \(T_2\) is \(\left(\frac{\pi}{2} - \frac{\theta}{2}\right)\).

Base angle of \(T_3\) is \(\pi \times \frac{1}{2} \left(\frac{\pi}{2} - \frac{\theta}{2}\right)\).

\[
\text{Fig. 2.6}
\]

Proceeding in the same way, base angle of \(T_n\) is
\[
\left(\frac{\pi}{2^{n-1}} - \frac{\pi}{2^n} + \ldots + (-1)^n \frac{\pi}{2^n}\right)
\]
where \(\theta\) is the base angle of \(T_1\).

Taking limit \(n \to \infty\) in equation (1), we have
\[
\lim_{n \to \infty} \left(\frac{\pi}{2} - \frac{\pi}{2^2} + \frac{\pi}{2^3} - \ldots\right) = \frac{\pi}{2} - \frac{\pi}{2} = \frac{\pi}{2}
\]
Now, since \(T_n\) is isosceles and one of the angles approaches to \(60^\circ\) as \(n \to \infty\), \(T_n\) is equilateral triangle as \(n \to \infty\).

Objective Type

1. \(c. \text{ Given } f(x) = x^2 - \pi^2\)
\[
\lim_{x \to -\pi} \frac{x^2 - \pi^2}{\sin x} = \lim_{h \to 0} \frac{(-\pi + h)^2 - \pi^2}{\sin(-\pi + h)} = \lim_{h \to 0} \frac{-2\pi h + h^2}{\sin h} = \frac{h^2}{\sin h} = \frac{2\pi h}{\sin h} = \frac{2\pi}{\sin h} = \frac{2\pi}{\sin h}
\]
2. \(d. \lim_{x \to \pi/2 \left(1 - \cos x\right)^{1/2}} = \lim_{t \to 0} \frac{-\sin t}{\cos x}
\]
\[
= -\lim_{t \to 0} \frac{2 \sin t \cos t}{2(1 - \cos t)^{1/2}}
\]
3. \[\lim_{x \to \infty} \frac{x^2 \tan \frac{1}{x}}{\sqrt{8x^2 + 7x + 1}} = \lim_{x \to \infty} \frac{x^2 \tan \frac{1}{x}}{-x \sqrt{8 + \frac{7}{x} + \frac{1}{x^2}}} = \lim_{x \to \infty} \frac{\tan \frac{1}{x}}{x \sqrt{8 + \frac{7}{x} + \frac{1}{x^2}}} = \lim_{x \to \infty} \frac{1}{2\sqrt{2}} = \frac{1}{2\sqrt{2}} \]

4. \[\lim_{x \to 0^+} \frac{\sin(\text{sgn} x)}{\text{sgn}(x)} = \lim_{x \to 0^+} \left[\frac{\sin 1}{1} \right] = 0 \]

5. \[\lim_{x \to 0} \frac{2 + 2 + \sin 2x}{\left(2 + \frac{2x}{x}
ight) e^{\sin x}} = 0 + 2 + 0 \]

Hence, the given limit is 0.

6. \[\lim_{x \to \infty} \frac{x^2}{x^2} = \begin{cases} 0 & \text{if } 0 < x < 1 \\ \frac{1}{x^2} & \text{if } -1 < x < 0 \end{cases} \Rightarrow l \text{ does not exist} \]

7. \[\lim_{x \to 1} \frac{x \sin(x - [x])}{x - 1} \]

Now L.H.L. = \[\lim_{h \to 0} \frac{(1-h)\sin(1-h-[1+h])}{(1-h)-1} \]

= \lim_{h \to 0} \frac{(1-h)\sin(1-h)}{-h} = -\infty \]

R.H.L. = \[\lim_{h \to 0} \frac{(1+h)\sin(1+h-[1+h])}{(1+h)-1} \]

= \lim_{h \to 0} \frac{(1+h)\sin h}{h} = 1 \]

Hence, the limit does not exist.

8. \[\lim_{x \to 0} \frac{(1 + \tan x)^{\csc x}}{(1 + \sin x)^{\csc x}} = \lim_{x \to 0} \left((1 + \tan x)^{\cot x} \cdot \frac{\csc x}{1/(1 + \sin x)^{\csc x}} \right) = e^{\sec 0 \frac{1}{e}} = e = e \]

9. \[\lim_{x \to \infty} \frac{\sin^4 x - \sin^2 x + 1}{\cos^4 x - \cos^2 x + 1} = \lim_{x \to \infty} \frac{(1 - \cos^2 x)^2 - (1 - \cos^2 x) + 1}{\cos^4 x - \cos^2 x + 1} = \lim_{x \to \infty} \frac{\cos^4 x - \cos^2 x + 1}{\cos^4 x - \cos^2 x + 1} = 1 \]

10. \[\lim_{x \to \infty} \left(\frac{x^3 - x^2}{3x^2 - 4x + 2} \right) = \lim_{x \to \infty} \frac{x^3(3x + 2) - x^2(3x^2 - 4)}{(3x^2 - 4x + 2)(3x + 2)} = \lim_{x \to \infty} \frac{2x^3 + 4x^2}{9x^3 + 6x^2 - 12x - 8} = \lim_{x \to \infty} \frac{2 + 4}{9 + 6 - 12x - 8} = 2 \frac{2}{9} \]

11. \[\lim_{x \to \infty} \frac{x^2 - 4x + 17 - 4x - 2}{x^2 + x - 12} = \lim_{x \to \infty} \frac{x^2 - 8x + 15}{x^2 + x - 12} = \lim_{x \to \infty} \frac{(x-3)(x-5)}{(x-3)(x+4)} = \frac{2}{7} \]

12. \[\lim_{x \to 0} \frac{x(e^x - 1)}{\sin^2 x} = \lim_{x \to 0} \frac{2x(e^x - 1)}{4\sin^2 x} = \frac{2}{2} \]

13. \[\lim_{n \to \infty} \frac{n(2n+1)^2}{(n+2)(n^2 + 3n - 1)} \]
2.38 Calculus

\[\lim_{n \to \infty} \frac{(2 + 1)^{2n}}{(1 + \frac{2}{n}) \left(1 + \frac{3}{n} - \frac{1}{n^2}\right)} \]

\[= \frac{(2 + 0)^2}{(1 + 0)(1 + 0 + 0)} = 4 \]

14. d. We have \(\lim_{x \to \pi} \frac{1 + \cos^3 x}{\sin^2 x} \)

\[= \lim_{x \to \pi} \frac{(1 + \cos x)(1 - \cos x + \cos^2 x)}{(1 - \cos x)(1 + \cos x)} \]

\[= \lim_{x \to \pi} \frac{1 - \cos x + \cos^2 x}{1 - \cos x} = \frac{1 + 1 + 1}{1 + 1} = \frac{3}{2} \]

15. c. \(\lim_{n \to \infty} n^2 \left(x^{1/n} - x^{n+1} \right) = \lim_{n \to \infty} \frac{1}{n^{n+1}} \left(x^{1/n} - 1 \right) \)

\[= \lim_{n \to \infty} \frac{1}{n^{n+1}} \left(x^{1/n} - 1 \right)^n \]

\[= \lim_{n \to \infty} \frac{1}{n^{n+1}} \cdot \frac{1}{x^{(n+1)/n}} = \frac{1}{n(n+1)} \cdot \log x = \log x \]

16. a. \(\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2} + x} - \sqrt{3}}{x - 2} \)

\[= \frac{1 + \sqrt{2} + x - 3}{\sqrt{2} + x + \sqrt{3} - 2} \] (Rationalizing)

\[= \lim_{x \to 2} \frac{x - 2}{\sqrt{1 + \sqrt{2} + x + \sqrt{3}} - 2} \]

\[= \lim_{x \to 2} \frac{x - 2}{\sqrt{2} + x + \sqrt{3} - 2} \] (Rationalizing)

\[= \frac{1}{(2\sqrt{3})} = \frac{1}{8\sqrt{3}} \]

17. c. \(\lim_{x \to \infty} \frac{(2x + 1)^{40}}{(2x + 3)^{45}} \)

\[= \lim_{x \to \infty} \frac{\left(2 + \frac{1}{x}\right)^{40}}{\left(2 + \frac{3}{x}\right)^{45}} \]

(Dividing numerator and denominator by \(x^{45}\))

\[= \frac{2^{40}}{2^{45}} \]

\[= \frac{2^{40}}{2^{45}} = 2^5 = 32 \]

18. b. \(\lim_{x \to \infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}} - \sqrt{x}}}{(x + \sqrt{x + \sqrt{x}} + \sqrt{x + \sqrt{x}})} \) (Rationalizing)

\[= \lim_{x \to \infty} \frac{\sqrt{1 + x^{-1/2}}}{\sqrt{1 + x^{-1/2} + x^{-3/2}}} \]

\[= \frac{1}{2} \]

19. d. \(\lim_{x \to \infty} \frac{(x + 1)^{10} + (x + 2)^{10} + \ldots + (x + 100)^{10}}{x^{10} + 10^{10}} \)

\[= \lim_{x \to \infty} \frac{x^{10} \left[(1 + \frac{1}{x})^{10} + (1 + 2x)^{10} + \ldots + (1 + 100x)^{10} \right]}{1 + 10^{10}x^{10}} \]

\[= 100 \]

20. c. \(\lim_{x \to 0} \frac{x^a \sin^b x}{\sin x^c} \)

\[= \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^b \left(\frac{x^c}{x} \right)^{b-c} = \lim_{x \to 0} x^{a+b-c} \]

This limit will have non-zero value if \(a + b = c\).

21. b. \(\lim_{x \to \pi/2} \left[x \tan x - \left(\frac{\pi}{2} \right) \sec x \right] \)

\[= \lim_{x \to \pi/2} \frac{2x \sin x - \pi}{2 \cos x} \] (0/0 form)

\[= \lim_{x \to \pi/2} \frac{2 \sin x + 2x \cos x}{-2 \sin x} \] (Applying L’Hospital’s rule)

\[= -1 \]

22. c. \(\lim_{x \to \infty} \frac{x^3 + 1}{x^2 + 1} - (ax + b) = 2 \)

\[\Rightarrow \lim_{x \to \infty} \frac{x^3(1 - a) - bx^2 - ax + (1 - b)}{x^2 + 1} = 2 \]

\[\Rightarrow 1 - a = 0 \text{ and } -b = 2 \]

\[\Rightarrow a = 1, b = -2 \]

23. c. \(\lim_{x \to 1} (2 - x) \tan \frac{\pi x}{2} \)
24. b. \(\lim_{x \to 0} \frac{\sin x^n}{(\sin x)^m} = \lim_{x \to 0} \left(\frac{\sin x}{x^n} \right)^m \left(\frac{x}{\sin x} \right)^m \)
\[= \lim_{x \to 0} x^{n-m} = 0 \quad [\because m < n] \]

25. a. \(\frac{x^4 (\cot^4 x - \cot^2 x + 1)}{(\tan^4 x - \tan^2 x + 1)} \)
\[= \frac{x^4 (1 - \tan^2 x + \tan^4 x)}{\tan^4 x (\tan^4 x - \tan^2 x + 1)} = \frac{x^4}{\tan^4 x} \]
\[\Rightarrow \lim_{x \to 0} \frac{x^4 (\cot^4 x - \cot^2 x + 1)}{\tan^4 x} = \lim_{x \to 0} \frac{x^4}{\tan^4 x} = 1 \]

26. d. \(\lim_{x \to 0} \left(\frac{1 - x}{e - 1 + x} \right)^x = \lim_{x \to 0} \left(\frac{1 - 1}{e - 1 + 1} \right)^x = \left(\frac{1}{e - 1} \right)^0 = 1 \)

27. b. \(\lim_{x \to 0} \frac{1 - x^2}{x \sin 2\pi x} \)
\[= \lim_{x \to 0} \frac{-2\pi(1-x)(1+x)}{x \sin 2\pi x} \]
\[= \lim_{x \to 0} \frac{-2\pi(1-x)}{x \sin 2\pi x} = -\frac{1}{\pi} \]

28. d. We know that \(\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) = \frac{2 \tan^{-1} x, \ x \geq 0}{-2 \tan^{-1} x, \ x \leq 0} \)
\[\Rightarrow \lim_{x \to 0^+} \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) = \lim_{x \to 0^+} \frac{2 \tan^{-1} x}{x} = 2, \ \text{and} \]
\[\lim_{x \to 0^-} \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) = \lim_{x \to 0^-} \frac{-2 \tan^{-1} x}{x} = -2 \]

29. c. \(\lim_{x \to \infty} \left(\frac{x^2 + 2x - 1}{2x^2 - 3x - 2} \right)^{\frac{2x + 1}{2x - 1}} \)
\[= \lim_{x \to \infty} \left(\frac{1 + \frac{2}{x} - \frac{1}{x^2}}{2 - \frac{3}{x} - \frac{2}{x^2}} \right)^{\frac{2 + 1/x}{2 - 1/x}} \]
\[= \lim_{x \to \infty} \left(\frac{1 + \frac{2}{x} - \frac{1}{x^2}}{2 - \frac{3}{x} - \frac{2}{x^2}} \right) \]
\[= \lim_{x \to \infty} \frac{1}{2} \]

30. c. Since the highest degree of \(x \) is \(1/2 \), divide numerator and denominator by \(\sqrt{x} \), then we have limit \(\frac{2}{\sqrt{2}} \) or \(\sqrt{2} \).

31. a. \(\lim_{y \to 0} \left\{ \frac{\left(\sec (x+y) - \sec x \right)}{y} + \sec (x+y) \right\} \)
\[= \lim_{y \to 0} \left\{ \frac{x \cos (x+y) - \cos (x+y)}{y \cos (x+y) \cos x} \right\} + \lim \sec (x+y) \]
\[= \lim_{y \to 0} \left\{ \frac{x \cos (x+y) - \cos (x+y)}{y \cos (x+y) \cos x} \right\} + \sec x \]
\[= \lim_{y \to 0} \left\{ \frac{2 \sin \left(\frac{x+y}{2} \right) \sin \left(\frac{y}{2} \right)}{\cos (x+y) \cos x} \right\} + \sec x \]
\[= \lim_{y \to 0} \left\{ \frac{x \tan x \sec x + \sec x}{y} \right\} \]
\[= \sec x (x \tan x + 1) \]

32. a. \(\lim_{m \to \infty} \left(\frac{\cos x}{m} \right)^m \)
\[= \lim_{m \to \infty} \left[1 - \left(1 - \cos \frac{x}{m} \right) \right]^m \]
\[= \lim_{m \to \infty} \left[1 - 2 \sin^2 \frac{x}{2m} \right]^m \]
\[= \lim_{m \to \infty} \left(e^{-2 \sin^2 \frac{x}{2m}} \right)^m = 1 \]

33. b. \(\cosec \frac{\pi x}{2} \to 1 \) when \(x \to 1 \) \(\Rightarrow \left[\cosec \frac{\pi x}{2} \right] = 1 \)
\(\therefore \) limit = 1

34. b. \(\lim_{n \to \infty} \left(\frac{n^2 - n + 1}{n^2 - n - 1} \right)^{\frac{n(n-1)}{2}} \)
\[= \lim_{n \to \infty} \left\{ \left(\frac{n(n-1)+1}{n(n-1)-1} \right)^{\frac{n(n-1)}{2}} \right\} \]
\[= \lim_{n \to \infty} \left\{ \left(\frac{1 + \frac{1}{n(n-1)}}{\frac{1}{n(n-1)}} \right)^{\frac{n(n-1)}{2}} \right\} = e \]
\[= e^{-1} = e^2 \]
35. \(f(x) = \lim_{n \to \infty} n(x^{1/n} - 1) \)
\[= \lim_{n \to \infty} \frac{x^{1/n} - 1}{1/n} \]
\[= \lim_{m \to 0} \frac{m - 1}{m} \quad \text{(where } \frac{1}{n} \text{ replaced by } m)\]
\[= \ln x \]
\[\Rightarrow f(xy) = \ln (xy) = \ln x + \ln y = f(x) + f(y)\]

36. c. If \(f(x) = \sin \left(\frac{1}{x} \right) \) and \(g(x) = \frac{1}{x} \), then both \(\lim_{x \to 0} f(x) \) and \(\lim_{x \to 0} g(x) \) do not exist, but \(\lim_{x \to 0} \frac{f(x)}{g(x)} = 0 \) exists.

37. a. \[\lim_{n \to \infty} \frac{n^3}{n(x-2)^n + n \cdot 3^{a+1} - 3^n} = \frac{1}{3}\]
\[\Rightarrow \lim_{n \to \infty} \frac{1}{n \cdot 3^n} \quad \text{(Dividing } N' \text{ and } D' \text{ by } n \times 3^n)\]
\[= \frac{1}{n+3} + \frac{1}{3^n}.\]

For \(\lim_{n \to \infty} \) to be equal to 1/3
\[\lim_{n \to \infty} \frac{1}{n} \quad \text{(which is true)} \quad \text{and} \quad \lim_{n \to \infty} \left(\frac{x-2}{3} \right)^n \to 0\]
\[\Rightarrow 2 \leq x < 5\]

38. b. \[\lim_{x \to 2} \frac{2^x + 3^x - 6}{\sqrt{2x} - 1} = \lim_{x \to 2} \frac{(2^x)^2 - 6 \times 2^x + 2^3}{\sqrt{2^x} - 2} \quad [\text{Multiplying } N' \text{ and } D' \text{ by } 2^2]\]
\[= \lim_{x \to 2} \frac{(2^x - 4)(2^x - 2)(\sqrt{2^x} + 2)}{(\sqrt{2^x} - 2)(\sqrt{2^x} + 2)}\]
\[= \lim_{x \to 2} \frac{(2^x - 4)(2^x - 2)(\sqrt{2^x} + 2)}{(2^x - 4)}\]
\[= \lim_{x \to 2} (2^x - 2)(\sqrt{2^x} + 2) = (2^2 - 2)(2 + 2) = 8\]

39. c. 1st form
\[\lim_{n \to \infty} \left[\left(\frac{n}{n+1} \right)^n + \sin \left(\frac{1}{n} \right) \right] = \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = e^{\frac{\pi}{2}}\]

Consider, \[\lim_{n \to \infty} n \left(\frac{n}{n+1} \right)^a = \lim_{n \to \infty} \left(\frac{1}{1 + 1/n} \right)^a\]

Put \(n = \frac{1}{y} \)

\[\Rightarrow \lim_{x \to 1} \left[\left(\frac{1}{2} - \frac{x}{1+x^2} \right)^2 \right] = \lim_{x \to 1} \left(\frac{x-1}{2(1+x^2)} \right)^2 = 0\]

40. b. \[L = \lim_{x \to \infty} \ln \left(\frac{x^2 + e^x}{x^4 + 2e^x} \right) = \lim_{x \to \infty} \frac{\ln \left(1 + \frac{x^2}{e^x} \right)}{\ln \left(1 + \frac{x^4}{e^{2x}} \right)}\]
\[= \lim_{x \to \infty} \frac{x + \ln \left(1 + \frac{x^2}{e^x} \right)}{2x + \ln \left(1 + \frac{x^4}{e^{2x}} \right)}\]
\[= \lim_{x \to \infty} \frac{1 + \frac{1}{x} \ln \left(1 + \frac{x^2}{e^x} \right)}{2 + \frac{1}{x} \ln \left(1 + \frac{x^4}{e^{2x}} \right)}\]

Note that as \(\frac{x^2}{e^x} \to 0 \) and as \(\frac{x^4}{e^{2x}} \to 0 \)
(Using L'Hopital's rule)

Hence \(L = \frac{1}{2} \)

41. a. \[\lim_{x \to 1} \frac{1 + \sin \left(\frac{3 \pi x}{1 + x^2} \right)}{1 + \cos \pi x}\]
\[= \lim_{x \to 1} \frac{1 - \cos \left(\frac{3 \pi x}{2} - \frac{3 \pi x}{1 + x^2} \right)}{1 - \cos (\pi - \pi x)}\]
\[= \lim_{x \to 1} \frac{2 \sin^2 \left(\frac{3 \pi x}{4} - \frac{3 \pi x}{2(1+x^2)} \right)}{2 \sin^2 \left(\frac{\pi}{2} \right)}\]
\[= \lim_{x \to 1} \frac{\left(\frac{3 \pi}{4} - \frac{3 \pi x}{2(1+x^2)} \right)^2}{\left(\frac{\pi}{2} - \frac{\pi x}{2} \right)^2}\]
\[= \lim_{x \to 1} \left(\frac{3 \pi x - 3 \pi x}{2(1+x^2)} \right)^2 = 0\]
\[= \lim_{x \to 1} \left(\frac{1 - \frac{x}{2} - \frac{1}{1+x^2}}{1-x} \right)^2 = \lim_{x \to 1} \left(\frac{x-1}{2(1+x^2)} \right)^2 = 0\]
42. b. \[\lim_{{n \to \infty}} \cos^{2n} x = \begin{cases} 1, & x = \pi, r \in I \\ 0, & x \neq \pi, r \in I \end{cases} \]

Here, for \(x = 10 \), \(\lim_{{n \to \infty}} \cos^{2n} (x-10) = 1 \)
and in all other cases it is zero.

\[\sum_{{n = 1}}^{\infty} \cos^{2n} (x-10) = 1 \]

43. b. \[L = \lim_{{x \to \infty}} \frac{(2x)^{x} e^{-x} - (3x)^{x} e^{-x}}{e^{-x}} = \lim_{{x \to \infty}} \left(3x \left[\frac{x^{x}}{e^{x}} - 1 \right] \right) \]

Now, \(\lim_{{x \to \infty}} \frac{x^{x}}{e^{x}} = \lim_{{x \to \infty}} \frac{n!}{e^{x}} = 0 \) (differentiating numerator and denominator \(n \) times for L'Hopital's rule)

Hence \(L = \lim_{{x \to \infty}} \left(\frac{x^{x}}{e^{x}} - 1 \right) \lim_{{x \to \infty}} \frac{1}{x^{x}} = 1 \times \log(2/3) \times 0 = 0 \)

44. c. \[\frac{\cos(2x-4) - 33}{2} < f(x) < \frac{x^{2} \cdot |4x-8|}{x-2} \]
\[\Rightarrow \lim_{{x \to 2}} \frac{\cos(2x-4) - 33}{2} < \lim_{{x \to 2}} f(x) < \lim_{{x \to 2}} \frac{x^{2} \cdot |4x-8|}{x-2} \]
\[\Rightarrow -16 < \lim_{{x \to 2}} f(x) < \lim_{{x \to 2}} \frac{x^{2}(8-4x)}{x-2} \]
\[\Rightarrow -16 < \lim_{{x \to 2}} f(x) < -16 \]
\[\Rightarrow \lim_{{x \to 2}} f(x) = -16 \) (by sandwich theorem)

45. a. Given \(g(x) = \lim_{{n \to \infty}} \left(3 \tan^{-1} 2x \right)^{2n} + 5 \)
\[\Rightarrow \left(\frac{3 \tan^{-1} 2x}{\pi} \right)^{2n} \to \infty \]
\[\Rightarrow \frac{3 \tan^{-1} 2x}{\pi} > \frac{\pi}{3} \]
\[\Rightarrow \tan^{-1} 2x > \frac{\pi}{3} \]
\[\Rightarrow 2x < -\sqrt{3} \text{ or } 2x > \sqrt{3} \Rightarrow |2x| > \sqrt{3} \]

46. a. \((1 + x)^{2/3} = (1 + x^{2/3}) - [(1 + x)^{2/3}] \)
Now, \(\lim_{{x \to 1}} (1 + x)^{2/3} = \lim_{{x \to 1}} \left(1 - \frac{1}{3} - \frac{x}{3} + \frac{x^{2}}{9} - \frac{x^{3}}{27} + \cdots \right) \)
\[\Rightarrow \lim_{{x \to 1}} \frac{(1 + x)^{2/3}}{e^{2/3}} = e^{2} - [e^{2}] = e^{2} - 7 \]

47. b. \[\lim_{{x \to \infty}} \frac{\sin(x^{2})}{\log(1 - 2 \sin^{2} \frac{2x^{2} - x}{2})} \]
\[= \lim_{{x \to \infty}} \frac{\sin(x^{2})}{x^{2} \log(1 - 2 \sin^{2} \frac{2x^{2} - x}{2})} \]
\[= \lim_{{x \to \infty}} \frac{\sin(x^{2})^{x^{2}}}{x^{2} \log \left(\frac{2x^{2} - x}{2} \right)} \]
\[= \lim_{{x \to \infty}} \frac{\sin(x^{2})^{x^{2}}}{\left(\frac{2x^{2} - x}{2} \right)} \]
\[= \lim_{{x \to \infty}} \frac{\sin(x^{2})^{x^{2}}}{\left(\frac{2x^{2} - x}{2} \right)^{2}} \]
\[= \lim_{{x \to \infty}} \frac{\sin(x^{2})^{x^{2}}}{\left(\frac{2x^{2} - x}{2} \right)^{2}} \]

48. a. L.H.L. = \[\lim_{{x \to 1^{-}}} \frac{1}{\sqrt{x - (x+1)}} = \lim_{{x \to 1^{-}}} \frac{1}{\sqrt{x - (x+1)}} \]
\[= \lim_{{x \to 1^{-}}} \frac{1}{\sqrt{-2x}} = \infty \]
R.H.L. = \[\lim_{{x \to 1^{-}}} \frac{1}{\sqrt{x - (x+1)}} = \lim_{{x \to 1^{-}}} \frac{1}{\sqrt{x - (x+1)}} \]
\[= \lim_{{x \to 1^{-}}} \frac{1}{\sqrt{-2x}} = 1 \]

Hence, the limit does not exist.

49. a. For \(n > 1 \), \(\lim_{{x \to 0}} x^{n} \sin(1/x^{2}) = 0 \times (\text{any value between } -1 \text{ to } 1) = 0 \)
For \(n < 0 \), \(\lim_{{x \to 0}} x^{n} \sin(1/x^{2}) = \infty \times (\text{any value between } -1 \text{ to } 1) = \infty \)

50. c. \[\lim_{{x \to 1}} \frac{p - q + px^{p} - px^{q}}{x^{p} - x^{q} + x^{p+q}} = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \]
\[= \lim_{{x \to 1}} \frac{p^{q}x^{p+1} - px^{q+1} + (q^{p}+q)x^{p+q+1}}{x^{p+1} - px^{p+q} - qx^{q+1} + (p+q)(x^{p+q+1})} \]
\[\left(L^* \text{ Hopital Rule} \right) \]
\[= \lim_{{x \to 1}} \frac{p^{q}(p-1)x^{p-2} - pq(p-1)x^{q-2}}{p^{q}(p-1)x^{p-2} - q(p-1)x^{q-2} + (p+q)(p+q-1)x^{p+q-2}} \]
\[\left(L^* \text{ Hopital Rule} \right) \]
\[= \frac{p - q}{2} \]

51. b. \[\lim_{{x \to 1}} \left(x^{4} + x^{2} + x + 1 \right)^{\frac{1 - \cos(x^{2})}{(x^{2})^{2}}} \]
\[= \lim_{{x \to 1}} \frac{\left(x^{4} + x^{2} + x + 1 \right)^{\frac{1 - \cos(x^{2})}{(x^{2})^{2}}}}{1} \]
\[= \left(\begin{array}{c} 2 \\\ 3 \end{array} \right) \]
\[\left(\lim_{{x \to 1}} x^{2} \right)^{\frac{1 - \cos(1)}{(1)^{2}}} = \left(\begin{array}{c} 2 \\\ 3 \end{array} \right) \]
\[= \left(\begin{array}{c} \frac{1}{3} \\\ 2 \end{array} \right) \]
52. a. \[\lim_{x \to 2} \left[\frac{(x^3 - 4x)}{x^2 - 8} \right] \]
\[= \lim_{x \to 2} \left[\frac{x^2 + 2x + 4}{x(x + 2)} \right] \]
\[= \lim_{x \to 2} \left[\frac{12}{8} - 1 = \frac{1}{2} \right] \]
\[\Rightarrow t = \sqrt{2} + t \]
\[\Rightarrow t^2 - t - 2 = 0 \]
\[\Rightarrow (t - 2)(t + 1) = 0 \]
\[\Rightarrow t = 2 \]
\[(\because \lim_{x \to \infty} x_{n+1} = \lim_{x \to \infty} x_n = t) \]

53.d. \[\lim_{x \to \infty} \frac{e^{1/x^2} - 1}{2 \tan^{-1}(x^2) - \pi} \]
\[= \lim_{x \to \infty} \frac{e^{1/x^2} - 1}{2 \cot^{-1} x - \pi} \]
\[= \lim_{x \to \infty} \frac{e^{-1} - 1}{2 \cot x} \]
\[= \lim_{x \to \infty} \frac{1}{2} \frac{e^{-1} - 1}{\tan x} = \frac{1}{2} \]

54. b. \[\lim_{x \to 0} \frac{1 + \sin x - \cos x + \log(1-x)}{x^3} \]
\[= \lim_{x \to 0} \frac{1 + \left(x - \frac{x^3}{3!} + \cdots \right) - \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots \right) + \left(\log(1-x)\right)}{x^3} \]
\[= \lim_{x \to 0} \frac{1}{x^3} \left(\frac{1}{3!} - \frac{1}{2!} + \cdots \right) \]
\[= \frac{1}{3!} - \frac{1}{2!} = \frac{1}{6} - \frac{1}{2} = -\frac{1}{3} \]

55. b. \[\cos(tan x) - \cos x = 2 \sin \left(\frac{x + \tan x}{2}\right) \sin \left(\frac{x - \tan x}{2}\right) \]
\[\Rightarrow \lim_{x \to 0} \frac{\cos(tan x) - \cos x}{x^4} = \lim_{x \to 0} \frac{2 \sin \left(\frac{x + \tan x}{2}\right) \sin \left(\frac{x - \tan x}{2}\right)}{x^4} \]
\[= \lim_{x \to 0} \frac{2 \sin \left(\frac{x}{2} + \frac{\tan x}{2}\right) \sin \left(\frac{x}{2} - \frac{\tan x}{2}\right)}{x^4} \]
\[= \lim_{x \to 0} \frac{\sin \left(\frac{x}{2} + \frac{\tan x}{2}\right) \sin \left(\frac{x}{2} - \frac{\tan x}{2}\right)}{x^4} \]
\[= \lim_{x \to 0} \frac{\left(\frac{x}{2} + \frac{\tan x}{2}\right) \left(\frac{x}{2} - \frac{\tan x}{2}\right)}{x^4} \]
\[= \frac{1}{2} \lim_{x \to 0} \frac{x^2 - \tan^2 x}{x^4} \]
\[= \frac{1}{2} \lim_{x \to 0} \frac{x^2 - \left(\frac{x^3}{3} + \frac{2x^5}{15} + \cdots \right)^2}{x^4} \]
\[= \frac{1}{2} \lim_{x \to 0} \frac{1}{x^4} \left(1 - \left(1 + \frac{1}{3} + \frac{2}{15} \cdot \frac{x^4}{x^4} + \cdots \right)^2 \right) \]
\[= \frac{1}{3} \]

56. b. \[x_{n+1} = \sqrt{2 + x_n} \]
\[\Rightarrow \lim_{n \to \infty} x_{n+1} = \sqrt{2 + \lim_{n \to \infty} x_n} = \sqrt{2} + x_n \]
\[(\because \lim_{x \to \infty} x_{n+1} = \lim_{x \to \infty} x_n = t) \]

57. b. \[\lim_{x \to 0} \frac{\left(1 + 2x + \cdots + nx^{n-1}\right)^{1/x}}{n} \]
\[= \lim_{x \to 0} \left[\frac{\left(1 + 2x + \cdots + nx^{n-1}\right)^{1/x}}{n} \right] \]
\[= e^{\frac{1}{n} \left(1 - \frac{1}{2} - \frac{1}{3} - \cdots - \frac{1}{n} \right)} \]
\[= e^{\frac{1}{n} \left[\log(1) + \log(2) + \cdots + \log(n)\right]} \]
\[= e^{\frac{1}{n} \log(n)} = e^{\log(n)/n} = (n^1/n) = \frac{1}{n} \]
\[\Rightarrow \sqrt[n]{a^{\sqrt[n]{a}} - a^{\sqrt[n]{a}}} > 0 \forall n \Rightarrow t > 0 \]
61. c. \[\lim_{x \to -2} \frac{ae^{i/2}x^{2} - 1}{2e^{i/2}x^{2} - 1} = \lim_{x \to -2} \frac{a - e^{-i/2}x^{2}}{2e^{-i/2}x^{2} - 1} = -a \]

\[\lim_{x \to -2} \frac{x^{4} - 16}{x^{5} + 32} = \lim_{x \to -2} \frac{x - 2}{x^{5} - (2)^{2}} = -\frac{2}{5} \Rightarrow a = \sin \frac{2}{5} \]

62. b. Given limit is \[\lim_{x \to \infty} (x + 1) \tan^{-1} \bigg(x + 5 \bigg) + 4 \tan^{-1} \bigg(x + 5 \bigg) \]

\[= \lim_{x \to \infty} \bigg[(x + 1) \tan^{-1} \bigg(1 + \frac{1}{x(x + 5)} \bigg) + 4 \tan^{-1} \bigg(x + 5 \bigg) \bigg] \]

\[= \lim_{x \to \infty} \bigg[(x + 1) \tan^{-1} \bigg(\frac{1}{1 + (x + 1)(x + 5)} \bigg) \bigg] + 4 \tan^{-1} \bigg(x + 5 \bigg) \]

\[= 0 + 4 \times \frac{\pi}{2} = 2\pi \]

63. b. \[\lim_{x \to 0} \frac{(1-x)(1-x^{2})\cdots(1-x^{n})}{(1-x)(1-x^{2})\cdots(1-x^{n})} \]

\[= \lim_{x \to 0} \frac{(1-x)\cdots(1-x^{n})}{(1-x)\cdots(1-x^{n})} \]

\[= \frac{1 \times 2 \times 3 \cdots (2n)}{(1 \times 2 \times 3 \cdots n)^{2}} = \frac{(2n)!}{n!n!} = 2^{n} C_{n} \]

64. b. We know that \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \) and \(\lim_{x \to 0} \frac{x}{\sin x} = 1 \)

So, \(\lim_{x \to 0} \left[100 \cdot \frac{x}{\sin x} \right] + \lim_{x \to 0} \left[99 \cdot \frac{x}{\sin x} \right] \)

\[= 100 + 98 = 198 \]

65. a. Let \(\sin^{-1} x = \theta \). Then, \(x = \sin \theta \).

Now, \(x \to \frac{1}{\sqrt{2}} \Rightarrow \sin \theta \to \frac{1}{\sqrt{2}} \Rightarrow \theta \to \frac{\pi}{4} \)

\[\lim_{x \to \frac{1}{\sqrt{2}}} \frac{x - \cos (\sin^{-1} x)}{1 - \tan (\sin^{-1} x)} \]

\[= \lim_{\theta \to \frac{\pi}{4}} \frac{\sin \theta - \cos \theta}{1 - \tan \theta} \]

\[= \lim_{\theta \to \frac{\pi}{4}} \frac{(\sin \theta - \cos \theta)(\cos \theta)}{(\cos \theta - \sin \theta)(\cos \theta)} \]

66. d. \(\lim_{x \to 1} \frac{1 - \sqrt{x}}{\cos^{-1} x} \)

\[= \lim_{x \to 1} \frac{(1 - \sqrt{x})(1 + \sqrt{x})}{\cos^{-1} x(1 + \sqrt{x})} \]

\[= \lim_{x \to 1} \frac{1 - x}{\cos^{-1} x(1 + \sqrt{x})} \]

\[= \lim_{x \to 1} \frac{1 - \cos \theta}{\theta^{2}(1 + \sqrt{\cos \theta})} \]

\[= \frac{0}{0} \]

\[= \frac{1 - \cos \theta}{\theta^{2}} \]

\[= \lim_{\theta \to 0} \frac{2 \sin^{2} \theta}{\theta^{2} \left(\frac{1}{1 + \sqrt{\cos \theta}} \right)} \]

\[= \lim_{\theta \to 0} \frac{2 \sin^{2} \theta}{\theta^{2}} \left(\frac{1}{1 + \sqrt{\cos \theta}} \right) \]

\[= \frac{1}{2} \lim_{\theta \to 0} \left(\frac{\sin \theta}{\theta} \right)^{2} \left(\frac{1}{1 + \sqrt{\cos \theta}} \right) \]

\[= \frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{1 + 1} \right) = \frac{1}{4} \]

67. b. \(\min(y^{2} - 4y + 11) = \min(y^{2} - 2y + 7) = 7 \)

\[\Rightarrow L = \lim_{x \to 0} \left[\min(y^{2} - 4y + 11) \frac{\sin x}{x} \right] \]

\[= \lim_{x \to 0} \left[\frac{7 \sin x}{x} \right] \]

\[= \left[\text{a value slightly lesser than 7} \right] \quad (\text{for } x \neq 0) \]

\[\Rightarrow L = \lim_{x \to 0} \left[\frac{7 \sin x}{x} \right] = 6 \]

68. b. \[L = \lim_{x \to \pi/2} \frac{\sin (x \cdot \cos x)}{\sin (\pi / 2 - x \cdot \sin x)} \]

\[= \lim_{x \to \pi/2} \frac{\sin (x \cdot \cos x)}{(x \cdot \cos x) / \sin (\pi / 2 - x \cdot \sin x)} \]

\[= 1 \times 1 \lim_{x \to \pi/2} \frac{x \cdot \cos x}{\pi / 2 - x \cdot \sin x} \]
Put \(x = \pi/2 + h \)

Then,
\[
L = \lim_{h \to 0} \frac{\left(\frac{\pi}{2} + h \right) \cos \left(\frac{\pi}{2} + h \right)}{\frac{\pi}{2} - \left(\frac{\pi}{2} + h \right) \sin \left(\frac{\pi}{2} + h \right)}
\]

\[
= \lim_{h \to 0} \frac{\left(\frac{\pi}{2} + h \right) \sin h}{\frac{\pi}{2} - \cos h}
\]

(Divide \(N' \) and \(D' \) by \(h \))

\[
= \frac{\left(\frac{\pi}{2} + 0 \right)}{0 - 1} = \frac{\pi}{2}
\]

69. a. \(\lim_{x \to 0} \frac{\sin 3x + ax + bx^3}{x^3 + a + b} \)

\[
= \lim_{x \to 0} \frac{\sin 3x + 3ax + b}{x} \quad \text{For existence, } (3 + a) = 0 \Rightarrow a = -3
\]

\[
\therefore \ L = \lim_{x \to 0} \frac{3x - 3x + bx^3}{x^3}
\]

\[
= 27 \lim_{t \to 0} \frac{\sin t - t}{t^3} + b = 0 (3x = t)
\]

\[
= -\frac{27}{6} + b = 0
\]

\[
\Rightarrow b = \frac{27}{6}
\]

70. b. \(\lim_{x \to 0} \frac{x^n \sin^n x}{x^n - \sin^n x} \)

\[
\Rightarrow \lim_{x \to 0} \frac{x^n \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \cdots \right)^n}{x^n - \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \cdots \right)^n}
\]

\[
= \lim_{x \to 0} \frac{x^n \left(\frac{x^2}{3!} + \frac{x^4}{5!} + \cdots \right)^n}{1 - \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \cdots \right)^n}
\]

For \(n = 2 \),

\[
\lim_{x \to 0} \frac{x^2 \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \cdots \right)^2}{1 - \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \cdots \right)^2}
\]

\[
\Rightarrow \lim_{x \to 0} \frac{x^2 \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \cdots \right)^2}{2 - \frac{x^2}{3!} + \frac{x^4}{5!} + \cdots}
\]

\[
= \frac{1}{2(2 - 0) \left(1 \right)^2} = 3
\]

71. d. \(\lim_{x \to 0} \frac{1 + x + x^2}{x (\ln x)^3} \)

\[
= \lim_{t \to 0} \frac{t^2 + t + 1}{t \left(\ln \left(\frac{1}{t} \right) \right)^3}
\]

\[
= \lim_{t \to 0} \frac{1 + t + t^2}{(\ln t)^3} = +\infty
\]

72. c. \(\lim_{x \to 0} \frac{2^m + x)^{\ln 2} - (2^n + x)^{\ln 2}}{x} \)

\[
= \lim_{x \to 0} \frac{(2^m + x)^{\ln 2} - 2^n}{x} - \lim_{x \to 0} \frac{(2^n + x)^{\ln 2} - 2^n}{x}
\]

\[
= \lim_{a \to 2} a^{m - 2} - \lim_{b \to 2} b^{n - 2} \quad \text{[Putting } 2^m + x = a^m \text{ and } 2^n + x = b^n]\)

\[
= \frac{1}{m 2^{m-1} - n 2^{n-1}}
\]

73. a. \(\lim_{x \to 0} \left[\frac{1 - e^x}{x} \right] \left[\frac{\sin x}{|x|} \right] \)

\[
= \lim_{x \to 0} \left[\frac{(0^+)^{\sin x}}{x} \right] = 0^+ = -1.
\]

\[
= \lim_{x \to 0} \left[\frac{(1 - e^x)^{\sin x}}{|x|} \right]
\]

\[
= \lim_{x \to 0} \left[\frac{0^+}{\sin x} \right] = [0^+] = -1
\]

Hence \(\lim_{x \to 0} \left[\frac{(1 - e^x)^{\sin x}}{|x|} \right] = -1 \)

74. Let \(x \to 0^- \Rightarrow f(x) \to f(0^-) = 2^+ \)

\[
\Rightarrow \lim_{x \to 0} g(f(x)) = g(2^+) = -3
\]
Also as \(x \to 0^+ \) \(\Rightarrow f(x) \to f(0^+) = 1^+ \)

\[\lim_{x \to 0^+} g(f(x)) = g(1^+) = -3 \]

Hence \(\lim_{x \to 0} g(f(x)) \) exists and is equal to \(-3\)

\[\lim_{x \to 0} g(f(x)) = -3 \]

75. \(I = \lim_{x \to 1} \frac{n^x(x-1)-(x^n-1)}{(e^x-e) \sin \pi x} \)

put \(x = 1 + h \) so that as \(x \to 1, h \to 0 \)

\[I = -\lim_{h \to 0} \frac{h \cdot n(1+h)^n-(1+h)^n-1}{e(e^h-1)\sin \pi h} \]

\[I = -\lim_{x \to 1} \frac{n \cdot h(1+C_nh+C_2h^2+C_3h^3+\cdots)}{\pi e(h^2)\left(\frac{e^h-1}{h}\right)} \]

\[\frac{-1}{\pi e} \frac{n^2-n^2(1)}{2\pi e} = -n^2+n \frac{2-n(1)}{2\pi e} = -n^2+n \frac{2-n(1)}{2\pi e} \]

\[\text{if } n = 100 \Rightarrow 1 = -\left(\frac{5050}{\pi e}\right) \]

76. \(\lim_{n \to \infty} \frac{1+e^{1/n}+e^{2/n}+\cdots+e^{(n-1)/n}}{e^{(1/n)\pi}-1} \)

\[\lim_{n \to \infty} \frac{1+e^{1/n}+(e^{1/n})^2+\cdots+(e^{1/n})^{n-1}}{n(e^{1/n}-1)} \]

\[= (e-1) \lim_{n \to \infty} \frac{1}{(e^{1/n}-1)} \]

\[= (e-1) \times 1 = (e-1). \]

77. \(\lim_{n \to \infty} \frac{1}{2} \cdot \frac{\cos \left(\frac{1+1/n}{2-1/n}\right) - \frac{1}{2}}{\left(\frac{1}{n-2}\right) \left(\frac{1+1/n}{2-1/n}\right)} \)

\[\lim_{n \to \infty} \frac{1}{2} \left(\frac{2}{1+n^2} \cdot \frac{1}{2-1/n} - \frac{1}{2-1/n} \cdot \frac{(-1)^n}{(1+1/n)^n}\right) \]

\[= 0 \times \left(\frac{2}{1} \cdot \cos \frac{1}{2} \times 1 \right) = 0. \]

78. \(\lim_{x \to 0^+} \frac{\log(1+x^2) + \log(1-x+x^2)}{\sec x - \cos x} \)

\[= \lim_{x \to 0^+} \frac{\log \left(\frac{(1+x^2)(1-x+x^2)}{x^2}\right)}{\sec x \cdot \tan x} \]

\[= \frac{\log(1+1)}{x^2(1+x^2)} \cdot \frac{1}{\sin x \cdot \tan x} \cdot \frac{x^2(1+x^2)}{x^2} \]

\[= 1 \left(\text{as } \lim_{x \to 0^+} \frac{\log(1+x)}{x} = 1\right) \]

79. \(\lim_{x \to 0} \sqrt{a^2-x^2} \cdot \cos \frac{\pi}{2} \sqrt{\frac{a-x}{a+x}} \)

\[= \lim_{x \to a} \frac{\pi}{2} \sqrt{\frac{a-x}{a+x}} \]

\[= \frac{2}{\pi} \lim_{x \to a} \frac{\pi}{2} \sqrt{\frac{a-x}{a+x}} = 4 \frac{a}{\pi} \]

80. \(\lim_{x \to a} \frac{\cot^{-1}(x^{-a} \log_a x)}{\sec^{-1}(a^{x-a} \log_a x)} \)

\[= \lim_{x \to \infty} \frac{\log x}{x^a} \text{ as } \left(\frac{\log_a x}{x^a}\right) \to 0 \]

\[\text{and } \left(\frac{a^x}{\log_a x}\right) \to \infty \text{ (using L'Hopital's rule)} \]

\[: I = \left(\frac{\pi}{2}\right) = \frac{\pi}{2} \]

Multiple Correct Answers Type

1. b, e.

- R.H. limit = \(\lim_{h \to 0} f(1+h) = \lim_{h \to 0} a \cdot (1+h) = a \)
- L.H. limit = \(\lim_{h \to 0} f(1+h) = \lim_{h \to 0} a \cdot \left\{1 + \frac{2}{a} \cdot (1+h)\right\} = 1 + \frac{2}{a} \)

\(\lim_{x \to 1} f(x) \) exists \(\Rightarrow \) R.H. limit = L.H. limit \(\Rightarrow a = 1 + \frac{2}{a} \)

\(\Rightarrow a = 2, -1 \)
2. a, d.
\[f(1 + 0) = \lim_{h \to 0} \left[(1 + h - 1) - (1 + h) \right] = \lim_{h \to 0} \{ h - 1 \} = -1 \]
\[f(1 - 0) = \lim_{h \to 0} \left[(1 - h - 1) - (1 - h) \right] = \lim_{h \to 0} \{ h - 0 \} = 0 \]

3. a, c.
\[
\text{Limit} = \lim_{n \to \infty} \frac{an(1 + n) - (1 + n^2)}{1 + n}
\]
\[
= \lim_{n \to \infty} \frac{(a - 1)n^2 + an - 1}{n + 1}
\]
\[
= \infty \text{ if } a - 1 \neq 0
\]

If \(a - 1 = 0 \), limit \(\lim_{n \to \infty} \frac{an - 1}{n + 1} = a = b \)

\[\therefore \ a = b = 1 \]

4. a, b, c.
\[
L = \lim_{x \to 0} \frac{\sin x^n}{(\sin x)^m} = \lim_{x \to 0} \frac{x^n}{x^m - x^m} = \lim_{x \to 0} x^{n-m}
\]

If \(n = m \), then \(L = (a \text{ very small value near to zero})^{\text{exactly zero}} = 1 \)
If \(n > m \), then \(L = (a \text{ very small value near to zero})^{\text{positive integer}} = 0 \)
If \(n < m \), then \(L = (a \text{ very small value near to zero})^{\text{negative integer}} = \infty \)

5. a, b, c.
\[
\lim_{x \to \infty} \frac{\log x}{\{x\}} = \text{positive infinity}
\]
\[
\lim_{x \to \infty} \frac{x}{x^2 - x - 2} = \lim_{x \to \infty} \frac{x}{x^2 - (x + 1)} = \lim_{x \to \infty} \frac{2 + h}{h(3 + h)} = \infty
\]
\[
\lim_{h \to 0} \frac{x}{x^2 - x - 2} = \lim_{h \to 0} \frac{x}{(x - 2)(x + 1)} = \lim_{h \to 0} \frac{1 + h}{h(3 + h)} = -\infty
\]

6. b, c.
Since the greatest integer function is discontinuous (sensitive) at integral values of \(x \), then for a given limit to exist both left- and right-hand limit must be equal.

L.H.L. = \[\lim_{x \to 1} (2 - x + a[x - 1] + b[1 + x]) \]
\[= 2 + a(-1) + b(1) = 1 - a + b \]
R.H.L. = \[\lim_{x \to 1^+} (2 - x + a[x - 1] + b[1 + x]) \]
\[= 2 + a(0) + b(2) = 1 + 2b \]
On comparing we have \(-a = b\)

7. a, b, c.
\[
L = \lim_{x \to a} \frac{2 \sin x - 1}{2 \sin x - 1}
\]

For \(a = \pi/6 \), L.H.L = \[\lim_{x \to \pi/6} \frac{1 - 2 \sin x}{2 \sin x - 1} = -1 \]
R.H.L = \[\lim_{x \to \pi/6} \frac{2 \sin x - 1}{2 \sin x - 1} = 1 \]
Hence the limit does not exist.

For \(a = \pi \), \[\lim_{x \to \pi} \frac{1 - 2 \sin x}{2 \sin x - 1} = -1 \] (as in neighborhood of \(\pi \), \(\sin x \) is less than \(\pi/2 \)).

For \(a = \pi/2 \), \[\lim_{x \to \pi/2} \frac{2 \sin x - 1}{2 \sin x - 1} = 1 \] (as in neighborhood of \(\pi/2 \), \(\sin x \) approaches to 1).

8. b, c, d.
\[f(x) = \lim_{x \to \infty} \frac{x}{x^{2^n} + 1} \]
\[= \left\{ \begin{array}{ll}
0, & x < 1 \\
1, & x > 1 \\
\frac{1}{2}, & x = 1 \\
-1/2, & x = -1 \\
\end{array} \right.
\]
\[\Rightarrow f(1^+) = f(1^-) = 0 \\
f(1) = 1, f(-1) = -1 \\
f(1) = 1/2 \\
n

9. a, c.
\[\lim_{n \to \infty} \frac{-3 + (-1)^n}{4n} = \frac{-3}{4} \\
n

10. a, b, c, d.
We have \[\lim_{x \to 0^+} f(x) = \lim_{k \to 0^+} \frac{\tan^2 \{x\}}{x^2 - \{x\}^2} \]
\[= \lim_{x \to 0^+} \frac{\tan^2 x}{x^2} = 1 \] \[(1) \]
Also \[\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \sqrt{x} \cot \{x\} = \sqrt{\cot 1} \] \[(2) \]
\[(\because \ x \to 0^+; \{x\} = 0 \Rightarrow \{x\} = x) \]
Also, \[\cot^{-1}\left(\lim_{x \to 0^+} f(x)\right)^2 = \cot^{-1}(\cot 1) = 1. \]

11. a, b, c, d
\[f(x) = \frac{3x^2 + ax + a + 1}{(x + 2)(x - 1)} \]
as \(x \to 1, D' \to 0 \), hence as \(x \to 1, N' \to 0 \)
\[\therefore \ 3 + 2a + 1 = 0 \Rightarrow a = -2 \Rightarrow (A) \]
as \(x \to 2, D' \to 0 \), hence as \(x \to -2, N' \to 0 \)
\[\therefore \ 12 - 2a + a + 1 = 0 \Rightarrow a = 13 \Rightarrow (B) \]
Now \(\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x^2 - 2x - 1}{(x+2)(x-1)} = \lim_{x \to 0} \frac{(3x+1)(x-1)}{x+2} = \frac{4}{3} \)

and

\[\lim_{x \to 2} \frac{3x^2 + 13x + 14}{(x+2)(x-1)} = \lim_{x \to 2} \frac{(3x+7)(x+2)}{(x+2)(x-1)} = \frac{1}{3} \]

12. \(b, c \)

Case I \(x \neq m\pi (m \text{ is an integer}) \)

\[\lim_{x \to \infty} \frac{1}{1 + n \sin^2 nx} = 0 \]

Case II \(x = m\pi (m \text{ is an integer}) \)

\[\lim_{x \to \infty} \frac{1}{1 + n \sin^2 nx} = 0 \]

13. \(a, b, c \)

\[\lim_{x \to \infty} \frac{x^2 - 9x + 20}{x - x} = \lim_{x \to \infty} \frac{(x-5)(x-4)}{x - 5} = \lim_{x \to \infty} (x-4) = 1 \]

Hence limit does not exist.

14. \(a, c \)

Since \(x^2 > 0 \) and limit equals 2, \(f(x) \) must be a positive quantity. Also since \(\lim_{x \to a} f(x) = 2 \). The denominator \(x^2 \) tends to zero and limit is finite, therefore \(f(x) \) must be approaching to zero or \(\lim_{x \to a} f(x) = 0^+ \)

Hence limit \(\lim_{x \to a} f(x) = 0 \)

\[\lim_{x \to a} \frac{f(x)}{x} = \lim_{x \to a} \left(x \frac{f(x)}{x^2} \right) = 0 \text{ and } \lim_{x \to a} \frac{f(x)}{x^2} = \lim_{x \to a} \frac{f(x)}{x^2} = -1 \]

Hence \(\lim_{x \to a} \frac{f(x)}{x} \) does not exist.

Reasoning Type

1. \(b \)

For \(x \in (-\delta, \delta), \sin x < x \Rightarrow \lim_{x \to 0} \frac{\sin x}{x} = 1^- \)

\[\lim_{x \to 0} \frac{\sin x}{x} = 0 \]

Also, \(x \in (-\delta, \delta), \tan x > x \), but from this nothing can be said about the relation between \(\sin x \) and \(x \).

Hence, both the statements are true but statement 2 is not the correct explanation of statement 1.

2. \(a \)

For \(\lim_{x \to a} \frac{\sin(f(x))}{x - \alpha} \), denominator tends to 0; hence the numerator must also tend to 0 for limit to be finite. Then, \(\alpha \) is a root of the equation \(a\alpha + b + c = 0 \) or \(f(\alpha) = 0 \).

Also, consider \(f(x) \rightarrow 0^- \) and \(f(x) \rightarrow 0^- \)

\[\Rightarrow \lim_{x \to a} \frac{e^{\sin(f(x))/x}}{x} = \lim_{x \to a} \frac{1-e^{\sin(f(x))/x}}{x} = 1 \]

and

\[\lim_{x \to a} \frac{e^{\sin(f(x))/x}}{x} + 1 = -1 \]

Thus, both the statements are true and statement 2 is the correct explanation of statement 1.

3. \(b \)

Limit of function \(y = f(x) \) exists at \(x = a \), though it is discontinuous at \(x = a \). Consider the function \(f(x) = \frac{x^2 - 4}{x - 2} \). Here, \(f(x) \) is not defined at \(x = 2 \), but limit of functions exists, as \(\lim_{x \to 2} f(x) = \lim_{x \to 2} = 4 \).

4. \(a \)

\[L = \lim_{x \to 0} \frac{x}{a} \left(\frac{b}{x} \right) \]

\[= \lim_{x \to 0} \frac{x}{a} \left(\frac{b}{x} \right) \]

\[= \lim_{x \to 0} \frac{b}{a} \left(\frac{x}{x} \right) \]

\[= \frac{b}{a} \lim_{x \to 0} \frac{1}{x} \]

(where \(y = \frac{b}{x} \) and \(b > 0 \) \(\Rightarrow \frac{b}{a} \))

Also, if \(b < 0 \),

\[L = \frac{b}{a} \lim_{y \to 0} \frac{y}{y} \]

\[= \frac{b}{a} \]

5. \(d \)

\[\lim_{x \to a} \left(\frac{1^2}{x^2} + \frac{2^2}{x^2} + \frac{3^2}{x^2} + \ldots + \frac{x^2}{x^2} \right) \]

\[= \lim_{x \to a} \frac{x(x+1)(2x+1)}{6x^3} = \frac{1}{3} \]

6. \(b \)

\[L = \lim_{x \to 0} \sqrt{1 - \cos 2x} = \lim_{x \to 0} \frac{\sqrt{2} |\sin x|}{x} \]

\[\Rightarrow \text{L.H.L.} = -\sqrt{2} \text{ and R.H.L.} = \sqrt{2} \]

Hence, the limit of the function does not exist.

Also, statement 2 is true, but it is not the correct explanation of statement 1. As for limit to exist, it is not necessary that function is defined at that point.

7. \(a \)

When \(n \to \infty \) and \(x \) is rational or \(x = \frac{p}{q} \), where \(p \) and \(q \) are integers and \(q \neq 0 \).

\[n! x = n! \frac{p}{q} \] is integer as \(n! \) has factor \(q \) when \(n \to \infty \).

Also, when \(n! x \) is integer, \(\sin (n! \pi x) = 0 \Rightarrow \) given limit is zero.
2.48 Calculus

8. d. Obviously, statement 2 is true, as on the number line immediate neighbourhood of 1/2 is either rational or irrational, but this does not stop \(f(x) \) to have limit at \(x = 1/2 \). As \(f(1/2) = 1/2, f(1/2^+) = \lim_{x \to 1/2^+} x = 1/2 \) (if \(1/2^+ \) is rational) or \(\lim_{x \to 1/2^-} (1-x) = 1-1/2 = 1/2 \) (if \(1/2^- \) is irrational).

Hence, \(\lim_{x \to 1/2^-} f(x) = 1/2 \).

With similar argument, we can prove that \(\lim_{x \to 1/2^+} f(x) = 1/2 \). Hence, limit of function exists at \(x = 1/2 \).

9. a. \(\lim_{x \to 0} \frac{(x-1)(x-2)}{(x-3)(x-4)} = \lim_{x \to 0} \frac{x^2 - 3x + 2}{x^2 - 7x + 12} \)

\[= \lim_{x \to 0} \frac{1 - \frac{3}{x} + \frac{2}{x^2}}{1 - \frac{7}{x} + \frac{12}{x^2}} \]

\[= \lim_{x \to 0} \frac{1}{x} \to 1 \] (from right-hand side of 1)

\[= \lim_{x \to 0} \frac{1}{x} \to 1 \] (from left-hand side of 1)

Hence \(\lim_{x \to 0} \cos^{-1} f(x) \) does not exist as \(\cos^{-1} x \) is defined for \(x \in [-1, 1] \).

10. b. \(\lim_{x \to 0^+} \frac{x}{e^{rx} + 1} = \lim_{h \to 0} \frac{1 - e^{-1/h}}{1 + e^{-1/h}} = 0 \times 1 = 0 \)

\(\lim_{x \to 0} \frac{x}{e^{rx} + 1} = \lim_{h \to 0} \frac{e^{r/h} - 1}{e^{r/h} + 1} = -1 \times (-1) = 1 \)

Thus, given limit does not exist. Also \(\lim_{x \to 0} \frac{e^{rx} - 1}{e^{rx} + 1} \) does not exist, but this cannot be taken as only reason for non-existence of \(\lim_{x \to 0} \frac{1}{e^{rx} + 1} \).

11. a. If \(\lim_{x \to x_0} f(x) \) exists, then \(\lim_{x \to x_0} \left(f(x) + \frac{\sin x}{x} \right) \) always exists as \(\lim_{x \to x_0} \frac{\sin x}{x} \) exists finitely.

Hence \(\lim_{x \to x_0} f(x) \) must not exist.

12. a. \(\lim_{n \to +\infty} a_{n+1} = \lim_{n \to +\infty} a_n \)

\(\Rightarrow \lim_{n \to +\infty} (a_n - \sin a_n) = 0 \) which is possible only when \(\lim_{n \to +\infty} a_n = 0 \).

13. c. Obviously statement 1 is true, but statement 2 is not always true.

Consider \(f(x) = \lfloor x \rfloor \) and \(g(x) = \sin x \) (where \(\lfloor \cdot \rfloor \) represents greatest integer function).

Here \(\lim_{x \to \pi^-} \sin x = -1 \)

and \(\lim_{x \to \pi^+} \sin x = 0 \)

\(\Rightarrow \lim_{x \to \pi} \sin x \) does not exist.

Linked Comprehension Type

For Problems 1–3

1. a, 2. b, 3. d.

Sol.

We have \(f(x) = \sin^{-1} \left(\frac{1-x}{1+x} \right) \)

\(= \lim_{h \to 0} \sin^{-1} \left(\frac{1-(0+h)}{1+(0+h)} \right) \)

\(= \lim_{h \to 0} \frac{\sin^{-1}(1-h) \cos^{-1}(1-h)}{\sqrt{2(1+h)(1-h)}} \)

In second limit put \(1 - h = \cos \theta \)

\(\Rightarrow \lim_{h \to 0} \frac{\sin^{-1}(1-h) \cos^{-1}(1-h)}{\sqrt{2(1-h)}} \)

\(= \lim_{h \to 0} \frac{\sin^{-1}(1-h) \cos^{-1}(1-h)}{\sqrt{2(1-h)}} \)

\(= \sin^{-1} 1 \times 1 = \pi/2 \)

and \(\lim_{h \to 0} f(x) = \lim_{h \to 0} f(0-h) \)

\(= \lim_{h \to 0} \frac{\sin^{-1}(1-(0-h)) \cos^{-1}(1-(0-h))}{\sqrt{2(1-h)}} \)

\(= \lim_{h \to 0} \frac{\sin^{-1}(1+h-1) \cos^{-1}(1+h-1)}{\sqrt{2(-h+1)}} \)

\(= \lim_{h \to 0} \frac{\sin^{-1} h \cos^{-1} h}{\sqrt{2(-h+1)}} \)

For Problems 4–6

4. c, 5. d, 6. d.

Sol.

We have \(A_i = \frac{x - a_i}{-(x - a_i)} = -1 \), \(i = 1, 2, \ldots, n \) and \(a_1 < a_2 < \cdots < a_{n-1} < a_n \).

Let \(x \) be in the left neighbourhood of \(a_m \).

Then \(x - a_i < 0 \) for \(i = m, m + 1, \ldots, n \) and \(x - a_i > 0 \) for \(i = 1, 2, \ldots, m - 1 \). Therefore,
For Problems 10–12

10. \[\lim_{x \to 0^+} F(x) = \left(p_1a_1^x + p_2a_2^x + \cdots + p_na_n^x \right)^{\frac{1}{x}} \] (1st form)

\[\lim_{x \to 0^+} \frac{p_1a_1^x + p_2a_2^x + \cdots + p_na_n^x}{x} = \ln L = \lim_{x \to 0^+} \frac{p_1a_1^x + p_2a_2^x + \cdots + p_na_n^x}{x} = \ln L = \lim_{x \to 0^+} \frac{p_1a_1^x + p_2a_2^x + \cdots + p_na_n^x}{x} \]

11. \[\lim_{x \to \infty} F(x) = L = \lim_{x \to \infty} \left(p_1a_1^x + p_2a_2^x + \cdots + p_na_n^x \right)^{\frac{1}{x}} \] (\(\text{coo}^0\) form).

\[\ln L = \lim_{x \to \infty} \frac{p_1a_1^x + p_2a_2^x + \cdots + p_na_n^x}{x} \]

Using L'Hôpital's rule

\[\ln L = \lim_{x \to \infty} \frac{p_1a_1^x \ln a_1 + p_2a_2^x \ln a_2 + \cdots + p_na_n^x \ln a_n}{p_1a_1^x + p_2a_2^x + \cdots + p_na_n^x} \]

Dividing by \(a_i^x\) and taking limit, we get

\[\ln L = \frac{\ln a_1}{a_1}, \frac{\ln a_2}{a_2}, \ldots \]

etc. all vanishes as \(x \to \infty\).

\[\Rightarrow \ln L = \frac{\ln a_1}{a_1} \]

\[\text{hence } \ln L = \ln a_1 \]

\[\Rightarrow L = a_1 \]

12. \[\lim_{x \to \infty} F(x) = L \]

\[\Rightarrow \ln L = \frac{\ln a_1}{a_1}, \frac{\ln a_2}{a_2}, \ldots \]

vanishes.

\[\Rightarrow \ln L = \frac{\ln a_1}{a_1}, \frac{\ln a_2}{a_2}, \ldots \]

\[\Rightarrow L = a_n \]

Matrix-Match Type

1. \(a \to s, b \to r, c \to p, d \to q\).

a. Let \(x + 1 = h\)

Then, \(\lim_{x \to 1} \frac{\sqrt[3]{(7-x) - 2}}{(x+1)} = \lim_{h \to 0} \frac{(8-h)^{1/3} - 2}{h}\)
2.50 Calculus

\[\lim_{h \to 0} \frac{2(1 - \frac{h}{8})^{1/3}}{h} = -2\]

\[2 \lim_{h \to 0} \frac{1 - \frac{3h}{8}}{3h} = -\frac{1}{12}\]

b. We have \(\lim_{x \to \pi/4} \frac{\tan^3 x - \tan x}{\cos (x + \pi/4)}\)

\[= \lim_{x \to \pi/4} \frac{\tan x (\tan x - 1) (\tan x + 1)}{\cos (x + \pi/4)}\]

\[= \lim_{x \to \pi/4} \frac{\tan x (\sin x - \cos x) (\tan x + 1)}{\cos x \cos (x + \pi/4)}\]

\[= \lim_{x \to \pi/4} \frac{\tan x (\cos x - \sin x) (\tan x + 1)}{\cos x \cos (x + \pi/4)}\]

\[= -\sqrt{2} \lim_{x \to \pi/2} \frac{\tan x \left(\frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x\right) (\tan x + 1)}{\cos x \cos (x + \pi/4)}\]

\[= -\sqrt{2} \lim_{x \to \pi/4} \frac{\tan x \tan^2 x}{\cos x}\]

\[= -\sqrt{2} \times 2 \times \sqrt{2} = -8\]

c. \(\lim_{x \to 1} \frac{(2x - 3) (\sqrt{x} - 1)}{2x^2 + x - 3}\)

\[= \lim_{x \to 1} \frac{(2x - 3) (\sqrt{x} - 1)}{(2x + 3)(\sqrt{x} - 1)(\sqrt{x} + 1)}\]

\[= \lim_{x \to 1} \frac{(2x - 3)}{(2x + 3)(\sqrt{x} + 1)}\]

\[= \frac{2 - 3}{2 + 3(\sqrt{1} + 1)}\]

\[= -\frac{1}{10}\]

d. \(\lim_{x \to \infty} \log x^{n} - \left\lfloor x \right\rfloor\)

\[= \lim_{x \to \infty} \frac{\log x^{n}}{\left\lfloor x \right\rfloor} - \lim_{x \to \infty} \left\lfloor x \right\rfloor\]

\[= 0 - 1\]

\[= -1\]

2. \(a \to q; b \to r; c \to q; d \to p.\)

We know that \(\lim_{x \to 0} \frac{\sin x}{x} = 1\) (but a value which is smaller than 1)

\[\Rightarrow \lim_{x \to 0} \frac{100 \sin x}{x} = 99\]

and \(\lim_{x \to 0} \frac{x}{\sin x} = 100\)

(Also \(\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1\) (but a value which is more than 1)

\[\Rightarrow \lim_{x \to 0} \frac{100 \sin^{-1} x}{x} = 100\]

and \(\lim_{x \to 0} \frac{x}{\sin^{-1} x} = 99\)

\[\lim_{x \to 0} \frac{\tan x}{x} = 1\) (but a value which is bigger than 1)

\[\Rightarrow \lim_{x \to 0} \frac{100 \tan x}{x} = 100\]

and \(\lim_{x \to 0} \frac{\tan^{-1} x}{x} = 99\)

Hence

a. \(\lim_{x \to 0} \left(100 \frac{\sin x}{x} + 100 \frac{\tan x}{x}\right) = 199\)

b. \(\lim_{x \to 0} \left(100 \frac{x}{\sin x} + 100 \frac{\tan x}{x}\right) = 200\)

c. \(\lim_{x \to 0} \left(100 \frac{\sin^{-1} x}{x} + 100 \frac{\tan^{-1} x}{x}\right) = 199\)

d. \(\lim_{x \to 0} \left(100 \frac{x}{\sin^{-1} x} + 100 \frac{\tan^{-1} x}{x}\right) = 198\)

3. \(a \to q; b \to p, q, r; c \to r, s, d \to r, s.\)

a. Here, \(a > 0, \text{ if } a \leq 0, \text{ then limit } = \infty\)

\[\therefore \lim_{x \to \infty} \frac{(\sqrt{x^2 - x + 1}) - (ax - b)}{(\sqrt{x^2 - x + 1}) + (ax + b)}\]

\[= \lim_{x \to \infty} \frac{(x^2 - x + 1) - (ax + b)^2}{(x^2 - x + 1) + (ax + b)}\]

\[= \lim_{x \to \infty} \frac{x^2 - x + 1 - (ax + b)^2}{\sqrt{x^2 - x + 1} + ax + b}\]

\[= \lim_{x \to \infty} \frac{(1 - a^2)x^2 - (1 + 2ab)x + (1 - b^2)}{\sqrt{x^2 - x + 1} + ax + b}\]
\[\lim_{x \to 0} \frac{(1-a^2)x - (1+2ab)x + (1-b^2)}{\sqrt{1-\frac{1}{x^2} + \frac{a+b}{x}}} \]

This is possible only when \(1-a^2=0\) and \(1+2ab=0\)

\[a = \pm 1 \]

\[a = 1 \quad (\because a > 0) \quad \text{(1)} \]

\[b = -1/2 \]

\[(a, b^3) = (1, -1) \]

b. Divide numerator and denominator by \(e^{1/x}\), then

\[\lim_{x \to \infty} \frac{1}{1+a^3}e^{x} + 8 \]

\[\Rightarrow \]

\[\frac{0+8}{0+1-b^3} = 2 \]

\[b^3 = 3 \Rightarrow b = -3^{1/3} \]

Then, \(a, b^3 = (a, -3)\)

c. \(\lim_{x \to \infty} (x^4 - x^2 + 1) - ax^2 - b = 0 \)

Put \(x = \frac{1}{t}\)

\[\Rightarrow \lim_{t \to 0} \left(\frac{1}{t^2} - \frac{1}{t^3} + 1 \right) = \frac{a}{t^2} - b \]

\[\Rightarrow \lim_{t \to 0} \frac{1}{t^2} - 1 - bt^2 = 0 \quad \text{(1)} \]

Since R.H.S. is finite, numerator must be equal to 0 at \(t \to 0\).

\[1-a = 0 \quad \Rightarrow a = 1 \]

From equation (1), \(\lim_{t \to 0} \frac{1}{t^2} - 1 - bt^2 = 0 \)

\[\Rightarrow \lim_{t \to 0} \frac{1-t^2+t^4}{t^2} = -1 - bt^2 = 0 \]

\[\Rightarrow -(\frac{1}{2}) = b \Rightarrow a = 1, b = -\frac{1}{2} \quad \Rightarrow (a, 4b) = (1, 2) \]

d. \(\lim_{x \to -a} \frac{x(a) - (-a)^2}{x - (-a)} = 7 \Rightarrow 7a^6 = 7 \Rightarrow a^6 = 1 \Rightarrow a = -1 \)

Integer Type

1. (2) We have

\[L = \lim_{n \to \infty} \prod_{n=2}^{n} \frac{n^2 - 1}{n^2} \]

\[= \lim_{n \to \infty} \prod_{n=2}^{n} \frac{n-1}{n} \]

\[= \lim_{n \to \infty} \prod_{n=2}^{n} \frac{n+1}{n} \]

\[= \lim_{n \to \infty} \prod_{n=2}^{n} \frac{1}{2} \]

\[= \lim_{n \to \infty} \frac{1+n}{2} = 1 \]

2. (6) \(\lim_{x \to 1} f(g(x)) = f(g(1^3)) = f(2^3) = 8^2 + 2 = 6 \)

Hence \(\lim_{x \to 1} f(g(x)) = 6 \)

3. (3) \(\lim_{x \to 1} (1+ax+bx^2) = 1 \quad e^3 \)

\[\Rightarrow \lim_{x \to 1} (1+ax+bx^2) = e^3 \]

\[\Rightarrow \lim_{x \to 1} \frac{c}{x-1} = e^3 \]

\[\Rightarrow \frac{c}{x-1} = e^3 \]

\[\Rightarrow c = (ax + bx^2) \]

\[\Rightarrow \frac{c}{x-1} = e^3 \]

\[\Rightarrow \frac{c}{x-1} = e^3 \]

\[\Rightarrow \frac{c}{x-1} = e^3 \]

\[\Rightarrow c = 3 \]

\[\Rightarrow \lim_{h \to 0} \frac{c(a(1-h)+b(1+h)^2)}{1+h-1} = 3 \]

\[\Rightarrow \lim_{h \to 0} \frac{c(a+h+b(1+h)^2)}{1+h-1} \]

\[\Rightarrow \frac{c(a+b+(ac+2b)+b(h)^2)}{h} = 3 \]

\[\Rightarrow \frac{ca+b=0 \text{ and } ac+2b=3}{h} \]

\[\Rightarrow \frac{b=3 \text{ and } ac=-3}{h} \]

Also the form must be 1- for which \(a+b=0 \Rightarrow a=-3 \)

and \(c=1 \)

4. (0) \(\lim_{n \to \infty} \sqrt[3]{(n+1)^2} - \frac{\sqrt[3]{(n-1)^2}}{2} \)

\[= \lim_{n \to \infty} n^{2/3} \left[\frac{1+\frac{1}{n}}{2} - \frac{1+\frac{1}{n}}{2} \right] \]

\[= \lim_{n \to \infty} n^{2/3} \left[1+\frac{1}{3} + \frac{2}{3} \frac{2}{n} + \frac{2}{3} \frac{2}{n^2} + \frac{2}{3} \frac{2}{n^3} + \ldots \right] \]

\[= \lim_{n \to \infty} n^{2/3} \left[\frac{4}{3} + \frac{8}{n} + \frac{1}{n^3} + \ldots \right] \]

\[= \lim_{n \to \infty} \frac{4}{3} \left[\frac{1}{n^{1/3}} \right] + \frac{8}{n^{1/3}} + \frac{1}{n^{1/3}} + \ldots \]

\[= 0 \]
5. \(\lim_{x \to 0} \left[1 + x + \frac{f(x)}{x} \right]^{\frac{1}{x}} = e^3 \\
\Rightarrow \lim_{x \to 0} e^{\ln \left[1 + x + \frac{f(x)}{x} \right]^{\frac{1}{x}}} = e^3 \\
\Rightarrow \lim_{x \to 0} e^{\ln \left[1 + x + \frac{f(x)}{x} \right]^{\frac{1}{x}}} = e^3 \\
\Rightarrow \lim_{x \to 0} \frac{f(x)}{x^2} = 2 \\
\Rightarrow \lim_{x \to 0} \left[1 + \frac{f(x)}{x} \right]^{\frac{1}{x}} = e^{\ln \left[1 + \frac{f(x)}{x} \right]^{\frac{1}{x}}} = e^{\lim_{x \to 0} \frac{f(x)}{x}^{\frac{1}{x}}} = e^2 \\
\text{Now} \lim_{x \to 0} \left[1 + \frac{f(x)}{x} \right]^{\frac{1}{x}} = e^{\ln \left[1 + \frac{f(x)}{x} \right]^{\frac{1}{x}}} = e^{\lim_{x \to 0} \frac{f(x)}{x}^{\frac{1}{x}}} = e^2 \\
\Rightarrow \lim_{x \to 0} \frac{2x + 3}{x} < \lim_{x \to 0} f(x) < \lim_{x \to 0} \frac{2x^2 + 5x}{x^2} \\
\Rightarrow \lim_{x \to 0} \frac{2 - \frac{3}{x}}{1} < \lim_{x \to 0} f(x) < \lim_{x \to 0} \frac{2 + \frac{5}{x^2}}{1} \\
\Rightarrow \lim_{x \to 0} f(x) = 2 \\
\Rightarrow \lim_{x \to 0} \frac{3f(x) - 1}{f^2(x)} = 3 \\
\Rightarrow \lim_{x \to 0} f(x) + \frac{3 \lim_{x \to 0} f(x) - 1}{\left(\lim_{x \to 0} f(x) \right)^2} = 3 \\
\Rightarrow \left(y + \frac{3y - 1}{y^2} \right) = 3 \\
\Rightarrow y^3 - 3y^2 + 3y - 1 = 0 \\
\Rightarrow (y - 1)^3 = 0 \\
\Rightarrow y = 1 \\
\Rightarrow 9. (4) \lim_{x \to 0} \frac{e^{-x/2} - \cos x}{x^3 \sin x} = \lim_{x \to 0} \frac{1 - \frac{1}{2!} + \frac{1}{4!} - x^2 + \frac{x^4}{4!}}{x^3(x - \frac{x^3}{3!})} \\
= \lim_{x \to 0} \frac{1}{x^3(x - \frac{x^3}{3!})} \\
= \lim_{x \to 0} \frac{1}{x^3} \cdot \lim_{x \to 0} \frac{1}{x - \frac{x^3}{3!}} \\
= 2^{\frac{1}{2}} \cdot 3 \\
= 2 \cdot 3^2 = 18 \\
10. (3) \lim_{x \to 2} \frac{(10 - x)^{1/3} - 2}{x - 2} = \lim_{h \to 0} \frac{(8 - h)^{1/3} - 2}{h} \\
= \lim_{h \to 0} \frac{1}{h} \left(\frac{8}{3} - 1 \right) \\
= \lim_{h \to 0} \frac{1 - h}{3h} = \frac{1}{12} \\
11. (b) Let L = \lim_{x \to 0} \frac{\log_3 (\log_3 x)}{e^{\sqrt[3]{x}}} = \left(\frac{\infty}{\infty} \right) \text{form} \\
= \lim_{x \to 0} \frac{1}{x \log_3 x} \\
= \lim_{x \to 0} \frac{1}{e^{\sqrt[3]{x}} \cdot \frac{1}{2\sqrt[3]{x}}} \\
= \lim_{x \to 0} \frac{2}{e^{\sqrt[3]{x} \cdot \sqrt[3]{x} \log_3 x}} \\
= 0 \\
12. (6) It is obvious \(n \) is even, then \\
\lim_{n \to \infty} \frac{1}{n^{1/2} + 3 + 5 + \ldots + n/2} = \frac{1}{3 + 4 + 6 + \ldots + n/2} = \frac{1}{n/2} \\
= \lim_{n \to \infty} \left(\frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \ldots + \frac{n}{2(n+1)} \right) \\
= \lim_{n \to \infty} \left(\frac{n^2}{2} + \frac{n(n+2)}{4} \right) \\
= \lim_{n \to \infty} \frac{n^2}{2} - \frac{n(n+2)}{4(n^2+1)} \\
= \frac{1}{2} \cdot 3 = \frac{1}{2} \\
= 2^{3/2} = (6)^{1/2} \\
= 2^{4/3} = (6)^{4/3}
13. (8) Since RHS is finite quantity
∴ At $x \to 1$, Numerator must be $= 0$
∴ $0 + b + 4 = 0$
∴ $b = -4$

Then $\lim_{x \to 1} \frac{a \sin(x-1) - 4 \cos(x-1) + 4}{(x^2 - 1)} = -2$

Put $x = 1 + h$, Then $\lim_{h \to 0} \frac{a \sinh h + 4(1 - \cosh h)}{h(2 + h)} = -2$

$\Rightarrow \lim_{h \to 0} \frac{a(\sinh h) + 4(1 - \cosh h)}{2 + h} = -2$

$\Rightarrow \frac{a(1) + 0}{2} = -2$
$\Rightarrow a = -4$
$\Rightarrow |a + b| = 8$

14. (6) Put $x = 1 + h$

Then $f(a) = \lim_{h \to 0} \frac{(1 + h)^a - a(1 + h) + a - 1}{h^2}$

$= \lim_{h \to 0} \frac{(1 + ah + a(a - 1) h^2 + \ldots) - a - ah + a - 1}{h^2}$

$\Rightarrow f(a) = a(a - 1)$
$\Rightarrow f(4) = 6$

15. (3) $L = \lim_{x \to 0} \frac{(\cos x - 1)(\cos x - e^x)}{x^n}$

$= \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)(\cos x - e^x)}{(1 + \cos x)x^n}$

$= \lim_{x \to 0} \frac{(\sin x)^2}{x^n} \cdot \frac{1 - \cos x}{x} \cdot \frac{e^x - 1}{x}$

$= \lim_{x \to 0} \frac{(\sin x)^2}{x^n} \cdot \frac{1}{1 + \cos x}$

If L is finite non-zero, then $n = 3$ (as for $n = 1, 2$, $L = 0$ and for $n = 4, L = \infty$)

$D \prod_{r=2}^{n} (\cos rx)^{1/r}$

16. (6) $L = \lim_{x \to a} \frac{\prod_{r=2}^{n} (\cos rx)^{1/r}}{2x}$ (Using L'Hospital's rule)

Let $y = \prod_{r=2}^{n} (\cos rx)^{1/r}$

$\Rightarrow \ln y = \sum_{r=2}^{n} \frac{1}{r} \ln(\cos rx)$

$\Rightarrow \frac{1}{y} \frac{dy}{dx} = - \sum_{r=2}^{n} \tan(rx)$

$\Rightarrow -\frac{dy}{dx} = y \sum_{r=2}^{n} \tan(rx)$

$\Rightarrow \frac{y}{2} \frac{dy}{dx} = -y \sum_{r=2}^{n} \tan(rx)$

$\Rightarrow \frac{y}{2} \frac{d}{dx} \ln y = -\sum_{r=2}^{n} \tan(rx)$

$\Rightarrow \frac{y}{2} \cdot \frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \sum_{r=2}^{n} \tan(rx)$

$\Rightarrow \frac{dy}{dx} = \sum_{r=2}^{n} \tan(rx)$

$\Rightarrow D \prod_{r=2}^{n} (\cos rx)^{1/r} = \frac{n}{2} \sum_{r=2}^{n} \tan(rx)$

$\Rightarrow L = \lim_{x \to 0} \frac{\sum_{r=2}^{n} \tan(rx)}{2x}$

$= \frac{1}{2} \left[2 + 3 + 4 + \ldots + n \right]

= \frac{1}{2} \left[\frac{n(n+1)}{2} - 1 \right]

= \frac{n^2 + n - 2}{4}$

$\Rightarrow \frac{n^2 + n - 2}{4} = 10$
$\Rightarrow n^2 + n - 42 = 0$
$\Rightarrow (n + 7)(n - 6) = 0$
$\Rightarrow n = 6$

17. (9) $f(x) = \frac{3x^2 + ax + a + 1}{(x + 2)(x - 1)}$

as $x \to -2$, $D' \to 0$, hence as $x \to -2$, $N \to 0$

$\Rightarrow 12 - 2a + a + 1 = 0 \Rightarrow a = 13$

18. (4) Let $x = \frac{1}{y}$

$\Rightarrow \lim_{x \to \infty} \left(x - x^2 \log_x \left(1 + \frac{1}{x} \right) \right)$

$= \lim_{y \to 0} \left(1 \frac{\log_y (1 + y)}{y^2} \right)$

$= \lim_{y \to 0} \left(\frac{y - \log_y (1 + y)}{y^2} \right)$

$= \lim_{y \to 0} \left(\frac{y - \left(e^\frac{1}{2} + e^\frac{1}{2} \ldots \right)}{y^2} \right) = 1/2$

19. (3) $S_n = \frac{n(n+1)}{2}$ and $S_n - 1 = \frac{(n+2)(n-1)}{2}$

$\Rightarrow \frac{S_n}{S_n - 1} = \frac{n(n+1)}{2} \frac{2}{(n+2)(n-1)}$

$\Rightarrow \frac{S_n}{S_n - 1} = \left(\frac{n}{n-1} \right) \left(\frac{n+1}{n+2} \right)$

$\Rightarrow P_n = \left(\frac{2 3 4 5 \ldots n}{1 2 3 4 \ldots n-1} \right) \left(3 4 5 \ldots n+1 \right)$

$\Rightarrow P_n = \left(\frac{3}{n+2} \right)$

$\Rightarrow \lim_{n \to \infty} P_n = 3$
2.54 Calculus

20 (7) We have,

\[L = \lim_{x \to 0} \frac{2f(x) - 3af'(2x) + bf'(8x)}{\sin^2 x} \]

For the limit to exist, we have \(2f(0) - 3af'(0) + bf'(0) = 0\)

\[\Rightarrow 3a - b = 2 \quad [\because f(0) \neq 0, \text{ given}] \quad (1) \]

\[\Rightarrow L = \lim_{x \to 0} \frac{2f'(x) - 6a f'(2x) + 8b f'(8x)}{2x} \]

For the limit to exist, we have \(2f'(0) - 6af''(0) + 8bf''(0) = 0\)

\[\Rightarrow 3a - 4b = 1 \quad [\because f'(0) \neq 0, \text{ given}] \quad (2) \]

Solving equations (1) and (2), we have \(a = \frac{7}{9}\) and \(b = \frac{1}{3}\).

Archives

Subjective

1. Problems solved in the 'Limit by rationalization method'.

2. \(f(x) = \int \frac{2\sin x - \sin 2x}{x^3} \, dx \), \(x \neq 0\)

\[\Rightarrow f'(x) = \frac{2\sin x - \sin 2x}{x^2} \], \(x \neq 0\)

\[\Rightarrow \lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{2\sin x - \sin 2x}{x^3} \]

\[= \lim_{x \to 0} \frac{2\sin x(1 - \cos x)(1 + \cos x)}{x^2(1 + \cos x)} \]

\[= \lim_{x \to 0} 2 \times \frac{\sin^2 x}{x^2} \times \frac{1}{1 + \cos x} = 2 \times (1)^2 \times \frac{1}{2} = 1 \]

3. \(\lim_{h \to 0} \frac{(a + h)^2 \sin(a + h) - a^2 \sin a}{h} \)

\[= \lim_{h \to 0} \frac{a^2 [\sin(a + h) - \sin a] + 2ah \sin(a + h) + h^2 \sin(a + h)}{h} \]

\[= \lim_{h \to 0} \frac{a^2 [2 \cos \frac{a + h}{2} \sin \frac{h}{2}]}{2 \times \frac{h}{2}} + \lim_{h \to 0} 2a \sin (a + h) \]

\[= a^2 \cos a + 2a \sin a \]

4. \(\lim_{x \to 0} \frac{2^x - 1}{\sqrt{x} + \frac{1}{x}} = \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1 + x} - 1} \times \frac{\sqrt{1 + x} + 1}{\sqrt{1 + x} + 1} \)

\[= \lim_{x \to 0} \frac{(2^x - 1)(\sqrt{1 + x} + 1)}{1 + x - 1} \]

\[= \lim_{x \to 0} \frac{x}{x \times x} \lim(\sqrt{1 + x} + 1) \]

\[= \ln 2 (1 + 1) = 2 \ln 2 \]

5. \(\lim_{x \to 0} \left\{ \tan \left(\frac{\pi}{4} + x \right) \right\}^{1/x} \)

\[= \lim_{x \to 0} \left\{ \frac{1 + \tan x}{1 - \tan x} \right\}^{\frac{\tan x}{\tan x}} \]

\[= \lim_{x \to 0} \frac{(1 + \tan x)^{1/(\tan x)}}{(1 - \tan x)^{-1/(\tan x)}} \]

\[= \frac{e}{e^{-1}} = e^2 \]

Objective

Fill in the blanks

1. \(\lim_{x \to 1} (1 - x) \tan \frac{\pi x}{2} \)

\[= \lim_{x \to 1} \frac{1 - x}{\tan \frac{\pi x}{2}} \]

\[= \lim_{x \to 1} \frac{\pi}{2} \frac{(1 - x)}{\tan \frac{\pi (1 - x)}{2}} \]

\[= \frac{\pi}{2} \]

2. \(\lim_{x \to 0^+} \frac{g(f(x)) = g((\sin 0^+)) = g(0^+) = (0)^2 + 1 = 1}{\}

\(\lim_{x \to 0^+} g(f(x)) = g((\sin 0^+)) = g(0^+) = (0)^2 + 1 = 1 \)

Hence, \(\lim g \{ f(x) \} = 1 \).

3. \(\lim_{x \to -1} \left[\frac{x^4 \sin \frac{1}{x} + x^2}{(1 + |x|^3)} \right] \)

\[= \lim_{x \to -1} \left[\frac{x \sin \frac{1}{x} + 1}{\frac{1}{x} - 1} \right] \]

\[= \lim_{x \to -1} \left[\frac{1}{x} \frac{1}{x^3} - 1 \right] \]

\[= \frac{1 + 0}{0 - 1} = -1 \]
4. In $\triangle ABC$, $AB = AC$, $AD \perp BC$ (D is a midpoint of BC)
 Let $r =$ radius of circumcircle
 $\therefore OD = OB = OC = r$

 Now, $BD = \sqrt{BO^2 - OD^2} = \sqrt{r^2 - (h-r)^2}$

![Fig. 2.7](image)

 $\therefore BC = 2\sqrt{2rh - h^2}$

 \therefore area of $\triangle ABC = \frac{1}{2} \times BC \times AD = h\sqrt{2rh - h^2}$

 Also, $\lim_{h \to 0} \frac{A}{p^3} = \frac{h\sqrt{2rh - h^2}}{8\left(2\sqrt{rh - h^2} + \sqrt{2hr}\right)^3}$

 $\lim_{h \to 0} \frac{h^{3/2}}{8h^{3/2} \left(\sqrt{2r} - h + \sqrt{2r}\right)^3}$

 $\lim_{h \to 0} \frac{\sqrt{2r - h}}{8\left(\sqrt{2r} - h + \sqrt{2r}\right)^3}$

 $\lim_{h \to 0} \frac{\sqrt{2r}}{8\left(\sqrt{2r} + \sqrt{2r}\right)^3} = \frac{\sqrt{2r}}{8 \times 8 \times 2r \times \sqrt{2r}} = \frac{1}{128r}$

5. $\lim_{x \to 0} \left(\frac{x+6}{x+1}\right)^{x+4} = \lim_{x \to 0} \left(\frac{1 + \frac{6}{x}}{1 + \frac{1}{x}}\right)^{x+4}$

 $\lim_{x \to 0} \left(\frac{1 + \frac{6}{x}}{1 + \frac{1}{x}}\right)^x \left(1 + \frac{\lambda}{x}\right)^x = e^\lambda$

 $\lim_{x \to 0} \left(\frac{1 + \frac{6}{x}}{1 + \frac{1}{x}}\right)^x = e^{\frac{6}{1}} = e^6$

6. $\lim_{x \to 0} \left(\frac{1 + 5x^2}{1 + 3x^2}\right)^{x^2}$

 $\lim_{x \to 0} (1 + 5x^2)^{1/x^2}$

 $\lim_{x \to 0} (1 + 3x^2)^{1/x^2}$

 $\lim_{x \to 0} \left(\frac{1 + 5x^2}{1 + 3x^2}\right)^{x^2}$

 $\lim_{x \to 0} \left(\frac{1 + 5x^2}{1 + 3x^2}\right)^{x^2}$

7. $\lim_{h \to 0} \frac{(1+2h) - 2\ln(1+h)}{h^2}$

 $\lim_{h \to 0} \frac{\ln \frac{1+2h}{1+2h+h^2}}{h^2}$

 $\lim_{h \to 0} \ln \left(\frac{1+2h}{1+2h+h^2}\right) \times \frac{-1}{1+2h+h^2}

 = 1 \times \lim_{h \to 0} \frac{-1}{1+2h+h^2}

 [Using $\lim_{x \to 0} \log (1 + x) = 1$]

 $\therefore = -1$

True or False

1. False

Consider $f(x) = \frac{|x-a|}{x-a}$, $g(x) = \frac{x-a}{|x-a|}$ then, $\lim_{x \to a} (f(x) \times g(x))$ exists, but $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ do not exist.

\therefore Statement is false.

Multiple choice questions with one correct answer

1. c. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \sqrt{\frac{1 - \sin x}{1 + \cos x}} = \sqrt{\frac{1 - 0}{1 + 0}} = 1$

2. d. $\lim_{x \to 1} \frac{-\sqrt{25-x^2} - (-\sqrt{24})}{x-1}$

 $= \lim_{x \to 1} \frac{\sqrt{24} - \sqrt{25-x^2}}{x-1} \times \frac{\sqrt{24} + \sqrt{25-x^2}}{\sqrt{24} + \sqrt{25-x^2}}

 = \lim_{x \to 1} \frac{x^2 - 1}{\sqrt{24} + \sqrt{25-x^2}}

 = \lim_{x \to 1} \frac{x-1}{\sqrt{24} + \sqrt{25-x^2}} \times \frac{\sqrt{24} + \sqrt{25-x^2}}{x-1}

 = \frac{2}{2\sqrt{24}} = \frac{1}{2\sqrt{6}}$
3. \(b. \lim_{n \to \infty} \left(\frac{1}{1-n^2} + \frac{2}{1-n^2} + \cdots + \frac{n}{1-n^2} \right) \)

\[= \lim_{n \to \infty} \frac{1+2+3+\cdots+n}{1-n^2} \]
\[= \lim_{n \to \infty} \frac{n(n+1)}{2} \cdot \frac{1}{1-n} \]
\[= \lim_{n \to \infty} \frac{1+n^2}{n} \cdot \frac{1}{1-n} = -1/2 \]

4. The given function is

\[f(x) = \begin{cases}
\frac{\sin(x)}{x} & \text{if } x \in (-\infty, 0) \cup [1, \infty) \\
0 & \text{if } x \in [0, 1)
\end{cases} \]

\[\therefore \lim_{x \to 0} f(x) = \lim_{h \to 0} \frac{\sin(-h)}{-h} \]
\[= \lim_{h \to 0} \frac{\sin(-1)}{-1} = \sin 1 \]
\[\lim_{x \to 0} f(x) = \lim_{h \to 0} 0 = 0 \]
\[\therefore \lim_{x \to 0} f(x) \neq \lim_{x \to 0} f(x) \]
\[\therefore \lim_{x \to 0} f(x) \text{ does not exist.} \]

5. \(\lim_{x \to 0} \frac{\sqrt{1-\cos 2x}}{x} \)

\[= \lim_{x \to 0} \frac{1}{2} \sin^2 x \cdot \frac{1}{x} = \lim_{x \to 0} \frac{\sin x}{x} \]

\[= \lim_{h \to 0} \frac{\sin (0+h)}{0+h} = \lim_{h \to 0} \frac{-\sin h}{-h} = \lim_{h \to 0} \frac{\sin h}{-h} = -1 \]

L.H.L = \lim_{h \to 0} \frac{\sin (0+h)}{0+h} = \lim_{h \to 0} \frac{\sin h}{h} = 1

R.H.L = \lim_{h \to 0} \frac{\sin (0+h)}{0+h} = \lim_{h \to 0} \frac{\sin h}{h} = 1

As L.H.L. \neq R.H.L., therefore, the given limit does not exist.

6. \(\lim_{x \to 1} \frac{\sqrt{1-\cos[2(x-1)]}}{x-1} \)

\[= \lim_{x \to 1} \frac{2 \sin^2 (x-1)}{x-1} \]
\[= \sqrt{2} \lim_{x \to 1} \frac{|\sin(x-1)|}{x-1} \]
\[= \sqrt{2} \lim_{h \to 0} \frac{|\sin(-h)|}{-h} = \sqrt{2} \lim_{h \to 0} \frac{\sin h}{h} = \sqrt{2} \]

Again, R.H.L. = \(\lim_{x \to 1} \frac{\sqrt{2} |\sin(x-1)|}{x-1} \)

\[= \lim_{h \to 0} \frac{\sqrt{2} |\sin h|}{h} \]
\[= \lim_{h \to 0} \frac{\sqrt{2} \sin h}{h} = \sqrt{2} \]

L.H.L. \neq R.H.L. Therefore, \(\lim_{x \to 1} f(x) \) does not exist.

7. \(c. \lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{4 \sin^4 x} \)

\[= \lim_{x \to 0} \frac{x}{4 \sin^4 x} \left[\frac{2 \tan x}{1-\tan^2 x} - 2 \tan x \right] \]
\[= \lim_{x \to 0} \frac{x \tan^3 x}{2 \sin x \cos^3 x \left(1 - \tan^2 x \right)} \]
\[= \lim_{x \to 0} \frac{x}{2 \times 1 \times \frac{1}{1} \times \frac{1}{1} = \frac{1}{2}} = \frac{1}{2} \]

8. \(\lim_{x \to 0} \left(\frac{x^3}{x+2} \right) = e^x \)

\[= e^{\lim_{x \to 0} \left(\frac{x^3}{x+2} \right)} = e^0 = 1 \]

9. \(b. \lim_{x \to 0} \frac{\sin \left(\pi \cos^2 x \right)}{x^2} = \lim_{x \to 0} \frac{\sin \left(\pi - \pi \cos^2 x \right)}{x^2} \]

\[= \lim_{x \to 0} \frac{\sin \left(\pi \sin^2 x \right)}{x^2} = \frac{\pi \sin^2 x}{x^2} \cdot \sin (\pi - 0) = \sin \theta \]

10. \(L = \lim_{x \to 0} \frac{(\cos x - 1)(\cos x - e^x)}{x^2} \)

\[= -\lim_{x \to 0} \frac{(1-\cos x)(1+\cos x)(\cos x - e^x)}{(1+\cos x)x^2} \]
\[= \lim_{x \to 0} \frac{\left(\frac{\sin x}{x} \right) \left(\frac{1-\cos x + e^x - 1}{x} \right)}{x^2} = \frac{1}{1+\cos x} \]

\(L \) is finite non-zero, then \(n = 3 \) (as for \(n = 1, 2, L = 0 \) and for \(n = 4, L = \infty \))

11. Given \(\lim_{x \to a} \frac{(a-n)x - \tan x}{x^2} \sin nx = 0 \), where \(a \) is a non-zero number.

\[\Rightarrow n \lim_{x \to a} \sin nx \left[\left(\frac{(a-n)x - \tan x}{x} \right) \right] = 0 \]
\[\Rightarrow \ln \left[(a-n)n - 1 \right] = 0 \]
\[\Rightarrow a = \frac{1}{n} + n \]
12. \(\lim_{x \to 0} \left[(\sin x)^{1/x} + \left(\frac{1}{x} \right)^{\sin x} \right] \)

\[
= \lim_{x \to 0} (\sin x)^{1/x} + \lim_{x \to 0} \left(\frac{1}{x} \right)^{\sin x} \\
= 0 + e^{\lim_{x \to 0} \frac{\sin x}{x}} \\
= 0 + e^{\lim_{x \to 0} \frac{\sin x}{x}} \\
= 0 + e^0 = 1
\]

13. \(e^{b \theta} = 2b \sin^2 \theta \)

\[
\Rightarrow \sin^2 \theta = \frac{1 + b^2}{2b}
\]

\[
\Rightarrow \sin^2 \theta = 1 \text{ as } \frac{1 + b^2}{2b} \geq 1
\]

\[
\theta = \pm \pi/2
\]

Multiple choice questions with one or more than one correct answers

1. a, c. \(L = \lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2} - x^2}{4} \)

\[
= \lim_{x \to 0} \frac{1}{x^2 \left(a + \sqrt{a^2 - x^2} \right)} - \frac{1}{4a^2} \\
= \lim_{x \to 0} \frac{(4 - a) - \sqrt{a^2 - x^2}}{4a^2 \left(a + \sqrt{a^2 - x^2} \right)} \\
\]

Numerator \(\to 0 \) if \(a = 2 \) and then \(L = \frac{1}{64} \).
CHAPTER 3

Continuity and Differentiability

- Continuity
- Types of Discontinuity
- Continuity of Special Types of Functions
- Intermediate Value Theorem
- Differentiability
CONTINUITY

In mathematics, a continuous function is a function for which, intuitively, small changes in the input result in small changes in the output. Otherwise, a function is said to be discontinuous.

A continuous function is a function whose graph can be drawn without lifting the pen from the paper.

For an example, consider the function $h(t)$ which describes the height of a growing flower at time t. This function is continuous. In fact, according to classical physics everything in nature is continuous. By contrast, if $M(t)$ denotes the amount of money in a bank account at time t, then the function jumps whenever money is deposited or withdrawn, so the function $M(t)$ is discontinuous.

Definition of Continuity of a Function

A function $f(x)$ is said to be continuous at $x = a$ if

$$\lim_{{x \to a^-}} f(x) = \lim_{{x \to a^+}} f(x) = f(a)$$

i.e., L.H.L. = R.H.L. = value of a function at $x = a$

or $\lim_{{x \to a}} f(x) = f(a)$.

A function $f(x)$ is said to be discontinuous at $x = a$ if

a. $\lim_{{x \to a^-}} f(x)$ and $\lim_{{x \to a^+}} f(x)$ exist, but are not equal.

b. $\lim_{{x \to a^-}} f(x)$ and $\lim_{{x \to a^+}} f(x)$ exist and are equal but not equal to $f(a)$.

c. $f(a)$ is not defined.

At least one of the limits does not exist.

Note: It should be noted that continuity of a function is the property of interval and is meaningful at $x = a$ only if the function has a graph in the immediate neighbourhood of $x = a$, not necessarily at $x = a$. Hence, it should not be mislead that continuity of a function is talked only in its domain.

![Fig. 3.1](image)

For example, discussing continuity of $f(x) = \frac{1}{x-1}$ at $x = 1$ is meaningful, but continuity of $f(x) = \log_e x$ at $x = 2$ is meaningless. Similarly, if $f(x)$ has a graph as shown in Fig. 3.1, then continuity at $x = 0$ is meaningless.

Also, continuity at $x = a$ ⇒ existence of limit at $x = a$; but existence of limit at $x = a$ does not mean continuity at $x = a$.

Directional Continuity

A function may happen to be continuous in only one direction, either from the “left” or from the “right”.

A right-continuous function is a function which is continuous at all points when approached from the right, that is, $c < x < c + \delta$ [Fig. 3.2(b)].

Similarly, a left-continuous function is a function which is continuous at all points when approached from the left, that is, $-\delta < x < c$ [Fig. 3.2(a)].

![Fig. 3.2](image)

A function is continuous $x = a$ if and only if it is both right-continuous and left-continuous $x = a$.

Continuity in Interval

A function is said to be continuous in the open interval (a, b) if $f(x)$ is continuous at each and every point $x \in (a, b)$. For any $c \in (a, b)$, $\lim_{{x \to c}} f(x) = f(c)$.

A function $f(x)$ is said to be continuous in the closed interval $[a, b]$ if it is continuous at every point in this interval and the continuity at the end points is defined as $f(x)$ is continuous at $x = a$ if $f(\lim_{{x \to a^-}} f(x)) = \lim_{{x \to a^+}} f(x)$ (L.H.L. should not be evaluated) and at $x = b$ if $f(\lim_{{x \to b^-}} f(x)) = \lim_{{x \to b^+}} f(x)$ (R.H.L. should not be evaluated).

Example 3.1 A function $f(x)$ satisfies the following property:

$$f(x+y) = f(x)f(y)$$

Show that the function is continuous for all values of x if it is continuous at $x = 1$.

Sol. As the function is continuous at $x = 1$, we have

$$\lim_{{x \to 1^-}} f(x) = \lim_{{x \to 1^+}} f(x) = f(1)$$

$$\Rightarrow \lim_{{h \to 0}} f(1-h) = f(1-h) = f(1)$$

$$\Rightarrow \lim_{{h \to 0}} f(h) = f(1)$$

[Using $f(x+y) = f(x)f(y)$]

$$\Rightarrow \lim_{{h \to 0}} f(-h) = f(h) = 1$$

(1)

Now, consider any arbitrary point $x = a$.

L.H.L. = $\lim_{{h \to 0}} f(a-h)$

$= \lim_{{h \to 0}} f(a)f(-h)$

$= f(a) \lim_{{h \to 0}} f(-h) = f(a)$

[as $\lim_{{h \to 0}} f(-h) = 1$, using equation (1)]

R.H.L. = $\lim_{{h \to 0}} f(a+h)$

$= \lim_{{h \to 0}} f(a)f(h)$

$= f(a) \lim_{{h \to 0}} f(h) = f(a)$

[as $\lim_{{h \to 0}} f(h) = 1$, using equation (1)]
Hence, at any arbitrary point \(x = a \), L.H.L. = R.H.L = \(f(a) \).
Therefore, function is continuous for all values of \(x \) if it is continuous at 1.

Example 3.2
Let \(f \) be a function satisfying \(f(x + y) + \sqrt{6 - f(y)} = f(x) + f(y) \) and \(f(h) \to 6 \) as \(h \to 0 \). Discuss the continuity of \(f \).

Sol.

\[
\text{R.H.L.} = \lim_{x \to a^+} f(x) = \lim_{h \to 0} f(x + h)
\]

\[
= \lim_{h \to 0} [f(x)f(h) - \sqrt{6 - f(h)}]
\]

\[
= f(x) \lim_{h \to 0} f(h) - \lim_{h \to 0} \sqrt{6 - f(h)}
\]

\[
= f(x) \times 6 - 0 = 6f(x) \neq f(x)
\]

This shows that if \(f(x) \neq 0 \), then \(f \) is discontinuous at \(x \). If \(f(x) = 0 \), then \(f(x) \) is continuous at \(x \).

Concept Application Exercise 3.1

1. Let \(f(x + y) = f(x) + f(y) \) for all \(x \) and \(y \). If the function \(f(x) \) is continuous at \(x = 0 \). Show that \(f(x) \) is continuous for all \(x \).
2. A function \(f(x) \) satisfies the following property: \(f(x,y) = f(x)f(y) \). Show that the function \(f(x) \) is continuous for all values of \(x \) if it is continuous at \(x = 1 \).
3. If \(f(x + y) = f(x)f(y) \) for all \(x, y \in R \) and \(f(x) = 1 + g(x) G(x) \), where \(\lim_{x \to 0} g(x) = 0 \) and \(\lim_{x \to 0} G(x) \) exist, prove that \(f(x) \) is continuous at all \(x \in R \).

TYPES OF DISCONTINUITY

Removable Discontinuity

Here \(\lim_{x \to a} f(x) \) necessarily exists, but is either not equal to \(f(a) \) or \(f(a) \) is not defined. In this case, it is therefore possible to redefine the function in such a manner that \(\lim_{x \to a} f(x) = f(a) \) and thus makes the function continuous.

Consider the functions \(g(x) = (\sin x)/x \). Function is not defined at \(x = 0 \), so the domain is \(R - \{0\} \). Since the limit of \(g \) at 0 is 1, \(g \) can be extended continuously to \(R \) by defining its value at 0 to be 1.

Thus redefined function

\[
G(x) = \begin{cases}
\sin x & \text{for } x \neq 0 \\
1 & \text{for } x = 0
\end{cases}
\]

Thus, a point in the domain that can be filled in so that the resulting function is continuous is called a **removable discontinuity**.

Consider function \(f(x) = \begin{cases}
\frac{x^2 - 1}{x - 1} & \text{for } x \neq 1 \\
3 & \text{for } x = 1
\end{cases} \)

In this example, the function is nicely defined away from the point \(x = 1 \).

In fact, if \(x \neq 1 \), the function is

\[
f(x) = \frac{x^2 - 1}{x - 1} = \frac{(x-1)(x+1)}{x-1} = x + 1
\]

However, if we were to consider the point \(x = 1 \), this definition no longer makes sense since we would have to divide by zero. The function instead tells us that the value of the function is \(f(1) = 3 \).

Non-removable Discontinuity

If \(\lim_{x \to a} f(x) \neq \lim_{x \to a} f(x) \), then \(f(x) \) is said to have the first kind of non-removable discontinuity.

Consider the function \(f(x) = 1/x \). Function is not defined at \(x = 0 \). The function \(f \) cannot be extended to a continuous function whose domain is \(R \), since no matter what value is assigned at 0, the resulting function will not be continuous. A point in the domain that cannot be filled in so that the resulting function is continuous is called a **non-removable discontinuity**.

Graphical View of Non-removable Discontinuity

Both the limits are finite and not equal

Consider the function \(f(x) = [x] \), greatest integer function. As shown in Fig. 3.4, the graph has jump of discontinuity at all integral values of \(x \).
3.4 Calculus

At least one of left and right limit is infinity or vertical asymptote

Consider the function \(f(x) = \tan x \)

\[f(x) = \frac{1}{2\sin x - 1} \]

\(f(x) \) is discontinuous when \(2 \sin x - 1 = 0 \)
\[\Rightarrow \sin x = \frac{1}{2} \Rightarrow x = 2n\pi + \frac{\pi}{6} \text{ or } x = 2n\pi + \frac{5\pi}{6}, n \in \mathbb{Z} \]

b. \(f(x) = \frac{1}{x^2 - 3|x| + 2} \)

\(f(x) \) is discontinuous when \(x^2 - 3|x| + 2 = 0 \)
\[\Rightarrow |x|^2 - 3|x| + 2 = 0 \]
\[\Rightarrow (|x| - 1)(|x| - 2) = 0 \]
\[\Rightarrow |x| = 1, 2 \]
\[\Rightarrow x = \pm 1, \pm 2 \]

c. \(f(x) = \frac{1}{x^4 + x^2 + 1} \)

Now, \(x^4 + x^2 + 1 = \left(x^2 + \frac{1}{2} \right)^2 + \frac{3}{4} \geq 1 \forall x \in \mathbb{R} \)
\[\Rightarrow f(x) \text{ is continuous } \forall x \in \mathbb{R} \]

d. \(f(x) = \frac{1}{1 - e^{-\frac{x}{x^2}}} \)

\(f(x) \) is discontinuous when \(x - 2 = 0 \). Also
\[\text{when } 1 - e^{-\frac{x}{x^2}} = 0 \]
\[\Rightarrow x = 2 \text{ and } e^{-\frac{x}{x^2}} = 1 \]
\[\Rightarrow x = 2 \text{ and } \frac{x}{x^2} = 0 \]
\[\Rightarrow x = 2 \text{ and } x = 1 \]

e. \(f(x) = \lfloor x \rfloor - [x - 1] = [x] - ([x] - 1) = 1 \)
\[\Rightarrow f(x) \text{ is continuous } \forall x \in \mathbb{R} \]

Example 3.4 Let \(f(x) = \frac{\log (1 + x)^{1+x} - x}{x^2} \), then find the value of \(f(0) \) so that the function is continuous at \(x = 0 \).

Sol. We must have \(f(0) = \lim_{x \to 0} f(x) \)
\[= \lim_{x \to 0} \frac{(1 + x) \log (1 + x) - x}{x^2} \]
\[= \lim_{x \to 0} \frac{\log (1 + x) + 1 - 1}{2x} \]
(Using L'Hopital's rule)
\[= \frac{1}{2} \lim_{x \to 0} \frac{\log (1 + x)}{x} = \frac{1}{2} \]

Example 3.5 What value must be assigned to \(k \) so that the function \(f(x) = \begin{cases} x^4 - 256 & x \neq 4 \\ x - 4 & x = 4 \end{cases} \) is continuous at \(x = 4 \)?
Sol. \(f(x) \) is continuous at \(x = 4 \)

\[\Rightarrow f(4) = \lim_{{x \to 4}} \frac{x^4 - 256}{x - 4} \]

\[= \lim_{{x \to 4}} \frac{x^4 - 4^4}{x - 4} \]

\[= 4 \times 4^{4-1} = 256 \]

Example 3.6

A function \(f(x) \) is defined as follows

\[
\begin{cases}
ax - b, & x \leq 1 \\
3x, & 1 < x < 2 \\
bx^2 - a, & x \geq 2
\end{cases}
\]

Prove that if \(f(x) \) is continuous at \(x = 1 \) but discontinuous at \(x = 2 \), then the locus of the point \((a, b)\) is a straight line excluding the point where it cuts the line, \(y = 3 \).

Sol. Given \(f(x) \) is continuous at \(x = 1 \)

\[\therefore f(1) = \text{R.H.L.} \]

\[\Rightarrow f(1) = \lim_{{x \to 1^+}} f(x) \]

\[\Rightarrow f(1) = \lim_{{h \to 0}} f(1 + h) \]

\[\Rightarrow a - b = \lim_{{h \to 0}} 3(1 + h) \]

\[\Rightarrow a - b = 3 \]

(1)

Again, given \(f(x) \) is discontinuous at \(x = 2 \)

\[\therefore \text{L.H.L.} \neq f(2) \]

\[\Rightarrow \lim_{{x \to 2^-}} f(x) \neq f(2) \]

\[\Rightarrow \lim_{{h \to 0}} f(2 - h) \neq f(2) \]

\[\Rightarrow \lim_{{h \to 0}} 3(2 - h) \neq 4b - a \]

\[\Rightarrow 6 \neq 4b - a \]

Let \(6 = 4b - a \), then

from equations (1) and (2), we get \(b = 3 \)

\[\therefore \text{locus} \ y = 3, \]

which is impossible.

\[\therefore 6 \neq 4b - a \]

Hence, the locus of \((a, b)\) is \(x - y = 3 \) excluding the point when it cuts the line, \(y = 3 \).

Example 3.7

Let \(f(x) \) be a function defined as

\[
\begin{cases}
\frac{x^2 - 1}{x^2 - 2|x-1| - 1}, & x \neq 1 \\
\frac{1}{2}, & x = 1
\end{cases}
\]

Discuss the continuity of the function at \(x = 1 \).

Example 3.8

Let \(f(x) = \frac{\sin ax^2}{x^2} \), \(x \neq 0 \). For what values of

\[\frac{3 + \frac{1}{4}}{4a} \]

\(a, f(x) \) is continuous at \(x = 0 \).

Solution

\[f(0^+) = \lim_{{x \to 0^+}} \frac{x^2 - 1}{x^2 - 2|x-1| - 1} \]

\[= \lim_{{x \to 0^+}} \frac{x^2 - 1}{x^2 - 2(x-1) - 1} \]

\[= \lim_{{x \to 0^+}} \frac{(x+1)}{(x-1) - 2} = \infty \]

\[f(0^-) = \lim_{{x \to 0^-}} \frac{x^2 - 1}{x^2 - 2|x-1| - 1} \]

\[= \lim_{{x \to 0^-}} \frac{x^2 - 1}{x^2 - 2(1-x) - 1} \]

\[= \lim_{{x \to 0^-}} \frac{(x+1)}{(x+1) + 2} = \frac{1}{2} \]

Hence \(f(x) \) is discontinuous at \(x = 1 \).

Example 3.9

Let \(f(x) = \begin{cases}
\frac{a + 3 \cos x}{x^2}, & x < 0 \\
b \tan \left(\frac{\pi}{x+3} \right), & x \geq 0
\end{cases} \)

If \(f(x) \) is continuous at \(x = 0 \), then find \(a \) and \(b \), where \(\lfloor \cdot \rfloor \) denotes the greatest integer function.

Solution

\[f(0^+) = \lim_{{x \to 0^+}} b \tan \left(\frac{\pi}{x+3} \right) = b \tan \left(\frac{\pi}{2} \right) = \sqrt{3}b \]

\[f(0^-) = \lim_{{x \to 0^-}} \frac{a + 3 \cos x}{x^2} = \frac{a}{0} - \infty \]

\[\therefore a + 3 \cos x = 0 \]

\[\Rightarrow a = -3 \cos x \]

To find \(b \), we use the continuity condition at \(x = 0 \):

\[\lim_{{x \to 0}} f(x) = f(0) = b \tan \left(\frac{\pi}{2} \right) = \sqrt{3}b \]

Thus, \(a = -3 \) and \(b = \sqrt{3} \).
3.6 Calculus

\[f(0^-) = \lim_{h \to 0} \frac{a + 3\cos(-h)}{(-h)^2} \]

\[\Rightarrow a + 3 = 0 \text{ as } f(x) \text{ is continuous at } x = 0, \text{ then } f(0^-) \text{ must be finite.} \]

\[\Rightarrow a = -3 \]

\[\Rightarrow f(0^-) = \lim_{h \to 0} \frac{-3 + 3\cosh}{h^2} = \lim_{h \to 0} \frac{-3\cosh}{2} = -\frac{3}{2} \]

Since \(f(x) \) is continuous at \(x = 0 \), then

\[\sqrt{3b} = \frac{-3}{2} \Rightarrow b = \frac{-\sqrt{3}}{2} \]

\[f(x) = \begin{cases}
\cos^{-1} \{ \cot x \}, & x < \frac{\pi}{2} \\
\pi[x] - 1, & x \geq \frac{\pi}{2}
\end{cases} \]

where \([\cdot]\) represents the greatest function and \(\{\cdot\}\) represents the fractional part function. Find the jump of discontinuity.

Sol.

\[f(x) = \begin{cases}
\cos^{-1} \{ \cot x \}, & x < \frac{\pi}{2} \\
\pi[x] - 1, & x \geq \frac{\pi}{2}
\end{cases} \]

\[\lim_{x \to \pi/2^-} f(x) = \lim_{x \to \pi/2^-} \cos^{-1} \{ \cot x \} = -\frac{\pi}{2} \]

\[\lim_{x \to \pi/2^+} f(x) = \lim_{x \to \pi/2^+} (\pi[x] - 1) = \pi - 1 \]

\[\therefore \text{jump of discontinuity } = \pi - 1 - \frac{\pi}{2} = \frac{\pi}{2} - 1 \]

3. If \(f(x) \) is continuous and \(g(x) \) is discontinuous at \(x = a \), then the product function \(h(x) = f(x)g(x) \) is not necessarily discontinuous at \(x = a \).

Consider \(f(x) = x^3 \) and \(g(x) = \text{sgn}(x) \). Here \(f(x) \) is continuous at \(x = 0 \) and \(g(x) \) is discontinuous at \(x = 0 \). But the product function is

\[F(x) = f(x)g(x) = \begin{cases}
x^3, & x > 0 \\
0, & x = 0 \\
x^{-3}, & x < 0
\end{cases} \], which is continuous at \(x = 0 \).

4. If \(f(x) \) and \(g(x) \) are discontinuous at the same point, then the sum or product of the functions may be continuous. For example, both \(f(x) = [x] \) (greatest integer function) and \(g(x) = \{x\} \) (fractional part function) are discontinuous at \(x = 1 \), but their sum \(f(x) + g(x) = x \) is continuous at \(x = 1 \).

Also, \(f(x) = \begin{cases}
-1; & x \leq 0 \\
1; & x > 0
\end{cases} \) and \(g(x) = \begin{cases}
1; & x \leq 0 \\
-1; & x > 0
\end{cases} \)

Here both the functions are discontinuous at \(x = 0 \), but their product \(f(x)g(x) = -1, \forall x \in R \), is continuous at \(x = 0 \).

5. Every polynomial function is continuous at every point of the real line.

\[f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_n \\forall x \in R \]

6. Every rational function is continuous at every point where its denominator is different from zero.

7. Logarithmic functions, exponential functions, trigonometric functions, inverse circular functions, and modulus functions are continuous in their domain.

Example 3.11

If \(f(x) = \begin{cases}
|x+1|; & x \leq 0 \\
x; & x > 0
\end{cases} \) and

\[g(x) = \begin{cases}
|x|+1; & x \leq 1 \\
-|x-2|; & x > 1
\end{cases} \]

Draw its graph and discuss the continuity of \(f(x) + g(x) \).

Sol. Since \(f(x) \) is discontinuous at \(x = 0 \) and \(g(x) \) is continuous at \(x = 0 \), then \(f(x) + g(x) \) is discontinuous at \(x = 0 \).

Since \(f(x) \) is continuous at \(x = 1 \) and \(g(x) \) is discontinuous at \(x = 1 \), then \(f(x) + g(x) \) is discontinuous at \(x = 1 \).

Alternative method

\[f(x) = \begin{cases}
x+1, & -1 \leq x \leq 0 \\
x; & x > 0
\end{cases} \]

\[g(x) = \begin{cases}
x+1, & x \leq 0 \\
x+1, & 0 < x \leq 1 \\
x-2, & 1 < x \leq 2 \\
x+2, & x > 2
\end{cases} \]

Also, \(f(x) \) and \(g(x) \) are re-written as
Continuity and Differentiability

5. Discuss the continuity of \(f(x) = \begin{cases} \frac{x^2}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases} \)

6. Let \(f(x) = \begin{cases} (1+3x)^{1/x}, & x \neq 0 \\ e^3, & x = 0 \end{cases} \). Discuss the continuity of \(f(x) \) at (a) \(x = 0 \), (b) \(x = 1 \).

7. Discuss the continuity of \(f(x) = \begin{cases} \frac{x-1}{e^{x-1}+1}, & x \neq 1 \\ 0, & x = 1 \end{cases} \) at \(x = 1 \).

8. Which of the following functions is not continuous for all \(x \in \mathbb{R} \)?
 a. \(\sqrt{2\sin x + 3} \)
 b. \(\frac{e^x + 1}{e^x + 3} \)
 c. \(\left(\frac{2^{2x} + 1}{2^{3x} + 5} \right)^{5/7} \)
 d. \(\sqrt{\text{sgn} x + 1} \)

9. If the function \(f(x) = \begin{cases} Ax-B, & x \leq 1 \\ 3x, & 1 < x < 2 \\ Bx^2-A, & x \geq 2 \end{cases} \) be continuous at \(x = 1 \) and discontinuous at \(x = 2 \), find the values of \(A \) and \(B \).

10. Discuss the continuity of
 \[
 f(x) = \begin{cases}
 x^4 - 5x^2 + 4, & x \neq 1, 2 \\
 6, & x = 1 \\
 12, & x = 2
 \end{cases}
 \]

11. Match the following for the type of discontinuity at \(x = 1 \) in column I for the function in column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(x) = \frac{1}{x-1})</td>
<td>p. Removable discontinuity</td>
</tr>
<tr>
<td>b. (f(x) = \frac{x^3-x}{x^2-1})</td>
<td>q. Non-removable discontinuity</td>
</tr>
<tr>
<td>c. (f(x) = \frac{</td>
<td>x-1</td>
</tr>
<tr>
<td>d. (f(x) = \sin \left(\frac{1}{x-1} \right))</td>
<td>s. Discontinuity due to vertical asymptote</td>
</tr>
<tr>
<td>e. (f(x) = \frac{1}{x-1})</td>
<td>t. Missing point discontinuity</td>
</tr>
<tr>
<td>f. Oscillating discontinuity</td>
<td></td>
</tr>
</tbody>
</table>

1. Find the value of \(f(0) \) so that the function \(f(x) = \frac{\sqrt{1+x} - \sqrt{1-x}}{x} \) becomes continuous at \(x = 0 \).

2. If the function \(f(x) = \frac{x^2 - (A+2)x + A}{x-2} \) for \(x \neq 2 \) and \(f(2) = 2 \) is continuous at \(x = 2 \), then find the value of \(A \).

3. If the function \(f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \) given by \(f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1} \) is continuous at \(x = 0 \), then find the value of \(f(0) \).

4. Let \(f(x) = \frac{1 - \tan x}{4x - \pi} \), \(x \neq \frac{\pi}{4} \), \(x \in \left[0, \frac{\pi}{2} \right] \). If \(f(x) \) is continuous in \(\left[0, \frac{\pi}{4} \right] \), then find the value of \(f\left(\frac{\pi}{4} \right) \).
3.8 Calculus

CONTINUITY OF SPECIAL TYPES OF FUNCTIONS

Continuity of Functions in which Greatest Integer Function is Involved

\(f(x) = [x] \) is discontinuous when \(x \) is an integer.

Similarly, \(f(x) = [g(x)] \) is discontinuous at all integers when \(g(x) \) is an integer, but this is true only when \(g(x) \) is monotonic \([g(x) \text{ is strictly increasing or strictly decreasing}].

For example, \(f(x) = \lfloor \sqrt{x} \rfloor \) is discontinuous at all integers when \(\sqrt{x} \) is an integer, as \(\sqrt{x} \) is strictly increasing (monotonic function).

\(f(x) = [x^2], x \geq 0, \) is discontinuous at all integers when \(x^2 \) is an integer, as \(x^2 \) is strictly increasing for \(x \geq 0 \).

Now consider, \(f(x) = [\sin x], x \in [0, 2\pi]. \) \(g(x) = \sin x \) is not monotonic in \([0, 2\pi].\) For this type of function, points of discontinuity can be determined easily by graphical methods. We can note that at \(x = 3\pi/2, \) \(\sin x \) takes integral value \(-1, \) but at \(x = 3\pi/2, f(x) = [\sin x] \) is continuous.

Example 3.12 Discuss the continuity of following functions \([f.] \) represents the greatest integer function.)

a. \(f(x) = \log_{e} x \)

b. \(f(x) = [\sin^{-1} x] \)

c. \(f(x) = \left[\frac{2}{1+x^2} \right], x \geq 0 \)

Sol. a. \(\log_{e} x \) is a monotonically increasing function.

Hence \(f(x) = [\log_{e} x] \) is discontinuous, where

\(\log_{e} x = k \text{ or } x = e^k, k \in \mathbb{Z}. \)

Thus \(f(x) \) is discontinuous at \(x = \ldots, -e^{-2}, -e^{-1}, e^0, e^1, e^2, \ldots \)

b. \(\sin^{-1} x \) is a monotonically increasing function.

Hence, \(f(x) = [\sin^{-1} x] \) is discontinuous when \([\sin^{-1} x] \) is an integer.

\(\Rightarrow \sin^{-1} x = -1, 0, 1 \text{ or } x = -\sin 1, 0, \sin 1 \)

c. \(\left[\frac{2}{1+x^2} \right], x \geq 0, \) is a monotonically decreasing function.

Hence, \(f(x) = \left[\frac{2}{1+x^2} \right], x \geq 0 \) is discontinuous, when

\(\frac{2}{1+x^2} \) is an integer.

\(\Rightarrow \frac{2}{1+x^2} = 1, 2 \)

\(\Rightarrow x = 1, 0 \)

Example 3.13 The number of points where \(f(x) = [x/3], x \in [0, 30] \) is discontinuous (where \([\cdot]\) represents greatest integer function).

Sol. \(f(x) = [x/3] \) is discontinuous when \(x/3 \) is integer.

For \(x \in [0, 30], f(x) \) is discontinuous when \(x = 3, 6, 9, \ldots, 27, 30. \)

Hence \(f(x) \) is discontinuous at exactly 10 values of \(x. \)

Example 3.14 Draw the graph and find the points of discontinuity for \(f(x) = [2\cos x], x \in [0, 2\pi]. \)

\([f.] \) represents the greatest integer function.

Sol. \(f(x) = [2\cos x] \)

Fig. 3.8

Clearly from the graph given in Fig. 3.8, \(f(x) \) is discontinuous at \(x = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, 2\pi \).

Example 3.15 Draw the graph and discuss the continuity of \(f(x) = [\sin x + \cos x], x \in [0, 2\pi], \) where \([\cdot]\) represents the greatest integer function.

Sol. \(f(x) = [\sin x + \cos x] = [g(x)] \) where \(g(x) = \sin x + \cos x \)

Fig. 3.9

\(g(0) = 1, g \left(\frac{\pi}{4} \right) = \sqrt{2}, g \left(\frac{\pi}{2} \right) = 1 \)

\(g \left(\frac{3\pi}{4} \right) = 0, g(\pi) = -1, g \left(\frac{5\pi}{4} \right) = -\sqrt{2} \)

\(g \left(\frac{3\pi}{2} \right) = -1, g \left(\frac{7\pi}{4} \right) = 0, g(2\pi) = 1 \)

Clearly from the graph given in Fig. 3.9, \(f(x) \) is discontinuous at \(x = 0, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{7\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{2}, 2\pi. \)

Example 3.16 If the function \(f(x) = \left[\frac{(x-2)^3}{a} \right] \sin(x-2) + a \cos(x-2). \) \([\cdot]\) denotes the greatest integer function which is continuous in \([4, 6], \) then find the values of \(a. \)
Sol. a. Continuity should be checked at the endpoints of intervals of each definition, i.e., \(x = 1, 3, 3.5 \).

\[a \] For \(\{x^2\} \), continuity should be checked when \(x^2 = 10, 11, 12 \) or \(x = \sqrt{10}, \sqrt{11}, \sqrt{12} \). \(\{x^2\} \) is discontinuous for those values of \(x \) where \(x^2 \) is an integer (note, here \(x^2 \) is monotonic for given domain).

\[b. \] For \(\log_e x \), continuity should be checked when \(\log_e x = 1 \) or \(x = e \in [1, 3] \).

Hence, the overall continuity must be checked at \(x = 1, 2, e, 3, \sqrt{10}, \sqrt{11}, \sqrt{12}, 3.5 \).

Further, \(f(1) = 0 \) and

\[\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = 0 \] for \(\log_e x \).

Hence, \(f(x) \) is continuous at \(x = 1 \).

\[c. \] For \(\text{sgn}(x-2) \), continuity should be checked when \(x - 2 = 0 \) or \(x = 2 \).

\[d. \] For \(\lfloor x \rfloor \), continuity should be checked when \(x = \lfloor x \rfloor \). (Note: \(x \in [1, 3] \)).

Hence, the overall continuity must be checked at \(x = 1, 2, e, 3, \sqrt{10}, \sqrt{11}, \sqrt{12}, 3.5 \).

Continuity of Functions in which Signum Function is Involved

We know that \(f(x) = \text{sgn}(x) \) is discontinuous at \(x = 0 \).

In general, \(f(x) = \text{sgn}(g(x)) \) is discontinuous at \(x = a \) if \(g(a) = 0 \).

Example 3.17

Discuss the continuity of

\[f(x) = \begin{cases} x + 1, & 0 \leq x < 1 \\ 2 - x, & 1 \leq x \leq 2 \end{cases} \]

where \(\{x\} \) denotes the fractional part function.

Solution:

- \(f(0) = f(0^-) = 1 \)
- \(f(2) = 2 \) and \(f(2^-) = 1 \)

Hence \(f(x) \) is discontinuous at \(x = 2 \). Also \(f(1) = 2 \)

\[f(1^-) = 1 \quad \text{and} \quad f(1^+) = 2 \]

Hence \(f(x) \) is continuous at \(x = 1 \).

Continuity of Functions Involving Limit \(\lim_{n \to \infty} a^n \)

We know that \(\lim_{n \to \infty} a^n = \begin{cases} 0, & 0 \leq a < 1 \\ 1, & a = 1 \\ \infty, & a > 1 \end{cases} \)

Example 3.22

Discuss the continuity of

\[f(x) = \lim_{n \to \infty} \frac{x^n - 1}{x^n + 1} \]

Solution:

\[f(x) = \begin{cases} 1 - \frac{1}{(x^n)^{a}}, & 0 \leq x^2 < 1 \\ 1, & x^2 = 1 \\ 0, & x^2 > 1 \end{cases} \]

\[= \lim_{n \to \infty} \frac{1 - \frac{1}{(x^n)^{a}}}{1 + \frac{1}{(x^n)^{a}}} = \begin{cases} 1, & x < -1 \\ 0, & x = -1 \\ -1, & -1 < x < 1 \\ 1, & x = 1 \\ 0, & x > 1 \end{cases} \]

Thus, \(f(x) \) is discontinuous at \(x = \pm 1 \).
3.10 Calculus

Example 3.23 Discuss the continuity of \(f(x) = \lim_{n \to \infty} (\cos^2 x)^n \).

Sol. \(f(x) = \lim_{n \to \infty} (\cos^2 x)^n = \begin{cases} 0, & 0 \leq \cos^2 x < 1 \\ 1, & \cos^2 x = 1 \end{cases} = \begin{cases} 0, & x \neq n\pi, n \in I \\ 1, & x = n\pi, n \in I \end{cases} \)

Hence, \(f(x) \) is discontinuous when \(x = n\pi, n \in I \).

Example 3.24 Find the values of \(a \) if \(f(x) = \lim_{n \to \infty} \frac{ax^2 + 2}{x^n + a + 1} \) is continuous at \(x = 1 \).

Sol. \(f(1^+) = a \) and \(f(1^-) = \frac{2}{a + 1} \)

For continuity at \(x = 1 \), \(a = \frac{2}{a + 1} \)
\(\Rightarrow a^2 + a - 2 = 0 \)
\(\Rightarrow a = -2, a = 1 \)

Continuity of Functions in which \(f(x) \) is Defined Differently for Rational and Irrational Values of \(x \)

Example 3.25 Discuss the continuity of the following function:

\(f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases} \)

Sol. For any \(x = a \),

L.H.S. = \(\lim_{x \to a^+} f(x) = \lim_{h \to 0} f(a - h) = 0 \) or 1

[as \(\lim_{h \to 0} (a - h) \) can be rational or irrational]

Similarly, R.H.S. = \(\lim_{x \to a^-} f(x) = \lim_{h \to 0} f(a + h) = 0 \) or 1.

Hence, \(f(x) \) oscillates between 0 and 1 as for all values of \(a \).

L.H.S. and R.H.S. do not exist.
\(\Rightarrow f(x) \) is discontinuous at a point \(x = a \) for all values of \(a \).

Example 3.26 Find the value of \(x \) where

\(f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 1 - x, & \text{if } x \text{ is irrational} \end{cases} \)

Sol. \(f(x) \) is continuous at some \(x = a \), where \(x = 1 - x \) or \(x = 1/2 \).

Hence, \(f(x) \) is continuous at \(x = 1/2 \).

We have \(f(1/2) = 1/2 \).

If \(x \to 1/2^+ \) then \(x \) may be rational or irrational
\(\Rightarrow f(1/2^+) = 1/2 \) or \(1 - 1/2 = 1/2 \).

If \(x \to 1/2^- \) then \(x \) may be rational or irrational
\(\Rightarrow f(1/2^-) = 1/2 \) or \(1 - 1/2 = 1/2 \).

Hence \(f(x) \) is continuous at \(x = 1/2 \).

For some other point, say \(x = 1 \) \(\Rightarrow f(1) = 1 \)
\(\Rightarrow f(1^-) = 1 \) or \(1 - 1 = 0 \)

Hence, \(f(1) \) oscillates between 1 and 0, which causes discontinuity at \(x = 1 \).

Similarly, \(f(x) \) oscillates between 0 and 1 for all \(x \in R - \{1/2\} \).

Continuity of Composite Functions

\(f(x) = f(g(x)) \) is discontinuous also at those values of \(x \) where \(g(x) \) is discontinuous.

For example, \(f(x) = \frac{1}{1 - x} \) is discontinuous at \(x = 1 \)

Now \(f(f(x)) = \frac{1}{1 - \frac{1}{x}} = \frac{x - 1}{x} \) is not only discontinuous at \(x = 0 \) but also at \(x = 1 \).

Now \(f(f(f(x))) = \frac{x}{x - 1} = x \) seems to be continuous, but it is discontinuous at \(x = 1 \) and \(x = 0 \), where \(f(x) \) and \(f(f(x)) \) are discontinuous, respectively.

Example 3.27 If \(f(x) = \frac{x + 1}{x - 1} \) and \(g(x) = \frac{1}{x - 2} \), then discuss the continuity of \(f(x) \), \(g(x) \), and \(fog(x) \).

Sol. \(f(x) = \frac{x + 1}{x - 1} \)

\(\therefore f \) is not defined at \(x = 1 \). \(\therefore f \) is discontinuous at \(x = 1 \).

\(g(x) = \frac{1}{x - 2} \)

\(g(x) \) is not defined at \(x = 2 \). \(\therefore g \) is discontinuous at \(x = 2 \).

Now, \(fog(x) \) will be discontinuous at

- a. \(x = 2 \) [point of discontinuity of \(g(x) \)]
- b. \(g(x) = 1 \) [when \(g(x) = \) point of discontinuity of \(f(x) \)]

if \(g(x) = 1 \) \(\Rightarrow \frac{1}{x - 2} = 1 \) \(\Rightarrow x = 3 \)

\(:: \) \(fog(x) \) is discontinuous at \(x = 2 \) and \(x = 3 \).

\(\therefore fog(2) = \frac{x - 2 + 1}{x - 2 - 1} \)

Also, \(fog(3) = \frac{x - 2}{x - 2 - 1} \)

Here \(fog(2) \) is not defined.

\(\lim_{x \to 2^+} fog(x) = \lim_{x \to 2} \left(\frac{x - 2 + 1}{x - 2 - 1} \right) = \lim_{x \to 2} \left(\frac{1 + x - 2}{x - 2 - 1} \right) = 1. \)

\(:: \) \(fog(x) \) is discontinuous at \(x = 2 \) and it has a removable discontinuity at \(x = 2 \). For continuity at \(x = 3 \),

\(\lim_{x \to 3^-} fog(x) = \lim_{x \to 3} \left(\frac{x - 2}{x - 2 - 1} \right) = \lim_{x \to 3} \left(\frac{1}{x - 2 - 1} \right) = \infty. \)

\(\therefore fog(3) \) is discontinuous at \(x = 3 \), and it is a non-removable discontinuity at \(x = 3 \).

Example 3.28 If \(f(x) = \begin{cases} x - 2, & x \leq 0 \\ 4 - x^2, & x > 0 \end{cases} \), then discuss the continuity of \(y = f(f(x)) \).

Sol. \(f(x) \) is discontinuous at \(x = 0 \).
Hence, \(f(f(x)) \) may be discontinuous at \(x = 0 \)
\[f(f(0)) = f(4) = 4 - 16 = -12 \]
and \(f(f(0)) = f(-2) = -4 \)

Hence, \(f(x) \) is discontinuous at \(x = 0 \)
\(f(f(x)) \) is also discontinuous when \(f(x) = 0 \)
\[\Rightarrow x - 2 = 0 \text{ when } x \leq 0 \] or \[x^2 - 4 = 0 \text{ when } x > 0 \]
\[\Downarrow \text{at } x = 2 \]

Also we can see that \(f(f(2)) = 0, f(f(2^+)) = f(0^-) = -2 \) and
\[f(f(2^n)) = f(0^-) = -4 \]

Hence \(f(f(x)) \) is discontinuous at \(x = 0 \) and \(x = 2 \).

Concept Application Exercise 3.3

1. Find the values of \(x \) in \([1, 3]\) where the function is \([x^2 + 1]\) \([\lfloor . \rfloor \) represents the greatest integer function) is discontinuous.

2. Find the number of points of discontinuity for \(f(x) = \lfloor \sin x \rfloor \), \(0 \leq x \leq \pi \) \([\lfloor . \rfloor \) represents the greatest integer function).

3. Discuss the continuity of \(f(x) = [\tan^{-1} x] \) \([\lfloor . \rfloor \) represents the greatest integer function).

4. Discuss the continuity of \(f(x) = \{\cot^{-1} x\} \) \([\{ . \}] \) represents the fractional part function).

5. \(f(x) = \lim_{n \to \infty} x^n - \sin x^n + \sin x^n \) for \(x > 0, x \neq 1 \) and \(f(1) = 0 \). Discuss the continuity at \(x = 1 \).

6. If \(f(x) \) is a continuous function \(\forall x \in R \) and the range of \(f(x) \) is \((2, \sqrt{26}) \) and \(g(x) = \frac{f(x)}{c} \) is continuous \(\forall x \in R \), then find the least positive integral value of \(c \), where \([. \] denotes the greatest integer function.

7. Discuss the continuity of \(f(x) \) in \([0, 2]\), where \(f(x) = \lim_{n \to \infty} x^n - \sin x^n = \frac{\pi x}{2} \).

8. Discuss the continuity of \(f(x) = \begin{cases} x^2, & x \text{ is rational} \\ -x^2, & x \text{ is irrational} \end{cases} \).

9. If \(y = \frac{1}{t^2 + t - 2} \), where \(t = \frac{1}{x - 1} \), then find the number of points where \(f(x) \) is discontinuous.

10. If \(f(x) = \begin{cases} [\sin \pi x], & 0 \leq x < 1 \\ \text{sgn} \left(\left\lfloor \frac{x - \frac{5}{4} \right\rfloor \times \left\lfloor x - \frac{2}{3} \right\rfloor \right), & 1 \leq x \leq 2 \end{cases} \)
then denote the greatest integer function and \(\{ . \} \) represents fractional part function. At what points should the continuity checked? Hence, find the points of discontinuity.

11. Find the value of \(a \) for which \(f(x) = \begin{cases} x^2, & x \in Q \text{ is not continuous at any } x \\ x + a, & x \notin Q \end{cases} \)

12. Discuss the continuity of \(f(x) = (\log |x|) \text{sgn}(x^2 - 1), x \neq 0 \).

13. Find the number of integer lying in the interval \((0, 4)\), where the function \(f(x) = \lim_{n \to \infty} (\cos \frac{nx}{2})^2 \) is discontinuous.

Properties of Functions Continuous in \([a, b]\)

1. If a function \(f \) is continuous on a closed interval \([a, b]\), then it is bounded.

2. A continuous function whose domain is some closed interval must have its range also in the closed interval.

3. If \(f(a) \) and \(f(b) \) possess opposite signs, then there exists at least one solution of the equation \(f(x) = 0 \) in the open interval \((a, b)\).

4. If \(f \) is continuous on \([a, b]\), then \(f^{-1} \) is also continuous.

Example 3.29 Let \(f \) be a continuous function defined onto on \([0, 1]\) with range \([0, 1]\). Show that there is some \(c \) in \([0, 1]\) such that \(f(c) = 1 - c \).

Sol. Consider \(g(x) = f(x) - 1 + x \)
\[g(0) = f(0) - 1 \leq 0 \quad \text{[as } f(0) \leq 1] \]
\[g(1) = f(1) - 1 \geq 0 \quad \text{[as } f(1) \geq 0] \]

Hence, \(g(0) \) and \(g(1) \) have values of opposite signs.

Hence, there exists at least one \(c \in (0, 1) \) such that \(g(c) = 0 \).

\[\therefore g(c) = f(c) - 1 + c = 0; f(c) = 1 - c. \]

Example 3.30 Let \(f \) be continuous on the interval \([0, 1]\) to \(R \) such that \(f(0) = f(1) \). Prove that there exists a point \(c \) in \([0, 1/2]\) such that \(f(c) = f \left(c + \frac{1}{2} \right) \).

Sol. Consider a continuous function \(g(x) = f \left(x + \frac{1}{2} \right) - f(x) \)
\[g(0) = f \left(\frac{1}{2} \right) - f(0) \quad \text{[as } f(0) = f(1)] \] and \(g \left(\frac{1}{2} \right) = f(1) - f \left(\frac{1}{2} \right) = - \left[f \left(\frac{1}{2} \right) - f(1) \right] \)

Since \(g \) is continuous and \(g(0) \) and \(g(1/2) \) have opposite signs, hence the equation \(g(x) = 0 \) must have at least one root in \([0, 1/2]\).

Hence, for some \(c \in \left[0, \frac{1}{2} \right] \), \(g(c) = 0 \Rightarrow f \left(c + \frac{1}{2} \right) = f(c) \).

Example 3.31 Let \(f: [0, 1] \to [0, 1] \) be a continuous function.

Then prove \(f(x) = x \) for at least one \(0 \leq x \leq 1 \).

Sol.

Clearly, \(0 \leq f(0) \leq 1 \) and \(0 \leq f(1) \leq 1 \). As \(f(x) \) is continuous, \(f(x) \) attains all the values between \(f(0) \) and \(f(1) \), and the graph will have no breaks. So, the graph will cut the line \(y = x \) at least once, where \(0 \leq x \leq 1 \). So, \(f(x) = x \) at that point.
3.12 Calculus

Example 3.32 Suppose f is a continuous map for R to R and $f(f(a)) = a$ for some a. Show that there is some b such that $f(b) = b$.

Sol. If $f(a) = a$ then $b = a$ solves the problem.
So assume $f(a) > a$. Then $g(x) = f(x) - x$ is positive at $x = a$ and is negative at $c = f(a)$ since $g(c) = f(f(a)) - f(a) = a - f(a) < 0$.
Since $g : R \to R$ is continuous, there must be some b, $a < b < c$, such that $g(x) = 0$, i.e., $f(b) = b$.
The same argument works if $f(a) < a$.

INTERMEDIATE VALUE THEOREM

If f is continuous on $[a, b]$ and $f(a) \neq f(b)$, then for any value $c \in (f(a), f(b))$, there is at least one number x_0 in (a, b) for which $f(x_0) = c$.

![Fig. 3.11 (a)](image1)
![Fig. 3.11 (b)](image2)
![Fig. 3.11 (c)](image3)
![Fig. 3.11 (d)](image4)

From Fig. 3.11 (c) and (d), it is clear that continuity in the interval $[a, b]$ is essential for the validity of this theorem.

Example 3.33 Show that the function

$$f(x) = (x - a)^2 (x - b)^2 + x$$

takes the value $\frac{a + b}{2}$ for some value of $x \in [a, b]$.

Sol. $f(a) = a; f(b) = b$. Also f is continuous in $[a, b]$ and $\frac{a + b}{2} \in [a, b]$.

Hence, using intermediate value theorem, there exists at least one $c \in [a, b]$ such that $f(c) = \frac{a + b}{2}$.

Example 3.34 Using intermediate value theorem, prove that there exists a number x such that

$$\frac{1}{1 + \sin^2 x} = 2005.$$

Sol. Let $f(x) = \frac{1}{1 + \sin^2 x} - 2005$.

Since $f(x)$ is continuous and $f(0) = 1 < 2005$ and $f(2) > 2005$, which is much greater than 2005. Hence, from the intermediate value theorem, there exists a number c in $(0, 2)$ such that $f(c) = 2005$.

DIFFERENTIABILITY

Existence of Derivative

Right- and Left-Hand Derivatives

![Fig. 3.12](image5)

- The right-hand derivative of f at $x = a$, denoted by $f'(a^+)$, is defined by $f'(a^+) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$ provided the limit exists, and is finite.

- The left-hand derivative of f at $x = a$, denoted by $f'(a^-)$, is defined by $f'(a^-) = \lim_{h \to 0^-} \frac{f(a-h) - f(a)}{-h}$ provided the limit exists, and is finite.

Differentiability and Continuity

If $f(x)$ is differentiable at every point of its domain, then it must be continuous in that domain.
Proof: To prove that \(f \) is continuous at \(a \), we have to show that

\[
\lim_{x \to a} f(x) = f(a).
\]

We do this by showing that the difference \(f(x) - f(a) \) approaches 0.

The given information is that \(f \) is differentiable at \(a \), that is,

\[
f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}
\]

exists.

To connect the given and the unknown, we divide and multiply \(f(x) - f(a) \) by \(x - a \) (which we can do when \(x \neq a \))

\[
\Rightarrow f(x) - f(a) = \frac{f(x) - f(a)}{x - a} \cdot (x - a)
\]

Thus, using the product law, we can write

\[
\lim_{x \to a}[f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot (x - a)
\]

\[
= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a)
\]

\[
= f'(a) \times 0 = 0
\]

To use what we have just proved, we start with \(f(x) \) and add and subtract \(f(a) \), we get

\[
\lim_{x \to a} f(x) = \lim_{x \to a} [f(a) + (f(x) - f(a))]
\]

\[
= \lim_{x \to a} f(a) + \lim_{x \to a} [f(x) - f(a)] = f(a) + 0 - f(a)
\]

Therefore, \(f \) is continuous at \(a \).

Note:
- The converse of this is false, that is, there are functions that are continuous but not differentiable. For instance, the function \(f(x) = |x| \) is continuous at \(0 \) because \(\lim_{x \to 0} f(x) = \lim_{x \to 0} 0 = f(0) \) but non-differentiable at \(0 \) as the unique tangent cannot be drawn.
- If \(f(x) \) is differentiable, then its graph must be smooth; i.e., there should be no break or corner.

Thus, for a function \(f(x) \):

(a) Differentiable \(\Rightarrow \) Continuous

(b) Continuous \(\Rightarrow \) May or may not be differentiable

(c) Not continuous \(\Rightarrow \) Not differentiable

How Can a Function Fail to Be Differentiable

The function \(f(x) \) is said to be non-differentiable at \(x = a \) if

a. both \(f'(a) \) and \(f''(a) \) exist but are not equal,

b. either both \(f'(a) \) and \(f''(a) \) are not finite, and
c. either both \(f'(a) \) and \(f''(a) \) do not exist.

The function \(y = |x| \) is not differentiable at 0 as its graph changes direction abruptly when \(x = 0 \). In general, if the graph of a function has a ‘corner’ or ‘kink’ in it, then the graph of \(f \) has no tangent at this point and \(f \) is not differentiable there. (To compute \(f'(a) \), we find that the left and right derivatives are different.)

If \(f \) is not continuous at \(a \), then \(f \) is not differentiable at \(a \). So at any discontinuity (for instance, a jump of discontinuity) \(f \) fails to be differentiable.

A third possibility is that the curve has a vertical tangent line when \(x = a \), that is, \(f \) is continuous at \(a \) and \(\lim_{x \to a} |f'(x)| = \infty \).

This means that the tangent lines become steeper and steeper as \(x \to a \). The following figures illustrate the three possibilities that we have discussed.

(a) A corner

(b) A discontinuity

(c) A vertical tangent

Fig. 3.13

Theorems on Differentiability

1. Addition of differentiable and non-differentiable functions is always non-differentiable.

2. Product of differentiable and non-differentiable functions may be differentiable.

For example,

\(f(x) = x|x| \) is differentiable at \(x = 0 \).

\(f(x) = (x - 1)|x - 1| \) is differentiable at \(x = 1 \).

\(f(x) = (x - 1) \sqrt{\log |x|} \) is differentiable at \(x = 1 \).

In general \(f(x) = g(x) \cdot |g(x)| \) is differentiable at \(x = a \) when \(g(a) = 0 \).

\(f(x) = x|x| \) is non-differentiable at \(x = 1 \).

3. If \(g(x) \) is a differentiable function and \(f(x) = |g(x)| \) is a non-differentiable function at \(x = a \), then \(g(a) = 0 \).

For example, \(|\sin x| \) is non-differentiable when \(\sin x = 0 \) or \(x = n\pi, n \in \mathbb{Z} \).

4. If both \(f(x) \) and \(g(x) \) are non-differentiable at \(x = a \), then \(f(x) + g(x) \) may be differentiable at \(x = a \).

For example,

\[
f(x) = \sin |x| - |x| = \begin{cases} -\sin x + 1, & x < 0 \\ \sin x - x, & x \geq 0 \end{cases}
\]

\[
g'(x) = \begin{cases} -\cos x + 1, & x < 0 \\ \cos x - 1, & x > 0 \end{cases} \Rightarrow f''(0^+) = 0 \text{ and } f''(0^-) = 0.
\]
3.14 Calculus

Points to Remember

If \(y = f(x) \) is differentiable at \(x = a \), then it is not necessary that the derivative is continuous at \(x = a \).

For example, consider function

\[
f(x) = \begin{cases}
 x^2 \sin(1/x), & x \neq 0 \\
 0, & x = 0
\end{cases}
\]

For \(x \neq 0 \),

\[
f'(x) = 2x \sin(1/x) + x^2 \left(-\frac{1}{x^2}\right) \cos\left(\frac{1}{x}\right)
\]

\[
= 2x \sin(1/x) - \cos(1/x)
\]

For \(x = 0 \),

\[
f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{0^2 \sin(1/0) - \cos(1/0)}{h} = \lim_{h \to 0} \frac{0}{h} = 0
\]

Thus \(f'(x) = \begin{cases}
 2x \sin(1/x) - \cos(1/x), & x \neq 0 \\
 0, & x = 0
\end{cases} \)

Now, \(f'(x) \) is continuous at \(x = 0 \), if

\(\text{a. } \lim_{x \to 0} f'(x) \) exists \hspace{1cm} \(\text{b. } \lim_{x \to 0} f'(x) = f'(0) \)

Again, \(\lim_{x \to 0} f'(x) = \lim_{x \to 0} \left(2x \sin(1/x) - \cos(1/x)\right) \) does not exist.

Since, \(\lim_{x \to 0} \cos\left(\frac{1}{x}\right) \) does not exist.

Hence, \(f'(x) \) is not continuous at \(x = 0 \).

Differentiability using First Definition of Derivatives

Example 3.35 Discuss the differentiability of

\[
f(x) = \begin{cases}
 \sin x^2, & x \neq 0 \\
 0, & x = 0
\end{cases}
\]

\[
sol. \text{ For continuity, } \lim_{x \to 0} f(x) = \lim_{h \to 0} \frac{\sin^2 x}{h} = \lim_{h \to 0} \frac{\sin^2 h}{h} = 1
\]

Hence, \(f(x) \) is continuous at \(x = 0 \).

Also, \(f'(0^+) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{\sin^2 h}{h} = 1 \)

And \(f'(0^-) = \lim_{h \to 0} \frac{f(-h) - f(0)}{-h} = \lim_{h \to 0} \frac{\sin^2 h}{h} = 1 \)

Thus, \(f(x) \) is differentiable at \(x = 0 \).

Example 3.36 Discuss the differentiability of

\[
f(x) = \begin{cases}
 x \sin(\ln x^2), & x \neq 0 \\
 0, & x = 0
\end{cases}
\]

at \(x = 0 \).

\[
sol. \text{ For continuity, } f(0^+) = \lim_{h \to 0} h \sin(h^2)
\]

\[
= 0 \times (\text{any value between } -1 \text{ and } 1) = 0
\]

\[
f(0^-) = \lim_{h \to 0} (-h) \sin(h^2)
\]

\[
= 0 \times (\text{any value between } -1 \text{ and } 1) = 0
\]

Hence, \(f(x) \) is continuous at \(x = 0 \).

For differentiability,

\[
f'(0^+) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}
\]

\[
= \lim_{h \to 0} \frac{h \sin(h^2) - 0}{h} = \lim_{h \to 0} \sin(h^2)
\]

\[
= \text{any value between } -1 \text{ and } 1
\]

Hence, \(f'(0) \) does not take any fixed value.

Hence, \(f(x) \) is not differentiable at \(x = 0 \).

Example 3.37 Which of the following function is non-differential at \(x = 0 \)?

(i) \(f(x) = \cos |x| \)
(ii) \(f(x) = x|x| \)
(iii) \(f(x) = |x^3| \)

\[
sol. \text{ (i) } f(x) = \cos |x| \text{ which is differentiable at } x = 0
\]

\[
(ii) f(x) = x|x| = \begin{cases}
 x^2, & x \geq 0 \\
 -x^2, & x < 0
\end{cases} \Rightarrow f'(x) = \begin{cases}
 2x, & x > 0 \\
 -2x, & x < 0
\end{cases}
\]

\[
f'(0) = f'(0^-) = 0
\]

Hence \(f(x) \) is differentiable at \(x = 0 \).

(iii) \(f(x) = |x^3| = \begin{cases}
 x^3, & x \geq 0 \\
 -x^3, & x < 0
\end{cases} \Rightarrow f'(x) = \begin{cases}
 3x^2, & x > 0 \\
 -3x^2, & x < 0
\end{cases}
\]

\[
f'(0) = f'(0^-) = 0
\]

Hence \(f(x) \) is differentiable at \(x = 0 \).

Example 3.38 Discuss the differentiability of

\[
f(x) = \begin{cases}
 (x^2 - e^{2^{-x^2}}), & x \neq e \text{ at } x = e \\
 0, & x = e
\end{cases}
\]

\[
sol. \text{ For differentiability, } f(x) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}
\]

\[
= \lim_{h \to 0} \frac{h^2 - e^{2^{-h^2}}}{h} = \lim_{h \to 0} \frac{h^2 - 2^{-h^2}}{h} = 1
\]

Hence, \(f(x) \) is continuous at \(x = 0 \).

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

\[
= \lim_{h \to 0} \frac{h^2 - 2^{-h^2}}{h} - 0
\]

\[
= \lim_{h \to 0} 2^{-\frac{1}{h}} = 1
\]
\[f'(e^2) = \lim_{h \to 0} \frac{f(e^2 - h) - f(0)}{-h} = \lim_{h \to 0} \frac{(e^2)^{2 - 2^\frac{1}{2}} - 0}{-h} = \lim_{h \to 0} 2^{-\frac{1}{2}} = 0 \]

Hence, \(f'(x) \) is non-differentiable at \(x = e \).

Example 3.39

A function \(f(x) \) is such that \(f\left(\frac{x + \pi}{2}\right) = \frac{\pi}{2} - |x| \forall x \). Find \(f'\left(\frac{\pi}{2}\right) \), if it exists.

Sol.

Given that \(f\left(\frac{x + \pi}{2}\right) = \frac{\pi}{2} - |x| \)

\[f'\left(\frac{\pi}{2}\right) = \lim_{h \to 0} \frac{f\left(\frac{\pi}{2} + h\right) - f\left(\frac{\pi}{2}\right)}{h} \]

\[= \frac{\pi}{2} - |\frac{\pi}{2} - h| - \frac{\pi}{2} = -1 \]

and \(f'\left(\frac{\pi}{2}\right) = \lim_{h \to 0} \frac{f\left(\frac{\pi}{2} - h\right) - f\left(\frac{\pi}{2}\right)}{-h} \)

\[= \frac{\pi}{2} - |\frac{\pi}{2} - h| - \frac{\pi}{2} = 1 \]

\[\Rightarrow f'\left(\frac{\pi}{2}\right) \text{ does not exist.} \]

Differentiability using Theorems on Differentiability

Example 3.40

Discuss the differentiability of \(f(x) = |x| + |x - 1| \).

Sol.

\(f(x) = |x| + |x - 1| \)

\(f(x) \) is continuous everywhere as \(|x| \) and \(|x - 1| \) are continuous for all \(x \).

Also \(|x| \) and \(|x - 1| \) are non-differentiable at \(x = 0 \) and \(x = 1 \), respectively.

Hence, \(f(x) \) is non-differentiable at \(x = 0 \) and \(x = 1 \).

Example 3.41

Discuss the differentiability of \(f(x) = \lfloor x \rfloor + |x - 1|, x \in (-1, 3) \), where \(\lfloor . \rfloor \) represents greatest integer function.

Sol. \(\lfloor x \rfloor \) is non-differentiable at \(x = 0, 1, 2 \) and \(|x - 1| \) is non-differentiable at \(x = 1 \). Thus, \(f(x) \) is definitely non-differentiable at \(x = 0, 2 \). Moreover, \(\lfloor x \rfloor \) is discontinuous at \(x = 1 \), whereas \(|x - 1| \) is continuous at \(x = 1 \). Thus, \(f(x) \) is discontinuous and hence non-differentiable at \(x = 1 \).

Example 3.42

Discuss the differentiability of \(f(x) = (x^2 - 1)\lfloor x^2 - x - 2\rfloor + \sin(|x|) \).

\[f(x) = (x^2 - 1)\lfloor x^2 - x - 2\rfloor + \sin(|x|) \]

\[= (x - 1)(x + 1)|x + 1|\lfloor x - 2\rfloor + \sin(|x|) \]

\((x + 1)|x + 1| \) is differentiable at \(x = -1 \)

\(|x - 2| \) is non-differentiable at \(x = 2 \)

\(\sin(|x|) \) is non-differentiable at \(x = 0 \)

Hence \(f(x) \) is differentiable at \(x = -1 \) but not at \(x = 0 \) and \(x = 2 \).

Example 3.43

Discuss the differentiability of \(f(x) = |x| \sin x + |x - 2| \text{sgn}(x - 2) + |x - 3| \)

Sol. \(|x| \sin x \) is differential at \(x = 0 \), though \(|x| \) is non-differentiable at \(x = 0 \), as \(\sin 0 = 0 \)
3.16 Calculus

Clearly from the graph, \(f(x) \) is non-differentiable at \(x = \frac{(2n+1)\pi}{2}, \ n \in \mathbb{Z} \).

e. \(y = \sin^{-1} |\sin x| \)

\[\text{Fig. 3.18}\]

Clearly from the graph, \(f(x) \) is non-differentiable at \(x = \frac{n\pi}{2}, \ n \in \mathbb{Z} \).

f. From the graph \(f(x) \) is non-differentiable

\[\text{Fig. 3.19}\]

(i) at \(x = 1 \),
(ii) where \(x^2 - 3x + 2 = 2 - (1-x) \), when \(x < 1 \)
(iii) where \(x^2 - 3x + 2 = 2 - (x-1) \), where \(x > 1 \)

Hence \(f(x) \) is discontinuous at \(x = 1 \), and \(x = 2 - \sqrt{3} \) and \(x = 1 + \sqrt{2} \).

\[\text{Example 3.45} \] Discuss the differentiability of \(f(x) = \max \{2 \sin x, 1 - \cos x\} \) \(\forall x \in (0, \pi) \).

Sol. \(f(x) = \max \{2 \sin x, 1 - \cos x\} \) can be plotted as shown in Fig. 3.20.

\[\text{Fig. 3.20}\]

Thus, \(f(x) = \max \{2 \sin x, 1 - \cos x\} \) is not differentiable, when \(2 \sin x = 1 - \cos x \)
\(\Rightarrow 4 \sin^2 x = (1 - \cos x)^2 \)
\(\Rightarrow 4(1 + \cos x) = (1 - \cos x) \)
\(\Rightarrow 4 + 4 \cos x = 1 - \cos x \)
\(\Rightarrow \cos x = -3/5 \)
\(\Rightarrow x = \cos^{-1}(-3/5) \cdot \pi \)
\(\Rightarrow f(x) \) is not differentiable at \(x = \pi - \cos^{-1}(3/5) \), \(\forall x \in (0, \pi) \).

\[\text{Example 3.46} \] Discuss the differentiability of \(f(x) = e^{-|x|} \).

Sol. We have \(f(x) = \begin{cases} e^{-x}, & x \geq 0 \\ e^x, & x < 0 \end{cases} \)

\[\text{Fig. 3.21}\]

Clearly from the graph, \(f(x) \) is non-differentiable at \(x = 0 \).

\[\text{Example 3.47} \] If \(f(x) = \max \{x^2 + 2ax + 1, b\} \) has two points of non-differentiability, then prove that \(a^2 > 1 - b \).

Sol. \(f(x) = \max \{x^2 + 2ax + 1, b\} \) has two points of non-differentiability if \(y = x^2 + 2ax + 1 \) and \(y = b \) intersect at two points.

or \(x^2 + 2ax + 1 = b \) has real and distinct roots

or \(x^2 + 2ax + 1 - b = 0 \) has real and distinct roots

\(\Rightarrow 4a^2 - 4(1-b) > 0 \) \(\Rightarrow a^2 > 1 - b \)

\[\text{Example 3.48} \] Test the continuity and differentiability of the function \(f(x) = \left\lfloor \frac{x+1}{2} \right\rfloor \) \(\left\lfloor \frac{x}{2} \right\rfloor \) by drawing the graph of the function when \(-2 \leq x \leq 2 \), where \(\lfloor \cdot \rfloor \) represents greatest integer function.

Sol. Here \(f(x) = \begin{cases} \left\lfloor \frac{x+1}{2} \right\rfloor, & -2 \leq x \leq 2 \\ \left\lfloor \frac{x}{2} \right\rfloor, & -2 \leq x < -1 \\
\left\lfloor \frac{x+1}{2} \right\rfloor(-1), & -1 \leq x < 0 \\
\left\lfloor \frac{x+1}{2} \right\rfloor(0), & 0 \leq x < 1 \\
\left\lfloor \frac{x+1}{2} \right\rfloor(1), & 1 \leq x < 2 \\
\left\lfloor \frac{3}{2} \times 2 \right\rfloor, & x = 2 \\
-(2x+1), & -2 \leq x < -1 \\
-x + \frac{1}{2}, & -1 \leq x < -1/2 \\
-x + \frac{1}{2}, & -1/2 \leq x < 0 \\
-x + \frac{1}{2}, & 0 \leq x < 1 \\
x + \frac{1}{2}, & 1 \leq x < 2 \\
3, & x = 2 \end{cases} \)

\[\text{Fig. 3.22}\]
which could be plotted as

Fig. 3.22

Fig. 3.21 clearly shows that \(f(x) \) is not continuous at \(x = \{-1, 0, 1, 2\} \) as at these points the graph is broken. \(f(x) \) is not differentiable at \(x = \{-1, -\frac{1}{2}, 0, 1, 2\} \) as at \(x = \{-1, 0, 1, 2\} \) the graph is broken and at \(x = -1/2 \) there is a sharp edge.

Differentiability by Differentiation

Example 3.49. If \(f(x) = \begin{cases} x, & x \leq 1 \\ x^2 + bx + c, & x > 1 \end{cases} \), then find the values of \(b \) and \(c \) if \(f(x) \) is differentiable at \(x = 1 \).

Sol. \(f(x) = \begin{cases} x, & x \leq 1 \\ x^2 + bx + c, & x > 1 \end{cases} \) is differentiable at \(x = 1 \)

Then, it must be continuous at \(x = 1 \)

for which \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) \)

\(\Rightarrow 1 + b + c = 1 \)

\(\Rightarrow b + c = 0 \)

Also, \(f'(1^-) = f'(1^+) \)

\(\Rightarrow \lim_{x \to 1^-} f'(x) = \lim_{x \to 1^+} f'(x) \)

\(\Rightarrow 2 + b = 1 \Rightarrow b = -1 \)

\(\Rightarrow c = 1 \)

\[\text{(1)} \]

Example 3.50. Find the values of \(a \) and \(b \) if \(f(x) = \begin{cases} a + \sin^{-1}(x+b), & x \geq 1 \\ x, & \text{at } x = 1 \end{cases} \) is differentiable.

Sol. \(f(x) = \begin{cases} a + \sin^{-1}(x+b), & x \geq 1 \\ x, & x < 1 \end{cases} \) is differentiable at \(x = 1 \)

\(\Rightarrow f'(x) = \begin{cases} \frac{1}{\sqrt{1-(x+b)^2}}, & x > 1 \\ 1, & x < 1 \end{cases} \)

For \(f(x) \) to be continuous at \(x = 1 \),

\(f(1^-) = f(1^+) \Rightarrow a + \sin^{-1}(1+b) = 1 \)

Also \(f'(1^-) = f'(1^+) \Rightarrow \frac{1}{\sqrt{1-(1+b)^2}} = 1 \Rightarrow b = -1 \).

\(\Rightarrow \) From equation (1), \(a = 1 \)

Example 3.51. The function \(f(x) = \begin{cases} ax(x-1)+b, & x < 1 \\ x-1, & 1 \leq x \leq 3 \\ px^2 + qx + 2, & x > 3 \end{cases} \) Find the values of the constants \(a, b, p \) and \(q \) so that all the following conditions are satisfied.

a. \(f(x) \) is continuous for all \(x \).

b. \(f'(1) \) does not exist.

c. \(f''(x) \) is continuous at \(x = 3 \).

Sol. \(f(x) \) is continuous \(\forall x \in R \).

Hence, it must be continuous at \(x = 1, 3 \).

\(f(1^-) = \lim_{x \to 1^-} ax(x-1)+b = b \)

\(f(1^+) = \lim_{x \to 1^+} (x-1) = 0 \)

\(\Rightarrow f(1^-) = f(1^+) \) (for continuity at \(x = 1 \))

\(\Rightarrow b = 0 \)

\(f(3^-) = \lim_{x \to 3^-} px^2 + qx + 2 = 9p + 3q + 2 \)

\(\Rightarrow f(3^+) = \lim_{x \to 3^+} px^2 + qx + 2 = 9p + 3q + 2 \)

\(\Rightarrow f(3^+) = f(3^-) \) (for continuity at \(x = 3 \))

\(\Rightarrow 9p + 3q = 0 \)

\(\Rightarrow 3p + q = 0 \)

\(\Rightarrow 2ax - a, \quad x < 1 \)

\(\Rightarrow 1, \quad 1 < x < 3 \)

\(\Rightarrow 2px + q, \quad x > 3 \)

\(\Rightarrow \frac{2}{x+1} \)

\(\Rightarrow 2 \tan^{-1} x, \quad -1 \leq x \leq 1 \)

\(\Rightarrow -2 \tan^{-1} x, \quad x > 1 \)

\(\Rightarrow -2 \tan^{-1} x, \quad x < -1 \)

\(\Rightarrow \begin{cases} \frac{2}{1+x^2}, & -1 < x < 1 \\ \frac{2}{1+x^2}, & x > 1 \end{cases} \) (1)

\(\Rightarrow \frac{2}{1+x^2}, \quad x < -1 \)

\(\Rightarrow \frac{2}{1+x^2}, \quad x > -1 \)

\(\Rightarrow f'(-1^-) = -1, f'(-1^+) = 1 and f'(1^-) = 1 and f'(1^+) = -1. \)

Hence, \(f(x) \) is non-differentiable at \(x = \pm 1 \).

Graph of \(f(x) = \sin^{-1} \left(\frac{2x}{1+x^2} \right) \).
Students find it difficult to remember all the cases of
\[\sin^{-1}\left(\frac{2x}{1+x^2} \right) \] in equation (1).

Then, use the following short-cut method to check the

differentiability.

Differentiate \(f(x) \) w.r.t. \(x \), we get

\[
\frac{df(x)}{dx} = \frac{d}{dx} \left(\frac{2x}{1+x^2} \right)
\]

\[
= \frac{2(1+x^2) - 2x(2x)}{(1+x^2)^2}
= \frac{2(1-x^2)}{(1+x^2)^2}
\]

Clearly, \(\frac{df(x)}{dx} \) is discontinuous at \(x^2 = 1 \) or \(x = \pm 1 \).

Hence, \(f(x) \) is non-differentiable at \(x = \pm 1 \).

Concept Application Exercise 3.4:

1. Discuss the continuity and differentiability of \(f(x) = |x + 1| + |x| + |x - 1|, \forall x \in \mathbb{R} \); also draw the graph of \(f(x) \).

2. Find \(x \) where \(f(x) = \max \{ \sqrt{x}, (2-x), 2 - x \} \) is non-differentiable.

3. Discuss the differentiability of function \(f(x) = x - |x - 2| \).

4. Discuss the differentiability of \(f(x) = [x]x \) in \(-1 < x \leq 2\), where \([.]\) represents the greatest integer function.

5. Discuss the differentiability of \(f(x) = \cos^{-1}(\cos x) \).

6. Discuss the differentiability of \(f(x) = \max \{ \tan^{-1}x, \cot^{-1}x \} \).

7. Find the values of \(a \) and \(b \) if \(f(x) = \begin{cases} ax^2 + 1, & x \leq 1 \\ x^2 + ax + b, & x > 1 \end{cases} \) is differentiable at \(x = 1 \).

8. Discuss the differentiability of \(f(x) = \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \).

9. Which of the following function is non-differentiable in its domain?

 a. \(f(x) = \frac{x-2}{x^2 + 3} \)
 b. \(f(x) = \log |x| \)
 c. \(f(x) = x \log x \)
 d. \(f(x) = (x-3)^{\frac{1}{5}} \)

10. Discuss the differentiability of \(f(x) = |x^2 - 4| - 12 \).

11. Which of the following function is not differentiable at \(x = 0 \)?

 i. \(f(x) = \min \{ x, \sin x \} \)
 ii. \(f(x) = \begin{cases} 0; & x \geq 0 \\ x^2; & x < 0 \end{cases} \)
 iii. \(f(x) = x^2 \text{sgn}(x) \)

EXERCISES

Subjective Type Solutions on page 3.33

1. A function \(f(x) \) defined as

\[
f(x) = \begin{cases} \frac{x^2 + ax + 1}{ax^2 + 2x + b}, & x \text{ is rational} \\ \frac{x}{1+x}, & x \text{ is irrational} \end{cases}
\]

is continuous at \(x = 1 \) and 2, then find the values of \(a \) and \(b \).

2. Discuss the differentiability of \(f(x) = [x] + \sqrt{[x]} \), where \([.]\) and \(\{.\} \) denote the greatest integer function and the fractional part, respectively.

3. Consider \(f(x) = \frac{x}{(1+x)(1+x^2)(1+2x)(1+3x) + \cdots} \) to infinity. Discuss the continuity at \(x = 0 \).

4. If \(f(x) \) is a continuous function for all real values of \(x \) and satisfies

\[
x^2 + (f(x) - 2)x + 2\sqrt{3} - 3 - \sqrt{3} f(x) = 0, \forall x \in \mathbb{R}.
\]

Then find the value of \(f(\sqrt{3}) \).

5. If \(g(x) = \begin{cases} [f(x)], & x \in (0, \pi/2) \cup (\pi/2, \pi) \\ 3, & x = \pi/2 \end{cases} \)

and \(f(x) = \frac{2(\sin x - \sin^2 x) + |\sin x - \sin^2 x|}{2(\sin x - \sin^2 x) - |\sin x - \sin^2 x|}, n \in \mathbb{N} \)

where \([.]\) denotes the greatest integer function. Prove that \(g(x) \) is continuous at \(x = \pi/2 \) when \(n > 1 \).

6. Let \(y = f(x) \) be defined parametrically as \(y = t^2 + t |t|, x = 2t - |t|, t \in \mathbb{R} \).

Then at \(x = 0 \), find \(f(x) \) and discuss the differentiability of \(f(x) \).

7. If \(f(x) \) is a continuous function in \([0, 2\pi]\) and \(f(0) = f(2\pi) \), then prove that there exists point \(c \in (0, \pi) \) such that \(f(c) = f(c + \pi) \).

8. Test the continuity of \(f(x) \) at \(x = 0 \)

\[
\text{if } f(x) = \begin{cases} \frac{2- \left(\frac{1}{x} \right)}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}
\]
9. Discuss the differentiability of \(\sin((x - [x])) \) in \((-\pi/2, \pi/2)\), where \([.\]) denotes the greatest integer function less than or equal to \(x\).

10. Let \(f(x) = \begin{cases} \sqrt{x}(1 + x \sin(1/x)), & x > 0 \\ -\sqrt{(-x)}(1 + x \sin(1/x)), & x < 0 \\ 0, & x = 0 \end{cases} \)

Show that \(f'(x) \) exists everywhere and is finite except at \(x = 0 \).

11. Discuss the differentiability of

 \[f(x) = \min\{ |x|, |x-2|, 2-|x-1| \} \]

12. Let \(f(x) \) be a function satisfying \(f(x + y) = f(x) + f(y) \) and \(f(x) = xg(x) \) for all \(x, y \in \mathbb{R} \), where \(g(x) \) is continuous. Then prove that \(f'(x) = g(0) \).

13. If \(f(x) = \begin{cases} x-3, & x < 0 \\ x^2 - 3x + 2, & x \geq 0 \end{cases} \) and let
 \(g(x) = f(|x|) + |f(x)| \). Discuss the differentiability of \(g(x) \).

14. Discuss the continuity and differentiability in \([0, 2]\) of \(f(x) = \begin{cases} 2x - 3 & x \geq 1 \\ \sin\left(\frac{\pi x}{2}\right), & x < 1 \end{cases} \) where \([.\]) denotes the greatest integer function.

15. Let \(f(x) \) be defined as follows:
 \[f(x) = \begin{cases} (\cos x - \sin x) \cos \pi x, & -\frac{\pi}{2} < x < 0 \\ a, & x = 0 \\ e^{1/2} + e^{1/x} - e^{-1/2} + e^{-1/x}, & 0 < x < \pi/2 \end{cases} \]

If \(f(x) \) is continuous at \(x = 0 \), find \(a \) and \(b \).

16. Given a real-valued function \(f(x) \) as follows:
 \[f(x) = \begin{cases} x^2 + 2 \cos x - 2, & x < 0 \\ 1/2, & x = 0 \\ \sin x - \log(e^x \cos x), & x > 0 \end{cases} \]

Test the continuity and differentiability of \(f(x) \) at \(x = 0 \).

17. Find the value of \(f(0) \) so that the function
 \[f(x) = \begin{cases} e^{x^2 + x^2 - a} \sin\left(\frac{1}{x}\right), & -1 \leq x < 0 \\ e^{1/2} + e^{1/x} + e^{-1/2} + e^{-1/x}, & 0 < x < 1 \end{cases} \]
 is continuous at \(x = 0 \)

18. Find the value of \(a \) and \(b \) if
 \[f(x) = \begin{cases} a e^{1/2} - 2 \sin\left(\frac{1/2}{x^2 + 20}\right), & -3 < x < -2 \\ b, & x = -2 \end{cases} \]
 is continuous at \(x = -2 \).

19. Let \(f : \mathbb{R} \to \mathbb{R} \) satisfying \(|f(x)| \leq x^2, \forall x \in \mathbb{R} \), then show that \(f(x) \) is differentiable at \(x = 0 \).

Objective Type

Solutions on page 3.36

Each question has four choices a, b, c, and d, out of which only one is correct.

1. Which of the following functions have finite number of points of discontinuity in \(\mathbb{R} \) (\([.\]) represents greatest integer function)?
 a. \(\tan x \)
 b. \(x[x] \)
 c. \(\frac{|x|}{x} \)
 d. \(\sin(\pi x) \)

2. The function \(f(x) = \frac{4-x^2}{4x-x^3} \) is
 a. Discontinuous at only one point
 b. Discontinuous exactly at two points
 c. Discontinuous exactly at three points
 d. None of these

3. If \(f(x) = \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot 2x} \), \(x \neq \pi/4 \) is continuous at \(x = \pi/4 \), then the value of \(f\left(\frac{\pi}{4}\right) \) is
 a. 0
 b. 1/2
 c. 1/3
 d. -1

4. The function \(f(x) = \frac{(3^x - 1)^2}{\sin x \cdot \ln(1 + x)} \), \(x \neq 0 \), is continuous at \(x = 0 \). Then the value of \(f(0) \) is
 a. \(2\log_3 3 \)
 b. \((\log_3 3)^2\)
 c. \(\log_6 \)
 d. None of these

5. If \(f(x) = \begin{cases} 1 - |x|, & x \neq -1 \\ 1 + x, & x = -1 \end{cases} \), then \(f(2x) \) where \([.\]) represents the greatest integer function is
 a. discontinuous at \(x = -1 \)
 b. continuous at \(x = 0 \)
 c. continuous at \(x = 1/2 \)
 d. continuous at \(x = 1 \)

6. Let \(f(x) = \begin{cases} a + b, & x = 4 \end{cases} \). Then \(f(x) \) is continuous at \(x = 4 \) when,
 a. \(a = 0, b = 0 \)
 b. \(a = 1, b = 1 \)
 c. \(a = -1, b = 1 \)
 d. \(a = 1, b = -1 \)

7. If \(f(x) = \frac{x - e^x + \cos 2x}{x^2} \), \(x \neq 0 \), is continuous at \(x = 0 \), then
 a. \(f(0) = 5/2 \)
 b. \(f'(0) = -2 \)
 c. \(f''(0) = -0.5 \)
 d. \(f'''(0) = -1.5 \)

where \([x]\) and \((x)\) denote the greatest integer and fractional part function, respectively.

8. Let \(f(x) \) be defined in the interval \([0, 4]\) such that
 \[f(x) = \begin{cases} \frac{1}{x}, & 0 < x < 1 \\ x + 2, & 1 < x < 2 \\ 4 - x, & 2 \leq x \leq 4 \end{cases} \]
 then number of points where \(f(f(x)) \) is discontinuous is
 a. 1
 b. 2
 c. 3
 d. None of these
9. The value of \(f(0) \), so that the function
\[
f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}
\]
is continuous at each point in its domain, is equal to
a. 2 b. 1/3 c. 2/3 d. -1/3

10. Which of the following is true about
\[
f(x) = \begin{cases} \frac{(x-2)}{1-2} & \text{if } x \neq 2 \\ 3 & \text{if } x = 2 \end{cases}
\]
a. \(f(x) \) is continuous at \(x = 2 \).
b. \(f(x) \) has removable discontinuity at \(x = 2 \).
c. \(f(x) \) has non-removable discontinuity at \(x = 2 \).
d. Discontinuity at \(x = 2 \) can be removed by redefining function at \(x = 2 \).

11. \(f(x) = \lim_{n \to \infty} \frac{(x-1)^{2n} - 1}{(x-1)^{2n} + 1} \) is discontinuous at
a. \(x = 0 \) only b. \(x = 2 \) only c. \(x = 0 \) and 2 d. None of these

12. If \(f(x) = \frac{8^x - 4^x - 2^x + 1}{x^2} \), \(x > 0 \)
is continuous at \(x = 0 \). Then the value of \(\lambda \) is
a. 4log 2 b. 2log 2 c. log 2 d. None of these

13. If \(f(x) = \frac{a \cos x - \cos bx}{x^2} \), \(x \neq 0 \) and \(f(0) = 4 \) is continuous at
\(x = 0 \), then the ordered pair \((a, b)\) is
a. \((\pm 1, 3)\) b. \((1, 3)\) c. \((-1, -3)\) d. \((1, 3)\)

14. If \(f(x) = \frac{-x^2 - 2}{x} \), \(0 < x < 1 \), then the number of points of
\[
discontinuity of \(f(x) \) is
a. 1 b. 2 c. 3 d. None of these

15. Let \(f: R \to R \) be given by \(f(x) = 5x \) if \(x \in Q \) and \(f(x) = x^2 + 6 \) if \(x \in R - Q \), then
a. \(f \) is continuous at \(x = 2 \) and \(x = 3 \)
b. \(f \) is not continuous at \(x = 2 \) and \(x = 3 \)
c. \(f \) is continuous at \(x = 2 \) but not at \(x = 3 \)
d. \(f \) is continuous at \(x = 3 \) but not at \(x = 2 \)

16. The function \(f(x) = |2 \text{ sgn } 2x| + 2 \) has
a. Jump discontinuity b. Removal discontinuity c. Infinite discontinuity d. No discontinuity at \(x = 0 \)

17. Let \(f(x) = \lim_{n \to \infty} (\sin x)^{2n} \), then which of the following is not true?
\[
a. \text{ discontinuous at infinite number of points}
\]
b. Discontinuous at \(x = \frac{\pi}{2} \)
c. Discontinuous at \(x = -\frac{\pi}{2} \)
d. None of these

18. Let \(f \) be a continuous function on \(R \) such that
\[
f(1/4n) = (\sin e^x) e^{-x^2 + \frac{n^2}{n^2 + 1}}\]. Then the value of \(f(0) \) is
a. 1 b. 1/2 c. 0 d. None of these

19. If \(f(x) = \frac{x^2 - bx + 25}{x^2 - 7x + 10} \) for \(x \neq 5 \) is continuous at \(x = 5 \), then
the value of \(f(5) \) is
a. 0 b. 5 c. 10 d. 25

20. Which of the following statements is always true? (\(\lfloor . \rfloor \) represents the greatest integer function)
a. \(f(x) \) is discontinuous, then \(f(\lfloor x \rfloor) \) is discontinuous
b. \(f(x) \) is discontinuous, then \(f(\lfloor x \rfloor) \) is discontinuous
c. \(f(x) = \lfloor g(x) \rfloor \) is discontinuous when \(g(x) \) is an integer
d. None of these

21. A function \(f(x) \) is defined as
\[
\begin{cases}
\sin x, & x \text{ is rational} \\
\cos x, & x \text{ is irrational}
\end{cases}
\]
is continuous at
a. \(x = n\pi + \pi/4, n \in I \) b. \(x = n\pi + \pi/8, n \in I \)
c. \(x = n\pi + \pi/6, n \in I \) d. \(x = n\pi + \pi/3, n \in I \)

22. The number of points \(f(x) = \lfloor \cos \pi x \rfloor, 0 \leq x \leq 1 \)
is discontinuous at \((\lfloor . \rfloor \) denotes the greatest integer function)
a. two points b. three points c. four points d. no points

23. A point where function \(f(x) \) is not continuous where
\(f(x) = \lfloor \sin (\lfloor x \rfloor) \rfloor \) in \((0, 2n)\), \(\lfloor . \rfloor \) denotes the greatest integer \(\leq x \) is
a. \((3, 0)\) b. \((2, 0)\) c. \((1, 0)\) d. None of these

24. The function \(f(x) = \lfloor \sin (\lfloor x \rfloor) \rfloor, x \neq 0 \), and \(1 \) if \(x = 0 \)
a. is continuous at \(x = 0 \)
b. has removable discontinuity at \(x = 0 \)
c. has jump of discontinuity at \(x = 0 \)
d. has oscillating discontinuity at \(x = 0 \)

25. The function defined by \(f(x) = (-1)^{\lfloor x^2 \rfloor} \) (\(\lfloor . \rfloor \) denotes the greatest integer function) satisfies
a. discontinuous for \(x = n^{1/2} \), where \(n \) is any integer
b. \(f(3/2) = 1 \)
c. \(f'(x) = 1 \) for \(-1 < x < 1 \)
d. None of these

26. The function \(f(x) = \lfloor x \rfloor \sin (\pi \lfloor x \rfloor) \), where \(\lfloor . \rfloor \) denotes the greatest integer function and \(\lfloor . \rfloor \) is the fractional part function, is discontinuous at
a. all \(x \) b. all integer points c. no \(x \) d. \(x \) which is not an integer
27. The function \(f(x) \) defined by

\[
 f(x) = \begin{cases}
 \log(4x-3)(x^2 - 2x + 5), & \frac{3}{4} < x < 1 \text{ and } x > 1 \\
 4, & x = 1
\end{cases}
\]

a. is continuous at \(x = 1 \).

b. is discontinuous at \(x = 1 \) since \(f(1^-) \) does not exist though \(f(1^+) \) exists.

c. is discontinuous at \(x = 1 \) since \(f(1^-) \) does not exist though \(f(1^+) \) exists.

d. is discontinuous at \(x = 1 \) since neither \(f(1^-) \) nor \(f(1^+) \) exists.

28. Let \(f(x) = [x] \) and \(g(x) = \begin{cases}
 0, & x \in \mathbb{Z} \\
 x^2, & x \in \mathbb{R} - \mathbb{Z}
\end{cases} \). Then which of the following is not true (\([\cdot]\) represents greatest integer function)

a. \(\lim_{x \to 1^-} g(x) \) exists but \(g(x) \) is not continuous at \(x = 1 \).

b. \(\lim_{x \to 1^+} f(x) \) does not exist and \(f(x) \) is not continuous at \(x = 1 \).

c. \(g \circ f \) is a discontinuous function.

d. \(f \circ g \) is a discontinuous function.

29. \(f(x) = \begin{cases}
 x, & x \neq 0 \\
 2, & x = 0
\end{cases} \) then \(f(x) \) is

a. Continuous but non-differentiable at \(x = 0 \)

b. Differentiable at \(x = 0 \)

c. Discontinuous at \(x = 0 \)

d. None of these

30. Let a function \(f(x) \) be defined by \(f(x) = \frac{x - |x - 1|}{x} \), then

a. Continuous but non-differentiable at \(x = 0 \)

b. Differentiable at \(x = 0 \)

c. Discontinuous at \(x = 0 \)

d. None of these

31. If \(f(x) = x^2 \arg \left(x \right) \), then

a. \(f \) is derivable at \(x = 0 \)

b. \(f \) is continuous but not derivable at \(x = 0 \)

c. L.H.D. at \(x = 0 \) is 1

d. R.H.D. at \(x = 0 \) is 1

32. Let \(f(x) = \begin{cases}
 \min \{ (x, x^2) \} & x \geq 0 \\
 \max \{ 2x, x^2 - 1 \} & x < 0
\end{cases} \). Then which of the following is not true.

a. \(f(x) \) is continuous at \(x = 0 \)

b. \(f(x) \) is not differentiable at \(x = 1 \)

c. \(f(x) \) is not differentiable at exactly three points

d. None of these

33. The function \(f(x) = \sin^{-1} (\cos x) \) is

a. not differentiable at \(x = \frac{\pi}{2} \)

b. differentiable at \(\frac{3\pi}{2} \)

34. Which of the following functions is non-differentiable?

a. \(f(x) = (e^x - 1)e^{x^2} - 1 \) in \(R \)

b. \(f(x) = \frac{x - 1}{x^2 + 1} \) in \(R \)

c. \(f(x) = \begin{cases}
 x - |x - 1|, & x < 3 \\
 3, & x \geq 3
\end{cases} \) at \(x = 3 \)

where \(| \cdot |\) represents the greatest integer function

d. \(f(x) = 3(x - 2)^\frac{3}{2} + 3 \) in \(R \)

35. The number of values of \(x \in [0, 2] \) at which \(f(x) = \left| x - \frac{1}{2} \right| + \tan x \) is not differentiable at

a. 0

b. 1

c. 3

d. None of these

36. The set of points where \(x^2 |x| \) is thrice differentiable is.

a. \(R \)

b. \(R - \{ 0, \pm 1 \} \)

c. \(R - \{ 0 \} \)

d. None of these

37. Which of the following function is not differentiable at \(x = 1 \)?

a. \(f(x) = (x^2 - 1)(x - 1)(x - 2) \)

b. \(f(x) = \sin (x - 1) - |x - 1| \)

c. \(f(x) = \tan (x - 1) + |x - 1| \)

d. None of these

38. \(f(x) = \begin{cases}
 xe^{-\left(\frac{1}{\left| x \right|} \right)}, & x \neq 0 \\
 0, & x = 0
\end{cases} \). The value of \(a \), such that \(f(x) \) is differentiable at \(x = 0 \), is equal to

a. 1

b. −1

c. 0

d. None of these

39. If \(f(x) = \begin{cases}
 ax^2 + 1, & x \leq 1 \\
 x^2 + bx + c, & x > 1
\end{cases} \) is differentiable at \(x = 1 \), then

a. \(a = 1, b = 1 \)

b. \(a = 1, b = 0 \)

c. \(a = 2, b = 0 \)

d. \(a = 1, b = 1 \)

40. If \(f(x) = a \lfloor x \rfloor + bx \arg(\lfloor x \rfloor) + c \lfloor x \rfloor^2 \) is differentiable at \(x = 0 \), then

a. \(a = b = c = 0 \)

b. \(a = 0, b = 0, c \in R \)

c. \(a = 0, b = 0, c \in R \)

41. The number of points of non-differentiability for \(f(x) = \max \{|x| - 1, 1/2| \} \) is

a. 4

b. 3

c. 2

d. 5

42. Let \(f(x) = \begin{cases}
 \sin 2x, & 0, x \leq \frac{\pi}{6} \\
 ax + b, & \frac{\pi}{6} < x < 1
\end{cases} \). If \(f(x) \) and \(f'(x) \) are continuous, then

a. \(a = 1, b = \frac{1}{\sqrt{2}} + \frac{\pi}{6} \)

b. \(a = \frac{1}{\sqrt{2}}, b = \frac{1}{\sqrt{2}} \)

c. \(a = 1, b = \frac{\sqrt{3}}{2} - \frac{\pi}{6} \)

d. None of these
43. If \(f(x) = \begin{cases} x^3, & x < 1 \\ x^2, & x \geq 1 \end{cases} \), then \(f(x) \) is differentiable at

a. \((-\infty, -1] \)

b. \((-1, \infty) \)

c. \((1, \infty) \)

d. \((-\infty, 1] \)

44. If \(f(x) = (x^2 - 4)(x^2 - 6x + 11) \), then the set of points at which the function \(f(x) \) is not differentiable is

a. \((-2, 2, 1, 3) \)

b. \((-2, 0, 3) \)

c. \((-2, 0) \)

d. \((1, 3) \)

45. If \(f(x) = \cos |x| + [x] \), (where \([x]\) denotes the greatest integer function), then which is not true?

a. Continuous at \(x = 1/2 \)

b. Continuous at \(x = 0 \)

c. Differentiable in \((-1, 0)\)

d. Differentiable in \((0, 1)\)

46. If \(f(x) = \begin{cases} e^{2x^2}, & x > 0 \\ ax + b, & x \leq 0 \end{cases} \), then \(f(x) \) is differentiable at \(x = 0 \), then

a. \(a = 1, b = -1 \)

b. \(a = -1, b = 1 \)

c. \(a = 1, b = 1 \)

d. \(a = -1, b = -1 \)

47. If \(f(x) = \begin{cases} e^{-1/x^2}, & x > 0 \\ 0, & x \leq 0 \end{cases} \), then \(f(x) \) is

a. Differentiable at \(x = 0 \)

b. Continuous but not differentiable at \(x = 0 \)

c. Discontinuous at \(x = 0 \)

d. None of these

48. If \(f(x) = \begin{cases} x - 1, & x < 0 \\ x^2 - 2x, & x \geq 0 \end{cases} \), then

a. \(f(x) \) is continuous at \(x = 0 \)

b. \(f(x) \) is differentiable at \(x = 0 \)

c. \(f(x) \) is non-differentiable at \(x = 0, 2 \)

d. \(f(x) \) is continuous at \(x = 0 \)

49. If \(f(x) = \begin{cases} [1 - 4x^2], & 0 \leq x < 1 \\ [x^2 - 2x], & 1 \leq x < 2 \end{cases} \), where \([\cdot]\) denotes the greatest integer function, then \(f(x) \) is

a. Differentiable for all \(x \)

b. Continuous at \(x = 1 \)

c. \(f(x) \) is non-differentiable at \(x = 1 \)

d. None of these

Discuss the continuity and differentiability of \(f(x) \) in \([0, 2]\)

50. Let \(f(x) = \lim_{n \to \infty} \frac{\log(2 + x) - x^2 \sin x}{1 + x^{2n}}. \) Then

a. \(f \) is continuous at \(x = 1 \)

b. \(\lim_{x \to 1} f(x) = \log 3 \)

c. \(\lim_{x \to 1} f(x) = -\sin 1 \)

d. \(\lim_{x \to 1} f(x) \) does not exist

51. If \(f(x) = \begin{cases} x^2 \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases} \) is continuous but

non-differentiable at \(x = 0 \), then

a. \(a \in (-1, 0) \)

b. \(a \in (0, 2] \)

c. \(a \in (0, 1] \)

d. \(a \in [1, 2] \)

52. If \(f(x) = [\sin x] + [\cos x], x \in [0, 2\pi], \) where \([\cdot]\) denotes the greatest integer function. The total number of points, where \(f(x) \) is non-differentiable, is equal to

a. 2

b. 3

c. 5

d. 4

53. If \(x + 4 |y| = 6y, \) then \(y \) as a function of \(x \) is

a. Continuous at \(x = 0 \)

b. Derivative at \(x = 0 \)

c. \(\frac{dy}{dx} = \frac{1}{2} \) for all \(x \)

d. None of these

54. Let \(g(x) \) be a polynomial of degree one and \(f(x) \) be defined

by \(f(x) = \begin{cases} g(x), & x \leq 0 \\ \sin x, & x > 0 \end{cases} \). If \(f(x) \) is continuous satisfying

\(f'(1) = f(-1), \) then \(g(x) \) is

a. \((1 + \sin 1)x + 1 \)

b. \((1 - \sin 1)x + 1 \)

c. \((1 - \sin 1)x - 1 \)

d. \((1 + \sin 1)x - 1 \)

55. If \(f(x) = |1 - x|, \) then the points where \(\sin^{-1}(f(x)) \) is non-differentiable are

a. \(\{0, 1\} \)

b. \(\{0, -1\} \)

c. \(\{0, 1, -1\} \)

d. None of these

56. Given that \(f(x) = x^g(x) \), \(g(0) = g'(0) = 0 \) and \(f(x) \) is continuous at \(x = 0 \). Then the value of \(f'(0) \)

a. Does not exist

b. Is -1

c. Is 1

d. Is 0

57. The number of points, where the function \(f(x) = \max (|\tan x|, |\cos x|) \) is non-differentiable in the interval \((-\pi, \pi)\), is

a. 4

b. 6

c. 3

d. 2

58. If \(f(x) = \begin{cases} \sin x, & x < 0 \\ \cos x - |x|, & x \geq 0 \end{cases} \), then \(g(x) = f(|x|) \) is non-differentiable for

a. No value of \(x \)

b. Exactly one value of \(x \)

c. Exactly three values of \(x \)

d. None of these

59. If \(f(x) = \begin{cases} 2x - 3[x] + x \sin(x - [x]), & x \neq 0 \\ 0, & x = 0 \end{cases} \), where \([\cdot]\) denotes the greatest integer function, then \(n \) cannot be

a. 4

b. 2

c. 5

d. 6

60. If \(f(x) = \max \{x/n, [\sin \pi x]\}, n \in N \) has maximum points of non-differentiability for \(x \in (0, 4) \), then \(n \) cannot be

a. 4

b. 2

c. 5

d. 6

61. \(f(x) = [x^2] - \{x\}^2 \), where \([\cdot]\) and \(\{\cdot\}\) denote the greatest integer function and the fractional part function, respectively, then

a. Continuous at \(x = 1, -1 \)

b. Continuous at \(x = -1 \) but not at \(x = 1 \)

c. Continuous at \(x = 1 \) but not at \(x = -1 \)

d. Discontinuous at \(x = 1 \) and \(x = -1 \)

62. If \(f(x) = \log_e x + \sqrt{\log_e x}, x > 1, \) where \([\cdot]\) and \(\{\cdot\}\) denote the greatest integer function and the fractional part function, respectively, then

a. \(f(x) \) is continuous but non-differentiable at \(x = e \)

b. \(f(x) \) is differentiable at \(x = e \)

c. \(f(x) \) is discontinuous at \(x = e \)

d. None of these
63. \(f(x) = \lim_{n \to \infty} \sin^{2n}(\pi x) + \left[\frac{x + 1}{2} \right] \), where \([\cdot]\) denotes the greatest integer function is
 a. continuous at \(x = 1 \) but discontinuous at \(x = 3/2 \)
 b. continuous at \(x = 1 \) and \(x = 3/2 \)
 c. discontinuous at \(x = 1 \) and \(x = 3/2 \)
 d. discontinuous at \(x = 1 \) but continuous at \(x = 3/2 \)

64. If \(f(x) = \text{sgn}(\sin^2 x - \sin x - 1) \) has exactly four points of discontinuity for \(x \in (0, n\pi), n \in \mathbb{N} \), then
 a. Minimum value of \(n \) is 5
 b. Maximum value of \(n \) is 6
 c. There are exactly two possible values of \(n \)
 d. None of these

65. If \(f(x) = \begin{cases} x^2 - ax + 3, & x \text{ is rational} \\ 2 - x, & x \text{ is irrational} \end{cases} \), then exactly two points, then the possible values of \(a \) are
 a. \((2, \infty)\)
 b. \((-\infty, 3)\)
 c. \((-\infty, -1) \cup (3, \infty)\)
 d. None of these

66. \(f(x) = \{x^2 - \{x\}\} \), denotes the fractional part function
 a. \(f(x) \) is discontinuous at infinite number of integers but not all integers
 b. \(f(x) \) is discontinuous at finite number of integers
 c. \(f(x) \) is discontinuous at all integers
 d. \(f(x) \) is continuous at all integers

67. Let \(f(x) = \begin{cases} g(x) \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} \), where \(g(x) \) is an even function differentiable at \(x = 0 \), passing through the origin. The \(f'(0) \)
 a. is equal to 1
 b. is equal to 0
 c. is equal to 2
 d. does not exist

68. Let \(f(x) = \begin{cases} 1 - \sqrt{1 - x^2}, & \text{if } -1 \leq x \leq 1 \\ 1 + \log \frac{1}{x}, & \text{if } x > 1 \end{cases} \)
 a. Continuous and differentiable at \(x = 1 \)
 b. Continuous but not differentiable at \(x = 1 \)
 c. Neither continuous nor differentiable at \(x = 1 \)
 d. None of these

69. If \(f(x) = \sqrt{1 - x^2} \), the \(f(x) \) is
 a. Continuous on \([-1, 1]\) and differentiable on \((-1, 1)\)
 b. Continuous \([-1, 1]\) and differentiable on \((-1, 0) \cup (0, 1)\)
 c. Continuous and differentiable on \([-1, 1]\)
 d. None of these

70. The set of all points, where \(f(x) = \sqrt{x^2} \mid x \mid - 1 \) is not differentiable is
 a. \((0)\)
 b. \((-1, 0, 1)\)
 c. \((0, 1)\)
 d. None of these

71. Let \(f(x) \) be a function for all \(x \in R \) and \(f'(0) = 1 \). Then \(g(x) = \frac{1 - \cos 2x}{2} \) at \(x = 0 \),
 a. is differentiable at \(x = 0 \) and its value is 1
 b. is differentiable at \(x = 0 \) and its value is 0

72. A function \(f(x) \) is defined as
 \[f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0, m \in \mathbb{N} \text{ if } \frac{1}{x} = 0 \end{cases} \]
 for which \(f'(x) \) is continuous at \(x = 0 \) is
 a. 1
 b. 2
 c. 3
 d. None

73. \(f(x) = \begin{cases} e^{1/x} - e^{-1/x}, & x \neq 0 \end{cases} \). Then
 a. \(f(x) \) is discontinuous at \(x = 0 \)
 b. \(f(x) \) is continuous but non-differentiable at \(x = 0 \)
 c. \(f(x) \) is differentiable at \(x = 0 \)
 d. \(f'(0) = 2 \)

74. If \(f(x) = (\{x\} - (\{x\})^2 \), where \(\{x\} \) denotes the fractional part of \(x \), then
 a. \(f(x) \) is continuous at \(x = -2 \) but not at \(x = 2 \)
 b. \(f(x) \) is continuous at \(x = 2 \) but not at \(x = -2 \)
 c. \(f(x) \) is continuous at \(x = 2 \) and \(x = -2 \)
 d. \(f(x) \) is discontinuous at \(x = -2 \) and \(x = 2 \)

75. Let \(y = f(x) = \begin{cases} e^{-x^2}, & x \neq 0 \end{cases} \). Then which of the following can best represent the graph of \(y = f(x) \) ?
 a. \(y \)
 b. \(y \)
 c. \(y \)
 d. \(y \)

76. If \(f(2 + x) = f(-x) \) for all \(x \in R \), then differentiability at \(x = 4 \) implies differentiability at
 a. \(x = 1 \)
 b. \(x = -1 \)
 c. \(x = -2 \)
 d. cannot say anything.

77. \(f(x) = \begin{cases} 3 \cos^{-1} \frac{1}{x}, & x > 0 \\ x^2 \cos^{1/2} x, & x < 0 \end{cases} \)
 a. continuous at \(x = 0 \)
 b. \(x = -1 \)
 c. \(x = 0 \)
 d. none of these

78. If both \(f(x) \) and \(g(x) \) are differentiable functions at \(x = x_0 \), then the function defined as \(h(x) = \max \{f(x), g(x)\} \) is
 a. always differentiable at \(x = x_0 \)
 b. never differentiable at \(x = x_0 \)
 c. is differentiable at \(x = x_0 \) provided \(f(x_0) \neq g(x_0) \)
 d. cannot be differentiable at \(x = x_0 \) if \(f(x_0) = g(x_0) \).
3.24 Calculus

79. Number of points where the function
\[f(x) = \begin{cases} 1 + \left\lfloor \frac{\pi x}{2} \right\rfloor, & 1 < x \leq 2 \\ 1 - \lfloor x \rfloor, & 0 \leq x < 1 \\ \sin \pi x, & -1 \leq x < 0 \end{cases} \]
and \(f(1) = 0 \) is continuous but non-differentiable is/are (where \(\lfloor \cdot \rfloor \) and \(\{ \cdot \} \) represent greatest integer and fractional part function, respectively)

a. 0
b. 1
c. 2
d. none of these

80. Let \(f(x) = \lim_{n \to \infty} \frac{(x^2 + 2x + 3 + \sin \pi x)^n - 1}{(x^2 + 2x + 3 + \sin \pi x)^n + 1} \), then

a. \(f(x) \) is continuous and differentiable for all \(x \in R \).
b. \(f(x) \) is continuous but not differentiable for all \(x \in R \).
c. \(f(x) \) is discontinuous at infinite number of points.
d. \(f(x) \) is discontinuous at finite number of points.

81. Given that \(\prod_{n=1}^{\infty} \frac{\cos x}{2^n} = \frac{\sin x}{2^{\pi}} \) and

\[f(x) = \lim_{n \to \infty} \frac{1}{2^n} \tan \left(\frac{x}{2^n} \right), \quad x \in (0, \pi) - \left\{ \frac{\pi}{2} \right\} \]
Then which one of the following is true?

a. \(f(x) \) has non-removable discontinuity of finite type at \(x = \frac{\pi}{2} \).
b. \(f(x) \) has removable discontinuity at \(x = \frac{\pi}{2} \).
c. \(f(x) \) is continuous at \(x = \frac{\pi}{2} \).
d. \(f(x) \) has non-removable discontinuity of infinite type at \(x = \frac{\pi}{2} \).

4. The function \(f(x) = \begin{cases} 5x - 4 & \text{for } 0 < x \leq 1 \\ 4x^2 - 3x & \text{for } 1 < x < 2 \\ 3x + 4 & \text{for } x \geq 2 \end{cases} \)

a. continuous at \(x = 1 \) and \(x = 2 \)
b. continuous at \(x = 1 \) but not derivable at \(x = 2 \)
c. continuous at \(x = 2 \) but not derivable at \(x = 1 \)
d. continuous at \(x = 1 \) and \(x = 2 \) but not derivable at \(x = 1 \) and \(x = 2 \)

8. Which of the following is/are true for \(f(x) = \text{sgn}(x) \times \sin x \)?

a. discontinuous no where
b. an even function
c. \(f(x) \) is periodic
d. \(f(x) \) is differentiable for all \(x \)

6. If \(f(x) = \lim_{t \to 0} \frac{a + \sin \pi x^t - 1}{a + \sin \pi x^t + 1} \), \(x \in (0, 6) \), then

a. if \(a = 1 \), then \(f(x) \) has 5 points of discontinuity.
b. if \(a = 3 \), then \(f(x) \) has no point of discontinuity.
c. if \(a = 0.5 \), then \(f(x) \) has 6 points of discontinuity.
d. if \(a = 0 \), then \(f(x) \) has 6 points of discontinuity.

7. If \(f(x) = \text{sgn}(x^2 - ax + 1) \) has maximum number of points of discontinuity, then

a. \(a \in (2, \infty) \)
b. \(a \in (-\infty, -2) \)
c. \(a \in (-2, 2) \)
d. None of these

8. If \(f(x) = |x| \), where \(|\cdot| \) denotes the greatest integer function, then which of the following is not true?

a. \(f(x) \) is continuous \(\forall x \in R \).
b. \(f(x) \) is continuous from right and discontinuous from left \(\forall x \in N \).
c. \(f(x) \) is continuous from left and discontinuous from right \(\forall x \in I \).
d. \(f(x) \) is continuous at \(x = 0 \).

9. \(f(x) \) is differentiable function and \((f(x), g(x)) \) is differentiable at \(x = a \), then
Continuity and Differentiability

3.25

10. The function defined as
\[f(x) = \lim_{n \to \infty} \frac{\cos^n x}{1 + x^n} \]
if \(x < 0 \)
\[f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } 0 \leq x \leq 1, \\ \frac{1}{1 + x^n} & \text{if } x > 1 \end{cases} \]
which of the following does not hold good?

a. continuous at \(x = 0 \) but discontinuous at \(x = 1 \).

b. continuous at \(x = 1 \) but discontinuous at \(x = 0 \).

c. continuous both at \(x = 1 \) and \(x = 0 \).

d. discontinuous both at \(x = 1 \) and \(x = 0 \).

11. Which of the following function(s) has/have removable discontinuity at \(x = 1 \)?

\[f(x) = \frac{x^2 - 1}{x - 1} \]
\[f(x) = 2^{2-x} \]
\[f(x) = \frac{\sqrt{x+1} - \sqrt{2x}}{x^2 - x} \]
\[f(x) = \frac{\log \cos x}{\log(1 + x^2)} \]

12. \(f(x) = \frac{\lfloor x \rfloor}{x} + 1 \) for \(f : \left[\frac{0}{2}, \frac{5}{2} \right] \to \left[\frac{1}{2}, 3 \right] \), where \([\cdot]\) represents the greatest integer function and \(\{\cdot\}\) represents the fractional part of \(x \), then which of the following is true?

a. \(f(x) \) is injective continuous function.

b. \(f(x) \) is surjective non-differentiable function.

c. min \(\left(\lim_{n \to 1} f(x) \right) \) = \(f(1) \).

d. max (x values of point of discontinuity) = \(f(1) \).

13. The function \(f(x) = \frac{1}{x^n} \)
\[f(x) = \begin{cases} 1, & |x| \geq 1 \\ \frac{1}{n^2}, & 0 < |x| < \frac{1}{n-1}, n = 2, 3, ..., \\ 0, & x = 0 \end{cases} \]
a. is discontinuous at infinite points

b. is continuous everywhere

c. is discontinuous only at \(x = \frac{1}{n}, n \in \mathbb{Z} - \{0\} \)

d. None of these

14. Let \(f(x) = \lfloor x \rfloor \) and \(g(x) = \begin{cases} 0, & x \in \mathbb{Z} \\\n & \lfloor x \rfloor \end{cases} \) (\([\cdot]\) represents greatest integer function). Then

a. lim \(g(x) \) exists but \(g(x) \) is not continuous at \(x = 1 \).

b. \(f(x) \) is not continuous at \(x = 1 \).

c. \(g(x) \) is continuous but \(f(x) \) is not differentiable at \(x = 1 \).

d. \(f(x) \) is differentiable at \(x = 1 \).

15. If \(f(x) = \frac{x \log \cos x}{\log(1 + x^2)} \) then
\[f(0) = \begin{cases} 0, & x = 0 \end{cases} \]
a. \(f(x) \) is not continuous at \(x = 0 \).

b. \(f(x) \) is continuous at \(x = 0 \).

c. \(f(x) \) is continuous at \(x = 0 \) but not differentiable at \(x = 0 \).

d. \(f(x) \) is differentiable at \(x = 0 \).

16. If \(f(x) = x + |x| + \cos((\pi x)^3) \) and \(g(x) = \sin x \), where \([\cdot]\) denotes the greatest integer function, then

a. \(f(x) + g(x) \) is continuous everywhere.

b. \(f(x) + g(x) \) is differentiable everywhere.

c. \(f(x) \times g(x) \) is differentiable everywhere.

d. \(f(x) \times g(x) \) is continuous but not differentiable at \(x = 0 \).

17. If \(f(x) = \begin{cases} (\sin^{-1} x)^2 \cos(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases} \)
a. \(f(x) \) is continuous everywhere in \(x \in (-1, 1) \).

b. \(f(x) \) is discontinuous in \(x = [-1, 1] \).

c. \(f(x) \) is differentiable everywhere in \(x \in (-1, 1) \).

d. \(f(x) \) is non-differentiable nowhere in \(x \in [-1, 1] \).

18. \(f(x) = \begin{cases} x + a, & x \geq 0 \\ 2 - x, & x < 0 \end{cases} \) and \(g(x) = \begin{cases} \{x\}, & x < 0 \\ \sin x + b, & x \geq 0 \end{cases} \)

a. \(f(x) \) is continuous at \(x = 0 \) then which of the following is/are true (where \(\{x\} \) represents the fractional part function)

b. \(f(x) \) is discontinuous at \(x = 0 \).

c. no values of \(a \) and \(b \) are possible.

d. there exist finite ordered pairs \((a, b)\).

19. If \(f(x) = \begin{cases} |x| - 3, & x < 1 \\ x - 2 + a, & x \geq 1 \end{cases} \) and \(g(x) = \begin{cases} 2 - |x|, & x < 2 \\ \sin x + b, & x \geq 2 \end{cases} \)

a. \(a = -3, b = 0 \)

b. \(a = 2, b = 1 \)

c. \(a = 2, b = 0 \)

d. \(a = -3, b = 1 \)

20. Let \(f : R \to R \) be any function and \(g(x) = \frac{1}{f(x)} \). Then

a. \(g \) is onto if \(f \) is onto.

b. \(g \) is one-one if \(f \) is one-to-one.

c. \(g \) is continuous if \(f \) is continuous.

d. \(g \) is differentiable if \(f \) is differentiable.

21. If \(f(x) = \begin{cases} x^2 \{\lfloor x \rfloor\} + \{x\}, & 0 \leq x < 2 \\ \sin x + |x - 3|, & 2 \leq x < 4 \end{cases} \), where \([\cdot]\) and \(\{\cdot\}\) represent the greatest integer and the fractional part function, respectively.

a. \(f(x) \) is differentiable at \(x = 1 \).

b. \(f(x) \) is continuous but non-differentiable at \(x = 1 \).

c. \(f(x) \) is non-differentiable at \(x = 2 \).

d. \(f(x) \) is discontinuous at \(x = 2 \).
b. if both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1.

c. if STATEMENT 1 is TRUE and STATEMENT 2 is FALSE.

d. if STATEMENT 1 is FALSE and STATEMENT 2 is TRUE.

1. Statement 1: \(y = \sin x \) and \(y = \sin^{-1}x \), both are differentiable functions.

2. STATEMENT 2: Differentiability of \(f(x) \) \(\Rightarrow \) differentiability of \(y = f^{-1}(x) \).

2. STATEMENT 1: \(f(x) = (2x - 5)^{3/5} \) is non-differentiable at \(x = 5/2 \).

Statement 2: If the graph of \(y = f(x) \) has sharp turn at \(x = a \), then it is non-differentiable.

3. STATEMENT 1: \(f(x) = \text{sgn}(x^2 - 2x + 3) \) is continuous for all \(x \).

Statement 2: \(ax^2 + bx + c = 0 \) has no real roots if \(b^2 - 4ac < 0 \).

4. STATEMENT 1: \(f'(x) = \lim_{x \to a} \frac{x^2 - 1}{x^2 + 1} \) is discontinuous at \(x = 1 \).

Statement 2: If limit of function exists at \(x = a \) but not equal to \(f(a) \), then \(f(x) \) is discontinuous at \(x = a \).

5. STATEMENT 1: \(f(x) = [\sin x] - [\cos x] \) is discontinuous at \(x = \pi/2 \), where \([\cdot]\) represent the greatest integer function.

Statement 2: If \(f(x) \) and \(g(x) \) are discontinuous at \(x = a \), then \(f(x) + g(x) \) is discontinuous at \(x = a \).

6. STATEMENT 1: \(f(\sin x) = \text{sgn}(x) \) is discontinuous at \(x = 0 \).

Statement 2: Continuity of \(f(x) \) \(\Rightarrow \) discontinuity of \(f'(x) \).

Statement 1: \(f(x) = (\sin x)(\pi x - 1)^{3/5} \) is differentiable at \(x = 1 \).

Statement 2: Product of two differentiable function is always differentiable.

8. STATEMENTS 1: The function \(f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1} & x \neq 0 \\ \cos x & x = 0 \end{cases} \) is discontinuous at \(x = 0 \).

Statement 2: \(f(0) = 1 \).

9. STATEMENT 1: \(f(x) = \sin x + [x] \) is discontinuous at \(x = 0 \), where \([\cdot]\) denotes the greatest integer function.

Statement 2: If \(g(x) \) is continuous and \(h(x) \) is discontinuous at \(x = a \), then \(g(x) + h(x) \) will necessarily be discontinuous at \(x = a \).

10. STATEMENT 1: \(f(x) = |x| \sin x \) is non-differentiable at \(x = 0 \).

Statement 2: If \(f(x) \) is not differentiable and \(g(x) \) is differentiable at \(x = a \), then \(f(x) \) \(g(x) \) can still be differentiable at \(x = a \).

11. STATEMENT 1: \(f(x) \) is discontinuous at \(x = e \) and \(\lim_{x \to e} g(x) = e \), then \(\lim_{x \to e} f(g(x)) \) cannot be equal to \(f \left(\lim_{x \to e} g(x) \right) \).

Statement 2: If \(f(x) \) is continuous at \(x = e \) and \(\lim_{x \to e} g(x) = e \), then \(\lim_{x \to e} f(g(x)) = f \left(\lim_{x \to e} g(x) \right) \).

12. STATEMENT 1: Both the functions \(|\ln x| \) and \(\ln x \) are both continuous for all \(x \).

Statement 2: Continuity of \(f(x) \) \(\Rightarrow \) continuity of \(f(x) \).
13. **Statement 1:** \(f(x) = \tan^{-1}\left(\frac{2x}{1-x^2} \right) \) is non-differentiable at \(x = \pm 1 \).

Statement 2: Principal value of \(\tan^{-1} x \) are \(\left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \).

14. **Statement 1:** If \(|f'(x)| \leq |x| \) for all \(x \in R \), then \(|f'(x)| \) is continuous at 0.

Statement 2: If \(f(x) \) is continuous, then \(|f'(x)| \) is also continuous.

15. **Statement 1:** \(f(x) = |x^2 - 3x| + 2 \) is not differentiable at 5 points.

Statement 2: If the graph of \(f(x) \) crosses the x-axis at \(m \) distinct points, then \(g(x) = |f'(x)| \) is always non-differentiable at least at \(m \) distinct points.

16. **Statement 1:** The function \(f(x) = a_1e^{x^3} + a_2|x|^3 \), where \(a_1, a_2 \) are constants, is differentiable at \(x = 0 \) if \(a_1 = 0 \).

Statement 2: \(e^{x^3} \) is a many-one function.

17. Consider \(\lfloor x \rfloor \) and \(\{x\} \) denote the greatest integer function and the fractional part function, respectively.

Let \(f(x) = \lfloor x \rfloor + \sqrt{x} \).

Statement 1: \(f(x) \) is not differentiable at integral values of \(x \).

Statement 2: \(f(x) \) is not continuous at integral points.

18. **Statement 1:** \(f(x) = \lim_{m \to \infty} \left\{ \lim_{n \to \infty} \cos^2(n \pi x) \right\} \), and

\[g(x) = \begin{cases}
0, & \text{if } x \text{ is rational} \\
1, & \text{if } x \text{ is irrational}
\end{cases} \] . Then \(h(x) = f(x) + g(x) \) is continuous for all \(x \).

Statement 2: \(f(x) \) and \(g(x) \) are discontinuous for all \(x \in R \).

19. **Statement 1:** If \(f^{(n)}(x) \) exists then \(f^{(n)}(x) \) is continuous.

Statement 2: Every differentiable function is continuous.

20. Consider the functions \(f(x) = x^2 - 2x \) and \(g(x) = -|x| \).

Statement 1: The composite function \(F(x) = f(g(x)) \) is not derivable at \(x = 0 \).

Statement 2: \(F'(0) = 2 \) and \(F''(0) = -2 \).

21. **Statement 1:** If \(f(x) \) and \(g(x) \) are two differentiable functions \(\forall x \in R \), then \(y = \max\{f(x), g(x)\} \) is always continuous but not differentiable at the point of intersection of graphs of \(f(x) \) and \(g(x) \).

Statement 2: \(y = \max\{f(x), g(x)\} \) is always differentiable in between the two consecutive roots of \(f(x) - g(x) = 0 \), both the functions \(f(x) \) and \(g(x) \) are differentiable \(\forall x \in R \).

22. Consider the function

\[f(x) = \cot^{-1}\left(\text{sgn}\left(\frac{[x]}{2x-[x]} \right) \right) \), where \([::] \) denotes the greatest integer function.

Statement 1: \(f(x) \) is discontinuous at \(x = 1 \).

Statement 2: \(f(x) \) is non-differentiable at \(x = 1 \).

23. Consider the function \(f(x) = \text{sgn}(x-1) \) and \(g(x) = \cot^{-1} [x - 1] \), where \([::] \) denotes the greatest integer function.

Statement 1: The function \(F(x) = f(x) \cdot g(x) \) is discontinuous at \(x = 1 \).

Statement 2: If \(f(x) \) is discontinuous at \(x = a \) and \(g(x) \) is also discontinuous at \(x = a \), then the product function \(f(x) \cdot g(x) \) is discontinuous at \(x = a \).

24. **Statement 1:** \(f(x) = \min\{\sin x, \cos x\} \) is non-differentiable at \(x = \pi/2 \).

Statement 2: Non-differentiability of \(\max\{g(x), h(x)\} \) is non-differentiability of \(\min\{g(x), h(x)\} \).

25. **Statement 1:** If \(f(x) \) is a continuous function such that \(f(0) = 1 \) and \(f(x) \neq x, \forall x \in R \), then \(f(f(x)) > x \).

Statement 2: If \(f: R \to R \) is an onto function, then \(f(x) = 0 \) has at least one solution.

26. **Statement 1:** The function \(f(x) = \left[\sqrt{x} \right] \) is discontinuous for all integral values of \(x \) in its domain (where \([x]\) is the greatest integer \(\leq x \)).

Statement 2: \(g(x) \) will be discontinuous for all \(x \) given by \(g(x) = k \), where \(k \) is any integer.

Based upon each paragraph, three multiple choice questions have to be answered. Each question has four choices a, b, c, and d, out of which only one is correct.

For Problems 1 – 3

\[f(x) = \begin{cases}
a(1-x \sin x) + b \cos x + 5, & x < 0 \\
\frac{\sin x + x^2}{1 + \left(\frac{P(x)}{x^2} \right)^{1/x}}, & x > 0
\end{cases} \]

Let \(f(x) = \begin{cases}
3, & x = 0, \text{ where } P(x)
\end{cases} \)

\[\left\{ \begin{array}{l}
1 + \tan x, & 0 \leq x < \frac{\pi}{4} \\
3 - \cot x, & \frac{\pi}{4} \leq x < \pi
\end{array} \right. \]

1. The range of function \(g(x) = 3a \sin x - b \cos x \) is
 a. \([-10, 10]\] b. \([-5, 5]\] c. \([-12, 12]\] d. None of these

2. The value of \(P'(0) \) is
 a. \(\log_9 9 \) b. \(\log_2 2 \) c. 2 d. 1

3. If the leading co-efficient of \(P(x) \) is positive, then the equation \(P(x) = 0 \) has
 a. Only one real, positive root
 b. Only one real negative root
 c. Three real roots
 d. None of these

For Problems 4 – 6

Let \(f(x) = \begin{cases}
x + 2, & 0 \leq x < 2 \\
6 - x, & x \geq 2
\end{cases} \)

\[g(x) = \begin{cases}
1 + \tan x, & 0 \leq x < \frac{\pi}{4} \\
3 - \cot x, & \frac{\pi}{4} \leq x < \pi
\end{cases} \]
4. \(f(g(x)) \) is
 a. discontinuous at \(x = \pi/4 \).
 b. differentiable at \(x = \pi/4 \).
 c. continuous but non-differentiable at \(x = \pi/4 \).
 d. differentiable at \(x = \pi/4 \), but derivative is not continuous.

5. The number of points of non-differentiability of \(h(x) = \vert f(g(x)) \vert \) is
 a. 1
 b. 2
 c. 3
 d. 4

6. The range of \(h(x) = f(g(x)) \) is
 a. \((-\infty, \infty)\)
 b. \((4, \infty)\)
 c. \((-\infty, 4]\)
 d. None of these

For Problems 7–9

Consider \(f(x) = x^2 + ax + 3 \) and \(g(x) = x + b \) and \(F(x) = \lim_{n \to \infty} \frac{f(x) + x^2g(x)}{1 + x^2n} \).

7. If \(F(x) \) is continuous at \(x = 1 \), then
 a. \(b = a + 3 \)
 b. \(b = a - 1 \)
 c. \(a = b - 2 \)
 d. None of these

8. If \(F(x) \) is continuous at \(x = -1 \), then
 a. \(a + b = 2 \)
 b. \(a - b = 3 \)
 c. \(a + b = 5 \)
 d. None of these

9. If \(F(x) \) is continuous at \(x = \pm 1 \), then \(f(x) = g(x) \) has
 a. imaginary roots
 b. both the roots positive
 c. both the roots negative
 d. roots of opposite signs

For Problems 10–12

Let \(f(x) = \begin{cases} \lfloor x \rfloor, & -2 \leq x \leq -\frac{1}{2} \\ 2x^2 - 1, & -\frac{1}{2} < x \leq 2 \end{cases} \) and \(g(x) = f(|x|) + |f(x)| \).

10. The number of points where \(f(|x|) \) is not-differentiable is
 a. 3
 b. 4
 c. 2
 d. 5

11. The number of points where \(g(x) \) is not-differentiable is
 a. 4
 b. 5
 c. 2
 d. 3

12. The number of points where \(g(x) \) is discontinuous is
 a. 1
 b. 2
 c. 3
 d. None of these

For problems 13–15

Given the continuous function
\[
y = f(x) = \begin{cases} x^2 + 10x + 8, & x \leq -2 \\ ax^2 + bx + c, & -2 < x < 0, \ a \neq 0 \\ x^2 + 2x, & x \geq 0 \end{cases}
\]

If a line \(L \) touches the graph of \(y = f(x) \) at three points, then

13. The slope of the line \('L' \) is equal to
 a. 1
 b. 2
 c. 4
 d. 6

14. The value of \((a + b + c) \) is equal to
 a. 5
 b. 5
 c. 6
 d. 7

15. If \(y = f(x) \) is differentiable at \(x = 0 \), then the value of \(b \)
 a. is \(-1\)
 b. is \(2\)
 c. is \(4\)
 d. Cannot be determined

Matrix-Match Type

Each question contains statements given in two columns which have to be matched. Statements a, b, c, d in column I have to be matched with statements p, q, r, s in column II. If the correct match is a-p, a-s, b-q, b-r, c-p, c-q and d-s, then the correctly bubbled 4 x 4 matrix should be as follows

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(x) =</td>
<td>x</td>
</tr>
<tr>
<td>b. (f(x) = \sqrt{x})</td>
<td>q. differentiable in ((-1, 1))</td>
</tr>
<tr>
<td>c. (f(x) =</td>
<td>\sin x</td>
</tr>
<tr>
<td>d. (f(x) = \cos^{-1}</td>
<td>x</td>
</tr>
</tbody>
</table>

1. Column 1
 a. \(f(x) = \frac{1}{|x|} \) is differentiable everywhere and \(|k| = a + b \), then the value of \(k \) is
 b. If \(f(x) = \text{sgn}(x^2 - ax + 1) \) has exactly one point of discontinuity, then the value of \(a \) can be
 c. \(f(x) = [2 + 3|x| \sin x], n \in N, x \in (0, \pi) \) has exactly 11 points of discontinuity, then the value of \(n \) is
 d. \(f(x) = ||x| - 2| + a| \) has exactly three points of non-differentiability, then the value of \(a \) is

 Column 2
 q. 2
 r. 1
 s. 1

2. Column 1
 a. \(f(x) = \begin{cases} 1 & \text{for } |x| \geq 1 \\ \frac{ax^2 + b}{|x|} & \text{for } |x| < 1 \end{cases} \)
 b. If \(f(x) = \text{sgn}(x^2 - ax + 1) \) has exactly one point of discontinuity, then the value of \(a \) can be
 c. \(f(x) = [2 + 3|x| \sin x], n \in N, x \in (0, \pi) \) has exactly 11 points of discontinuity, then the value of \(n \) is
 d. \(f(x) = ||x| - 2| + a| \) has exactly three points of non-differentiability, then the value of \(a \) is

 Column 2
 p. 2
 q. 2
 r. 3
 s. 5

3. Consider the function \(f(x) = x^2 + bx + c \), where \(D = b^2 - 4c > 0 \)

 Column 1
 Condition on \(b \) and \(c \)
 Column 2
 Number of points of non-differentiability of \(g(x) = |f(|x|)| \)
 a. \(b < 0, c > 0 \) p. 1
 b. \(c = 0, b < 0 \) q. 2
 c. \(c = 0, b > 0 \) r. 3
 d. \(b = 0, c < 0 \) s. 5
4. Let \(f(x) = \begin{cases} \frac{5e^{1/x} + 2}{3-e^{1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases} \)

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (y = f(x)) is</td>
<td>p. continuous at (x = 0)</td>
</tr>
<tr>
<td>b. (y = x f(x)) is</td>
<td>q. discontinuous at (x = 0)</td>
</tr>
<tr>
<td>c. (y = x^{-1} f(x)) is</td>
<td>r. differentiable at (x = 0)</td>
</tr>
<tr>
<td>d. (y = x^{-1}) is</td>
<td>s. non-differentiable at (x = 0)</td>
</tr>
</tbody>
</table>

5.

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(x) = \lim_{n \to \infty} (2\pi x) + \left{ x + \frac{1}{2} \right}), where ({ }) denotes the fractional part function at (x = \frac{1}{2})</td>
<td>p. continuous</td>
</tr>
<tr>
<td>b. (f(x) = (\log_2 x)(x-1)^{1/3}) at (x = 1)</td>
<td>q. discontinuous</td>
</tr>
<tr>
<td>c. (f(x) = [\cos 2\pi x] + \left{ \sin \pi x + 2 \right}), where ([] and ({ }) denote the greatest integer and the fractional part function, respectively at (x = 1)</td>
<td>r. differentiable</td>
</tr>
<tr>
<td>d. (f(x) = \cos 2\pi x), (x \in \mathbb{Q}) at (x = \frac{\pi}{6})</td>
<td>s. non-differentiable</td>
</tr>
</tbody>
</table>

6. Let \(f(x) = \begin{cases} \frac{x-1}{2}, & 0 \leq x < 1 \\ \frac{1}{2}, & 1 \leq x \leq 2 \end{cases} \) and \(g(x) = (2x+1)(x-k)+3 \), \(0 \leq x \leq 1 \). Then \(g(f(x)) \) is continuous at \(x = 1 \) if \(12k \) is equal to

7. A differentiable function \(f \) satisfying a relation \(f(x+y) = f(x) + f(y) + 2xy(x+y) - \frac{1}{3} \forall x, y \in \mathbb{R} \) and
\[
\lim_{h \to 0} \frac{3f(h) - 1}{6h} = \frac{2}{3}.
\] Then the value of \(f(2) \) is (where \([x] \) represents greatest integer function)

8. The least integral value of \(p \) for which \(f''(x) \) is everywhere continuous where \(f(x) = \begin{cases} x^p \sin \left(\frac{1}{x} \right) + x|x|, & x \neq 0 \\ 0, & x = 0 \end{cases} \)

9. Number of points where \(f(x) = [x] + [x+1/3] + [x+2/3] \), then \(([\cdot]) \) denotes the greatest integer function is discontinuous for \(x \in (0, 3) \).

10. Let \(f(x) \) and \(g(x) \) be two continuous functions and \(h(x) \)
\[
= \lim_{n \to \infty} \frac{x^n f(x) + x^{2n} g(x)}{(x^n + 1)}.
\] If limit of \(h(x) \) exists at \(x = 1 \), then one root of \(f(x) - g(x) = 0 \) is

11. Given \(\frac{\int_{e^2}^{x} e^t dt}{\int_{e^2}^{x} \frac{1}{t} dt} = 1 \), \(\forall x, y \in \left(\frac{1}{e^2}, \infty \right) \) where \(f(x) \) is continuous and differentiable and \(f\left(\frac{1}{e} \right) = 0 \). If
\[
g(x) = \begin{cases} e^x, & x \geq k \\ \frac{e^x}{x}, & 0 < x < k \end{cases}
\] then the value of "\(k \)" for which
\(f(g(x)) \) is continuous \(\forall x \in \mathbb{R} \) is

12. \(f(x) = \frac{x}{1 + (\ln x)(\ln x) \cdots \infty} \) \(\forall x \in [1, 3] \) is non-differentiable at \(x = k \). Then the value of \([k^2]\) is (where \([\cdot]\) represents greatest integer function)

13. If the function \(f(x) = \frac{\tan(x) - \sin(x)}{\tan x - \sin x} \) \(\forall x \neq 0 \)
\[
\int \frac{1}{\tan(x) - \sin(x)} \mathrm{d}x
\] is continuous at \(x = 0 \), then the value of \(f(0) \) is

14. Number of points of non-differentiability of function \(f(x) = \max \{\sin x, \cos x\} \), \(0 < x < 2\pi \) is

Archives

Subjective

1. Determine the values of \(a, b, c \) for which the function \(f(x) \) is continuous at \(x = 0 \), where
3.30 Calculus

\[f(x) = \begin{cases} \frac{\sin[(a+1)x] + \sin x}{x} ; & x < 0 \\ \frac{c}{x} ; & x = 0 \\ \frac{(x + bx^2)^{1/2} - x^{1/2}}{bx^{3/2}} ; & x > 0 \end{cases} \] (IIT-JEE, 1982)

2. Let \(f(x) = \begin{cases} 1 + x, & 0 \leq x \leq 2 \\ 3 - x, & 2 < x \leq 3 \end{cases} \) Determine the function \(g(x) = f(f(x)) \), and hence find the points of discontinuity of \(g \), if any.

3. Let \(f(x) = \begin{cases} \frac{x^2}{2} , & 0 \leq x < 1 \\ 2x^2 - 3x + \frac{3}{2}, & 1 \leq x \leq 2 \end{cases} \) (IIT-JEE, 1983)

discuss the continuity and differentiability of \(g(x) \) in \((0, 2)\).

4. Let \(f(x) = x^2 - x^3 + x + 1 \) and
\[g(x) = \begin{cases} \text{max} f(t) ; & 0 \leq t \leq x & \text{for } 0 \leq x \leq 1 \\ 3 - x ; & 1 < x \leq 2 \end{cases} \]

Discuss the continuity and differentiability of \(g(x) \) in \((0, 2)\).

5. Let \(f(x) \) be defined in the interval \([-2, 2]\) such that
\[f(x) = \begin{cases} -1, & -2 \leq x \leq 0 \\ x - 1, & 0 < x \leq 2 \end{cases} \text{ and } g(x) = f(|x|) + |f(x)|. \]
Test the differentiability of \(g(x) \) in \((-2, 2)\).

(IIT-JEE, 1986)

6. Let \(f(x) \) be a continuous and \(g(x) \) is a discontinuous function, then prove that \(f(x) + g(x) \) is discontinuous at \(x = a \).

(IIT-JEE, 1987)

7. Let \(f(x) \) be a function satisfying the condition \(f(-x) = f(x) \) for all real \(x \). If \(f''(0) \) exists, find its value.

(IIT-JEE, 1987)

8. Let \(g(x) \) be a polynomial of degree one and \(f(x) \) be defined by
\[f(x) = \begin{cases} g(x) , & x \leq 0 \\ \left(1 + x\right)^{1/x} , & x > 0 \end{cases} \]
find the continuous function satisfying \(f'(1) = f(-1) \).

(IIT-JEE, 1987)

9. Find the values of \(a \) and \(b \) so that the function
\[f(x) = \begin{cases} x + a \sqrt{2} \sin x , & 0 \leq x \leq \pi/4 \\ 2x \cot x + b, & \pi/4 \leq x \leq \pi/2 \end{cases} \]
is continuous for \(0 \leq x \leq \pi \).

(IIT-JEE, 1989)

10. Draw a graph of the function \(y = [x] + [1 - x] \), \(-1 \leq x \leq 3\). Determine the points, if any, where this function is not differentiable.

(IIT-JEE, 1989)

11. Let \(f(x) = \begin{cases} 1 - \cos 4x , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{16 + \sqrt{x} - 4} , & x > 0 \end{cases} \) (IIT-JEE, 1990)

Determine the value of \(a \), if possible, so that the function is continuous at \(x = 0 \).

\[\left\{ \begin{array}{ll} 1 + |\sin x|^{1/|\sin x|} ; & x < 0 \\ \frac{\pi}{6} ; & x = 0 \\ e^{\tan 2x/\tan 3x} ; & 0 < x < \frac{\pi}{6} \end{array} \right. \]

Determine \(a \) and \(b \) such that \(f(x) \) is continuous at \(x = 0 \).

(IIT-JEE, 1994)

12. Let \(f(x) = \begin{cases} b ; & x = 0 \\ c^{x/\sin x} ; & 0 < x < \frac{\pi}{6} \end{cases} \)

13. Let \(f(x) = \begin{cases} x^{-1} \left(\frac{1}{x} \right)^{1/2} , & x \neq 0 \\ 0 , & x = 0 \end{cases} \) (IIT-JEE, 1997)

Test whether
\[a. \ f(x) \text{ is continuous at } x = 0 \]
\[b. \ f(x) \text{ is differentiable at } x = 0 \]

14. Determine the values of \(x \) for which the following function fails to be continuous or differentiable:
\[f(x) = \begin{cases} 1 - x , & x < 1 \\ (1 - x)(2 - x), & 1 \leq x \leq 2 \\ 3 - x , & x > 2 \end{cases} \]

Justify your answer.

(IIT-JEE, 1997)

15. Let \(\alpha \in R \). Prove that a function \(f: R \rightarrow R \) is differentiable at \(x = \alpha \) if and only if there is a function \(g: R \rightarrow R \) which is continuous at \(a \) and satisfies \(f(x) - f(\alpha) = g(x)(x - \alpha) \) for all \(\alpha \in R \).

(IIT-JEE, 2001)

16. Let \(f(x) = \begin{cases} x + a & \text{if } x < 0 \\ x - 1 & \text{if } x \geq 0 \end{cases} \) and
\[g(x) = \begin{cases} x + 1 & \text{if } x < 0 \\ (x - 1)^2 + b & \text{if } x \geq 0 \end{cases} \]
where \(a \) and \(b \) are non-negative real numbers. Determine the composite function \(g \circ f \). If \((g \circ f)(x) \) is continuous for all \(x \), determine the values of \(a \) and \(b \). Further, for these values of \(a \) and \(b \), \(g \circ f \) is differentiable at \(x = 0 \)? Justify your answer.

(IIT-JEE, 2002)

17. If a function \(f: [-2a, 2a] \rightarrow R \) is an odd function such that \(f(x) = f(2a - x) \), then find the left-hand derivative at \(x = a \) is 0, find the left-hand derivative at \(x = a \).

(IIT-JEE, 2003)

18. \(f'(0) = \lim_{n \to \infty} \frac{1}{n} \) and \(f(0) = 0 \). Using this, find
\[\lim_{n \to \infty} \left(n + 1 \right)^{2/n} \cos^{-1} \left(\frac{1}{n} \right) - n \right) \cos^{-1} \left(\frac{1}{n} \right) - n < \frac{\pi}{2} \]

(IIT-JEE, 2004)

19. If \(|c| \leq \frac{1}{2} \) and \(f(x) \) is a differentiable function at \(x = 0 \) given by
\[f(x) = \begin{cases} b \sin^{-1} \left(\frac{x + 1}{2} \right), & -\frac{1}{2} < x < 0 \\ 0 , & 0 < x < \frac{1}{2} \end{cases} \]
Find the value of \(a\) and prove that \(64b^2 = 4 - c^2\) \hspace{1cm} (IIT-JEE, 2004)

2. If \(f(x - y) = f(x)g(y) - f(y)g(x)\) and \(g(x - y) = g(x)g(y) - f(x)f(y)\) for all \(x, y \in \mathbb{R}\). If the right-hand derivative at \(x = 0\) exists for \(f(x)\). Find the derivative of \(g(x)\) at \(x = 0\). \hspace{1cm} (IIT-JEE, 2005)

Objective

Fill in the blanks

1. Let \(f(x) = \begin{cases} (x - 1)^2 \sin \frac{1}{x - 1} - |x|, & \text{if } x \neq 1 \\ -1, & \text{if } x = 1 \end{cases}\) be a real-valued function, then the set of points where \(f(x)\) is not differentiable is \hspace{1cm} (IIT-JEE, 1981)

2. Let \(f(x) = \frac{(x^2 + x^2 - 16x + 20)}{(x - 2)^2}\), if \(x \neq 2\) if \(f(x)\) is continuous for all \(x\), then \(k = \hspace{1cm} (IIT-JEE, 1981)\)

3. A discontinuous function \(y = f(x)\) satisfying \(x^2 + y^2 = 4\) is given by \(f(x) = \hspace{1cm} (IIT-JEE, 1982)\)

4. Let \(f(x) = x|x|\). The set of points, where \(f(x)\) is twice differentiable, is \hspace{1cm} (IIT-JEE, 1992)

5. Let \(f(x) = \lfloor x \rfloor \sin \left(\frac{\pi}{x + 1}\right)\), where \(\lfloor \cdot \rfloor\) denotes the greatest integer function. The domain of \(\mathbb{D}(f)\) is \hspace{1cm} (IIT-JEE, 1996) and the points of discontinuity of \(f\) in the domain are \hspace{1cm} (IIT-JEE, 1997)

6. Let \(f(x)\) be a continuous function defined for \(1 \leq x \leq 3\). If \(f(x)\) takes rational values for all \(x\) and \(f(2) = 10\), then \(f(1.5)\) is \hspace{1cm} (IIT-JEE, 1997)

Multiple choice questions with one correct answer

1. For a real number \(y\), let \(\lfloor y \rfloor\) denotes the greatest integer less than or equal to \(y\). Then the function \(f(x) = \tan \left(\frac{\pi}{x - \pi}\right)\) is \hspace{1cm} (IIT-JEE, 1981)

a. discontinuous at some \(x\)
b. continuous at all \(x\), but the derivative \(f'(x)\) does not exist for some \(x\)
c. \(f'(x)\) exists for all \(x\), but the derivative \(f'(x)\) does not exist second for some \(x\)
d. \(f'(x)\) exists for all \(x\)

2. Let \(\lfloor \cdot \rfloor\) denote the greatest integer function and \(f(x) = \lfloor \tan^2 x \rfloor\), then \hspace{1cm} (IIT-JEE, 1993)

a. \(\lim_{x \to 0} \frac{f(x)}{x} \) does not exist
b. \(f(x)\) is continuous at \(x = 0\)
c. \(f(x)\) is not differentiable at \(x = 0\)
d. \(f'(0) = 1\)

3. The function \(f(x) = [x] \cos \left(\frac{2x - 1}{2}\right)\pi\), where \([\cdot]\) denotes the greatest integer function, is discontinuous at \hspace{1cm} (IIT-JEE, 1995)

a. all \(x\)
b. all integer points

c. no \(x\)
d. \(x\) which is not an integer

4. The function \(f(x) = \lfloor x^2 - x^2 \rfloor\) (where \([y]\) is the greatest integer less than or equal to \(y\)), is discontinuous at \hspace{1cm} (IIT-JEE, 1999)

a. all integers
b. all integers except 0 and 1
c. all integers except 0
d. all integers except 1

5. The function \(f(x) = (x^2 - 1)[x^2 - 3x + 2] + \cos (\lfloor x \rfloor)\) is NOT differentiable at \hspace{1cm} (IIT-JEE, 2001)

a. \(-1\)
b. 0
c. 1
d. 2

6. The left-hand derivatives of \(f(x) = [x] \sin (\pi x)\) at \(x = k\), \(k\) an integer, is \hspace{1cm} (IIT-JEE, 2001)

a. \((-1)^k (k - 1)\pi\)
b. \((-1)^{k-1} (k - 1)\pi\)
c. \((-1)^k k\pi\)
d. \((-1)^k (k - 1)\pi\)

7. Let \(f: R \to R\) be a function defined by \(f(x) = m\lfloor x \rfloor \{x, x^3\}\). The set of all point where \(f(x)\) is NOT differentiable is \hspace{1cm} (IIT-JEE, 2001)

a. \{-1, 1\}
b. \{-1, 0\}
c. \{0, 1\}
d. \{-1, 0, 1\}

8. Which of the following functions is differentiable at \(x = 0\)? \hspace{1cm} (IIT-JEE, 2001)

a. \(\cos (\lfloor x \rfloor) + \lfloor x \rfloor\)
b. \(\cos (\lfloor x \rfloor) - \lfloor x \rfloor\)
c. \(\sin (\lfloor x \rfloor) + \lfloor x \rfloor\)
d. \(\sin (\lfloor x \rfloor) - \lfloor x \rfloor\)

9. The domain of the derivative of the function \(f(x) = \begin{cases} \tan^{-1} x & \text{if } |x| \leq 1 \\ \frac{1}{2} (x - 1) & \text{if } |x| > 1 \end{cases}\) is \hspace{1cm} (IIT-JEE, 2002)

a. \(R - \{0\}\)
b. \(R - \{1\}\)
c. \(R - \{-1, 1\}\)
d. \(R - \{-1, 1\}\)

10. The function given by \(y = |x| - 1\) is differentiable for all real numbers except the points \hspace{1cm} (IIT-JEE, 2005)

a. \(\{0, 1, -1\}\)
b. \(\pm 1\)
c. 1
d. \(-1\)

11. If \(f(x)\) is a continuous and differentiable function and \(f(1/n) = 0 \forall n \geq 1\) and \(n \in \mathbb{I}\), then \hspace{1cm} (IIT-JEE, 2005)

a. \(f(x) = 0, x \in (0, 1]\)
b. \(f(0) = 0, f'(0) = 0\)
c. \(f(0) = 0, f'(0) = 0, x \in (0, 1]\)
d. \(f(0) = 0\) and \(f'(0)\) need not to be zero

Multiple choice question with one or more than one correct answer

\(\sqrt{x + |y| = 2y}\), then \(y\) as a function of \(x\) is \hspace{1cm} (IIT-JEE, 1984)
3.32 Calculus

a. defined for all real \(x \)
b. continuous at \(x = 0 \)
c. differentiable for all \(x \)
d. such that \(\frac{dy}{dx} = \frac{1}{3} \) for \(x < 0 \)

2. The function \(f(x) = 1 + | \sin x | \) is (IIT-JEE, 1986)
a. continuous nowhere
b. continuous everywhere
c. differentiable nowhere
d. not differentiable at \(x = 0 \)
e. not differentiable at infinite number of points

3. Let \([x] \) denotes the greatest integer less than or equal to \(x \).
If \(f(x) = [x \sin \pi x] \), then \(f(x) \) is (IIT-JEE, 1986)
a. Continuous at \(x = 0 \)
b. Continuous in \((-1, 0)\)
c. Differentiable at \(x = 1 \)
d. Differentiable in \((-1, 1)\)
e. None of these

4. The set of all points, where the function \(f(x) = \frac{x}{1 + |x|} \) is differentiable is (IIT-JEE, 1987)
a. \((-\infty, \infty)\)
b. \([0, \infty)\)
c. \((-\infty, 0) \cup (0, \infty)\)
d. \((0, \infty)\)

5. The function \(f(x) = \frac{x^2 - 3x + 13}{4} \) is differentiable at \(x = \frac{1}{4} \).

6. If \(f(x) = \frac{x - 2}{2} \), then in \([0, \pi]\) (IIT-JEE, 1989)
a. both \(\tan(f(x)) \) and \(\frac{1}{f(x)} \) are continuous
b. \(\tan(f(x)) \) is continuous but \(f^{-1}(x) \) is not continuous
c. \(\tan(f(x)) \) and \(f^{-1}(x) \) are discontinuous
d. None of these

7. The following functions are continuous on \((0, \pi)\) (IIT-JEE, 1991)
a. \(\tan x \)
b. \(\int_0^x \frac{1}{t} \sin \frac{1}{t} \, dt \)
c. \(2 \sin \frac{2}{9} x, \quad \frac{3 \pi}{4} < x < \pi \)
d. \(x \sin x, \quad 0 < x \leq \frac{\pi}{2} \)

d. \(\frac{\pi}{2} \sin(\pi + x), \quad \frac{\pi}{2} < x < \pi \)

8. Let \(h(x) = \min \{x, x^2\} \), for every real number of \(x \), then (IIT-JEE, 1998)
a. \(h \) is continuous for all \(x \)
b. \(h \) is differentiable for all \(x \)
c. \(h'(x) = 1 \), for all \(x > 1 \)
d. \(h \) is not differentiable at two values of \(x \)

9. Let \(f(x) = \begin{cases} 0, & x < 0 \\ x^2, & x \geq 0 \end{cases} \) then for all \(x \) (IIT-JEE, 1994)
a. \(f' \) is differentiable
b. \(f \) is differentiable
c. \(f'' \) is continuous
d. \(f \) is continuous

10. Let \(g(x) = xf(x) \), where \(f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} \). At \(x = 0 \) (IIT-JEE, 1994)
a. \(g \) is differentiable but \(g' \) is not continuous
b. \(g \) is differentiable while \(f \) is not continuous
c. both \(f \) and \(g \) are differentiable
d. \(g \) is differentiable and \(g' \) is continuous

11. The function \(f(x) = \max \{(1 - x), (1 + x), 2\}, x \in (-\infty, \infty) \) is
a. continuous at all points
b. differentiable at all points
c. differentiable at all except at \(x = 1 \) and \(x = -1 \)
d. continuous at all except at \(x = 1 \) and \(x = -1 \), where it is discontinuous

12. If \(f(x) = \min \{1, x^2, x^3\} \), then (IIT-JEE, 2006)
a. \(f(x) \) is continuous \(\forall x \in R \)
b. \(f'(x) > 0, \forall x > 1 \)
c. \(f(x) \) is continuous but not differentiable \(\forall x \in R \)
d. \(f(x) \) is not differentiable at two points

13. If \(f(x) = -\cos x, \quad \frac{\pi}{2} < x \leq 0 \) then
a. \(f(x) \) is continuous at \(x = -\pi/2 \)
b. \(f(x) \) is not differentiable at \(x = 0 \)
c. \(f(x) \) is differentiable at \(x = 1 \)
d. \(f(x) \) is differentiable at \(x = -3/2 \) (ITJEE 2011)

14. Let \(f: R \to R \) be a function such that \(f(x + y) = f(x) + f(y), \forall x, y \in R \). If \(f(x) \) is differentiable at \(x = 0 \), then
a. \(f(x) \) is differentiable only in a finite interval containing zero
b. \(f(x) \) is continuous \(\forall x \in R \)
c. \(f(x) \) is constant \(\forall x \in R \)
d. \(f(x) \) is differentiable except at finitely many points (ITJEE 2011)

Match the following type

Match the functions in Column I with the properties in Column II

1. In the following, \([x]\) denotes the greatest integer less than or equal to \(x \). (IIT-JEE, 2007)

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>x</td>
</tr>
<tr>
<td>(\sqrt{</td>
<td>x</td>
</tr>
<tr>
<td>(x + [x])</td>
<td>r. strictly increasing in ((-1, 1))</td>
</tr>
<tr>
<td>(</td>
<td>x - 1</td>
</tr>
</tbody>
</table>
Subjective Type

1. \(f(x) = \begin{cases} x^2 + ax + 1, & \text{x is rational} \\ ax^2 + 2x + b, & \text{x is irrational} \end{cases} \)

is continuous at \(x = 1 \) and \(2 \)

\(\Rightarrow x = 1 \) and \(2 \) are the roots of the equation \(x^2 + ax + 1 = 0 \)

\(a-2 = 2 \) and \(b-1 = 2 \)

\(\Rightarrow a = 1/2 \) and \(b = 0 \)

2. Let \(k \) be an integer

\(f(k) = k, f(k-1) = 0, k-1 + 1 = k, f(k+1) = k = 0 \)

\(\Rightarrow f'(k) = \lim_{h \to 0} \frac{f(k+h) - f(k)}{h} = \frac{(k-1) + \sqrt{1-h} - k}{2} = \frac{1-h-1}{2h(1+\sqrt{1-h})} = \frac{1}{2} \)

\(f'(k) = \lim_{h \to 0} \frac{f(k+h) - f(k)}{h} = \lim_{h \to 0} \frac{k + \sqrt{h} - k}{h} = +\infty \)

Thus, \(f(x) \) is continuous for all \(x \) but non-differentiable at all integral values of \(x \).

3. For \(x \neq 0 \)

\(f(x) = \left(1 - \frac{1}{1+x} \right) + \left(\frac{1}{1+x} - \frac{1}{1+2x} \right) + \left(\frac{1}{1+2x} - \frac{1}{1+3x} \right) + \cdots + \left(\frac{1}{1+(n-1)x} - \frac{1}{1+nx} \right) = 1 - \frac{1}{1+nx} \)

\(\Rightarrow f(x) = \lim_{n \to \infty} \left(1 - \frac{1}{1+nx} \right) = 1 - 0 = 1 \) and for \(x = 0, f(0) = 0 \)

\(\Rightarrow f(x) = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0 \end{cases} \)

Clearly, \(f(x) \) is discontinuous at \(x = 0 \).

4. As \(f(x) \) is continuous for all \(x \in R \).

Thus, \(\lim_{x \to \sqrt{3}} f(x) = f(\sqrt{3}) \)

Where \(f(x) = \frac{x^2 - 2x + 2\sqrt{3} - 3}{\sqrt{3} - x}, x \neq \sqrt{3} \)

Now, \(\lim_{x \to \sqrt{3}} f(x) = \lim_{x \to \sqrt{3}} \frac{x^2 - 2x + 2\sqrt{3} - 3}{\sqrt{3} - x} = \lim_{x \to \sqrt{3}} \frac{(2-\sqrt{3} - x)(\sqrt{3} - x)}{\sqrt{3} - x} = 2(1-\sqrt{3}) \)

\(\Rightarrow f(\sqrt{3}) = 2(1-\sqrt{3}) \)

5. When \(x \) is in a neighbourhood of \(\pi/2 \), \(\sin x \) is very close to \(1 \) but less than \(1 \), then

\(\lim_{x \to \pi/2} \frac{2(\sin x - \sin^2 x) + |\sin x - \sin^2 x|}{2(\sin x - \sin^2 x) - |\sin x - \sin^2 x|} = \lim_{x \to \pi/2} \frac{2(\sin x - \sin^2 x) + (\sin x - \sin^2 x)}{2(\sin x - \sin^2 x) - (\sin x - \sin^2 x)} = 3 \) (exactly 3)

Also, \(\lim_{x \to \pi/2} \frac{2(\sin x - \sin^2 x) + |\sin x - \sin^2 x|}{2(\sin x - \sin^2 x) - |\sin x - \sin^2 x|} = 3 \) (exactly 3)

Then, \(g(x) \) is continuous at \(x = \pi/2 \).

6. As \(y = t^2 + t |t| \) and \(x = 2t - |t| \)

Thus when \(t \geq 0 \)

\(\Rightarrow x = 2t - t = t, y = t^2 + t^2 = 2t^2 \)

\(\Rightarrow y = 2t^2, \forall x \geq 0 \)

when \(t < 0 \)

\(\Rightarrow x = 2t + t = 3t \) and \(y = t^2 - t^2 = 0 \)

\(\Rightarrow y = 0 \) for all \(x < 0 \)

Hence, \(f(x) = \begin{cases} 2x^2, & x \geq 0 \\ 0, & x < 0 \end{cases} \)

which is clearly continuous for all \(x \) as shown graphically in Fig. 3.23.

7. Let \(g(x) = f(x) - f(x + \pi) \)

\(\Rightarrow g(\pi) = f(0) - f(0) = 0 \) (1)

\(\Rightarrow g(0) = -g(0) = 0 \) (2)

Adding equations (2) and (3), we get

\(g(0) + g(\pi) = f(0) - f(2\pi) \)

\(\Rightarrow g(0) + g(\pi) = 0 \) (Given \(f(0) = f(2\pi) \))

\(\Rightarrow g(0) = -g(\pi) \)

\(\Rightarrow g(0) \) and \(g(\pi) \) are opposite in sign.

\(\Rightarrow \) There exists a point \(c \) between 0 and \(\pi \) such that \(g(c) = 0 \) as shown in the graph.

![Fig. 3.24](image-url)
3.34 Calculus

\[f(0^+) = \lim_{{h \to 0}} \sqrt{h} \left(1 + h \sin \frac{1}{h} \right) \]
\[= 0 \times [1 + 0 \times \text{(any value between } -1 \text{ and } 1)] = 0 \]

\[f(0^-) = \lim_{{h \to 0}} \left[-\sqrt{(-h)} \left(1 - h \sin \left(-\frac{1}{h} \right) \right) \right] \]
\[= \lim_{{h \to 0}} \left[-\sqrt{h} \left(1 + h \sin \frac{1}{h} \right) \right] \]
\[= -0 \times [1 + 0 \times \text{(any value between } -1 \text{ and } 1)] = 0 \]

\[f'(0^+) = \lim_{{h \to 0}} \frac{f(h) - f(0)}{h} \]
\[= \lim_{{h \to 0}} \frac{\sqrt{h} \left[1 + h \sin \frac{1}{h} \right] - 0}{h} \]
\[= \lim_{{h \to 0}} \frac{1 + h \sin \frac{1}{h}}{\sqrt{h}} \]
\[= \lim_{{h \to 0}} \frac{\frac{1}{\sqrt{h}} + \sqrt{h} \sin \frac{1}{h}}{\sqrt{h}} = \infty \text{ and } 0 = \infty \]

Hence, \(f(x) \) is non-differentiable at \(x = 0 \).

11. \(f(x) = \min \{ |x|, |x - 2|, 2 - |x - 1| \} \)

Draw the graphs of
\(y = |x|, y = |x - 2| \) and \(y = 2 - |x - 1| \)

\[y = |x| \]
\[- - - y = |x - 2| \]
\[- - - - y = 2 - |x - 1| \]

From the graph, \(f(x) \) is non-differentiable at \(x = 0, \pm 1 \).

It is clear from the graph,
12. \(f(x+y) = f(x) + f(y) \) and \(f(x) = xg(x) \) for all \(x, y \in R \), where \(g(x) \) is continuous.

We have \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \)

\[
= \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h} \\
= \lim_{h \to 0} \frac{f(h)}{h} \\
= \lim_{h \to 0} \frac{hg(h)}{h} = \lim_{h \to 0} g(h) = g(0). \]

\[\vdots \] \(g \) is continuous at \(x = 0 \)

13. \(f(|x|) = \begin{cases}
|x|-3, & |x| < 0 \\
|x|^2 - 3|x| + 2, & |x| \geq 0
\end{cases} \)

where \(|x| < 0 \) is not possible, thus neglecting, we get

\[f(|x|) = |x|^2 - 3|x| + 2, |x| \geq 0 \] (1)

Also, \(|f(x)| = \begin{cases}
|x-3|, & x < 0 \\
|x^2 - 3x + 2|, & x \geq 0
\end{cases} \)

\[(3-x), \quad 0 < x < 1 \\
(x^2 - 3x + 2), \quad 1 \leq x < 2 \\
(x^2 - 3x + 2), \quad 2 \leq x \] (2)

Now from equations (1) and (2), we get

\[g(x) = f(|x|) + |f(x)| \]

\[g(x) = \begin{cases}
x^2 + 2x + 5, & x < 0 \\
2x^2 - 6x + 4, & 0 \leq x < 1 \\
0, & 1 \leq x < 2 \\
2x^2 - 6x + 4, & 2 \leq x \geq 2
\end{cases} \]

\[g'(x) = \begin{cases}
2x + 2, & x < 0 \\
4x - 6, & 0 < x < 1 \\
0, & 1 \leq x < 2 \\
4x - 6, & x > 2
\end{cases} \]

\[g(x) \] is continuous in \(R \) \(- \{0\} \) and \(g(x) \) is differentiable in \(R \) \(- \{0, 1, 2\} \).

14. \(f(x) = \begin{cases}
\sin \left(\frac{\pi x}{2} \right), & 0 \leq x < 1 \\
|2x-3|[x], & 1 \leq x \leq 2 \\
\sin \left(\frac{\pi x}{2} \right), & 0 \leq x < 1 \\
(3-2x)[x], & 1 \leq x < 3/2 \\
(2x-3)[x], & \frac{3}{2} \leq x \leq 2
\end{cases} \)

Graph of \(y = f(x) \)

Fig. 3.28

From the graph it is clear that \(f(x) \) is discontinuous at \(x = 2 \). Also, \(f(x) \) is non-differentiable at \(x = 1, 3/2, 2 \).

15. Here, \(f(x) \) is continuous at \(x = 0 \).

\[\Rightarrow \text{R.H.L. (at} x = 0) = \text{L.H.L. (at} x = 0) = f(0) \]

\[\text{R.H.L. (at} x = 0) = \lim_{h \to 0} \frac{e^{3/h} + e^{2/h} + e^{1/h}}{ae^{2/h} + be^{3/h}} \]

\[= \lim_{h \to 0} \frac{e^{3/h} \left(\frac{1}{e^{2/h}} + \frac{1}{e^{1/h}} + 1 \right)}{e^{3/h} \left(\frac{a}{e^{1/h}} + b \right)} \]

\[= \frac{1}{b} \]

again, \(\text{L.H.L. (at} x = 0) \)

\[= \lim_{h \to 0} \cos h + \sin h - \csc h \]

\[= \lim_{h \to 0} \left(1 + \cos h + \sin h - 1 \right) \sin h \]

\[= \lim_{h \to 0} \cos h + \sin h \]

\[= e^{\sin h} \]

\[= e^{\sin h} \cos h \]

\[= \frac{1}{2 \sin h \cos h} \]

\[= e^{\frac{3}{2} \csc h} \]

and \(f(0) = a \)

\[\Rightarrow a = e^{-1} \]

16. \(f(0^+) = \lim_{h \to 0} \frac{\sin h - \log(e^h \cos h)}{6h^2} \)

\[= \lim_{h \to 0} \frac{\cos h - e^h (\cos h - \sin h)}{12h} \]

\[= \lim_{h \to 0} \frac{e^h \cos h}{12h} \]

(Using L'Hôpital's rule)

\[= \frac{\cos h - (1 - \tan h)}{12h} \]
3.36 Calculus

\[\lim_{h \to 0} \frac{-\sin h + \sec^2 h}{12} = \frac{1}{12} \quad \text{(Using L'Hopital's rule)} \]

\[f(0) = \lim_{h \to 0} \frac{h^2 + 2 \cos h - 2}{h^4} \quad \text{(Using expansion formula of } \cos h) \]

\[\lim_{h \to 0} \frac{h^2 + 2 \left[1 - \frac{h^2}{2!} + \frac{h^4}{4!} \right] - 2}{h^4} = \frac{1}{12} \]

\[
\Rightarrow f(x) \text{ is continuous at } x = 0
\]

\[f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{\sin h \log(e^h \cos h) - 1}{6h^2} = \frac{1}{12} \quad \text{(Using L'Hopital's rule)} \]

\[\lim_{h \to 0} \frac{2 \sin h - 2 \log(e^h \cos h) - h^2}{12h^3} \]

\[\lim_{h \to 0} \frac{2 \cos h - 2(1 - \tan h) - 2h}{36h^2} \quad \text{(Using L'Hopital's rule)} \]

\[\lim_{h \to 0} \frac{\cos h - (1 - \tan h) - h}{18h^2} \]

\[\lim_{h \to 0} \frac{-\sin h + \sec^2 h - 1}{36h} \quad \text{(Using L'Hopital's rule)} \]

\[\lim_{h \to 0} \frac{-\cos h + 2 \sec^2 h \tan h}{36} = \frac{1}{36} \quad \text{(Using L'Hopital's rule)} \]

\[f'(0) = \lim_{h \to 0} \frac{f(-h) - f(0)}{-h} = \lim_{h \to 0} \frac{h^2 + 2 \cos h - 2}{12} \]

\[= \lim_{h \to 0} \frac{12h^2 + 24 \cos h - 24 - h^4}{-12h^3} \]

\[= \lim_{h \to 0} \frac{12h^2 + 24 \left[1 - \frac{h^2}{2!} + \frac{h^4}{4!} \right] - 24 - h^4}{-12h^3} = 0 \]

Hence, \(f(x) \) is continuous but non-differentiable at \(x = 0 \).

17. At \(x = 0 \), R.H.L.

\[\lim_{h \to 0} \frac{e^{1/h} + e^{2/h} + e^{3/h}}{a e^{2/h} + b e^{3/h}} = \lim_{h \to 0} \frac{e^{-1/h} + e^{-1/h} + 1}{a e^{-1/h} + b} = \frac{1}{b} \quad \text{and L.H.L.} \]

\[\lim_{h \to 0} \left(\frac{e^h + h^2 - a}{h} \right)^{1/h} \]

\[\lim_{h \to 0} \left(h + \frac{e^h - a}{h} \right)^{1/h} \Rightarrow a = 1 \quad \text{(for } 1^{\text{st}} \text{ for } m) \]

\[= e^{\frac{1}{e}} (h + \frac{e^h - 1}{h}) = e^{3/2} \quad \text{(using expansion of } e^h) \]

\[\Rightarrow f(0) = e^{3/2} = \frac{1}{b}. \]

18. At \(x = -2 \), \(f(-2) = b \)

R.H.L. = \(\lim_{x \to 2^+} f(x) = \lim_{h \to 0} f(-2 + h) \)

\[= \lim_{h \to 0} \frac{(-2 + h)^4 - 16}{(-2 + h)^5 + 32} \]

\[= \lim_{h \to 0} \frac{(-2 + h)^4 - 2^4}{2^5 + (-2 + h)^5} \]

\[= \lim_{h \to 0} \frac{(-2 + h)^4 - (-2)^4}{(-2 + h)^5 - (-2)^5} \]

\[= \lim_{h \to 0} \frac{(-2 + h)^4 - (-2)^4}{(-2 + h)^5 - (-2)^5} \]

\[= \frac{4(-2)^4 - 1}{5(-2)^5 + 1} \]

\[= \frac{4(-8)}{5(16)} = \frac{-2}{5} \]

L.H.L. = \(\lim_{x \to 2^-} f(x) = \lim_{h \to 0} f(-2 - h) \)

\[= \lim_{h \to 0} \frac{ae^{1/(2-h+20)} - 1}{2 - e^{1/(2-h+20)}} \]

\[= \lim_{h \to 0} \frac{ae^{1/h} - 1}{2 - e^{1/h}} \]

\[= \lim_{h \to 0} \frac{a - e^{-1/h} - 1}{2e^{-1/h} - 1} = a \]

From equations (1), (2), and (3), we get

\[a = \sin \left(\frac{2}{5} \right) \text{ and } b = -\sin \left(\frac{2}{5} \right) \]

19. Since \(|f(x)| \leq x^2, \forall x \in R \)

\[\Rightarrow f(0) = 0 \]

\[\Rightarrow f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} \]

Now,

\[\left| \frac{f(h)}{h} \right| \leq |h| \quad (\because \ |f(x)| \leq x^2) \]

\[\Rightarrow -|h| \leq \frac{f(h)}{h} \leq |h| \]

\[\Rightarrow \lim_{h \to 0} \frac{f(h)}{h} \to 0 \]

(Using Sandwich theorem)

\[\therefore \text{From equations (2) and (3), we get } f'(0) = 0, \text{i.e., } f(x) \text{ is differentiable at } x = 0. \]

Objective Type

1.c. \(f(x) = \tan x \) is discontinuous when \(x = (2n + 1)\pi/2, n \in Z \)

\(f(x) = x[x] \) is discontinuous when \(x = k, k \in Z \)

\(f(x) = \sin [nx^2] \) is discontinuous when \(nx^2 = k, k \in Z \)

Thus, all the above functions have infinite number of points of discontinuity.

But \(f(x) = \frac{|x|}{x} \) is discontinuous when \(x = 0 \) only.
2.c. We have \(f(x) = \frac{4-x^2}{x(4-x^2)} \)

Clearly, there are three points of discontinuity, viz., 0, 2, -2.

\[\tan \left(\frac{\pi}{4} - x \right) = \frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan \frac{\pi}{4} \tan x} = \frac{1 - \tan x}{1 + \tan x} \]

3.b. \(f(x) = \frac{\tan \left(\frac{\pi}{4} - x \right)}{\cot 2x} \), \((x \neq \pi/4)\) is continuous at \(x = \pi/4 \)

\[\Rightarrow f\left(\frac{\pi}{4} \right) = \lim_{x \to \frac{\pi}{4}} f(x) \]

\[= \lim_{x \to \frac{\pi}{4}} \frac{\tan \left(\frac{\pi}{4} - x \right)}{\cot 2x} = \frac{\tan \left(0 \right)}{\cot 2 \times \frac{\pi}{4}} = 1 \]

Now by applying L'Hopital's rule,

\[= \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2\left(\frac{\pi}{4} - x \right)}{-2\csc^2(2x)} = \frac{1}{2} \]

4.b. Given \(f(x) \) is continuous at \(x = 0 \)

\[\Rightarrow \lim_{x \to 0} f(x) = f(0) \]

\[\Rightarrow \lim_{x \to 0} \frac{(3^x-1)^2}{x} = f(0) \]

\[\Rightarrow f(0) = \lim_{x \to 0} \frac{(\sin x)(\ln(1+x))}{x} = (\ln 3)^2 \]

5.b. We have \(f(x) = \begin{cases} \frac{1-x}{1+x}, & x \neq -1 \\ 1, & x = -1 \end{cases} \)

\[\Rightarrow f(0) = \begin{cases} \frac{1}{2}, & x < 0 \\ 1, & 0 \leq x < 1 \\ -1, & x \leq \frac{3}{2} \end{cases} \]

Clearly, \(f(x) \) is continuous for all \(x < \frac{1}{2} \) and discontinuous at \(x = \frac{1}{2} \).

6.d. We have,

\[\text{L.H.L.} = \lim_{x \to 4^+} f(x) = \lim_{h \to 0^+} \frac{4 - h - 4}{4 - h - 4} = \lim_{h \to 0^+} \frac{4 - h}{4} = \frac{3}{2} \]

\[\text{R.H.L.} = \lim_{x \to 4^-} f(x) = \lim_{h \to 0^-} \frac{h - h + a}{h} = \lim_{h \to 0^-} (\frac{h}{h} + a) = a - 1 \]

\[\Rightarrow \lim_{x \to 4^+} f(x) = a + b \]

\[\Rightarrow f(4) = a + b \]

Since \(f(x) \) is continuous at \(x = 4 \), therefore

\[\lim_{x \to 4^+} f(x) = f(4) = \lim_{x \to 4^-} f(x) \]

\[\Rightarrow a - 1 = a + b + 1 \Rightarrow b = -1 \text{ and } a = 1. \]

7.d. \(\lim_{x \to 0} \frac{x-e^x+1-(1-\cos 2x)}{x^2} = \lim_{x \to 0} \frac{[x-e^x+1-(1-\cos 2x)]}{x^2} \]

\[\Rightarrow \lim_{x \to 0} \frac{x+1}{x} \left(\frac{1+\frac{x^2}{2}}{x^2} - \frac{2\sin^2 x}{x^2} \right) \]

(Using expansion of \(e^x \))

\[= -\frac{1}{2} \]

\[= -\frac{5}{2}; \text{ hence for continuity } f(0) = -\frac{5}{2}. \]

\[\text{Now } f(0) = -3; \text{ } f(0) = \left\{ \begin{array}{ll} -\frac{5}{2} & \text{if } x = 0 \\ \frac{1}{2} & \text{if } x = 2 \end{array} \right. \]

Hence, \(f(x) \) is discontinuous at \(x = 2 \).

8.b. \(f(x) \) is discontinuous at \(x = 1 \) and \(x = 2 \)

\[\Rightarrow f'(x) \text{ may be discontinuous when } f(x) = 1 \text{ or } 2 \]

\[\text{Now } 1 - x = 1 \Rightarrow x = 0, \text{ where } f(x) \text{ is continuous} \]

\[x + 2 = 1 \Rightarrow x = -1 \in (1,2) \]

\[4 - x = 1 \Rightarrow x = 3 \in [2,4] \]

\[x + 2 = 2 \Rightarrow x = 0 \notin (1,2). \]

\[4 - x = 2 \Rightarrow x = 2 \in [2,4] \]

\[\text{Hence } f'(x) \text{ is discontinuous at } x = 2, 3 \text{ and } x = 0. \]

9.b. The function \(f(x) \) is clearly continuous at each point in its domain except possibly at \(x = 0 \). Given that \(f(x) \) is continuous at \(x = 0 \).

\[\text{Therefore, } f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x} = \lim_{x \to 0} \frac{2 - \sin^{-1} x}{2 + \tan^{-1} x} = \frac{1}{3} \]

10.c. \(\lim_{x \to 2^+} \frac{x^2-1}{x^2+1} = \lim_{x \to 2^+} \frac{2 - \cos x}{2 + \sec x} = \frac{3}{5} \)
3.38 Calculus

\[\lim_{{x \to 2^+}} \frac{(x-2)}{x-2} \left(\frac{x^2-1}{x^2+1} \right) = \lim_{{x \to 2^+}} \left(\frac{x^2-1}{x^2+1} \right) = \frac{3}{5} \]

Thus, L.H.L. ≠ R.H.L.

Hence, the function has non-removable discontinuity at \(x = 2 \).

11.c. \(f(x) = \lim_{{n \to \infty}} \frac{[(x-1)^2]^n - 1}{[(x-1)^2]^n + 1} \)

\[= \lim_{{n \to \infty}} \frac{1}{1 + \frac{1}{[(x-1)^2]^n}} \]

\[\begin{cases} 1, & 0 \leq (x-1)^2 < 1 \\ 0, & (x-1)^2 = 1 \\ 1, & (x-1)^2 > 1 \end{cases} \]

\[\begin{cases} x < 0 \\ x = 2 \\ x > 2 \end{cases} \]

Thus, \(f(x) \) is discontinuous at \(x = 0, 2 \).

12.c. \(f(0) = 0 + 0 + 0 = 0 \)

R.H.L. = \(\lim_{{h \to 0^+}} f(0+h) \)

\[= \lim_{{h \to 0^+}} \frac{8^h - 4^h - 2^h + 1^h}{h} \]

\[= \lim_{{h \to 0}} \left(\frac{4^h - 1}{h} \right) \cdot \lim_{{h \to 0}} \left(\frac{2^h - 1}{h} \right) \]

\[= \ln 4 \ln 2 \]

\(\therefore f(0) = \text{R.H.L.} \)

\(\Rightarrow \lambda = \ln 2 \)

13.b. We must have \(\lim_{{x \to 0}} \frac{a \cos x - \cos bx}{x^2} = 4 \)

\[\Rightarrow \lim_{{x \to 0}} \frac{a \left(1 - \frac{x^2}{2!} \right) - \left(1 - \frac{b^2 x^2}{2!} \right)}{x^2} = 4 \]

\[\Rightarrow \lim_{{x \to 0}} \left(\frac{a-1}{2} - \frac{a b^2}{2} \right) = 4 \]

\(\Rightarrow a = 1 \) and \(\frac{a b^2}{2} = 4 \)

\(\Rightarrow a = 1 \) and \(b^2 = 9 \)

\(\Rightarrow a = 1 \) and \(b = \pm 3 \)

14.a. \(f(x) = \begin{cases} x + 2, & x < 0 \\ -x^2 - 2, & 0 \leq x < 1 \\ x, & x \geq 1 \end{cases} \)

\(\therefore f(x) = \begin{cases} -x - 2, & x < -2 \\ x + 2, & -2 \leq x < 0 \\ x^2 + 2, & 0 \leq x < 1 \\ x, & x \geq 1 \end{cases} \)

discontinuous at \(x = 1 \) \(\Rightarrow \) number of points of discontinuity \(= 1 \)

15.a. \(f(x) \) is continuous when \(5x = x^2 + 6 \Rightarrow x = 2, 3 \).

16.a. \(f(x) = 2 |\text{sgn}(2x)| + 2 = \begin{cases} 4, & x > 0 \\ 2, & x = 0 \\ 0, & x < 0 \end{cases} \)

Thus, \(f(x) \) has non-removable discontinuity at \(x = 0 \)

17.d. Since \(\lim_{{x \to 0}} x^2 = \begin{cases} 0, & \text{if } |x| < 1 \\ 1, & \text{if } |x| = 1 \end{cases} \)

\(\therefore f(x) = \lim_{{x \to 0}} (\sin x) x^2 = \begin{cases} 0, & \text{if } |\sin x| < 1 \\ 1, & \text{if } |\sin x| = 1 \end{cases} \)

Thus, \(f(x) \) is continuous at all \(x \), except for those values of \(x \) for which \(|\sin x| = 1 \), i.e., \(x = (2k + 1) \frac{\pi}{2}, k \in \mathbb{Z} \)

18.a. As \(f \) is continuous so \(f(0) = \lim_{{x \to 0}} f(x) \)

\(\Rightarrow f(0) = \lim_{{n \to \infty}} f(1/n) \)

\(= \lim_{{n \to \infty}} \left(\frac{\sin e}{1 + 1/n^2} \right) = 0 + 1 = 1 \).

19.a. \(f(x) = \frac{x^2 - bx + 25}{x^2 - 7x + 10} \), \(x \neq 5 \)

\(f(x) \) is continuous at \(x = 5 \), only if \(\lim_{{x \to 5}} \frac{x^2 - bx + 25}{x^2 - 7x + 10} \) is finite.

Now \(x^2 - 7x + 10 \to 0 \) when \(x \to 5 \).

Then we must have \(x^2 - bx + 25 \to 0 \) for which \(b = 10 \)

Hence, \(\lim_{{x \to 5}} \frac{x^2 - 10x + 25}{x^2 - 7x + 10} = \lim_{{x \to 5}} \left(\frac{x - 5}{x - 2} \right) = 0 \).

20.d. Refer theory.

21.a. \(f(x) \) is continuous at some \(x \) where \(\sin x = \cos x \) or \(x \neq \pi/4, n \in I \)

22.b. Consider \(x \in [0, 1] \).

From the graph given in Fig. 3.28, it is clear that \([\cos nx] \) is discontinuous at \(x = 0, 1/2 \)
Now consider \(x \in (1, 2) \)
\(f(x) = |x - 2| |2x - 3| \)
For \(x \in (1, 2) \); \(x - 2 < 0 \) and \(2x - 3 < 0 \)
Also \(2x - 3 = 0 \implies x = 3/2 \)
\(\Rightarrow x = 3/2 \) and 2 may be the points at which \(f(x) \) is discontinuous

\[
\begin{aligned}
1, & \quad x = 0 \\
0, & \quad 0 < x \leq \frac{1}{2} \\
-1, & \quad \frac{1}{2} < x \leq 1 \\
-(3 - 2x), & \quad 1 < x \leq 3/2 \\
-(2x - 3), & \quad 3/2 < x \leq 2 \\
0, & \quad x = 2
\end{aligned}
\]

Thus, \(f(x) \) is continuous when \(x \in \{ 0, 2 \} - \{ 0, 1/2, 2 \} \).

23.d. For \(0 \leq x \leq 1 \), \(f(x) = [\sin 0] = 0 \)
\(1 \leq x < 2 \), \(f(x) = [\sin 1] = 0 \)
\(2 \leq x < 3 \), \(f(x) = [\sin 2] = 0 \)
\(3 \leq x \leq 4 \), \(f(x) = [\sin 3] = 0 \)
\(4 \leq x \leq 5 \), \(f(x) = [\sin 4] = 1 \)
Hence, there is discontinuity at point \((4, -1) \)

24.d. We have \(\lim_{x \to 0} f(x) = \lim_{h \to 0} \sin(\log_e |x|) = \lim_{h \to 0} \sin(\log_e h) \)
which does not exist and oscillates between \(-1\) and \(1\).
Similarly, \(\lim_{x \to 0^+} f(x) \) lies between \(-1\) and \(1\).

25.a. \(f(x) = (1)^{[x]} \) is discontinuous
when \(x^3 = n, n \in Z \implies x = n^{1/3} \)
\[f \left(\frac{3}{2} \right) = (1)^{3} = 1 \]
For \(x \in (-1, 0) \), \(f(x) = (1)^{-1} = 1 \)
\(\Rightarrow f'(x) = 0 \)
For \(x \in [0, 1] \), \(f(x) = (1)^{x} = 1 \)
\(\Rightarrow f'(x) = 0 \)

26.c. \(f(x) = \{ x \} \sin(\pi [x]) \)
\(= [x] \sin(\text{integral multiple of } \pi) \)
\(= 0 \)
Hence, \(f(x) \) is continuous for all \(x \).

27.d. We have \(\lim_{x \to 1^-} f(x) = \lim_{h \to 0} f(1 - h) \)
\(= \lim_{h \to 0} \log(4 + h^2) = \infty \)
and, \(\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1 + h) = \lim_{h \to 0} \log(4 + h^2) = \infty \)
So, \(f(1^+) \) and \(f(1^-) \) do not exist.

28.c. Since, \(\lim_{x \to 1^-} g(x) = \lim_{x \to 1^+} g(x) = 1 \) and \(g(1) = 0 \).
So, \(g(x) \) is not continuous at \(x = 1 \) but \(\lim_{x \to 1} g(x) \) exists.
We have \(\lim_{x \to 1^-} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} [1 - h] = 0 \)
and, \(\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1 + h) = \lim_{h \to 0} [1 + h] = 1 \)

So, \(\lim_{x \to 1} f(x) \) does not exist and so \(f(x) \) is not continuous at \(x = 1 \).
We have \(g(f(x)) = g(f(x)) = g(1) = 0, \forall x \in R \)
So, \(g(f(x)) \) is continuous for all \(x \).
We have \(\lim_{f(x) \to 0} g(f(x)) \)
\(= \left\{ \begin{array}{ll} f(0), & x \in Z \\
0, & x \in \mathbb{R} \backslash Z \end{array} \right. \)
which is clearly not continuous.

29.c. \(f(0 + 0) = \lim_{h \to 0} f(h) \)
\(= \lim_{h \to 0} \frac{-h}{2h^2 + h} = \lim_{h \to 0} \frac{-1}{h + 1} = 1 \)
and \(f(0 - 0) = \lim_{h \to 0} f(h) = \lim_{h \to 0} \frac{-h}{2h^2 + h} = -1 \)

30.b. We have
\(f(x) = \frac{x - |x - 1|}{x} \)
\(= \begin{cases}
\frac{x}{x - (x - 1)}, & x \geq 1 \\
\frac{1}{x}, & x < 1, x \neq 0
\end{cases} \)
Clearly, \(f(x) \) is discontinuous at \(x = 0 \) as it is not defined at \(x = 0 \). Since \(f(x) \) is not defined at \(x = 0 \), therefore \(f(x) \) cannot be differentiable at \(x = 0 \). Clearly \(f(x) \) is continuous at \(x = 1 \), but it is not differentiable at \(x = 1 \), because \(Lf'(1) = 1 \) and \(Rf'(1) = -1 \).

31.a. We have \(f(x) = \begin{cases}
x^3, & x > 0 \\
x, & x = 0 \\
x, & x < 0
\end{cases} \)
Clearly, \(f(x) \) is continuous at \(x = 0 \)
\((L.H.D. \text{ at } x = 0) = \left[\frac{d}{dx} (-x^3) \right]_{x=0} = [-3x^2]_{x=0} = 0 \)
Similarly (R.H.D. at \(x = 0 \)) = 0
So, \(f(x) \) is differentiable at \(x = 0 \).

32.d. \(y = x^2 \)
\(y = x \)
\(y = x \)
\(y = 2x \)
\(\Rightarrow \quad \text{Fig. 3.30} \)
From the graph it is clear that \(f(x) \) is everywhere continuous but not differentiable at \(x = 1 - \sqrt{2}, 0, 1 \).
33.b. Since both $\cos x$ and $\sin^{-1}x$ are continuous functions, $f(x) = \sin^{-1}(\cos x)$ is also a continuous function. Now,

$$f'(x) = \frac{-\sin x}{\sqrt{1 - \cos^2 x}} = \frac{-\sin x}{|\sin x|}$$

Hence, $f(x)$ is non-differentiable at $x = n\pi, n \in \mathbb{Z}$.

34.d. $f(x) = (e^x - 1)e^{x^2-1}$

$$= (e^x - 1)e^{x^2-1}|e^x + 1|$$

$$= (e^x + 1)(e^x - 1)|e^x - 1|$$

Now, both $e^x + 1$ and $(e^x - 1)|e^x - 1|$ are differentiable

[as $g(x)g(x)$ is differentiable when $g(x) = 0$]

Hence, $f(x)$ is differentiable.

$$f(x) = \frac{x^2-1}{x^2+1}$$ is a rational function in which denominator never becomes zero.

Hence, $f(x)$ is differentiable.

$$f(x) = \begin{cases} \frac{1}{3} \lfloor x - 1 \rfloor, & x < 3 \\ \frac{1}{3} \lfloor x \rfloor - 2, & x \geq 3 \end{cases}$$

$$= \begin{cases} 3 - x - 1, & x < 3 \\ -x - 2, & 3 \leq x < 4 \end{cases}$$

$$= -x - 2, x \in [2, 4)$$

Hence, $f(x)$ is differentiable at $x = 3$.

$$f'(x) = 3(x-2)^{3/4} + 3 \Rightarrow f'(x) = \frac{9}{4} (x - 2)^{-1/4}$$

which is non-differentiable at $x = 2$.

Here $f(x)$ is continuous and the graph has vertical tangent at $x = 2$; however, graph is smooth in neighbourhood of $x = 2$.

35.c. $|x - 1/2|$ is continuous everywhere but not differentiable at $x = 1/2$, $|x - 1|$ is continuous everywhere but not differentiable at $x = 1$, and $\tan x$ is continuous in $[0, 2]\pi$ except at $x = \pi/2$.

Hence $f(x)$ is not differentiable at $x = 1/2, 1, \pi/2$.

36.c. Let $f(x) = x^2|x|$ which could be expressed as

$$f(x) = \begin{cases} -x^2, & x < 0 \\ 0, & x = 0 \Rightarrow f'(x) = \begin{cases} -3x^2, & x < 0 \\ 0, & x = 0 \end{cases} \\ x^2, & x > 0 \end{cases}$$

So, $f'(x)$ exists for all real x.

$$f''(x) = \begin{cases} -6x, & x < 0 \\ 0, & x = 0 \\ 6x, & x > 0 \end{cases}$$

So, $f''(x)$ exists for all real x.

$$f'''(x) = \begin{cases} -6, & x < 0 \\ 0, & x = 0 \\ 6, & x > 0 \end{cases}$$

However, $f'''(0)$ does not exist since $f'''(0) = -6$ and $f'''(0) = 6$ which are not equal. Thus, the set of points where $f(x)$ is thrice differentiable is $R - \{0\}$.

37.c. $f(x) = (x^2 - 1)(x - 1)(x - 2)$

$$f(x) = (x^2 - 1)(x - 1)(x - 2)$$

which is differentiable at $x = 1$.

For $f(x) = \sin(x - 1) - (x - 1)$

$$f'(1) = \lim_{h \to 0} \frac{\sin h - h}{h} = 0$$

$$f'(1') = \lim_{h \to 0} \frac{\sin (h - 1) - (h - 1)}{h - 1} = \lim_{h \to 0} \frac{\sin h - h}{h - 1} = 0$$

Hence, $f(x)$ is differentiable at $x = 1$.

$$f'(1') = \lim_{h \to 0} \frac{\tan h + h - 0}{h} = 2$$

$$f'(1') = \lim_{h \to 0} \frac{\tan (h - 1) + (h - 1)}{h - 1} = \lim_{h \to 0} \frac{\tan h + h}{h - 1} = -2$$

Hence, $f(x)$ is non-differentiable at $x = 1$.

38.d. Clearly $f(x)$ is continuous at $x = 0$ if $a = 0$

Now $f'(0 + 0) = \lim_{h \to 0} \frac{he^{(h/h)} - 0}{h} = \lim_{h \to 0} \frac{he^{2h/h} - 0}{h} = 0$

Thus, no values of a exists.

39.c. $f(x) = \begin{cases} ax^2 + 1, & x \leq 1 \\ x^2 + ax + b, & x > 1 \end{cases}$

is differentiable at $x = 1$

Then $f(x)$ is continuous at $x = 1$

$$\Rightarrow f'(1') = f'(1) \Rightarrow a + 1 = 1 + a + b \Rightarrow b = 0$$

Also $f'(x) = \begin{cases} 2ax, & x < 1 \\ 2x + a, & x > 1 \end{cases}$

We must have $f'(1') = f'(1') \Rightarrow 2a = 2 + a \Rightarrow a = 2$.

40.b. $|\sin x|$ and $e^{|x|}$ are not differentiable at $x = 0$ and $|x^2|$ is differentiable at $x = 0$.

Therefore, for $f(x)$ to be differentiable at $x = 0$,

we must have $a = 0$, $b = 0$ and c can be any real number.
41.d.

\[y = |x| - 1 \]

Fig. 3.31

Clearly from the graph, \(f(x) \) is non-differentiable at five points, \(x = -2, -1, 0, 1, 2 \).

42.c. Clearly, \(f(x) \) is continuous for all \(x \) except possibly at \(x = \pi/6 \).

For \(f(x) \) to be continuous at \(x = \pi/6 \), we must have

\[\lim_{x \to \pi/6} f(x) = \lim_{x \to \pi/6} f(x) \]

\[\Rightarrow \lim_{x \to \pi/6} \sin 2x = \lim_{x \to \pi/6} ax + b \]

\[\Rightarrow \sin (\pi/3) = (\pi/6) a + b \]

\[\Rightarrow \frac{\sqrt{3}}{2} = \frac{\pi}{6} a + b \] \hspace{1cm} (1)

For \(f(x) \) to be differentiable at \(x = \pi/6 \), we must have

L.H.D. at \(x = \pi/6 \) = R.H.D. at \(x = \pi/6 \)

\[\Rightarrow \lim_{x \to \pi/6} 2 \cos 2x = \lim_{x \to \pi/6} a \]

\[\Rightarrow 2 \cos \pi/3 = a \Rightarrow a = 1 \]

Putting \(a = 1 \) in equation (1), we get \(b = (\sqrt{3}/2) - \pi/6 \).

43.b. \(f(x) \) is clearly continuous for \(x \in \mathbb{R} \).

44.d. \(\frac{x}{1 + |x|} \) is always differentiable (also at \(x = 0 \))

Also \((x - 2)(x + 2)|x| - 1 \) \((x - 1)(x - 2)(x - 3) \)

is not differentiable at \(x = 1, 3 \).

So, \(f(x) \) is not differentiable at \(x = 1, 3 \).

45.b. \(f(x) = \cos \pi(|x| + |x|) \)

\[= \begin{cases} \cos \pi \left(-x + (-1) \right), & -1 \leq x < 0 \\ \cos \pi \left(x + 0 \right), & 0 \leq x < 1 \\ \cos \pi x, & 0 \leq x < 1 \end{cases} \]

Obviously, \(f(x) \) is discontinuous at \(x = 0 \), otherwise \(f(x) \) is continuous and differentiable in \((-1, 0) \) and \((0, 1) \).

46.c. For \(f(x) \) to be continuous at \(x = 0 \), we have

\[f(0) = f(0^+) \Rightarrow a(0) + b = 1 \Rightarrow b = 1 \]

\[f'(0^+) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{\cos h^2 + h - b}{h} \]

\[= \lim_{h \to 0} \frac{\cos h^2 + 1}{h} = \lim_{h \to 0} \frac{\cos h^2 + 1}{h(h + 1)} = 1 \]

\[\therefore f'(0^+) = a \]

Hence, \(a = 1 \)

47.a. Clearly \(f(x) \) is continuous at \(x = 0 \)

Now \(f'(0) = \lim_{h \to 0} \frac{e^{-1/h^2} - 0}{h} = \lim_{h \to 0} \frac{1}{h} e^{-1/h^2} \)

\[= \lim_{h \to 0} \frac{-1/h}{-2/h^2} e^{1/h^2} \] (applying L'Hopital's rule)

\[= \lim_{h \to 0} \frac{h}{2 h^2} e^{1/h^2} = 0 \]

Also \(f'(0) = 0 \)

Thus, \(f(x) \) is differentiable at \(x = 0 \).

48.c. \(f(x) = \begin{cases} |x| - 1, & |x| < 0 \\ |x|^2 - 2|x|, & |x| \geq 0 \end{cases} \)

where \(|x| < 0 \) is not possible thus, neglecting we get,

\[f(|x|) = |x|^2 - 2|x|, |x| \geq 0 \]

\[f(|x|) = \begin{cases} x^2 + 2x, & x < 0 \\ x^2 - 2x, & x \geq 0 \end{cases} \] \hspace{1cm} (1)

Clearly \(f(|x|) \) is continuous at \(x = 0 \), but non-differentiable at \(x = 0 \).

\[f(|x|) = \begin{cases} |x| - 1, & |x| < 0 \\ |x|^2 - 2|x|, & |x| \geq 0 \end{cases} \]

\[g(x) = |f(x)| = \begin{cases} 1 - x, & x < 0 \\ -x^2 + 2x, & 0 \leq x < 2 \\ x^2 - 2x, & x \geq 2 \end{cases} \] \hspace{1cm} (2)

Clearly \(|f(x)| \) is discontinuous at \(x = 0 \), but continuous at \(x = 2 \).
3.42 Calculus

Also, \(g'(x) = \begin{cases}
-2x + 2, & 0 < x < 2 \\
2x - 2, & x > 2
\end{cases} \)

Thus, \(g(x) \) is non-differentiable at \(x = 0 \) and \(x = 2 \).

49.c. Since \(1 < x < 2 \Rightarrow 0 < x - 1 < 1 \)
\[x^2 - 2x = [(x - 1)^2 - 1] = [(x - 1)^2] - 1 = 0 - 1 = -1 \]
\[1 - 4x^2, \quad 0 < x < \frac{1}{2} \]
\[4x^2 - 1, \quad \frac{1}{2} \leq x < 1 \]
\[-1, \quad 1 \leq x < 2 \]
\[\therefore f(x) = \begin{cases}
1 - 4x^2, & 0 < x < \frac{1}{2} \\
4x^2 - 1, & \frac{1}{2} \leq x < 1 \\
-1, & 1 \leq x < 2
\end{cases} \]

\[\therefore \text{ graph of } f(x) : \]

![Graph of f(x)](image)

Fig. 3.33

It is clear from graph that \(f(x) \) is discontinuous at \(x = 1 \) and not differentiable at \(x = \frac{1}{2} \) and \(x = 1 \).

50.c. For \(|x| < 1, x^n \to 0 \) as \(n \to \infty \) and for \(|x| > 1, 1/x^n \to 0 \) as \(n \to \infty \). So

\[f(x) = \begin{cases}
\log(2 + x), & |x| < 1 \\
\lim_{n \to \infty} \frac{x^{2n} \log(2 + x) - \sin x}{x^{2n} + 1} = -\sin x, & |x| > 1 \\
\frac{1}{2} \log(2 + x) - \sin x, & |x| = 1
\end{cases} \]

Thus, \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} (-\sin x) = -\sin 1 \)

and \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} \log(2 + x) = \log 3 \).

51.c. \(f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} \)
\[= \lim_{h \to 0} \frac{h^a \sin(\frac{1}{h})}{h} = \lim_{h \to 0} h^{a-1} \sin(\frac{1}{h}) \]

This limit will not exist if \(a - 1 \leq 0 \Rightarrow a \leq 1 \).

Now \(\lim_{x \to 0} x^a \sin(\frac{1}{x}) = 0 \) if \(a > 0 \).

Thus, \(a \in (0, 1) \).

52.c. \([\sin x] \) is non-differentiable at \(x = \frac{\pi}{2}, \pi, 2\pi \)

and \([\cos x] \) is non-differentiable at \(x = 0, \frac{\pi}{2}, \frac{3\pi}{2}, 2\pi \).

Thus, \(f(x) \) is definitely non-differentiable at \(x = \pi, \frac{3\pi}{2}, 0 \)

Also, \(f(\frac{\pi}{2}) = 1, f(\pi - 0) = 0 \)

\(f'(\pi) = 1, f'(\pi - 0) = -1 \)

Thus, \(f(x) \) is also non-differentiable at \(x = \frac{\pi}{2} \) and \(2\pi \).

53.a We have \(x + 4|y| = 6y \)
\[\Rightarrow \begin{cases}
x - 4y = 6y, & \text{if } y < 0 \\
x + 4y = 6y, & \text{if } y \geq 0
\end{cases} \]
\[\Rightarrow y = \begin{cases}
\frac{1}{2} x, & \text{if } x \geq 0 \\
\frac{1}{10} x, & \text{if } x < 0
\end{cases} \]

\[f'(x) = \begin{cases}
\frac{1}{2}, & x > 0 \\
\frac{1}{10}, & x < 0
\end{cases} \]

Clearly, \(f(x) \) is continuous at \(x = 0 \) but non-differentiable at \(x = 0 \).

54.b \(f(0^+) = \lim_{x \to 0^+} |x|^{\sin x} = \lim_{x \to 0^+} x^{\sin x} \log |x| \)
\[= e^{-\alpha} \log x = e^{0} = 1 \] (Using L'Hopital's rule)

\(f(0^-) = g(0) = 1 \)

Let \(g(x) = ax + b \)
\[\Rightarrow b = 1 \Rightarrow g(x) = ax + 1 \]

For \(x > 0, f'(x) = e^{\sin x} \frac{\cos x \ln(|x|) + \sin x}{x} \]
\[f'(1) = 1[0 + \sin 1] = \sin 1 \]
\[f(-1) = -a + 1 \Rightarrow a = 1 - \sin 1 \]
\[g(x) = (1 - \sin 1)x + 1 \]

55.c. Given that \(f(x) = 1 - x^a \)
\[\Rightarrow f(|x|) = \begin{cases}
1 - x, & x > 1 \\
1 - x, & 0 < x \leq 1 \\
1 + x, & -1 \leq x \leq 0 \\
-x - 1, & x < -1
\end{cases} \]

Clearly, the domain of \(\sin^{-1}(f(|x|)) \) is \([-2, 2]\).

\[\Rightarrow \text{It is non-differentiable at the points } (-1, 0, 1). \]

56.d \(f(x) \) is continuous at \(x = 0 \Rightarrow \lim_{x \to 0} f(x) = f(0) \)
\[\Rightarrow f(0) = \lim_{x \to 0} f(0 + h) = \lim_{h \to 0} \frac{h g(h)}{|h|} = \lim_{h \to 0} g(h) = g(0) = 0 \]

Now \(f''(0^+) = \lim_{h \to 0^+} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h g(h)}{h} \)
\[= \lim_{h \to 0^+} g(h) = g(0) \]
\[= g'(0) \text{ (as } g(0) = 0) \]
\[f''(0^-) = \lim_{h \to 0^-} \frac{f(0 - h) - f(0)}{h} \]
\[= \lim_{h \to 0^-} \frac{-h g(-h)}{-h} = \lim_{h \to 0^-} g(-h) \]

\[= \lim_{h \to 0^-} g(-h) = g(0) \]
\[f'(0) \text{ exists and } f'(0) = 0. \]

Thus, \(f(x) \) is discontinuous at \(x = 1, -1 \).

62.a. \(f(e) = \left[\log_e e \right] + \sqrt{\log_e e} = [1] + \sqrt{1} = 1 + 0 = 1 \)

\[f(e^+) = \lim_{h \to 0^+} h + \sqrt{1 + h} = 1 + 0 = 1 \]

\[f(e^-) = \lim_{h \to 0^-} h + \sqrt{1 - h} = 0 + 1 = 1 \]

Hence, \(f(x) \) is continuous at \(x = e \).

Now \(f'(e^+) = \lim_{h \to 0^+} \frac{f(e + h) - f(e)}{h} \)

\[= \lim_{h \to 0^+} \frac{[1 + \sqrt{1 + h}] - 1}{h} = \lim_{h \to 0^+} \frac{1 + \sqrt{h} - 1}{h} \to \infty. \]

Hence, \(f(x) \) is non-differentiable at \(x = 0 \).

63.a. \(f(x) = \lim_{n \to \infty} \left(\sin^2(\pi x) \right)^n + \left[x + \frac{1}{2} \right] \)

Now \(g(x) = \lim_{n \to \infty} \left(\sin^2(\pi x) \right)^n \) is discontinuous when

\[\sin^2(\pi x) = 1 \) or \(\pi x = \frac{(2n+1)\pi}{2}, n \in \mathbb{Z}. \]

Thus, \(g(x) \) is discontinuous at \(x = 3/2 \).

Also \(h(x) = \left[x + \frac{1}{2} \right] \) is discontinuous at \(x = 3/2 \).

But \(f(3/2) = \lim_{n \to \infty} \left(\sin^2(3\pi/2) \right)^n + \left[\frac{3}{2} + \frac{1}{2} \right] = 1 + 2 = 3. \)

Hence, \(f(x) \) is discontinuous at \(x = 3/2 \).

Both \(g(x) \) and \(h(x) \) are continuous at \(x = 1 \), hence \(f(x) \) is continuous at \(x = 1 \).

64.c. \(f(x) = \text{sgn}(\sin^2 x - \sin x - 1) \) is discontinuous

when \(\sin^2 x - \sin x - 1 = 0 \)

or \(\sin x = \frac{1 \pm \sqrt{5}}{2} \) or \(\sin x = \frac{1 - \sqrt{5}}{2}. \)

For exactly four point of discontinuity, \(n \) can take value 4 or 5 as shown in the diagram.
65.c. \[f(x) = \begin{cases} x^2 - ax + 3, & x \text{ is rational} \\
2 - x, & x \text{ is irrational} \end{cases} \]

is continuous when \(x^2 - ax + 3 = 2 - x \) or
\[x^2 - (a - 1)x + 1 = 0 \]
which must have two distinct roots for \((a - 1)^2 - 4 > 0\)
\[\Rightarrow (a - 1 - 2)(a - 1 + 2) > 0 \]
\[\Rightarrow a \in (-\infty, -1) \cup (3, \infty) \]

66.a. Hence check continuity at \(x = k, k \in \mathbb{Z} \)

For positive integers,
\[f(k) = (k)^2 - (k^2) = 0 \]
\[f(k') = (k^2)^2 - (k')^2 = 0 - 1 = 0 \]
\[f(k') = (k')^2 - (k^2) = 1 - 1 = 0 \]

For negative integers,
\[f(k) = (k)^2 - (k^2) = 0 \]
\[f(k') = (k^2)^2 - (k')^2 = 0 - 1 = -1 \]
\[f(k') = (k')^2 - (k^2) = 1 - 0 = 1 \]

Hence, \(f(x) \) is continuous at positive integers and discontinuous at negative integers.

67.b. \(g(x) \) is an even function, then \(g(x) = g(-x) \)
\[\Rightarrow g(x) = -g(-x) \Rightarrow g(0) = -g(0) \Rightarrow g(0) = 0 \]

Now \(f'(0) = \lim_{h \to 0} \frac{g(0+h) - g(0)}{h} = 0 \)

Similarly, \(R.H.D. \) at \(x = 0 \) is \(\frac{1}{\sqrt{2}} \).

Hence, \(f(x) \) is not differentiable at \(x = 0 \).

70.d. \(f(x) = \sqrt[3]{|x|} - |x| - 1 \)
\[\Rightarrow |x| - |x| - 1 = -1 \]
Hence, differentiable for all \(x \).

71.b. \(g'(0) = \lim_{h \to 0} \frac{f(h) - |\sin h| - f(0)}{h} \)
\[= \lim_{h \to 0} \frac{f(h) - f(0)}{h} - \lim_{h \to 0} \frac{|\sin h|}{h} \]
\[= 1 - 1 = 0 \]

Thus \(g(x) \) is differentiable and \(g'(0) = 0 \).

72.c. \(f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} \) must exist \(\Rightarrow m > 1 \)
\[f'(0) = \begin{cases} m x^{m-1} \sin \frac{1}{x} - x^{m-2} \cos \frac{1}{x}, & \text{if } x \neq 0 \\
0, & \text{if } x = 0 \end{cases} \]

for \(m > 1 \), \(h'(x) = \begin{cases} m x^{m-1} \sin \frac{1}{x} - x^{m-2} \cos \frac{1}{x}, & \text{if } x \neq 0 \\
0, & \text{if } x = 0 \end{cases} \)

Now \(\lim_{h \to 0} h(x) = \lim_{h \to 0} \left(m h^{m-1} \sin \frac{1}{h} - h^{m-2} \cos \frac{1}{h} \right) \)

limit exists if \(m > 2 \)
\[\therefore m \in \mathbb{N} \Rightarrow m = 3 \]

73.c. At \(x = 0 \),
\[L.H.L. = \lim_{x \to 0^-} f(x) = \lim_{h \to 0} f(h) \]
\[f'(0) = \lim_{h \to 0} \frac{e^{-1/h} - e^{1/h}}{h} = \lim_{h \to 0} \frac{1}{h} \]
\[= \lim_{h \to 0} \frac{-1/h^2}{e^{-1/h} + e^{1/h}} = \lim_{h \to 0} \frac{2h^3}{h^2 e^{-1/h} + e^{1/h}} = 0 \]

Hence \(f \) is differentiable at \(x = 0 \). Also \(\lim_{x \to 0} e^{-1/x} \to 1 \)

76. C \(f(2+x) = f(-x) \)
Replace \(x \) by \(x - 1 \), we have \(f(2 + x - 1) = f(-x + 1) \) or \(f(1 + x) = f(1 - x) \)
Hence \(f(x) \) is symmetrical about line \(x = 1 \)
Now put \(x = 2 \) in (1), we get \(f(4) = f(-2) \), hence differentiability at \(x = 4 \) implies differentiability at \(x = 2 \)

77. A \[\lim_{x \to 0^+} \left(3 - \frac{\cos(\cot^{-1}(-x))}{x^2} \right) = (3 - [\pi]) \]
\[= (3 - [\pi]) \]
\[= (0)(\cos(\frac{\pi}{2})) = 0 \]

Thus \(f(x) \) has irremovable discontinuity at \(x = 0 \), hence \(f(0) \) does not exist.

78. C

Consider the graph of \(f(x) = \max(\sin x, \cos x) \), which is non-differentiable at \(x = \pi/4 \), hence statement (a) is false.
From the graph \(y = f(x) \) is differentiable at \(x = \pi/2 \), hence statement (b) is false.
Statement (c) is always true.
Statement (d) is false as consider \(g(x) = \max(x, x^2) \) at \(x = 0 \), for which \(x = x^2 \) at \(x = 0 \), but \(f(x) \) is differentiable at \(x = 0 \)

79. B \(f(x) = \begin{cases} 1 + \cos \left(\frac{\pi x}{2} \right), & 1 < x \leq 2 \\ 1 - \left\lfloor x \right\rfloor, & 0 \leq x < 1 \end{cases} \)
\[1 - \left\lfloor x \right\rfloor, & 0 \leq x < 1 \]
\[[-\pi x], & -1 \leq x < 0 \]
\[-\sin \pi x, & -1 \leq x < 0 \]

\(f(x) \) is continuous at \(x = 1 \) but not differentiable.

80. A \(x^2 + 2x + 3 + \sin \pi x = (x + 1)^2 + 2 + \sin \pi x > 1 \)
\[: f(x) = 1 \quad \forall \ x \in \mathbb{R} \]

81. C Given that \(\cos \frac{x}{2} \cos \frac{x}{2} \cos \frac{x}{2} \cdots \cos \frac{x}{2^n} = \frac{\sin(x)}{2^n \sin \left(\frac{x}{2^n} \right)} \)

Taking logarithm to the base \('e' \) on both sides of equation (1) and then differentiating w.r.t. \(x \), we get
\[\sum_{n=1}^{\infty} \frac{1}{2^n} \tan \frac{x}{2^n} = \frac{1}{2^n} \cot \frac{x}{2^n} - \cot x \]
5. **a, b.**

 \[f(x) = \text{sgn}(x) \sin x \]

 \[f(0^+) = \text{sgn}(0^+) \sin(0^+) = 1 \times (0) = 0 \]

 \[f(0^-) = \text{sgn}(0^-) \sin(0^-) = (-1) \times (0) = 0 \]

 \[\therefore f(0^+) = 0 \]

 Hence, \(f(x) \) is continuous everywhere.

 Both \(\text{sgn}(x) \) and \(\sin(x) \) are odd functions.

 Hence, \(f(x) \) is an even function.

 Obviously, \(f(x) \) is non-periodic.

 Now \(f''(0^+) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} \)

 \[= \lim_{h \to 0} \frac{\text{sgn}(h) \sin h - 0}{h} = \lim_{h \to 0} \frac{\sin h}{h} = 1 \]

 and \(f''(0^-) = \lim_{h \to 0} \frac{\text{sgn}(-h) \sin(-h) - 0}{h} - h \]

 \[= \lim_{h \to 0} \frac{-1 \times (-\sin h)}{-h} = -1 \]

 Hence, \(f(x) \) is non-differentiable at \(x = 0 \).

6. **a, b, c, d.**

 Given function is discontinuous when \(a + \sin \pi x = 1 \)

 Now if \(a = 1 \Rightarrow \sin \pi x = 0 \Rightarrow x = 1, 2, 3, 4, 5 \)

 If \(a = 3 \Rightarrow \sin \pi x = -2 \) not possible.

 If \(a = 0.5 \Rightarrow \sin \pi x = 0.5 \)

 \(\Rightarrow x \) has 6 values, 2 each for one cycle of period 2.

 If \(a = 0 \Rightarrow \sin \pi x = +1 \Rightarrow x = \frac{1}{2}, 3, \frac{5}{2}, 7, \frac{9}{2}, 11 \)

 Hence, all the options are correct.

7. **a, b.**

 For maximum points of discontinuity of \(f(x) = \text{sgn}(x^2 - ax + 1) \),

 \(x^2 - ax + 1 = 0 \) must have two distinct roots,

 for which \(D = a^2 - 4 > 0 \)

 \(\Rightarrow a \in (-\infty, -2) \cup (2, \infty) \).

8. **b, d.**

9. **b, c.**

 Option (a) is wrong as \(f(x) = \sin x \) and \(g(x) = |x| \),

 \(g(x) \) is non-differentiable at \(x = 0 \), but \(f(x) g(x) \) is differentiable at \(x = 0 \).

10. **b, c.**

 \[f(0^+) = \lim_{n \to \infty} \left[\lim_{x \to 0} \left(\cos^2 x \right)^n \right] \]

 \[= (a \text{ value lesser than } 1)^n = 0 \]
11. b, d.

a. \(\lim_{x \to 0^+} \frac{1}{\ln |x|} = \infty \) and \(\lim_{x \to 0^-} \frac{1}{\ln |x|} = -\infty \),

hence \(f(x) \) has non-removable discontinuity.

b. \(\lim_{x \to 1} \frac{x^2 - 1}{x^3 - 1} = \frac{2}{3} \)

\(\therefore f(x) \) has removable discontinuity at \(x = 1 \)

c. \(\lim_{x \to 1^+} \left(2^{\frac{1}{x-1}} \right) = 1 \) and \(\lim_{x \to 1^-} \left(2^{\frac{1}{x-1}} \right) = 0. \)

Hence, the limit does not exist.

d. \(\lim_{x \to 1^-} \frac{\sqrt{x+1} - \sqrt{2x}}{x^2 - 1} = \frac{-1}{2\sqrt{2}} \) (Rationalizing)

\(\therefore f(x) \) has removable discontinuity at \(x = 1 \).

12. a, b, d.

\[
\begin{align*}
\text{Fig. 3.41} \\
\begin{cases}
1, & x \leq 0 \\
2, & 0 < x < 1 \\
\frac{3}{x-1}, & 2 \leq x < 5 \\
\frac{1}{x+1}, & 0 < x < 1 \\
\end{cases}
\end{align*}
\]

Clearly, \(f(x) \) is discontinuous and bijective function

\[
\begin{align*}
\lim_{x \to 1^-} f(x) &= \frac{1}{2}, \quad \lim_{x \to 1^+} f(x) = 2 \\
\min \left(\lim_{x \to 1^-} f(x), \lim_{x \to 1^+} f(x) \right) &= \frac{1}{2} \neq f(1) \\
\max (1, 2) &= 2 = f(1).
\end{align*}
\]

13. a, c.

\[
\begin{align*}
f(x) &= \begin{cases}
1, & x \geq 1 \\
\frac{1}{n^2}, & \frac{1}{n} < x < \frac{1}{n-1}, \quad n = 2, 3, \ldots \\
0, & x = 0 \\
\end{cases}
\end{align*}
\]

14. a, b, c.

Since, \(\lim_{x \to 1^-} g(x) = \lim_{x \to 1^+} g(x) = 1 \) and \(g(1) = 0 \).

So, \(g(x) \) is not continuous at \(x = 1 \) but \(\lim_{x \to 1^-} g(x) \) exists.

We have \(\lim_{h \to 0^-} f(x) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0} [1-h] = 0 \)

and \(\lim_{h \to 0^+} f(x) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} [1+h] = 1 \)

So, \(\lim_{x \to 1^-} f(x) \) does not exist and hence \(f(x) \) is not continuous at \(x = 1 \)

We have \(\lim_{x \to 1^-} g(x) = 0, \quad \forall x \in R \)

So, \(g(x) \) is continuous for all \(x \).

We have \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} f(g(x)) = \begin{cases}
f(0), & x \in Z \\
(f(0^2)), & x \in R - Z \\
\end{cases} = \begin{cases}
0, & x \in Z \\
[f(0^2)], & x \in R - Z
\end{cases} \]

which is clearly not continuous.

15. b, d.

We have \(\lim_{x \to 0} \frac{f(x) - f(0)}{x-0} = \lim_{x \to 0} \frac{\log \cos x}{x^2 \log (1+x^2)} \)

\[
= \lim_{x \to 0} \frac{\log (1-1+\cos x)}{x^2 \log (1+x^2)} = \frac{1}{1-\cos x} \]
For continuity at $x = 0$, we must have $2 - b = 1 + a$ or $a + b = 1$.

19. a, b

$f(x)$ is continuous for all x if it is continuous at $x = 1$ for which $|1 - 2| = |1 - 2| + a$ or $a = 3$.

g(x) is continuous for all x if it is continuous at $x = 2$ for which $2 - |2| = \text{sgn}(2) - b = 1 - b$ or $b = 1$.

Thus, $f(x) + g(x)$ is continuous for all x if $a = 3, b = 1$. Hence, $f(x)$ is discontinuous at exactly one point for options a and b.

20. a, c, d

a is not correct as $f(x) = x$ from R to R is onto but its reciprocal function $g(x) = \frac{1}{x}$ is not onto on R.

b is obviously true.

Also, $g(x)$ is not continuous, hence not differentiable though $f(x)$ is continuous and differentiable in the above case.

21. a, c, d

For continuity at $x = 1$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (x^2 \text{sgn}(x) + x) = 1 + 0 = 1$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (x^2 \text{sgn}(x) + x) = 1 \text{ sgn}(0) + 1 = 1$$

Also, $f(1) = 1$.

:. L.H.L. = R.H.L. = $f(1)$. Hence, $f(x)$ is continuous at $x = 1$.

Now for differentiability,

$$f'(1) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{(1 + h)^2 \text{sgn}(1 + h) + (1 + h) - 1}{h}$$

$$= \lim_{h \to 0} \frac{1 + h + h - 1}{h} = \lim_{h \to 0} \frac{2 + 3h}{3} = 3$$

and $f''(1) = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{-h}$

$$= \lim_{h \to 0} \frac{(1 - h)^2 \text{sgn}(1 - h) + (1 - h) - 1}{-h}$$

$$= \lim_{h \to 0} \frac{1 - h - h - 1}{-h} = \lim_{h \to 0} \frac{h^2 - 3h}{h} = 3$$

$$f'(1) = f''(1)$$

Hence, $f(x)$ is differentiable at $x = 1$.

Now at $x = 2$,

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} (x^2 \text{sgn}(x) + x) = 4 \times 0 + 1$$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} (\text{sgn}(x) + x - 3) = 1 + \text{sin} 2$$

Hence, L.H.L. = R.H.L.

Hence, $f(x)$ is discontinuous at $x = 2$ and then $f(x)$ is also non-differentiable at $x = 2$.

For $b > 1$, we have $f(g(0)) = f(f(0) + 1) = f(1) = 1 + a$.

Also $g(g(0)) = \lim_{x \to 0} f(x) = f(1) = 1 + a$.

Hence, $f(g(x))$ is continuous for $b = 1$.

For $b < 0$, $f(g(0)) = f(f(0) + b) = f(b) = 2 - b$.

Also $g(g(0)) = \lim_{x \to 0} f(x) = f(1) = f(1) = 1 + a$.

Hence, $f(x)$ is continuous at $x = 1$.

For continuity at $x = 0$, we must have $2 - b = 1 + a$ or $a + b = 1$.
22. a, c.
\[f\left(\frac{\pi}{2}\right) = \lim_{h \to 0} \left(3 \cdot \frac{\tan(\frac{\pi}{2} + h)}{\tan(\frac{\pi}{2})}\right) \]
\[= \lim_{h \to 0} \left(3 \cdot \frac{\tan(\frac{\pi}{2} + h)}{\tan(\frac{\pi}{2})}\right) \]
\[= \lim_{h \to 0} \left(3 \cdot \frac{\tan(\frac{\pi}{2} + h)}{\tan(\frac{\pi}{2})}\right) = 1 \]
\[f\left(\frac{\pi}{2}\right) = \lim_{h \to 0} \left(3 \cdot \frac{\tan(\frac{\pi}{2} + h)}{\tan(\frac{\pi}{2})}\right) \]
\[= \lim_{h \to 0} \left(3 \cdot \frac{\tan(\frac{\pi}{2} + h)}{\tan(\frac{\pi}{2})}\right) = 1 \]
\[f(x) = \text{continuous at } x = \pi/2 \]
\[\Rightarrow 1 = b + 3 = e^{b} \Rightarrow b = -2 \text{ and } a = 0. \]

23. b, c, d
\[f(x) = |x^2| = \begin{cases} x^2, & x < 0 \\ x^3, & x \geq 0 \end{cases} \]
\[\Rightarrow f''(x) = \begin{cases} 6x, & x < 0 \\ 6x, & x > 0 \end{cases} \]
Hence \(f''(0) \) does not exist.

24. a, b, c, d
\[\sin^2 x \in (0, 1) \text{ for } x \in (-\pi/2, \pi/2), \]
\[\Rightarrow f(x) = 0 \text{ for } x \in (-\pi/2, \pi/2) \]
Hence \(f(x) \) is continuous and differentiable at \(x = 0 \).

25. b, c, d
\[f(x) = \begin{cases} \sin x, & x < 0 \\ x^3, & x \geq 0 \end{cases} \]
\[f(x) = \begin{cases} \sin x, & x < 0 \\ x^3, & x \geq 0 \end{cases} \]
Hence \(f''(0) \) does not exist.

26. a, b, c, d
Differentiating w.r.t. \(x \), keeping \(y \) as constant, we get
\[f'(x+y) = f'(x) + 2xy + y^2 \]
Now put \(x = 0 \)
\[f(y) = f'(0) + y^2 = y^2 - 1 \]
\[\Rightarrow f'(x) = x^2 - 1 \]
\[\Rightarrow f(x) = x^3/3 - x + c \]
Also \(f(0) = f(0) + f(0) + f(0) + f(0) = 0 \)
\[\Rightarrow f(x) = x^3/3 - x, f(x) \text{ is twice differentiable for all } x \in R \text{ and } f''(3) = 3^2 - 1 = 8 \]

27. a, b, c, d
\[a. \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{e^x + a}{2x} = \frac{1}{2} \Rightarrow a = -1 \]
If \(a = -1 \), then \(\lim_{x \to 0} f(x) = \frac{1}{2}, \lim_{x \to 0} f(x) = \frac{1}{2} \)
\[\Rightarrow f(x) \text{ is continuous at } x = 0 \text{ if } b = \frac{1}{2} \]
\[c. \text{ If } a \neq -1, \text{ then } \lim_{x \to 0} \frac{e^x + a}{2x} \text{ does not exist} \]
\[\Rightarrow x = 0 \text{ is a point of irremovable type of discontinuity} \]
\[d. \text{ if } a = -1, \text{ then } \lim_{x \to 0} f(x) = \frac{1}{2} \]
\[\Rightarrow b \neq \frac{1}{2} \Rightarrow \text{removable type of discontinuity at } x = 0 \]

Reasoning Type
1. c. Statement 1 is obviously true.
 But statement 2 is false as \(f(x) = x^3 \) is differentiable, but \(f^{-1}(x) = x^{1/3} \) is non-differentiable at \(x = 0 \).
 \(f^{-1}(x) = x^{1/3} \) has vertical tangent at \(x = 0 \).

2. b. \(f(x) = (2x - 5)^{3/5} \Rightarrow f'(x) = \frac{3}{5(2x - 5)^{2/5}} \)
 Statement 2 as it is fundamental concept for non-differentiability.
 But given function is non-differentiable at \(x = 5/2 \), as it has vertical tangent at \(x = 5/2 \), but not due to sharp turn.
 The graph of the function is smooth in the neighbourhood of \(x = 5/2 \).

3. a. Statement 2 is true as it is a fundamental concept.
 Also \(f(x) = \text{sgn}(g(x)) \) is discontinuous when \(g(x) = 0 \).
 Now the given function \(f(x) = \text{sgn}(x^2 - 2x + 3) \) may be discontinuous when \(x^2 - 2x + 3 = 0 \), which is not possible: it has imaginary roots as its discriminant is \(< 0 \).

4. b. \(f(x) = \lim_{n \to \infty} \frac{x^{2n+1}}{x^{2n} + 1} \) is discontinuous at \(x = 1 \)
 \[\begin{cases} -1, & x < 1 \\ 1, & x > 1 \\ 0, & x = 1 \end{cases} \]
 \[\Rightarrow f(1^+) = 1 \text{ and } f(1^-) = -1 \]
 Hence, \(f(x) \) is discontinuous at \(x = 1 \) as the limit of the function does not exist.

5. c. We know that both \(\text{sgn}(x) \) and \(\text{sgn}(-x) \) are discontinuous at \(x = \pi/2 \).
 Also \(f(x) = \text{sgn}\left(x \right) - \text{sgn}\left(-x \right) \) is discontinuous at \(x = \pi/2 \).
 As \(f(\pi/2) = 1 - 0 = 1 \) and \(f(\pi/2) = 0 - (-1) = 1 \)
 \(f(\pi/2) = 0 - 0 = 0 \).
 But the difference of two discontinuous function is not necessarily discontinuous.
6.c. We know that \(\text{sgn}(x) \) is discontinuous at \(x = 0 \).

Also \(f(x) = |\text{sgn}x| = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0 \end{cases} \) which is discontinuous at \(x = 0 \).

Consider \(g(x) = \begin{cases} -1, & x < 0 \\ 1, & x \geq 0 \end{cases} \). Here \(g(x) \) is discontinuous at \(x = 0 \) but \(|g(x)| = 1 \) for all \(x \) is continuous at \(x = 0 \). Hence, answer is c.

7.b. \(f(x) = \sin(\pi x)(x - 1)^{1/5} \) is continuous function as both \(\sin(\pi x) \) and \((x - 1)^{1/5}\) are continuous.

But \((x - 1)^{1/5}\) is not differentiable at \(x = 1 \).

However, \(f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} \)

\[= \lim_{h \to 0} \frac{\sin(\pi(1+h))(1+h-1)^{1/5} - 0}{h} \]

\[= \lim_{h \to 0} \frac{\sin(\pi h)(-h)^{1/5}}{h} \]

And \(f'(1) = \lim_{h \to 0} \frac{\sin(\pi(1+h))(1+h-1)^{1/5} - 0}{h} \)

\[= \lim_{h \to 0} \frac{\sin(\pi h)(h)^{1/5}}{h} \]

\[= \lim_{h \to 0} \frac{-\sin(\pi h)(h)^{1/5}}{h} = 0 \]

Hence, \(f(x) \) is differentiable at \(x = 1 \), though \((x - 1)^{1/5}\) is not differentiable at \(x = 1 \).

However, statement 2 is correct but it is not a correct explanation of statement 1.

8.b. Statement 2 is true as \(\cos 0 = 1 \)

Now \(\lim_{x \to 0} e^{ix} - 1 = \lim_{x \to 0} e^{ix} - 1 = \lim_{x \to 0} e^{ix} - 1 = 1 \)

and \(\lim_{x \to 0} e^{ix} - 1 = \lim_{x \to 0} e^{ix} - 1 = -1 \)

Thus \(\text{L.H.L.} = \text{R.H.L.} \).

Hence, the function has no removable discontinuity at \(x = 0 \).

Hence, statement 2 is not a correct explanation of statement 1.

9.a. \(\lim_{x \to 0} \sin(x + x) = 0 \), \(\lim_{x \to 0} \sin(x + x) = -1 \)

Thus, limit does not exist, hence \(f(x) \) is discontinuous at \(x = 0 \).

Statement 2 is a fundamental property and is a correct explanation of statement 1.

10.d. \(f(x) = |x| \sin x \)

L.H.D. = \(\lim_{h \to 0} \frac{0 - h|\sin(0-h)| - 0}{-h} = \lim_{h \to 0} \frac{-h \sin h}{-h} = 0 \)

R.H.D. = \(\lim_{h \to 0} \frac{|0 + h|\sin(0+h)| - 0}{h} = \lim_{h \to 0} \frac{h \sin h}{h} = 0 \)

\(\Rightarrow f(x) \) is differentiable at \(x = 0 \).

11.d. Statement 1 is incorrect because if \(\lim_{x \to a} g(x) \) and \(\lim_{x \to a} f(g(x)) \) approach e from the same side of e (say right side), and \(\lim_{x \to a} g(x) = f(e) \neq f(f(x)) \), then \(\lim_{x \to a} g(x) = f(e) \), which is differentiable at \(x = 0 \).

Hence, statement 2 is correct but it has no link with statement 1.

12.c. Consider \(f(x) = \begin{cases} 1, & x \geq 0 \\ -1, & x < 0 \end{cases} \)

Hence \(|f(x)| = 1 \) for all \(x \) is continuous at \(x = 0 \) but \(f(x) \) is discontinuous at \(x = 0 \).

13.b. Statement 2 is obviously true.

Hence \(f(x) = \tan^{-1} \left(\frac{2x}{1-x^2} \right) \) is non-differentiable at \(x = \pm 1 \) as \(\frac{2x}{1-x^2} \)

is not defined at \(x = \pm 1 \). Hence statement 1 is true but statement 2 is not the correct explanation of statement 1.

14.b. \(|f(x)| \leq |x| \)

\(\Rightarrow 0 \leq |f(x)| \leq |x| \)

\(\Rightarrow \) Graph of \(y = |f(x)| \) lies between the graph of \(y = 0 \) and \(y = |x| \)

Also \(f(0) \leq 0 \Rightarrow f(0) = 0 \)

Also from Sandwich theorem, \(\lim_{x \to 0} |f(x)| \leq \lim_{x \to 0} |x| \)

\(\Rightarrow \lim_{x \to 0} |f(x)| = 0 \)

\(\Rightarrow y = f(x) \) is continuous at \(x = 0 \).

Also statement 2 is correct but it has no link with statement 1.

15.c. See the graph of \(f(x) = |x|^2 - 3 |x| + 2 \)

Fig. 3.43

which is non-differentiable at 5 points, \(x = 0, \pm 1, \pm 2 \).

However, statement 2 is false, as \(f(x) = x^3 \) crosses x-axis at \(x = 0 \),

but \(|f(x)| = |x|^3 \) is differentiable at \(x = 0 \).

16.b. Statement 1 is incorrect as \(e^{[x]} \) is non-differentiable at \(x = 0 \).

17.a. Let \(x = k, k \in Z \Rightarrow f(k) = \{k\} + \sqrt{k} = 0 \)

\(f(k^+) = 0 + 0 = f(k^-) = 1 + 1 = 2 \).

Hence, \(f(x) \) is not continuous at integral points.

Hence, correct answer is a.

18.b. We know that \(0 \leq \cos^2(\pi x) \leq 1 \)

Hence, \(\lim_{x \to \infty} \cos^2(\pi x) = 0 \) or 1, as \(\cos^2(\pi x) < 1 \) or \(\cos^2(\pi x) = 1 \)

Also, since \(n \to \infty \), then \(n \) is integer if \(x \in \mathbb{Q} \) and \(n \) is integer if \(x \in \mathbb{I} \).

Hence, \(f(x) = \begin{cases} 1, & x \text{ is rational} \\ 0, & x \text{ is irrational} \end{cases} \)

\(\Rightarrow f(x) = 1 \) when \(\forall x \in \mathbb{R} \) which is continuous for all \(x \).

However, statement 2 does not correctly explain statement 1 as the addition of discontinuous functions may be continuous.

19.d. Consider \(f(x) = \begin{cases} x^2 \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} \)

\(x = 0 \), but derivative is not continuous at \(x = 0 \).

However, statement 2 is correct.
20.a. \(F(x) = f(g(x)) \),
\[\Rightarrow F(x) = x^2 + 2x \]
\[\Rightarrow F'(x) = \begin{cases}
2x - 2, & x < 0 \\
2x + 2, & x > 0
\end{cases} \]
Hence, \(F'(0^-) = 2 \) and \(F'(0^+) = -2 \).
Hence, both statements are correct and statement 2 is a correct explanation of statement 1.

21.d. Statement 1 is false, as consider the function
\(f(x) = \max\{0, x^3\} \) which is equivalent to
\[f(x) = \begin{cases}
0, & x < 0 \\
x^3, & x \geq 0
\end{cases} \]
Here \(f(x) \) is continuous and differentiable at \(x = 0 \).
However, statement 2 is obviously true.
\[\frac{\pi}{4}, \quad x > 1 \]

22.b. \(f(x) = \begin{cases}
\frac{\pi}{4}, & x = 1 \text{ [in the interval (1 - 8, 1 + 8)]} \\
\frac{\pi}{2}, & x < 1
\end{cases} \]
Hence, \(f \) is discontinuous and non-derivable, but non-derivability does not imply discontinuity.

23.c. \(F(1) = 0, F(1') = \frac{\pi}{2} \) and \(F(1') = \frac{3\pi}{4} \)
\[\Rightarrow F \text{ is discontinuous} \]
But for \(f(x) = \begin{cases}
1, & x \geq 0 \\
-1, & x < 0
\end{cases} \) and \(g(x) = \begin{cases}
1, & x \geq 0 \\
-1, & x < 0
\end{cases} \)
then \(f(x)g(x) \) is continuous at \(x = 0 \).

24.c.
From the graph, statement 1 is true.
Consider \(f(x) = \min\{x, \sin x\} \) is differentiable at \(x = 0 \),
though \(g(x) = \max\{x, \sin x\} \) is non-differentiable at \(x = 0 \).

25.b.
Since \(f(x) \) is a continuous function such that \(f(0) = 1 \) and \(f(x) \neq x, \forall x \in R \).
The graph of \(y = f(x) \) always lies above the graph of \(y = x \).
Hence \(f(x) > x \).
Hence, \(f(f(x)) > x \) (as \(f(x) \) is onto function, \(f(x) \) takes all real values which act as \(x \)).
Statement 2 is a fundamental property of continuous function, but does not explain statement 1.

26.c. Statement 1 is true as \(\sqrt{x} \) is monotonic function. But statement 2 is false as \(f(x) = \sin x \) is continuous at \(x = 3\pi/2 \),
though \(\sin(3\pi/2) = -1 \) (integer).

Linked Comprehension Type

For Problems 1 – 3
1. b, 2. a, 3. b.

\[f(x) = \begin{cases}
a(1 - x \sin x) + b \cos x + 5, & x < 0 \\
\frac{1}{x^2} \left(1 + \left(\frac{P(x)}{x}\right)^{1/x}\right), & x > 0
\end{cases} \]

\[\text{Sol. } f(x) = \begin{cases}
3, & x = 0 \\
\frac{1}{x^2} \left(1 + \left(\frac{P(x)}{x}\right)^{1/x}\right), & x > 0
\end{cases} \]

where \(P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \)
\(f(0) = 3 \)

R.H.L. = \(\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} \)
\[= \lim_{h \to 0^+} \frac{f(0 + h) - f(0)}{h} \]
\[= \lim_{h \to 0^+} \frac{f(0 + h)}{h} \]
\[= \lim_{h \to 0^+} \frac{a(1 - h \sin(-h) + b \cos(-h) + 5)}{h} \]
\[= a \lim_{h \to 0^+} (1 - h \sin(-h) + b \cos(-h) + 5) \]
\[= a \lim_{h \to 0^+} \left(1 - \frac{h^2}{2} + \frac{5}{h} \right) \]
\[= a \left(1 - \lim_{h \to 0^+} \frac{h^2}{2} + \lim_{h \to 0^+} \frac{5}{h} \right) \]
\[= a \left(1 - 0 + \infty\right) \]
\[= a(\infty) \]

For finite value of L.H.L., \(a + b + 5 = 0 \) and \(\frac{b}{2} = 3 \)
Solving, we get \(a = -1, b = -4 \).
3.52 Calculus

Now \(g(x) = 3a \sin x - b \cos x = -3 \sin x + 4 \cos x \)
which has the range \([-5, 5]\).
Also \(P(x) = a x^2 - (\log_3) x^2 \)
\(P''(x) = 6ax + 2\log_3 \)
\(\Rightarrow P''(0) = 2\log_3 \)
Further, \(P(x) = b \Rightarrow ax^2 + (\log_3)x^2 = -4 \) has only one real
root, as the graph of \(P(x) = ax^2 + (\log_3)x^2 \) meets
\(y = -4 \) only once for negative value of \(x \).

For Problems 4–6

4. c, 5. b, 6. c.

Sol. For \(0 \leq x < \frac{\pi}{4} \), \(g(x) = 1 + \tan x \).

\[x \in \left[0, \frac{\pi}{4} \right] \Rightarrow 1 + \tan x \in [1, 2) \]
- \(\tan x \in \left(-\infty, -1 \right) \cup (1, \infty) \)
- \(\cot x \in \left(0, \frac{\pi}{2} \right) \)
- \(3 - \cot x \in \left(2, \infty \right) \)
so \(f(g(x)) = f(3 - \cot x) = 6 - (3 - \cot x) \)

Let \(h(x) = f(g(x)) \)

\[h(x) = \begin{cases}
3 + \tan x, & 0 \leq x < \frac{\pi}{4} \\
3 + \cot x, & \frac{\pi}{4} \leq x < \pi
\end{cases} \]

Clearly, \(f(g(x)) \) is continuous in \([0, \pi)\).

Now \(h'(x) = \lim_{x \to \frac{\pi}{4}} (-\csc^2 x) = -2 \)

\[h'(x) = \lim_{x \to \frac{\pi}{4}} \sec^2 x = 2 \]
Sof \(g(x) \) is differentiable everywhere in \([0, \pi]\) other than
at \(x = \frac{\pi}{4} \)

\[|f'(g(x))| = \begin{cases}
3 + \tan x, & 0 \leq x < \frac{\pi}{4} \\
3 + \cot x, & \frac{\pi}{4} \leq x < \pi
\end{cases} \]
which is non-differentiable at \(x = \frac{\pi}{4} \) and where \(3 + \cot x = 0 \) or \(x = \cot^2 (-3) \)
For \(x \in \left[0, \frac{\pi}{4} \right] \), \(3 + \tan x \in [3, 4) \)
For \(x \in \left[\frac{\pi}{4}, \pi \right] \), \(3 + \cot x \in (-\infty, 4] \)
Hence, the range is \((-\infty, 4]\).

For Problems 7–9

7. a, 8. c, 9. d.

Sol. \(f(x) = \lim_{n \to \infty} \frac{f(x) + x^2n g(x)}{1 + x^2n} \)

\[\begin{cases}
f(x), & 0 \leq x^2 < 1 \\
\frac{f(x) + g(x)}{2}, & x^2 = 1 \\
g(x), & x^2 > 1
\end{cases} \]

\(\Rightarrow g(x) = f(|x|) = \frac{1}{2} \left(|x|^2 + 1 \right), \frac{1}{2} \leq x^2 < 1 \)

\(g(-1) = \lim_{x \to -1} (2x^2 + 1) = 3 \), \(g(-1^+) = \lim_{x \to -1} 2x^2 = 2 \)

\[|g(x)| = \begin{cases}
2x^2 + 1, & -2 \leq x < -1 \\
2x^2, & -1 \leq x \leq \frac{1}{2} \\
0, & \frac{1}{2} < x < \frac{1}{\sqrt{2}} \\
4x^2 - 2, & \frac{1}{\sqrt{2}} \leq x \leq 2
\end{cases} \]

If \(F(x) \) is continuous \(\forall x \in R, F(x) \) must be made continuous at \(x = \pm 1 \).
For continuity at \(x = -1, f(-1) = g(-1) \Rightarrow 1 - a + 3 = b - 1 \Rightarrow a + b = 5 \) \(\cdots (1) \)
For continuity at \(x = 1, f(1) = g(1) \Rightarrow 1 + a + 3 = 1 + b \Rightarrow a - b = -3 \) \(\cdots (2) \)
Solving equations (1) and (2), we get \(a = 1 \) and \(b = 4 \)
\(f(x) = g(x) \Rightarrow x^2 + x + 3 = x + 4 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1 \).

For Problems 10–12

10. a, 11. d, 12. b.

Sol. \(f(x) = \begin{cases}
[x], & -2 \leq x \leq -\frac{1}{2} \\
\frac{1}{2}, & \frac{1}{2} < x \leq 2 \\
2x^2 - 1, & x \geq 2
\end{cases} \)

\(\Rightarrow f(x) = \begin{cases}
[-2], & -2 \leq x < -1 \\
-1, & -1 \leq x \leq \frac{1}{2} \\
2, & \frac{1}{2} < x \leq 2
\end{cases} \)

\[f(|x|) = \begin{cases}
2, & -2 \leq x < -1 \\
1, & -1 \leq x \leq \frac{1}{2} \\
2x^2 - 1, & \frac{1}{2} < x \leq 2 \\
1 - 2x^2, & \frac{1}{2} < x \leq \frac{1}{\sqrt{2}} \\
2x^2 - 1, & \frac{1}{\sqrt{2}} < x \leq 2 \\
-2, & -2 \leq |x| < -1 \\
-1, & -1 \leq |x| \leq \frac{1}{2} \\
2x^2 - 1, & \frac{1}{2} < |x| \leq 2 \\
2|x|^2 - 1, & \frac{1}{2} < |x| \leq 2
\end{cases} \]

\(g(1^+) = \lim_{x \to \frac{1}{2}^+} (2x^2 + 1) = 3 \), \(g(-1^+) = \lim_{x \to -1} 2x^2 = 2 \)
\[g\left(\frac{1}{2}\right) = \lim_{x \to \frac{1}{2}} 2x^2 = \frac{1}{2}, \quad g\left(\frac{-1}{2}\right) = \lim_{x \to \frac{-1}{2}} 0 = 0 \]
\[g\left(\frac{1}{\sqrt{2}}\right) = \lim_{x \to \frac{1}{\sqrt{2}}} 0 = 0, \quad g\left(\frac{1}{\sqrt{2}}\right) = \lim_{x \to \frac{1}{\sqrt{2}}} (4x^2 - 2) = 0. \]

Hence, \(g(x) \) is discontinuous at \(x = -1, \frac{1}{2} \).

\(g(x) \) is continuous at \(x = \frac{1}{\sqrt{2}} \).

Now, \(g'\left(\frac{1}{\sqrt{2}}\right) = 0, \quad g'\left(\frac{1}{\sqrt{2}}\right) = 8 \left(\frac{1}{\sqrt{2}}\right) = 8 \sqrt{2} \).

Hence, \(g(x) \) is non-differentiable at \(x = \frac{1}{\sqrt{2}} \).

For problems 13 – 15

13. c, 14.d, 15.b

Sol.

\[
\begin{align*}
 f(x) &= \begin{cases}
 x^2 + 10x + 8, & x \leq -2 \\
 ax^2 + bx + c, & -2 < x < 0, a \neq 0 \\
 x^2 + 2x, & x \geq 0
 \end{cases}
\end{align*}
\]

For continuous at \(x = 0 \) \(\Rightarrow \) \(c = 0 \)
Continuous at \(x = -2 \) \(\Rightarrow \) \(4 - 20 + 8 = 4a - 2b \)
\[\Rightarrow 2a - b = -4 \quad (1)\]

Now let the line \(y = mx + p \) is tangent to all the three curves
Solving \(y = mx + p \) and \(y = x^2 + 2x \)
\[x^2 + 2x = mx + p\]
\[x^2 + (2-m)x - p = 0\]
\[D = 0\]
\[(2-m)^2 + 4p = 0 \quad (2)\]

Again solving \(y = mx + p \) and \(y = x^2 + 10x + 8 \)
\[x^2 + 10x + 8 = mx + p\]
\[\Rightarrow x^2 + (10 - m)x + 8 - p = 0\]
\[D = 0 \Rightarrow (10 - m)^2 - 4(8 - p) = 0\]
\[\Rightarrow (10 - m)^2 - 2(8 - p) = 42\]
\[\Rightarrow (100 - 20m) - (4 - 4m) = 32\]
\[m = 4 \text{ and } p = -1\]

Hence, equation of the tangent to first and last curves is
\[y = 4x - 1 \quad (3)\]

Now solving this with \(y = ax^2 + bx \) (as \(c = 0 \))
\[ax^2 + bx = 4x - 1 \Rightarrow ax^2 + (b - 4)x + 1 = 0\]
\[D = 0\]
\[\Rightarrow (b - 4)^2 = 4a \]

Also \(b = 2a + 4 \) (from (1))
\[\Rightarrow 4a^2 = 4a \Rightarrow a = 1 \text{ and } b = 6 \text{ (as } a \neq 0)\]
\[f'(0^+) = \lim_{x \to 0} (2ax + b) = b\]
\[f'(0^-) = \lim_{x \to 0} (2ax + 2) = 2 \Rightarrow b = 2\]

Matrix-Match Type

1. \(a \rightarrow p, q, r \); \(b \rightarrow p, r, s \); \(c \rightarrow p, r, s \); \(d \rightarrow p, r, s \).

a. \(f(x) = |x|^3 = x(x|x|) \) is continuous and differentiable.
\[\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = f(1) \]

\[\Rightarrow \lim_{x \to 1^+} (x^2 + b) = \lim_{x \to 1^-} \frac{1}{|x|} \Rightarrow a + b = 1 \quad (1) \]

Clearly, \(f(x) \) is differentiable for all \(x \), except possibly at \(x = \pm 1 \). As \(f(x) \) is an even function, so we need to check its differentiability at \(x = 1 \) only.

\[\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} \]

\[\Rightarrow \lim_{x \to 1^-} \frac{ax^2 + b - 1}{x - 1} = \lim_{x \to 1^+} \frac{1}{|x|} \]

\[\Rightarrow \lim_{x \to 1^-} \frac{ax^2 - a}{x - 1} = \lim_{x \to 1^+} \frac{-1}{x} \Rightarrow 2a = -1 \Rightarrow a = -\frac{1}{2} \]

Putting \(a = -1/2 \) in (1) we get \(b = 3/2 \Rightarrow |k| = 1 \Rightarrow k = \pm 1 \)

b. If \(f(x) = \text{sgn}(x^2 - ax + 1) \) is discontinuous then \(x^2 - ax + 1 = 0 \) must have only one real root. Hence \(a = \pm 2 \).

c. \(f(x) = [2 + 3|n| \sin x], n \in N \) has exactly 11 points of discontinuity in \(x \in (0, \pi) \).

The required number of points are \(1 + 2 \times (3|n| - 1) = 6|n| - 1 = 11 \Rightarrow n = \pm 2 \).

d. \(f(x) = ||x| - 2| + a| \) has exactly three points of non-differentiability.

\(f(x) \) is non-differentiable at \(x = 0, |x| = 2 \) or \(x = 0, \pm 2 \).

Hence, the value of \(a \) must be positive, as negative value of \(a \) allows \(|x| = 2 + a = 0 \) to have real roots, which gives more points of non-differentiability.

3. \(a \to s, b \to r, c \to p, d \to q \).
4. \(a \rightarrow q, s; \quad b \rightarrow p, s; \quad c \rightarrow p, r; \quad d \rightarrow q, s.\)

\(a. \quad f(x) = \begin{cases} \frac{5e^{1/x} + 2}{3 - e^{1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}\)

\(f(0^+)=\lim_{h \to 0} \frac{5e^{1/h} + 2}{3 - e^{1/h}} = \lim_{h \to 0} \frac{5 + 2e^{-1/h}}{3e^{-1/h} - 1} = -5.\)

Hence, \(f(x)\) is discontinuous and non-differentiable at \(x=0.\)

\(b. \quad g(x) = xf(x) = \begin{cases} \frac{5e^{1/x} + 2}{3 - e^{1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}\)

\(f(0^+)=\lim_{h \to 0} \frac{5e^{1/h} + 2}{3 - e^{1/h}} = \lim_{h \to 0} \frac{5 + 2e^{-1/h}}{3e^{-1/h} - 1} = 0 \times (-5) = 0.\)

\(f(0^-)\) is continuous at \(x=0.\)

\(\therefore \quad f(x)\) is discontinuous at \(x=0.\)

\(c. \) For \(x^2f(x),\)

\(F(x) = \frac{5e^{1/x} + 2}{3 - e^{1/x}} \quad f(x) = \frac{5e^{1/h} + 2}{3 - e^{1/h}}\)

\(\therefore \quad f(x) = \frac{5 + 0}{0 - 1} = -5\)

\(\therefore \quad f(x)\) is not differentiable, but continuous at \(x=0.\)

5. \(a \rightarrow q, s; \quad b \rightarrow p, r; \quad c \rightarrow p, r; \quad d \rightarrow p, s.\)

\(a. \quad f(x) = \lim_{h \to 0} \frac{\cos(2\pi x) + \left\{x + \frac{1}{2}\right\}}{h}\)

\(\text{Obviously, } \lim_{x \to 0} f(x) = 0 + 0 = 0\)

\(\therefore \quad f(x)\) is continuous at \(x=1.\)

\(b. \quad f(x) = (\log x) \left(1 - \frac{1}{5}\right)^{1/3}\)

\(\text{Obviously, } f(x)\) is continuous at \(x=1\)

\(f'(1^+) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\log(1+h)(1/3)^{1/3}}{h} = 0\)

\(f'(1^-) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{h} = \lim_{h \to 0} \frac{\log(1-h)(1/3)^{1/3}}{h} = 0\)

\(\therefore \quad f(x)\) is differentiable at \(x=1.\)

\(c. \quad f(x) = [\cos 2\pi x] + \left\{\sin \left(\frac{\pi x}{2}\right)\right\}\)

\(\lim_{x \to 0} f(x) = \lim_{x \to 0} [\cos 2\pi x] + \left\{\sin \left(\frac{\pi x}{2}\right)\right\} = 1 + 0 = 1\)

\(\lim_{x \to 0} f(x) = \lim_{x \to 0} [\cos 2\pi x] + \left\{\sin \left(\frac{\pi x}{2}\right)\right\} = 1 + 0 = 1\)

\(\text{Also } f(1) = 1 + 0 = 1.\)

\(f(x)\) is continuous at \(x=1\)

\(f'(1^+) = \lim_{h \to 0} \frac{\cos 2\pi (1+h) + \left\{\sin \left(\frac{\pi (1+h)}{2}\right)\right\}}{h} - 1\)

\(\lim_{h \to 0} f(x) = \lim_{h \to 0} [\cos 2\pi x] + \left\{\sin \left(\frac{\pi x}{2}\right)\right\} = 1\)

\(\therefore \quad f'(1^+) = \lim_{h \to 0} \frac{\cos 2\pi (1+h) + \left\{\sin \left(\frac{\pi h}{2}\right)\right\}}{h} - 1\)

\(\lim_{h \to 0} f(x) = \lim_{h \to 0} [\cos 2\pi x] + \left\{\sin \left(\frac{\pi h}{2}\right)\right\} = 1\)
3.56 Calculus

\[\lim_{h \to 0} \frac{\cos \left(\frac{\pi h}{2} \right) - 1}{h} = \lim_{h \to 0} \frac{\pi \sin \left(\frac{\pi h}{2} \right)}{2 \cos \left(\frac{\pi h}{2} \right)} = 0 \]

Similarly, \(f'(1') = 0 \).

d. \(f(x) = \begin{cases} \cos 2x, & x \in Q \\ \sin x, & x \notin Q \end{cases} \) at \(\frac{\pi}{6} \)

\(f(x) \) is continuous when \(\cos 2x = \sin x \) which has \(x = \frac{\pi}{6} \) as one of the solutions. Hence, it is continuous.

Also in the neighbourhood of \(x = \frac{\pi}{6} \),

\[f'(x) = \begin{cases} -2 \sin 2x, & \frac{\pi}{6} - \delta < x < \frac{\pi}{6} \\ \cos x, & \frac{\pi}{6} < x < \frac{\pi}{6} + \delta \end{cases} \]

Here, \(f' \left(\frac{\pi}{6}^- \right) \neq f' \left(\frac{\pi}{6}^+ \right) \).

\(\Rightarrow f(x) \) is not differentiable at \(x = \frac{\pi}{6} \).

Integer Type

1. (5) \(f(x) = \text{sgn}(\sin x) \) is discontinuous when \(\sin x = 0 \)

\(\Rightarrow x = 0, 2\pi, 3\pi, 4\pi \)

2. (6) \(g(x) = \left\lfloor \frac{f(x)}{a} \right\rfloor \) is continuous if \(\left\lfloor \frac{f(x)}{a} \right\rfloor = 0 \) for \(\forall f(x) \in (1, \sqrt{50}) \), for which we must have \(a > \sqrt{30} \)

Hence the least value of \(a \) is 6.

3. (4) \(\text{sgn}(x^2 - 3x + 2) \) is discontinuous when \(x^2 - 3x + 2 = 0 \) or \(x = 1, 2 \)

\([x - 3]^2 = [x] - 3 \) is discontinuous at \(x = 1, 2, 3, 4 \)

Thus \(f(x) \) is discontinuous at \(x = 3, 4 \)

Now both \(\text{sgn}(x^2 - 3x + 2) \) and \([x - 3] \) are discontinuous at \(x = 1 \) and 2.

Then \(f(x) \) may be continuous at \(x = 1 \) and 2.

But \(f(1) = -2 \) and \(f(1') = -1 + 0 - 3 = -4 \)

Thus \(f(x) \) is discontinuous at \(x = 1 \)

Also \(f(2) = -1 \) and \(f(2') = 1 - 1 = 0 \)

Hence \(f(x) \) is discontinuous at \(x = 2 \) also.

4. (2) \(g'(3') = \lim_{h \to 0} \frac{g(3 + h) - g(3)}{-h} = \lim_{h \to 0} \frac{a\sqrt{4-h} - (3b+2)}{-h} \)

For existence of limit \(\lim_{h \to 0} g'' = 0 \)

\(\Rightarrow 2a - 3b = 2 \)

Now \(g'(3') = \lim_{h \to 0} \frac{b(3 + h) + 2 - (3b + 2)}{h} = b \)

Substituting \(3b + 2 = 2a \) in equation (1)

\(g'(3') = \lim_{h \to 0} \frac{a\sqrt{4-h} - 2a}{-h} = \lim_{h \to 0} \frac{(4-h) - 4}{-h(4-h+2)} = \frac{a}{4} \)

Hence \(g'(3') = g'(3') \)

\(\frac{a}{4} = b \Rightarrow a = 4b \)

From equations (2) and (4)

\(8b - 3b = 2 \)

\(\Rightarrow b = \frac{2}{5} \) and \(a = \frac{8}{5} \)

\(\Rightarrow a + b = 2 \)

\[\begin{align*}
 &\text{for } x > 1 \text{ or } x < -1 \\
 &\begin{cases}
 ax^2 + bx & \text{for } -1 < x < 1 \\
 a - b - 1 & x = 1 \\
 \frac{1}{x} & x = -1 \\
 2 & x = -1
 \end{cases}
\end{align*} \]

5. (8) \(f(x) = \begin{cases} ax^2 + bx & \text{for } -1 < x < 1 \\
 a - b - 1 & x = 1 \\
 \frac{1}{x} & x = -1 \\
 2 & x = -1
\end{cases} \)

for continuity at \(x = 1 \) we have \(a + b = \frac{a + b + 1}{2} \)

Hence, \(a + b = 1 \)

For continuity at \(x = -1 \)

\(a - b = -1 \)

\(a - b = -1 \)

Hence \(a = 0 \) and \(b = 1 \).

6. (6) \(g(f(x)) = \begin{cases}
 \frac{g(x)}{2}, & 0 < x < 1 \\
 \frac{(x-1)(x-2-2k)}{2} + 3, & 0 < x < 1
\end{cases} \)

\(\lim_{x \to 1} g(f(x)) = 3, g(f(1)) = 4 - 2k \) and \(\lim_{x \to 1} g(f(x)) = 4 - 2k \)

\(2k \) for \(g(f(x)) \) to be continuous at \(x = 1, 4 - 2k = 3 \) \(\Rightarrow k = \frac{1}{2} \)

7. (8) \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \)

\(f(x) = f(h) + 2hx(x+h) - \frac{1}{3} (f(x) + f(0) - \frac{1}{3}) \)

\(= \lim_{h \to 0} \frac{f(x) + f(h) + 2hx(x+h) - \frac{1}{3} (f(x) + f(0) - \frac{1}{3})}{h} \)

\(= \lim_{h \to 0} \frac{f'(0) + 2x^2 = f'(x) + 2x^2}{h} \)

\(\lim_{h \to 0} \frac{3f(h) - 1}{6h} = \lim_{h \to 0} \frac{f(h) - \frac{1}{3}}{2h} = \lim_{h \to 0} \frac{f(h) - f(0)}{2h} \)

\(= \frac{f'(0)}{2} = \frac{2}{3} \Rightarrow f'(0) = \frac{4}{3} \)

\(f'(x) = \frac{4}{3} + 2x^2 \)

\(f(x) = \lambda + \frac{4}{3} x + \frac{2x^3}{3} \Rightarrow f(0) = \lambda = \frac{1}{3} \)
\[f(x) = \frac{2x^3}{3} + \frac{4}{3}x + \frac{1}{3} \implies f(2) = \frac{25}{3} \]

8. (5) \[f(x) = \begin{cases} x^p \sin \left(\frac{1}{x} \right) + x^2, & x > 0 \\ x^p \sin \left(\frac{1}{x} \right) - x^2, & x < 0 \\ 0, & x = 0 \end{cases} \]

Since \(f(\frac{1}{e}) = 0 \implies c = 2 \)

Now \(f(g(x)) = \begin{cases} \ln (x + 2); & x \geq k \\ \ln (2 + x^2); & 0 < x < k \end{cases} \)

For continuity at \(x = k \),
\[\ln (k + c) = \ln (k^2 + c) \implies \text{either } k = 0 \text{ or } k = 1. \]
\[\therefore k > 0 \implies k = 1 \]

12. (7) Let \(g(x) = (\ln x)(\ln x) \cdots \infty. \)
\[g(x) = \begin{cases} 0, & 1 < x < e \\ 1, & x = e \\ \infty, & x > e \end{cases} \]

Therefore \(f(x) = \frac{x/2,}{x = e} \)
\[0, \quad e < x < 3 \]

Hence \(f(x) \) is non-differentiable at \(x = e. \)

13. (2) \[f(0) = \lim_{x \to 0} \frac{\tan(tan x) - \sin(sin x)}{\tan x - \sin x} \]
\[= \lim_{x \to 0} \frac{\tan(tan x) - \sin(sin x)}{x - \frac{1 - \cos x}{x^2} \cdot x^3} \]
\[= 2 \lim_{x \to 0} \frac{\tan(tan x) - \sin(sin x)}{x^3} \]
\[= 2 \lim_{x \to 0} \frac{\tan x + \frac{3}{2} \tan^3 x + \frac{2}{15} \tan^5 x + \cdots - \frac{\sin x - \frac{\sin^3 x}{3!} + \frac{\sin^5 x}{5!} + \cdots}{x^3}}{x^3} \]
\[= 2 \lim_{x \to 0} \left(\frac{\tan x - \sin x}{x^3} + \frac{\tan^3 x + \frac{\sin^3 x}{3!} + \cdots}{x^3} \right) \]
\[= 2 \lim_{x \to 0} \left(\frac{\tan x - \sin x}{x^3} + \frac{1}{3} + \frac{1}{6} \right) = 2 \left[\frac{1}{2} + \frac{1}{2} \right] = 2 \]

14. (7) \(\sin^{-1} |\sin x| \) is periodic with period \(\pi \)

\[
\int e^{\delta t} = 1
\]
\[
\int f(\delta) dt
\]
\[\Rightarrow e^{\delta x} - e^{\delta y} = \ln x - \ln y
\]
\[\Rightarrow e^{\delta x} - \ln x = c \implies f(x) = \ln (\ln x + c)
\]
Subjective

1. At \(x = 0, f(0) = c \)
 \[
 f(0^+) = \lim_{{h \to 0^+}} f(x) = \lim_{{h \to 0^+}} f(0 - h) \\
 = \lim_{{h \to 0^+}} \frac{\sin((a+1)(0-h)) + \sin(0-h)}{(0-h)} \\
 = \lim_{{h \to 0^+}} \frac{-\sin((a+1)h) \cdot \sin h}{-h} \\
 = \lim_{{h \to 0^+}} \left[(a+1) \frac{\sin((a+1)h)}{(a+1)h} + \frac{\sin h}{h} \right] \\
 = (a+1) \lim_{{h \to 0}} \frac{\sin((a+1)h)}{(a+1)h} + \lim_{{h \to 0}} \frac{\sin h}{h} \\
 = (a+1) \times 1 + 1 = a + 2 \tag{1}

 f(0^-) = \lim_{{h \to 0^-}} f(x) = \lim_{{h \to 0^-}} f(0 + h) \\
 = \lim_{{h \to 0^-}} \frac{(h + bh^2)^{1/2} - h^{1/2}}{bh^{3/2}} \\
 = \lim_{{h \to 0^-}} \frac{(1 + bh)^{1/2} - 1}{bh} \\
 = \lim_{{h \to 0^-}} \frac{(1 + bh)^{1/2} - 1}{(1 + bh) - 1} = \frac{1}{2} \\
 \therefore f(0) \text{ is continuous at } x = 0. \\
 \Rightarrow \text{L.H.L.} = \text{R.H.L.} = f(0) \text{ [from equations (1), (2) and (3)]} \\
 \Rightarrow \ a + 2 = \frac{1}{2} \Rightarrow a = \frac{3}{2}, \ b = c = \frac{1}{2}. \tag{2}

 2. \ f(x) = \begin{cases}
 1 + x, & 0 \leq x \leq 2 \\
 3 - x, & 2 < x \leq 3.
 \end{cases}

 f(f(x)) = \begin{cases}
 1 + f(x), & 0 \leq f(x) \leq 2 \\
 3 - f(x), & 2 < f(x) \leq 3 \\
 1 + (1 + x), & 0 \leq 1 + x \leq 2, \ 0 \leq x \leq 2 \\
 1 + (3 - x), & 0 \leq 3 - x \leq 2, \ 2 < x \leq 3 \\
 3 - (1 + x), & 2 < 1 + x \leq 3, \ 0 \leq x \leq 2 \\
 3 - (3 - x), & 2 < 3 - x \leq 2, \ 2 < x \leq 3 \\
 2 + x, & 0 \leq x \leq 1 \\
 2 - x, & 1 < x \leq 2 \\
 4 - x, & 2 < x \leq 3
 \end{cases}

3. \ We \ have \ f(x) = \begin{cases}
 x^2, & 0 \leq x \leq 1 \\
 2x^2 - 3x + \frac{3}{2}, & 1 \leq x \leq 2
 \end{cases}

 \Rightarrow \ f'(x) = \begin{cases}
 x, & 0 \leq x < 1 \\
 4x - 3, & 1 < x \leq 2
 \end{cases}

 Here \ f(x) \ is \ continuous \ everywhere,

 \text{as} \ f(1^-) = \lim_{{x \to 1^-}} \left(2x^2 - 3x + \frac{3}{2} \right) \\
 = 2(1) - 3(1) + \frac{3}{2} = \frac{1}{2}

 \text{and} \ f(1^+) = \lim_{{x \to 1^+}} \left(\frac{x^2}{2} \right) = \frac{1}{2}

 \text{At} \ x = 1, Lf' = 1; \ Rf' = 4(1) - 3 = 1
 \Rightarrow \ f \text{ is differentiable and hence } f' \text{ is continuous at } x = 1.

 Also \ f''(x) = \begin{cases}
 1, & 0 \leq x < 1 \\
 4, & 1 \leq x \leq 2
 \end{cases}

 which \ is \ discontinuous \ at \ x = 1.

4. \ Here \ f(x) = x^2 - x^2 + x + 1

At \ x = 1, x = 2. \ f(f(x)) \ is \ discontinuous.
\[f'(x) = 3x^2 - 2x + 1 \text{ which is strictly increasing in } (0, 2) \]

\[g(x) = \begin{cases} f(x); & 0 \leq x \leq 1 \\ 3-x; & 1 < x \leq 2 \end{cases} \]

[as \(f(x) \) is increasing, \(f(x) \) is maximum when \(0 \leq t \leq x \)]

So, \(g(x) = \begin{cases} x^3 - x^2 + x + 1; & 0 \leq x \leq 1 \\ 3-x; & 1 < x \leq 2 \end{cases} \)

Also, \(g'(x) = \begin{cases} 3x^2 - 2x + 1; & 0 \leq x \leq 1 \\ -1; & 1 < x \leq 2 \end{cases} \)

which clearly shows \(g(x) \) is continuous for all \(x \in [0, 2] \), but \(g(x) \) is not differentiable at \(x = 1 \).

5. \(f(x) = \begin{cases} -1; & -2 \leq x \leq 0 \\ x-1; & 0 < x \leq 2 \end{cases} \)

Now \(f(|x|) = \begin{cases} -1; & -1 \leq |x| \leq 0 \\ |x|-1; & 0 < |x| \leq 2 \end{cases} \)

\[f(|x|) = |x|-1, \quad 0 \leq |x| \leq 2 \]

\[f(|x|) = \begin{cases} -x-1, & -2 \leq x \leq 0 \\ x-1, & 0 < x \leq 2 \end{cases} \]

Also \(|f(x)| = \begin{cases} 1, & -2 \leq x \leq 0 \\ |x|-1, & 0 < x \leq 2 \end{cases} \)

\[|f(x)| = \begin{cases} 1, & -2 \leq x \leq 0 \\ x-1, & 0 < x \leq 2 \end{cases} \]

Hence, \(g(x) = f(|x|) + |f(x)| \)

\[g(x) = \begin{cases} -x, & -2 \leq x \leq 0 \\ 0, & 0 < x \leq 1 \\ 2x-2, & 1 < x \leq 2 \end{cases} \]

[From equations (1) and (2)]

\[g'(x) = \begin{cases} -1, & -2 < x < 0 \\ 0, & 0 < x < 1 \\ 2, & 1 < x < 2 \end{cases} \]

Clearly, \(g(x) \) is continuous but non-differentiable at \(x = 0 \) and 1.

6. Given that \(f(x) \) is a continuous function, and \(g(x) \) is a discontinuous function, then for some arbitrary real number \(a \), we must have

\[\lim_{x \to a} f(x) = f(a) \quad (1) \]

and

\[\lim_{x \to a} g(x) \neq g(a) \quad (2) \]

Now, \(\lim_{x \to a} \left[f(x) + g(x) \right] \)

\[= \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \neq f(a) + g(a) \]

[Using equations (1) and (2)]

\[\Rightarrow f(x) + g(x) \text{ is discontinuous.} \]

7. Given that \(f(x) \) is a function satisfying

\[f(-x) = f(x), \quad \forall x \in \mathbb{R} \]

Also \(f'(0) \) exists

\[\Rightarrow f'(0) = f'(0) \]

Now, \(f'(0) = f'(0) \)

\[\Rightarrow \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = f'(0) \]

\[\Rightarrow \lim_{h \to 0} \frac{f(h) - f(0)}{h} = f'(0) \]

again \(f'(0) = f'(0) \)

\[\Rightarrow \lim_{h \to 0} \frac{f(0 - h) - f(0)}{-h} = f'(0) \]

\[\Rightarrow \lim_{h \to 0} \frac{f(h) - f(0)}{h} = -f'(0) \quad (3) \quad [\text{Using equation (1)}] \]

\[\Rightarrow f'(0) = 0 \]

8. Let \(g(x) = ax + b, \quad f(x) = \left(\frac{1+x}{2+x} \right)^{1/x}, \quad x > 0 \)

\[\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\frac{1+x}{2+x} \right)^{1/x} = b \Rightarrow b = 0 \]

\[\Rightarrow f(x) = \left(\frac{1+x}{2+x} \right)^{1/x} \quad , \quad f(1) = \frac{2}{3} \]

\[\Rightarrow \ln f(x) = \frac{1}{x} \ln \left(\frac{1+x}{2+x} \right) + \frac{1}{x(x+1)(x+2)} \]

\[\Rightarrow \frac{f'(x)}{f(x)} = \frac{1}{x} \ln \left(\frac{1+x}{2+x} \right) + \frac{1}{x(x+1)(x+2)} \]

\[\Rightarrow \frac{f'(1)}{f(1)} = \frac{3}{2} \ln \frac{3}{2} + \frac{1}{9} \]

\[f'(1) = \frac{2}{3} \ln \frac{3}{2} + \frac{1}{9} \]

\[f(-1) = b - a \]

\[\Rightarrow b - a = \frac{2}{3} \ln \frac{3}{2} + \frac{1}{9} \]

\[b = 0, \quad a = -\frac{2}{3} \ln \frac{3}{2} - \frac{1}{9} \]

Hence, function \(f(x) = \left(\frac{2}{3} \ln \frac{3}{2} + \frac{1}{9} \right)x \)

9. Given that \(f(x) = \begin{cases} x + a\sqrt{2} \sin x, & 0 \leq x < \pi/4 \\ 2x \cot x + b, & \pi/4 \leq x \leq \pi/2 \end{cases} \)

is continuous for \(0 \leq x \leq \pi \)

\[\Rightarrow \lim_{x \to \pi/4^+} \left(x + a\sqrt{2} \sin x \right) = \lim_{x \to \pi/4^+} \left(2x \cot x + b \right) \]
3.60 Calculus
\[
\Rightarrow \frac{\pi}{4} + a = \frac{\pi}{2} + b
\]
Also, \(\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} f(x) \)
\[
\Rightarrow \lim_{x \to \frac{\pi}{2}} (2x \cot x + b) = \lim_{x \to \frac{\pi}{2}} (a \cos 2x - b \sin x)
\]
\[
= 0 + b = a + b \quad \text{or} \quad a + 2b = 0
\]
Solving (1) and (2) we have \(a = \frac{\pi}{6} \) and \(b = -\frac{\pi}{12} \)

10. See Solution to Example 3.41.

11. Given that
\[
f(x) = \begin{cases}
 \frac{1 - \cos 4x}{x^2}, & x < 0 \\
 \sqrt{x}, & x > 0
\end{cases}
\]
Here, L.H.L. at \(x = 0 \)
\[
= \lim_{h \to 0} \frac{1 - \cos (0-h)}{(0-h)^2} = \lim_{h \to 0} \frac{1 - \cos 4h}{h^2}
\]
\[
= \lim_{h \to 0} \frac{4 \sin^2 2h}{4h^2} = 8 \quad \text{R.H.L. at } x = 0
\]
\[
= \lim_{h \to 0} \frac{\sqrt{h}}{\sqrt{16 + \sqrt{h} + 4}}
\]
\[
= \lim_{h \to 0} \left(\sqrt{16 + \sqrt{h} + 4} \right)
\]
\[
= \sqrt{16} + 4 = 8
\]
For continuity of function \(f(x) \), we must have L.H.L. = R.H.L. = \(f(0) \).
\[
\Rightarrow f(0) = 8 \Rightarrow a = 8
\]

12. Given that,
\[
f(x) = \begin{cases}
 \left(1 + |\sin x| \right)^{\sec |\sin x|}, & -\pi/6 < x < 0 \\
 b, & x = 0 \\
 e^{\tan 2x / \tan 3x}, & 0 < x < \pi/6
\end{cases}
\]
is continuous at \(x = 0 \).
\[
\Rightarrow \lim_{h \to 0} f(0-h) = f(0) = \lim_{h \to 0} f(0 + h)
\]
We have
\[
\lim_{h \to 0} f(0-h) = \lim_{h \to 0} \left[1 + |\sin (-h)| \right]^{\sec |\sin h|}
\]
\[
= \lim_{h \to 0} \left[1 + \sin h \right]^{\sec h} = e^b
\]
and \(f(0) = b \).
\[
\Rightarrow e^b = b
\]
Also \(\lim_{h \to 0} f(0+h) = \lim_{h \to 0} e^{\tan 2h / \tan 3h} \)
\[
= \lim_{h \to 0} \frac{\tan 2h}{\tan 3h} \frac{3h}{2} = e^{2/3}
\]
\[
\Rightarrow e^{2/3} = b
\]
From equations (1) and (2), \(e^a = b = e^{2/3} \)
\[
\Rightarrow a = 2/3 \text{ and } b = e^{2/3}
\]

13. See Solution to Question 38 in Objective Type Problems.

14. See Figure 3.56.

\[y = 1 - x \]
\[y = \frac{1}{x} \]
\[y = 3 - x \]

Fig. 3.56

\[f(x) = \begin{cases}
 1 - x, & x < 1 \\
 (1-x)(2-x), & 1 \leq x \leq 2 \\
 3 - x, & x > 2
\end{cases} \]
\[
\Rightarrow f(x) = \begin{cases}
 -1, & x < 1 \\
 2x - 3, & 1 < x < 2 \\
 -x, & x > 2
\end{cases}
\]
\[
f(1^-) = 0, f(1^+) = 0 \quad \text{(from equation (1))}
\]
\[
f(2^-) = 0, f(2^+) = 1 \quad \text{(from equation (2))}
\]
Hence, \(f(x) \) is continuous at \(x = 1 \), but discontinuous at \(x = 2 \).
Also \(f'(1^-) = -1 \) and \(f'(1^+) = 1 \). (from equation (2))
Hence, \(f(x) \) is differentiable at \(x = 1 \).
Hence, \(f \) is continuous and differentiable at all points except at \(x = 2 \).

15. Let \(f : R \to R \) be differentiable at \(x = \alpha \in R \), then
\[
\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha} = f'(\alpha) \text{ exists and is finite.}
\]
i.e., \(Lf'(\alpha) = Rf'(\alpha) = f'(\alpha) \)
\[
\Rightarrow \lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{(x - \alpha)} = \lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{(x - \alpha)} = f'(\alpha)
\]
\[
\lim_{x \to \alpha} g(x) = \lim_{x \to \alpha} g(x) = f'(\alpha)
\]
Again \(f'(\alpha) = \lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{(x - \alpha)} \)
\[
= \lim_{x \to \alpha} g(x) = g(\alpha)
\]
From equations (1) and (2), we get
\[
\lim_{x \to \alpha} g(x) = \lim_{x \to \alpha} g(x) = g(\alpha)
\]
L.H.L. = R.H.L. = \(g(\alpha) \)
\[
\Rightarrow g(x) \text{ is continuous function at } x = \alpha \in R.
\]
Conversely,
Assume \(g(x) \) is continuous at \(x = \alpha \) on \(R \).
\[
\Rightarrow \lim_{x \to \alpha} g(x) = g(\alpha) = \text{a finite quantity}
\]
and given \(f(x) - f(\alpha) = g(x)(x - \alpha) \)
for \(x \neq \alpha \), \(g(\alpha) = \frac{f(x) - f(\alpha)}{(x - \alpha)} \) \hspace{1cm} (4)

From equations (3) and (4), we get
\[
\lim_{{x \to \alpha}} \frac{f(x) - f(\alpha)}{(x - \alpha)} = g(\alpha)
\]

\[\Rightarrow f'(\alpha) = g(\alpha) = \text{a finite quantity} \]

\[
\therefore f(x) \text{ is differentiable at } x = \alpha \in \mathbb{R}
\]

16. \((gof)(x) = g(f(x))\)

Now \(f'(a^-) = \lim_{{h \to 0}} \frac{f(a-h) - f(a)}{-h} = \lim_{{h \to 0}} \frac{f(a+h) + f(a)}{-h} = -\lim_{{h \to 0}} \frac{f(a+h) - f(a)}{h} \) \[\because f(x) \text{ is an odd function} \]

Now in equation (1) replacing \(x \) by \(a - h \), we get
\[\Rightarrow f(a-h) = f(2a - (a-h)) = f(a + h)\]

\[\Rightarrow f'(a^-) = -\lim_{{h \to 0}} \frac{f(a-h) - f(a)}{h} = -f'(a) = 0\]

18. To find,
\[
\lim_{{n \to \infty}} \left[(n+1) \frac{2}{\pi} \cos^{-1} \left(\frac{1}{n} \right) - n \right]
\]

\[= \lim_{{n \to \infty}} n \left[\left(1 + \frac{1}{n} \right) \frac{2}{\pi} \cos^{-1} \left(\frac{1}{n} \right) - 1 \right] \]

\[= \lim_{{n \to \infty}} nf \left(\frac{1}{n} \right), \]

where \(f(x) = \left[(1 + x) \frac{2}{\pi} \cos^{-1} x - 1 \right] \)

such that \(f(0) = \left[(1 + 0) \frac{2}{\pi} \cos^{-1} 0 - 1 \right] = \frac{2}{\pi} \cdot \frac{\pi}{2} - 1 = 0 \).

\[\therefore \text{Using the given relation as } \lim_{{n \to \infty}} nf \left(\frac{1}{n} \right) = f'(0), \]

the given limit becomes
\[
f'(0) = \frac{d}{dx} \left[(1 + x) \frac{2}{\pi} \cos^{-1} x - 1 \right] \bigg|_{{x=0}}
\]

\[= \frac{2}{\pi} \left[\frac{\cos^{-1} x - \frac{1 + x}{\sqrt{1 - x^2}}}{x} \right] \bigg|_{{x=0}}
\]

\[= \frac{2}{\pi} \left[\frac{\pi}{2} - 1 \right] = 1 - \frac{2}{\pi} = \frac{\pi - 2}{\pi}\]

19. Given that,
\[f(x) = \begin{cases} \sin^{-1} \left(\frac{c + x}{2} \right), & -\frac{1}{2} < x < 0 \\ \frac{1}{2}, & x = 0 \\ \frac{e^{ax/2} - 1}{x}, & 0 < x < 1/2 \end{cases}\]

where \(|c| \leq 1/2 \)

\(f(x) \) is differentiable at \(x = 0 \), then \(f(x) \) will also be continuous at \(x = 0 \).

\[\Rightarrow \lim_{{h \to 0}} f(0+h) = f(0)\]

\[\Rightarrow \lim_{{h \to 0}} \frac{e^{ah/2} - 1}{h} = \frac{1}{2}\]
\[\lim_{h \to 0} \frac{e^{ah/2} - 1}{ah} \times \frac{a}{2} = \frac{1}{2} \Rightarrow a = 1 \]

Also \(Lf'(0) = Rf'(0) \)

\[\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{ah}{e^{h^2} - 1} - \frac{1}{2} \]

\[\Rightarrow \lim_{h \to 0} \frac{2e^{ah/2} - 2 - h}{2h^2} \]

For these limits to exist, we must have the 0/0 form and hence using L'Hopital's rule, we get

\[\left(\sqrt{1 - \frac{1}{2}} \right) = \lim_{h \to 0} \frac{2e^{ah/2} (a/2) - 1}{4h} \]

\[= \lim_{h \to 0} \frac{e^h/2 - 1}{8 (h/2)} \]

\[\Rightarrow \frac{b}{2 \sqrt{1 - \frac{c^2}{4}}} = 1 \]

\[\Rightarrow 4b = \sqrt{1 - \frac{c^2}{4}} \Rightarrow 16b^2 = \frac{4 - c^2}{4} \Rightarrow 64b^2 = 4 - c^2 \]

20. Given that
\[f(x - y) = f(x) g(y) - f(y) g(x) \quad (1) \]
\[g(x - y) = g(x) g(y) + f(x)f(y) \quad (2) \]

In equation (1), putting \(x = y \), we get
\[f(0) = f(x) g(x) - f(x) g(x) \Rightarrow f(0) = 0 \]

Putting \(y = 0 \) in equation (1), we get
\[f(x) = f(x) g(0) - f(0) g(x) \Rightarrow f(x) = f(x) g(0) \quad \text{[using } f(0) = 0 \text{]} \]

\[g(0) = 1 \]

Putting \(x = y \) in equation (2), we get
\[g(0) = g(x) g(x) + f(x)f(x) \]

\[\Rightarrow 1 = (g(x))^2 + [f(x)]^2 \quad \text{[using } f(0) = 0 \text{]} \]

\[(g(x))^2 = 1 - [f(x)]^2 \quad (3) \]

Clearly, \(g(x) \) will be differentiable only if \(f(x) \) is differentiable.

\[\therefore \text{First, let us check the differentiability of } f(x). \]

Given that \(Rf'(0) \) exists,
\[\Rightarrow \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} \text{ exists} \]

\[\Rightarrow \lim_{h \to 0} \frac{f(0) g(-h) - f(-h) g(0)}{h} \text{ exists} \]

\[\Rightarrow \lim_{h \to 0} \frac{-f(-h) g(0)}{h} \text{ exists} \]

\[\Rightarrow \lim_{h \to 0} \frac{-f(-h)}{h} \text{ exists (using } f(0) = 0 \text{ and } g(0) = 1) \]

which can be written as \(\lim_{h \to 0} \frac{f(-h) - f(0)}{-h} = Lf'(0) \)

\[\Rightarrow Lf'(0) = Rf'(0) \]

\[\therefore f \text{ is differentiable at } x = 0. \]

By differentiating equation (3), we get
\[2g(x) g'(x) = -2f(x) f'(x) \]

For \(x = 0 \),
\[g(0) g'(0) = -f(0) f'(0) \Rightarrow g'(0) = 0 \]

Objective

Fill in the blanks

1. Given \(f(x) = \begin{cases} (x - 1)^2 \sin \frac{1}{x - 1} - |x|, & x \neq 1 \\ -1 & x = 1 \end{cases} \)

The doubtful points where \(f(x) \) is non-differentiable are \(x = 0 \) and \(x = 1 \).

At \(x = 0 \), \((x - 1)^2 \sin \frac{1}{x - 1} \) is differentiable, but \(|x| \) is not, hence \(f(x) \) is non-differentiable at \(x = 0 \).

At \(x = 1 \), \(\lim_{x \to 1} \frac{(x - 1)^2 \sin \frac{1}{x - 1} - |x|}{x - 1} = -1 \]

And \(\lim_{x \to 1} \frac{(x - 1)^2 \sin \frac{1}{x - 1} - |x|}{-h} = -1 \)

Also \(f'(1^+) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h} \]

\[= \lim_{h \to 0} \frac{h^2 \sin \frac{1}{1+h} - 1}{h} \]

\[= \lim_{h \to 0} \frac{h^2 \sin \frac{1}{1+h} - (-1)}{h} \]

\[= \lim_{h \to 0} \frac{h^2 \sin \frac{1}{1+h}}{h} = -1 \]

Similarly \(f'(1^-) = -1 \).

Hence, \(f(x) \) is non-differentiable at \(x = 0 \) only.

2. We have \(f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x-2)^2}, & x \neq 2 \\ k, & x = 2 \end{cases} \)

Clearly, \(f(x) \) is continuous for all values of \(x \) except possibly at \(x = 2 \).

It will be continuous at \(x = 2 \) if \(\lim_{x \to 2} f(x) = f(2) \)

\[\Rightarrow \lim_{x \to 2} \frac{x^3 + x^2 - 16x + 20}{(x-2)^2} = k \]

\[\Rightarrow k = \lim_{x \to 2} \frac{(x-2)(x+5)}{(x-2)^2} = \lim_{x \to 2} (x+5) = 7 \]

\[\Rightarrow k = 7 \]
3. By choosing any arc of the circle \(x^2 + y^2 = 4 \), we can define a discontinuous function, one of which is

\[
f(x) = \begin{cases}
\sqrt{4 - x^2}, & -2 \leq x \leq 0 \\
-\sqrt{4 - x^2}, & 0 \leq x \leq 2
\end{cases}
\]

Hence, \(f(x) = -\sqrt{4 - x^2} \).

4. We have \(f(x) = -\sqrt{4 - x^2} \).

\[
\Rightarrow f'(x) = \begin{cases}
-2x, & x < 0 \\
0, & x = 0 \\
2x, & x > 0
\end{cases}
\]

\[
\Rightarrow f''(x) = \begin{cases}
-2, & x < 0 \\
0, & x = 0 \\
2, & x > 0
\end{cases}
\]

Clearly, \(f''(x) \) exists at every point except at \(x = 0 \).

Thus, \(f(x) \) is twice differentiable on \(R \setminus \{0\} \).

5. The domain of the given function is \(x \in R \setminus \{-1,0\} \).

Possible points of discontinuity of the function are \(x = \text{integer} \setminus \{-1\} \).

\(f(0) = 0, f(0 + 0) = 0 \). That means \(f(x) \) is continuous at \(x = 0 \).

Let \(x = I_0 \) where \(I_0 \neq -1, 0 \),

then \(f(I_0) = 0 \),

\[
f(I_0) - 0 = (I_0 - 1) \tan \frac{\pi}{I_0}
\]

\[
f(I_0 + 0) = I_0 \sin \frac{\pi}{I_0 + 1}
\]

Thus, \(f(x) \) is discontinuous at \(x = I_0 \).

6. As \(f(x) \) is continuous in \([1, 3] \), \(f(x) \) will attain all values between \(f(1) \) and \(f(3) \). As \(f(x) \) takes rational values for all \(x \) and there are innumerable irrational values between \(f(1) \) and \(f(3) \) which implies that \(f(x) \) can take rational values for all \(x \) if \(f(x) \) has a constant value at all points between \(x = 1 \) and \(x = 3 \).

Given that \(f(2) = 10 \), then \(f(1.5) = 10 \).

Multiple choice questions with one correct answer

1.d. \(f(x) = \tan \left(\frac{\pi}{x} \right) \)

By definition, \([x - \pi] \) is an integer whatever be the value of \(x \) and so \([x - \pi] \) is an integral multiple of \(\pi \).

Consequently, \(\tan(\pi - x) = 0, \forall x \)

And since \(1 + [x]^2 = 0 \) for any \(x \), we conclude that \(f(x) = 0 \).

Thus \(f(x) \) is constant function and so it is continuous and differentiable.

2.b. \(0 \leq \tan^2 x < 1 \) when \(\frac{\pi}{4} \leq x < \frac{\pi}{4} \)

\[
\Rightarrow f(x) = 0 \quad \frac{\pi}{4} < x < \frac{\pi}{4}
\]

Hence, \(f(x) \) is continuous and differentiable at \(x = 0 \), also \(f'(0) = 0 \).

3.c. When \(x \) is not an integer, both the functions \([x] \) and \(\cos \left(\frac{2x-1}{2} \right) \pi \) are continuous.

\[
\therefore f(x) \text{ is continuous on all non-integral points.}
\]

For \(x = n \in I_0 \),

\[
\lim_{x \to n} f(x) = \lim_{x \to n} [x] \cos \left(\frac{2x-1}{2} \right) \pi
\]

\[
= (n-1)\cos \left(\frac{2n-1}{2} \right) \pi = 0.
\]

\[
\lim_{x \to n} f(x) = \lim_{x \to n} [x] \cos \left(\frac{2x-1}{2} \right) \pi
\]

\[
= n \cos \left(\frac{2n-1}{2} \right) \pi = 0
\]

Thus \(f(n) = n \cos \left(\frac{2n-1}{2} \right) \pi = 0 \).

\[
\therefore f(x) \text{ is continuous at all integral points as well. Thus, } f \text{ is continuous everywhere.}
\]

4.d. Let \(k \) be an integer

\[
f(k) = 0, f(k-0) = (k-1)^2 - (k^2 - 1) = 2 - 2k
\]

\[
f'(k) = k^2 - (k^2)
\]

If \(f(x) \) is continuous at \(x = k \), then \(2 - 2k = 0 \)

\[
\Rightarrow k = 1
\]

5.d. \(f(x) = (x^2 - 1) |x^2 - 3x + 2| + \cos \{x\} = \{(x-1)(x-1)(x-2) + \cos x \}
\]

\[(x-1)(x-1)(x-2) + \cos x \text{ is differentiable for all } x.
\]

But \([x] \) is non-differentiable at \(x = 2 \).

Hence, \(f(x) \) is non-differentiable at \(x = 2 \).

6.a. \(L.H.D. \text{ at } x = 2 \)

\[
= \lim_{h \to 0} \frac{f(2) - f(2-h)}{h} \quad (k \text{ is integer})
\]

\[
= \lim_{h \to 0} \frac{[k] \sin k\pi - [k-h] \sin (k-h) \pi}{h}
\]

\[
= \lim_{h \to 0} \frac{-(k-1) \sin (k\pi - h\pi)}{h} \quad [; \sin k \pi = 0]
\]

\[
= \lim_{h \to 0} \frac{-(k-1)(-1)^{k} \sin h\pi}{h\pi} \times \pi = \pi (k-1) (-1)^{k}
\]

7.d.

From the graph \(f(x) = \max \{x, x^3\} = \begin{cases}
x, & x < 1 \\
x^3, & -1 \leq x < 0 \\
x, & 0 < x < 1 \\
x^3, & x \geq 1
\end{cases} \)

Clearly, \(f \) is not differentiable at \(-1, 0, 1 \).

Fig. 3.57
3.64 Calculus

8.d. \(f(x) = \cos (|x|) + |x| = \cos x + |x| \) is non-differentiable at \(x = 0 \) as \(|x| \) is non-differentiable at \(x = 0 \). Similarly \(f(x) = \cos (|x|) - |x| = \cos x - |x| \) is non-differentiable at \(x = 0 \).

\[f(x) = \begin{cases} \sin x - x, & x < 0 \\ +\sin x + x, & x \geq 0 \end{cases} \]

\[\Rightarrow f'(x) = \begin{cases} -\cos x - 1, & x < 0 \\ +\cos x + 1, & x \geq 0 \end{cases} \]

which is not differentiable at \(x = 0 \).

\[f(x) = \begin{cases} -\sin x + x, & x < 0 \\ +\sin x - x, & x \geq 0 \end{cases} \]

\[\Rightarrow f'(x) = \begin{cases} -\cos x + 1, & x < 0 \\ +\cos x - 1, & x \geq 0 \end{cases} \]

\[: f \] is differentiable at \(x = 0 \).

9.d. The given function is \(f(x) = \begin{cases} \tan^{-1} x, & |x| \leq 1 \\ \frac{1}{2} (|x| - 1), & |x| > 1 \end{cases} \)

\[\Rightarrow f(x) = \begin{cases} \tan^{-1} x, & |x| \leq 1 \\ \frac{1}{2} (x - 1), & x < 1 \end{cases} \]

Clearly, \(f(x) \) is discontinuous at \(x = 1 \) and \(-1\) and hence non-differentiable at \(x = 1 \) and \(-1\). Hence, \(f(x) \) is differentiable for \(R - \{-1, 1\} \).

10.a. \(f(x) = |x| - 1 \) is non-differentiable when \(|x| = 0 \) and when \(|x| - 1 = 0 \) or \(x = 0 \) and \(x = \pm 1 \).

Alternative method

The graph of \(y = |x| - 1 \) is as follows

![Graph of y = |x| - 1](image_url)

Which has sharp turn at \(x = -1, 0 \), and \(1 \) and hence not differentiable at \(x = -1, 0, 1 \).

11.b. Given that \(f(x) \) is a continuous and differentiable function

and \(f\left(\frac{1}{x} \right) = 0, x = n, n \in I \)

\[: f(0) = 0 \]

Since R.H.L. = 0 : \(f(0) = 0 \) for \(f(x) \) to be continuous

Also \(f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h - 0} = \lim_{h \to 0} \frac{f(h)}{h} = 0 \)

[Using \(f(0) = 0 \)]

\[: f'(0) = 0 \]

Hence, \(f(0) = 0, f'(0) = 0 \)

Multiple choice question with one or more than one correct answer

1. a, b, d.

Given that \(x + |y| = 2y \)

If \(y < 0 \), then \(x - y = 2y \Rightarrow y = x/3 \Rightarrow x < 0 \)

If \(y = 0 \), then \(x = 0 \).

If \(y > 0 \), then \(x + y = 2y \Rightarrow y = x \Rightarrow x > 0 \)

Thus, we can define \(f(x) = \begin{cases} x/3, & x < 0 \\ x, & x \geq 0 \end{cases} \)

\[\Rightarrow \frac{dy}{dx} = \begin{cases} 1/3, & x < 0 \\ 1, & x \geq 0 \end{cases} \]

Clearly, \(y \) is continuous but non-differentiable at \(x = 0 \).

2. b, d, e.

![Graph of y = 1 + sinx](image_url)

\[\text{Fig. 3.59} \]

\(\sin x \) is continuous for all but not differentiable when \(\sin x = 0 \) (where \(\sin x \) crosses \(x \)-axis) or \(x = n\pi, n \in Z \).

3. a, b, d.

![Graph of y = sinx and y = x sinx](image_url)

\[\text{Fig. 3.60} \]

From the graph, \(0 \leq x \sin nx < 1 \), for \(x \in [-1, 1] \). Hence, \(f(x) = 0, x \in [-1, 1] \).

4. a.

\(f(x) = \frac{x}{1 + |x|} \) is differentiable everywhere except probably at \(x = 0 \).

For \(x = 0 \)

\[Lf'(0) = \lim_{h \to 0} L \frac{f(0-h) - f(0)}{-h} = \lim_{h \to 0} \frac{-h}{1 + h} = 1 \]

\[Rf'(0) = \lim_{h \to 0} R \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h}{1 + h} = 1 \]

\[Lf'(0) = Rf'(0) \]

\(\Rightarrow f \) is differentiable at \(x = 0 \).

Hence, \(f \) is differentiable in \((-\infty, \infty) \).
5. a, b, c.

\[f(x) = \begin{cases}
 |x - 3|, & x \geq 1 \\
 \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & 1 \leq x < 3 \\
 x - 3, & x < 1
\end{cases} \]

\[f'(x) = \begin{cases}
 \frac{x}{2} - \frac{3}{2}, & x < 1 \\
 -1, & 1 \leq x < 3 \\
 1, & x \geq 3
\end{cases} \]

\[y = x^3 \]

\[y = 3 - x \]

Fig. 3.61

Clearly, \(f(x) \) is non-differentiable at \(x = 3 \).

For \(x = 1 \), where function changes its definition,

\[f(1^-) = \lim_{h \to 0^-} \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4} = 1 - \frac{3}{2} + \frac{13}{4} = 2 \]

\[f(1^+) = \lim_{h \to 0^+} |x - 3| = 2 \]

\[Lf'(1^-) = -1, Re'(1^+) = 1 \]

Hence, \(f(x) \) is differentiable at \(x = 1 \).

Hence, \(f(x) \) is continuous for all \(x \) but non-differentiable at \(x = 3 \).

6. d.

\[x \in [0, \pi] \Rightarrow \frac{x - 2}{2} \in [-1, \frac{\pi}{2} - 1] \]

\[\frac{1}{f(x)} = \frac{2}{x - 2} \], which is continuous in \((-\infty, \infty) \sim \{2\} \).

\[\tan(f(x)) \] is continuous in \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \).

\[f^{-1}(x) = 2(x + 1) \] which is clearly continuous but \(\tan(f^{-1}(x)) \) is not continuous.

7. b, c.

On \((0, \pi)\),

a. \(\tan x = f(x) \)

we know \(\tan x \) is discontinuous at \(x = \pi/2 \).

b. \(f(x) = \int_0^x t \sin \left(\frac{1}{t}\right) dt \)

\[f'(x) = x \sin \left(\frac{1}{x}\right) \] which is well-defined on \((0, \pi)\)

\[\therefore f(x) \] being differentiable is continuous on \((0, \pi)\)

8. a, c, d.

From the figure, it is clear that \(h(x) = \begin{cases}
 x, & \text{if } x \leq 0 \\
 x^2, & \text{if } 0 < x < 1 \\
 x, & \text{if } x \geq 1
\end{cases} \)

From the graph, it is clear that \(h(x) \) is continuous for all \(x \in R, h'(x) = 1 \) for all \(x > 1 \), and \(h \) is not differentiable at \(x = 0 \) and 1.

9. b, c, d.

\[f(x) = \begin{cases}
 0, & x < 0 \\
 x^2, & x \geq 0
\end{cases} \Rightarrow f'(x) = \begin{cases}
 0, & x < 0 \\
 2x, & x > 0
\end{cases} \]

which exists \(\forall x \) except possibly at \(x = 0 \).
3.66 Calculus

At \(x = 0 \), \(Lf' = 0 = Rf' \)
\(\Rightarrow f \) is differentiable.
Clearly, \(f' \) is non-differentiable.

![Fig. 3.63](image)

10. \(a, b \).

We have \(g(x) = \begin{cases} x^2 \sin \left(\frac{1}{x} \right), & x \neq 0 \\ 0, & x = 0 \end{cases} \)

If \(x \neq 0 \), \(g'(x) = x^2 \cos \left(\frac{1}{x} \right) \left(-\frac{1}{x^2}\right) + 2x \sin \left(\frac{1}{x} \right) \)
\[= -\cos \left(\frac{1}{x} \right) + 2x \sin \left(\frac{1}{x} \right) \]
which exists for \(\forall x \neq 0 \)

If \(x = 0 \),
then \(g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(1/x) - 0}{x - 0} \)
\[= \lim_{x \to 0} x \sin \left(\frac{1}{x} \right) = 0 \]
\(\Rightarrow g'(x) = \begin{cases} -\cos \left(\frac{1}{x} \right) + 2x \sin \left(\frac{1}{x} \right), & x \neq 0 \\ 0, & x = 0 \end{cases} \)

At \(x = 0 \), \(\cos \left(\frac{1}{x} \right) \) is not continuous, therefore \(g'(x) \) is not continuous at \(x = 0 \). At \(x = 0 \),
\[Lf' = \lim_{x \to 0} -\cos \left(\frac{1}{x} \right) + 2x \sin \left(\frac{1}{x} \right) = \sin \left(\frac{1}{x} \right) \]
which does not exist.

11. \(a, c \).

From the graph, it is clear that \(f(x) \) is continuous everywhere and also differentiable everywhere except at \(x = 1 \) and \(-1\).

![Fig. 3.64](image)

12. \(a, c \).

From the graph, \(f(x) \) is continuous everywhere, but not differentiable at \(x = 1 \).

![Fig. 3.65](image)

[Using \(f(0) = 0 \) and \(g(0) = 1 \)]

\[\lim_{x \to \frac{\pi}{2}} f(x) = \cos \left(-\frac{\pi}{2} \right) = 0 \]
\[\lim_{x \to \frac{\pi}{2}} f(x) = \cos \left(-\frac{\pi}{2} \right) = 0 \]
\[f'(x) = \begin{cases} -1, & x < -\pi/2 \\ \sin x, & -\pi/2 < x < 0 \\ 1, & 0 < x < 1 \\ 1/x, & x > 1 \end{cases} \]

Clearly, \(f(x) \) is not differentiable at \(x = 0 \) as \(f'(0^-) = 0 \) and \(f'(0^+) = 1 \).
\(f(x) \) is differentiable at \(x = 1 \) as \(f'(1^-) = f'(1^+) = 1 \).

13. \(a, b, c, d \)

\[\lim_{x \to \pi/2} f(x) = \cos \left(-\frac{\pi}{2} \right) = 0 \]
\[f'(x) = \begin{cases} -1, & x < -\pi/2 \\ \sin x, & -\pi/2 < x < 0 \\ 1, & 0 < x < 1 \\ 1/x, & x > 1 \end{cases} \]

Clearly, \(f(x) \) is not differentiable at \(x = 0 \) as \(f'(0^-) = 0 \) and \(f'(0^+) = 1 \).
\(f(x) \) is differentiable at \(x = 1 \) as \(f'(1^-) = f'(1^+) = 1 \).

14. \(b, c \).

\[f(0) = 0 \]

and \(f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \)
\[= \lim_{h \to 0} \frac{f(h)}{h} = f'(0) = k \text{ (say)} \]
\(\Rightarrow f(x) = kx + c \Rightarrow f(x) = kx \quad (\because f(0) = 0) \)

Match the following type questions

1. \(a, p, q, r \) \(y = x|\]

![Fig. 3.66](image)

From the graph, \(f(x) \) is continuous and differentiable in \((-1, 1)\). Also \(f(x) \) is strictly increasing.
h. p, s. \(y = \sqrt{|x|} \)

![Graph of \(y = \sqrt{|x|} \)](image)

From the graph, \(f(x) \) is continuous in \((-1, 1)\), but non-differentiable at \(x = 0 \).

c. r, s. \(y = x + [x] \)

![Graph of \(y = x + [x] \)](image)

From the graph, \(f(x) \) is continuous and differentiable in \((-1, 1)\).

From the graph, \(f(x) \) is discontinuous at \(x = 0 \). Also \(f(x) \) is increasing.

d. p, q. \(y = |x - 1| \)

![Graph of \(y = |x - 1| \)](image)
MISTAKES IN IIT-JEE

India’s first and only coaching Institute daring to release JEE (Mains & Advance) solutions within two hours of completion of Exam, and distributing the solutions among students. doing so since it’s birth in 2006

R. K. MALIK the first and only JEE preparing DARE-DEVIL to pin point mistakes in MATHS (Published in all leading news papers and

ADMITTED BY IIT EVERYTIME)

1. JEE Mains, 2016
2. JEE Advance, 2015
3. JEE Mains, 2015 (Supported by all Eminent Mathematician & Authors
4. JEE (Mains), 2014 (Supported by Mathematician Dr. K. C. Sinha and Mr. Anand Kumar)
5. WB-JEE, 2015 (Admitted by WB-JEE BOARD)

And ALSO pointed out mistake in Official Solution released by IIT-JEE, 2011

CLAIMED BY R. K. MALIK
An Institute which challenged ALL the IIT-JEE Coaching Institutes of India, Including those of Kota, Delhi, Mumbai, Kolkata, Hyderabad, Patna, Chennai etc., etc..... (National or Local Level) In a question of JEE-Advanced 2014 and finally winning through decision of IIT on 1st June, 2014.
CHAPTER 4

Methods of Differentiation

- Geometrical Meaning of a Derivative
- Standard Derivatives
- Differentiation of Inverse Trigonometric Functions
- Theorems on Derivatives
- Differentiation of Composite Functions (Chain Rule)
- Differentiation of Implicit Functions
- Differentiation of Functions in Parametric Form
- Differentiation Using Logarithms
- Differentiation of One Function w.r.t. Other Function
- Differentiation of Determinants
- Higher Order Derivatives
- Problems Based on First Definition of Derivative
4.2 Calculus

GEOMETRICAL MEANING OF A DERIVATIVE

The essence of calculus is the derivative. The derivative is the instantaneous rate of change of a function with respect to one of its variables. This is equivalent to finding the slope of the tangent line to the function at a point. Let us use the view of derivatives as tangents to motivate a geometric definition of the derivative (Fig. 4.1).

![Diagram of a derivative concept](image)

Fig. 4.1

Let $P(x_0, f(x_0))$ and $Q(x_0 + h, f(x_0 + h))$ be two points very close to each other on the curve $y = f(x)$. Draw PM and QN perpendiculars from P and Q on x-axis, and draw PL as perpendicular from P on QN. Let the chord PQ produced meet the x-axis at R and $\angle QPL = \angle QRN = \phi$. Now in right-angled triangle QLP,

$$\tan \phi = \frac{QL}{PL} = \frac{NO - NL}{MN} = \frac{NO - MP}{ON - OM}$$

$$= \frac{f(x_0 + h) - f(x_0)}{(x_0 + h) - x_0}$$

$$= \frac{f(x_0 + h) - f(x_0)}{h} \quad (1)$$

when $h \to 0$, the point Q moving along the curve tends to P, i.e., $Q \to P$. The chord PQ approaches the tangent line PT at the point P and then $\phi \to \psi$. Now, applying $\lim_{h \to 0}$ in equation (1), we get

$$\lim_{h \to 0} \tan \phi = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$\Rightarrow \tan \psi = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

or $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$

This definition of derivative is also called the first principle of derivative. Clearly, the domain of definition of $f'(x)$ is wherever the above limit exists.

Example 4.1 Find the derivative of $e^{\sqrt{x}}$ w.r.t. x using the first principle.

Sol. Let $f(x) = e^{\sqrt{x}}$, then $f(x + h) = e^{\sqrt{x + h}}$

$$\therefore \frac{d}{dx} (f(x)) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{e^{\sqrt{x + h}} - e^{\sqrt{x}}}{h}$$

$$= e^{\sqrt{x}} \lim_{h \to 0} \left(\frac{e^{\sqrt{x + h} - \sqrt{x}} - 1}{h} \right)$$

$$= e^{\sqrt{x}} \lim_{h \to 0} \left(\frac{e^{\sqrt{x + h} - \sqrt{x}} - 1}{\sqrt{x + h} - \sqrt{x}} \frac{\sqrt{x + h} - \sqrt{x}}{h} \right)$$

$$= e^{\sqrt{x}} \lim_{h \to 0} \left(\frac{e^{\sqrt{x + h} - \sqrt{x}} - 1}{\sqrt{x + h} - \sqrt{x}} \right) \cdot \frac{(\sqrt{x + h} - \sqrt{x})(\sqrt{x + h} + \sqrt{x})}{h(\sqrt{x + h} + \sqrt{x})}$$

$$= e^{\sqrt{x}} \lim_{h \to 0} \left(\frac{e^{\sqrt{x}} - 1}{\sqrt{x}} \right) \lim_{h \to 0} \frac{x + h - x}{h(\sqrt{x + h} + \sqrt{x})},$$

where $y = \sqrt{x + h} - \sqrt{x} \quad (\therefore \text{when } h \to 0, y \to 0)$

$$= e^{\sqrt{x}} \times 1 \times \left(\frac{1}{\sqrt{x + \sqrt{x}}} \right) - e^{\sqrt{x}} \frac{1}{2\sqrt{x}}$$

Example 4.2 If $f(x) = x \tan^{-1} x$, find $f'(\sqrt{3})$ using the first principle.

Sol. We have $f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$

$$\therefore f'(\sqrt{3}) = \lim_{h \to 0} \frac{f(\sqrt{3} + h) - f(\sqrt{3})}{h}$$

$$= \lim_{h \to 0} \frac{(\sqrt{3} + h)\tan^{-1}(\sqrt{3} + h) - \sqrt{3} \tan^{-1}\sqrt{3}}{h}$$

$$= \sqrt{3} \left[\tan^{-1}(\sqrt{3} + h) - \tan^{-1}\sqrt{3} \right] + h \tan^{-1}(\sqrt{3} + h)$$

$$= \lim_{h \to 0} \frac{\tan^{-1}(\sqrt{3} + h)}{h} \left[\frac{\tan^{-1}(\sqrt{3} + h)}{1 + \sqrt{3}(\sqrt{3} + h)} \right] + \lim_{h \to 0} \frac{1}{h} \tan^{-1}(\sqrt{3} + h)$$

$$= \sqrt{3} \lim_{h \to 0} \left[\frac{\tan^{-1}(\sqrt{3} + h)}{4 + \sqrt{3}h} \right] - \frac{1}{4 + \sqrt{3}h} \lim_{h \to 0} \tan^{-1}(\sqrt{3} + h)$$

$$= \sqrt{3} \times 1 \times \frac{1}{4} + \tan^{-1}\sqrt{3}$$

$$= \frac{\sqrt{3}}{4} + \tan^{-1}\sqrt{3}$$
Example 4.3

Find the derivative of \(\sqrt{4-x} \) w.r.t. \(x \) using the first principle.

Sol. Let \(f(x) = \sqrt{4-x} \), then \(f(x+h) = \sqrt{4-(x+h)} \)

\[
\frac{d}{dx}(f(x)) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{4-(x+h)} - \sqrt{4-x}}{h} \cdot \frac{\sqrt{4-(x+h)} + \sqrt{4-x}}{\sqrt{4-(x+h)} + \sqrt{4-x}} \\
= \lim_{h \to 0} \frac{4 - (x+h) - (4-x)}{h \cdot \left(\sqrt{4-(x+h)} + \sqrt{4-x}\right)} \\
= \lim_{h \to 0} \frac{-h}{2\sqrt{4-x}} = \frac{-1}{2\sqrt{4-x}}
\]

Example 4.4

Using the first principle, prove that

\[
\frac{d}{dx}\left(\frac{1}{f(x)}\right) = \left[\frac{-f'(x)}{[f(x)]^2}\right]
\]

Sol. Let \(\phi = \frac{1}{f(x)} \), then \(\phi(x+h) = \frac{1}{f(x+h)} \)

\[
\frac{d}{dx}(\phi(x)) = \lim_{h \to 0} \frac{\phi(x+h) - \phi(x)}{h} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x) - f(x+h)}{f(x)f(x+h)} \\
= \lim_{h \to 0} \frac{f(x) - f(x+h)}{h} \cdot \lim_{h \to 0} \frac{1}{f(x)f(x+h)} \\
= -f'(x) \cdot \frac{1}{f(x)f(x)} \\
\text{[f(x) is differentiable} \Rightarrow f'(x) \text{is continuous} \Rightarrow \lim_{h \to 0} f(x+h) = f(x)] \\
= \frac{-f'(x)}{[f(x)]^2}
\]

Exercise 4.1

1. Differentiate the following functions with respect to \(x \) using the first principle:
 - a. \(\sqrt{\sin x} \)
 - b. \(\cos^2 x \)
 - c. \(\tan^{-1} x \)
 - d. \(\log_x x \)

2. Using the first principle, prove that

\[
\frac{d}{dx}(f(x)g(x)) = f(x)\frac{d}{dx}(g(x)) + g(x)\frac{d}{dx}(f(x))
\]

Standard Derivatives

a. \(\frac{d}{dx}x^n = nx^{n-1}, \quad x \in R, \quad n \in R, \quad x > 0 \)

b. \(\frac{d}{dx}(e^x) = e^x \)

c. \(\frac{d}{dx}(a^x) = a^x \ln a \)

d. \(\frac{d}{dx}(\ln |x|) = \frac{1}{x} \)

e. \(\frac{d}{dx}(\log_a x) = \frac{1}{x} \ln a \)

f. \(\frac{d}{dx}(\sin x) = \cos x \)

g. \(\frac{d}{dx}(\cos x) = -\sin x \)

h. \(\frac{d}{dx}(\tan x) = \sec^2 x \)

i. \(\frac{d}{dx}(\cot x) = -\csc^2 x \)

j. \(\frac{d}{dx}(\sec x) = \sec x \tan x \)

k. \(\frac{d}{dx}(\csc x) = -\csc x \cot x \)

l. \(\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}} \)

m. \(\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}} \)

n. \(\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2} \)

o. \(\frac{d}{dx}(\cot^{-1} x) = \frac{-1}{1+x^2} \)

p. \(\frac{d}{dx}(\sec^{-1} x) = \frac{1}{x\sqrt{(x^2-1)}} \)

q. \(\frac{d}{dx}(\csc^{-1} x) = \frac{-1}{x\sqrt{(x^2-1)}} \)

Some Standard Substitutions

<table>
<thead>
<tr>
<th>Expression</th>
<th>Substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{a^2-x^2})</td>
<td>(x = a \sin \theta) or (a \cos \theta)</td>
</tr>
<tr>
<td>(\sqrt{a^2+x^2})</td>
<td>(x = a \tan \theta) or (a \cot \theta)</td>
</tr>
</tbody>
</table>
4.4 Calculus

\[\sqrt{x^2 - a^2} \quad x = a \sec \theta \text{ or } a \csc \theta \]
\[\sqrt{\frac{a+x}{a-x}} \quad x = a \cos \theta \text{ or } a \cos 2\theta \]

Example 4.5 If \(y = (1 + x^{1/4})(1 + x^{1/2})(1 - x^{1/4}) \), then find \(\frac{dy}{dx} \).

Sol. \(y = (1 + x^{1/4})(1 + x^{1/2})(1 - x^{1/4}) \)
\(= (1 + x^{1/4})(1 - x^{1/4})(1 + x^{1/2}) \)
\(= (1 - x^{1/2})(1 + x^{1/2}) \)
\(= 1 - x \)
\[\Rightarrow \frac{dy}{dx} = -1 \]

Example 4.6 If \(f(x) = x|x| \), then prove that \(f'(x) = 2|x| \).

Sol. \(f(x) = \begin{cases} -x^2, & x < 0 \\ x^2, & x \geq 0 \end{cases} \)
\[\Rightarrow f'(x) = \begin{cases} -2x, & x < 0 \\ 2x, & x > 0 \end{cases} \]
\[\therefore f'(x) = 2|x| \]

Example 4.7 If \(y = \sqrt{1 - \cos 2x} \), \(x \in \left(0, \frac{\pi}{2} \right) \cup \left(\frac{\pi}{2}, \pi \right) \), then find \(\frac{dy}{dx} \).

Sol. We have
\[y = \sqrt{1 - \cos 2x} = \sqrt{\sin^2 x} = \sqrt{\tan^2 x} \]
\[\Rightarrow y = |\tan x|, \text{ where } x \in \left(0, \frac{\pi}{2} \right) \cup \left(\frac{\pi}{2}, \pi \right) \]
\[\Rightarrow y = \begin{cases} \tan x, & x \in \left(0, \frac{\pi}{2} \right) \\ -\tan x, & x \in \left(\frac{\pi}{2}, \pi \right) \end{cases} \]
\[\Rightarrow \frac{dy}{dx} = \begin{cases} \sec^2 x, & \text{if } x \in \left(0, \frac{\pi}{2} \right) \\ -\sec^2 x, & \text{if } x \in \left(\frac{\pi}{2}, \pi \right) \end{cases} \]

Example 4.8 If \(y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} \), then show that \(\frac{dy}{dx} - y + \frac{x^n}{n!} = 0 \).

Sol. \(\frac{dy}{dx} = 0 + \frac{1}{1!} + \frac{1}{1!} (2x) + \frac{1}{2!} (3x^2) + \cdots + \frac{1}{n!} (nx^{n-1}) \)
\[= 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!} \]
\[= \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!} \right) - \frac{x^n}{n!} \]

Differential of Inverse Trigonometric Functions

Example 4.9 Find \(\frac{dy}{dx} \) for \(y = \sin^{-1}(\cos x) \), where \(x \in (0, 2\pi) \).

Sol. We have
\[\sin^{-1}(\cos x) = \frac{\pi}{2} - \cos^{-1}(\cos x) \]
\[= \begin{cases} \frac{\pi}{2} - x, & \text{if } 0 < x \leq \pi \\ \frac{\pi}{2} - (2\pi - x), & \text{if } \pi < x < 2\pi \end{cases} \]
\[= \begin{cases} \frac{\pi}{2} - x, & \text{if } 0 < x \leq \pi \\ x - \frac{3\pi}{2}, & \text{if } \pi < x < 2\pi \end{cases} \]

Clearly, it is not differentiable at \(x = \pi \). Therefore,
\[\frac{d}{dx}(\sin^{-1}(\cos x)) = \begin{cases} -1, & \text{if } 0 < x < \pi \\ 1, & \text{if } \pi < x < 2\pi \end{cases} \]

Example 4.10 Differentiate \(\sin^{-1}(2x \sqrt{1-x^2}) \) with respect to \(x \), if
\[a. \quad \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} \quad b. \quad \frac{1}{\sqrt{2}} < x < 1 \]
\[c. \quad 1 < x < \frac{1}{\sqrt{2}} \]

Sol. Let \(y = \sin^{-1}(2x \sqrt{1-x^2}) \)

Substituting \(x = \sin \theta \), where \(\theta = \sin^{-1}x \), and \(\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \),
we get \(y = \sin^{-1}(2 \sin \theta \cos \theta) = \sin^{-1}(\sin 2\theta) \)
\[a. \quad \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} \Rightarrow -\frac{\pi}{4} < \theta < \frac{\pi}{4} \Rightarrow -\frac{\pi}{2} < 2\theta < \frac{\pi}{2} \]
\[\Rightarrow y = \sin^{-1}(2 \sin \theta) = 2 \theta = 2 \sin^{-1}x \]
\[\Rightarrow \frac{dy}{dx} = \frac{2}{\sqrt{1-x^2}} \]
\[b. \quad \frac{1}{\sqrt{2}} < x < 1 \Rightarrow \frac{\pi}{4} < \theta < \frac{\pi}{2} \Rightarrow \frac{\pi}{2} < 2\theta < \pi \]
\[\Rightarrow y = \sin^{-1}(2 \sin \theta) = \sin^{-1}(\sin(\pi - 2\theta)) = \pi - 2\theta \]
\[\Rightarrow y = \pi - 2 \sin^{-1}x \]
\[\Rightarrow \frac{dy}{dx} = 0 - \frac{2}{\sqrt{1-x^2}} = -\frac{2}{\sqrt{1-x^2}} \]
Methods of Differentiation 4.5

Example 4.11 Find \(\frac{dy}{dx} \) for \(y = \tan^{-1} \left(\frac{1-\cos x}{\sin x} \right) \), \(-\pi < x < \pi\).

Sol. \(y = \tan^{-1} \left(\frac{1-\cos x}{\sin x} \right) = \tan^{-1} \left(\frac{2 \sin \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}} \right) = \tan^{-1} \left(\frac{x}{2} \right) \) \(\because -\pi < x < \pi \Rightarrow -\frac{\pi}{2} < \frac{x}{2} < \frac{\pi}{2} \)

\(\Rightarrow \frac{dy}{dx} = \frac{1}{2} \)

Example 4.12 If \(y = \sin^{-1} \left[x \sqrt{1-x^2} - \sqrt{x} \sqrt{1-x^2} \right] \), and

\(0 < x < 1 \), then find \(\frac{dy}{dx} \).

Sol. \(y = \sin^{-1} \left[x \sqrt{1-x^2} - \sqrt{x} \sqrt{1-x^2} \right] \), where \(0 < x < 1 \)

\(= \sin^{-1} \left[x \sqrt{1-x^2} - \sqrt{x} \sqrt{1-x^2} \right] \)

\(= \sin^{-1} \left(x \sqrt{1-x^2} - \sqrt{x} \sqrt{1-x^2} \right) \)

\([\because \sin^{-1} x - \sin^{-1} y = \sin^{-1} (x \sqrt{1-y^2} - y \sqrt{1-x^2})] \)

Differentiating w.r.t. \(x \), we get

\(\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-(\sqrt{x})^2}} \frac{d}{dx} (\sqrt{x}) \)

\(= \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2} \times 2\sqrt{x}} \)

Example 4.13 Find \(\frac{dy}{dx} \) for \(y = \tan^{-1} \left(\frac{a-x}{a+x} \right) \), \(-a < x < a\).

Sol. \(y = \tan^{-1} \left(\frac{a-a \cos \theta}{a+a \cos \theta} \right) \)

\(= \tan^{-1} \left(\frac{1-\cos \theta}{1+\cos \theta} \right) \)

\(= \tan^{-1} \left(\frac{\tan \frac{\theta}{2}}{2} \right) \)

\(= \tan^{-1} \left(\frac{\tan \frac{\theta}{2}}{2} \right) \)

Also for \(-a < x < a\), \(-1 < \cos \theta < 1\)

\(\Rightarrow \theta \in (0, \pi) \Rightarrow \frac{\theta}{2} \in \left(0, \frac{\pi}{2} \right) \)

\(\therefore y = \tan^{-1} \left(\frac{x}{a} \right) \)

\(\Rightarrow \frac{dy}{dx} = \frac{1}{2} \times \frac{1}{\sqrt{1-x^2}^2} \frac{d}{dx} \left(\frac{x}{a} \right) = -\frac{1}{2} \frac{1}{\sqrt{a^2-x^2}} \)

Concept Application Exercise 4.2

Find \(\frac{dy}{dx} \) for the following functions:

1. \(y = \log \left(\frac{x-2}{x+2} \right) \)
2. \(y = \sec^{-1} \left(\frac{x+1}{\sqrt{x^2-1}} \right) + \sin^{-1} \left(\frac{x-1}{\sqrt{x^2+1}} \right) \)
3. \(y = \tan^{-1} \left(\frac{4x}{1+5x^2} + \tan^{-1} \frac{2+3x}{3-2x} \right) \)
4. \(y = \tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right) \), where \(x \neq 0 \)
5. \(y = \tan^{-1} \left(\frac{a \cos x - b \sin x}{b \cos x + a \sin x} \right) \), where \(-\frac{\pi}{2} < x < \frac{\pi}{2}\)

and \(\frac{a}{b} \tan x > -1 \)
6. \(y = \tan^{-1} \left(\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right) \), where \(-1 < x < 1\), \(x \neq 0 \)
7. \(y = \sin^{-1} \left(\frac{x}{\sqrt{1+x^2}} + \cos^{-1} \left(\frac{1}{\sqrt{1+x^2}} \right) \right) \), where \(0 < x < \infty \)
8. \(y = \tan^{-1} \left(\frac{3a^2 x-x^3}{a(a^2-3x^2)} \right) \)
9. \(y = \sin^{-1} \left(\frac{5x+12\sqrt{1-x^2}}{13} \right) \)
10. \(y = \tan^{-1} \left(\frac{x}{1+\sqrt{1-x^2}} \right) \)

THEOREMS ON DERIVATIVES

a. \(\frac{d}{dx} (f_1(x) \pm f_2(x)) = \frac{d}{dx} f_1(x) \pm \frac{d}{dx} f_2(x) \).

b. \(\frac{d}{dx} (kf(x)) = k \frac{d}{dx} f(x) \), where \(k \) is any constant.

c. \(\frac{d}{dx} (f_1(x) f_2(x)) = f_1(x) \frac{d}{dx} f_2(x) + f_2(x) \frac{d}{dx} f_1(x) \).
In general,
\[\frac{d}{dx} \left[f_1(x) \cdot f_2(x) \cdot f_3(x) \cdots \right] = \left(\frac{d}{dx} f_1(x) \right) \left(f_2(x) \right) f_3(x) \cdots + \left(\frac{d}{dx} f_2(x) \right) f_1(x) f_3(x) \cdots + \left(\frac{d}{dx} f_3(x) \right) f_1(x) f_2(x) \cdots + \cdots \]

\[\text{d} \left\{ \frac{d}{dx} \left[f_1(x) \right] \right\} = \frac{d}{dx} \left[f_2(x) \frac{d}{dx} f_1(x) - f_1(x) \frac{d}{dx} f_2(x) \right] \frac{1}{f_2(x)} \]

Example 4.14 Find \(\frac{dy}{dx} \) for \(y = x \sin x \log x \).

Sol. We have
\[\frac{d}{dx} (x \sin x \log x) = \left(\frac{d}{dx} (x) \right) \sin x \log x + x \left(\sin x \log x + x \sin x \frac{d}{dx} (\log x) \right) \]
\[= 1 \times \sin x \log x + x \sin x \log x + x \times \sin x \times \frac{1}{x} \]
\[= \sin x \log x + x \sin x \log x + x \sin x \]

Example 4.15 If \(y = \frac{1-x}{\sqrt{1+x}} \), prove that \((1-x^2) \frac{dy}{dx} + y = 0 \).

Sol. We have
\[y = \frac{1-x}{\sqrt{1+x}} \]
Differentiating w.r.t. \(x \), we get
\[\frac{dy}{dx} = \frac{1}{2} \left(\frac{1-x}{\sqrt{1+x}} \right)^{(1/2)-1} \frac{d}{dx} \left(\frac{1-x}{\sqrt{1+x}} \right) \]
\[= \frac{1}{2} \left(\frac{1-x}{\sqrt{1+x}} \right)^{1/2} \left(\frac{1}{1+x} \right)^{1/2} \left(\frac{-1}{1+x} \right) \]
\[= \frac{1}{2} \left(\frac{1-x}{\sqrt{1+x}} \right)^{1/2} \left(\frac{1}{1+x} \right)^{1/2} \left(\frac{-1}{1+x} \right) \]
\[= -\left(\frac{1+x}{1-x} \right)^{1/2} \left(\frac{1}{(1+x)^2} \right) \]
\[\Rightarrow (1-x^2) \frac{dy}{dx} = -\left(\frac{1+x}{1-x} \right)^{1/2} \left(1-x^2 \right) \]
\[\Rightarrow (1-x^2) \frac{dy}{dx} = -\left(\frac{1}{1-x} \right) \]
\[\Rightarrow (1-x^2) \frac{dy}{dx} = -y \]
\[\Rightarrow (1-x^2) \frac{dy}{dx} + y = 0 \]

Example 4.16 Find the sum of the series \(1 + 2x + 3x^2 + \cdots + (n-1)x^{n-2} \) using differentiation.

Sol. We know that \(1 + x + x^2 + \cdots + x^{n-1} = \frac{1-x^n}{1-x} \)

Differentiating both sides w.r.t. \(x \), we get
\[0 + 1 + 2x + 3x^2 + \cdots + (n-1)x^{n-2} = \frac{(1-x) \frac{d}{dx} (1-x^n) - (1-x^n) \frac{d}{dx} (1-x)}{(1-x)^2} \]
\[\Rightarrow 1 + 2x + 3x^2 + \cdots + (n-1)x^{n-2} = \frac{-1-nx^{n-1} + (1-x^n)}{(1-x)^2} \]
\[\Rightarrow 1 + 2x + 3x^2 + \cdots + (n-1)x^{n-2} = \frac{-nx^{n-1} + (n-1)x^n + 1}{(1-x)^2} \]

Example 4.17 If \(y = x \cos (a+y) \), show that
\[\frac{dy}{dx} = \frac{\cos^2 (a+y)}{\cos a} \]
and find the value of \(\frac{dy}{dx} \) at \(x = 0 \).

Sol. We have
\[y = x \sin y \cos (a+y) \] (I)
Differentiating w.r.t. \(y \), we get
\[\frac{dy}{dx} = \frac{\cos y \cos (a+y) + x \sin y \sin (a+y)}{\cos^2 (a+y)} \]
\[\frac{dy}{dx} = \frac{\cos (a+y) - y}{\cos^2 (a+y)} \]
\[\frac{dy}{dx} = \frac{\cos^2 (a+y)}{\cos a} \]
Putting \(x = 0 \) in equation (I), \(\sin y = 0 \) \(\Rightarrow y = n\pi, \forall n \in \mathbb{Z} \)
\[\therefore \left(\frac{dy}{dx} \right)_{x=0} = \frac{\cos^2 (a+n\pi)}{\cos a} = \frac{\cos^2 a}{\cos a} = \cos a \]

DIFFERENTIATION OF COMPOSITE FUNCTIONS

(CHAIN RULE)

If \(f(x) \) and \(g(x) \) are two differentiable functions, then \(f \circ g \) is also differentiable, and \((f \circ g)'(x) = f'(g(x)) \cdot g'(x) \)

or, \(\frac{d}{dx} \left[f(g(x)) \right] = \frac{d}{dx} \left[f(g(x)) \right] \cdot \frac{d}{dx} (g(x)) \)

If \(y \) is a function of \(t \) and \(t = \phi(x) \), then \(\frac{dy}{dx} = f'(t) \), and
\[\frac{dt}{dx} = \phi'(x) \]
\[\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = f'(t) \phi'(x) \]. This rule is called Chain Rule.
This chain rule can be extended as follows:
Let \(y = f(t), t = \phi(z), z = \psi(x) \),
then
\[
\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dz} \times \frac{dz}{dx} = f'(t) \phi'(z) \psi'(x)
\]
Let \(y = \log \sin x^3 = \log t \)
Putting \(t = \sin x^3 = \sin z \), and putting \(z = x^3 \)
\[
\Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dz} \times \frac{dz}{dx} = (1/t) \cos z \cdot 3x^2 \cdot \frac{1}{\sin x^3} \cdot (3x^2) \cdot \frac{3}{2} = 3x^2 \cot x^3
\]

Example 4.18 Find \(\frac{dy}{dx} \) for \(y = \sin(x^2 + 1) \).

Sol. Let \(y = \sin(x^2 + 1) \).
Putting \(u = x^2 + 1 \), we get \(y = \sin u \)
\[
\therefore \frac{dy}{du} = \cos u \quad \text{and} \quad \frac{du}{dx} = 2x
\]
Now, \(\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} \)
\[
\Rightarrow \frac{dy}{dx} = \cos u \cdot 2x = 2x \cos(x^2 + 1)
\]

Example 4.19 If \(y = \sqrt{\log \left(\sin \left(\frac{x^2}{3} - 1 \right) \right)} \), then find \(\frac{dy}{dx} \).

Sol. \(y = \sqrt{\log \left(\sin \left(\frac{x^2}{3} - 1 \right) \right)} \)
Putting \(\frac{x^2}{3} - 1 = \nu \), we get \(\sin \left(\frac{x^2}{3} - 1 \right) = \sin \nu = u \), and
\[
\log \left(\sin \left(\frac{x^2}{3} - 1 \right) \right) = \log u = z,
\]
we get \(y = \sqrt{z} = \sqrt{\log u}, u = \sin \nu \) and \(\nu = \frac{x^2}{3} - 1 \)
\[
\therefore \frac{dy}{dz} = \frac{1}{2\sqrt{z}} \cdot \frac{dz}{du} = \frac{1}{u} \quad \text{and} \quad \frac{du}{dv} = \cos \nu \quad \text{and} \quad \frac{dv}{dx} = \frac{2x}{3}
\]
Now, \(\frac{dy}{dx} = \frac{dy}{dz} \times \frac{dz}{du} \times \frac{du}{dv} \times \frac{dv}{dx} \)
\[
\Rightarrow \frac{dy}{dx} = \left(\frac{1}{2\sqrt{z}} \right) \cdot \left(\frac{1}{u} \right) \cos \nu \cdot \left(\frac{2x}{3} \right) = \frac{x}{3} \cdot \cos \nu \frac{1}{\sqrt{\log u}}
\]

Concept Application Exercise 4.3

Find \(\frac{dy}{dx} \) for the following functions:

1. \(y = \sin^{-1}\sqrt{(1-x)} + \cos^{-1}\sqrt{x} \)
2. \(y = \sqrt{\sin x} \)
3. \(y = e^{\sin x} \)
4. \(y = \log \sqrt{\sin x} \)
5. \(y = a^{\sin x} \)
6. \(y = \log_{e} \sqrt{\frac{1 + \sin x}{1 - \sin x}} \), where \(x = \pi/3 \)
7. If \(y = (1 + x) (1 + x^2) (1 + x^4) \ldots (1 + x^{2^n}) \), then find \(\frac{dy}{dx} \) at \(x = 0 \).
8. If \(x^p = e^{x^q} \), prove that \(\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2} \).
9. If \(x\sqrt{1+y} + y\sqrt{1+x} = 0 \), prove that \(\frac{dy}{dx} = -\frac{1}{(x+1)^2} \).
4.8 Calculus

DIFFERENTIATION OF IMPLICIT FUNCTIONS

If variables x and y are connected by a relation of the form $f(x, y) = 0$ and it is not possible or convenient to express y as a function of x, i.e., in the form $y = \phi(x)$, then y is said to be an implicit function of x. To find $\frac{dy}{dx}$ in such a case, we differentiate both sides of the given relation with respect to x, keeping in mind that the derivative of $\phi(y)$ with respect to x is $\frac{d\phi}{dy} \times \frac{dy}{dx}$.

For example,

$$\frac{d}{dx} (\sin y) = \cos y \frac{dy}{dx}, \quad \frac{d}{dx} (y^2) = 2y \frac{dy}{dx}$$

It should be noted that $\frac{d}{dy} (\sin y) = \cos y$

but $\frac{d}{dx} (\sin y) = \cos y \frac{dy}{dx}$

Similarly, we have $\frac{d}{dy} (y^3) = 3y^2$,

whereas $\frac{d}{dx} (y^3) = 3y^2 \frac{dy}{dx}$

A direct formula for implicit functions

Let $f(x, y) = 0$. Take all the terms towards left side and put the left side equal to $f(x, y)$.

Then $\frac{dy}{dx} = -\frac{\text{differentiation of } f \text{ w.r.t. } x \text{ keeping } y \text{ as constant}}{\text{differentiation of } f \text{ w.r.t. } y \text{ keeping } x \text{ as constant}}$

Example 4.21 If $x^2 + 2xy + y^3 = 4$, find $\frac{dy}{dx}$.

Sol. We have

$x^2 + 2xy + y^3 = 4$

Differentiating both sides w.r.t. x, we get

$$\frac{d}{dx} (x^2) + 2 \frac{d}{dx} (xy) + \frac{d}{dx} (y^3) = \frac{d}{dx} (4)$$

$$\Rightarrow 2x + 2 \left(x \frac{dy}{dx} + y \right) + 3y^2 \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{2(x+y)}{2x+3y^2}$$

Alternative method

$$\frac{dy}{dx} = -\frac{\text{differentiation of } f \text{ w.r.t. } x \text{ keeping } y \text{ as constant}}{\text{differentiation of } f \text{ w.r.t. } y \text{ keeping } x \text{ as constant}}$$

$$= -\frac{2x+2y}{2x+3y^2}$$

Example 4.22 If $y = x + \frac{1}{x} + \frac{1}{x} + \ldots$, prove that $\frac{dy}{dx} = \frac{y}{2y-x}$.

Sol. We have

$$y = x + \frac{1}{x}$$

$$\Rightarrow y^2 = x + 1$$

$$\Rightarrow 2y \frac{dy}{dx} = y + x \frac{dy}{dx} + 0 \quad \text{[Differentiating both sides w.r.t. } x\text{]}$$

$$\Rightarrow \frac{dy}{dx} (2y-x) = y$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{2y-x}$$

Example 4.23 If $\sqrt{x} + \sqrt{y} = 4$, then find $\frac{dx}{dy}$ at $y = 1$.

Sol. Differentiating both sides of the given equation w.r.t. y, we get

$$\frac{1}{2\sqrt{x}} \frac{dx}{dy} + \frac{1}{2\sqrt{y}} = 0$$

$$\Rightarrow \frac{dx}{dy} = -\frac{\sqrt{x}}{\sqrt{y}} = \frac{\sqrt{y} - 4}{\sqrt{y}}$$

$$\Rightarrow \left[\frac{dx}{dy} \right]_{y=1} = \frac{1-4}{1} = -3$$

Example 4.24 If $y = \sqrt{x \log_e x}$, then find $\frac{dy}{dx}$ at $x = e$.

Sol.

$$\frac{dy}{dx} = \frac{1}{2\sqrt{x \log_e x}} \left[\frac{\log_e x}{x} + 1 \times \log_e x \right]$$

$$= \frac{1}{2\sqrt{x \log_e x}} \left[\frac{x \times \frac{1}{x} + 1 \times \log_e x}{x} \right]$$

$$= \left[\frac{dy}{dx} \right]_{x=e} = \frac{1}{2\sqrt{e \times 1}} (1 + 1) = \frac{1}{\sqrt{e}} (\because \log_e e = 1)$$
Concept Application Exercise 4.4

1. If \(x^3 + y^3 = 3axy \), find \(\frac{dy}{dx} \).
2. If \(\log(x^2 + y^2) = 2 \tan^{-1} \left(\frac{y}{x} \right) \), show that \(\frac{dy}{dx} = \frac{x+y}{x-y} \).
3. If \(y = \sqrt{x+y} \), then find \(\frac{dy}{dx} \).
4. If \(x = y \sqrt{1-y^2} \), then find \(\frac{dy}{dx} \) in terms of \(y \).
5. If \(y = b \tan^{-1} \left(\frac{x}{a} + \tan^{-1} \frac{y}{x} \right) \), find \(\frac{dy}{dx} \).
6. If \(y = \left(\frac{\sin x + \sqrt{x}}{\sin x} + \sqrt{x} + \cdots \right) \) to \(\infty \), prove that \(\frac{dy}{dx} = \frac{\cos x}{2y-1} \).

DIFFERENTIATION OF FUNCTIONS IN PARAMETRIC FORM

Sometimes, \(x \) and \(y \) are given as functions of a single variable, i.e., \(x = \phi(t) \), \(y = \psi(t) \) are two functions and \(t \) is a variable. In such a case \(x \) and \(y \) are called parametric functions or parametric equations and \(t \) is called the parameter. To find \(\frac{dy}{dx} \) in case of parametric functions, we first obtain the relationship between \(x \) and \(y \) by eliminating the parameter \(t \) and then we differentiate it with respect to \(x \). But every time it is not convenient to eliminate the parameter. Therefore, \(\frac{dy}{dx} \) can also be obtained by the following formula:

\[
\frac{dy}{dx} = \frac{dy/dt}{dx/dt}
\]

Example 4.25 Find \(\frac{dy}{dx} \) if \(x = a(\theta - \sin \theta) \) and \(y = a(1 - \cos \theta) \).

Sol. We have, \(x = a(\theta - \sin \theta) \) and \(y = a(1 - \cos \theta) \)

\[
\frac{dx}{d\theta} = a(1-\cos \theta) \quad \text{and} \quad \frac{dy}{d\theta} = a\sin \theta
\]

\[
\Rightarrow \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}
\]

\[
= \frac{a\sin \theta}{a(1-\cos \theta)} = \frac{2\sin(\theta/2)\cos(\theta/2)}{2\sin^2(\theta/2)} = \cot \frac{\theta}{2}
\]

Example 4.26 If \(x = a \sec^3 \theta \) and \(y = a \tan^3 \theta \), find \(\frac{dy}{dx} \) at \(\theta = \frac{\pi}{3} \).

Sol. We have \(x = a \sec^3 \theta \) and \(y = a \tan^3 \theta \)

\[
\frac{dx}{d\theta} = 3a \sec^2 \theta \frac{d\theta}{d\theta} (\sec \theta) = 3a \sec^3 \theta \tan \theta
\]

and \(\frac{dy}{d\theta} = 2a \tan^2 \theta \frac{d\theta}{d\theta} (\sec \theta) = 3a \sec^3 \theta \tan \theta \)

\[
\Rightarrow \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{3a \tan^2 \theta \sec^2 \theta}{3a \sec^3 \theta \tan \theta \tan \theta} = \frac{\tan \theta}{\sec \theta} = \sin \theta
\]

\[
= \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}
\]

Example 4.27 Let \(y = x^3 - 8x + 7 \) and \(x = f(t) \). If \(\frac{dy}{dt} = 2 \) and \(x = 3 \) at \(t = 0 \), then find the value of \(\frac{dx}{dt} \) at \(t = 0 \).

Sol. We have \(y = x^3 - 8x + 7 \)

\[
\Rightarrow \frac{dy}{dx} = 3x^2 - 8
\]

It is given that when \(t = 0 \), \(x = 3 \).

\[
\therefore \quad \text{when } t = 0, \quad \frac{dy}{dx} = 3 \cdot 3^2 - 8 = 19.
\]

Also, \(\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} \)

Since, when \(t = 0 \), \(\frac{dy}{dt} = 19 \) and \(\frac{dx}{dt} = 2 \),

\[
\therefore \quad \text{from (1), } 19 = \frac{2}{\frac{dx}{dt}}
\]

\[
\Rightarrow \quad \frac{dx}{dt} = \frac{2}{19}
\]

Concept Application Exercise 4.5

1. If \(x = \frac{2t}{1+t^2}, y = \frac{1-t^2}{1+t^2} \) then find \(\frac{dy}{dx} \) at \(t = 2 \).
2. If \(x = a \cos^3 \theta, y = b \sin^3 \theta \), find \(\frac{d^3y}{dx^3} \) at \(\theta = 0 \).
3. If \(x = \sqrt{a \sin^3 t}, y = \sqrt{a \cos^3 t} \), \(a > 0 \) and \(-1 < t < 1 \),

show that \(\frac{dy}{dx} = -\frac{y}{x} \).

4. Find \(\frac{dy}{dx} \) at \(x = \frac{\pi}{4} \) for \(x = a \left[\cos t + \frac{1}{2} \log \tan^2 \left(\frac{t}{2} \right) \right] \) and \(y = a \sin t \).
4.10 Calculus

DIFFERENTIATION USING LOGARITHM

If \(y = [f_1(x)]^{f_2(x)} \) or \(y = f_1(x) f_2(x) f_3(x) \ldots \)

or \(y = g_1(x) g_2(x) g_3(x) \ldots \)

then it is convenient to take the logarithm of the function first and then differentiate.

Note: Write \(y = [f(x)]^{g(x)} = e^{g(x) \log f(x)} \) and differentiate easily.

or if \(y = f(x)^{g(x)} \) then \(\frac{dy}{dx} = \text{Differential of } \frac{d}{dx} \text{ treating } f(x)\) as constant + Differential of \(y \) treating \(g(x) \) as constant.

For example, if \(y = (\sin x)^{\log x} \), find \(\frac{dy}{dx} \).

\[
\frac{dy}{dx} = \left(\text{diff. of } y \text{ keeping base } \log x \text{ as constant} \right) \\
+ \left(\text{diff. of } y \text{ keeping power } \log \cos x \text{ as constant} \right)
\]

\[
= (\sin x)^{\log \cos x} \log \sin x \frac{1}{\cos x} (-\sin x)
\]

\[
+ \log (\cos x) (\sin x)^{\log \cos x - 1} \cos x.
\]

Example 4.28 If \(x^m y^n = (x+y)^{m+n} \), prove that \(\frac{dy}{dx} = \frac{y}{x} \).

Sol. We have \(x^m y^n = (x+y)^{m+n} \).

Taking log on both sides, we get

\[
m \log x + n \log y = (m+n) \log(x+y)
\]

Differentiating both sides w.r.t. \(x \), we get

\[
\frac{m}{x} + \frac{n}{y} \frac{dy}{dx} = \frac{m+n}{x+y} \frac{d}{dx}
\]

\[
\Rightarrow \left(\frac{m}{x} + \frac{n}{y} \right) \frac{dy}{dx} = \frac{m+n}{x+y} \frac{1}{x}
\]

\[
\Rightarrow \left(\frac{n}{y} - \frac{m+n}{x+y} \right) \frac{dy}{dx} = \frac{m+n}{x+y} \frac{1}{x}
\]

\[
\Rightarrow \left(\frac{nx+ny-my-ny}{y(x+y)} \right) \frac{dy}{dx} = \frac{nx-my}{(x+y)x}
\]

\[
\Rightarrow \frac{nx-my}{y(x+y)} \frac{dy}{dx} = \frac{nx-my}{x}
\]

\[
\Rightarrow \frac{dy}{dx} = \frac{y}{x}
\]

Example 4.29 Find \(\frac{dy}{dx} \) for \(y = (\sin x)^{\log x} \).

Sol. Let \(y = (\sin x)^{\log x} \).

Then, \(y = e^{\log x \log \sin x} \)

Differentiating both sides w.r.t. \(x \), we get

\[
\frac{dy}{dx} = e^{\log x \log \sin x} \frac{d}{dx} \left(\log x \log \sin x \right)
\]

\[
\Rightarrow \frac{dy}{dx} = (\sin x)^{\log x} \left(\log \sin x \frac{d}{dx} \log x + \log x \frac{d}{dx} \log \sin x \right)
\]

\[
\Rightarrow \frac{dy}{dx} = (\sin x)^{\log x} \left(\frac{\log \sin x}{x} + \frac{\log x}{\sin x} \right)
\]

\[
\Rightarrow \frac{dy}{dx} = (\sin x)^{\log x} \left(\frac{\log \sin x}{x} + \cot x \log x \right)
\]

Example 4.30 If \(y = x^{\log x} \), find \(\frac{dy}{dx} \).

Sol. Since by deleting a single term from an infinite series, it remains same.

Therefore, the given function may be written as \(y = x^y \)

\[
\Rightarrow \log y = y \log x
\]

\[
\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{dy}{dx} \log x + \frac{1}{x}
\]

[Diff. both sides w.r.t. \(x \)]

\[
\Rightarrow \frac{dy}{dx} = \frac{y}{x(1-y \log x)}
\]

Example 4.31 Find the derivative of \(\sqrt[x]{(x+4)^{3/2}} \) w.r.t. \(x \).

Sol. Let \(y = \sqrt[x]{(x+4)^{3/2}} = (4x-3)^{3/2} \)

Taking log on both sides, we get

\[
\log y = \frac{1}{2} \log x + \frac{3}{2} \log(x+4) - \frac{4}{3} \log(4x-3)
\]

Differentiating both sides w.r.t. \(x \), we get

\[
\frac{1}{y} \frac{dy}{dx} = \frac{1}{2x} + \frac{3}{2(x+4)} - \frac{4}{3(4x-3)} \times 4
\]

\[
\Rightarrow \frac{dy}{dx} = y \left(\frac{1}{2x} + \frac{3}{2(x+4)} - \frac{16}{3(4x-3)} \right)
\]

\[
\Rightarrow \frac{dy}{dx} = (4x-3)^{3/2} \left(\frac{1}{2x} + \frac{3}{2(x+4)} - \frac{16}{3(4x-3)} \right)
\]

Use of logarithm helps in finding the sum of special series given in the following examples.

Example 4.32 If \(x < 1 \), prove that

\[
\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \ldots = \frac{1}{1-1-x}
\]
Sol. The given series is in the form
\[f_1(x) + f_2(x) + f_3(x) + \ldots = \lim_{n \to \infty} \left(1 + x^2 \right)^n (1 + x^4) \ldots (1 + x^{2^n}) \]
Then consider the product \(f_1(x)f_2(x)f_3(x) \ldots f_n(x) \)
Now \((1 - x)(1 + x)\)
\[= (1 - x^2)(1 + x^2)(1 + x^4) \ldots (1 + x^{2^n}) \]
\[= (1 - x^2)(1 + x^2) \ldots (1 + x^{2^n}) \]
\[= 1 - x^{2^n} \]
Now when \(n \to \infty, \) \(x^{2^n} \to 0 \) \((\because x < 1) \)
\(
\therefore \text{taking } n \to \infty, \text{ in (1), we get}
\)
\((1 - x)(1 + x)(1 + x^2)(1 + x^4) \ldots = 1 \)
Taking logarithm, we get
\[\log(1 - x) + \log(1 + x) + \log(1 + x^2) + \log(1 + x^4) + \ldots = 0 \]
Differentiating w.r.t. 'x', we get
\[\frac{1}{1-x} + \frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \ldots = 0 \]
\[\text{or } \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \ldots = \frac{1}{1-x} \]

Concept Application Exercise 4.6

1. Find \(\frac{dy}{dx} \) for \(y = x^2. \)
2. If \(y = x^3, \) then find \(\frac{dy}{dx}. \)
3. If \(x = e^{x^2 + x^3}, \) where \(x > 0, \) then find \(\frac{dy}{dx}. \)
4. If \(y = (\tan x)^{\tan x}, \) then find \(\frac{dy}{dx} \) at \(x = \pi/4. \)
5. If \(y = \frac{\sqrt{1-x^2}(2x+3)^{1/2}}{(x^2+2)^{2/3}}, \) find \(\frac{dy}{dx} \) at \(x = 0. \)

DIFFERENTIATION OF ONE FUNCTION W.R.T. OTHER FUNCTION

Let \(u = f(x) \) and \(v = g(x) \) be the two functions of \(x. \) Then to find the derivative of \(f(x) \) w.r.t. \(g(x), \) i.e., to find \(\frac{du}{dv}, \) we use the formula:
\[\frac{du}{dv} = \frac{du}{dx} \cdot \frac{dx}{dv} \]
Thus, to find the derivative of \(f(x) \) w.r.t. \(g(x), \) we first differentiate both w.r.t. \(x \) and then divide the derivative of \(f(x) \) w.r.t. \(x \) by the derivative of \(g(x) \) w.r.t. \(x. \)

Example 4.33 Differentiate \(\log x \) w.r.t. \(\sqrt{\cos x}. \)

\[\text{Sol. Let } u = \log x \text{ and } v = \sqrt{\cos x}. \]
Then,
\[\frac{du}{dx} = \frac{1}{x} \quad \text{and} \quad \frac{dv}{dx} = -\frac{\sin x}{2\sqrt{\cos x}} \]
\[\Rightarrow \frac{du}{dv} = \frac{du}{dx} \cdot \frac{dv}{dx} = \frac{1}{x} \cdot \frac{-\sin x}{2\sqrt{\cos x}} \]
\[= -\frac{\sin x}{2x\sqrt{\cos x}} \]

Example 4.34 Differentiate \(\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right) \) w.r.t. \(\tan^{-1} x, \)

\[\text{where } x \neq 0. \]

\[\text{Sol. Let } u = \tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right) \text{ and } v = \tan^{-1} x. \]
Putting \(x = \tan \theta, \)
we get \(u = \tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right) \)
\[= \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta} \right) \]
\[= \tan^{-1} \left(\frac{1 - \cos \theta}{\sin \theta} \right) \]
\[= \tan^{-1} \left(\frac{\theta}{2} \right) \]
Thus, we have \(u = \frac{1}{2} \tan^{-1} x \) and \(v = \tan^{-1} x \)
\[\Rightarrow \frac{du}{dx} = \frac{1}{2} \cdot \frac{1}{1+x^2} \quad \text{and} \quad \frac{dv}{dx} = \frac{1}{1+x^2} \]
\[\Rightarrow \frac{du}{dv} = \frac{du}{dx} \cdot \frac{dv}{dx} = \frac{1}{2(1+x^2)} (1 + x^2) = \frac{1}{2} \]

Example 4.35 Find the derivative of \(f(x) \) w.r.t. \(g(\sec x) \) at \(x = \frac{\pi}{4}, \) where \(f'(1) = 2 \) and \(g'(\sqrt{2}) = 4. \)

\[\text{Sol. Let } u = f(x) \text{ and } v = g(\sec x) \]
\[\Rightarrow \frac{du}{dx} = f'(x) \sec^2 x \]
\[\text{and} \quad \frac{dv}{dx} = g'(\sec x) \sec x \tan x \]
\[\Rightarrow \frac{du}{dv} = \frac{du}{dx} \cdot \frac{dv}{dx} = \frac{f'(x) \sec^2 x}{g'(\sec x) \sec x \tan x} \]
\[= \frac{f'(1)}{g'(\sqrt{2})} \]
\[= \frac{2 \sqrt{2}}{4} = \frac{1}{\sqrt{2}} \]
Concept Application Exercise 4.7

1. Find the derivative of \(\tan^{-1} \frac{2x}{1-x^2} \) w.r.t. \(\sin^{-1} \frac{2x}{1+x^2} \).

2. Find the derivative of \(\sec^{-1} \left(\frac{1}{2x^2-1} \right) \) w.r.t. \(\sqrt{1-x^2} \) at \(x = \frac{1}{2} \).

3. If \(y = f(x^3), z = g(x^2), f'(x) = \tan x \) and \(g'(x) = \sec x \), then find the value of \(\lim_{x \to 0} \frac{dy}{dz} \).

DIFFERENTIATION OF DETERMINANTS

To differentiate a determinant, we differentiate one row (or column) at a time, keeping others unchanged. For example, if

\[
\Delta(x) = \begin{vmatrix} f(x) & g(x) \\ u(x) & v(x) \end{vmatrix}, \text{ then } \\
\frac{d}{dx} \{\Delta(x)\} = f'(x) \cdot g(x) - f(x) \cdot g'(x) \\
\text{Also, } \\
\frac{d}{dx} \{\Delta(x)\} = u'(x) \cdot v(x) - u(x) \cdot v'(x)
\]

Similar results hold for the differentiation of determinants of higher order. Following examples will illustrate the same.

Example 4.36

If \(f(x) = \begin{vmatrix} x+a^2 & ab & ac \\ ab & x+b^2 & bc \\ ac & bc & x+c^2 \end{vmatrix} \), then

\[
\Rightarrow f'(x) = 3x^2 + 2x(a^2 + b^2 + c^2).
\]

Example 4.37

If \(f(x), g(x) \) and \(h(x) \) are three polynomials of degree 2, then prove that

\[
\phi(x) = \begin{vmatrix} f(x) & g(x) & h(x) \\ f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \end{vmatrix}
\]

is a constant polynomial.

Sol. Let \(f(x) = a_1 x^2 + a_2 x + a_3, g(x) = b_1 x^2 + b_2 x + b_3 \) and \(h(x) = c_1 x^2 + c_2 x + c_3 \). Then,

\[
\begin{align*}
\phi(x) &= f(x) g(x) h(x) \\
f'(x) &= 2a_1 x + a_2, g'(x) = 2b_1 x + b_2 \text{ and } h'(x) = 2c_1 x + c_2 \\
f''(x) &= 2a_1, g''(x) = 2b_1, h''(x) = 2c_1 \text{ and } f'''(x) = g'''(x) = h'''(x) = 0.
\end{align*}
\]

In order to prove that \(\phi(x) \) is a constant polynomial, it is sufficient to show that \(\phi'(x) = 0 \) for all values of \(x \).

where,

\[
\phi(x) = \begin{vmatrix} f(x) & g(x) & h(x) \\ f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \end{vmatrix}
\]

\[
\Rightarrow \phi'(x) = 0 + 0 + \begin{vmatrix} f(x) & g(x) & h(x) \\ f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \end{vmatrix} = 0.
\]

\[
\Rightarrow \phi'(x) = 0 + 0 + 0 = 0 \text{ for all values of } x \\
\Rightarrow \phi(x) = \text{ constant for all } x.
\]

Hence, \(\phi(x) \) is a constant polynomial.

Concept Application Exercise 4.8

1. If \(y = \cos x - \sin x \cos x \), find \(\frac{dy}{dx} \).

\[
\begin{vmatrix} \sin x & \cos x & \sin x \\ 1 & 1 & 1 \end{vmatrix}
\]

2. If \(f(x) = \cos x \cos \frac{n \pi}{2} \), then find the value of

\[
\begin{vmatrix} \sin x & \sin \frac{n \pi}{2} & 8 \frac{d^n}{dx^n} [f(x)]_{x=0} \\ x^n & n! & 2 \end{vmatrix}
\]
HIGHER ORDER DERIVATIVES

If \(y = y(x) \), then \(\frac{dy}{dx} \) is the derivative of \(y \) with respect to \(x \), and \(\frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \ldots, \frac{d^ny}{dx^n} \) are its derivatives of second, third, ..., \(n \)th order with respect to \(x \). The \(n \)th order derivative of \(y \) w.r.t. \(x \) is denoted by \(\frac{d^ny}{dx^n} \).

If \(y = f(x) \), then the other alternative notations for \(\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \ldots, \frac{d^ny}{dx^n} \) are \(y', y'', y''', \ldots, y^{(n)} \), \(f'(x), f''(x), f'''(x), \ldots, f^{(n)}(x) \).

The values of \(n \)th derivatives at \(x = a \) are denoted by \(y_n(a), y''(a), D^n_y(a), f''(a) \) or \(\left(\frac{d^ny}{dx^n} \right)_{x=a} \).

Example 4.38 If \(y = e^{\tan^{-1}x} \), then prove that
\[
(1 + x^2) \frac{d^2y}{dx^2} = (1 - 2x) \frac{dy}{dx}.
\]

Sol. \(y = e^{\tan^{-1}x} \Rightarrow \frac{dy}{dx} = \frac{e^{\tan^{-1}x}}{1 + x^2} \)
\[
\Rightarrow \frac{d^2y}{dx^2} = \left(\frac{1 + x^2}{1 + x^2} \right)^2 - \frac{e^{\tan^{-1}x}}{1 + x^2}(2x) = \frac{(1 - 2x)e^{\tan^{-1}x}}{(1 + x^2)^2}.
\]
\[
\Rightarrow \frac{d^2y}{dx^2} = (1 - 2x)e^{\tan^{-1}x}.
\]

Example 4.39 If \(y = (x^2 - 1)^n \), then the \((2m) \)th differential coefficient of \(y \) is

\(a. m \) \hspace{1cm} \(b. (2m)! \)
\(c. 2m \) \hspace{1cm} \(d. m! \)

Sol. Expanding binomially, we get
\(y = (x^2 - 1)^n = \sum_{k=0}^{n} C_k x^{2m-2(-1)} + \ldots \)

So on differentiating, all the terms, except first, reduce to zero, therefore

\[
\frac{d^{2m}}{dx^{2m}} (x^2 - 1)^n = n C_{2m} 2m (2m - 1) (2m - 2) \ldots 1 = (2m) !
\]

Example 4.40 If \(y = x \log \{x/(a + bx)\} \), then show that
\[
\frac{x^2}{x^2} \frac{d^2y}{dx^2} = \left(\frac{x}{x} \frac{dy}{dx} - y \right)^2.
\]

Sol. Given \(y/x = \log \{x/(a + bx)\} \)
\[
1 \frac{dy}{dx} - \frac{1}{x^2} y = \frac{b}{a + bx}
\]
\[
\Rightarrow \frac{dy}{dx} - y = \frac{ax}{a + bx}
\]

Differentiating again w.r.t. \(x \)
\[
\left(x \frac{d^2y}{dx^2} + \frac{dy}{dx} \right) - \frac{dy}{dx} = \frac{a^2}{(a + bx)^2}
\]
\[
\Rightarrow \frac{d^2y}{dx^2} = \frac{a^2x^2}{(a + bx)^2}
\]

Example 4.41 If \(y = (ax + b)(x^2 + c) \), then show that \((2xy' + y)^n = 3(x^2y' + y)'' \), where \(a, b, c \) are constants and dashes denote differentiation w.r.t. \(x \).

Sol. Given that \(y(x^2 + c) = ax + b \)
Differentiating w.r.t. \(x \)
\[
y' (x^2 + c) + 2xy' = a
\]
Differentiating again w.r.t. \(x \)
\[
y''(x^2 + c) + y''2x + 2xy' + 2y = 0
\]
\[
\Rightarrow y''(x^2 + c) + 2(2xy' + y) = 0
\]
Differentiating again w.r.t. \(x \)
\[
y'''(x^2 + c) + 2y''' + 2(2xy'' + 3y') = 0
\]
\[
\Rightarrow y'''(x^2 + c) + 6(xy'' + y') = 0
\]

Multiplying (2) by \(y''' \) and (3) by \(y'' \) and then subtracting, we get
\[
2(2xy' + y)y'' - 6(xy'' + y')y'' = 0
\]
\[
\Rightarrow (2xy' + y)y'''' = 3(xy'' + y')y''
\]

Concept Application Exercise 4.9

1. Prove that \(\frac{d^2y}{dx^2} (e^{2x} + e^{-2x}) = 2[e^{2x} + (1-x)^2] e^{2x} \).
2. If \(y = \sin (\sin x) \), and \(\frac{d^2y}{dx^2} + \frac{dy}{dx} \tan x + f(x) = 0 \), then find \(f(x) \).
3. If \(y = \log \{1 + \sin x\} \), prove that \(y_4 + y_3 y_1 + y_2 = 0 \).
4. If \(f(x) = (1 + x)^n \), then find the value of \(f(0) + f'(0) + \frac{f''(0) + f'''(0)}{2!} + \frac{f^(4)(0) + f^{(5)}(0)}{3!} + \ldots + \frac{f^n(0)}{n!} \).
4.14 Calculus

PROBLEMS BASED ON FIRST DEFINITION OF DERIVATIVE

Example 4.42 A function \(f : R \rightarrow R \) satisfies the equation \(f(x + y) = f(x)f(y) \) for all \(x, y \in R \) and \(f(x) \neq 0 \) for all \(x \in R \). If \(f(x) \) is differentiable at \(x = 0 \) and \(f'(0) = 2 \), then prove that \(f''(x) = 2f(x) \).

Sol. We have \(f(x + y) = f(x)f(y) \) for all \(x, y \in R \)
\[\therefore f(0) = f(0)f(0) \Rightarrow f(0)(f(0) - 1) = 0 \Rightarrow f(0) = 1 \quad [\because f(0) \neq 0] \]

Now, \(f''(0) = 2 \)
\[\Rightarrow \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = 2 \]
\[\Rightarrow \lim_{h \to 0} \frac{f(h) - 1}{h} = 2 \quad (\because f(0) = 1) \quad (1) \]

Now, \(f''(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \)
\[= \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} \quad (\because f(x + y) = f(x)f(y)) \]
\[= f(x) \left(\lim_{h \to 0} \frac{f(h) - 1}{h} \right) = 2f(x) \quad [\text{Using (1)}] \]

Example 4.43 Let \(f : R \rightarrow R \) satisfying \(|f(x)| \leq x^2, \forall x \in R \), differentiable at \(x = 0 \) then find \(f'(0) \).

Sol. Since \(|f(x)| \leq x^2, \forall x \in R \)
\[\therefore \text{At} \ x = 0, |f(0)| \leq 0 \Rightarrow f(0) = 0 \quad (1) \]

\[\therefore f''(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} \quad (2) \]

Now, \(\left| \frac{f(h)}{h} \right| \leq |h| \)
\[\Rightarrow -|h| \leq \frac{f(h)}{h} \leq |h| \]
\[\Rightarrow \lim_{h \to 0} \frac{f(h)}{h} \Rightarrow 0 \quad \text{(using Sandwich Theorem)} \quad (4) \]
\[\therefore \text{from (3) and (4), we get } f''(0) = 0. \]

Example 4.44 Suppose \(p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \).
If \(|p(x)| \leq |e^{x-1} - 1| \) for all \(x \geq 0 \), then prove that \(|a_1 + 2a_2 + \cdots + na_n| \leq 1 \).

Sol. Given \(p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \)
\[\therefore p'(1) = a_1 + 2a_2x + \cdots + na_nx^{n-1} \]
\[\Rightarrow p'(1) = a_1 + 2a_2 + \cdots + na_n \quad (1) \]

Now, \(|p(1)| \leq 0, (\because |e^{x-1} - 1| = |e^0 - 1| = |1 - 1| = 0) \)
\[\Rightarrow |p(1)| \leq 0 \Rightarrow p(1) = 0 \quad (\because |p(1)| \geq 0) \]
As \(|p(x)| \leq |e^{x-1} - 1| \), we get
\[|p(1 + h) - p(1)| \leq |e^{h - 1} - 1| \quad (\because p(1) = 0) \]
\[\Rightarrow \frac{|p(1 + h) - p(1)|}{h} \leq |e^{h - 1} - 1| \quad (\because p(1) = 0) \]
\[\Rightarrow \lim_{h \to 0} \frac{|p(1 + h) - p(1)|}{h} \leq 1 \]
\[\Rightarrow |a_1 + 2a_2 + \cdots + na_n| \leq 1 \quad (\text{from (1))} \]

Example 4.45 Let \(f \left(\frac{x + y}{2} \right) = \frac{f(x) + f(y)}{2} \) for all \(x, y \in R \).
If \(f'(0) \) exists and equals \(-1\) and \(f(0) = 1 \), then find \(f(2) \).

Sol. Since \(f \left(\frac{x + y}{2} \right) = \frac{f(x) + f(y)}{2} \)
Replacing \(x \) by \(2x \) and \(y \) by \(0 \), then \(f(x) = \frac{f(2x) + f(0)}{2} \)
\[\Rightarrow f(2x) + f(0) = 2f(x) \Rightarrow f(2x) - 2f(x) = -f(0) \quad (1) \]

Now, \(f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \)
\[\Rightarrow \lim_{h \to 0} \frac{f(2x + 2h) - f(2x)}{2h} = \frac{f(x) + f(2h) - f(x)}{2h} \]
\[= \lim_{h \to 0} \frac{f(2h) - f(0)}{2h} \quad (\text{from (1))} \]
\[= f'(0) \]
\[= -1, \forall x \in R \]
Integrating, we get \(f(x) = -x + c \)
Putting \(x = 0 \), then \(f(0) = 0 + c = 1 \)
\[\therefore c = 1 \]
then \(f(x) = 1 - x \)
\[\therefore f(2) = 1 - 2 = -1 \]

Alternative Method 1
\[\therefore f \left(\frac{x + y}{2} \right) = \frac{f(x) + f(y)}{2} \]
Differentiating both sides w.r.t. \(x \) treating \(y \) as constant.
\[\Rightarrow f' \left(\frac{x + y}{2} \right) \cdot \frac{1}{2} = \frac{f'(x) + 0}{2} \Rightarrow f' \left(\frac{x + y}{2} \right) = f'(x). \]
Replacing \(x \) by \(0 \) and \(y \) by \(2x \),
then \(f'(x) = f'(0) = -1 \) (given)
Integrating, we have \(f(x) = -x + c \).
Putting \(x = 0 \), then \(f(0) = 0 + c = 1 \) (given)
\[\therefore c = 1 \]
Hence, \(f(x) = -x + 1 \)
then \(f(2) = -2 + 1 = -1. \)
Alternative Method 2 (Graphical Method)
Suppose $A(x, f(x))$ and $B(y, f(y))$ be any two points on the curve $y = f(x)$.
If M is the mid-point of AB, then co-ordinates of M are
\[
\left(\frac{x+y}{2}, \frac{f(x) + f(y)}{2}\right)
\]
According to the graph, co-ordinates of P are
\[
\left(\frac{x+y}{2}, f\left(\frac{x+y}{2}\right)\right)
\]
and $PL > ML \Rightarrow f\left(\frac{x+y}{2}\right) > \frac{f(x) + f(y)}{2}$

![Graph](image)

Fig. 4.2

But given $f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$ which is possible when $P \to M,$ i.e., P lies on AB. Hence, $y = f(x)$ must be a linear function.
Let $f(x) = ax + b \Rightarrow f(0) = 0 + b = 1$ (given)
and $f'(x) = a \Rightarrow f'(0) = a = -1$ (given)
\[f(x) = -x + 1\]
\[f(2) = -2 + 1 = -1\]

Also in the given relation $f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$ satisfies the section formula for abscissa and ordinate on L.H.S. and R.H.S., respectively, which occurs only in the case of straight line.
Hence, $f(x) = ax + b$, from $f'(0) = -1, a = -1$, and from $f(0) = 1, b = 1$ \Rightarrow $f(x) = -x + 1$.

Example 4.46
If $f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)$ for all $x, y \in R, (xy \neq 1)$
and $\lim_{x \to 0} \frac{f(x)}{x} = 2$. Find $f\left(\frac{1}{\sqrt{3}}\right)$ and $f'(1)$.

Sol. $f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)$ \hspace{1cm} (1)

Putting $x = y = 0$, we get $f(0) = 0$
Putting $y = -x$, we get $f(x) + f(-x) = f(0)$
\[f(-x) = -f(x)\] \hspace{1cm} (2)

also, $\lim_{x \to 0} \frac{f(x)}{x} = 2$

Now, $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ \hspace{1cm} (3)

\[= \lim_{h \to 0} \frac{f(x+h) + f(-x)}{h} \] (using (2) $f'(x) = f(-x)$)

\[f'(x) = \lim_{h \to 0} \frac{\frac{x+h-x}{1-\frac{(x+h)(-x)}{(-x)}}}{h} \] (using (1))

\[\Rightarrow f'(x) = \lim_{h \to 0} \left[\frac{f\left(\frac{h}{1+x(x+h)}\right)}{h} \right] \]

\[\Rightarrow f'(x) = \lim_{h \to 0} \left[\frac{\frac{h}{1+1+1} \times \frac{1}{1+xh+x^2}}{h} \right] \]

\[\Rightarrow f'(x) = \lim_{h \to 0} \frac{1}{h^2} \times \lim_{h \to 0} \frac{1}{1+xh+x^2} \] (using $\lim_{x \to 0} \frac{f(x)}{x} = 2$)

\[\Rightarrow f'(x) = \frac{2}{1+x^2} \] \Rightarrow $f'(x) = \frac{2}{1+x^2}$

Integrating both sides, we get
\[f(x) = 2 \tan^{-1}(x) + c, \text{ where } f(0) = 0 \Rightarrow c = 0 \]
Thus, $f(x) = 2 \tan^{-1}x$.

Hence, $f\left(\frac{1}{\sqrt{3}}\right) = 2 \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = 2 \frac{\pi}{6} = \frac{\pi}{3}$, and
\[f'(1) = \frac{2}{1+1^2} = \frac{2}{2} = 1\]

Concept Application Exercise 4.10
1. Let $f(x+y) = f(x) + f(y)$ for all x and y. Suppose $f(5) = 2$ and $f(0) = 3$, find $f'(3)$.
2. Let $f(xy) = f(x)f(y) \forall x, y \in R$ and f is differentiable at $x = 1$ such that $f'(1) = 1$ also $f(1) \neq 0, f(2) = 3$, then find $f'(2)$.
3. If $f\left(\frac{x+2y}{3}\right) = \frac{f(x)+2f(y)}{3} \forall x, y \in R$ and $f'(0) = 1$, $f(0) = 2$, then find $f(x)$.
4. Prove that $\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$ (without using L'Hopital's rule)

Miscellaneous Solved Problems
1. Derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{\sqrt{1+x^2} + \sqrt{1-x^2}}\right)$ with respect to $\cos^{-1}x^2$ is
 a. $-1/2$ b. $1/2$
 c. -1 d. 1
4.16 Calculus

Sol. a. Let $u = \tan^{-1} \left(\frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{\sqrt{1+x^2} + \sqrt{1-x^2}} \right)$

$= \tan^{-1} \left(\frac{1-\tan \theta}{1+\tan \theta} \right)$

$= \tan^{-1} \left(\tan \left(\frac{\pi}{4} - \theta \right) \right) = \frac{\pi}{4} - \theta = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x^2$

Also $v = \cos^{-1} x^2$

$\frac{du}{dv} = \frac{1}{2}$

$\Rightarrow \frac{du}{dv} = \frac{1}{2}$

2. Let f and g be differentiable functions satisfying $g'(a) = 2$, $g(a) = b$ and $fog = I$ (identity function). Then $f'(b)$ is equal to

a. $\frac{1}{2}$

b. 2

c. $\frac{2}{3}$

d. None of these

Sol. a. Given $fog = I$

$\Rightarrow f(g(x)) = x$ for all x

$\Rightarrow f'(g(x))g'(x) = 1$ for all x

$\Rightarrow f'(g(a)) = \frac{1}{g'(a)} = \frac{1}{2}$

$\Rightarrow f'(b) = \frac{1}{2}$ (\because $g(a) = b$)

3. If $f(x) = \cot^{-1} \left(\frac{x^2-x^{-2}}{2} \right)$, then $f'(1)$ is

a. -1

b. 1

c. $\ln 2$

d. $-\ln 2$

Sol. a. $\frac{d}{dx} \left(x^2(1+\log x) \right) = x^2(1+\log x)$

$\Rightarrow f'(x) = \frac{d}{dx} (f(x))$

$= -\frac{1}{2} \frac{d}{dx} \left(\frac{x^2-x^{-2}}{2} \right)$

$= -\frac{4}{2} \frac{1}{x^2} \left(x^2(1+\log x) + x^{-2}(1+\log x) \right)$

$= -2 \frac{(x^2 + x^{-2})(1+\log x)}{x^2(1-x^2)^2}$

$\Rightarrow f'(1) = -1$

4. If $y = \tan^{-1} \left(\frac{1}{1+x^2} - \frac{1}{1-x^2} \right)$

$+ \tan^{-1} \frac{1}{x^2 + 3x + 3}$

$+ \tan^{-1} \frac{1}{x^2 + 5x + 7}$

$\ldots \text{upto n terms}$, then $y'(0)$ is

a. $\frac{1}{1+n^2}$

b. $-\frac{n^2}{1+n^2}$

c. $\frac{n}{1+n^2}$

d. None of these

Sol. b. $y = \tan^{-1} \left(\frac{1}{1+x^2} - \frac{1}{x^2 + 3x + 3} \right) + \ldots + n \text{ terms}$

$\Rightarrow y'(0) = \frac{1}{1+n^2} - \frac{1}{1+n^2}$

$\Rightarrow y'(0) = \frac{-n^2}{1+n^2}$

5. If $\sqrt{(1-x^5) + \sqrt{(1-y^6)}} = a(x^2 - y^3)$, and

$\frac{dy}{dx} = f(x, y) \left(\frac{1-y^6}{1-x^5} \right)$, then

a. $f(x, y) = \sqrt{x}$

b. $f(x, y) = \sqrt{y}$

c. $f(x, y) = 2\sqrt{x^2}$

d. $f(x, y) = 2\sqrt{y^2}$

Sol. d. Let $x^3 = \cos p$ and $y^3 = \cos q$

Given $\sqrt{(1-x^6) + \sqrt{(1-y^6)}} = a(x^2 - y^3)$

$\Rightarrow \sqrt{(1-\cos^2 p) + (1-\cos^2 q)} = a(\cos p - \cos q)$

$\Rightarrow \sin p + \sin q = a(\cos p - \cos q)$

$\Rightarrow 2 \sin \left(\frac{p+q}{2} \right) \cos \left(\frac{p-q}{2} \right) = -2a \sin \left(\frac{p-q}{2} \right) \sin \left(\frac{p+q}{2} \right)$

$\Rightarrow \tan \left(\frac{p-q}{2} \right) = -\frac{1}{a}$

$\Rightarrow p-q = \tan^{-1} \left(-\frac{1}{a} \right)$

$\Rightarrow \cos^{-1} x^2 - \cos^{-1} y^2 = \tan^{-1} \left(-\frac{1}{a} \right)$

Differentiate w.r.t. x, we have $-\frac{3x^2}{\sqrt{1-x^6}} + \frac{3y^2}{\sqrt{1-y^6}} \frac{dy}{dx} = 0$

$\Rightarrow \frac{dy}{dx} = \frac{x^2}{y^2} \frac{1-y^6}{1-x^6}$

Hence, $f(x, y) = x^2/y^2$
6. If \(f(x) = \cos x \cdot \cos 2x \cdot \cos 4x \cdot \cos 8x \cdot \cos 16x \), then \(f'\left(\frac{\pi}{4} \right) \) is

- a. \(\sqrt{2} \)
- b. \(\frac{1}{\sqrt{2}} \)
- c. 1
- d. None of these

Sol.
\[
f(x) = \frac{\sin 32x}{2^3 \sin x}
\]
\[
\Rightarrow f'(x) = \frac{1}{32} \cdot \frac{32 \cos 32x \sin x - \cos x \sin 32x}{\sin^2 x}
\]
\[
\Rightarrow f'\left(\frac{\pi}{4} \right) = \frac{32 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times 0}{\frac{1}{\sqrt{2}}^2} = \sqrt{2}
\]

7. If \(f(x) = |x|^3 \ln x \), then \(f'\left(-\frac{\pi}{4} \right) \) equals

- a. \(\left(\frac{\pi}{4} \right)^{1/2} \left(\frac{\sqrt{2}}{2} \ln \frac{4}{\pi} - \frac{2\sqrt{2}}{\pi} \right) \)
- b. \(\left(\frac{\pi}{4} \right)^{1/2} \left(\frac{\sqrt{2}}{2} \ln \frac{4}{\pi} + \frac{2\sqrt{2}}{\pi} \right) \)
- c. \(\left(\frac{\pi}{4} \right)^{1/2} \left(\frac{\sqrt{2}}{2} \ln \frac{4}{\pi} + \frac{2\sqrt{2}}{\pi} \right) \)
- d. None of these

Sol.
In the neighbourhood of \(-\pi/4 \), we have
\[
f(x) = (-x)^3 \ln x = -x^3 \ln x \log x = e^{-x^3 \log x} \]
\[
\Rightarrow f'(x) = e^{-x^3 \log x} \left(-3x \ln x \right) - \frac{x \sin x}{x} = -3x \ln x + \sin x
\]
\[
\Rightarrow f'(-\pi/4) = \left(\frac{\pi}{4} \right)^{1/2} \left(\frac{1}{\sqrt{2}} \ln \frac{4}{\pi} - \frac{1}{\sqrt{2}} \right)
\]

8. If \(y = \sqrt{(a-x)(x-b)} - (a-b) \tan^{-1} \frac{x-a}{x-b} \), then \(\frac{dy}{dx} \) is equal to

- a. 1
- b. \(\sqrt{a-x} \)
- c. \(\sqrt{(a-x)(x-b)} \)
- d. None of these

Sol.
Let \(x = a \cos^2 \theta + b \sin^2 \theta \)
\[
\Rightarrow a - x = a - a \cos^2 \theta - b \sin^2 \theta = (a-b) \sin^2 \theta, \text{ and}
\]
\[
x - b = a \cos^2 \theta + b \sin^2 \theta - b = (a-b) \cos^2 \theta
\]
\[
\Rightarrow y = (a-b) \sin \theta \cos \theta - (a-b) \tan^{-1} \tan \theta
\]
\[
\Rightarrow \frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx} = \frac{(a-b) \cos \theta - (a-b) \cos \theta}{(a-b) \sin \theta} = \frac{1 - \cos 2\theta}{\sin 2\theta}
\]
\[
\Rightarrow \tan \theta = \sqrt{\frac{a-x}{x-b}}
\]

9. If \(x = a \cos \theta, y = b \sin \theta \), then \(\frac{d^3 y}{dx^3} \) is

- a. \(-\frac{3b}{a^3} \csc^4 \theta \cot \theta \)
- b. \(\frac{3b}{a^3} \csc^4 \theta \cot \theta \)
- c. None of these

Sol.
We have \(y = b \sin \theta, x = a \cos \theta \), then
\[
\frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx} = \frac{b \cos \theta}{a \sin \theta}
\]
\[
\Rightarrow \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{d\theta} \left(\frac{b \cos \theta}{a \sin \theta} \right) = \frac{d}{d\theta} \left(\frac{b}{a} \frac{\cos \theta}{\sin \theta} \right)
\]
\[
\Rightarrow \frac{d^3 y}{dx^3} = \frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d}{dx} \left(\frac{b}{a^2} \cos \theta \cot \theta \right)
\]
\[
= \frac{b}{a^2} \csc^3 \theta \cot \theta \cot \theta - \frac{b}{a^2} \csc^3 \theta \cot \theta
\]
\[
= \frac{3b}{a^2} \csc^3 \theta \cot \theta \times \frac{1}{a \sin \theta} = \frac{3b}{a^2} \csc^4 \theta \cot \theta
\]

10. If \(f(x) = (1+x)^a (1+x)^b (1+x)^c \), then the coefficient of \(x \) in the expansion of \(f(x) \) is

- a. 1
- b. 0
- c. -1
- d. 2

Sol.
We have \(f(x) = (1+x)^a (1+x)^b (1+x)^c \)
\[
\Rightarrow a_1 = f'(0) = \left| \begin{array}{ccc} a_1 & a_2 & a_3 \\ 1 & 1 & 1 \\ a_2 & a_3 & a_2 \\ 1 & 1 & 1 \end{array} \right| + \left| \begin{array}{ccc} a_1 & a_2 & a_3 \\ 1 & 1 & 1 \\ a_3 & a_2 & a_1 \\ 1 & 1 & 1 \end{array} \right| = 0
4.18 Calculus

EXERCISES

Subjective Type Solutions on page 4.29

1. Let \(f(x) = \frac{1}{2x + \cdots + \infty} \).

\[\sqrt{1.} \] Let \(f(x) = \frac{1}{2x + \cdots + \infty} \).

\[\sqrt{2.} \] Let \(f(x) = \frac{1}{2x + \cdots + \infty} \).

Compute the value of \(f(50) \). \(f'(50) \).

2. If \(x^2 + y^2 = R^2 \) (where \(R > 0 \)) and \(k = \frac{y^n}{(1 + y^2)^3} \),

then find \(k \) in terms of \(R \) alone.

\[\sqrt{3.} \] If \(y = \frac{x^2}{2} + \frac{1}{2} \sqrt{x^2 + 1} \log_e \sqrt{x + \sqrt{x^2 + 1}} \) prove that

\[2y = x^2y + \log_e y' \] where \(y' \) denotes the derivative w.r.t. \(x \).

4. If \(y = \frac{2}{\sqrt{a^2 - b^2}} \left(\tan^{-1} \left(\frac{a - b}{a + b} \tan \frac{x}{2} \right) \right) \), then show that

\[\frac{dy}{dx} = \frac{b \sin x}{(a + b \cos x)^2} \]

5. Differentiate \(\tan^{-1} \left(\frac{x}{1 + \sqrt{1 - x^2}} \right) \)

\[+ \sin \left(2 \tan^{-1} \sqrt{\frac{1 - x}{1 + x}} \right) \] w.r.t. \(x \).

\[\sqrt{6.} \] If \(y = (1/2 \cdot n^{-1}) \cos (n \cos^{-1} x) \), then prove that \(y \) satisfies

the differential equation \((1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + n^2 y = 0 \).

\[\sqrt{7.} \] If \(x \in \left(0, \frac{\pi}{2} \right) \), then show that

\[\frac{d}{dx} \cos^{-1} \left(\frac{7}{2} (1 + \cos 2x) + \sqrt{(\sin^2 x - 48 \cos^2 x) \sin x} \right) \]

\[= 1 + \frac{7 \sin x}{\sqrt{\sin^2 x - 48 \cos^2 x}} \]

\[\sqrt{8.} \] If \(f(x) = \cos^{-1} \left(\frac{1}{\sqrt{13}} (2 \cos x - 3 \sin x) \right) \)

\[+ \sin^{-1} \left(\frac{1}{\sqrt{13}} \times (2 \cos x + 3 \sin x) \right) \text{ w.r.t. } \sqrt{1 + x^2}, \]

then find \(df(x)/dx \) at \(x = 3/4 \).

If \(|a_1 \sin x + a_2 \sin 2x + \cdots + a_n \sin nx| \leq |\sin x| \) for \(x \in R \), then
prove that \(|a_1 + 2a_2 + 3a_3 + \cdots + na_n| \leq 1 \).

10. Given that \(\cos \frac{x}{2} \cos 4 \cos \frac{x}{8} \cdots = \frac{\sin x}{x} \), then find the sum

\[\frac{1}{2} \sec^2 \frac{x}{2} + \frac{1}{2} \sec^2 \frac{x}{4} + \cdots \]

11. If \(0 < x < 1 \), then prove that

\[\frac{1}{1 - 2x} + \frac{2x - 4x^2 + 4x^3 - 8x^2 + \cdots + \infty} = \frac{1 + 2x}{1 - x^2 + x^4 + 1 - x^4 + x^8 + \cdots} \]

12. If \(\frac{d}{dx} \left[(x^n - A_1 x^{n-1} + A_2 x^{n-2} - \cdots + (-1)^n A_n) e^x \right] = x^n e^x \),

find the value of \(A_n \), where \(0 < r \leq m \).

13. Let \(f(x) \) and \(g(x) \) be two functions having finite non-zero \(3 \text{rd} \) order derivatives \(f''(x) \) and \(g''(x) \) for all \(x \in R \). If \(f(x) g(x) = 1 \) for all \(x \in R \), then prove that

\[\frac{f''}{f'} - \frac{g''}{g'} = 3 \left(\frac{f''}{f'} - \frac{g''}{g'} \right). \]

14. If \(g(x) = \frac{f(x)}{(x-a)(x-b)(x-c)} \), where \(f(x) \) is a polynomial of degree \(< 3 \), then prove that

\[\frac{dg(x)}{dx} = \begin{vmatrix} a & f(a)(x-a) \cdots \frac{a^2}{a} & 1 \\ b & f(b)(x-b) \cdots \frac{b^2}{b} & 1 \\ c & f(c)(x-c) \cdots \frac{c^2}{c} & 1 \end{vmatrix} \]

15. If \(f(x) = e^{-1/x} \), where \(x > 0 \). Let for each positive integer \(n \), \(P_n \) be the polynomial such that \(\frac{d^n f(x)}{dx^n} = P_n \left(\frac{1}{x} \right) e^{-1/x} \) for all \(x > 0 \). Show that \(P_{n+1}(x) = x^2 \left[P_n(x) - \frac{d}{dx} P_n(x) \right] \).

16. Let \(f: R \rightarrow R \) is a function satisfies condition \(f(x + y^3) = f(x) + [f(y)]^3 \) for all \(x, y \in R \). If \(f''(0) \geq 0 \). Find \(f(10) \).

17. Let \(f(x + y) = f(x) + f'(y) + 2xy - 1 \) for all \(x \) and \(y \) and \(f(x) \) be differentiable function. If \(f''(0) = \cos \alpha \), then
prove that \(f(x) > 0 \) \(\forall \ x \in R \).

18. If \(f \left(\frac{x + y}{3} \right) = \frac{2 + f(x) + f(y)}{3} \) for all \(x \) and \(y \) and \(f'(2) = 2 \), then determine \(y = f(x) \).

19. If \(f, g, h \) be functions \(x \) and \(y \)

\[\Delta(x) = \begin{vmatrix} f & g & h \\ (xf)' & (xg)' & (xh)' \end{vmatrix} \]

prove that

\[\Delta'(x) = \begin{vmatrix} f & g & h \\ (x^2f)' & (x^2g)' & (x^2h)' \end{vmatrix}, \]

if \(y = f(dx) \) and \(f'(sin x) = \log_e x \), then find \(\frac{dy}{dx} \), if it exists,

\[\frac{\pi}{2} < x < \pi \].
Objective Type

Each question has four choices a, b, c, and d, out of which only one is correct.

1. \(\frac{dy}{dx} \) for \(y = \tan^{-1} \left(\frac{1 + \cos x}{1 - \cos x} \right) \), where \(0 < x < \pi \) is
 a. \(-1/2\)
 b. 0
 c. 1
 d. \(-1\)

2. If \(f(x) = |x^2 - 5x + 6| \), then \(f'(x) \) equals
 a. 2x - 5 for \(2 < x < 3 \)
 b. 5 - 2x for \(2 < x < 3 \)
 c. 2x - 5 for \(x > 2 \)
 d. 5 - 2x for \(x < 3 \)

3. If \(y = \tan^{-1} \left(\frac{\log(e/x^2)}{\log(ex^2)} \right) + \tan^{-1} \left(\frac{3 + 2 \log x}{1 - 6 \log x} \right) \), then \(\frac{d^2y}{dx^2} \) is
 a. 2
 b. 1
 c. 0
 d. \(-1\)

4. If \(f(0) = 0, f'(0) = 2 \), then the derivative of \(y = f(f(f(f(x)))) \) at \(x = 0 \) is
 a. 2
 b. 8
 c. 16
 d. 4

5. If \(y = ax^{n+1} + bx^{-n} \), then \(x^2 \frac{d^2y}{dx^2} \) is equal to
 a. \(n(n-1)yx \)
 b. \(n(n+1)yx \)
 c. \(ny \)
 d. \(n^2y \)

6. If \(y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} \), then \(\frac{dy}{dx} \) is equal to
 a. \(y \)
 b. \(y + \frac{x^n}{n!} \)
 c. \(y - \frac{x^n}{n!} \)
 d. \(y - 1 - \frac{x^n}{n!} \)

7. If \(y = a \sin x + b \cos x \), then \(y^2 + \left(\frac{dy}{dx} \right)^2 \) is a
 a. function of \(x \)
 b. function of \(y \)
 c. function of \(x \) and \(y \)
 d. constant

8. \(\frac{d}{dx} \left[\frac{1 - \sin 2x}{1 + \sin 2x} \right] \) is equal to \(0 < x < \pi/2 \)
 a. \(\sec^2 x \)
 b. \(-\sec^2 \left(\frac{\pi}{4} - x \right) \)
 c. \(\sec^2 \left(\frac{\pi}{4} + x \right) \)
 d. \(\sec^2 \left(\frac{\pi}{4} - x \right) \)

9. If \(y = \left(x + \sqrt{x^2 + a^2} \right)^n \), then \(\frac{dy}{dx} \) is
 a. \(\frac{ny}{\sqrt{x^2 + a^2}} \)
 b. \(-\frac{ny}{\sqrt{x^2 + a^2}} \)

10. If \(f(x) = \sqrt{1 + \cos^2(x^2)} \), then \(f'(\frac{\pi}{2}) \) is
 a. \(\sqrt{\pi}/6 \)
 b. \(-\sqrt{\pi}/6 \)
 c. \(1/\sqrt{6} \)
 d. \(\pi/\sqrt{6} \)

11. \(\frac{d}{dx} \cos^{-1} \sqrt{\cos x} \) is equal to
 a. \(\frac{1}{2} \sqrt{1 + \sec x} \)
 b. \(\sqrt{1 + \sec x} \)
 c. \(\frac{1}{2} \sqrt{1 + \sec x} \)
 d. \(-\sqrt{1 + \sec x} \)

12. If \(y = \log_{\sin x}(\tan x) \), then \(\left(\frac{dy}{dx} \right)_{\pi/4} \) is equal to
 a. \(\frac{4}{\log 2} \)
 b. \(-4 \log 2 \)
 c. \(-4 \)
 d. None of these

13. If \(y = \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \), then \(1 - x^2 \frac{dy}{dx} \) is equal to
 a. \(x + y \)
 b. \(1 + xy \)
 c. \(1 - xy \)
 d. \(xy - 2 \)

14. If \(y = \cot^{-1} \left(\frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right) \) \(0 < x < \pi/2 \), then \(\frac{dy}{dx} \) is equal to
 a. \(\frac{1}{2} \)
 b. \(\frac{2}{3} \)
 c. \(3 \)
 d. \(1 \)

15. If \(y = x^{x^2} \), then \(\frac{dy}{dx} \) is
 a. \(y[x^2 \log x + x^2] \)
 b. \(y[x^4 \log x + x^4] \)
 c. \(y[x^2 \log x + x^2] \)
 d. \(y[x^2 \log x + x^2] \)

16. \(\frac{d}{dx} \left[\sin^2 \cot^{-1} \left(\frac{1-x}{1+x} \right) \right] \) is equal to
 a. \(-1 \)
 b. \(\frac{1}{2} \)
 c. \(-\frac{1}{2} \)
 d. \(1 \)

17. If \(y = ae^{mx} + be^{-mx} \), then \(\frac{d^2y}{dx^2} - m^2y \) is equal to
 a. \(m^2(e^{mx} - e^{-mx}) \)
 b. \(1 \)
 c. \(0 \)
 d. None of these
18. \(\frac{d^n}{dx^n} \log x = \)

 a. \(\frac{(n-1)!}{x^n} \)

 b. \(\frac{n!}{x^n} \)

 c. \(\frac{(n-2)!}{x^n} \)

 d. \((-1)^{n-1} \frac{(n-1)!}{x^n} \)

19. If \(y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + \cdots}}} \), then \(\frac{dy}{dx} \) is

 a. \(\frac{x}{2y-1} \)

 b. \(\frac{x}{2y+1} \)

 c. \(\frac{1}{x(2y-1)} \)

 d. \(\frac{1}{x(1-2y)} \)

20. The differential coefficient of \(f(\log_e x) \) with respect to \(x \), where \(f(x) = \log_e x \), is

 a. \(\frac{x}{\log_e x} \)

 b. \(\frac{1}{x} \)

 c. \(\frac{1}{x \log_e x} \)

 d. None of these

21. If \(y = \sec(\tan^{-1} x) \), then \(\frac{dy}{dx} \) at \(x = 1 \) is

 a. \(\cos \frac{\pi}{4} \)

 b. \(\sin \frac{\pi}{2} \)

 c. \(\sin \frac{\pi}{6} \)

 d. \(\cos \frac{\pi}{3} \)

22. If \(f'(x) = \sqrt{2x^2 - 1} \) and \(y = f(x^2) \), then \(\frac{dy}{dx} \) at \(x = 1 \) is

 a. \(2 \)

 b. \(1 \)

 c. \(-2 \)

 d. None of these

23. If \(u = f(x^3), v = g(x^2), f'(x) = \cos x \) and \(g'(x) = \sin x \), then \(\frac{du}{dv} \) is

 a. \(\frac{3}{2} x \cos x \cos x^2 \)

 b. \(\frac{2}{3} \sin x^3 \sec x^2 \)

 c. \(\tan x \)

 d. None of these

24. \(x = t \cos t, y = t + \sin t \), then \(\frac{d^2y}{dx^2} \) at \(t = \frac{\pi}{2} \) is

 a. \(\pi + 4 \)

 b. \(-\pi + 4 \)

 c. \(-2 \)

 d. None of these

25. If \(f(x) = \sqrt{1 - \sin 2x} \), then \(f'(x) \) is equal to

 a. \(-(\cos x + \sin x) \), for \(x \in (\pi/4, \pi/2) \)

 b. \(\cos x + \sin x \), for \(x \in (0, \pi/4) \)

 c. \(-(\cos x + \sin x) \), for \(x \in (0, \pi/4) \)

 d. \(\cos x - \sin x \), for \(x \in (\pi/4, \pi/2) \)

26. If \(y = x - x^2 \), then the derivative of \(y^2 \) with respect to \(x^2 \) is

 a. \(1 - 2x \)

 b. \(2 - 4x \)

 c. \(3x - 2x^2 \)

 d. \(1 - 3x + 2x^2 \)

27. The first derivative of the function
 \[\cos^{-1} \left(\frac{\sqrt{1+x}}{2} + x \right) \] with respect to \(x \) at \(x = 1 \) is

 a. \(\frac{3}{4} \)

 b. \(0 \)

 c. \(1/2 \)

 d. \(-1/2 \)

28. If \(y = \sin px \) and \(y_n \) is the \(n \)th derivative of \(y \), then

 a. \(y \)

 b. \(y_1 \)

 c. \(y_2 \)

 d. None of these

29. A function \(f \), defined for all positive real numbers, satisfies the equation \(f(x^2) = x^3 \) for every \(x > 0 \). Then the value of \(f'(4) = \)

 a. \(12 \)

 b. \(3 \)

 c. \(3/2 \)

 d. Cannot be determined

30. Suppose \(f(x) = e^{ax} + e^{bx} \), where \(a \neq b \), and that \(f'''(x) - 2f''(x) - 15f(x) = 0 \) for all \(x \). Then the product \(ab \) is

 a. \(25 \)

 b. \(9 \)

 c. \(-15 \)

 d. \(-9 \)

31. If \(y = \left(a - x \right) \sqrt{a - x - (b - x)} \sqrt{x - b} \), then \(\frac{dy}{dx} \) wherever it is defined is

 a. \(\frac{x + (a - b)}{\sqrt{(a - x)(b - x)}} \)

 b. \(\frac{2x - a - b}{2\sqrt{a - x - x - b}} \)

 c. \(\frac{2(a + b)}{2\sqrt{(a - x)(x - b)}} \)

 d. \(\frac{2x + (a + b)}{2\sqrt{(a - x)(x - b)}} \)

32. The function \(f(x) = e^x + x \), being differentiable and one to one, has a differentiable inverse \(f^{-1}(x) \). The value of \(\frac{d}{dx} f^{-1}(x) \) at the point \(f(\log 2) \) is

 a. \(\frac{1}{\ln 2} \)

 b. \(\frac{1}{3} \)

 c. \(\frac{1}{4} \)

 d. None of these

33. Let \(h(x) \) be differentiable for all \(x \) and let \(f(x) = (kx + e^x) h(x) \), where \(k \) is some constant. If \(h(0) = 5, h'(0) = -2 \) and \(f''(0) = 18 \), then the value of \(k \) is

 a. \(5 \)

 b. \(4 \)

 c. \(3 \)

 d. \(2.2 \)

34. If \(y = \tan^{-1} \left(\frac{2x}{1 + 2x^2 + 1} \right) \), then \(\frac{dy}{dx} \) at \(x = 0 \) is

 a. \(1 \)

 b. \(2 \)

 c. \(\ln 2 \)

 d. None of these
35. The nth derivative of the function $f(x) = \frac{1}{1-x^2}$ (where $x \in (-1, 1)$) at the point $x = 0$ where n is even is
 a. 0
 b. $n!$
 c. $n!C_2$
 d. 2^nC_2

36. $\frac{d^{20}}{dx^{20}} (2\cos x \cos 3x)$ is equal to
 a. $2^{20} (\cos 2x - 2^{20}\cos 3x)$
 b. $2^{20} (\cos 2x + 2^{20}\cos 4x)$
 c. $2^{20} (\sin 2x + 2^{20}\sin 4x)$
 d. $2^{20} (\sin 2x + 2^{-21}\sin 4x)$

37. If $y = \sqrt{1-x^2}$, then $(1-x^2) \frac{dy}{dx}$ is equal to
 a. y^3
 b. $\frac{1}{y}$
 c. $-y$
 d. $-\frac{y}{x}$

38. The derivative of $y = (1-x)(2-x)...(n-x)$ at $x = 1$ is
 a. 0
 b. $(-1)(n-1)!$
 c. $n!-1$
 d. $(-1)^{n-1}(n-1)!$

39. If $y = \cos^{-1}\left(\frac{5 \cos x - 12 \sin x}{13}\right)$, where $x \in \left(0, \frac{\pi}{2}\right)$, then
 \[
 \frac{dy}{dx} = \frac{1}{2x\sqrt{x^2-1}}
 \]
 a. 1
 b. -1
 c. 0
 d. None of these

40. If $y = \tan^{-1}\left(\frac{x+1}{\sqrt{x}}\right)$, then $\frac{dy}{dx}$ is
 a. $\frac{-1}{2x\sqrt{x^2-1}}$
 b. $\frac{-1}{2x^2\sqrt{x^2-1}}$
 c. $\frac{1}{2x\sqrt{x^2-1}}$
 d. None of these

41. If $\sin^{-1}\left(\frac{x^2-y^2}{x^2+y^2}\right) = \log a$, then $\frac{dy}{dx}$ is equal to
 a. $\frac{x}{y}$
 b. $\frac{y}{x^2}$
 c. $\frac{x^2-y^2}{x^2+y^2}$
 d. $\frac{y}{x}$

42. If $e^x = \frac{\sqrt{1+t} - \sqrt{1-t}}{\sqrt{1+t} + \sqrt{1-t}}$ and $\tan \frac{y}{2} = \frac{1-t}{\sqrt{1+t}}$, then $\frac{dy}{dx}$
 a. $\frac{1}{\sqrt{2}}$
 b. $\frac{y}{2}$
 c. $\frac{1}{2}$
 d. None of these

43. If $x^2 + y^2 = t - \frac{1}{t}$ and $x^4 + y^4 = t^2 + \frac{1}{t^2}$, then $x^3y \frac{dy}{dx}$
 a. 0
 b. 1
 c. -1
 d. None of these

45. If $y^{1/m} = (x + \sqrt{1+x^2})$, then $(1 + x^2)y_2 + xy_1$ is
 a. m^2y
 b. my^2
 c. m^2x^2
 d. None of these

46. Suppose the function $f(x) - f(2x)$ has the derivative 5 at $x = 1$ and derivative 7 at $x = 2$. The derivative of the function $f(x) - f(4x)$ at $x = 1$ has the value equal to
 a. 19
 b. 9
 c. 17
 d. 14

47. If $f(x) = \sin^{-1} x$, then the value of $f(10) + f'(10)$ is
 a. $11 - \frac{7\pi}{2}$
 b. $\frac{7\pi}{2} - 11$
 c. $\frac{5\pi}{2} - 11$
 d. None of these

48. If $(\sin x)(\cos y) = 1/2$, then d^2y/dx^2 at $(\pi/4, \pi/4)$ is
 a. -4
 b. 2
 c. -6
 d. 0

49. A function f satisfies the condition, $f(x) = f'(x) + f''(x) + f'''(x) + \ldots$ where $f(x)$ is a differentiable function indefinitely and dash denotes the order of derivative. If $f(0) = 1$, then $f(x)$ is
 a. e^x
 b. e^{2x}
 c. e^{e^x}
 d. None of these

50. If $\sqrt{x^2 + y^2} = 1/2 + \sqrt{y^2 - x^2}$, then $\frac{dy}{dx}$ is equal to
 a. $\frac{1}{\sqrt{x^2}}$
 b. $\frac{1}{\sqrt{y^2}}$
 c. $\frac{1}{\sqrt{x^2+y^2}}$
 d. $\frac{1}{\sqrt{1-x^2}}$

51. If $y = x^2 + \frac{1}{x^2 + \frac{1}{x^2 + \ldots}}$, then $\frac{dy}{dx}$ is
 a. $\frac{2xy}{y^2 - x^2}$
 b. $\frac{xy}{y+x^2}$
 c. $\frac{xy}{y-x^2}$
 d. $\frac{2xy}{y^2 + 2 + \ldots}$
4.22 Calculus

52. \(\frac{d}{dx} \left[\tan^{-1} \left(\frac{\sqrt{x(3-x)}}{1-3x} \right) \right] = \)

a. \(\frac{1}{2(1+x)x} \)
b. \(\frac{3}{(1+x)x} \)
c. \(\frac{2}{(1+x)x} \)
d. \(\frac{3}{2(1+x)x} \)

53. Let \(g(x) \) be the inverse of an invertible function \(f(x) \) which is differentiable at \(x = c \), then \(g'(c) \) equals

a. \(f'(c) \)
b. \(\frac{1}{f'(c)} \)
c. \(f(c) \)
d. None of these

54. If \(f(x) = x + \tan x \) and \(f \) is inverse of \(g \), then \(g'(x) \) equals

a. \(\frac{1}{1 + [g(x) - x]^2} \)
b. \(\frac{1}{2 - [g(x) - x]^2} \)
c. \(\frac{1}{2 + [g(x) - x]^2} \)
d. None of these

55. If \(y = \sqrt{x^2 + 1} = \log(\sqrt{x^2 + 1} - x) \), then

\((x^2 + 1) \frac{dy}{dx} + xy + 1 = \)

a. 0
b. 1
c. 2
d. None of these

56. If \(y = \sqrt{a^2 + x - \sqrt{a^2 - x}} \), then \(\frac{dy}{dx} \) is equal to

a. \(\frac{ay}{x\sqrt{a^2 - x^2}} \)
b. \(\frac{ay}{\sqrt{a^2 - x^2}} \)
c. \(\frac{ay}{x\sqrt{x^2 - a^2}} \)
d. None of these

57. If \(f(x) = x^3 \tan(x^3) - x \ln(1 + x^2) \), then the value of \(\frac{d^4}{dx^4} f(x) \) at \(x = 0 \) is

a. 0
b. 6
c. 12
\(\sqrt[12]{12} \)
d. 24

58. Let \(g(x) \) be the inverse of an invertible function \(f(x) \), which is differentiable for all real \(x \), then \(g''(f(x)) \) equals

a. \(-\left(\frac{f''(x)}{(f'(x))^3} \right) \)
b. \(\left(\frac{f''(x)}{f'(x)} \right) \)
c. \(\frac{f''(x) - (f'(x))^2}{(f'(x))^2} \)
d. None of these

59. If \(f(x) = \|\log|x|| \), then \(f''(x) \) equals

\(\frac{1}{|x|} \) where \(x \neq 0 \)

a. 0
b. \(\frac{1}{x} \) for \(|x| > 1 \) and \(-\frac{1}{x} \) for \(|x| < 1 \)
c. \(-\frac{1}{x} \) for \(|x| > 1 \) and \(\frac{1}{x} \) for \(|x| < 1 \)
d. \(\frac{1}{x} \) for \(x > 0 \) and \(-\frac{1}{x} \) for \(x < 0 \)

60. If \(y = \cos x + |\sin x| \), then \(\frac{dy}{dx} \) at \(x = \frac{2\pi}{3} \) is

a. \(\frac{1 - \sqrt{3}}{2} \)
b. 0
\(\sqrt{3} \)
c. \(\frac{1}{2} (\sqrt{3} - 1) \)
d. None of these

61. If \(g \) is the inverse function of \(f \) and \(f'(x) = \sin x \), then \(g'(x) \) is

a. \(\cos \{g(x)\} \)
b. \(\sin \{g(x)\} \)
c. \(\frac{1}{\sin \{g(x)\}} \)
d. None of these

62. If \(x = \phi(t) \), \(y = \psi(t) \), then \(\frac{d^2y}{dx^2} \) is

a. \(\frac{\phi'' \psi'' - \phi' \psi'''}{(\phi')^3} \)
b. \(\frac{\phi'' \psi'' - \phi' \psi''}{(\phi')^3} \)
c. \(\frac{\phi''}{\phi'} \)
d. \(\frac{\psi''}{\phi'} \)

63. \(f(x) = e^x - e^{-x} - 2 \sin x - \frac{2}{3} x^3 \), then the least value of \(n \) for which \(\frac{d^n}{dx^n} f(x) \bigg|_{x=0} \) is non-zero is

a. 5
b. 6
c. 7
d. 8

64. If \(f(x) \) satisfies the relation

\(f \left(\frac{5x - 3y}{2} \right) = \frac{5f(x) - 3f(y)}{2} \quad \forall x, y \in R, \text{ and } f(0) = 3 \)

and \(f'(0) = 2 \), then the period of \(\sin(f(x)) \) is

a. \(2\pi \)
b. \(\pi \)
c. \(3\pi \)
d. \(4\pi \)

65. Instead of the usual definition of derivative \(Df(x) \), if we define a new kind of derivative, \(D^\ast F(x) \), by the formula

\(D^\ast F(x) = \lim_{h \to 0} \frac{f^2(x + h) - f^2(x)}{h} \), where \(f^2(x) \) means \([f(x)]^2 \). If \(f(x) = x \log x \), then

\(D^\ast f(x) \) has the value

a. \(e \)
b. \(2e \)
c. \(4e \)
d. None of these

66. If \(f(x) = \left[2 \sin^{-1} \sqrt{1-x} + \sin^{-1} \left(2 \sqrt{x(1-x)} \right) \right] \), where

\(x \in \left(0, \frac{1}{2} \right) \), then \(f''(x) \) is

a. \(\frac{2}{\sqrt{x(1-x)}} \)
b. zero
\(\sqrt{2} \)
c. \(\frac{2}{\sqrt{x(1-x)}} \)
d. \(\pi \)
67. If \(f''(x) = -f(x) \) and \(g(x) = f'(x) \) and
\[
F(x) = \left(f\left(\frac{x}{2}\right) \right)^2 + \left(g\left(\frac{x}{2}\right) \right)^2
\]
and given that \(F(5) = 5 \), then \(F(10) \) is
a. 5
b. 10
c. 0
d. 15

68. The derivative of \(\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right) \) with respect to
\[
\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right) \text{ at } x = 0 \text{ is}
\]
a. \(\frac{1}{8} \)
b. \(\frac{1}{4} \)
c. 1/2
d. 1

69. The \(n \)th derivative of \(xe^x \) vanishes when
a. \(x = 0 \)
b. \(x = -1 \)
c. \(x = n \)
d. \(x = n \)

70. If \(y^2 = ax^2 + bx + c \), then \(\frac{d^2 y}{dx^2} \) is
a. a constant
b. a function of \(x \) only
c. a function of \(y \) only
d. a function of \(x \) and \(y \)

71. If \(y = \sin x + e^x \), then \(\frac{d^2 x}{dy^2} \) is
a. \(\frac{\sin x - e^x}{(\cos x + e^x)^2} \)
b. \(\frac{\sin x - e^x}{(\cos x + e^x)^3} \)
c. \(\frac{\sin x - e^x}{(\cos x + e^x)^2} \)
d. \(\frac{\sin x - e^x}{(\cos x + e^x)^3} \)

72. If \(u = x^2 + y^2 \) and \(x = s + 3t, y = 2s - t \), then \(\frac{d^2 u}{ds^2} \) equals to
a. 12
b. 32
c. 36
d. 10

73. Let \(y = t^{10} + 1 \) and \(x = t^8 + 1 \), then \(\frac{d^2 y}{dx^2} \) is
a. \(\frac{5}{2} \)
b. 20\(e^6 \)
c. \(\frac{5}{16} \)
d. None of these

74. If \(y = x \log \left(\frac{x}{a + bx}\right) \), then \(x \frac{d^2 y}{dx^2} \) equals to
a. \(\frac{dy}{dx} - y \)
b. \(\left(\frac{dy}{dx} - y \right)^2 \)
c. \(\frac{dy}{dx} - x \)
d. \(\left(\frac{dy}{dx} - x \right)^2 \)

75. Let \(u(x) \) and \(v(x) \) be differentiable functions such that
\[
\frac{u(x)}{v(x)} = 7, \text{ If } \frac{u'(x)}{v'(x)} = p \text{ and } \left(\frac{u(x)}{v(x)} \right)' = q, \text{ then } \frac{p+q}{p-q} \text{ has the value equal to}
\]
a. 1
b. 7
c. 0
d. -7

76. If \(ax^2 + 2hxy + by^2 = 1 \), then \(\frac{d^2 y}{dx^2} \) is
a. \(\frac{h^2 - ab}{(hx + by)^2} \)
b. \(\frac{ab - h^2}{(hx + by)^2} \)
c. \(\frac{h^2 + ab}{(hx + by)^2} \)
d. None of these

77. If \(x = t^2, y = t^3 \), then \(\frac{d^2 y}{dx^2} \) is
a. \(\frac{3}{2} \)
b. \(\frac{3}{4t} \)
c. \(\frac{3}{2t} \)
d. \(\frac{3}{2} \)

78. If \(y = x + e^x \), then \(\frac{d^2 x}{dy^2} \) is
a. \(e^x \)
b. \(\frac{e^x}{(1 + e^x)^2} \)
c. \(\frac{e^x}{(1 + e^x)^2} \)
d. None of these

79. If \(f(x) = |\sin x - \cos x| \), then the value of \(f'(x) \) at \(x = \frac{7\pi}{6} \) is
a. positive
b. \(1 - \sqrt{2} \)
c. 0
d. None of these

80. If graph of \(y = f(x) \) is symmetrical about \(y \)-axis and that of \(y = g(x) \) is symmetrical about the \(x \)-axis. If \(h(x) = f(x) \cdot g(x) \), then \(\frac{d^2 h(x)}{dx^2} \) at \(x = 0 \) is
a. can not be determined
b. \(f(0) \cdot g(0) \)
c. 0
d. None of these

81. If \(x = \log p \) and \(y = \frac{1}{p} \), then
a. \(\frac{d^2 y}{dx^2} - 2p = 0 \)
b. \(\frac{d^2 y}{dx^2} + y = 0 \)
c. \(\frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0 \)
d. \(\frac{d^2 y}{dx^2} \cdot \frac{dy}{dx} = 0 \)

82. Let \(y = \ln (1 + \cos x) \), then the value of \(\frac{d^2 y}{dx^2} + \frac{2}{e^{2y^2}} \) equals
a. 0
b. \(\frac{2}{1 + \cos x} \)
c. \(\frac{4}{(1 + \cos x)^2} \)
d. None of these

83. Let \(f(x) = \lim_{h \to 0} \frac{(\sin(x+h))^{\ln(x+h)} - (\sin x)^{\ln x}}{h} \), then \(f\left(\frac{\pi}{2}\right) \) is
a. equal to 0
b. equal to 1
c. \(\ln \frac{\pi}{2} \)
d. non-existent
Multiple Correct Answers Type

Each question has four choices a, b, c, and d, out of which one or more answers are correct.

1. If \(y = e^{\sqrt{x}} + e^{-\sqrt{x}} \), then \(\frac{dy}{dx} \) is equal to

 a. \(\frac{e^{\sqrt{x}} - e^{-\sqrt{x}}}{2\sqrt{x}} \)
 b. \(\frac{e^{\sqrt{x}} - e^{-\sqrt{x}}}{2x} \)
 c. \(\frac{1}{2\sqrt{x}} \sqrt{y^2 - 4} \)
 d. \(\frac{1}{2\sqrt{x}} \sqrt{y^2 + 4} \)

2. Let \(y = \sqrt{x} + \sqrt{x + \sqrt{x + \cdots}} \), then \(\frac{dy}{dx} \) is equal to

 a. \(\frac{1}{2y - 1} \)
 b. \(\frac{x}{x + 2y} \)
 c. \(\frac{1}{\sqrt{1 + 4x}} \)
 d. \(\frac{y}{2x + y} \)

3. If \(l \) is a twice repeated root of the equation \(ax^3 + bx^2 + cx + d = 0 \), then

 a. \(a = b = d \)
 b. \(a + b = 0 \)
 c. \(b + d = 0 \)
 d. \(a = d \)

4. If \(x^2 - 2xy + 5x + y - 5 = 0 \) and \(y(1) = 1 \), then

 a. \(y'(1) = 4/3 \)
 b. \(y''(1) = -4/3 \)
 c. \(y'''(1) = -8 \)
 d. \(y'(1) = 2/3 \)

5. \(f(x) = |x^2 - 3|x| + 2| \), then which of the following is/are true

 a. \(f'(x) = 2x \) for \(x \in (0, 1) \cup (2, \infty) \)
 b. \(f'(x) = 2x + 3 \) for \(x \in (-\infty, -2) \cup (-1, 0) \)
 c. \(f'(x) = -2x - 3 \) for \(x \in (-2, -1) \)
 d. None of these

6. If \(y = \frac{x^4 - x^2 + 1}{x^2 + \sqrt{3x} + 1} \) and \(\frac{dy}{dx} = ax + b \), then the value of \(a - b \) is

 a. \(\cot \frac{\pi}{8} \)
 b. \(\cot \frac{\pi}{12} \)
 c. \(\tan \frac{5\pi}{12} \)
 d. \(\tan \frac{5\pi}{8} \)

7. Let \(f(x) = \sqrt{\frac{x - 2}{\sqrt{x - 1} - 1}} \), then

 a. \(f'(10) = 1 \)
 b. \(f'(3/2) = -1 \)
 c. Domain of \(f(x) \) is \(x \geq 1 \)
 d. Range of \(f(x) \) is \((-\infty, -1] \cup (2, \infty) \)

8. If \(y = x^{\log{x}^{\log{x}}} \), then \(\frac{dy}{dx} \) is

 a. \(\frac{y}{x} \left((\ln{x}v) + 2\ln{x} \ln{(\ln{x})} \right) \)
 b. \(\frac{y}{x} \left(\log{x}v^2 \log{(\log{x})} (2\log{(\log{x})} + 1) \right) \)

9. Which of the following is/are true?

 a. \(\frac{dy}{dx} \) for \(y = \sin^{-1} (\cos x) \), where \(x \in (0, \pi) \), is \(-1 \)
 b. \(\frac{dy}{dx} \) for \(y = \sin^{-1} (\cos x) \), where \(x \in (\pi, 2\pi) \), is \(1 \)
 c. \(\frac{dy}{dx} \) for \(y = \cos^{-1} (\sin x) \), where \(x \in \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \), is \(-1 \)
 d. \(\frac{dy}{dx} \) for \(y = \cos^{-1} (\sin x) \), where \(x \in \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \), is \(-1 \)

10. If \(f(x-y), f(x), f(x+y) \) are in A.P. for all \(x, y, \) and \(f(0) \neq 0 \), then

 a. \(f(4) = f(-4) \)
 b. \(f(2) + f(-2) = 0 \)
 c. \(f'(4) + f'(-4) = 0 \)
 d. \(f'(2) - f'(-2) \)

11. If \(y = \cos^{-1} \left(\frac{2x}{1 + x^2} \right) \), then \(\frac{dy}{dx} \) is

 a. \(\frac{-2}{1 + x^2} \) for all \(x \)
 b. \(\frac{-2}{1 + x^2} \) for all \(|x| < 1 \)
 c. \(\frac{2}{1 + x^2} \) for \(|x| > 1 \)
 d. None of these

12. \(f : R^+ \rightarrow R \) be a continuous function satisfying

 \[f \left(\frac{x}{y} \right) = f(x) - f(y) \forall x, y \in R^+ \]. If \(f(1) = 1 \), then

 a. \(f' \) is unbounded
 b. \(\lim_{x \to 0} f \left(\frac{1}{x} \right) = 0 \)
 c. \(\lim_{x \to 0} \frac{f(1+x)}{x} = 1 \)
 d. \(\lim_{x \to \infty} x \cdot f(x) = 0 \)

13. If \(f_n(x) = e^{f_{n-1}(x)} \) for all \(n \in N \) and \(f_0(x) = x \), then \(\frac{d}{dx} \{ f_n(x) \} \) is

 a. \(f_n(x) \frac{d}{dx} \{ f_{n-1}(x) \} \)
 b. \(f_n(x) \cdot f_{n-1}(x) \)
 c. \(f_n(x) \cdot f_{n-1}(x) \cdot \ldots \cdot f_1(x) \cdot f_0(x) \)
 d. None of these

Reasoning Type

Each question has four choices a, b, c, and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2.

a. If both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT 1
b. If both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1
c. if STATEMENT 1 is TRUE and STATEMENT 2 is FALSE.
d. if STATEMENT 1 is FALSE and STATEMENT 2 is TRUE.

1. Statement 1: Let $f(x) = x[x]$ and $[.]$ denotes greatest integer function, when x is not an integer, then rule for $f''(x)$ is given by $[x]$.
Statement 2: $f''(x)$ does not exist for any $x \in \mathbb{Z}$.

2. Statement 1: If $f(x)$ is an odd function, then $f''(x)$ is an even function.
Statement 2: If $f''(x)$ is an even function, then $f(x)$ is an odd function.

3. Statement 1: Let $f: \mathbb{R} \to \mathbb{R}$ is a real-valued function $\forall x, y \in \mathbb{R}$ such that $|f(x) - f(y)| \leq |x - y|^3$, then $f(x)$ is a constant function.
Statement 2: If derivative of the function w.r.t. x is zero, then function is constant.

4. Statement 1: For $f(x) = \sin x$, $f''(\pi) = f'''(3\pi)$.
Statement 2: For $f(x) = \sin x$, $f(0) = f(3\pi)$.

5. Statement 1: If differentiable function $f(x)$ satisfies the relation $f(x) + f(x - 2) = 0 \forall x \in \mathbb{R}$, and if $\lim_{x \to a} \frac{d}{dx} f(x) = b$ at $x = a$, then $\lim_{x \to a+4000} \frac{d}{dx} f(x) = b$.
Statement 2: $f(x)$ is a periodic function with period 4.

6. If for some differentiable function $f(x) = 0$ and $f''(0) = 0$,
Statement 1: Then sign of $f(x)$ does not change in the neighborhood of $x = 0$.
Statement 2: α is a repeated root of $f(x) = 0$.

Consider function $f(x)$ satisfies the relation, $f(x + y^3) = f(x) + f(y^3), \forall x, y \in \mathbb{R}$ and differentiable for all x.

Statement 1: If $f''(2) = a$, then $f''(-2) = a$.
Statement 2: $f(x)$ is an odd function.

\[\text{For Problems 4-6} \]
\[f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 2x^2 f''(1) + f''(2) + f''''(3) \text{ for all } x \in \mathbb{R}. \]

4. The value of $f(1)$ is
 \[a. \quad 2 \quad b. \quad 3 \quad c. \quad -1 \quad d. \quad 4 \]

5. $f(x)$ is
 \[a. \quad \text{one-one and onto} \quad b. \quad \text{one-one and into} \quad c. \quad \text{many-one and onto} \quad d. \quad \text{many-one and into} \]

6. The value of $f''(1) + f''(2) + f''''(3)$ is
 \[a. \quad 0 \quad b. \quad 1 \quad c. \quad 2 \quad d. \quad 3 \]

\[\text{For Problems 7-9} \]

Repetitive roots: If equation $f(x) = 0$, where $f(x)$ is a polynomial of degree n, and if it has roots α, β, \ldots or α root is repeated root, then $f(x) = 0$ is equivalent to $(x - \alpha)(x - \beta)^2 = 0$, from which we can conclude that $f''(x) = 0$ when $(x - \alpha)(x - \beta) = 0$ or $(x - \alpha)(x - \beta) = 0$ has root $x = \alpha$.

Thus, if α root occurs twice in equation, then it is common in equations $f(x) = 0$ and $f''(x) = 0$.

Similarly, if α root occurs thrice in equation, then it is common in the equations $f(x) = 0$, $f''(x) = 0$, and $f'''(x) = 0$.

7. If $x = c$ is a factor of order m of the polynomial $f(x)$ of degree $n (1 < m < n)$, then $x = c$ is a root of the polynomial (where $f''(x)$ represent rth derivative of $f(x)$ w.r.t. x).
 \[a. \quad f'(x) \quad \quad b. \quad f^{-1}(x) \quad c. \quad f'(x) \quad d. \quad \text{None of these} \]

8. If $a_1 x^3 + b_1 x^2 + c_1 x + d_1 = 0$ and $a_2 x^3 + b_2 x^2 + c_2 x + d_2 = 0$ have a pair of repeated roots common, prove that
 \[\begin{vmatrix} 3a_1 & 2b_1 & c_1 \\ 3a_2 & 2b_2 & c_2 \\ a_2b_1 - a_1b_2 & c_2a_1 - c_1a_2 & d_2a_1 - d_1a_2 \end{vmatrix} = 0. \]

9. If α root occurs p times and β root occurs q times in polynomial equation $f(x) = 0$ or n degree $(1 < p, q, n)$, then which of the following is not true. (where $f''(x)$ represents rth derivative of $f(x)$ w.r.t. x).
 \[a. \quad f''(x) = 0 \quad b. \quad f''(x) = 0 \quad c. \quad f''(x) = 0 \quad d. \quad \text{None of these} \]

\[\text{For Problems 10-12} \]

10. The value of $(1 - a_1)(1 - a_2) \ldots (1 - a_{n-1})$ is
 \[a. \quad n^{2/3} \quad b. \quad n \quad c. \quad (-1)^n \quad d. \quad \text{None of these} \]

11. The value of $\sum_{r=1}^{n-1} \frac{1}{a_r}$ is
 \[a. \quad 2^{n-1}(n-2) + 1 \quad b. \quad 2^n(n-2) + 1 \quad c. \quad 2^{n-1}(n-1) - 1 \quad d. \quad \text{None of these} \]

\[\text{Linked Comprehension Type \quad Solutions on page 4.44} \]

Based upon each paragraph, three multiple choice questions have to be answered. Each question has four choices a, b, c, and d, out of which only one is correct.

\[\text{For Problems 1-3} \]
\[f(x) = \text{a polynomial function } f: \mathbb{R} \to \mathbb{R} \text{ such that } f(2x) = f''(x) f''(x). \]

1. The value of $f(3)$ is
 \[a. \quad 4 \quad b. \quad 12 \quad c. \quad 15 \quad d. \quad \text{None of these} \]

2. $f(x)$ is
 \[a. \quad \text{one-one and onto} \quad b. \quad \text{one-one and into} \quad c. \quad \text{many-one and onto} \quad d. \quad \text{many-one and into} \]

3. Equation $f(x) = x$ has
 \[a. \quad \text{three real and positive roots} \quad b. \quad \text{three real and negative roots} \quad c. \quad \text{one real roots} \quad d. \quad \text{three real roots such that sum of roots is zero} \]

\[\text{For Problems 10-12} \]

11. The equation $x^n - 1 = 0$, $n > 1$, $n \in \mathbb{N}$, has roots $1, a_1, a_2, \ldots, a_{n-1}$

10. The value of $(1 - a_1)(1 - a_2) \ldots (1 - a_{n-1})$ is
 \[a. \quad n^{2/3} \quad b. \quad n \quad c. \quad (-1)^n \quad d. \quad \text{None of these} \]

11. The value of $\sum_{r=1}^{n-1} \frac{1}{a_r}$ is
 \[a. \quad 2^{n-1}(n-2) + 1 \quad b. \quad 2^n(n-2) + 1 \quad c. \quad 2^{n-1}(n-1) - 1 \quad d. \quad \text{None of these} \]
Matrix-Match Type

Each question contains statements given in two columns which have to be matched. Statements a, b, c, d, in column I have to be matched with statements p, q, r, s in column II. If the correct match are a-p, a-s, b-r, c-p, c-q and d-s, then the correctly bubbled 4 × 4 matrix should be as follows

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Diff. function f(x) satisfies the relation f(1 - x) = f(1 + x) for all x ∈ R</td>
<td>p. Graph of f(x) is symmetrical about point (1, 0)</td>
</tr>
<tr>
<td>b. Diff. function f(x) satisfies the relation f(2 - x) + f(x) = 0 for all x ∈ R</td>
<td>q. Graph of f(x) is symmetrical about line x = 1</td>
</tr>
<tr>
<td>c. Diff. function f(x) satisfies the relation f(x + 2) + f(x) = 0 for all x ∈ R</td>
<td>r. f'(−1) = f'(3)</td>
</tr>
<tr>
<td>d. Diff. function f(x) satisfies the relation f(x) + f(y) + f(x + y) = 0 for all x, y and f(x) + f(y) > 0</td>
<td>s. f''(x) has period 4</td>
</tr>
</tbody>
</table>

2.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. y = f(x) be given by x = t^3 - 5t^3 - 20t + 7 and y = 4t^2 - 3t^4 - 18t + 3, then (-5 \times \frac{dy}{dx}) at (t = 1)</td>
<td>p. 0</td>
</tr>
<tr>
<td>b. P(x) be a polynomial of degree 4, with (P(2) = -1, P'(2) = 0, P''(2) = 2, P'''(2) = -12) and (P''''(2) = 24), then (P''''(3))</td>
<td>q. -2</td>
</tr>
<tr>
<td>c. (y = \frac{1}{x}), then (\frac{dy}{dx}) at (x = 1)</td>
<td>r. 2</td>
</tr>
<tr>
<td>d. (f \left(\frac{2x + 3y}{5} \right) = \frac{2f(x) + 3f(y)}{5}) and (f''(0) = p) and (f(0) = q), then (f''(0))</td>
<td>s. -1</td>
</tr>
</tbody>
</table>
4. Match the value of \(x \) in column II where derivative of the function in column I is negative.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (y = \sin^{-1} \left(\frac{2x}{1 + x^2} \right))</td>
<td>p. for (x < 0)</td>
</tr>
<tr>
<td>b. (y = \cos^{-1} \left(\frac{1}{1 + x^2} \right))</td>
<td>q. for (x > 1)</td>
</tr>
<tr>
<td>c. (y = \lceil x \rceil)</td>
<td>r. for (x < 1)</td>
</tr>
<tr>
<td>d. (y = \log(2x))</td>
<td>s. for (x - 1 < 0)</td>
</tr>
</tbody>
</table>

Integer Type

1. If \(f'(x) = \phi(x) \) and \(\phi'(x) = f(x) \) for all \(x \). Also, \(f(3) = 5 \) and \(f'(3) = 4 \). Then the value of \(f(10)^2 - [\phi(10)]^2 \) is

2. If \(y = f(x) \) is an odd differentiable function defined on \((-\infty, \infty)\) such that \(f'(3) = -2 \), then \(f'(-3) = \) equals

3. If \(x^3 + 3x^2 - 9x + c \) is of the form \((x - \alpha)^2 \) \((x - \beta) \), positive value of \(c \) is

4. If graph of \(y = f(x) \) is symmetrical about the point \((3,0)\), and \(f'(3) = 3 \), then the value of \(f''(3) \) equals

5. Let \(g(x) = f(x) \sin x \), where \(f(x) \) is a twice differentiable function on \((-\infty, \infty)\) such that \(f'(-\pi) = 1 \). The value of \(|g'(-\pi)| \) equals

6. Let \(f(x) = (x-1)(x-2)(x-3)\ldots(x-n), n \in N \) and \(f'(n) = 0 \), then the value of \(n \) is

7. If \(y = f(x) \), where \(f \) satisfies the relation \(f(x + y) = 2f(x) + f(y) \) \(+ y \sqrt{f(x)} \) \(\forall x, y \in R \) and \(f'(0) = 0 \), then \(f(6) \) is equal to

8. If function \(f \) satisfies the relation \(f(x) \times f'(x) = f(x) + x' \times f'(x) \) for all \(x \), and \(f(0) = 3 \), now if \(f(3) = 3 \), then the value of \(f(-3) \) is

9. If \(y = \frac{a + bx^{3/2}}{x^{5/4}} \) and \(y' = 0 \) at \(x = 5 \), then the value of \(a^2/b^2 \) is

10. Let \(y = \frac{2 \log_{10} x - 3 \log_{10}(x^2 + 1)}{4 \log_{10} x - x - 1} \) and \(dy \) \(dx = ax + b \), then the value of \(a + b \) is

11. \(\lim_{h \to 0} \frac{(e + h)^{b(x)} - e}{h} \) is

12. If the function \(f(x) = -4e^x + 1 + x + x^2 + x^3 + 3 \) and \(g(x) = f^{-1}(x) \), then the reciprocal of \(g'(1/6) \) is

13. Suppose that \(f(0) = 0 \) and \(f'(0) = 2 \), and let \(g(x) = f(-x + 2f(2x)) \). The value of \(g'(0) \) is equal to

14. Suppose \(f(x) = e^{ax} + e^{bx} \), where \(a \neq b \), and that \(f''(x) = 2f'(x) - 15f(x) = 0 \) for all \(x \). Then the value of \(|ab|/3 \) is

15. A non-zero polynomial with real coefficients has the property that \(f(x) = f'(x) - f''(x) \). If \(a \) is the leading coefficient of \(f(x) \), then the value of \(1/(2a) \) is

16. A function is represented parametrically by the equations

\[x = \frac{1 + t}{t^3}; \quad y = \frac{3}{t^2} + \frac{2}{t^3} \]

Then the value of \(\frac{dy}{dx} - \left(\frac{dy}{dx} \right)^2 \)

is

17. Let \(z = (\cos x)^5 \) and \(y = \sin x \). Then the value of \(\frac{2z^2}{dy} \) at \(x = \frac{\pi}{9} \) is

18. Let \(g(x) = \left\{ \begin{array}{ll} \frac{x^2 + x \tan x - x \tan 2x}{ax + \tan x - \tan 3x} & ; \quad x \neq 0 \\
0 & ; \quad x = 0 \end{array} \right. \)

If \(g'(0) \) exists

and is equal to the non-zero value \(b \), then \(52 \cdot \frac{b}{a} \) is equal to

Subjective

1. Find the derivative of \(\sin(x^2 + 1) \) with respect to \(x \) from first principle.

2. Find the derivative of

\[f(x) = \begin{cases} \frac{x - 1}{2x^2 - 7x + 5} & \text{when } x \neq 1 \\
-\frac{1}{3} & \text{when } x = 1 \end{cases} \]

3. Given \(y = \frac{5x}{\sqrt{1 - x^2}} + \cos^2(2x + 1) \), find \(\frac{dy}{dx} \).

4. Let \(y = e^{x \sin^3 x + \tan x} \), find \(\frac{dy}{dx} \).

5. Let \(f \) be a twice differentiable function such that \(f''(x) = -f(x) \), and \(f'(x) = g(x) \), \(h(x) = [f(x)]^2 + [g(x)]^2 \). Find \(h(10) \) if \(h(5) = 11 \).

6. If \(\alpha \) be a repeated root of a quadratic equation \(f(x) = 0 \) and \(A(x), B(x) \) and \(C(x) \) be polynomials of degree 3, 4, and 5, respectively, then show that

\[\begin{align*}
A(\alpha) &= B(\alpha) \cdot C(\alpha) \\
A'(\alpha) &= B'(\alpha) \cdot C'(\alpha)
\end{align*} \]

divisible by \(f(x) \), where prime denotes the derivatives.

7. Find the derivative with respect to \(x \) of the function

\[(\log_{\cos x} \sin x)(\log_{\sin x} \cos x) + 1 - \sin^{-1} \left(\frac{2x}{1 + x^2} \right) \]
8. If \(x = \cosec \theta - \sin \theta \) and \(y = \cosec^n \theta - \sin^n \theta \), then show that \((x^2 + 4) \left(\frac{dy}{dx} \right)^2 = n^2 (y^2 + 4) \). (IIT-JEE, 1989)

9. Find \(\frac{dy}{dx} \) at \(x = -1 \), when \((sin y)^{\frac{x}{2}} + \frac{\sqrt{3}}{2} \sec^{-1} (2x) + \tan \log (x + 2) = 0 \). (IIT-JEE, 1991)

10. If \(y = \frac{ax^2}{(x - a)(x - b)(x - c)} + \frac{bx}{(x - b)(x - c)} + \frac{c}{x - c} + 1 \), prove that \(\frac{y'}{y} = \frac{1}{x} \left(a - \frac{b}{x} + \frac{c}{x - x} \right) \). (IIT-JEE, 1998)

Objective

Fill in the blanks

1. If \(y = f \left(\frac{2x - 1}{x^2 + 1} \right) \) and \(f'(x) = \sin x^2 \), then \(\frac{dy}{dx} = \) _______. (IIT-JEE, 1982)

2. If \(f_1(x), g_1(x), h_1(x), r = 1, 2, 3 \) are polynomials such that \(f_1(\alpha) = g_1(\alpha) = h_1(\alpha), r = 1, 2, 3 \) and

 \[
 F(x) = \begin{bmatrix}
 f_1(x) & f_2(x) & f_3(x) \\
 g_1(x) & g_2(x) & g_3(x) \\
 h_1(x) & h_2(x) & h_3(x)
 \end{bmatrix},
 \]

 then \(F'(x) \) at \(x = a \) is _______. (IIT-JEE, 1985)

3. If \(f(x) = \log_x (\log x) \), then \(f'(x) \) at \(x = e \) is _______. (IIT-JEE, 1985)

4. The derivative of \(\sec^{-1} \left(\frac{1}{2x^2 - 1} \right) \) with respect to \(\sqrt{1 - x^2} \) at \(x = \frac{1}{2} \) is _______. (IIT-JEE, 1986)

5. If \(f(9) = 9, f'(9) = 4 \), then \(\lim_{x \to 9} \frac{f(x) - 3}{\sqrt{x} - 3} = \) _______. (IIT-JEE, 1988)

6. If \(f(x) = |x - 2| \) and \(g(x) = f[f(x)] \), then \(g'(x) = \) _______, for \(x > 20 \). (IIT-JEE, 1990)

7. If \(xe^{2y} = y + \sin^2 x \) and \(x = 0 \), \(\frac{dy}{dx} = \) _______. (IIT-JEE, 1996)

8. Let \(F(x) = f(x) g(x) h(x) \) for all real \(x \), where \(f(x), g(x) \) and \(h(x) \) are differentiable functions. At some point \(x_0 \), \(F'(x_0) = 2F(x_0), F'(x_0) = 4f(x_0), g'(x_0) = -7g(x_0) \) and \(h'(x_0) = kh(x_0) \). Then \(k = \) _______. (IIT-JEE, 1997)

9. If the function \(f(x) = x^3 + e^{\sqrt{2}} \) and \(g(x) = f^{-1}(x) \), then the value of \(g'(1) \) is _______. (IIT-JEE, 1999)

True or false

1. The derivative of an even function is always an odd function. (IIT-JEE, 1983)

Multiple choice questions with one correct answer

1. If \(f(2) = 2, f'(2) = 2, g(2) = -1, g'(2) = 2 \), then the value of \(\lim_{x \to 0} \frac{f(x) - g(x)}{f(x)} \) is _______. (IIT-JEE, 2000)

2. If \(y^2 = P(x) \), a polynomial of degree 3, then

 \[
 2 \frac{d}{dx} \left(y^2 + \frac{d^2 y}{dx^2} \right) = \]

 a. \(P'''(x) + P(x) \)
 b. \(P''(x) P'''(x) \)
 c. \(P(x) P''(x) \)
 d. None of these (IIT-JEE, 1988)

3. Let \(f(x) \) be a quadratic expression which is positive for all the real values of \(x \). If \(g(x) = f(x) + f'(x) + f''(x) \), then for any real \(x \),

 a. \(g(x) < 0 \)
 b. \(g(x) > 0 \)
 c. \(g(x) = 0 \)
 d. \(g(x) \geq 0 \) (IIT-JEE, 1990)

4. If \(y = \sin x \), then \(\frac{dy}{dx} = \) _______. (IIT-JEE, 1994)

5. Let \(f(x) = \begin{bmatrix} 6 & 1 & 0 \\ p & p^2 & p \end{bmatrix} \), where \(p \) is a constant.

 Then \(\frac{d^3}{dx^3} (f(x)) \) at \(x = 0 \) is _______.

 a. \(p \)
 b. \(p - p^3 \)
 c. \(p + p^3 \)
 d. independent of \(p \) (IIT-JEE, 1997)

6. Let \(f : R \to R \) be such that \(f(1) = 3 \) and \(f''(1) = 6 \). Then

 \[
 \lim_{x \to 0} \frac{f(1 + x)}{f'(1)} \]

 a. 1
 b. \(e^{1/2} \)
 c. 2
 d. \(e^3 \) (IIT-JEE, 2002)

7. \(\lim_{h \to 0} \frac{f(2h + 2 + h^2) - f(2)}{f(h - h^2 + 1) - f(1)} \), given that \(f''(2) = 6 \) and \(f'(2) = 4 \)

 a. does not exist
 b. is equal to \(-3/2\)
 c. is equal to \(3/2\)
 d. is equal to 3 (IIT-JEE, 2004)

8. If \(f(x) \) is differentiable and strictly increasing function, then the value of \(\lim_{x \to 0} \frac{f(x^2) - f(x)}{x} \) is _______.

 a. \(1 \)
 b. \(h \)
 c. \(-1 \)
 d. 2 (IIT-JEE, 2004)

9. If \(y \) is a function of \(x \) and \(\log (x + y) - 2xy = 0 \), then the value of \(y'(0) \) is _______.

 a. \(1 \)
 b. \(-1 \)
 c. 2
 d. 0 (IIT-JEE, 2004)

10. If \(x^2 + y^2 = 1 \), then

 a. \(y'' - 2(y')^2 + 1 = 0 \)
 b. \(y'' + (y')^2 + 1 = 0 \)
 c. \(y'' + (y')^2 - 1 = 0 \)
 d. \(y'' - 2(y')^2 + 1 = 0 \) (IIT-JEE, 2004)
11. \[\frac{d^2 x}{dy^2} \] is equal to

a. \(\left(\frac{d^2 y}{dx^2} \right)^{-1} \)

b. \(\left(\frac{d^2 y}{dx^2} \right) \left(\frac{dy}{dx} \right)^3 \)

c. \(-\left(\frac{d^2 y}{dx^2} \right) \left(\frac{dy}{dx} \right)^{-2} \)

d. \(-\left(\frac{d^2 y}{dx^2} \right) \left(\frac{dy}{dx} \right)^{-3} \)

Reasoning Type
1. Let \(f(x) = 2 + \cos x \) for all real \(x \)
Statement 1: For each real \(t \), there exists a point \(c \) in \([t, t+\pi]\) such that \(f'(c) = 0 \) because

\[f(x) = 2 + \cos x \]

\[f'(x) = -\sin x \]

For any \(t \), there exists a point \(c \) in \([t, t+\pi]\) such that \(f'(c) = 0 \) because \(-\sin x \) is zero at \(c = \frac{\pi}{2} \) or \(\pi - \frac{\pi}{2} \).

Answer: TRUE

Methods of Differentiation

4.29

Integer Type
1. Let \(f(x) = \sin \left(\tan^{-1} \left(\frac{\sin \theta}{\sqrt{\cos 2\theta}} \right) \right) \), where \(-\frac{\pi}{4} < \theta < \frac{\pi}{4} \).

Then the value of \(\frac{d}{d(t \tan \theta)}(f(\theta)) \) is

\[x + \frac{1}{2} \left(\frac{2x^2 + 1}{\sqrt{x^2 + 1}} \right) \frac{1}{2\sqrt{x^2 + 1}} = x + \sqrt{x^2 + 1} \]

Also \(2y = x^2 + x\sqrt{x^2 + 1} + \log_e(x + \sqrt{x^2 + 1}) \)

\[= x(x + \sqrt{x^2 + 1}) + \log_e(x + \sqrt{x^2 + 1}) \]

\[= xy' + \log_e y' \text{, hence proved.} \]

4. \(y = A \tan^{-1} \left(B \tan \frac{x}{2} \right) \), where

\[A = \frac{2}{\sqrt{a^2 - b^2}}, B = a + b \]

\[AB = \frac{2}{\sqrt{(a-b)(a+b)}} \frac{a-b}{a+b} \Rightarrow AB = \frac{2}{a+b} \]

\[dy = \frac{AB \sec^2 \frac{x}{2} \times \frac{1}{2}}{1 + B^2 \tan^2 \frac{x}{2}} = \frac{1}{a+b} \cdot \frac{(a+b)}{(a+b) \cos^2 \frac{x}{2} + (a-b) \sin^2 \frac{x}{2}} \]

\[\Rightarrow \frac{dy}{dx} = \frac{1}{a+b \cos x} \]

\[\Rightarrow \frac{d^2 y}{dx^2} = \frac{b \sin x}{(a+b \cos x)^2} \]

5. Putting \(x = \cos \theta \)

\[y = \tan^{-1} \left(\frac{\cos \theta}{1 + \sin \theta} \right) + \sin \left(2 \tan^{-1} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \right) \]

\[= \tan^{-1} \left(\frac{\sin \left(\frac{\pi}{2} - \theta \right)}{1 + \cos \left(\frac{\pi}{2} - \theta \right)} \right) + \sin \left(2 \tan^{-1} \left(\frac{1}{2} \right) \right) \]

\[= \tan^{-1} \left(\frac{\sin \left(\frac{\pi}{2} - \theta \right)}{1 + \cos \left(\frac{\pi}{2} - \theta \right)} \right) + \sin \left(2 \tan^{-1} \left(\frac{1}{2} \right) \right) \]

\[= \tan^{-1} \left(\frac{\sin \left(\frac{\pi}{2} - \theta \right)}{1 + \cos \left(\frac{\pi}{2} - \theta \right)} \right) + \sin \left(2 \tan^{-1} \left(\frac{1}{2} \right) \right) \]
4.30 Calculus

\[\tan^{-1} \left(\frac{2 \sin \left(\frac{\pi - \theta}{2} \right) \cos \left(\frac{\pi - \theta}{2} \right)}{2 \cos^2 \left(\frac{\pi - \theta}{2} \right)} \right) + \sin \left(\frac{2 \theta}{2} \right) \]

\[= \tan^{-1} \tan \left(\frac{\pi - \theta}{2} \right) + \sin \theta \]

\[= \frac{\pi}{2} - \frac{\theta}{2} + \sqrt{1 - \cos^2 \theta} \]

\[= \frac{\pi}{2} - \frac{\cos^{-1} x}{2} + \sqrt{1 - x^2} \]

\[\therefore \frac{dy}{dx} = \frac{1}{2\sqrt{1 - x^2}} + \frac{-2x}{2\sqrt{1 - x^2}} \]

\[= \frac{1 - 2x}{2\sqrt{1 - x^2}} \]

6. \(y = (1/2^{n-1}) \cos (n \cos^{-1} x) \)

\[\therefore \frac{dy}{dx} = \frac{-1}{2^{n-1}} \sin (n \cos^{-1} x) \left[\frac{-n}{\sqrt{1 - x^2}} \right] \]

\[= \frac{n^2}{2^{2n-2}} \sin^2 (n \cos^{-1} x) \]

\[\Rightarrow (1 - x^2) \left(\frac{dy}{dx} \right)^2 = \frac{n^2}{2^{2n-2}} \sin^2 (n \cos^{-1} x) \]

\[= \frac{n^2}{2^{2n-2}} [1 - \cos^2 (n \cos^{-1} x)] \]

\[= n^2 \left[\frac{1}{2^{2n-2}} - y^2 \right] \]

Differentiating both sides w.r.t. \(x \)

\[(1 - x^2) \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} = -2n^2 y \frac{dy}{dx} \]

\[\Rightarrow (1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + n^2 y = 0 \]

7. \(y = \cos^{-1} \left(\frac{7}{2} (1 + \cos 2x) + \sqrt{\sin^2 x - 48 \cos^2 x} \sin x \right) \)

\[= \cos^{-1} \left(\frac{7}{2} \cos x + \sqrt{\sin^2 x - 48 \cos^2 x} \sin x \right) \]

\[= \cos^{-1} (\cos x) - \cos^{-1} (7 \cos x) \]

\[= x - \cos^{-1} (7 \cos x) \]

Now differentiating w.r.t. \(x \), we get

\[\frac{dy}{dx} = 1 + \frac{7 \sin x}{\sqrt{1 - 49 \cos^2 x}} = 1 + \frac{7 \sin x}{\sqrt{\sin^2 x - 48 \cos^2 x}} \]

8. \(f(x) = \cos^{-1} \left(\frac{1}{\sqrt{13}} \right) (2 \cos x - 3 \sin x) \)

\[= \cos^{-1} \left[\frac{1}{\sqrt{13}} \cos \left(x + \tan^{-1} \frac{3}{2} \right) \right] \]

\[+ \sin^{-1} \left[\frac{1}{\sqrt{13}} \sin \left(x + \tan^{-1} \frac{2}{3} \right) \right] \]

\[= \cos^{-1} \left[\frac{\cos x + \tan^{-1} \frac{3}{2}}{\sqrt{13}} \right] + \sin^{-1} \left[\frac{\sin x + \tan^{-1} \frac{2}{3}}{\sqrt{13}} \right] \]

\[= 2x + \tan^{-1} \frac{3}{2} + \tan^{-1} \frac{2}{3} \]

\[= \frac{2 \pi}{2} \]

\[\Rightarrow f'(3/4) = 2 \]

Now let \(g(x) = \sqrt{1 + x^2} \Rightarrow g'(x) = \frac{x}{\sqrt{1 + x^2}} \)

\[\Rightarrow g'(3/4) = 3/5 \Rightarrow f'(3/4) / g'(3/4) = 10/3. \]

9. Clearly, we can get \(a_1 + 2a_2 + 3a_3 + \ldots + na_n \) by differentiating \(a_1 \sin x + a_2 \sin 2x + \ldots + a_n \sin nx \) and putting \(x = 0 \).

Thus, we have to prove that \(|f'(0)| \leq 1 \)

Let \(f(x) = a_1 \sin x + a_2 \sin 2x + \ldots + a_n \sin nx \)

\[\Rightarrow f'(x) = a_1 \cos x + 2a_2 \cos 2x + \ldots + na_n \cos nx \]

\[\Rightarrow f'(0) = a_1 + 2a_2 + \ldots + na_n \]

Also given \(|f(x)| \leq |\sin x| \) for \(x \in R \)

Put \(x = 0 \Rightarrow |f(0)| \leq 0 \Rightarrow f(0) = 0 \)

\[\text{Now, } f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} \]

\[\Rightarrow f'(0) = \lim_{h \to 0} \frac{f(h)}{h} \text{ (as } f(0) = 0) \]

\[\Rightarrow |f'(0)| = \lim_{h \to 0} \left| \frac{f(h)}{h} \right| \leq \lim_{h \to 0} \left| \frac{\sin h}{h} \right| = 1 \text{ (as } |f(x)| \leq |\sin x|) \]

Hence, \(|f'(0)| \leq 1 \).

10. We have \(\frac{x}{2} \cos \frac{x}{4} \cos \frac{x}{8} \ldots = \frac{\sin x}{x} \)

Taking log on both sides, we get

\[\log \cos \frac{x}{2} + \log \cos \frac{x}{4} + \log \cos \frac{x}{8} + \ldots = \log \sin x - \log x \]

Differentiating both sides with respect to \(x \), we get

\[\frac{\sin x}{2} + \frac{\sin x}{4} + \frac{\sin x}{8} = \cos x \frac{1}{\sin x} \]

\[\frac{1}{2 \cos \frac{x}{2}} + \frac{1}{4 \cos \frac{x}{4}} + \frac{1}{8 \cos \frac{x}{8}} = \cos x \frac{1}{\sin x} \]

\[= \cos x \frac{1}{\sin x} \]
11. The given series is in the form
\[
\frac{f'(x)}{f(x)} + \frac{f''(x)}{f(x)} + \frac{f'''(x)}{f(x)} + \cdots = 0
\]
Then consider the product \(f_1(x)f_2(x)f_3(x)\ldots f_n(x)\)
Also,
\[(1 + x + x^2)(1 - x + x^2)(1 - x^2 + x^2)\cdots
\]
\[(1 - x^{2^n} + x^{2^n})
\]
\[= (1 + x^2 + x^4)(1 - x^2 + x^4)\cdots (1 - x^{2^n} + x^{2^n})
\]
\[= (1 + x^4 + x^8)(1 - x^4 + x^8)\cdots (1 - x^{2^n} + x^{2^n})
\]
\[\vdots
\]
\[= (1 + x^{2^n} + x^{2^n})
\]
When \(n \to \infty\), \(x^2, x^{2^n} \to 0\), so \(x < 1\)
\[
\Rightarrow (1 + x^2)(1 - x^2)(1 - x^4 + x^4)\cdots \infty = 1
\]
Taking logarithm of both sides, we get
\[
\log (1 + x^2) + \log (1 - x^2) + \log (1 - x^4 + x^4) + \cdots = 0
\]
Differentiating both sides w.r.t. \(x\), we get
\[
\frac{1 + 2x}{1 + x^2} \frac{-1 + 2x}{1 + x^2} + \frac{-2x + 4x^3}{1 - x^2 + x^4} + \frac{-4x^3 + 8x^7}{1 - x^4 + x^8} + \cdots = 0
\]
or
\[
\frac{1 - 2x}{1 - x^2 + x^4} + \frac{2x - 4x^3}{1 - x^2 + x^4} + \frac{4x^3 - 8x^7}{1 - x^4 + x^8} + \cdots = 0
\]
\[
= \frac{1 + 2x}{1 + x^2}
\]
12. \(x^n e^x = \frac{d}{dx} [(x^n - A_1 x^{n-1} + A_2 x^{n-2} - \cdots + (-1)^m A_m) e^x]
\]
\[
= [x^n - A_1 x^{n-1} + A_2 x^{n-2} - \cdots + (-1)^m A_m] x + \cdots
\]
\[
= x^n e^x + (-A_1 + m)x^{n-1} e^x + (A_2 - A_1(m-1)) x^{n-2} e^x + \cdots
\]
\[
= x^n e^x + (A_1 - A_2)m x^{n-1} e^x + (A_2 - A_1(m-1)) x^{n-2} e^x + \cdots
\]
\[
= (-A_1 + m)x^{n-1} e^x + \cdots
\]
\[
= 0
\]
\[
\Rightarrow -A_1 + m = 0, A_2 - A_1(m-1) = 0, \ldots, A_m - A_{m-1} = 0
\]
\[
\Rightarrow A_1 = m, A_2 - A_1(m-1) = m(m-1)(m-2)!
\]
\[
A_3 = A_2(m-2) = m(m-1)(m-2) = m!(m-3)!
\]
\[
A_m = A_{m-1} = m!
\]
\[
\Rightarrow A_r = m!(r-1)!
\]
13. We have \(f(x) g(x) = 1\). Differentiating with respect to \(x\), we get
\[
f'g + fg' = 0
\]
Differentiating (1) w.r.t. \(x\), we get
\[
f'' g + 2f' g' + fg'' = 0
\]
Differentiating (2) w.r.t. \(x\), we get
\[
f''' g + 3f'' g' + 3f' g'' + fg''' = 0
\]
\[
\Rightarrow \frac{f'''}{g'} + \frac{3f''}{g} \frac{g''}{f'} + \frac{3f'}{g} \frac{g'}{f} \frac{f''}{g'} = 0
\]
\[
\Rightarrow \left(\frac{f'''}{f'} + \frac{3f''}{g} \frac{g'}{f} \right) g' = - \left(\frac{g''}{g} + \frac{3f''}{f} \frac{f'}{g} \right) f'
\]
\[
\Rightarrow \left(\frac{f'''}{f'} + \frac{3g''}{g} \right) f' = \left(\frac{g''}{g} + \frac{3f''}{f} \frac{f'}{g} \right) \frac{g'}{f}
\]
\[
\Rightarrow \frac{f'''}{f'} + \frac{3g''}{g} \frac{g'}{f} = \left(\frac{g''}{g} + \frac{3f''}{f} \frac{f'}{g} \right) \frac{g'}{f}
\]
\[
\Rightarrow \frac{f'''}{f'} \frac{g'}{f} = \left(\frac{g''}{g} + \frac{3f''}{f} \frac{f'}{g} \right) \frac{g'}{f}
\]
14. By partial fractions, we have \(g(x) = \frac{f(a)}{(x-a)(b-a)(c-a)} + \frac{f(b)}{(b-a)(b-c)(c-a)} + \frac{f(c)}{(c-a)(c-b)(x-c)}\)
\[
\Rightarrow g(x) = \frac{1}{(a-b)(b-c)(c-a)} \left[f(a) - f(b) \right]
\]
\[
\Rightarrow \frac{dg}{dx} = \left[\begin{array}{ccc}
1 & a & -f(a)(x-a)^{-2} \\
1 & b & -f(b)(x-b)^{-2} \\
1 & c & -f(c)(x-c)^{-2} \\
\end{array} \right]
\]
\[
15. \text{From the given condition of the problem}
\]
\[
\frac{d^{n+1} f(x)}{dx^{n+1}} = P_{n+1} \left(\frac{1}{x} \right) e^{-1/x}
\]
\[
\Rightarrow \frac{d}{dx} \left(\frac{d^n f(x)}{dx^n} \right) = P_{n+1} \left(\frac{1}{x} \right) e^{-1/x}
\]
\[
\Rightarrow \frac{d}{dx} \left(P_n \left(\frac{1}{x} \right) e^{-1/x} \right) = P_{n+1} \left(\frac{1}{x} \right) e^{-1/x}
\]
4.32 Calculus

\[
\Rightarrow e^{-1/x} \frac{dP_n}{dx} \left(\frac{1}{x} \right) + P_n \left(\frac{1}{x} \right) \frac{d}{dx} \left(\frac{1}{x} \right) e^{-1/x} = \frac{P_{n+1}}{x} e^{-1/x}
\]

\[
\Rightarrow e^{-1/x} \frac{dP_n}{dx} \left(\frac{1}{x} \right) + \frac{1}{x^2} P_n \left(\frac{1}{x} \right) = P_{n+1} \left(\frac{1}{x} \right) \left(\text{Put } \frac{1}{x} = y \right)
\]

\[
P_{n+1}(y) = y^2 \left(P_n(y) - \frac{dP_n}{dy} \left(\frac{1}{x} \right) \right)
\]

\[
P_{n+1}(x) = x^2 \left(P_n(x) - \frac{dP_n}{dx} \left(\frac{1}{x} \right) \right)
\]

16. Given \(f(x+y^2) = f(x) + [f(y)]^3 \) (1)
and \(f'(0) \geq 0 \) (2)
Replacing \(x, y \) by 0
\[f(0) = f(0) + f(0) \Rightarrow f(0) = 0 \]
Also \(f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} \) (3)
Let \(I = f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} \)
\[
= \lim_{h \to 0} \frac{f((h/1)^3)}{(h/1)^3} = \lim_{h \to 0} \frac{f(h^{1/3})}{(h/1)^{1/3}} = I^3
\]
\[
\Rightarrow I = \frac{I^3}{3}
\]
\[
\text{or } I = 0, 1, -1 \text{ as } f'(0) \geq 0 \quad (\therefore f'(0) = 0; 1)
\]
Thus, \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \)
\[
= \lim_{h \to 0} \frac{f(x + (h^{1/3})^3) - f(x)}{(h/1)^{1/3}}
\]
\[
f'(x) = \lim_{h \to 0} \frac{f(x) + (f(h^{1/3}))^3 - f(x)}{(h/1)^{1/3}} \quad [\text{using (1)}]
\]
\[
\Rightarrow f'(x) = \lim_{h \to 0} \left(\frac{f(h^{1/3})}{(h/1)^{1/3}} \right)^3 = (f'(0))^3
\]

17. We have
\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]
\[
= \lim_{h \to 0} \left(f(x) + f(h) + 2x \cdot f(\frac{x}{2}) - f(x) \right)
\]
\[
= \lim_{h \to 0} \left(2x + f(h) - 1 \right)
\]
\[
= \lim_{h \to 0} \left(2x + f(h) - 1 \right)
\]
Using the given definition)

Now substituting \(x = y = 0 \) in the given functional relation, we get
\[
f(0) = f(0) + f(0) + 0 - 1 \Rightarrow f(0) = 1
\]
\[
\therefore f'(x) = 2x + \lim_{h \to 0} \frac{f(h) - f(0)}{h} = 2x + f'(0)
\]
\[
\Rightarrow f'(x) = 2x + \cos \alpha
\]
Integrating, we get \(f(x) = x^2 + x \cos \alpha + C \)
Here, \(x = 0 \) and \(f(0) = 1 \)
\[
\therefore 1 = C
\]
\[
\Rightarrow f(x) = x^2 + x \cos \alpha + 1
\]
It is a quadratic in \(x \) with discriminant.
\[
D = \cos^2 \alpha - 4 \leq 0
\]
and coefficient of \(x^2 = 1 > 0 \).
\[
\therefore f(x) > 0 \quad \forall \ x \in R
\]

Alternative Method
\[
f(x+y) = f(x) + [f(y)]^3 + 2xy - 1
\]
Differentiate w.r.t. \(x \) keeping \(y \) as constant
\[
f'(x+y) = f'(x) + 2y
\]
Put \(x = 0 \) and \(y = x \)
We get \(f'(x) = f'(0) + 2x \)
\[
\Rightarrow f'(x) = \cos \alpha + 2x
\]
\[
\Rightarrow f(x) = x \cos \alpha + x^2 + c
\]
Put \(x = y = 0 \) in (1), we get \(f(0) = f(0) + f(0) - 1 \Rightarrow f(0) = 1 \)
Then from (2), we get \(f(x) = x^2 + (\cos \alpha)x + 1 \)

18. \(\therefore f\left(\frac{x+y}{3}\right) = \frac{2 + f(x) + f(y)}{3} \) (1)
Replacing \(x \) by \(3x \) and \(y \) by 0, then \(f(x) = \frac{2 + f(3x) + f(0)}{3} \) (2)
In (1) putting \(x = 0 \) and \(y = 0 \), then we get \(f(0) = 2 \) (3)
Now, \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \)
\[
= \lim_{h \to 0} \frac{f(3x) + 3f(x) + f(3h) - f(x)}{3h}
\]
\[
= \lim_{h \to 0} \frac{3f(3x) + f(3h) - f(x)}{3h}
\]
20. Given that \(f'(\sin x) = \frac{df}{d(\sin x)} = \log_e x \)
\[\Rightarrow \quad \frac{df}{dt} = \log_e (\pi - \sin^{-1} t) \]
\[\Rightarrow \quad f'(t) = \log_e (\pi - \sin^{-1} t) \] (1)
and \(y = f(a^t) \)
\[\Rightarrow \frac{dy}{dx} = f'(a^x)a^x \log_e a \]
\[= a^x \log_e a \log_e (\pi - \sin^{-1} a^t) \] (using (1))

Objective Type

1. a. \(y = \tan^{-1} \left(\frac{1 + \cos x}{\sqrt{1 - \cos x}} \right) \)
\[= \tan^{-1} \left(\frac{2 \cos^2 x/2}{\sin x} \right) \]
\[= \tan^{-1} \left(\cot \frac{x}{2} \right) = \tan^{-1} \left(\cot \frac{x}{2} \right) \]
\[\Rightarrow y = \tan^{-1} \left(\tan \left(\frac{\pi}{2} - \frac{x}{2} \right) \right) = \frac{\pi}{2} - \frac{x}{2} \]
\[\Rightarrow \frac{dy}{dx} = 0 - \frac{1}{2} = -\frac{1}{2} \]

2. b. \(f(x) = |x^2 - 5x + 6| = \begin{cases}
 x^2 - 5x + 6 & \text{if } x \geq 3 \text{ or } x \leq 2 \\
 -(x^2 - 5x + 6) & \text{if } 2 < x < 3
\end{cases} \)
\[\Rightarrow f'(x) = \begin{cases}
 (2x - 5) & \text{if } x > 3 \text{ or } x < 2 \\
 -(-2x - 5) & \text{if } 2 < x < 3
\end{cases} \]

3. c. We have \(y = \tan^{-1} \left(\frac{\log e - \log x^2}{\log e + \log x^2} \right) + \tan^{-1} \left(\frac{3 + 2 \log x}{1 - 6 \log x} \right) \)
\[= \tan^{-1} \left(\frac{1 - 2 \log x}{1 + 2 \log x} \right) + \tan^{-1} \left(\frac{3 + 2 \log x}{1 - 6 \log x} \right) \]
\[= \tan^{-1} 1 + \tan^{-1} 3 + \tan^{-1} 2 \]
\[\Rightarrow \frac{dy}{dx} = 0 \Rightarrow \frac{d^2 y}{dx^2} = 0 \]

4. e. \(y'(x) = f'(f(f(x)))f''(f(x))f''(x) \)
\[\Rightarrow y'(0) = f'(f(f(0)))f''(f(0))f''(0) \]
\[= f'(f(0))f''(0)f''(0) \]
4.34 Calculus

\[f = f'(f(0))f'(0)f(0) \\
= f'(f(0))f'(0) \\
= f'(0) = 2^2 = 16 \]

5.b. \(y = ax^n + bx^m \)

\[\frac{dy}{dx} = (n+1)ax^n - nbx^{n-1} \]

\[\frac{d^2y}{dx^2} = n(n+1)ax^{n-1} + n(n+1)bx^{n-2} \]

\[x^2 \frac{d^2y}{dx^2} = n(n+1)y \]

6.c. \(y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} \)

\[\frac{dy}{dx} = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{(n-1)!} \]

\[\frac{dy}{dx} = y - \frac{x^n}{n!} \]

7.d. \(y = a \sin x + b \cos x \)

Differentiating with respect to \(x \), we get

\[\frac{dy}{dx} = a \cos x - b \sin x \]

Now, \(\left(\frac{dy}{dx} \right)^2 = (a \cos x - b \sin x)^2 \)

\[= a^2 \cos^2 x + b^2 \sin^2 x - 2ab \sin x \cos x \]

and

\[y^2 = a^2 \sin^2 x + b^2 \cos^2 x + 2ab \sin x \cos x \]

So, \(\left(\frac{dy}{dx} \right)^2 + y^2 = (a^2 + b^2) \)

\[\Rightarrow \left(\frac{dy}{dx} \right)^2 + y^2 = (a^2 + b^2) = \text{constant.} \]

8.b. \(y = \sqrt{\frac{1-\sin 2x}{1+\sin 2x}} = \frac{\cos x - \sin x}{\cos x + \sin x} = \frac{1 - \tan x}{1 + \tan x} = \tan \left(\frac{\pi}{4} - x \right) \)

\[\frac{dy}{dx} = -\sec^2 \left(\frac{\pi}{4} - x \right) \]

9.a. \(\frac{dy}{dx} = \frac{d}{dx} \left[\left(x + \sqrt{x^2 + a^2} \right)^n \right] \)

\[= n \left(x + \sqrt{x^2 + a^2} \right)^{n-1} \left(\frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}} \right) \]

10.b. \(f(x) = \sqrt{1 + \cos^2 (x^2)} \)

\[f'(x) = \frac{1}{2 \sqrt{1 + \cos^2 (x^2)}} (2 \cos x^2)(-\sin x^2)(2x) \]

\[f'(x) = \frac{-x \sin 2x}{\sqrt{1 + \cos^2 (x^2)}} \]

\[f' \left(\frac{\pi}{2} \right) = \frac{-\pi}{2 \sqrt{2}} \]

So, \(f' \left(\frac{\pi}{2} \right) = -\frac{\pi}{\sqrt{6}} \)

11.a. \(\frac{d}{dx} \cos^{-1} \sqrt{\frac{x}{1-x^2}} \)

\[= \frac{\sin x}{2 \sqrt{\cos x} \sqrt{1 - \cos x}} \]

\[= \frac{\sqrt{1 - \cos^2 x}}{2 \sqrt{\cos x} \sqrt{1 - \cos x}} = \frac{1}{2} \sqrt{\frac{1 + \cos x}{\cos x}} \]

12.c. \(y = \log \tan x \) \(\log \sin x \)

\[\frac{dy}{dx} = \frac{(\log \sin x) \left(\sec^2 x \right) - (\log \tan x) (\cot x)}{(\log \sin x)^2} \]

\[\Rightarrow \frac{dy}{dx} = \frac{(\log \sin x) \left(\sec^2 x \right) - (\log \tan x) (\cot x)}{(\log \sin x)^2} \]

13.b. \(y = \frac{\sin^{-1} x}{\sqrt{1-x^2}} \)

\[\frac{dy}{dx} = \frac{\sqrt{1-x^2} - \frac{1}{2} \left(\sin^{-1} x \right)^2}{1-x^2} \]

\[= \frac{1}{2} \sqrt{1-x^2} \]

\[\Rightarrow (1-x^2) \frac{dy}{dx} = 1 + x \left(\frac{\sin^{-1} x}{\sqrt{1-x^2}} \right) = 1 + xy \]

14.a. \(y = \cot^{-1} \left[\frac{\sqrt{1+\sin x + \sqrt{1-\sin x}}}{\sqrt{1+\sin x - \sqrt{1-\sin x}}} \right] \)

\[= \cot^{-1} \left[\frac{2 + 2 \cos x}{2 \sin x} \right] = \cot^{-1} \left[\frac{1 + \cos x}{\sin x} \right] \]

\[= \cot^{-1} \left[\frac{\cot \frac{x}{2}}{2} \right] = \frac{x}{2} \]
21. a. \(y = \sec(tan^{-1} x) = \sec\left(\frac{1}{\sqrt{1+x^2}}\right) = \frac{\sqrt{1+x^2}}{1+x} \)

Differentiating w.r.t. \(x \), we have \(\frac{dy}{dx} = \frac{x}{\sqrt{1+x^2}} \)

\(\Rightarrow \left(\frac{dy}{dx}\right)_{x=1} = \frac{1}{\sqrt{2}} \)

22. a. \(y = f(x^2) \Rightarrow \frac{dy}{dx} = f'(x^2) 2x = 2x \sqrt{2(x^2)^2 - 1} \)

At \(x = 1 \), \(\frac{dy}{dx} = 2 \times 1 \times \sqrt{2 - 1} = 2 \)

23. a. \(\frac{du}{dv} = \frac{dv}{dx} = \frac{f'(x^2) 3x^2}{g'(x^2) 2x} = \frac{\cos^2 x^3 x^2}{\sin^2 x^2 2x} \)

\(\Rightarrow \frac{3}{2} = \frac{x \cos x^3 \csc x^2} {\sin x^2} \)

24. b. \(\frac{dx}{dy} = \frac{dt}{dt} = \frac{\cos t - t \sin t}{\cos t} = \frac{dx}{dy} \)

\(\Rightarrow \frac{dy}{dx} = \frac{-\sin t - t \cos t}{\cos t} \frac{dx}{dy} \)

\(\Rightarrow \frac{dy}{dx} = \frac{3}{2} \)

Now, put \(t = \frac{\pi}{2} \)

25. c. \(f(x) = \sqrt{1 - \sin 2x} = \sqrt{\cos x - \sin x} \)

\(\Rightarrow f'(x) = \begin{cases} \cos x - \sin x, & \text{for } 0 \leq x \leq \pi/4 \\ -\cos x + \sin x, & \text{for } \pi/4 < x < \pi/2 \end{cases} \)

26. d. Let \(u = y^2 \) and \(v = x^2 \)

\(\Rightarrow \frac{du}{dx} = \frac{d}{dx} y^2 = (\frac{dy}{dx})^2 \frac{dy}{dx} \)

\(= 2y(1 - 2x) = 2(x - x^2)(2y - 1) = 2(x - x^2)(1 - 2x) = 2(1 - x)(1 - 2x) \) (1)

and \(\frac{dv}{dx} = 2x \) (2)

Hence, \(\frac{du}{dv} = \frac{2x}{2x} = 1 \) (from (1) and (2))
4.36 Calculus

27.a. \(f(x) = \cos^{-1}\left[\cos\left(\frac{\pi}{2} - \frac{1+x}{\sqrt{2}}\right)\right] + x^2 = \frac{\pi}{2} - \frac{1+x}{\sqrt{2}} + x^2 \)

\[f'(x) = -\frac{1}{\sqrt{2}} \cdot \frac{1}{2\sqrt{1+x}} + x^2 (1 + \log x) \]

\[f'(1) = -\frac{1}{4} + 1 = \frac{3}{4} \]

27.b. \[D = \begin{vmatrix} \sin px & p \cos px & -p^2 \sin px \\ -p^6 \sin px & -p^7 \cos px & p^8 \sin px \\ \sin px & p \cos px & -p^2 \sin px \end{vmatrix} = p^9 \begin{vmatrix} \cos px & \cos px & p^2 \cos px \\ \cos px & \cos px & p^2 \cos px \\ \cos px & \cos px & p^2 \cos px \end{vmatrix} = 0 \]

29.b. \[2y f'(x^2) = 3x^2 \Rightarrow 4f'(2) = 12 \Rightarrow f'(4) = 3. \]

30.c. \((a^2 - 2a) + (b^2 - 2b - 15) = 0 \Rightarrow a^2 - 2a - 15 = 0 \Rightarrow (a - 5)(a + 3) = 0 \Rightarrow a = 5 \text{ or } a = -3 \]

\(f(x) = x^2 + 5x + 3 \)

34.d. \[y = \tan^{-1}\left(\frac{2^{x+1} - 2^x}{1 + 2^x, 2^{x+1}}\right) = \tan^{-1} 2^{(x+1)} - \tan^{-1} 2^x \]

\[y' = \frac{2^{x+1} \ln 2}{1 + (2^{x+1})^2} - \frac{2^x \ln 2}{1 + (2^x)^2} \]

\[y'(0) = \frac{-1}{10} \ln 2 \]

35.b. \(f(x) = 1 + x^2 + x^4 + x^6 + \cdots \infty, \text{ where } |x| \leq 1 \Rightarrow f''(0) = n!, \text{ where } n \text{ is even.} \]

36.b. \(y = 2 \cos x \cos 3x = \cos 4x + \cos 2x \Rightarrow \frac{d^{20} y}{dx^{20}} = 4^{20} \cos 4x + 2^{20} \cos 2x \]

37.e. We have \(y = \sqrt{\frac{1-x}{1+x}} \)

Differentiating w.r.t. \(x \), we get

\[\frac{dy}{dx} = \frac{1}{2} \left(\frac{1-x}{1+x}\right)^{1/2} \frac{d}{dx} \left(\frac{1-x}{1+x}\right) \]

\[= \frac{1}{2} \sqrt{\frac{1+x}{1-x}} \cdot \frac{(1+x)(-1)-(1-x)(1)}{(1+x)^2} \]

\[= -\sqrt{\frac{1+x}{1-x}} \cdot \frac{1}{1-x^2} \]

\[\Rightarrow (1-x)^2 \frac{dy}{dx} = -\sqrt{\frac{1+x}{1-x}} \left(1-x^2\right) \]

\[\Rightarrow (1-x)^2 \frac{dy}{dx} = -\frac{1-x^2}{1+x} \]

\[\Rightarrow (1-x)^2 \frac{dy}{dx} = y \]

\[\Rightarrow (1-x^2) \frac{dy}{dx} + y = 0 \]

38.b. \[\frac{dy}{dx} = -[(2-x)(3-x) \cdots (n-x) + (1-x)(3-x) \cdots (n-x) + \cdots (1-x)(2-x) \cdots (n-1-x)] \]

At \(x = 1 \)

\[\frac{dy}{dx} = -(n-1)! + 0 + \cdots + 0 = (n-1)! \]

39.a. Let \(\cos \alpha = \frac{5}{13} \), then \(\sin \alpha = \frac{12}{13} \). So, \(y = \cos^{-1} (\cos \alpha \cdot \cos x - \sin \alpha \cdot \sin x) \)
43.a. Let \(t = \cos 2\theta \)

Then \(e^t = \frac{\sqrt{1 + \cos 2\theta} - \sqrt{1 - \cos 2\theta}}{\sqrt{1 + \cos 2\theta} + \sqrt{1 - \cos 2\theta}} \)

\[= \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} \cdot \frac{1 - \tan \theta}{1 + \tan \theta} = \tan \left(\frac{\pi}{4} - \theta \right) \]

\[\tan \frac{y}{2} = \frac{1 - \cos 2\theta}{1 + \cos 2\theta} = \tan \theta \]

At \(t = \frac{1}{2} \), \(\cos 2\theta = \frac{1}{2} \) \(\Rightarrow \theta = \frac{\pi}{6} \)

Then \(x = \log \tan \frac{\pi}{12}, \ y = \frac{\pi}{3} \)

Differentiating w.r.t. \(\theta, e^t \frac{dx}{d\theta} = -\sec^2 \left(\frac{\pi}{4} - \theta \right) \) and

\[\frac{1}{2} \sec^2 y \frac{dy}{2 d\theta} = \sec^2 \theta \]

\[
\begin{align*}
\frac{dy}{d\theta} &= \frac{2 \sec^2 \theta \cos^2 \frac{\pi}{12}}{\sec^2 \left(\frac{\pi}{4} - \theta \right)} \\
\frac{2}{\cos \theta} \sec \frac{\pi}{12} &= -e^{-\log \tan \pi/12} \sec^2 \frac{\pi}{12}
\end{align*}
\]

At \(t = \frac{1}{2}, \) i.e., \(\theta = \frac{\pi}{6} \), \(\frac{dy}{dx} = \frac{2 \sec^2 \frac{\pi}{6} \cos^2 \frac{\pi}{6}}{-e^{-\log \tan \pi/12} \sec^2 \frac{\pi}{12}} \)

\[= -2 \tan \frac{\pi}{12} = -\sin \frac{\pi}{6} = -\frac{1}{2} \]

44.b. We have \(x^2 + y^2 = t - \frac{1}{t} \) and \(x^4 + y^4 = t^2 + \frac{1}{t^2} \)

\[\Rightarrow (x^2 + y^2)^2 = t^2 + \frac{1}{t^2} - 2 \]

\[\Rightarrow (x^2 + y^2)^2 = x^4 + y^4 - 2 \]

\[\Rightarrow 2xy^2 = 2 \]

\[\Rightarrow x^2y^2 = -1 \]

\[\Rightarrow y^2 = \frac{1}{x^2} \]

\[\Rightarrow 2y \frac{dy}{dx} = \frac{2}{x^2} \]

\[\Rightarrow x^3 y \frac{dy}{dx} = 1 \]
4.38 Calculus

45a. We have

\[y^{1/m} = \left(x + \sqrt{1 + x^2}\right)^m \]

\[\Rightarrow y' = \frac{m(x + \sqrt{1 + x^2})^{m-1}}{\sqrt{1 + x^2}} \]

\[\Rightarrow \frac{dy}{dx} = \frac{my}{\sqrt{1 + x^2}} \]

\[\Rightarrow y'^2(1 + x^2) = m^2 y^2 \]

\[\Rightarrow 2yy'_{y^2}(1 + x^2) + 2xyy'_y = 2m^2 y y' \]

\[\Rightarrow y_y(1 + x^2) + yy' = m^2 y

46a. \ y = f(x) - f(2x) = y' = f'(x) - 2f'(2x) \]

\[\Rightarrow y'(1) = f'(1) - 2f'(2) = 5, \text{ and} \]

\[y'(2) = f'(2) - 2f'(4) = 7 \]

Now let \ y = f(x) - f(4x) \]

\[\Rightarrow y' = f'(x) - 4f'(4x) \]

\[\Rightarrow y'(1) = f'(1) - 4f'(4) \]

Substituting the value of \ f'(2) = 7 + 2f'(4) \ in (1), we get

\[f'(1) - 2(7 + 2f'(4)) = 5 \]

\[f'(1) - 4f'(4) = 19 \]

47a. \ f(10) = \sin^{-1} \cos 10 = \sin^{-1} \sin \left(\frac{\pi}{2} - 10\right) \]

\[= -\sin^{-1} \sin \left(10 - \frac{10}{2}\right) \]

\[= -\sin^{-1} \sin \left(3\pi - 10 + \frac{\pi}{2}\right) = -\left(3\pi + \frac{\pi}{2} - 10\right) = -\left(10 - \frac{7\pi}{2}\right) \]

\[f'(x) = \frac{-\sin x}{\sqrt{1 - \cos^2 x}} = \frac{-\sin x}{|\sin x|} \Rightarrow f'(10) = \frac{-\sin 10}{|\sin 10|} = 1. \]

So, \ f(10) + f'(10) = 11 - \frac{7\pi}{2} \]

48a. \ (\sin x) (\cos y) = \frac{1}{2} \]

\[\Rightarrow (\cos x) (\cos y) - \sin y \sin x \frac{dy}{dx} = 0 \]

\[\Rightarrow \frac{dy}{dx} = (\cot x) (\cot y) \]

\[\Rightarrow \frac{d^2 y}{dx^2} = -\csc^2 x \cot y - \csc^2 y \cot x \frac{dy}{dx} \]

Now \ \frac{dy}{dx} \left(\frac{\pi}{4}, \pi/4\right) = 1 \]

\[\Rightarrow \left(\frac{d^2 y}{dx^2}\right) \left(\frac{\pi}{4}, \pi/4\right) = -2(1) - (2)(1)(1) = -4 \]

49a. Given \ f' = f'' + f''' + \ldots \infty \]

\[\Rightarrow f' = f'' + f''' + \ldots \infty \]

\[\Rightarrow f' = f' \]

\[\Rightarrow f = 2f' \]

Hence, \ \frac{f'}{f} = \frac{1}{2} \Rightarrow \int \frac{f'}{f} \ dx = \int \frac{1}{2} \ dx \]

\[\Rightarrow \log f(x) = \frac{x}{2} + c \]

\[\Rightarrow f(x) = e^{x/2 + c} \]

Also, \ f(0) = 1 \Rightarrow c = 0 \Rightarrow f(x) = e^{x/2} \]

50b. Putting \ x = \sin \theta \ and \ y = \sin \phi \]

\[\cos \theta + \cos \phi = a(\sin \theta - \sin \phi) \]

\[\Rightarrow 2 \cos \frac{\theta + \phi}{2} \cos \frac{\theta - \phi}{2} = a \left(2 \cos \frac{\theta + \phi}{2} \sin \frac{\theta - \phi}{2}\right) \]

\[\Rightarrow \theta - \phi = \cot^{-1} a \]

\[\Rightarrow \theta - \phi = 2 \cot^{-1} a \]

\[\Rightarrow \sin^{-1} x - \sin^{-1} y = 2 \cot^{-1} a \]

\[\Rightarrow \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-y^2}} \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{1-y^2}{1-x^2} \]

51a. \ y = x^2 + \frac{1}{y} \]

\[\Rightarrow y'^2 = x^2 \cdot y + 1 \]

\[\Rightarrow \frac{dy}{dx} = y \cdot 2 + x^2 \frac{dy}{dx} \]

\[\Rightarrow \frac{dy}{dx} = \frac{2xy}{2y - x^2} \]

52d. \ \frac{d}{dx} \left(\tan^{-1} \left(\frac{\sqrt{x}(3-x)}{1-3x}\right)\right) \]

Put \ \sqrt{x} = \tan \theta \Rightarrow \theta = \tan^{-1} \sqrt{x} \]

\[\frac{d}{dx} \left(\tan^{-1} \left(\frac{\tan \theta (3-\tan^2 \theta)}{1-3\tan^2 \theta}\right)\right) \]

\[\frac{d}{dx} \left(\tan^{-1} \left(\frac{3\tan \theta - \tan^3 \theta}{1-3\tan^2 \theta}\right)\right) \]

\[\frac{d}{dx} \left[\tan^{-1} (\tan \theta)\right] = \frac{d}{dx} (\theta) \]

\[= \frac{d}{dx} \left(3\tan \theta - \tan^3 \theta\right) \]

\[= \frac{3}{2\sqrt{x} (1+x)} \]

53b. Since \ g(x) \ is \ the \ inverse \ of \ function \ f(x), \ therefore \]

\[g(f(x)) = f(x) \ for \ all \ x \]

Now \ \text{gof}(x) = i(x), \forall \ x \]
\[(gof)'(x) = 1, \forall x \]
\[g'(f(x))f'(x) = 1, \forall x \]
\[g'(f(x)) = \frac{1}{f'(x)}, \forall x \]
\[g'(f(c)) = \frac{1}{f'(c)} \quad \text{(putting } x = c) \]

54.c. \(f(x) = x + \tan x \)
\[f^{-1}(y) = \tan^{-1}(y) + \tan f^{-1}(y) \]
\[y = g(y) + \tan g(y) \]
\[x = g(x) + \tan g(x) \]
Differentiating, we get \(1 = g'(x) + \sec^2 g(x) g'(x) \)
\[g'(x) = \frac{1}{1 + \sec^2 g(x)} = \frac{1}{2 + [g(x) - x]^2} \]

55.a. \(y\sqrt{x^2 + 1} = \log \left(\sqrt{x^2 + 1} - x \right) \)
Differentiating both sides w.r.t. \(x \), we get
\[\frac{dy}{dx} \sqrt{x^2 + 1} + y \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x = \frac{1}{\sqrt{x^2 + 1} - x} \cdot \left(\frac{2x}{2\sqrt{x^2 + 1}} - 1 \right) \]
\[\Rightarrow (x^2 + 1) \frac{dy}{dx} + xy = \sqrt{x^2 + 1} - \frac{1}{\sqrt{x^2 + 1}} \]
\[\Rightarrow (x^2 + 1) \frac{dy}{dx} + xy + 1 = 0 \]

56.a. \[y = \frac{\sqrt{a + x} - \sqrt{a - x}}{\sqrt{a + x} + \sqrt{a - x}} \]
\[y = \frac{\left(\sqrt{a + x} - \sqrt{a - x} \right)^2}{(a + x) - (a - x)} \]
\[y = \frac{(a + x) + (a - x) - 2\sqrt{a^2 - x^2}}{2x} \]
\[y = \frac{2a - 2\sqrt{a^2 - x^2}}{2x} = \frac{a - \sqrt{a^2 - x^2}}{x} \quad \text{(I)} \]
Differentiating w.r.t. \(x \), we get
\[\frac{dy}{dx} = \frac{x}{2} \left(-\frac{1}{2\sqrt{a^2 - x^2}} \right) \left(a - \sqrt{a^2 - x^2} \right) \]
\[= \frac{x^2 - a\sqrt{a^2 - x^2} + a^2 - x^2}{x^2 \sqrt{a^2 - x^2}} = \frac{a \left(a - \sqrt{a^2 - x^2} \right)}{x^2 \sqrt{a^2 - x^2}} \]
\[= \frac{a}{x\sqrt{a^2 - x^2}} \left(\frac{a - \sqrt{a^2 - x^2}}{x} \right) = \frac{ay}{x\sqrt{a^2 - x^2}} \quad \text{[by (I)]} \]

57.a. As \(f(x) = x \tan (x^2) - x \ln (1 + x^2) \) is odd,
\[\Rightarrow \frac{d^3 f(x)}{dx^3} \text{ is even} \]
\[\Rightarrow \frac{d^4 f(x)}{dx^4} = 0 \text{ at } x = 0. \]

58.a. Given that \(g^{-1}(x) = f(x) \Rightarrow x = g(f(x)) \) or \(g'(f(x))f'(x) = 1 \)
\[\Rightarrow g'(f(x)) = \frac{1}{f'(x)} \]
\[\Rightarrow g''(f(x))f'(x) = -f''(x) \Rightarrow g''(f(x)) = -\frac{f''(x)}{[f'(x)]^3} \]

59.b. For \(x > 1 \), we have \(f(x) = |\log x| = \log x \)
\[\Rightarrow f'(x) = \frac{1}{x} \]
For \(x < -1 \), we have \(f(x) = |\log x| = -\log(-x) \)
\[\Rightarrow f'(x) = \frac{1}{x} \]
For \(0 < x < 1 \), we have \(f(x) = |\log x| = -\log x \)
\[\Rightarrow f'(x) = -\frac{1}{x} \]
For \(-1 < x < 0 \), we have \(f(x) = -\log(-x) \)
\[\Rightarrow f'(x) = -\frac{1}{x} \]
Hence, \(f'(x) = \begin{cases} \frac{1}{x}, & x > 1 \\ -\frac{1}{x}, & x < 0 \end{cases} \)

60.c. In neighbourhood of \(x = \frac{2\pi}{3} \), \(\cos x = -\cos x \) and \(|\sin x| = \sin x \)
\[\Rightarrow y = -\cos x + \sin x \]
\[\Rightarrow \frac{dy}{dx} = \sin x + \cos x \]
\[\Rightarrow Atx = \frac{2\pi}{3}, \quad \frac{dy}{dx} = \sin \frac{2\pi}{3} + \cos \frac{2\pi}{3} = \frac{\sqrt{3} - 1}{2} \]

61.a. Since \(g \) is the inverse function of \(f \), we have \(f(g(x)) = x \)
\[\Rightarrow \frac{d}{dx} (f(g(x))) = 1 \]
\[\Rightarrow f'(g(x)) \cdot g'(x) = 1 \]
\[\Rightarrow \sin \{g(x)\} \cdot g'(x) = 1 \]
\[\Rightarrow \sin g(x) = \frac{1}{g'(x)} \]

62.b. We have \(x = \phi(t), y = \psi(t) \). Therefore,
\[\frac{dy}{dx} = \frac{dt}{dt} \frac{dy}{dt} = \frac{\psi'}{\phi'} \]
\[\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{\psi'}{\phi'} \right) \frac{dt}{dx} \]
\[= \frac{\phi'' \psi - \psi' \psi''}{\phi'^2} \]
\[= \frac{\phi' \psi'' - \psi' \phi''}{\phi'^2} \]
\[= \phi' \psi'' - \psi' \phi'' \]
63.c. \(f(x) = e^x - e^{-x} - 2 \sin x - \frac{2}{3} x^3 \)

\(f'(x) = e^x + e^{-x} - 2 \cos x - 2x^2 \)

\(f''(x) = e^x - e^{-x} + 2 \sin x \cos x - 4x \)

\(f'''(x) = e^x + e^{-x} - 2 \cos x \cos x \cos x - 4 \)

\(f^{IV}(x) = e^x - e^{-x} - 2 \sin x \sin x \sin x \cos x - 4 \)

\(f^{V}(x) = e^x + e^{-x} + 2 \sin x \cos x \cos x \cos x - 4 \)

\(f^{VI}(x) = e^x + e^{-x} + 2 \cos x \)

Clearly, \(f^{VII}(0) \) is non-zero.

64.b. Given \(f\left(\frac{5x-3y}{2}\right) = \frac{5f(x)-3f(y)}{2} \)

\[\Rightarrow f\left(\frac{5x-3y}{2}\right) = \frac{5f(x)-3f(y)}{5-3} \]

which satisfies section formula for abscissa on L.H.S. and ordinate on R.H.S. Hence, \(f(x) \) must be the linear function (as only straight line satisfies such section formula).

Hence, \(f(x) = ax + b \)

But \(f(0) = 3 \Rightarrow b = 3 \), \(f'(0) = 2 \Rightarrow a = 2 \).

Thus, \(f(x) = 2x + 3 \Rightarrow \) Period of \(\sin(f(x)) = \sin(2x + 3) \) is \(\pi \).

65.c. \(D^*(x) = \lim_{h \to 0} \frac{f^2(x + h) - f^2(x)}{h} \)

\[= \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \cdot (f(x + h) + f(x)) \]

\[= 2f(x) \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

\[= 2f(x) \cdot f'(x) \]

\[\Rightarrow D^*(x) \log x = 2x \log x (1 + \log x) \]

\[\Rightarrow D^*(x) = e^x = 4e \]

66.b. \(\sqrt{x} = \cos \theta \)

\[x \in \left(0, \frac{1}{2}\right) \Rightarrow \sqrt{x} = \cos \theta \in \left(0, \frac{1}{\sqrt{2}} \right) \]

\[\Rightarrow \theta \in \left(0, \frac{\pi}{4}\right) \]

\[\Rightarrow 2\theta \in \left(0, \frac{\pi}{2}\right) \]

\[\Rightarrow f(x) = 2\sin^{-1} \left\{ \frac{\sqrt{x}}{2} \right\} \cos^2 \theta + \sin^{-1} \left\{ 2 \sqrt{\cos^2 \theta \sin^2 \theta} \right\} \]

\[= 2 \sin^{-1}(\sin \theta) + \sin^{-1}(2 \sin \theta \cos \theta) \]

\[= 2 \theta + \sin^{-1}(2 \sin \theta \cos \theta) \]

\[= 2 \theta + \pi - 2 \theta \]

\[= \pi \]

\[\Rightarrow f'(x) = 0 \]

67.a. \(F'(x) = \left[f\left(\frac{x}{2}\right) + g\left(\frac{x}{2}\right) \right] \)

Here \(g(x) = f'(x) \)

and \(g'(x) = f''(x) = -f(x) \)

so \(F'(x) = f\left(\frac{x}{2}\right) + g\left(\frac{x}{2}\right) - f\left(\frac{x}{2}\right) g\left(\frac{x}{2}\right) = 0 \)

\(\Rightarrow F(x) \) is a constant function.

\(\Rightarrow F(10) = 5 \)

68.b. Let \(y = \tan^{-1} \left(\frac{\sqrt{1 + x^2} - 1}{x}\right) \), and \(z = \tan^{-1} \left(\frac{2x\sqrt{1 - x^2}}{1 - 2x^2}\right) \)

Putting \(x = \tan \theta \) in \(y \), we get

\[y = \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta}\right) = \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta}\right) = 2 \tan^{-1} x \]

\[\Rightarrow \frac{dy}{dx} = \frac{1}{2(1 + x^2)} \]

Putting \(x = \sin \theta \) in \(z \), we get

\[z = \tan^{-1} \left(\frac{2 \sin \theta \cos \theta}{\cos 2\theta}\right) \]

\[= \tan^{-1} (\tan 2\theta) = 2\theta = 2 \sin^{-1} x \]

\[\Rightarrow \frac{dz}{dx} = \frac{2}{\sqrt{1 - x^2}} \]

Thus, \(\frac{dy}{dx} = \frac{dz}{dx} = \frac{1}{4(1 + x^2)} \sqrt{1 - x^2} \Rightarrow \left(\frac{dy}{dx}\right)_{x=0} = \frac{1}{4} \)

69.c. \(f(x) = xe^x \)

\(f'(x) = e^x + xe^x \)

\(f''(x) = 2e^x + e^x + xe^x = 3e^x + xe^x \)

\(
\)

\[\Rightarrow f''(x) = ne^x + xe^x \]

Now, \(f''(x) = 0 \)

\(\Rightarrow ne^x + xe^x = 0 \Rightarrow x = -n \)

70.a. \(y^2 = ax^2 + bx + c \)

\[\Rightarrow 2y \frac{dy}{dx} = 2ax + b \]

\[\Rightarrow 2 \left(\frac{dy}{dx}\right)^2 + 2y \frac{dy}{dx} = 2a \]

\[\Rightarrow y \frac{d^2y}{dx^2} = a \left(\frac{dy}{dx}\right)^2 \]

\[\Rightarrow y \frac{d^2y}{dx^2} = a \left(\frac{2ax + b}{2y}\right)^2 \]

\[\Rightarrow y \frac{d^2y}{dx^2} = a \left(\frac{2ax + b}{2y}\right)^2 \]

\[\Rightarrow y \frac{d^2y}{dx^2} = 4ay^2 \left(\frac{2ax + b}{2y}\right)^2 \]

\[\Rightarrow 4y^3 \frac{d^2y}{dx^2} = 4a \left(2ax + b\right)^2 = 4a^2 x^2 + 4abx + b^2 \]

\[\Rightarrow 4y^3 \frac{d^2y}{dx^2} = 4ac - b^2 = \text{constant.} \]
71.c. \(y = \sin x + e^x \Rightarrow \frac{dy}{dx} = \cos x + e^x \)

\[\frac{dx}{dy} = \left(\cos x + e^x \right)^{-1} \]

Again, \(\frac{d^2x}{dy^2} = -\left(\cos x + e^x \right)^{-2} \left(-\sin x + e^x \right) \frac{dx}{dy} \)

Substituting the value of \(\frac{dy}{dx} \) from (1)

\[\frac{d^2x}{dy^2} = \frac{\sin x - e^x}{\cos x + e^x} \left(\cos x + e^x \right)^{-1} = \frac{\sin x - e^x}{\left(\cos x + e^x \right)^3} \]

72.d. \(u = x^2 + y^2, x = s + 3t, y = 2s - t \)

Now, \(\frac{dx}{ds} = 1, \frac{dy}{ds} = 2 \)

\[\frac{d^2x}{ds^2} = 0, \frac{d^2y}{ds^2} = 0 \]

Now \(u = x^2 + y^2, \frac{du}{ds} = 2x \frac{dx}{ds} + 2y \frac{dy}{ds} \)

\[\frac{d^2u}{ds^2} = 2\left(\frac{dx}{ds} \right)^2 + 2x \frac{d^2x}{ds^2} + 2y \frac{d^2y}{ds^2} + 2y \left(\frac{d^2y}{ds^2} \right) \]

From (1) and (2), \(\frac{d^2u}{ds^2} = 2x + 0 + 2 \times 4 + 0 = 10 \).

73.c. Here, \(y = l^{10} + 1 \) and \(x = l^8 + 1 \)

\[\frac{dy}{dx} = \frac{5}{4} \left(x - 1 \right)^{3/4} \]

Differentiate both sides w.r.t. \(x \), we get

\[\frac{d^2y}{dx^2} = \frac{5}{16} \left(x - 1 \right)^{-3/4} \]

Again, differentiate both sides w.r.t. \(x \), we get

\[\frac{d^2y}{dx^2} = \frac{5}{16} \left(x - 1 \right)^{-3/4} = \frac{5}{16 \left(l^8 \right)^{3/4}} = \frac{5}{16 \left(l^8 \right)^{3/4}} \]

74.b. From the given relation \(\frac{y}{x} = \log x - \log(a + bx) \)

Differentiating w.r.t. \(x \), we get

\[\frac{x \frac{dy}{dx} - y}{x^2} = \frac{1 - \frac{b}{a + bx}}{x(a + bx)} \]

75.a. \(u(x) = 7v(x) \Rightarrow u'(x) = 7v'(x) \Rightarrow p = 7 \) (given)

Again \(\frac{u(x)}{v(x)} = 7 \Rightarrow \frac{u(x)}{v(x)} = 0 \Rightarrow q = 0 \)

Now \(\frac{p + q}{p - q} = \frac{7 + 0}{7 - 0} = 1 \)

76.a. \(ax^2 + 2hxy + by^2 = 1 \)

Differentiating both sides w.r.t. \(x \), we get

\[2ax + 2hx \frac{dy}{dx} + 2hy + 2by \frac{dy}{dx} = 0 \]

\[\frac{dy}{dx} = -\frac{ax + hy}{hx + by} \]

Again differentiating w.r.t. \(x \), we get

\[\frac{d^2y}{dx^2} = \frac{\left(hx + by \right) \left(a + h \frac{dy}{dx} \right) - \left(ax + hy \right) \left(h + b \frac{dy}{dx} \right)}{(hx + by)^2} \]

\[\left(h^2 - ab \right) \left(y - x \frac{dy}{dx} \right) \]

\[\frac{(hx + by)^2}{(hx + by)^2} \]

\[\frac{(h^2 - ab)^2}{(hx + by)^2} \]

77.b. \(\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2}{2t} = \frac{3}{2} \]

\[\frac{d^2y}{dx^2} = \frac{3}{4} \frac{x}{\frac{3}{4}x} = \frac{3}{4} \]

78.b. \(y = x + e^x \Rightarrow \frac{dy}{dx} = 1 + e^x \Rightarrow \frac{dx}{dy} = \frac{1}{1 + e^x} \)
4.42 Calculus

\[\Rightarrow \frac{d}{dy} \left(\frac{dx}{dy} \right) = \frac{d}{dy} \left(\frac{1}{1+e^x} \right) = \frac{d^2x}{dy^2} = \frac{d}{dx} \left(\frac{1}{1+e^x} \right) \frac{dx}{dy} \]

\[\Rightarrow \frac{d^2x}{dy^2} = \frac{-e^x}{(1+e^x)^2} = -\frac{e^x}{(1+e^x)^3} \]

79. a. In the neighbourhood of \(x = 7\pi/6 \), we have \(f(x) = |\sin x + \cos x| = -\sin x - \cos x \)
\[\Rightarrow f'(x) = -\cos x + \sin x \Rightarrow f'(7\pi/6) = -\cos(7\pi/6) + \sin(7\pi/6) = \frac{\sqrt{3} - 1}{2} \]

80. a. \(y = f(x) \) is an even function and \(y = g(x) \) is an odd function.
\[\Rightarrow h(x) = f(x) g(x) \text{ is an even function.} \]
\[\Rightarrow h(x) = -h(-x) \]
\[\Rightarrow h'(x) = h'(-x) \]
\[\Rightarrow h''(x) = h''(-x) \]
\[\Rightarrow h'''(x) = h'''(-x) \]

Now, we cannot determine the value of \(h'''(0) \).

81. c. \[\frac{dy}{dx} = \frac{1}{p} = \frac{1}{p} = -y \Rightarrow \frac{d^2y}{dx^2} = -\frac{dy}{dx} \]
\[\Rightarrow \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0 \]

82. a. \(y = 2 \ln(1 + \cos x) \)
\[\frac{dy}{dx} = \frac{-2 \sin x}{1 + \cos x} \]
\[\frac{d^2y}{dx^2} = \frac{-2}{1 + \cos x} \left(1 + \cos x \right) = \frac{-2}{(1 + \cos x)^2} \]
\[= \frac{\ln(1 + \cos x)}{2} = \frac{2}{1 + \cos x} \]
\[\Rightarrow \frac{2e^{y^2} + 2}{e^{y^2}} = 0 \]

83. a. Let \(g(x) = (\sin x)^{\ln x} = e^{\ln x \cdot \ln(\sin x)} \)
\[f(x) = g'(x) = (\sin x)^{\ln x} \left[\cot x (\ln x) + \frac{\ln(\sin x)}{x} \right] \]

Hence, \(f\left(\frac{\pi}{2}\right) = g'\left(\frac{\pi}{2}\right) = 1(0 + 0) = 0. \)

2. a, c, d.
\[y^2 = x + y \Rightarrow \frac{dy}{dx} = \frac{1}{2y - 1} \]

Also \(y = \frac{x}{y} \) \[\Rightarrow \frac{dy}{dx} = \frac{y}{2x + y} \]
\[\Rightarrow y^2 - y - x = 0 \Rightarrow y = \frac{1 + \sqrt{1 + 4x}}{2} \]
\[\Rightarrow y' = \frac{1 + 4x}{4 \sqrt{1 + 4x}} = \frac{1}{\sqrt{1 + 4x}} \]

3. b, c, d.
1. If \(f(x) = 0 \) and \(f'(x) = 0 \), or \(x^2 + bx + d = 0 \)
2. \(3x^2 + 2bx + 2b + 3 = 0 \)
\[\Rightarrow a + b + d = 0 \]
\[\Rightarrow a + b = 0 \]
\[\Rightarrow b + d = 0 \text{ and } a = d. \]

4. a, c.
\[x^3 - 2x^2y^2 + 5x + y - 5 = 0 \]
Differentiating w.r.t. \(x \), we get
\[3x^2 - 4x^2y + 4xy + 5 + \frac{dy}{dx} = 0 \]
\[\Rightarrow y' = \frac{dy}{dx} = \frac{3x^2 - 4x^2y + 5}{4x^2y - 1} \]
\[y'(1) = \frac{3 - 4 + 5}{4 - 1} = \frac{4}{3} \]
\[\text{Also, } y'' = \frac{(6x - 4y^2 - 8xyy')(4x^2y - 1) - (8xy + 4x^2y')(3x^2 - 4x^2y^2 + 5)}{(4x^2y - 1)^2} \]
\[\Rightarrow y''(1) = \frac{(6 - 4 - \frac{4}{3})(4 - 1) - (8 + 4 \cdot \frac{4}{3})(3 - 4 + 5)}{(4 - 1)^2} \]
\[= \frac{-22}{27} \]

5. a, b, c.
\[f(x) = |x^2 - 3x| + 2| \]
\[= \begin{cases} x^2 - 3x + 2, & x \geq 0 \\ x^2 + 3x + 2, & x < 0 \end{cases} \]
\[= \begin{cases} x^2 - 3x + 2, & x^2 - 3x + 2 \geq 0, x \geq 0 \\ -x^2 + 3x - 2, & x^2 - 3x + 2 < 0, x \geq 0 \end{cases} \]
\[= \begin{cases} x^2 + 3x + 2, & x^2 + 3x + 2 \geq 0, x < 0 \\ -x^2 - 3x - 2, & x^2 + 3x + 2 < 0, x < 0 \end{cases} \]
\[= \begin{cases} x^2 - 3x + 2, & x \in [0, 1] \cup [2, \infty) \\ -x^2 + 3x - 2, & x \in (1, 2) \end{cases} \]
\[= \begin{cases} x^2 + 3x + 2, & x \in (-\infty, 2) \cup [-1, 0) \\ -x^2 - 3x - 2, & x \in (-2, 1) \end{cases} \]
Methods of Differentiation

\[f'(x) = \begin{cases}
2x - 3, & x \in (0, 1) \cup (2, \infty) \\
-2x + 3, & x \in (1, 2) \\
2x + 3, & x \in (-\infty, 2) \cup (-1, 0) \\
-2x - 3, & x \in (-2, -1)
\end{cases} \]

6. b, c.
\[
y = \frac{(x^2 + 1)^2 - 3x^2}{x^2 + \sqrt{3}x + 1} = \frac{(x^2 + 1 + \sqrt{3}x)(x^2 + 1 - \sqrt{3}x)}{x^2 + 1 + \sqrt{3}x}
\]
\[
dy = 2x - \sqrt{3} \Rightarrow a = 2 \text{ and } b = -\sqrt{3}
\]
\[
a - b = 2 + \sqrt{3} = \frac{5\pi}{12} = \cot \frac{\pi}{12}
\]

7. a, b, d.
\[
f(x) = \frac{\sqrt{(x-1)^2 + 1} - 2 \sqrt{x-1}}{\sqrt{x-1}}
\]
\[
= \frac{x}{\sqrt{x-1}}
\]
\[
= \left\{ \begin{array}{l}
-x \text{ if } x \in [1, 2) \\
x \text{ if } x \in (2, \infty)
\end{array} \right.
\]

8. b, d.
\[
y = \frac{x}{\log x} \log \log x
\]
\[
\Rightarrow \log y = \log x \left(\log x \right) \log \log x
\]
\[
\Rightarrow \log \log y = \log \log x + \log (\log x) \log \log x
\]
\[
\Rightarrow \log \log y = \frac{2 \log \log x + 1}{\log x}
\]
\[
\Rightarrow \frac{dy}{dx} = \frac{\log y \left(2 \log (\log x) + 1 \right)}{x \log x}
\]
\[
\Rightarrow \text{Substituting the value of } y \text{ from (1), we get}
\]
\[
\frac{dy}{dx} = \frac{x}{\log x} \left(\log x \right) \log \log x \left(2 \log \log x + 1 \right)
\]

9. a, b, c.
We have \(\sin^{-1}(\cos x) = \frac{\pi}{2} - \cos^{-1}(\cos x) \)
\[
= \left\{ \begin{array}{l}
\frac{\pi}{2} - x, \text{ if } 0 < x \leq \pi \\
\frac{\pi}{2} - (2\pi - x), \text{ if } \pi < x < 2\pi
\end{array} \right.
\]

10. a, c.
\(f(x-y), f(x), f(y) \) and \(f(x+y) \) are in A.P.
\(\Rightarrow f(x+y) + f(x-y) = 2f(x)f(y) \) for all \(x, y \)
\[
\text{Putting } x = 0, y = 0 \text{ in (1),}
\]
\[
\Rightarrow f(0) = 2f(0)f(0)
\]
\(\Rightarrow f(0) = 1 \) \(\Rightarrow f(0) \neq 0 \)
\(\text{Putting } x = 0, y = x, \)
\(\text{we get } f(x) + f(-x) = 2f(0)f(x) \)
\(\Rightarrow f(x) = f(-x) \)
\(\Rightarrow f(4) = f(-4), f(3) = f(-3) \)
\(\text{Differentiating (1) w.r.t. } x, f'(x) + f'(-x) = 0 \)
\(\Rightarrow f'(4) + f'(-4) = 0 \)

11. b, c.
\(y = \cos^{-1} \left(\frac{2x}{1+x^2} \right) \)
\[
\frac{dy}{dx} = \frac{-1}{\sqrt{1 - \frac{4x^2}{(1+x^2)^2}}} \frac{d}{dx} \left(\frac{2x}{1+x^2} \right)
\]
\[
= \frac{dy}{dx} = \frac{1+x^2}{\sqrt{(1-x^2)^2} (1+x^2)^2}
\]
\[
= \frac{dy}{dx} = \frac{2(1+x^2) - 4x^2}{(1-x^2)^2 (1+x^2)^2}
\]
\[
= \frac{dy}{dx} = \frac{2(1+x^2) - 1 - x^2}{1-x^2 (1+x^2)^2}
\]
4.44 Calculus

\[\Rightarrow \frac{dy}{dx} = -2 \left(\frac{1-x^2}{1+x^2} \right) \left(\frac{1}{1+x^2} \right) \]

\[\Rightarrow \frac{dy}{dx} = \begin{cases} 2, & \text{if } |x| > 1 \\ -2, & \text{if } |x| < 1 \end{cases} \]

12. \(a, c, d. \)

\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

\[= \lim_{h \to 0} \frac{1+h}{x} \cdot \frac{f'(l)}{x} = \frac{1}{x} \]

\[\Rightarrow f(x) = \ln x \text{ as } f(1) = 0 \]

13. \(a, c. \)

\[\frac{d}{dx} \{ f_n(x) \} = \frac{d}{dx} \{ e^{\alpha_x} \} \]

\[= e^{\alpha_x} \frac{d}{dx} \{ f_n-1(x) \} = f_n(x) \frac{d}{dx} \{ f_n-1(x) \} \]

\[= f_n(x) \cdot f_n-1(x) \frac{d}{dx} \{ f_n-2(x) \} \]

\[= f_n(x) f_n-1(x) \cdots f_2(x) \frac{d}{dx} \{ f_1(x) \} \]

\[= f_n(x) f_n-1(x) \cdots f_2(x) e^{\alpha_x} \frac{d}{dx} \{ f_0(x) \} \]

Use \(e^{\alpha_x} = f_1(x) \) and \(f_0(x) = x \)

2. c. Statement 1 is always true, but Statement 2 is not always true, as if \(f'(x) = \cos x \), then \(f(x) \) can be \(\sin x \) which is odd function, but if \(f(x) = -\sin x + 2 \), then \(f(x) \) is neither odd nor even.

3. a. Since \(|f(x) - f(y)| \leq |x - y|^2\), where \(x \neq y \)

\[\therefore \left| \frac{f(x) - f(y)}{x - y} \right| \leq |x - y|^2 \]

Taking \(\lim \text{ as } y \to x \), we get

\[\lim_{y \to x} \left| \frac{f(x) - f(y)}{x - y} \right| = \lim_{y \to x} |x - y|^2 \]

\[\Rightarrow \lim_{y \to x} \frac{f(x) - f(y)}{x - y} = \lim_{y \to x} (x - y)^2 \]

\[\Rightarrow f'(x) \leq 0 \]

\[\Rightarrow f'(x) = 0 \quad (\because f'(x) \geq 0) \]

\[f'(x) = c \quad (c \text{ constant}) \]

4. b. Both the statement are true, but Statement 2 is not correct explanation of Statement 1.

Statement 1 is true as period of \(\sin x \) is \(2\pi \).

Or, in general if for \(y = f(x), f(a) = f(b) \), we cannot say \(f'(a) = f'(b) \).

5. a. \(f(x) + f(-2) = 0 \)

Replace \(x \) by \(x - 2 \Rightarrow f(x - 2) + f(x - 4) = 0 \) \(\Rightarrow (1) \)

From \((1) \) and \((2) \), \(f(x) = f(x + 4) = f(x) \).

Replace \(x \) by \(x + 4 \Rightarrow f(x + 4) = f(x) \).

\[f(x) = f(x + 4) = f(x + 8) = \cdots = f(x + 4000) \]

\[f'(x) = f'(x + 4000) \]

Hence, both the statements are true and Statement 2 is correct explanation of Statement 1.

Hence, \(f(x) \) is periodic with period 4.

6. d. Statement 2 is true as \(f(\alpha) = 0 \) and \(f''(\alpha) = 0 \), then definitely \(\alpha \) is repeated root of \(f(x) = 0 \).

But from data, we are not sure how many times a root repeats.

Also \(f(x) = (x - \alpha)^n \times g(x) \), which changes sign at \(x = \alpha \),

when \(n \) is odd and does not if \(n \) is even. Hence, Statement 1 is false.

7. a. Given \(f(x + y^2) = f(x) + f(y^2) \) \(\forall \ x, y \in R \)

Put \(x = y = 0 \), we get \(f(0 + 0) = f(0) + f(0) \Rightarrow f(0) = 0 \).

Now, put \(y = x^{1/3} \), we get \(f(0) = f(x) + f(-x) \)

\(\Rightarrow f(x) + f(-x) = 0 \)

\(\Rightarrow f(x) \) is an odd function

\(\Rightarrow f'(x) \) is an even function

\(\Rightarrow f(-2) = a \)

Linked Comprehension Type

For Problems 1 – 3

1.b, 2.a, 3.d.

Sol. Suppose degree of \(f(x) = n \), then degree of \(f' = n - 1 \) and

\(\deg f'' = n - 2 \).
so \(n = n - 1 + n - 2 \)
Hence, \(n = 3 \).
So put \(f(x) = ax^2 + bx + cx + d \). (where \(a \neq 0 \))
From \(f(2x) = f(x) \):
we have \(8a2^2 + 4b2x + 2cx + d = (3ax^2 + 2bx + c) (6ax + 2b) \)
\(= 18a2^2 + 18abx^2 + (6ac + 4b^2)x + 2bc \).
Comparing coefficients of terms, we have
\[18a = 8a \quad \Rightarrow \quad a = 4/9 \]
\[18ab = 4b \quad \Rightarrow \quad b = 0 \]
\[2c = 6ac + 4b^2 \quad \Rightarrow \quad c = 0 \]
\[d = 2bc \quad \Rightarrow \quad d = 0 \]
\(\Rightarrow f(x) = \frac{4x^3}{9} \), which is clearly one-one and onto.
\(\Rightarrow f(3) = 12 \).
Also, \(\frac{4x^3}{9} = x \Rightarrow x = 0, x = \pm 3/2 \).
Hence sum of roots of equation is zero.

For Problems 4 – 6

4. d, 5. c, 6. d.
So. Here, \(f(x) = x^3 + x^2f'(1) + xf''(2) + f'''(3) \)
Put \(f'(1) = a, f''(2) = b, f'''(3) = c \)
\(\therefore f(x) = x^3 + ax^2 + bx + c \)
\(\Rightarrow f'(x) = 3x^2 + 2ax + b, or \)
\(f'(1) = 3 + 2a + b \)
\(\Rightarrow f''(x) = 6x + 2a, or \)
\(f''(2) = 12 + 2a \)
\(\Rightarrow f'''(x) = 6, or \)
\(f'''(3) = 6 \)
From (1) and (4), \(c = 6 \)
From (1), (2) and (3), we have \(a = -5, b = 2 \).
\(\therefore f(x) = x^3 - 5x^2 + 2x + 6 \)
\(f'(x) = 3x^2 - 10x + 2. \)

For Problems 7 – 9

So. 7. b, 9. d.
7b. From the given information, we have \(f(x) = (x - c)^m g(x) \),
where \(g(x) \) is polynomial of degree \(n - m \).
Then \(x = c \) is common root for the equations \(f(x) = 0, f'(x) = 0, f''(x) = 0, \ldots, f^{(m-1)}(x) = 0, \)
where \(f^{(k)}(x) \) represent \(k \)th derivative of \(f(x) \) w.r.t. \(x \).
8. Let \(f(x) = a_1x^2 + b_1x + c_1 \) has roots \(\alpha, \beta, \gamma \),
then \(g(x) = a_2x^2 + b_2x + c_2 \) must have roots \(\alpha, \beta, \gamma \).
\(\Rightarrow a_2\alpha^2 + b_2\alpha + c_2 \alpha + d_2 = 0 \), and \(\alpha \) is also a root of equations \(f'(x) = 3a_1x^2 + 2b_1x + c_1 = 0 \)
and \(g'(x) = 3a_2x^2 + 2b_2x + c_2 = 0 \)
\(\Rightarrow 3a_1\alpha^2 + 2b_1\alpha + c_1 = 0, and \)
\(3a_2\alpha^2 + 2b_2\alpha + c_2 = 0 \)
Also from \(a_2(1) = a_1(2) \), we have
\(a_2b_1 - a_1b_2 \alpha + (c_1 - c_2) \alpha + d_1a_2 - d_2a_1 = 0 \)

Eliminating \(\alpha \) from (3), (4) and (5) we have
\[
\begin{vmatrix}
3a_1 & 2b_1 & c_1 \\
3a_2 & 2b_2 & c_2 \\
a_2b_1 - a_1b_2 & c_1 - c_2 & d_1a_2 - d_2a_1
\end{vmatrix}
= 0.
\]

For Problems 10 – 12

10. b. Since \(a_1, a_2, \ldots, a_{n-1} \) are roots of \(x^n - 1 = 0 \), then \(x^n - 1 = (x - a_1)(x - a_2) \ldots (x - a_{n-1}) \)
\(\Rightarrow \frac{x^n - 1}{x - 1} = (x - a_1)(x - a_2) \ldots (x - a_{n-1}) \)
\(\Rightarrow \lim_{x \to 1} \frac{x^n - 1}{x - 1} \lim [(x - a_1)(x - a_2) \ldots (x - a_{n-1})] \)
\(\Rightarrow (1 - a_1)(1 - a_2) \ldots (1 - a_{n-1}) = n. \)
11.a. From (1), \(\log(x^n - 1) = \log(x - 1) + \log(x - a_1) + \ldots + \log(x - a_{n-1}) \)
Differentiating w.r.t. \(x \), we get
\[
\frac{nx^{n-1}}{x^n - 1} = \frac{1}{x - 1} + \frac{1}{x - a_1} + \frac{1}{x - a_2} + \ldots + \frac{1}{x - a_{n-1}}
\]
Putting \(x = 2 \) in (2), we get
\[
\frac{n2^{n-1}}{2^n - 1} = \frac{1}{2 - a_1} + \frac{1}{2 - a_2} + \ldots + \frac{1}{2 - a_{n-1}} = n2^{n-1} - 1
\]
\[
\Rightarrow 2^{n-1} = \frac{n2^{n-1} - 2^n + 1}{2^n - 1}
\]
\[= 2^{n-1}(n - 2) + 1
\]
12. c. From (2), \(\frac{nx^{n-1}}{x^n - 1} = \frac{1}{x - 1} + \frac{1}{x - a_1} + \ldots + \frac{1}{x - a_{n-1}} \)
\(\Rightarrow \frac{nx^{n-1} - 1}{x^n - 1} = 1 + \frac{1}{x - a_1} + \frac{1}{x - a_2} + \ldots + \frac{1}{x - a_{n-1}} \)
\(\Rightarrow \lim_{x \to 1} \frac{nx^{n-1} - 1}{x^n - 1} \lim (1 + x + x^2 + \ldots + x^{n-1}) \)
\(\Rightarrow \lim_{x \to 1} (1 + x + x^2 + \ldots + x^{n-1}) \)
\(= \frac{1}{x - 1} + \frac{1}{x - a_2} + \ldots + \frac{1}{x - a_{n-1}} \) (applying L Hospital’s Rule on L.H.S.)
\[
\Rightarrow \frac{n(n-1) - (1+2+\cdots+(n-1))}{n} = \frac{1}{1-a_1} + \frac{1}{1-a_2} + \cdots + \frac{1}{1-a_{n-1}} = \frac{n-1}{2}
\]

For Problems 13–15

13. b, 14. c, 15. c.

Sol.

Here \(g'(1) = a, g''(2) = b \) (1)

Then \(f(x) = x^2 + ax + b, f(1) = 1 + a + b \Rightarrow f'(x) = 2x + a, f''(x) = 2 \).

\[g(x) = (1 + a + b)x^2 + (2x + a) + b = x^2(3 + a + b) + ax + b. \]

\[g'(x) = 2x(3 + a + b) + a \text{ and } g''(x) = 2(3 + a + b). \]

Hence, \(g'(1) = 2(3 + a + b) + a \) (2)

\[g''(2) = 2(3 + a + b) \] (3)

From (1), (2) and (3), we have \(a = 2(3 + a + b) + a \) and \(b = 2(3 + a + b) \)

\[3 + a + b = 0 \text{ and } b + 2a + 6 = 0 \]

Hence, \(b = 0 \) and \(a = -3 \). So, \(f(x) = x^2 - 3x \) and \(g(x) = -3x + 2 \).

\[
\sqrt{f(x)} = \sqrt{x^2 - 3x} \text{ is defined if } x^2 - 3x \geq 0
\]

\[
\Rightarrow \frac{x(x-3)}{x-3/2} \leq 0 \Rightarrow x \in (-\infty, 0] \cup (2/3, 3]
\]

For Problems 16–18

Sol.

16. d, 17. c, 18. c

\[g(x+y) = g(x) + g(y) + 3x^2y^2 + 3xy \] (1)

\[g'(x+y) = g'(x) + 6xy + 3y^2 \text{ (differentiating w.r.t. x keeping y as constant)} \]

\[\Rightarrow \frac{g'(y) = g'(0) + 3y^2}{g'(y) = -4 + 3y^2} \]

\[g'(x) = -4 + 3x^2 \]

\[g(x) = -4x + x^3 + c \]

Now put \(x = y = 0 \) in (1), we get \(g(0) = g(0) + g(0) + 0 \)

\[g(0) = 0 \]

\[g(x) = x^3 - 4x \]

\[g(x) = 0 \Rightarrow x^3 - 4x = 0 \Rightarrow x = 0, 2, -2. \text{ Hence, three roots.} \]

\[\sqrt{g(x)} = \sqrt{x^3 - 4x} \text{ is defined if } x^3 - 4x \geq 0 \text{ or } x \in [-2, 0] \cup [2, \infty). \]

Also, \(g'(x) = 3x^2 - 4 \Rightarrow g'(1) = -1 \)

For Problems 19–21

Sol.

\[x = f(t) = a^{\ln(b')} = a^{\ln b} \] (1)

\[y = g(t) = b^{\ln(a')} = (b^{\ln a})^{-t} = (a^{\ln b})^{-t} = a^{-t\ln b} \]

\[y = g(t) = a^{\ln(b')} = f(-t) \]

From equations (1) and (2)

\[xy = 1 \]

20. d

\[f(t) = g(t) \Rightarrow f(t) = f(-t) \Rightarrow t = 0 \]

\(\because f(t) \text{ is one-one function} \)

\[\text{At } t = 0, x = y = 1 \]

\[\Rightarrow \frac{dy}{dx} = \frac{y}{x} \text{ and } \frac{d^2y}{dx^2} = \frac{2}{x^3} \]

\[\text{At } x = 1, \frac{d^2y}{dx^2} = 2 \]

21. b.

\[xy = 1 \]

\[\Rightarrow f_0 + f_0' = 0 \]

\[\Rightarrow f_0'' + f_0' + f_0' + f_0'' = 0 \]

\[\Rightarrow f_0'' + f_0' + 2f_0' = 0 \]

\[\Rightarrow \frac{f''(x)}{f'(x)} + \frac{f'(x)}{f(x)} = -2 \]

From equation (2), \(g(t) = f(-t) \)

\[g'(t) = -f'(-t) \]

and \(g''(t) = f''(-t) \)

substituting in equation (3)

\[f(t), f''(-t) + f(-t), f''(-t) = -2 \]

\[f(t), f''(-t) + f(-t), f''(-t) = 2 \]

\[f(t), f''(-t) + f(-t), f''(-t) = 2 \]

\[f(t), f''(-t) + f(-t), f''(-t) = 2 \]

\[\frac{f''(t)}{f'(t)} - f''(-t) f''(-t) = 2 \]

Matrix-Match Type

1. a. \(p \); b. \(q, r \); c. \(s, r \); d. \(q, r \).

Sol.

a. \(f(1-x) = f(1+x) \)

\[\Rightarrow -f(-1-x) = f'(1+x) \]

Hence, graph of \(f(x) \) is symmetrical about point \((1, 0)\)
(as if \(f(x) = f(-x) \), then \(f(x) \) is odd and its graph is symmetrical about \((0, 0)\). Now shift the graph at \((1, 0)\)).
b. \(f(2-x) + f(x) = 0 \)
Replace \(x \) by \(1 + x \), then \(f(2 - (1 + x)) + f(1 + x) = 0 \)
\[\Rightarrow f(1 - x) + f(1 + x) = 0 \]
\[\Rightarrow -f'(1-x) + f'(1+x) = 0 \]
\[\Rightarrow f'(1-x) = f'(1+x) \]
\[\Rightarrow \text{Graph of } f'(x) \text{ is symmetrical about line } x = 1. \]
Also, put \(x = 2 \) in (1), we get \(f'(1) = f'(3) \).

\[\text{(1)} \]

\[f(1+x) + f(x) = 0 \]
Replace \(x \) by \(x + 2 \), we get \(f(x+4) + f(x+2) = 0 \)
From (1) and (2), we have \(f(x) = f(x+4) \)
Hence, \(f(x) \) is periodic with period 4.
Also, \(f'(x) = f'(x+4) \). Hence \(f'(x) \) is periodic with period 4.
Put \(x = -1 \) in \(f'(x) = f'(x+4) \), we get \(f'(-1) = f'(3) \).

\[\text{(2)} \]

\[\text{d. Putting } x = 0, y = 0, \text{ we get } 2f(0) + |f(0)|^2 = 1 \]
\[\Rightarrow f(0) = \sqrt{2} - 1 \quad (\because |f(0)| > 0) \]
Putting \(y = x, 2f(x) + |f(x)|^2 = 1 \)
Diff. w.r.t. \(x \), we get
\[2f'(x) + 2f(x) \cdot f'(x) = 0 \quad \text{or} \quad f'(x)(1+f(x)) = 0 \]
\[\Rightarrow f'(x) = 0, \text{ because } f(x) > 0. \]

2. a. \(\rightarrow q; \) b. \(\rightarrow r; \) c. \(\rightarrow s; \) d. \(\rightarrow p. \)

\[\text{Sol.} \]

\[\text{a. } \frac{dy}{dx} = \frac{dy/\text{dt}}{dx/\text{dt}} = \frac{12x^2 - 6t - 18}{5t^4 - 15x^2 - 20} \]
\[\Rightarrow \frac{dy}{dx} \bigg|_{t=1} = \frac{12 - 6 - 18}{5 - 15} = \frac{2}{5} \]
\[\Rightarrow 5 \frac{dy}{dx} \bigg|_{t=1} = 2 \text{ at } t = 1. \]

\[\text{b. Let us take } P(x) = a(x - 2)^4 + b(x - 2)^3 + c(x - 2)^2 + d(x - 2) + e \]
\[-1 = P(2) = e \]
\[0 = P'(2) = a \]
\[2 = P''(2) = 6b \Rightarrow b = -2 \]
\[24 = P'''(2) = 24a \Rightarrow a = 1 \]
Thus, \(P'''(x) = 12(x-2)^2 - 12(x-2) + 2 \)
\[\Rightarrow P'''(3) = 12 - 12(1) + 2 = 2 \]

\[\text{c. Here } \sqrt{1 + y^4} = \sqrt{1 + \frac{1}{x^4}} = \frac{1}{x^2} \quad (\because y = \frac{1}{x}) \]
\[\Rightarrow \frac{1 + y^4}{\sqrt{1 + x^4}} = \frac{1}{x^2} \quad \text{(1)} \]
But \(y = \frac{1}{x} \)
\[\Rightarrow \frac{dy}{dx} = -\frac{1}{x^2} \quad \text{(2)} \]

\[\text{From (1) and (2), } \frac{1 + y^4}{\sqrt{1 + x^4}} = -\frac{dy}{dx} \]

\[\frac{dy}{dx} = \frac{\sqrt{1 + y^4}}{\sqrt{1 + x^4}} = -1 \]

\[\text{d. Obviously, } f(x) \text{ is a linear function.} \]
Also from \(f'(0) = p \) and \(f(0) = q, f(x) = px + q \).
\[\Rightarrow f''(0) = 0 \]

3. a. \(\rightarrow q, r; \) b. \(\rightarrow p, r, s; \) c. \(\rightarrow q, s; \) d. \(\rightarrow q, r. \)

\[\text{Sol.} \]

\[\text{a. We know that } \]
\[\left\{ \begin{array}{ll}
\sin^{-1} \left(\frac{2x}{1 + x^2} \right), & \text{if } -1 \leq x \leq 1 \\
2 \tan^{-1} \left(\frac{2x}{1 + x^2} \right), & \text{if } x > 1 \\
-\pi - \sin^{-1} \left(\frac{2x}{1 + x^2} \right), & \text{if } x < -1
\end{array} \right. \]
\[\Rightarrow \frac{dy}{dx} = \begin{cases}
\frac{2}{1 + x^2}, & \text{if } x < 0 \text{ or } x > 1 \\
1, & \text{if } x = 0.
\end{cases} \]

\[\text{b. } \cos^{-1} \left(\frac{1}{\sqrt{1 + x^4}} \right) = \left\{ \begin{array}{ll}
\tan^{-1} x, & \text{if } x \geq 0 \\
-\tan^{-1} x, & \text{if } x < 0
\end{array} \right. \]
\[\Rightarrow \frac{dy}{dx} = \frac{1}{1 + x^2} \text{ if } x < 0 \]

\[\text{c. } y = |e^x - e| = \begin{cases}
|e^x - e|, & \text{if } x \geq 0 \\
|e^{-x} - e|, & \text{if } x < 0
\end{cases} = \begin{cases}
e^x - e, & x \geq 1 \\
e^{-x} - e, & -1 \leq x < 1 \\
e^{x} - e, & x < -1
\end{cases} \]
\[\Rightarrow \frac{dy}{dx} > 0 \text{ if } x > 1 \text{ or } -1 < x < 0. \]

\[\text{d. } u = \log |2x|, v = |\tan^{-1} x| \]
\[\Rightarrow \frac{du}{dx} = \frac{1}{x}, \text{ and } \frac{dv}{dx} = \begin{cases}
\frac{1}{1 + x^2}, & x > 0 \\
-\frac{1}{1 + x^2}, & x < 0
\end{cases} \]
\[\Rightarrow \frac{du}{dv} = \begin{cases}
\frac{1 + x^2}{x}, & x > 0 \\
\frac{1 + x^2}{x}, & x < 0
\end{cases} \]

Now we know that \(\frac{1 + x^2}{x} = x + \frac{1}{x} > 2 \text{ if } x > 1 \text{ and } < -2 \text{ if } x < -1 \)
\[\Rightarrow \frac{du}{dv} > 2 \text{ if } x < -1 \text{ or } x > 1 \]
4.48 Calculus

4. a. \(p, q, r \); b. \(q, s \); c. \(q, r \); d. \(r \).

Sol.

a. \(p, q, r \)

The graph of \(y = |x^2 - 2x| \)

b. \(q, s \)

The graph of \(y = |\log x| \)

c. \(q, r \)

\[
\begin{align*}
y = x[x/2] &= \begin{cases}
-x, & -4 \leq x < -2 \\
-x, & -2 \leq x < 0 \\
0, & 0 \leq x < 2 \\
-x, & x, \quad 2 \leq x < 4
\end{cases}
\end{align*}
\]

Hence \(dy/dx \) is negative for \(q, r \)

d. \(q \)

The graph of \(y = |\sin x| \)

From the graph \(dy/dx \) is negative for \(q \)

Integer Type

1. (9) \(\frac{d}{dx} \{[(f(x)]^2 - [\phi(x)]^2] \)

\[
2[f(x)f'(x) - \phi(x)\phi'(x)] = 2[f(x) - \phi(x)](f'(x) - \phi'(x)) \text{ (since \(f(x) = \phi(x) \) and \(\phi'(x) = \phi(x) \))}
\]

\[
= 0 \quad \Rightarrow \quad [f'(x)]^2 - [\phi(x)]^2 = \text{constant}
\]

\[
[\phi(10)]^2 - [\phi(10)]^2 = [f(3)]^2 - [\phi(3)]^2 = 25 - 16 = 9.
\]

2. (2) Since \(f(x) \) is odd. Therefore \(f(-x) = -f(x) \Rightarrow f'(x) = -f'(x) \)

\[
\Rightarrow f'(x) = f'(x) + f'(3) = -2.
\]

3. (5) Here \(x = \alpha \) is a repeated root of the equation \(f(x) = 0 \)

hence \(x = \alpha \) is also a root of the equation \(f'(x) = 0 \)

\[
3x^2 + 6x - 9 = 0
\]

or \(x^2 + 2x - 3 = 0 \) or \(x + 3(x-1) = 0 \)

has the root \(\alpha \), which can be either \(-3 \) or \(1 \).

If \(\alpha = 1 \), then \(f(x) = 0 \) gives \(c = -5 \) or \(c = 5 \)

If \(\alpha = -3 \), then \(f(x) = 0 \) gives \(-27 + 27 + 27 + c = 0 \), i.e., \(c = -27 \)

4. (3) We have \(f(5-x) = -f(5+x) \Rightarrow f''(5-x) = -f''(5+x) \)

\[
\Rightarrow f'(5-2) = f'(5+2) \Rightarrow f'(3) = f'(7) = 3
\]

5. (2) We have \(g(x) = f(x) \sin x \)

On differentiating equation (1) w.r.t. \(x \), we get

\[
g'(x) = f(x) \cos x + f'(x) \sin x
\]

Again differentiating equation (2) w.r.t. \(x \), we get

\[
g''(x) = f(x) (-\sin x) + f'(x) \cos x + f''(x) \cos x + f''(x) \sin x
\]

\[
\Rightarrow g''(-\pi) = 2f''(-\pi) \cos(-\pi) = 2 \times 1 \times (-1) = -2
\]

Hence \(g''(-\pi) = -2 \)

6. (8) \(\ln(f(x)) = \ln(x-1) + \ln(x-n) + \ln(x-2) + \cdots + \ln(x-n) \)

\[
\Rightarrow f'(x) = f(x) \left[\frac{1}{x-1} + \frac{1}{x-2} + \cdots + \frac{1}{x-n} \right]
\]

\[
\Rightarrow f'(x) = (x-2)(x-3)(x-n) + (x-1)(x-1)(x-3) \cdots (x-n) + \cdots +
\]

\[
(x-1)(x-2) \cdots (x-(n-1)) \Rightarrow f''(n) = (n-1)(n-2)(n-3) \cdot 2 \cdot 1 \text{ (all other factors except the last vanish when } x = n) \Rightarrow 5040 = (n-1)!
\]

\[
\Rightarrow n = 8
\]

7. (9) \(f''(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \)

\[
\Rightarrow \lim_{h \to 0} \frac{2f(x) + f(h) + h(\sqrt{x} - 2f(x) - xf(0) - 0\sqrt{f(x)})}{h}
\]

as \(f(0) = 0 \)

\[
\Rightarrow \lim_{h \to 0} \left(\frac{f(h) - f(0)}{h} \right) + \lim_{h \to 0} \frac{\sqrt{f(x)}}{h} = f'(0) + \sqrt{f(x)}
\]

\[
\Rightarrow f'(x) = \sqrt{f(x)} \quad (\because f''(0) = 0)
\]

\[
\Rightarrow \int \frac{f'(x)}{\sqrt{f(x)}} \, dx = \int dx
\]

\[
\Rightarrow 2\sqrt{f(x)} = x + c
\]

\[
\Rightarrow f(x) = \frac{x^2}{4} \quad (\because f(0) = 0)
\]

8. (5) \(f(x)(f'(-x) = f(x)(x)f'(x) \)

\[
\Rightarrow f'(x)(f'(-x) - f(x) = 0)
\]

\[
\Rightarrow \frac{d}{dx} \left[f(x)(f'(-x) = k \right.
\]

Given \(f(0)^2 = k = 9 \Rightarrow k = 9 \)

Then \(f(3)f(-3) = 9 \Rightarrow f(-3) = 3 \)
15. (9) Let degree of \(f(x) \) is \(n \); degree of \(f'(x) = n - 1 \)
degree of \(f''(x) = (n - 2) \)

Thus \(n = 3 \)

Hence \(f(x) = ax^2 + bx^2 + cx + d \) (\(a \neq 0 \))
\(f'(x) = 3ax^2 + 2bx + c \)
\(f''(x) = 6ax + 2b \)
\(ax^3 + bx^2 + cx + d = (3ax^2 + 2bx + c)(6ax + 2b) \)

\(18a^2 = a \Rightarrow a = \frac{1}{18} \)

16. (1)
\[
\frac{dx}{dt} = -\frac{3}{t^4} = \frac{2}{t^3} = \left(\frac{3 + 2t}{t^4} \right) \\
\frac{dy}{dt} = \frac{3}{t^3} = \frac{2}{t^3} = \left(\frac{3 + 2t}{t^3} \right) \\
\Rightarrow \frac{dy}{dx} = t \\
\Rightarrow \frac{dy}{dx} - x \left(\frac{dy}{dx} \right)^3 = t \left(\frac{1 + t}{t^3} \right), t^3 = -1
\]

17. (5) \(z = \cos x^2; y = \sin x \)
\[
\frac{dz}{dx} = -5 \cos x \cdot \sin x, \quad \frac{dy}{dx} = \cos x \\
\Rightarrow \frac{dz}{dy} = -5 \cos x \cdot \sin x
\]

Now \(d^2z = \frac{d}{dy} \frac{dz}{dx} \frac{dx}{dy} \)
\[
= -5 \frac{d}{dx} \left(\cos x \cdot \sin x \right) \frac{1}{\cos x} \\
= -5 \left(\cos^2 x - 3 \sin^2 x \cdot \cos^2 x \right) \frac{1}{\cos x} \\
= -5 \left(\cos^3 x - 3 \sin^2 x \cdot \cos x \right) \\
= -5 \left(4 \cos^3 x - 3 \cos x \right) \\
= -5 \cos 3x
\]

\[
\Rightarrow \frac{d^2z}{dy^2} = -5 \cos 120^\circ = \frac{5}{2}
\]

18. (7) \(g'(0) = b = \lim_{x \to 0} \frac{\frac{x^2}{x} + \tan x - x \tan 2x}{x(x + \tan x - x \tan 3x)} \)
\[
= \lim_{x \to 0} \frac{x + \tan x - x \tan 2x}{x + \left(\frac{x^3 + 2}{15} \right) x^5 + \cdots} \\
= \lim_{x \to 0} \frac{x + \left(\frac{x^3 + 2}{15} \right) x^5 + \cdots}{ax + \left(\frac{x^3 + 2}{15} \right) x^5 + \cdots}
\]

\[
= \left(\frac{2x + \frac{8x^3}{3} + \frac{2}{32x^5} + \cdots}{\frac{15}{3} x^5 + \cdots} \right) \\
= -\left(\frac{2x + \frac{8x^3}{3} + \frac{2}{32x^5} + \cdots}{\frac{15}{3} x^5 + \cdots} \right)
\]

\[
= \left(\frac{27x^3}{3} + \frac{2}{243x^5} + \cdots \right)
\]

\[
= \left(\frac{3x + \frac{27x^3}{3} + \frac{2}{243x^5} + \cdots}{\frac{15}{3} x^5 + \cdots} \right)
\]
4.50 Calculus

\[x^3 \left(\frac{7}{3} + \frac{-62}{15} x^2 + \cdots \infty \right) \]
\[= \lim_{x \to 0} \frac{x^3 \left(\frac{7}{3} + \frac{-62}{15} x^2 + \cdots \infty \right)}{(a + 1 - 3)x + \left(\frac{1}{3} - 9 \right)x^3 + \frac{2}{15}(-242)x^3 + \cdots \infty} \]

\[b \text{ can be finite if } a + 1 - 3 = 0 \]

\[\therefore a = 2 \text{ and } b = \frac{-7}{3} \left(\frac{3}{-26} \right) = \frac{7}{26} \Rightarrow 52 \frac{b}{a} = 7 \]

Archives

Subjective

1. Let \(f(x) = \sin (x^2 + 1) \), then \(f(x + h) = \sin [(x + h)^2 + 1] \)

\[\therefore \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin [(x + h)^2 + 1] - \sin [x^2 + 1]}{h} \]

\[\Rightarrow f'(x) = \lim_{h \to 0} 2 \cos \left(\frac{2x^2 + h^2 + 2xh + 2}{2} \right) \]

\[\times \left(\frac{h^2 + 2xh}{2} \right) \]

\[= \lim_{h \to 0} 2 \cos \left(x^2 + 1 \right) \frac{\sin \left(\frac{h^2 + 2xh}{2} \right)}{h + \frac{2xh}{2}} \]

\[= 2 \cos (x^2 + 1) \]

2. \(f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & x \neq 1 \\ \frac{1}{3}, & x = 1 \end{cases} \)

\[\Rightarrow \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \begin{cases} \frac{x-1}{(x-1)(2x-5)}, & x \neq 1 \\ \frac{1}{3}, & x = 1 \end{cases} \]

\[\Rightarrow \lim_{h \to 0} \frac{1}{2(h+1)-5} \left\{ \begin{array}{l} 1 \quad \text{if } x \neq 1 \\ 1 \quad \text{if } x = 1 \end{array} \right. \]

\[\therefore f'(x)|_{x=1} = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h} \]

\[= \lim_{h \to 0} \frac{1}{2(h+1)-5} + \frac{1}{3} \]

\[= \lim_{h \to 0} \frac{2h}{3h(2h-3)} \]

\[= \lim_{h \to 0} \frac{2}{(2h-3).3} \]

\[= -\frac{2}{9}. \]

3. Given \(y = 5 \left[\frac{x}{(1 - x)^{2/3}} \right] + \cos^2 (2x + 1) \)

Differentiating both sides w.r.t. \(x \), we get

\[\frac{dy}{dx} = \left[\frac{5}{(1 - x)^{2/3}} \right] + \frac{2}{3(1 - x)^{1/3}} (-1) \]

\[= \frac{5}{(1 - x)^{2/3}} + \frac{2}{3(1 - x)^{1/3}} (-1) \]

\[+ 2 \cos (2x + 1)(- \sin (2x + 1)) \]

\[= \frac{5}{(1 - x)^{2/3}} + \frac{2}{3(1 - x)^{1/3}} (-1) \]

\[- 2 \sin (4x + 2) \]

\[= \frac{5(3 - 3x + 2)}{3(1 - x)^{5/3}} - 2 \sin (4x + 2) \]

\[= \frac{5(5 - 3x)}{3(1 - x)^{5/3}} - 2 \sin (4x + 2) \]

4. We are given that \(y = e^{x \sin x^3} + (\tan x)^x \)

\[u = e^{x \sin x^3} \text{ and } v = (\tan x)^x \]

now \(\frac{du}{dx} = e^{x \sin x^3} \frac{d}{dx} (x \sin x^3) \)

\[= e^{x \sin x^3} [3x^2 \cos x^3 + \sin x^3] \]

\[= (\tan x)^x \]

\[\Rightarrow \log y = x \log \tan x \]

Differentiating w.r.t. \(x \), we get \(\frac{1}{y} \frac{dy}{dx} = x \frac{1}{\tan x} \sec^2 x + \log \tan x \)

\[\therefore \frac{dy}{dx} = (\tan x)^x \left(\frac{2x}{\sin 2x} + \log \tan x \right) \]

Hence, \(\frac{dy}{dx} = e^{x \sin x^3} (\sin x^3 + 3x^2 \cos x^3) \)

\[+ (\tan x)^x \left(\frac{2x}{\sin 2x} + \log \tan x \right) \]

5. Given that \(f(x) \) is twice differentiable, such that \(f''(x) = -f(x) \) and \(f'(x) = g(x) \), then \(h(x) = [f'(x)]^2 + [g(x)]^2 \)

\[\Rightarrow h'(x) = 2f'(x)f''(x) + 2g(x)g'(x) \]

\[= 2f'(x)g(x) + 2g'(x)f''(x) \]

\[= 0 \]

\[\therefore h'(x) = 0, \forall x \]

\[\Rightarrow h \text{ is a constant function.} \]
6. Let \(F(x) = \begin{vmatrix} A(x) & B(x) & C(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{vmatrix} \)
\(F'(x) = \begin{vmatrix} A'(\alpha) & B'(\alpha) & C'(\alpha) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{vmatrix} \)
\(\therefore \frac{d}{dx} \left| F'(x) \right| = \frac{2}{1 + x^2} \)
\(\Rightarrow \frac{d}{dx} \left| F'(x) \right| = -8 \log_2 e + \frac{32}{16 + \pi^2} \)

8. As \(x = \csc \theta - \sin \theta \)
\(\Rightarrow \frac{d}{dx} (x + 4) = (\csc \theta - \sin \theta)^2 + 4 = (\csc \theta + \sin \theta)^2 \)
and \(\csc \theta + \sin \theta = \csc^n \theta + \sin^n \theta \)

\(\frac{dy}{dx} = \frac{d}{d\theta} \left(\frac{dy}{d\theta} \right) = n(\csc^n \theta - \cot \theta \csc \theta) - n \sin^{n-1} \theta \cos \theta \)
\(\frac{dy}{dx} = \frac{n(\csc^n \theta - \cot \theta \csc \theta) - n \sin^{n-1} \theta \cos \theta}{-\cot \theta \csc \theta - \cos \theta} \)

\(\frac{dy}{dx} = \frac{n(\csc^n \theta - \cot \theta \csc \theta) - n \sin^{n-1} \theta \cos \theta}{(\cot \theta - \cos \theta)} \)
\(\frac{dy}{dx} = \frac{n(\csc^n \theta - \cot \theta \csc \theta) - n \sin^{n-1} \theta \cos \theta}{(\cot \theta - \cos \theta)} \)

\(\frac{dy}{dx} = n(\csc^n \theta + \sin^n \theta) \frac{x}{\sqrt{x^2 + 4}} \)

\(\Rightarrow \frac{dy}{dx} = n(\csc^n \theta + \sin^n \theta) \frac{x}{\sqrt{x^2 + 4}} \)

\(\Rightarrow \frac{dy}{dx} = n(\csc^n \theta + \sin^n \theta) \frac{x}{\sqrt{x^2 + 4}} \)

\(\Rightarrow \frac{dy}{dx} = n(\csc^n \theta + \sin^n \theta) \frac{x}{\sqrt{x^2 + 4}} \)

\(\Rightarrow \frac{dy}{dx} = n(\csc^n \theta + \sin^n \theta) \frac{x}{\sqrt{x^2 + 4}} \)

\(\Rightarrow \frac{dy}{dx} = n(\csc^n \theta + \sin^n \theta) \frac{x}{\sqrt{x^2 + 4}} \)

\(\Rightarrow \frac{dy}{dx} = n(\csc^n \theta + \sin^n \theta) \frac{x}{\sqrt{x^2 + 4}} \)

\(\Rightarrow \frac{dy}{dx} = n(\csc^n \theta + \sin^n \theta) \frac{x}{\sqrt{x^2 + 4}} \)
4.52 Calculus

\[+ \sin \left(\frac{\pi x}{2} \right) \cot y \frac{dy}{dx} \] \quad (3)

Now differentiating (1), we get

\[\Rightarrow (\sin y) \frac{\pi}{2} \left[\cos \left(\frac{\pi x}{2} \right) \log \sin y \right] + \sin \left(\frac{\pi x}{2} \right) \cot y \frac{dy}{dx} + \frac{\sqrt{3}}{2x \sqrt{x^2 - 1}} + 2^x \log(2) \]

\[\tan (\log(x + 2)) + \frac{2^x \sec^2 [\log(x + 2)]}{x + 2} = 0. \]

At \(x = -1 \) and \(\sin y = -\frac{\sqrt{3}}{\pi} \), we get

\[\Rightarrow \left(-\frac{\sqrt{3}}{\pi} \right)^{\frac{1}{2}} \left[0 + (1) \sqrt{\frac{\pi^2}{3} - 1} \right] \left(\frac{dy}{dx} \right)_{x = -1} \]

\[+ \frac{\sqrt{3}}{2} - 0 + 2^{-1} = 0. \]

\[\Rightarrow \frac{\pi}{\sqrt{3} \sqrt{3}} \sqrt{\pi^2 - 3} \left(\frac{dy}{dx} \right)_{x = -1} = 0 + 1 + \frac{1}{2} = 0 \]

\[\Rightarrow \frac{dy}{dx} = 0 \]

10. \(y = \frac{ax^2}{(x-a)(x-b)(x-c)} + \frac{bx}{(x-b)(x-c)} + \frac{c}{x-c} + 1 \)

\[\Rightarrow y = \frac{ax^2}{(x-a)(x-b)(x-c)} + \frac{bx}{(x-b)(x-c)} + \frac{c + x-c}{x-c} \]

\[\Rightarrow y = \frac{ax^2}{(x-a)(x-b)(x-c)} + \frac{bx}{(x-b)(x-c)} + \frac{x}{x-c} \]

\[\Rightarrow y = \frac{ax^2}{(x-a)(x-b)(x-c)} + \frac{bx + x(x-b)}{(x-b)(x-c)} \]

\[\Rightarrow y = \frac{ax^2}{(x-a)(x-b)(x-c)} + \frac{x^2}{(x-b)(x-c)} \]

\[\Rightarrow y = \frac{ax^2 + x^2(x-a)}{(x-a)(x-b)(x-c)} \]

\[\Rightarrow y = \frac{x^3}{(x-a)(x-b)(x-c)} \]

\[\Rightarrow \log y = \log \left(\frac{x^3}{(x-a)(x-b)(x-c)} \right) \]

\[\Rightarrow \log y = 3 \log x - \{\log(x-a) + \log(x-b) + \log(x-c)\} \]

On differentiating w.r.t. \(x \), we get

\[\frac{1}{y} \frac{dy}{dx} = 3 \left(\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} \right) \]

\[\Rightarrow \frac{dy}{dx} = y \left(\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} \right) \]

\[\Rightarrow \frac{dy}{dx} = \frac{a}{x(x-a)} + \frac{b}{x(x-b)} + \frac{c}{x(x-c)} \]

\[\Rightarrow \frac{dy}{dx} = \frac{a + b + c}{x(a-b)(b-c)} \]

Objective

Fill in the blanks

1. \(y = f \left(\frac{2x-1}{x^2 + 1} \right) ; \quad f'(x) = \sin x^2 \)

\[\frac{dy}{dx} = f' \left(\frac{2x-1}{x^2 + 1} \right) \frac{d}{dx} \left(\frac{2x-1}{x^2 + 1} \right) \]

\[= \sin \left(\frac{2x-1}{x^2 + 1} \right)^2 \frac{2(x^2 + 1) - 2x(2x-1)}{(x^2 + 1)^2} \]

\[= 2 + 2x - 2x^2 \frac{\sin \left(\frac{2x-1}{x^2 + 1} \right)^2}{(x^2 + 1)^2} \]

2. Given that \(F(x) = \left| \begin{array}{ccc} f_1 (x) & f_2 (x) & f_3 (x) \\ g_1 (x) & g_2 (x) & g_3 (x) \\ h_1 (x) & h_2 (x) & h_3 (x) \end{array} \right| \)

where \(f_i (x), g_i (x), h_i (x), r = 1, 2, 3 \) are polynomials in \(x \) and hence differentiable and \(f(a) = g(a) = h(a) = h(a), 1, 2, 3, \ldots \)

Diff. (1) w.r.t. \(x \),

\[\Rightarrow F'(x) = \left| \begin{array}{ccc} f_1 (x) & f_2 (x) & f_3 (x) \\ f_1 (x) & f_2 (x) & f_3 (x) \\ h_1 (x) & h_2 (x) & h_3 (x) \end{array} \right| + \left| \begin{array}{ccc} g_1 (x) & g_2 (x) & g_3 (x) \\ f_1 (x) & f_2 (x) & f_3 (x) \\ h_1 (x) & h_2 (x) & h_3 (x) \end{array} \right| + \left| \begin{array}{ccc} h_1 (x) & h_2 (x) & h_3 (x) \\ f_1 (x) & f_2 (x) & f_3 (x) \\ g_1 (x) & g_2 (x) & g_3 (x) \end{array} \right| \]

\[: \quad F'(a) = f_1 (a) g_2 (a) h_3 (a) \]

\[\Rightarrow F'(a) = f_1 (a) g_2 (a) h_3 (a) \]

\[\Rightarrow F'(a) = f_1 (a) g_2 (a) h_3 (a) \]

\[\Rightarrow F'(a) = f_1 (a) g_2 (a) h_3 (a) \]

\[\Rightarrow F'(a) = D_1 + D_2 + D_3 \]

From (2), \(D_1 = D_2 = D_3 = 0 \) (By the property of determinants that \(D = 0 \) if two rows are identical)

\[\Rightarrow F'(a) = 0. \]

3. Given, \(f(x) = \log_e (\log x) = \frac{\log_e (\log_e x)}{\log_e x} \)

\[\Rightarrow f'(x) = \frac{1}{x} \frac{1}{\log_e x} \frac{1}{\log_e x} \]

\[\Rightarrow f'(x) = \frac{1}{x} \frac{1}{\log_e x} \frac{1}{x} \frac{1}{\log_e x} \]

\[\Rightarrow f'(x) = \frac{1}{x} \frac{1}{\log_e x} \frac{1}{x} \frac{1}{\log_e x} \]
\[
\frac{1}{x^2} \left[1 - \log_e (\log_e x) \right] = \frac{\log_e x - 1}{x^2} \cdot \frac{1}{(\log_e x)^2}
\]

at \(x = e \), we get

\[
f'(e) = e \cdot \frac{1}{e} = 1.
\]

4. Let \(u = \sec^{-1} \left(\frac{1}{2x^2 - 1} \right) \); \(v = \sqrt{1 - x^2} \)

We have, \(u = \cos^{-1} (2x^2 - 1) = 2 \cos^{-1} x \)

\[
\frac{du}{dx} = -\frac{2}{\sqrt{1-x^2}} \quad \text{and} \quad \frac{dv}{dx} = \frac{-x}{\sqrt{1-x^2}}
\]

\[
\Rightarrow \frac{du}{dv} = \frac{\sqrt{1-x^2}}{-x} = \frac{2}{x} \Rightarrow \frac{du}{dv} \mid _{x=1/2} = 4.
\]

5. Given that \(f(9) = 9 \), \(f'(9) = 4 \)

Then, \(\lim _{x \to 9} \sqrt{f(x)} = \frac{3}{2} \)

\[
= \lim _{x \to 9} \frac{\sqrt{f(x) - 3}}{\sqrt{f(x) + 3}} \cdot \sqrt{f(x) + 3}
\]

\[
= \lim _{x \to 9} \frac{f(x) - 9}{3 + 3} \cdot 1 \times 1 = f'(9) = 4.
\]

6. \(f(x) = |x - 2| \)

\[
g(x) = |f(x)| = |x - 2| = ||x - 2| - 2| = |x - 2 - 2| \quad \text{(as} \ x > 0) = |x - 4| \quad \text{(as} \ x > 20)
\]

\[
= x - 4.
\]

\[
\Rightarrow g'(x) = 1.
\]

7. Given \(y = x + \sin^2 x \)

Differentiating w.r.t. \(x \), we get

\[
e^y(1 + x \cos y) = \frac{dy}{dx} + 2 \sin x \cos x
\]

Put \(x = 0 \) \(\Rightarrow 1 + 0 = \frac{dy}{dx} + 0 \Rightarrow \frac{dy}{dx} = 1.
\]

8. \(F(x) = f(x)g(x)h(x) \), \(\forall \ x \in R \)

\(f(x), g(x), h(x) \) are differentiable functions.

\[
F'(x) = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)
\]

At \(x = x_0 \),

\[
F'(x_0) = f'(x_0)g(x_0)h(x_0) + f(x_0)g'(x_0)h(x_0) + f(x_0)g(x_0)h'(x_0).
\]

Using the given values of \(F'(x_0), f'(x_0), g'(x_0) \) and \(h'(x_0) \)

we get \(21f(x_0) = 4f(x_0)g(x_0)h(x_0) - 7f(x_0)g(x_0)h(x_0) + kh(x_0)f(x_0)g(x_0) \)

\[
\Rightarrow 21 = 4 - 7 + k \quad \Rightarrow k = 24.
\]

9. \(f(0) = 1, f'(x) = 3x^2 + \frac{1}{2}e^{1/2} \)

\[
g(f(x)) = x \Rightarrow g(f(x)) \cdot f'(x) = 1
\]

Put \(x = 0 \) \(\Rightarrow g'(1) = \frac{1}{f'(0)} = 2. \)

True or false

1. Even function satisfies the relation \(f(x) = f(-x) \)

Diff. w.r.t. \(x \), \(f'(x) = -f'(-x) \), which is relation satisfied by an odd function.

Multiple choice questions with one correct answer

1. \(\lim _{x \to a} \frac{g(x)f(a) - g(a)f(x)}{x-a} \)

\[
= \lim _{h \to 0} \frac{g(a+h)f(a) - g(a)f(a) + g(a)f(a) - g(a)f(a+h)}{h}
\]

\[
= \lim _{h \to 0} f(a) \left[\frac{g(a+h) - g(a)}{h} \right] - \lim _{h \to 0} g(a) \left[\frac{f(a+h) - f(a)}{h} \right]
\]

\[
= f(a)g'(a) - g(a)f'(a)
\]

\[
= 2x - 1 \times 1 = 5
\]

2. We have \(y^2 = P(x) \), where \(P(x) \) is a polynomial of degree 3

and hence thrice differentiable, then \(y^2 = P(x) \)

Differentiate (1) w.r.t. \(x \), we get

\[
2y \frac{dy}{dx} = P'(x)
\]

Again differentiate w.r.t. \(x \), we get

\[
2 \left(\frac{dy}{dx} \right)^2 + 2y \frac{d^2y}{dx^2} = P''(x)
\]

\[
\Rightarrow 2y \frac{d^2y}{dx^2} = P''(x) - \left[\frac{P'(x)}{y} \right]^2
\]

\[
= 2y \frac{d^2y}{dx^2} = P(x) P''(x) - \frac{1}{2} [P'(x)]^2.
\]

3. Let \(f(x) = ax^2 + bx + c \)

As given that \(f(x) > 0, \forall \ x \in R \)
\[a > 0 \text{ and } b^2 - 4ac < 0 \]

Now, \(g(x) = f(x) + f'(x) + f''(x) \)
\[
= ax^2 + bx + c + 2ax + b + 2a \\
= ax^2 + (2a + b)x + (2a + b + c)
\]
Here \(D = (2a + b)^2 - 4a(2a + b + c) \)
\[
= 4a^2 + b^2 + 4ab - 8a^2 - 4ab - 4ac \\
= -4a^2 + (b^2 - 4ac) < 0
\]
Also \(a > 0 \) from (1), \(\Rightarrow g(x) > 0, \forall \ x \in R \).

4.a. \(y = (\sin x)^{\tan x} \)

\[\Rightarrow \log y = \tan x \log \sin x \]

Differentiating w.r.t. \(x \), we get
\[
\frac{dy}{dx} = \sec^2 x \log \sin x + \tan x \frac{1}{\sin x} \cdot \cos x
\]
\[\Rightarrow \frac{dy}{dx} = (\sin x)^{\tan x} [1 + \sec^2 x \log \sin x]. \]

5.d. Given \(f(x) = \begin{vmatrix} x & \sin x & \cos x \\ 6 & 1 & p \\ p & p^2 & p^3 \end{vmatrix} \)

where \(p \) is constant

\[\Rightarrow f''(x) = \begin{vmatrix} 6 & -\cos x & \sin x \\ 6 & 1 & 0 \\ p & p^2 & p^3 \end{vmatrix} \]

\[\Rightarrow f''(x) = \begin{vmatrix} 6 & -1 & 0 \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} = 0 \]

\[\because R_1 = R_2 \]

6.c. Given limit has 1st form

\[L = \lim_{x \to \infty} \frac{f(1 + x) - f(1)}{x} = e^{f'(1)} \frac{f'(x)}{f(1)} \]

(\(\because R_1 = R_2 \))

7.d. \(\lim_{h \to 0} \frac{f(2h + 2 + h^2) - f(2)}{f(h + h^2 + 1) - f(1)} \)

\[\because \text{Applying L’Hopital’s Rule, we get} \]
\[\frac{f'(2h + 2 + h^2)}{f'(h + h^2 + 1)} = 2 + 2h \\
\frac{f'(2)}{f'(1)} = 2 \times 2 = 3 \\
\]

8.c. \(L = \lim_{x \to 0} \frac{f(x^2) - f(x)}{x - f(0)} \)

[0 \text{ form}]

9.a. \(\log(x + y) = 2y \) when \(x = 0 \) \(\Rightarrow y = 1 \)

Differentiating w.r.t. \(x \), we get
\[\Rightarrow \frac{1}{x + y} \left[1 + \frac{dy}{dx} \right] = 2y + \frac{2xdy}{dx} \]

Put \(x = 0 \) and \(y = 1 \)
\[\Rightarrow \frac{1}{0 + 1} \left[1 + \frac{dy}{dx} \right] = 2 + 0 \]
\[\Rightarrow \frac{dy}{dx} = 1 \text{ or } y'(0) = 1 \]

10.b. \(x^2 + y^2 = 1 \)

\[\Rightarrow 2x + 2yy' = 0 \]
\[\Rightarrow y + yy' = 0 \]
\[\Rightarrow 1 + yy'' + (y')^2 = 0 \]

11.d. \(\frac{d^2 x}{dy^2} = \frac{d}{dy} \left(\frac{dx}{dy} \right) \)

\[\Rightarrow \begin{vmatrix} d & \frac{1}{dy} \\ dy & dx \end{vmatrix} \frac{1}{dy} \]

\[= \frac{d^2 y}{dy^2} \]

Reasoning Type

1.b. Given \(f(x) = 2 + \cos x \) which is continuous and differentiable everywhere \(f'(x) = -\sin x \) at \(x = 0, \pi \).

\[\therefore \text{Statement 1 is true.} \]

Also, \(f(0) = f(2\pi) \text{ is true.} \)

But Statements 1 and 2 are not related.

Integer Type

1.(1) \(f(\theta) = \sin \left(\tan^{-1} \left(\frac{\sin \theta}{\sqrt{\cos^2 \theta - 1}} \right) \right) \), where \(\theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4} \right) \)
\[\Rightarrow \frac{d}{d(\tan \theta)} \left(\frac{\sin \theta}{\sqrt{2}} \right) = \tan \theta \]

\[\Rightarrow \frac{d}{d(\tan \theta)} = 1. \]
CHAPTER 5

Application of Derivatives: Tangents and Normals, Rate Measure

- Equation of Tangents and Normals
- Length of Tangent, Normal, Sub-tangent, and Sub-normal
- Angle between the Curves
- Miscellaneous Applications
- Interpretation of \(\frac{dy}{dx} \) as a Rate Measurer
- Approximations
- Mean Value Theorems
5.2 Calculus

EQUATION OF TANGENTS AND NORMALS

Let \(P(x_1, y_1) \) be any point on the curve \(y = f(x) \).

If a tangent at \(P \) makes an angle \(\theta \) with the positive direction of the x-axis, then \(\frac{dy}{dx} = \tan \theta \).

Equation of Tangent:
Equation of a tangent at point \(P(x_1, y_1) \) is
\[
y - y_1 = \left(\frac{dy}{dx} \right)_{(x_1, y_1)} (x - x_1)
\]

Equation of Normal:
Equation of a normal at point \(P(x_1, y_1) \) is
\[
y - y_1 = -\left(\frac{dx}{dy} \right)_{(x_1, y_1)} (x - x_1)
\]

Note:
- The point \(P(x_1, y_1) \) will satisfy the equation of the curve and the equation of tangent and normal line.
- If the tangent at any point \(P \) on the curve is parallel to the axis of x, then \(\frac{dy}{dx} = 0 \) at the point P.
- If the tangent at any point on the curve is parallel to the axis of y, then \(\frac{dy}{dx} = \infty \) or \(\frac{dx}{dy} = 0 \).
- If the tangent at any point on the curve is equally inclined to both the axes, then \(\frac{dy}{dx} = \pm 1 \).
- If the tangent at any point makes an equal intercept on the coordinate axes, then \(\frac{dy}{dx} = -1 \).
- Tangent to a curve at point \(P(x_1, y_1) \) can be drawn, even though \(\frac{dy}{dx} \) at \(P \) does not exist, e.g., \(x = 0 \) is a tangent to \(y = x^{2/3} \) at \((0, 0) \).

Example 5.1
Find the total number of parallel tangents of \(f_1(x) = x^2 - x + 1 \) and \(f_2(x) = x^3 - x^2 - 2x + 1 \).

Sol. Here,
\[
f_1(x) = x^2 - x + 1 \quad \text{and} \quad f_2(x) = x^3 - x^2 - 2x + 1
\]
\[
\Rightarrow f_1'(x_1) = 2x_1 - 1 \quad \text{and} \quad f_2'(x_2) = 3x_2^2 - 2x_2 - 2
\]
Let the tangents drawn to the curves \(y = f_1(x) \) and \(y = f_2(x) \) at \((x_1, f_1(x_1)) \) and \((x_2, f_2(x_2)) \) are parallel.
\[
\Rightarrow 2x_1 - 1 = 3x_2^2 - 2x_2 - 2 \quad \text{or} \quad 2x_1 = (3x_2^2 - 2x_2 - 1)
\]
which is possible for infinite numbers of ordered pairs;
\[
\Rightarrow \text{Infinite solutions.}
\]

Example 5.2
Prove that the tangent drawn at any point to the curve \(f(x) = x^5 + 3x^3 + 4x + 8 \) would make an acute angle with the x-axis.

Sol. \(f(x) = x^5 + 3x^3 + 4x + 8 \)
\[
\Rightarrow f'(x) = 5x^4 + 9x^2 + 4
\]
Clearly, \(f'(x) > 0 \) \(\forall x \in R \)
Thus, the tangent drawn at any point would have positive slope and hence would make an acute angle with the x-axis.

Example 5.3
(a) Find the equation of the normal to the curve \(y = \sqrt{|x^2 - |x||} \) at \(x = -2 \).
(b) Find the equation of tangent to the curve \(y = \sin^{-1} \left(\frac{2x}{1 + x^2} \right) \) at \(x = \sqrt{3} \).

Sol. (a) In the neighbourhood of \(x = -2, y = x^2 + x \).
Hence, the point on curve is \((-2, 2) \).
\[
\frac{dy}{dx} = 2x + 1 \quad \Rightarrow \frac{dy}{dx} \bigg|_{x=-2} = -3.
\]
So the slope of the normal at \((-2, 2) \) is \(\frac{1}{3} \).
Hence, the equation of the normal is \(\frac{1}{3} (x + 2) = y - 2 \).
\[
\Rightarrow 3y = x + 8
\]
(b) \(y = \sin^{-1} \left(\frac{2x}{1 + x^2} \right) = \pi - 2 \tan^{-1} x \), for \(x > 1 \).
\[
\Rightarrow \frac{dy}{dx} = -\frac{2}{1 + x^2}
\]
\[
\Rightarrow \left(\frac{dy}{dx} \right)_{x=\sqrt{3}} = -\frac{2}{1 + 3} = -\frac{1}{2}
\]
Also when \(x = \sqrt{3}, y = \pi - 2 \times \frac{\pi}{3} = \pi \frac{\pi}{3} \)
Hence, equation of tangent is \(y - \frac{\pi}{3} = -\frac{1}{2} (x - \sqrt{3}) \).

Example 5.4
Find the equation of tangent and normal to the curve \(x = 2at^2/(1 + t^2), y = 2at^2/(1 + t^2) \) at the point for which \(t = 1/2 \).
Sol. Given that
\[x = 2at^2(1 + t^2), \quad y = 2at^3(1 + t^2) \]
At \(t = \frac{1}{2}, \) \(x = 2a/5, \) \(y = a/5 \)
Also \(\frac{dx}{dt} = \frac{4at}{(1+t^2)^2} \) and \(\frac{dy}{dt} = \frac{2at^2(3+t^2)}{(1+t^2)^2} \)
\[\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1}{2} \cdot \frac{3 + t^2}{2} \]
When \(t = \frac{1}{2}, \) \(\frac{dy}{dx} = \frac{1}{2} \cdot \frac{3 + \frac{1}{4}}{2} = \frac{13}{16} \).
\[\therefore \text{The equation of the tangent when} \ t = \frac{1}{2} \text{is} \]
\[y - \frac{a}{5} = \frac{13}{16} \left(x - \frac{2a}{5} \right) \Rightarrow 13x - 16y = 2a. \]
And the equation of the normal is
\[(y - \frac{a}{5})(13/16) + x - 2a/5 = 0 \]
\[\Rightarrow 16x + 13y = 9a. \]

Example 5.5
Find the equation of the normal to \(y = x^3 - 3x, \) which is parallel to \(2x + 18y = 9. \)

Sol. The curve is \(y = x^3 - 3x \) \((1) \)
\[\Rightarrow \frac{dy}{dx} = 3x^2 - 3 \]
The normal is parallel to the line \(2x + 18y = 9, \) then the slope of the normal \(-\frac{1}{9} \) (Slope of the line)
\[\Rightarrow \frac{dy}{dx} = 9 \Rightarrow 3x^2 - 3 = 9 \Rightarrow x = \pm 2 \]
From equation (1), when \(x = 2, y = 2 \) and when \(x = -2, y = -2. \)
Hence, the required normals are
\[y - 2 = -\frac{1}{9}(x - 2) \text{ and } y + 2 = -(1/9)(x + 2) \]
\[\Rightarrow x + 9y = 20 \text{ and } x + 9y + 20 = 0 \]

Example 5.6
If the tangent at any point \((4m^2, 8m^3) \) of \(x^3 - y^2 = 0 \) is a normal to the curve \(x^3 - y^2 = 0, \) then find the value of \(m. \)

Sol. Here, \(y^2 = x^3 \) \((1) \)
\[\Rightarrow 2y \frac{dy}{dx} = 3x^2 \]
\[\therefore \text{slope at} \ (4m^2, 8m^3) = \frac{3x^2}{2y} = \frac{3m}{8m^3} = \frac{3m}{8m^3} \]
Equation of the tangent at \((4m^2, 8m^3); \)
\[\frac{y - 8m^3}{x - 4m^2} = \frac{3m}{8m^3} \]
\[\Rightarrow y = 3mx - 4m^3 \]
For another point, solving equations (1) and (2), we get
\[x^3 = (3mx - 4m^3)^2 \]
\[\Rightarrow x = 4m^2, m^2 \]
\[\therefore A(4m^2, 8m^3) \text{ and } B(m^2, -m^3) \]
\[\Rightarrow \text{Slope of the tangent at } B, \]
\[\left(\frac{dy}{dx} \right)_{(m^2, -m^3)} = \frac{3x^2}{2y} = \frac{-3}{2} m \]
\[\Rightarrow \text{Slope of the normal at } B = \frac{2}{-3m}. \]

Application of Derivatives: Tangents and Normals, Rate Measure 5.3

Since tangent and normal coincide, we get
\[\Rightarrow \frac{2}{3m} = 3m \Rightarrow m^2 = \frac{2}{9} \Rightarrow m = \pm \sqrt{\frac{2}{9}} \]

Example 5.7
For the curve \(xy = c, \) prove that the portion of the tangent intercepted between the coordinate axes is bisected at the point of contact.

Sol. Let the point at which the tangent is drawn be \((\alpha, \beta)\) on the curve \(xy = c \)
\[\Rightarrow \left(\frac{dy}{dx} \right) = -\frac{\beta}{\alpha} \]
Thus, the equation of the tangent is
\[y - \beta = -\frac{\beta}{\alpha} (x - \alpha) \]
\[\Rightarrow y \alpha - \alpha \beta = -\beta x + \alpha \beta \]
\[\Rightarrow \frac{x}{2\alpha} + \frac{y}{2\beta} = 1 \]
It is clear that the tangent line cuts \(x- \) and \(y- \) axes at \(A(2\alpha, 0) \) and \(B(0, 2\beta), \) respectively and the point \((\alpha, \beta)\) bisects \(AB. \)

Tangent from an External Point
Given a point \(P(a, b) \) which does not lie on the curve \(y = f(x), \) then the equation of the possible tangents to the curve \(y = f(x), \) passing through \((a, b)\) can be found by solving for the point of contact \(Q. \)

Let point \(Q \) be \((x_1, y_1). \) Since \(Q \) lies on the curve \(y_1 = f(x_1) \)
\[\text{Also, the slope of } PQ = \left(\frac{dy}{dx} \right)_{(x_1, y_1)} = \frac{y_1 - b}{x_1 - a} = \left(\frac{dy}{dx} \right)_{(x_1, y_1)} \]

Example 5.8
Find the equation of all possible normals to the parabola \(x^2 = 4y \) drawn from the point \((1, 2). \)

Sol. Let point \(Q \) be \(\left(h, \frac{h^2}{4} \right) \) and point \(P \) be the point of contact on the curve.

Now, \(m_{PQ} = \text{slope of the normal at } Q. \)
\[x^2 = 4y \]
Differentiating w.r.t. \(x \Rightarrow 2x = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{x}{2} \]
\[\Rightarrow \text{Slope of the normal at } Q = -\frac{2}{dy} = \frac{2}{dy} \left(\frac{x}{h} \right) \]
\[\Rightarrow \text{Slope of the normal at } Q = \frac{2}{h} \]
5.4 Calculus

\[\frac{h^2 - 2}{h - 1} = \frac{2}{h} \quad \text{[from equation (1)]} \]

\[\frac{h^3 - 2h}{4} = -2h + 2 \Rightarrow h^3 = 8 \Rightarrow h = 2 \]

Hence, the co-ordinates of point Q is (2, 1), and so the equation of the required normal becomes \(x + y = 3 \).

Example 5.9 Find the point on the curve where tangents to the curve \(y^2 - 2x^3 - 4y + 8 = 0 \) pass through (1, 2).

Sol. \(y^2 - 2x^3 - 4y + 8 = 0 \)

Let a tangent is drawn to the curve at point Q(\(\alpha, \beta \)) on the curve which passes through P(1, 2).

Differentiating w.r.t. \(x \),
\[2y \frac{dy}{dx} - 6x^2 - 4 \frac{dy}{dx} = 0 \]
\[\Rightarrow \frac{dy}{dx} = \frac{3x^2}{y - 2} \]

Now, slope of line \(PQ = \frac{dy}{dx(\alpha, \beta)} \)

\[\Rightarrow \frac{\beta - 2}{\alpha - 1} = \frac{3\alpha^2}{\beta - 2} \]
\[\Rightarrow (\beta - 2)^2 = 3\alpha^2 (\alpha - 1) \quad \text{(1)} \]

Also \((\alpha, \beta) \) satisfies the equation of the curve.
\[\Rightarrow \beta^2 - 2\alpha^3 - 4\beta + 8 = 0 \quad \text{or} \quad (\beta - 2)^2 = 2\alpha^3 - 4 \quad \text{(2)} \]

From equations (1) and (2),
\[3\alpha^2 (\alpha - 1) = 2\alpha^3 - 4 \]
\[\Rightarrow \alpha^2 - 3\alpha + 4 = 0 \quad \text{or} \quad (\alpha - 2)(\alpha^2 + \alpha - 2) = 0 \]
\[(\alpha - 2)^2 (\alpha + 1) = 0 \]
When \(\alpha = 2, (\beta - 2)^2 = 12 \) or \(\beta = 2 \pm 2\sqrt{3} \)
When \(\alpha = -1, (\beta - 2)^2 = -6 \) (not possible)
\[(\alpha, \beta) = (2, 2 \pm 2\sqrt{3}) \]

Example 5.10 Find the equation of the normal to the curve \(x^3 + y^3 = 8xy \) at the point where it meets the curve \(y^2 = 4x \) other than the origin.

Sol. The curves are \(x^3 + y^3 = 8xy \) \quad \text{(1)}

and \(y^2 = 4x \) \quad \text{(2)}

Solving equations (1) and (2), we get \(x^3 + y^4x = 8xy \)
\[\Rightarrow x^3 = 4xy \]
\[\Rightarrow x^3 = 4x \sqrt{2} \]
\[\Rightarrow x^{3/2} (x^{3/2} - 8) = 0 \]
\[\Rightarrow x = 0 \text{ or } x^{3/2} = 8 = 2^3 \]
\[\Rightarrow x = 0 \text{ or } x = 2^3 = 4. \]

Now when \(x = 0 \), we get \(y = 0 \)
and when \(x = 4 \), we get \(y^2 = 16 \) or \(y = \pm 4 \).
But \(x = 4 \) and \(y = -4 \) does not satisfy equation (1)
Thus, (0, 0) and (4, 4) are the points of intersection of equations (1) and (2).

Differentiating equation (1), we get
\[\frac{dy}{dx} = \frac{8y - 3x^2}{3y^2 - 8x} \]

at (4, 4), \(\frac{dy}{dx} = -1 \)

Hence, the equation of the normal to (1) at (4, 4) is
\[(y - 4) = 1(x - 4) \text{ or } y - x = 0 \]

Condition for Which Given Line is Tangent or Normal to the Given Curve

Let the point on the curve be \(P(x_1, y_1) \) where a line touches the curve.

Then \(P \) lies on the curve \(\Rightarrow y_1 = f(x_1) \) \quad (1)

Also \(P \) lies on the line \(\Rightarrow ax_1 + by_1 + c = 0 \) \quad (2)

Further, slope of the line
\[= \text{slope of tangent to the curve at point } P \]
\[\Rightarrow \frac{dy}{dx} = \left(\frac{dy}{dx} \right)_{(x_1, y_1)} \quad (3) \]

Eliminating \(x_1 \) and \(y_1 \) from the above three equations, we get the required condition.

Example 5.11 Show that the straight line \(x \cos \alpha + y \sin \alpha = p \) touches the curve \(xy = a^2 \), if \(p^2 = 4a^2 \cos \alpha \sin \alpha \).

Sol. Let the line touches the curve at point \(P(x_1, y_1) \) on the curve
\[\Rightarrow x_1 \cos \alpha + y_1 \sin \alpha = p \quad \text{(1)} \]
and \(x_1 y_1 = a^2 \quad \text{(2)} \)

Differentiating \(xy = a^2 \) w.r.t. \(x \), we get
\[\frac{dy}{dx} = -\frac{y}{x} \]

Now, slope of the line = slope of the tangent to the curve at \(P(x_1, y_1) \)
\[\Rightarrow \frac{y_1}{x_1} = \cos \alpha \sin \alpha \quad \text{(3)} \]

From equations (1) and (3), \(x_1 \cos \alpha + x_1 \cos \alpha = p \)
\[\Rightarrow 2 \cos \alpha x_1 = p \]
And \(2 \sin \alpha y_1 = p \)
\[\Rightarrow (2 \cos \alpha)(2 \sin \alpha)(x_1, y_1) = p^2 \]
\[\Rightarrow p^2 = 4a^2 \cos \alpha \sin \alpha \]

Example 5.12 If the line \(x \cos \theta + y \sin \theta = P \) is the normal to the curve \((x + a) = 1 \), then show
\[\theta \in \left[2\pi n + \frac{\pi}{2}, 2\pi n + \frac{3\pi}{2} \right] \quad n \in Z \]
App. 3.5

Sol. Here, \(y = \frac{1}{x+a} \) \(\Rightarrow \frac{dy}{dx} = -\frac{1}{(x+a)^2} \)

Slope of the normal is \((x+a)^2 > 0\) (for all x)

\[.: x \cos \theta + y \sin \theta = P \text{ is normal if } \frac{\cos \theta}{\sin \theta} > 0\]
or \(\cot \theta < 0 \), i.e., \(\theta \) lies in II or IV quadrant.

So, \(\theta \in \left(2n\pi + \frac{\pi}{2}, (2n+1)\pi\right) \cup \left(2n\pi + \frac{3\pi}{2}, (2n+2)\pi\right)\)

where \(n \in \mathbb{Z} \).

Concept Application: Exercise 5.1

1. Show that the tangent to the curve \(3xy^2 - 2x^2y = 1 \) at (1, 1) meets the curve again at the point \((-16/5, -1/20)\).

2. The normal to the curve \(x = a (1 + \cos \theta), y = a \sin \theta \) at \(\theta \). Prove that it always passes through a fixed point and find that fixed point.

3. If the curve \(y = ax^2 - 6x + b \) passes through (0, 2) and has its tangent parallel to the x-axis at \(x = \frac{3}{2} \), then find the values of \(a \) and \(b \).

4. Find the equation of the tangent to the curve \((1 + x^2)y = 2 - x \), where it crosses the x-axis.

5. If the equation of the tangent to the curve \(y^2 = ax^3 + b \) at point (2, 3) is \(y = 4x - 5 \), then find the values of \(a \) and \(b \).

6. Find the value of \(n \in \mathbb{N} \) such that the curve \(\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2 \) touches the straight line \(\frac{x}{a} + \frac{y}{b} = 2 \) at the point \((a, b)\).

7. Find the condition that the line \(Ax + By = 1 \) may be normal to the curve \(a^{n-1}y = x^n \).

LENGTH OF TANGENT, NORMAL, SUB-TANGENT AND SUB-NORMAL

![Fig. 5.5](image)

(a) **Length of Tangent:**

\(PT \) is defined as the length of the tangent.

In \(\Delta PMT, PT = |y \csc \theta| \)

\[= |y \sqrt{1 + \cot^2 \theta}| = |y \sqrt{1 + \left(\frac{dx}{dy}\right)^2}| \]

(b) **Length of Normal:**

\(PN \) is defined as the length of the normal. In \(\Delta PMN, PN = |y \cosec (90^\circ - \theta)| \)

\[= |y \sec \theta| = |y \sqrt{1 + \left(\frac{dy}{dx}\right)^2}| \]

\[\Rightarrow \text{Length of normal} = |y \sqrt{1 + \left(\frac{dy}{dx}\right)^2}| \]

(c) **Length of Sub-tangent:**

\(TM \) is defined as sub-tangent.

In \(\Delta PTM, TM = |y \cot \theta| = \left|\frac{y}{\tan \theta}\right| = \left|\frac{dy}{dx}\right| \)

\[\Rightarrow \text{Length of sub-tangent} = \left|\frac{dy}{dx}\right| \]

(d) **Length of Sub-normal:**

\(MN \) is defined as sub-normal.

In \(\Delta PMN, MN = |y \tan (90^\circ - \theta)| = |y \tan \theta| = \left|\frac{dy}{dx}\right| \)

\[\Rightarrow \text{Length of sub-normal} = \left|\frac{dy}{dx}\right| \]

Example 5.13

Find the length of sub-tangent to the curve \(y = e^{x/a} \).

Sol. Here, \(y = e^{x/a} \)

\[\Rightarrow \frac{dy}{dx} = e^{x/a} \frac{1}{a} \]

And we know that the length of the sub-tangent \(= \frac{dy}{dx} \)

\[= e^{x/a} \frac{a}{e^{x/a}} = a \quad [\text{using (1) and (2)}] \]

Example 5.14

Determine \(p \) such that the length of the sub-tangent and sub-normal is equal for the curve \(y = e^{px} + px \) at the point \((0, 1)\).

\[\text{Sol.} \quad \frac{dy}{dx} = pe^{px} + p \text{ at point } (0, 1) = 2p \]

Sub-tangent \(= \left|\frac{dx}{dy}\right| \), Sub-normal \(= \left|\frac{dy}{dx}\right| \)

Given, sub-tangent = sub-normal

\[\Rightarrow \frac{dy}{dx} = \pm 1 \quad \Rightarrow 2p = \pm 1 \quad \Rightarrow p = \pm \frac{1}{2} \]

Example 5.15

Find the length of normal to the curve,

\[x = a(\theta + \sin \theta), y = a(1 - \cos \theta), \text{ at } \theta = \frac{\pi}{2}.\]

Sol. Here, \(\frac{dx}{d\theta} = a(1 + \cos \theta) \) and \(\frac{dy}{d\theta} = a(\sin \theta) \)
5.6 Calculus

\[\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a \sin \theta}{a(1 + \cos \theta)} \]

\[\left(\frac{dy}{dx} \right)_{x=\pi/2} = \frac{\sin \pi/2}{1 + \cos \pi/2} = 1 \]

and the length of normal is

\[y \left(1 + \left(\frac{dy}{dx} \right)^2 \right)^{\frac{1}{2}} \bigg|_{\theta=\pi/2} = a \left(1 - \cos \frac{\pi}{2} \right) \sqrt{1 + 1^2} = \sqrt{2a} \]

Example 5.16 In the curve \(x^{m+n} = a^{m-n} y^{2n} \). Prove that the \(m \)-th power of the sub-tangent varies as the \(n \)-th power of the sub-normal.

Sol. Given \(x^{m+n} = a^{m-n} y^{2n} \) (1)

Taking logarithm of both sides, we get

\((m+n) \ln x = (m-n) \ln a + 2n \ln y \)

Differentiating both sides w.r.t. \(x \), we get

\(\frac{m+n}{x} = 0 + \frac{2n}{y} \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{(m+n)}{2n} \frac{y}{x} \)

Now

\[\frac{\text{Sub-tangent}^m}{\text{Sub-normal}^n} = \frac{\left(\frac{dy}{dx} \right)^m}{\left(\frac{dy}{dx} \right)^n} = \frac{y^{m-n}}{x^{m+n}} \]

\[\frac{\left(\frac{m+n}{2n} \frac{y}{x} \right)^{m+n}}{\left(\frac{m+n}{2n} \frac{y}{x} \right)^n} = \frac{a^{m-n}}{x^{m+n}} \]

= constant (independent of \(x \) and \(y \))

\(\Rightarrow \) (Sub-tangent)\(^m\) \(\propto \) (Sub-normal)\(^n\)

Concept Application Exercise 5.2

1. Find the length of the tangent for the curve \(y = x^3 + 3x^2 + 4x - 1 \) at point \(x = 0 \).

2. For the curve \(y = a \ln (x^2 - a^2) \), show that the sum of lengths of tangent and sub-tangent at any point is proportional to product of coordinates of point of tangency.

3. For the curve \(y = f(x) \), prove that

\[\left(\frac{\text{length of normal}}{\text{length of tangent}} \right)^2 = \frac{\text{sub-normal}}{\text{sub-tangent}} \]

4. If the sub-normal at any point on \(y = a^{-n} x^n \) is of constant length, then find the value of \(n \).

Angle between two intersecting curves is defined as the acute angle between their tangents or the normals at the point of intersection of two curves.

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \]

where \(m_1 \) and \(m_2 \) are the slopes of tangents at the intersection point \((x_1, y_1)\).

Note:

- The curves must intersect for the angle between them to be defined. This can be ensured by finding their point of intersection analytically or graphically.
- If the curves intersect at more than one point, then the angle between the curves is written with references to the point of intersection.
- Two curves are said to be orthogonal if angle between them at each point of intersection is a right angle, i.e., \(m_1 m_2 = -1 \).

Example 5.17 Find the angle between curves \(y^2 = 4x \) and \(y = e^{-x/2} \).

Sol.

Let the curves intersect at point \((x_1, y_1)\)

for \(y^2 = 4x \),

\[\frac{dy}{dx} \bigg|_{(x_1, y_1)} = \frac{2}{y_1} \]

and for \(y = e^{-x/2} \),

\[\frac{dy}{dx} \bigg|_{(x_1, y_1)} = -\frac{1}{2} e^{-x/2} = -\frac{y_1}{2} \]

\(\Rightarrow m_1 m_2 = -1 \Rightarrow \) Hence, \(\theta = 90^\circ \).

Example 5.18 The cosine of the angle of intersection of curves \(f(x) = 2^x \log x \) and \(g(x) = x^2 - 1 \) is

Sol. Clearly, \((1, 0) \) is the point of intersection of the given curve

Now, \(f'(x) = \frac{2^x}{x} + 2^x \log 2 (\log_x x) \)

\(\therefore \) Slope of tangent to the curve \(f(x) \) at \((1, 0)\) is \(m_1 = 2 \)

Similarly, \(g'(x) = \frac{d}{dx} (e^{2 \log x - 1}) = 2 e^{2x} - \frac{1}{x} + 2 \log_x x \)

\(\therefore \) Slope of tangent to the curve \(g(x) \) at \((1, 0)\) is \(m_2 = 2 \)

Since \(m_1 = m_2 = 2 \)

Two curves touch each other, so the angle between the is 0.

Hence, \(\cos \theta = \cos 0 = 1 \).
Example 5.19: Find the values of \(a \) if the curves \(x^2/a^2 + y^2/4 = 1 \) and \(y^3 = 16x \) cut orthogonally.

\[
\begin{align*}
\text{Sol.} & \quad \text{The two curves are} \\
& \quad x^2/a^2 + y^2/4 = 1 \quad (1) \\
& \quad y^3 = 16x \quad (2) \\
& \quad \text{Differentiating (1), } dy/dx = -4x/(2ay) = m_1 \\
& \quad \text{Differentiating (2), } dy/dx = 16/(3y^2) = m_2 \\
& \quad \text{The two curves cut orthogonally,} \\
& \quad \therefore m_1m_2 = -1 \\
& \quad \Rightarrow [-4x/(2ay)]/[16/(3y^2)] = -1 \\
& \quad \Rightarrow 64y = 3a^2y^3 \Rightarrow 64y = 3a^2 16x, \text{ using (2)} \\
& \quad \Rightarrow a^2 = 4/3 \\
& \quad a = \pm 2\sqrt{3} \\
\end{align*}
\]

Example 5.20: Find the acute angle between the curves \(y = |x^2 - 1| \) and \(y = |x^2 - 3| \) at their points of intersection.

\[
\begin{align*}
\text{Sol.} & \quad y = |x^2 - 1| \quad (1) \\
& \quad \text{and } y = |x^2 - 3| \quad (2) \\
& \quad \text{They intersect when } |x^2 - 1| = |x^2 - 3| \\
& \quad \Rightarrow 1 - x^2 = x^2 - 3 \Rightarrow x^2 = 2 \Rightarrow x = \pm \sqrt{2} \\
& \quad \Rightarrow \text{The points of intersection are } (\pm \sqrt{2}, 1) \\
& \quad \text{Since the curves are symmetrical about the } y-\text{axis, the} \\
& \quad \text{angle of intersection at } (-\sqrt{2}, 1) = \text{the angle of} \\
& \quad \text{intersection at } (\sqrt{2}, 1) \\
& \quad \text{At } (\sqrt{2}, 1), m_1 = 2x = 2\sqrt{2}, m_2 = -2x = -2\sqrt{2} \\
& \quad \therefore \tan \theta = \left| \frac{4\sqrt{2}}{2} \right| = \frac{4\sqrt{2}}{7} \Rightarrow \theta = \tan^{-1} \frac{4\sqrt{2}}{7} \\
\end{align*}
\]

Example 5.21: Find the angle at which the two curves \(x^2 - 3xy^2 + 2 = 0 \) and \(3x^2 - y^3 - 2 = 0 \) intersect.

\[
\begin{align*}
\text{Sol.} & \quad \text{We have } x^2 - 3xy^2 + 2 = 0 \quad (1) \\
& \quad \text{and } 3x^2 - y^3 - 2 = 0 \quad (2) \\
& \quad \text{Differentiating equations (1) and (2) with respect to } x, \text{ we obtain} \\
& \quad \left(\frac{dy}{dx} \right)_c = \frac{x^2 - y^2}{2xy} \quad \text{and} \quad \left(\frac{dy}{dx} \right)_c = \frac{-2xy}{x^2 - y^2} \\
& \quad \therefore \left(\frac{dy}{dx} \right)_c \times \left(\frac{dy}{dx} \right)_c = -1 \\
& \quad \text{Hence, the two curves cut at right angles.} \\
\end{align*}
\]

Concept Application Exercise 5.3

1. Find the angle of intersection of \(y = a^4 \) and \(y = b^5 \).
2. Find the angle of intersection of the curves \(xy = a^2 \) and \(x^2 + y^2 = 2a^2 \).

Application of Derivatives: Tangents and Normals, Rate Measure 5.7

3. Find the angle at which the curve \(y = Ke^{kx} \) intersects the \(y-\text{axis} \).
4. If the curve \(ay + x^2 = 7 \) and \(x^3 = y \) cut orthogonally at \((1, 1)\), then find the value of \(a \).
5. Find the angle between the curves \(x^2 - \frac{y^2}{3} = a^2 \) and \(C : xy^3 = c \).
6. Find the angle between the curves \(2y^3 = x^3 \) and \(y^2 = 32x \).

MISCELLANEOUS APPLICATIONS

Example 5.22: Find possible values of \(p \) such that the equation \(px^2 = \log_e x \) has exactly one solution.

\[
\begin{align*}
\text{Sol.} & \quad \text{Two curves } y = px^2 \text{ and } y = \log_e x \text{ must intersect at only one point.} \\
& \quad \text{Fig. 5.8} \\
& \quad \text{Case 1: If } p \leq 0, \text{ then there is only one solution (see Fig. 5.8).} \\
& \quad \text{Case 2: If } p > 0, \text{ then the two curves must only touch each other, i.e., tangent at } y = px^2 \text{ and } y = \ln x \text{ must have the same slope at point } (x_1, y_1). \\
& \quad \text{Differentiating the given relation on both sides w.r.t. } x, \text{ we get} \\
& \quad 2px_1 = \frac{1}{x_1} \Rightarrow x_1^2 = \frac{1}{2p} \quad (1) \\
& \quad \text{Also } (x_1, y_1) \text{ lies on the curves} \\
& \quad \Rightarrow y_1 = px_1^2 \Rightarrow y_1 = p \left(\frac{1}{2p} \right) \quad \text{[from (1)]} \\
& \quad \Rightarrow y_1 = \frac{1}{2} \quad (2) \\
& \quad \text{and } y_1 = \log_e x_1 \Rightarrow \frac{1}{2} = \log_e x_1 \\
& \quad \Rightarrow x_1 = e^{1/2} \quad (3) \\
& \quad \text{Hence, } x_1^2 = \frac{1}{2p} \Rightarrow e = \frac{1}{2p} \Rightarrow p = \frac{1}{2e} \\
& \quad \text{Hence, possible values of } p \text{ are } (-\infty, 0] \cup \left\{ \frac{1}{2e} \right\}. \\
\end{align*}
\]
5.8 Calculus

Example 5.23 Find the values of \(a \) if equation \(1 - \cos x = \frac{\sqrt{3}}{2} |x| + a \), \(x \in (0, \pi) \) has exactly one solution.

Sol.

\[
1 - \cos x = \frac{\sqrt{3}}{2} |x| + a
\]

has root when \(y = 1 - \cos x \) and

\[
y = \frac{\sqrt{3}}{2} |x| + a
\]

intersect.

For one real solution, consider the case when two curves touch each other.

Slope of \(C_1 \) is \(\sin x \) and for \(x > 0 \) slope of \(C_2 \) is \(\frac{\sqrt{3}}{2} \). Thus, for the point of contact

\[
\sin x = \frac{\sqrt{3}}{2} \implies x = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}.
\]

Hence, the point of contact is \(\left(\frac{\pi}{3}, \frac{1}{2} \right) \) or \(\left(\frac{2\pi}{3}, \frac{3}{2} \right) \).

For \(\left(\frac{\pi}{3}, \frac{1}{2} \right) \), we get \(a = \frac{1}{2} - \frac{\pi}{2\sqrt{3}} \).

For \(\left(\frac{2\pi}{3}, \frac{3}{2} \right) \), we get \(a = \frac{3}{2} - \frac{\pi}{2\sqrt{3}} \).

Example 5.24 Find the locus of point on the curve \(y^2 = 4a \left(x + a \sin \frac{x}{a} \right) \) where tangents are parallel to the axis of \(x \).

Sol. We have \(y^2 = 4a \left(x + a \sin \frac{x}{a} \right) \) (1)

Differentiating w.r.t. \(x \), we get \(2y \frac{dy}{dx} = 4a \left[1 + \cos \frac{x}{a} \right] \)

For points at which the tangents are parallel to \(x \)-axis,

\[
\frac{dy}{dx} = 0 \implies 4a \left[1 + \cos \frac{x}{a} \right] = 0
\]

\[
\cos \frac{x}{a} = -1 \implies \frac{x}{a} = (2n + 1)\pi
\]

For these values of \(x \), \(\sin \frac{x}{a} = 0 \).

Therefore, all these points lie on the parabola \(y^2 = 4ax \).

[Putting \(\sin x/a = 0 \) in equation (1)]

Shortest Distance between Two Curves

The shortest distance between two non-intersecting curves is always along the common normal (wherever defined).

Example 5.25 Find the shortest distance between the line \(y = x - 2 \) and the parabola \(y = x^2 + 3x + 2 \).

Sol. Let \(P(x_1, y_1) \) be a point closest to the line \(y = x - 2 \).

Then \(\frac{dy}{dx} \bigg|_{(x_1, y_1)} = \text{slope of line} \)

\[
\Rightarrow \frac{2x_1 + 3}{2} = 1
\]

\[
\Rightarrow x_1 = -1
\]

\[
\Rightarrow y_1 = 0.
\]

Hence, point \((-1, 0)\) is the closest and its perpendicular distance from the line \(y = x - 2 \) will give the shortest distance.

\[
\Rightarrow \text{Shortest distance} = \frac{3}{\sqrt{2}}
\]

Example 5.26 Find the point on the curve \(3x^2 - 4y^2 = 72 \) which is nearest to the line \(3x + 2y + 1 = 0 \).

Sol.

\[
3x + 2y + 1 = 0
\]

Slope of the given line \(3x + 2y + 1 = 0 \) is \(-3/2\).

Let us locate the point on the curve at which the tangent is parallel to given line.

Differentiating the curve on both sides w.r.t. \(x \), we get

\[
6x - 8y \frac{dy}{dx} = 0
\]

\[
\Rightarrow \left(\frac{dy}{dx} \right)_{(x_1, y_1)} = \frac{3x_1}{4y_1} = \frac{-3}{2}
\]

[since parallel to \(3x + 2y + 1 = 0 \)]
\[\Rightarrow \frac{x_1}{y_1} = -2 \]

Also the point \((x_1, y_1)\) lies on \(3x^2 - 4y^2 = 72\)

\[\Rightarrow 3x_1^2 - 4y_1^2 = 72 \quad \Rightarrow \quad 3\frac{x_1^2}{y_1^2} - 4 = \frac{72}{y_1^2} \quad \text{from (1)} \]

\[\Rightarrow 3(4) - 4 = \frac{72}{y_1^2} \]

\[\Rightarrow y_1^2 = 9 \quad \Rightarrow \quad y_1 = \pm 3. \]

The required points are \((-6, 3)\) and \((6, -3)\).

Distance \((-6, 3)\) from the given line
\[= \frac{|-18+6+1|}{\sqrt{13}} = \frac{11}{\sqrt{13}} \]

and distance of \((6, -3)\) from the given line
\[= \frac{|18-6+1|}{\sqrt{13}} = \frac{13}{\sqrt{13}} = \sqrt{13} \]

Thus, \((-6, 3)\) is the required point.

Example 5.27 The tangent at any point on the curve \(x = a\cos^3 \theta, y = a\sin^3 \theta\) meets the axes in \(P\) and \(Q\). Prove that the locus of the mid-point of \(PQ\) is a circle.

Sol. The given curve is \(x = a\cos^3 \theta, y = a\sin^3 \theta\).

Then \(\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3a\sin^2 \theta \cos \theta}{3a\cos^2 \theta (-\sin \theta)} = -\tan \theta \)

Thus, \(\tan \theta = \frac{y}{x} \quad \text{or} \quad \tan \theta = -\frac{y}{x} \quad \text{is the equation of the tangent at} \ \theta \)

\[\Rightarrow \quad \frac{y}{\sin \theta} - \frac{a\sin^2 \theta}{\cos \theta} = -\frac{x}{\cos \theta} + a\cos^2 \theta \]

\[\Rightarrow \quad \frac{x}{\cos \theta} + \frac{y}{\sin \theta} = a \quad \text{or} \quad \frac{x}{(a\cos \theta)} + \frac{y}{(a\sin \theta)} = 1 \]

\(\therefore \) \(P = (a\cos \theta, 0)\) and \(Q = (0, a\sin \theta)\)

If mid-point of \(PQ\) is \(R(h, k)\), then
\(2h = a\cos \theta\) and \(2k = a\sin \theta\)

\(\therefore \) \((2h)^2 + (2k)^2 = a^2\) or \(h^2 + k^2 = a^2/4\)

Hence, the locus of mid-point is \(x^2 + y^2 = a^2/4\), which is a circle.

Application of Derivatives: Tangents and Normals, Rate Measure 5.9

INTERPRETATION OF \(dy/dx\) AS A RATE MEASURER

Recall that by the derivative \(ds/dt\), we mean the rate of change of distance \(s\) with respect to the time \(t\). In a similar fashion, whenever one quantity \(y\) varies with another quantity \(x\), satisfying some rule \(y = f(x)\), then \(\frac{dy}{dx}\) \((\text{or} \ f'(x))\) represents the rate of change of \(y\) with respect to \(x\) and \(\left(\frac{dy}{dx}\right)_{x=x_0}\) \((\text{or} \ f'(x_0))\) represents the rate of change of \(y\) with respect to \(x\) at \(x = x_0\).

Further, if the two variables \(x\) and \(y\) vary with respect to another variable \(t\), i.e., \(x = f(t)\) and \(y = g(t)\), then by chain rule \(\frac{dy}{dx} = \frac{dy/\text{d}t}{dx/\text{d}t}\), \(\text{if} \ \frac{dx}{dt} \neq 0\). Thus, the rate of change of \(y\) with respect to \(x\) can be calculated using the rate of change of \(y\) and that of \(x\), both with respect to \(t\).

Example 5.28 Displacement \(s\) of a particle at time \(t\) is expressed as \(s = \frac{1}{2}t^3 - 6t\). Find the acceleration at the time when the velocity vanishes (i.e., velocity tends to zero).

Sol. \(s = \frac{1}{2}t^3 - 6t\)

Thus velocity, \(v = \frac{ds}{dt} = \left(3t^2 - 6 \right)\)

and acceleration, \(a = \frac{dv}{dt} = \frac{d^2s}{dt^2} = 3t\)

Velocity vanishes when \(3t^2 - 6 = 0\)

\(\Rightarrow \ t^2 = 4 \quad \Rightarrow \quad t = 2\)

Thus, the acceleration when the velocity vanishes is \(a = 3t = 6\) units.

Example 5.29 On the curve \(x^3 = 12y\), find the interval of values of \(x\) for which the abscissa changes at a faster rate than the ordinate?

Sol. Given \(x^3 = 12y\); differentiating w.r.t. \(y\), we get

\[3x^2 \frac{dx}{dy} = 12 \]

\[\therefore \quad \frac{dx}{dy} = \frac{12}{3x^2} \]

Now if abscissa changes at a faster rate than the ordinate then we must have \(\left| \frac{dx}{dy} \right| > 1\)

\[\Rightarrow \left| \frac{12}{3x^2} \right| > 1 \]

\[\Rightarrow \ |x|^2 > 4 \quad x \neq 0 \]

\[\Rightarrow \ -2 < x < 2 , x \neq 0 \]

\[\Rightarrow \ x \in (-2, 2) - (0) \]
5.10 Calculus

Example 5.30 A man 1.6 m high walks at the rate of 30 m/min away from a lamp which is 4 m above the ground. How fast does the man’s shadow lengthen?

Sol.

Let $PQ = 4$ m be the height of pole and $AB = 1.6$ m be the height of the man.

Let the end of a shadow is R, and it is at a distance of l from A when the man is at a distance x from PQ at some instant.

Since, ΔPQR and ΔABR are similar, we have $\frac{PQ}{AB} = \frac{PR}{AR}$

$\Rightarrow \frac{4}{1.6} = \frac{x + l}{l}$

$\Rightarrow 2x = 3l$

$\Rightarrow 2 \frac{dx}{dt} = 3 \frac{dl}{dt}$ [given $\frac{dx}{dt} = 30$ m/min]

$\Rightarrow \frac{dl}{dt} = \frac{2}{3} \times 30$ m/min $= 20$ m/min

Example 5.31 If water is poured into an inverted hollow cone whose semi-vertical angle is 30°, show that its depth (measured along the axis) increases at the rate of 1 cm/s. Find the rate at which the volume of water increases when the depth is 24 cm.

Sol.

Let A be the vertex and AO the axis of the cone.

Let $O'A = h$ be the depth of water in the cone.

In ΔAOC, $\tan 30° = \frac{O'C}{h}$

$\Rightarrow O'C = \frac{h}{\sqrt{3}}$ = radius

$V =$ volume of water in the cone $= \frac{1}{3} \pi (O'C)^2 \times AO'$

$= \frac{1}{3} \pi \left(\frac{h^2}{3} \right) \times h$

$\Rightarrow V = \frac{\pi}{9} h^3 \Rightarrow \frac{dV}{dt} = \frac{\pi}{3} \frac{dh}{dt}$ (1)

But given that depth of water increases at the rate of 1 cm/sec

$\Rightarrow \frac{dh}{dt} = 1$ cm/s

(2)

From (1) and (2), $\frac{dV}{dt} = \frac{\pi h^2}{3}$

When $h = 24$ cm, the rate of increase of volume $\frac{dV}{dt} = \frac{\pi (24)^2}{3} = 192$ cm3/s

Example 5.32 Let x be the length of one of the equal sides of an isosceles triangle, and let θ be the angle between them. If x is increasing at the rate of $\frac{1}{12}$ m/h, and θ is increasing at the rate of $\frac{\pi}{180}$ radians/h, then find the rate in m2/h at which the area of the triangle is increasing when $x = 12$ m and $\theta = \frac{\pi}{4}$.

Sol.

$A = \frac{1}{2} x^2 \sin \theta \Rightarrow 2 \frac{dA}{dt} = x^2 \sin \theta \frac{d\theta}{dt} + 2x \cos \theta \frac{dx}{dt}$

$\Rightarrow 2 \frac{dA}{dt} = x^2 \cos \theta \frac{d\theta}{dt} + 2x \sin \theta \frac{dx}{dt}$

$\Rightarrow 2 \frac{dA}{dt} = (144) \left(\frac{1}{\sqrt{2}} \right) \frac{\pi}{180} \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \times 2 \times 12 \times \frac{1}{12} \right]$

$= \frac{12\pi}{15\sqrt{2}} \frac{2}{\sqrt{2}}$

$\Rightarrow \frac{dA}{dt} = \frac{2\pi}{5\sqrt{2}} \left(\frac{\sqrt{2} \pi}{5} + \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\frac{\pi}{5} + \frac{1}{2} \right)$

Example 5.33 A horse runs along a circle with a speed of 20 km/h. A lantern is at the centre of the circle. A fence is along the tangent to the circle at the point at which the horse starts. Find the speed with which the shadow of the horse moves along the fence at the moment when it covers 1/8 of the circle in km/h is

Sol.

$\frac{1}{8} \frac{2\pi r}{20} = \frac{\theta}{360}$

$\Rightarrow \frac{d\theta}{dt} = \frac{15\pi}{160}$

$\Rightarrow \frac{dA}{dt} = \frac{d\theta}{dt} \cdot \frac{r}{\cos \theta}$

$= \frac{15\pi}{160} \cdot \frac{r}{\cos \theta} =$ m2/h
\[\tan \theta = \frac{x}{r} \Rightarrow x = r \tan \theta \]
\[\Rightarrow \quad \frac{dx}{dt} = r \sec^2 \theta \left(\frac{d\theta}{dt} \right) = r \theta \sec^2 \theta = \nu \sec^2 \theta \]
where \(\theta = 2\pi \Rightarrow \frac{dx}{dt} = \nu \sec^2 \left(\frac{\pi}{4} \right) = 2\nu = 40 \text{ km/h}; \]
\[\theta = 45^\circ \]

Concept Application Exercise 5.4

1. The distance covered by a particle moving in a straight line from a fixed point on the line is \(s \), where \(s^2 = at^2 + 2bt + c \), then prove that acceleration is proportional to \(s^{-3} \).
2. Tangent of an angle increases four times as the angle itself. At what rate the sine of the angle increases w.r.t. the angle?
3. Two cyclists start from the junction of two perpendicular roads, their velocities being \(3u \) m/min and \(4u \) m/min, respectively. Find the rate at which the two cyclists separate.
4. A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of 50 cm\(^3\)/min. When the thickness of ice is 5 cm, then find the rate at which the thickness of ice decreases.
5. \(x \) and \(y \) are the sides of two squares such that \(y = x - x^2 \). Find the rate of change of the area of the second square with respect to the first square.
6. Two men \(P \) and \(Q \) start with velocities \(u \) at the same time from the junction of two roads inclined at \(45^\circ \) to each other. If they travel by different roads, find the rate at which they are being separated.

APPROXIMATIONS

Let \(f: A \rightarrow R, A \subset R \) be a given function and let \(y = f(x) \). Let \(\Delta x \) denotes a small increment in \(x \). Recall that the increment in \(y \) corresponding to the increment in \(x \), denoted by \(\Delta y \), is given by \(\Delta y = f(x + \Delta x) - f(x) \). We define the following

(i) The differential of \(x \), denoted by \(dx \), is defined by \(dx = \Delta x \).
(ii) The differential of \(y \), denoted by \(dy \), is defined by

\[dy = f'(x) \, dx \] or \[dy = \left(\frac{dy}{dx} \right) \Delta x \]

Example 5.34 Find the approximate value of \(\sqrt{36.6} \).

Sol. Consider the function \(y = \sqrt{x} \).

Let \(x = 36 \) and \(\Delta x = 0.6 \).

Then \(\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{36.6} - \sqrt{36} = \sqrt{36.6} - 6 \)

or \(\sqrt{36.6} = 6 + \Delta y \)

Now \(dy \) is approximately equal to \(\Delta y \) and is given by

\[dy = \left(\frac{dy}{dx} \right)_{x=36} \Delta x = \frac{1}{2\sqrt{36}}(0.6) = 0.05 \quad \text{(as } y = \sqrt{x} \text{)} \]

Thus, the approximate value of \(\sqrt{36.6} \) is \(6 + 0.05 = 6.05 \).

Example 5.35 Find the approximate value of \((25)^{\frac{1}{3}} \).

Sol. Consider the function \(y = x^{\frac{1}{3}} \)

Let \(x = 27 \) and let \(\Delta x = -2 \).

then \(\Delta y = (x + \Delta x)^{\frac{1}{3}} - x^{\frac{1}{3}} = (25)^{\frac{1}{3}} - (27)^{\frac{1}{3}} = (25)^{\frac{1}{3}} - 3 \)

or \(27^{\frac{1}{3}} = 3 + \Delta y \)

Now \(dy \) is approximately equal to \(\Delta y \) and is given by

\[dy = \left(\frac{dy}{dx} \right) \Delta x = \frac{1}{3x^2}(-2) \quad \text{(as } y = x^{\frac{1}{3}} \text{)} \]

At \(x = 27 \)

\[dy = \frac{1}{3(27)^{\frac{2}{3}}}(-2) = \frac{-2}{27} = -0.074 \]

Thus, the approximate value of \((25)^{\frac{1}{3}} \) is given by

\[3 + (-0.074) = 2.926 \]

Example 5.36 Find the approximate change in the volume \(V \) of a cube of side \(x \) metres caused by increasing the side by 2%.

Sol. We have volume \(V = x^3 \)

Thus, the approximate change in the volume is \(0.06x^2 \text{ m}^3 \).

Example 5.37 In an acute triangle \(ABC \) if sides \(a, b \) be constants and the base angles \(A \) and \(B \) vary, then show that

\[\frac{dA}{\sqrt{a^2 - b^2 \sin^2 A}} = \frac{dB}{\sqrt{b^2 - a^2 \sin^2 B}} \]
5.12 Calculus

Sol. \[
\frac{a}{\sin A} = \frac{b}{\sin B}
\]
or \[
b \sin A = a \sin B
\]
b cos A dA = a cos B dB

\[
\frac{dA}{acos B} = \frac{dB}{bcos A}
\]
\[
\Rightarrow \frac{dA}{a\sqrt{1 - \sin^2 B}} = \frac{dB}{b\sqrt{1 - \sin^2 A}}
\]
\[
\Rightarrow \frac{dA}{a\sqrt{1 - \frac{b^2}{a^2} \sin^2 A}} = \frac{dB}{b\sqrt{1 - \frac{a^2}{b^2} \sin^2 B}}
\]
\[
\Rightarrow \frac{dA}{\sqrt{a^2 - b^2} \sin^2 A} = \frac{dB}{\sqrt{b^2 - a^2} \sin^2 B}
\]

Concept Application: Exercise 5.5

1. Find the approximate value of \(f(3.02) \), where \(f(x) = 3x^2 + 5x + 3 \).

2. If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximate error in calculating its volume.

3. Find the approximate value of \((1.999)^6 \).

4. If \(1^\circ = \alpha \) radians, then find the approximate value of \(\cos 60^\circ \) in 1'.

MEAN VALUE THEOREMS

In calculus, the mean value theorem, roughly, states that in a given section of a smooth curve, there is a point at which the derivative (slope) of the curve is equal to the "average" derivative of the section.

This theorem can be understood concretely by applying it to motion: if a car travels 100 miles in 1 hour, so that its average speed during that time is 100 miles per hour, then at some time its instantaneous speed must have been exactly 100 miles per hour.

Rolle's Theorem

Statement:

If a function \(f(x) \) is

(i) continuous in the closed interval \([a, b]\), i.e., continuous at each point in the interval \([a, b]\)

(ii) differentiable in an open interval \((a, b)\), i.e., differentiable at each point in the open interval \((a, b)\)

(iii) \(f(a) = f(b) \),

then there will be at least one point \(c \) in the interval \((a, b)\) such that \(f'(c) = 0 \).

Geometrical Meaning of Rolle's Theorem

If the graph of a function \(y = f(x) \) is continuous at each point from the point \(A(a, f(a)) \) to the point \(B(b, f(b)) \) and the tangent at each point between \(A \) and \(B \) is unique, i.e., tangent at each point between \(A \) and \(B \) exists and ordinates, i.e., \(y \) co-ordinates of points \(A \) and \(B \) are equal, then there will be at least one point \(P \) on the curve between \(A \) and \(B \) at which tangent will be parallel to the \(x \)-axis.

In Fig. 5.18, there is only one such point \(P \) where tangent is parallel to the \(x \)-axis; however, in Fig. 5.19, there are more than one such points where tangents are parallel to the \(x \)-axis.

Example 5.38

Discuss the applicability of Rolle's theorem for the following functions on the indicated intervals:

(i) \(f(x) = |x| \) in \([-1, 1] \)
(ii) \(f(x) = 3 + (x - 2)^{23} \) in \([1, 3] \)
(iii) \(f(x) = \tan x \) in \([0, \pi] \)
(iv) \(f(x) = \log \left\{ \frac{x^2 + ab}{x(a + b)} \right\} \) in \([a, b] \), where \(0 < a < b \).

Sol. (i) \(f(x) = |x| \) is continuous but non-differentiable in \([-1, 1] \), hence Rolle's theorem is not applicable.

(ii) \(f(x) = 3 + (x - 2)^{23} \Rightarrow f'(x) = \frac{2}{3(x - 2)^{2/3}} \). Thus \(f(x) \) is continuous but derivative does not exist at \(x = 2 \). Hence, Rolle's theorem is not applicable.

(iii) \(f(x) = \tan x \) in \([0, \pi] \) is discontinuous at \(x = \pi/2 \). Hence Rolle's theorem is not applicable.

(iv) \(f(x) = \log \left\{ \frac{x^2 + ab}{x(a + b)} \right\} \) in \([a, b] \), where \(0 < a < b \).
For \(0 < a < b\), \(f(x)\) is continuous and differentiable,
\[
f(a) = \log \left(\frac{a^2 + ab}{a(a + b)} \right) = \log \left(\frac{a(a + b)}{a(a + b)} \right) = \log 1 = 0
\]
and
\[
f(b) = \log \left(\frac{b^2 + ab}{b(a + b)} \right) = \log \left(\frac{b(a + b)}{b(a + b)} \right) = \log 1 = 0
\]
Hence \(f(a) = f(b)\), and Rolle’s theorem is applicable.

Example 5.39 If the function \(f(x) = x^3 - 6x^2 + ax + b\) defined on \([1, 3]\) satisfies the Rolle’s theorem for \(c = \frac{2\sqrt{2} + 1}{\sqrt{3}}\), then find the values of \(a\) and \(b\).

Sol. Since \(f(x)\) satisfies conditions of Roll’s theorem on \([1, 3]\)
\[
\therefore f(1) = f(3)
\]
\[
\Rightarrow 1 - 6a + b = 27 - 54 + 3a + b
\]
\[
\Rightarrow 2a = 22 \text{ or } a = 11
\]
Since \(f(1) = f(3)\) is independent of \(b\)
\[
\therefore a = 11 \text{ and } b \in R
\]

Example 5.40 Let \(f(x) = (x - a)(x - b)(x - c), a < b < c\), show that \(f'(x) = 0\) has two roots in \((a, b)\) and the other in \((b, c)\).

Sol. Here, \(f(x)\) being a polynomial is continuous and differentiable for all real values of \(x\). We also have \(f'(a) = f'(b) = f'(c)\), Rolle’s theorem is applicable to \(f(x)\) in \([a, b]\) and \([b, c]\). We observe that \(f'(x) = 0\) has at least one root in \((a, b)\) and at least one root in \((b, c)\). But it is a polynomial of degree two, hence \(f'(x) = 0\) cannot have more than two roots. It implies that exactly one root of \(f'(x) = 0\) would lie in \((a, b)\) and exactly one root of \(f'(x) = 0\) would lie in \((b, c)\).

Note:

Let \(f(x)\) be a polynomial function of degree \(n\). If \(f(x) = 0\) has real roots only, then \(f'(x) = 0, f''(x) = 0, f^{n-1}(x) = 0\) have only real roots. It is so because if \(f(x) = 0\) has real roots, then between two consecutive roots of \(f(x) = 0\), exactly one root of \(f'(x) = 0\) would lie.

Example 5.41 If \(2a + 3b + 6c = 0\), then prove that at least one root of the equation \(ax^2 + bx + c = 0\) lies in the interval \((0, 1)\).

Sol. Consider the function \(f(x) = \frac{ax^3}{3} + \frac{bx^2}{2} + cx + d\).

We have \(f(0) = d\) and
\[
f(1) = \frac{a}{3} + \frac{b}{2} + c + d = \frac{2a + 3b + 6c}{6} + d = 0 + d = d
\]
\[
(\therefore 2a + 3b + 6c = 0)
\]
Thus \(f(0) = f(1) = d\). Consequently, there exists at least one root of the polynomial \(f'(x) = ax^2 + bx + c\) lying between \(0\) and \(1\).

Example 5.42 Show that between any two roots of \(e^x - \cos x = 0\), there exists at least one root of \(\sin x - e^{-x} = 0\).

Sol. Let \(f(x) = e^x - \cos x\) and let \(\alpha\) and \(\beta\) be two of many roots of the equation \(e^x - \cos x = 0\)
\[
\Rightarrow f(\alpha) = 0 \text{ and } f(\beta) = 0
\]
Also, \(f(x)\) is continuous and differentiable.
Then, according to the Rolle’s theorem, there exists at least one \(c \in (\alpha, \beta)\) such that \(f'(c) = 0\), or \(e^c - \sin c = 0\) or \(c\) is root of the equation \(e^c - \sin c = 0\).

Example 5.43 Let \(P(x)\) be a polynomial with real coefficients. Let \(a, b \in R, a < b\), be two consecutive roots of \(P(x)\). Show that there exists \(c\) such that \(a \leq c \leq b\) and \(P(c) + 100P(c) = 0\).

Sol. Consider \(f(x) = e^{100x}P(x)\).

Now \(f(a) = f(b) = 0\) (as \(P(a) = P(b) = 0\))
Also as \(P(x)\) is polynomial \(\Rightarrow f(x)\) is continuous and differentiable in \([a, b]\)
\[
\Rightarrow \text{ Rolle’s theorem can be applied}
\]
\[
\exists c \in (a, b) \text{ such that } f'(c) = 0
\]
Now \(f'(x) = e^{100x}(P'(x) + 100P(x))\)
\[
\Rightarrow e^{100c}(P'(c) + 100P(c)) = 0
\]
\[
\Rightarrow P'(c) + 100P(c) = 0 \quad (\text{as } e^{100c} \neq 0)
\]

Example 5.44 If the equation \(ax^2 + bx + c = 0\) has two positive real roots, then prove that the equation \(ax^2 + (b + 6a)x + c + 3b = 0\) has at least one positive real root.

Sol. Consider \(f(x) = e^{x}(ax^2 + bx + c)\)
\(f(x) = 0\) has two positive real roots.

Using Rolle’s theorem,

We can say \(f'(x) = 0\) has at least one real root between two roots of \(f(x) = 0\).
\[
e^{x}(2ax^2 + (b + 6a)x + c + 3b) = 0 \text{ has at least one positive real root.}
\]

\[
ax^2 + (b + 6a)x + c + 3b = 0 \text{ has at least one positive real root.}
\]

Example 5.45 Let \(f(x)\) and \(g(x)\) be differentiable functions such that \(f'(x)g(x) \neq f(x)g'(x)\) for any real \(x\). Show that between any two real solutions of \(f(x) = 0\), there is at least one real solution of \(g(x) = 0\).

Sol. Let \(a, b\) be the solutions of \(f(x) = 0\).

Suppose \(g(x)\) is not equal to zero for any \(x\) belonging to \([a, b]\)

Now consider \(h(x) = f(x)g(x)\)

Since \(g(x)\) not equal to zero, \(h(x)\) is differentiable and continuous in \((a, b)\)
\(h(a) = h(b) = 0\) (as \(f(a) = 0 \text{ and } f(b) = 0 \text{ but } g(a) \text{ or } g(b) \neq 0\))

Applying Rolle’s theorem

\(h'(c) = 0\) for some \(c\) belonging to \((a, b)\)
\(f(x)g'(x) \neq f'(x)g(x)\)
This gives the contradiction.
5.14 Calculus

Lagrange’s Mean Value Theorem

Statement:
If a function $f(x)$ is
(i) continuous in the closed interval $[a, b]$, i.e., continuous at each point in the interval $[a, b]
(ii)$ differentiable in the open interval (a, b), i.e., differentiable at each point in the interval (a, b)

Then, there will be at least one point c, where $a < c < b$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Proof:

(Using Rolle’s theorem)

Let $F(x) = Ax + f(x)$
where A is a constant. We choose A such that $F(a) = F(b)$

$$\Rightarrow \quad Aa + f(a) = Ab + f(b) \quad \text{or} \quad A = -\frac{f(b) - f(a)}{b - a}$$

Now since $f(x)$ is continuous in the closed interval $[a, b]$ and x is continuous everywhere; therefore, $F(x)$ is continuous in $[a, b]$.

Again since $f(x)$ is differentiable in (a, b) and x is differentiable everywhere; therefore, $f(x)$ is also differentiable in (a, b).

Also for the value of A given by (2), $F(a) = F(b)$. Hence, all the conditions of Rolle's theorem are satisfied for $F(x)$ in $[a, b]$; therefore, there exists at least one c, where $a < c < b$, such that

$$F'(c) = 0$$

From (1), differentiating w.r.t. to x, we get

$$F'(x) = A + f'(x) \quad \Rightarrow \quad F'(c) = A + f'(c)$$

From (3), $F'(c) = 0$ \quad \Rightarrow \quad $A + f'(c) = 0$

or, $f'(c) = -\frac{f(b) - f(a)}{b - a}$, where $a < c < b$. [from (2)]

Another Form of Lagrange’s Mean Value Theorem

Statement:
If a function $f(x)$ is
(i) continuous in the closed interval $[a, a + h]$
(ii) differentiable in the open interval $(a, a + h)$

then there exists at least one value θ, where $0 < \theta < 1$, such that

$$f(a + h) = f(a) + h \cdot f'(a + \theta h)$$

\[\text{Proof:}\]

Putting $b = a + h$ in the above theorem, there will be at least one c, $a < c < a + h$ such that

$$f'(c) = \frac{f(a + h) - f(a)}{a + h - a} = \frac{f(a + h) - f(a)}{h}$$

Let $c = a + \theta h$

Then, $a < c < a + h \quad \Rightarrow \quad a < a + \theta h < a + h$
\[\Rightarrow \quad 0 < \theta h < h \quad \Rightarrow \quad 0 < \theta < 1\]

\[\therefore \quad \text{from (1),} \quad f(a + \theta h) = \frac{f(a + h) - f(a)}{h}\]

or, $f(a + h) = f(a) + h \cdot f'(a + \theta h)$, where $0 < \theta < 1$

Geometrical Meaning of Lagrange’s Mean Value Theorem

Let $A(a, f(a))$ and $B(b, f(b))$ be two points on the curve $y = f(x)$.
Then $OL = a, OM = b, AL = f(a), BM = f(b)$.

Now, the slope of chord AB, $\tan \theta = \frac{BK}{AK} = \frac{f(b) - f(a)}{b - a}$

By Lagrange's mean value theorem,

$$f'(c) = \text{slope of tangent at point } P(c, f(c))$$
\[\therefore \text{from (1), } \tan \theta = \text{slope of tangent at } P\]
\[\therefore \text{slope of chord } AB = \text{slope of tangent at } P\]

Hence, chord $AB \parallel$ tangent PT.

Thus geometrical meaning of the mean value theorem is as follows: If $y = f(x)$ is continuous and differentiable in (a, b), then there exists at least one point P on the curve in (a, b), where tangent will be parallel to chord AB.

Fig. 5.20

Example 5.46

Consider the function $f(x) = 8x^2 - 7x + 5$ on the interval $[-6, 6]$. Find the value of c that satisfies the conclusion of Lagrange’s mean value theorem.

\textbf{Sol.} \quad f'(c) = 16c - 7
\[\Rightarrow \quad f(0) = \frac{f(6) - f(-6)}{12} = \frac{(8 \times 36 - 7 \times 6 + 5) - (8 \times 36 + 7 \times 6 + 5)}{12} = 7 \quad \Rightarrow \quad c = 0\]

Example 5.47

Let f be differentiable for all x. If $f(1) = -2$ and $f'(x) \geq 2$ for all $x \in [1, 6]$, then find the range of values of $f(6)$.

\textbf{Sol.} By Lagrange’s mean value theorem, there exists $c \in (1, 6)$ such that

$$f'(c) = \frac{f(6) - f(1)}{6 - 1} \quad \Rightarrow \quad f(6) + 2 \geq 2 \quad (\because f'(x) \geq 2 \text{ for all } x \in [1, 6])$$
Example 5.48 Let \(f : [2, 7] \rightarrow [0, \infty) \) be a continuous and differentiable function. Then show that
\
\[
(f(7) - f(2))(f(7))^2 + (f(2))^2 + f(2)f(7) = 5f^2(c)f'(c), \text{where } c \in [2, 7].
\]

Sol. We have to prove that
\
\[
(f(7) - f(2))(f(7))^2 + (f(2))^2 + f(2)f(7) = 5f^2(c)f'(c)
\]
or
\
\[
\frac{(f(7))^3 - (f(2))^3}{7 - 2} = 3f^2(c)f'(c)
\]

Then consider the function \(g(x) = (f(x))^3 \) which is continuous in \([2, 7]\) and differentiable in \((2, 7)\).

Then from Lagrange’s mean value theorem there exists at least one \(c \in [2, 7] \) such that
\
\[
g'(c) = \frac{g(7) - g(2)}{7 - 2}
\]

\[
\Rightarrow 3f^2(c)f'(c) = \frac{(f(7))^3 - (f(2))^3}{7 - 2}
\]

Example 5.49 Using Lagrange’s mean value theorem prove that \(|\cos a - \cos b| \leq |a - b| \).

Sol. Consider \(f(x) = \cos x \) in \([a, b]\) which is continuous and differentiable.

Hence, according to Lagrange’s mean value theorem there exists at least one \(c \in (a, b) \) such that
\
\[
f'(c) = \frac{f(b) - f(a)}{b - a}
\]

or
\
\[
-\sin c = \frac{\cos b - \cos a}{b - a}
\]

\[
\Rightarrow |\cos b - \cos a| = |\sin c| \leq 1
\]

\[
\Rightarrow |\cos b - \cos a| \leq |a - b|
\]

Example 5.50 Let \(f(x) \) and \(g(x) \) be differentiable functions in \((a, b)\), continuous at \(a \) and \(b \) and \(g(x) \neq 0 \) in \([a, b]\).

Then prove that
\[
\frac{g(a)f(b) - f(a)g(b)}{g(c)f'(c) - f(c)g'(c)} = \frac{(b - a)g(a)g(b)}{(g(c))^2}
\]

for at least one \(c \in (a, b) \).

Sol. We have to prove
\[
\frac{g(a)f(b) - f(a)g(b)}{g(c)f'(c) - f(c)g'(c)} = \frac{(b - a)g(a)g(b)}{(g(c))^2}
\]

After rearranging,
\[
\frac{f(b)}{g(b)} \frac{f(a)}{g(a)} = g(c) \frac{f'(c) - f(c)g'(c)}{(b - a)(g(c))^2}
\]

Let \(h(x) = \frac{f(x)}{g(x)} \)

As \(f(x) \) and \(g(x) \) are differentiable functions in \((a, b)\), \(h(x) \) will also be differentiable in \((a, b)\).

Further, \(h \) is continuous at \(a \) and \(b \). So according to Lagrange’s mean value theorem, there exists one \(c \in (a, b) \) such that \(h'(c) = \frac{h(b) - h(a)}{b - a} \), which proves the required result.

Example 5.51 Using mean value theorem, show that
\
\[
\beta - \alpha < \tan^{-1} \beta - \tan^{-1} \alpha < \frac{\beta - \alpha}{1 + \alpha^2}, \beta > \alpha > 0.
\]

Sol. Let \(f(x) = \tan^{-1} x \Rightarrow f'(x) = \frac{1}{1 + x^2} \)

By mean value theorem for \(f(x) \) in \([\alpha, \beta]\)
\
\[
f(\beta) - f(\alpha) = f'(c) = \frac{1}{1 + c^2}, \text{where } a < c < b
\]

\[
\Rightarrow \alpha < c < \beta
\]

\[
\Rightarrow \alpha^2 < c^2 < \beta^2 \text{ or } 1 + \alpha^2 < 1 + c^2 < 1 + \beta^2
\]

\[
\Rightarrow \frac{1}{1 + \alpha^2} > \frac{1}{1 + c^2} > \frac{1}{1 + \beta^2}
\]

or
\[
\frac{1}{1 + \beta^2} < f'(c) < \frac{1}{1 + \alpha^2}
\]

\[
\Rightarrow \frac{\beta - \alpha}{1 + \beta^2} < f'(c) < \frac{(\beta - \alpha)}{1 + \alpha^2}
\]

\[
\Rightarrow (\beta - \alpha) < \tan^{-1} \beta - \tan^{-1} \alpha < \frac{(\beta - \alpha)}{(1 + \alpha^2)}
\]

\[\therefore f(x) = \tan^{-1} x;\]

Cauchy’s Mean Value Theorem

Cauchy’s mean value theorem, also known as the extended mean value theorem, is the more general form of the mean value theorem. It states that if both \(f(t) \) and \(g(t) \) are continuous functions on the closed interval \([a,b]\), differentiable on the open interval \((a,b)\), and \(g'(t) \) is not zero on that open interval, then there exists some \(c \in (a,b) \), such that
\[
\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.
\]

Proof:

The proof of Cauchy’s mean value theorem is based on the same idea as the proof of the mean value theorem. First, we define a new function \(h(t) \) and then aim to transform this function so that it satisfies the conditions of Rolle’s theorem.
5.16 Calculus

Let \(h(t) = f(t) - mg(t) \), where \(m \) is a constant. We choose \(m \) so that \(h(a) = h(b) \) \(\Rightarrow m = \frac{f(b) - f(a)}{g(b) - g(a)} \).

Since \(h \) is continuous and \(h(a) = h(b) \), by Rolle’s theorem, there exists some \(c \) in \((a, b) \) such that \(h'(c) = 0 \), i.e.,

\[
h'(c) = 0 = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)} g'(c)
\]

as required.

\[
\Rightarrow \quad \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}
\]

Example 5.52 Let \(f(x) \) and \(g(x) \) be two differentiable functions in \(R \) and \(f'(2) = 8 \), \(g(2) = 0 \), \(f'(4) = 10 \) and \(g(4) = 8 \), then prove that \(g'(x) = 4f'(x) \) for at least one \(x \in (2, 4) \).

Sol. Consider \(h(x) = g(x) - 4f(x) \) in \([2, 4] \) and \(h(2) = g(2) - 4f(2) = -32 \), \(h(4) = -32 \)
\(\Rightarrow h'(x) = 0 \) for at least one \(x \in (2, 4) \) using Rolle’s theorem.

Alternatively, using Cauchy’s mean value theorem, there exists at least one \(c \in (2, 4) \) such that

\[
\frac{f'(c)}{g'(c)} = \frac{f(4) - f(2)}{g(4) - g(2)} = \frac{10 - 8}{8 - 0} = 4
\]

\[
\Rightarrow 4f'(c) = g'(c)
\]

\[
\Rightarrow 4f'(x) = g'(x)
\]

(replacing \(c \) by \(x \))

Example 5.53 Suppose \(\alpha, \beta \) and \(\theta \) are angles satisfying

\[
0 < \alpha < \theta < \beta < \frac{\pi}{2},
\]
then prove that

\[
\frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha} = -\cot \theta.
\]

Sol. Let \(f(x) = \sin x \) and \(g(x) = \cos x \), then \(f \) and \(g \) are continuous and derivable.

Also, \(\sin x \neq 0 \) for any \(x \in \left(0, \frac{\pi}{2} \right) \).

So by Cauchy’s mean value theorem,

\[
\frac{f'(c)}{g'(c)} = \frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} = \frac{f'(\theta)}{g'(\theta)}
\]

EXERCISES

1. If the area of the triangle included between the axes and any tangent to the curve \(x^n y = a^n \) is constant, then find the value of \(n \).

2. Show that the curves \(ax^2 + by^2 = 1 \) and \(a'x^2 + b'y^2 = 1 \) should intersect orthogonally if

\[
\frac{1}{a} - \frac{1}{a'} = \frac{1}{b} - \frac{1}{b'}
\]

3. Find the angle of intersection of curves, \(y = [\sin x] + [\cos x] \) and \(x^2 + y^2 = 5 \), where \([.\) denotes the greatest integral function.

4. Tangents are drawn from the origin to the curve \(y = \sin x \).

Prove that points of contact lie on \(y^2 = \frac{x^2}{1 + x^2} \).
8. Find the minimum value of
\[(x_1 - x_2)^2 + \left(\frac{x_1^2}{20} - \sqrt{(17 - x_2)(x_2 - 13)}\right)^2,\]
where \(x_1, x_2 \in (13, 17).

9. Sand is pouring from a pipe at the rate of 12 cm³/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always 1/6th of the radius of the base. How fast does the height of the sand cone increase when the height is 4 cm?

10. Let \(\frac{a_0}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-1} + \ldots + \frac{a_{n-1}}{2} + a_n = 0.\) Show that there exists at least one real \(x\) between 0 and 1 such that \(a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n = 0.

11. Let a, b, c be non-zero real numbers such that
\[\int_0^1 (1 + \cos \theta) (ax^2 + bx + c)\,dx = \int_0^2 (1 + \cos \theta) (ax^2 + bx + c)\,dx = 0,
\]
then show that the equation \(ax^2 + bx + c = 0\) will have one root between 0 and 1 and other root between 1 and 2.

12. If \(f(x)\) is a continuous and differentiable function and \(f(0) = 1, f(1) = 2\), then prove that there exists at least one \(\epsilon \in [0, 1]\) for which \(f'(\epsilon) = f(\epsilon) - f(0) = 1\), where \(n \in N\).

13. Let \(a, b, c\) be three real numbers such that \(a < b < c, f(x)\) is continuous in \([a, c]\) and differentiable in \((a, c)\). Also \(f'(x)\) is strictly increasing in \((a, c)\). Prove that \((b - c) f(a) + (c - a) f(b) + (a - b) f(c) < 0\).

14. Prove that the portion of the tangent to the curve \(y = x^2 - y^2\) at the point of contact and the x-axis is constant.

15. Find the condition for the line \(y = mx\) to cut at right angles the conic \(ax^2 + 2hxy + by^2 = 1\).

16. Show that for the curve \(by^2 = (x + a)^3\), the square of the sub-tangent, varies as the sub-normal.

17. An aeroplane is flying horizontally at a height of \(\frac{2}{3}\) km with a velocity of 15 km/h. Find the rate at which it is receding from a fixed point on the ground which it passed over 2 min ago.

18. Use the mean value theorem to prove \(e^x \geq 1 + x, \forall x \in \mathbb{R}\).

Objective Type

Each question has four choices a, b, c, and d, out of which only one is correct.

1. The number of tangents to the curve \(x^{3/2} + y^{3/2} = 2a^{3/2}\),
 \(a > 0\), which are equally inclined to the axes, is
 a. 2
 b. 1
 c. 0
 d. 4

2. The angle made by the tangent of the curve \(x = a(t + \sin t\cos t); y = a(1 + \sin^2 t)\) with the x-axis at any point on it is
 a. \(\frac{1}{\sqrt{2}}\)
 b. \(\frac{1}{\sqrt{3}}\)
 c. \(\frac{2}{\sqrt{5}}\)
 d. \(\frac{2}{\sqrt{3}}\)

3. If \(m \) is the slope of a tangent to the curve \(y = x + x^2\), then
 a. \(|m| > 1\)
 b. \(|m| < 1\)
 c. \(|m| > 0\)
 d. \(|m| < 0\)

4. If at each point of the curve \(y = \sqrt[3]{x^2} - \sqrt{ax^2 + x + 1}\), the tangent is inclined at an acute angle with the positive direction of the x-axis, then
 a. \(a > 0\)
 b. \(a \leq \sqrt{3}\)
 c. \(-\sqrt{3} \leq a \leq \sqrt{3}\)
 d. None of these

5. The slope of the tangent to the curve \(y = \sqrt[4]{1 - x^2}\) at the point, where the ordinate and the abscissa are equal, is
 a. \(-1\)
 b. \(1\)
 c. \(0\)
 d. None of these

6. The curve given by \(x + y = e^y\) has a tangent parallel to the y-axis at the point
 a. \((0, 1)\)
 b. \((1, 0)\)
 c. \((1, 1)\)
 d. None of these

7. If the line joining the points \((0, 3)\) and \((5, -2)\) is a tangent to the curve \(y = \frac{c}{x + 1}\), then the value of \(c\) is
 a. 1
 b. \(-2\)
 c. 4
 d. None of these

8. Let \(f(x) = \begin{cases} -x^2, & \text{for } x < 0 \\ x^2 + 8, & \text{for } x \geq 0 \end{cases}\). Then x-intercept of the line, that is, the tangent to the graph of \(f(x)\) is
 a. zero
 b. \(-1\)
 c. \(-2\)
 d. \(-4\)

9. The distance between the origin and the tangent to the curve \(y = e^{2x} + x^2\) drawn at the point \(x = 0\) is
 a. \(\frac{1}{\sqrt{5}}\)
 b. \(\frac{2}{\sqrt{5}}\)
 c. \(-\frac{1}{\sqrt{5}}\)
 d. \(\frac{2}{\sqrt{5}}\)

10. The point on the curve \(3y = 6x - 5x^2\), the normal at which passes through the origin, is
 a. \((1, 1/3)\)
 b. \((1/3, 1)\)
 c. \((2, -28/3)\)
 d. None of these

11. The normal to the curve \(2x^2 + y^2 = 12\) at the point \((2, 2)\) cuts the curve again at
 a. \(\left(\frac{22}{9}, \frac{2}{9}\right)\)
 b. \(\left(\frac{2}{9}, \frac{4}{9}\right)\)
 c. \((-2, -2)\)
 d. None of these

12. At what points of curve \(y = \frac{2}{3} x^3 + \frac{1}{2} x^2\), the tangent makes the equal angle with the axis?
 a. \(\left(\frac{1}{3}, \frac{5}{24}\right)\) and \((-1, -\frac{1}{6})\)
 b. \(\left(\frac{1}{2}, \frac{4}{9}\right)\) and \((-1, 0)\)
 c. \(\left(\frac{1}{2}, \frac{1}{7}\right)\) and \((-3, \frac{2}{3})\)
 d. \(\left(\frac{1}{3}, \frac{4}{3}\right)\) and \((-1, -\frac{1}{3})\)
13. The equation of the tangent to the curve \(y = be^{ax} \) at the point where it crosses the \(y \)-axis is
 \[
 \frac{x - y}{a} = \frac{b}{a} = 1
 \]
 a. \(\frac{x}{a} - \frac{y}{b} = 1 \) b. \(ax + by = 1 \)
 c. \(ax - by = 1 \) d. \(\frac{x}{a} + \frac{y}{b} = 1 \)

14. The angle of intersection of the normals at the point \(\left(\frac{5}{\sqrt{2}}, \frac{3}{\sqrt{2}} \right) \) of the curves \(x^2 - y^2 = 8 \) and \(9x^2 + 25y^2 = 225 \) is
 \[\pi \]
 a. 0 b. \(\frac{\pi}{2} \) c. \(\frac{\pi}{3} \) d. \(\frac{\pi}{4} \)

15. A function \(y = f(x) \) has a second-order derivative \(f''(x) = 6(x-1) \). If its graph passes through the point \((2, 1) \) and at that point tangent to the graph is \(y = 3x - 5 \), then the value of \(f(0) \) is
 \[1\]
 a. 1 b. 0 c. 1 d. 0

16. If \(x + 4y = 14 \) is a normal to the curve \(y^2 = ax^3 - \beta \) at \((2, 3) \), then the value of \(a + \beta \) is
 \[9\]
 a. 9 b. 7 c. 5 d. 7

17. The curve represented parametrically by the equations
 \[x = 2 \ln \cot t + 1 \quad y = \tan t + \cot t\]
 a. tangent and normal intersect at the point \((2, 1) \)
 b. normal at \(t = \frac{\pi}{4} \) is parallel to the \(y \)-axis
 c. tangent at \(t = \frac{\pi}{4} \) is parallel to the line \(y = x \)
 d. tangent at \(t = \frac{\pi}{4} \) is parallel to the \(x \)-axis

18. The abscissa of points \(P \) and \(Q \) on the curve \(y = e^x + e^{-x} \) such that tangents at \(P \) and \(Q \) make 60° with the \(x \)-axis is
 \[\ln \left(\frac{\sqrt{3} + \sqrt{7}}{2} \right) \quad \ln \left(\frac{\sqrt{3} + \sqrt{7}}{2} \right) \]
 a. \(\ln \left(\frac{\sqrt{3} + \sqrt{7}}{2} \right) \) b. \(\ln \left(\frac{\sqrt{3} + \sqrt{7}}{2} \right) \)
 c. \(\ln \left(\frac{\sqrt{7} - \sqrt{3}}{2} \right) \) d. \(\pm \ln \left(\frac{\sqrt{3} + \sqrt{7}}{2} \right) \)

19. If a variable tangent to the curve \(x^2y = c^3 \) makes intercepts \(a, b \) on \(x \)-and \(y \)-axes, respectively, then the value of \(a^2b \) is
 \[27c^3\]
 a. 27 \(c^3 \) b. \(\frac{4}{27} c^3 \) c. \(\frac{27}{4} c^3 \) d. \(\frac{4}{9} c^3 \)

20. Let \(C \) be the curve \(y = x^3 \) (where \(x \) takes all real values). The tangent at \(A \) meets the curve again at \(B \). If the gradient at \(B \) is \(K \) times the gradient at \(A \), then \(K \) is equal to
 \[4\]
 a. 4 b. 2 c. -2 d. \(\frac{1}{4} \)

21. A curve is represented by the equations \(x = \sec^2 t \) and \(y = \cot t \), where \(t \) is a parameter. If the tangent at the point \(P \) on the curve, where \(t = \frac{\pi}{4} \), meets the curve again at the point \(Q \), then \(|PQ| \) is equal to
 \[\frac{5\sqrt{3}}{2} \quad \frac{5\sqrt{5}}{2} \quad \frac{2\sqrt{5}}{3} \quad \frac{3\sqrt{5}}{2} \]
 a. \(\frac{5\sqrt{3}}{2} \) b. \(\frac{5\sqrt{5}}{2} \) c. \(\frac{2\sqrt{5}}{3} \) d. \(\frac{3\sqrt{5}}{2} \)

22. The \(x \)-intercept of the tangent at any arbitrary point of the curve \(\frac{a}{x^2} + \frac{b}{y^2} = 1 \) is proportional to
 a. square of the abscissa of the point of tangency
 b. square root of the abscissa of the point of tangency
 c. cube of the abscissa of the point of tangency
 d. cube root of the abscissa of the point of tangency

23. At any point on the curve \(2x^2 + x^3 = c \), the mean proportional between the abscissa and the difference between the abscissa and the subnormal drawn to the curve at the same point is equal to
 a. ordinate b. radius vector c. \(x \)-intercept of tangent d. sub-tangent

24. If the length of sub-normal is equal to the length of sub-tangent at any point \((3, 4) \) on the curve \(y = f(x) \) and the tangent at \((3, 4) \) to \(y = f(x) \) meets the coordinate axes at \(A \) and \(B \), then the area of the triangle \(OAB \), where \(O \) is origin, is
 a. 45/2 b. 49/2 c. 25/2 d. 81/2

25. The number of points in the rectangle \((x, y) \) such that \(-12 \leq x \leq 12 \) and \(-3 \leq y \leq 3 \) which lie on the curve \(y = x + \sin x \) and at which the tangent to the curve is parallel to the \(x \)-axis is
 a. 0 b. 2 c. 4 d. 8

26. Tangent of acute angle between the curves \(y = |x^2 - 1| \) and \(y = \sqrt{7 - x^2} \) at their points of intersection is
 a. \(\frac{\sqrt{3} + \sqrt{7}}{2} \) b. \(\frac{\sqrt{3} - \sqrt{7}}{2} \) c. \(\frac{\sqrt{3} + \sqrt{7}}{2} \) d. \(\frac{\sqrt{3} - \sqrt{7}}{2} \)

27. The lines tangent to the curve \(y^3 - x^3 + 5y - 2x = 0 \) and \(x^4 - x^3y^2 + 5x + 2y = 0 \) at the origin intersect at an angle \(\theta \) equal to
 a. \(\frac{\pi}{6} \) b. \(\frac{\pi}{4} \) c. \(\frac{\pi}{3} \) d. \(\frac{\pi}{2} \)

28. The two curves \(x^2 + y^2 = a^2 \) cut orthogonally at a point, then \(\theta^2 \) is equal to
 a. \(\frac{1}{3} \) b. 3 c. 2 d. \(\frac{1}{2} \)

29. The curves \(4x^2 + 9y^2 = 72 \) and \(x^2 - y^2 = 5 \) at \((3, 2) \) are
 a. touch each other b. cut orthogonally c. intersect at \(45^\circ \) d. intersect at \(60^\circ \)

30. Let \(f(x) = -x^2 + x^3 \) for \(1 \leq x \leq 6 \). The smallest possible value of \(f(x) \) is
 a. 0 b. 12 c. 15 d. 19

31. If \(f(x) = x^4 + 7x - 1 \), then \(f(x) \) has a zero between \(x = 0 \) and \(x = 1 \). The theorem that best describes this is
 a. Mean value theorem b. Maximum-minimum value theorem c. Intermediate value theorem d. None of these

32. Consider the function \(f(x) = \begin{cases} x \sin \frac{\pi}{x} & \text{for } x > 0 \\ 0 & \text{for } x = 0 \end{cases} \)

the number of points in \((0, 1) \) where the derivative \(f'(x) \) vanishes is
 a. 0 b. 1 c. 2 d. infinity
33. Let \(f(x) \) and \(g(x) \) be differentiable for \(0 \leq x \leq 1 \), such that \(f(0) = 0, g(0) = 0, f(1) = 6 \). Let there exists a real number \(c \) in \((0, 1)\) such that \(f'(c) = 2g'(c) \), then the value of \(g(1) \) must be
- a. 1
- b. 3
- c. -2
- d. -1

34. If \(3(a + 2c) = 4(b + 3d) \), then the equation \(ax^3 + bx^2 + cx + d = 0 \) will have
- a. no real solution
- b. at least one real root in \((-1, 0)\)
- c. at least one real root in \((0, 1)\)
- d. none of these

35. If the function \(f(x) = ax^3 + bx^2 + cx + d \) satisfies conditions of Rolle's theorem in \([1, 3]\) for \(x = 2 + \frac{1}{\sqrt{3}} \), then value of \(a \) and \(b \), respectively, are
- a. -3, 2
- b. 2, -4
- c. 1, 6
- d. None of these

36. A value of \(C \) for which the conclusion of mean value theorem holds for the function \(f(x) = \log x \) on the interval \([1, 3]\) is
- a. \(\frac{1}{2} \log 3 \)
- b. \(\log_5 e \)
- c. \(\log_3 2 \)
- d. None of these

37. Let \(f(x) \) be a twice differentiable function for all real values of \(x \) and satisfies \(f(1) = 1, f'(2) = 4, f(3) = 9 \).
Then which of the following is definitely true?
- a. \(f''(x) = 2, \forall x \in (1, 3) \)
- b. \(f''(x) = f'(x) = 5 \) for some \(x \in (2, 3) \)
- c. \(f''(x) = 3 \forall x \in (2, 3) \)
- d. \(f''(x) = 2 \) for some \(x \in (1, 3) \)

38. The value of \(c \) in Lagrange’s theorem for the function \(f(x) = \log \sin x \) in the interval \([\pi/6, 5\pi/6]\)
- a. \(\frac{\pi}{4} \)
- b. \(\frac{\pi}{2} \)
- c. \(2\pi/3 \)
- d. None of these

39. In which of the following functions is Rolle's theorem applicable?
- a. \(f(x) = \begin{cases} x, & 0 \leq x < 1 \\ 0, & x = 1 \end{cases} \) on \([0, 1]\)
- b. \(f(x) = \begin{cases} \sin x, & -\pi \leq x < 0 \\ x, & x = 0 \end{cases} \) on \((-\pi, 0]\)
- c. \(f(x) = \frac{x^2 - x - 6}{x - 1} \) on \([-2, 3]\)
- d. \(f(x) = \begin{cases} x^3 - 2x^2 - 5x + 6, & \text{if } x \neq 1, \text{ on } [-2, 3] \\ -6, & \text{if } x = 1 \end{cases} \)

40. A point on the parabola \(y^2 = 18x \) at which the ordinate increases at twice the rate of the abscissa is
- a. \((2, 6)\)
- b. \((2, -6)\)
- c. \(\left(\frac{9}{8}, -\frac{9}{2}\right)\)
- d. \(\left(\frac{9}{8}, \frac{9}{2}\right)\)

41. The rate of change of the volume of a sphere w.r.t. its surface area, when the radius is 2 cm, is
- a. \(1\)
- b. \(2\)
- c. \(3\)
- d. \(4\)

42. If there is an error of \(k% \) in measuring the edge of a cube, then the percent error in estimating its volume is
- a. \(k\)
- b. \(3k\)
- c. \(\frac{k}{3}\)
- d. None of these

43. A lamp of negligible height is placed on the ground \(\ell_1 \) away from a wall. A man \(\ell_2 \) m tall is walking at a speed of \(\ell_1 \) \(m/s \) from the lamp to the nearest point on the wall.
When he is midway between the lamp and the wall, the rate of change in the length of this shadow on the wall is
- a. \(\frac{5\ell_2}{2} \) \(m/s\)
- b. \(\frac{2\ell_2}{5} \) \(m/s\)
- c. \(\frac{\ell_2}{2} \) \(m/s\)
- d. \(\frac{\ell_2}{5} \) \(m/s\)

44. A man is moving away from a tower \(41.6 \) m high at a rate of \(2 \) \(m/s\). If the eye level of the man is \(1.6 \) m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of \(30 \) m from the foot of the tower, is
- a. \(\frac{3}{4} \) \(radian/s\)
- b. \(\frac{3}{2} \) \(radian/s\)
- c. \(\frac{1}{625} \) \(radian/s\)
- d. None of these

45. The co-ordinates of a point on the parabola \(y^2 = 8x \) whose distance from the circle \(x^2 + (y + 6)^2 = 1 \) is minimum is
- a. \((2, 4)\)
- b. \((2, -4)\)
- c. \((18, -12)\)
- d. \((8, 8)\)

46. At the point \(P(a, a^2) \) on the graph of \(y = x^{\alpha} \) \((n \in N)\) in the first quadrant, a normal is drawn. The normal intersects the \(y \)-axis at the point \((0, b)\). If \(\lim_{a \to 0} \frac{b}{a} = \frac{1}{2} \), then \(n \) equals
- a. \(1\)
- b. \(3\)
- c. \(4\)
- d. \(4\)

47. Suppose that \(f \) is differentiable for all \(x \) and that \(f'(x) \leq 2 \) for all \(x \). If \(f(1) = 2 \) and \(f(4) = 8 \), then \(f(2) \) has the value equal to
- a. \(3\)
- b. \(4\)
- c. \(6\)
- d. \(8\)

48. The radius of a right circular cylinder increases at the rate of 0.1 \(cm/min\), and the height decreases at the rate of 0.2 \(cm/min\). The rate of change of the volume of the cylinder, in \(cm^3/min\), when the radius is 2 cm and the height is 3 cm is
- a. \(-2\pi\)
- b. \(-\frac{8\pi}{5}\)
- c. \(-\frac{3\pi}{5}\)
- d. \(-\frac{2\pi}{5}\)
5.20 Calculus

49. A cube of ice melts without changing its shape at the uniform rate of 4 cm³/min. The rate of change of the surface area of the cube, in cm²/min, when the volume of the cube is 125 cm³, is
 a. -4 b. -16/5 c. -16/6 d. -8/15

50. The tangent to the curve \(y = e^{ax} \) at a point \((0, 1)\) meets the \(x\)-axis at \((a, 0)\) where \(a \in [-2, -1]\), then \(k \in\)
 a. \([-1/2, 0]\) b. \([-1, -1/2]\) c. \([0, 1]\) d. \([1/2, 1]\)

51. Let \(f'(x) = e^{x^2} \) and \(f(0) = 10 \). If \(A < f(1) < B \) can be concluded from the mean value theorem, then the largest value of \((A - B)\) equals
 a. \(e \) b. \(1 - e \) c. \(e - 1 \) d. \(1 + e \)

52. If \(f \) be a continuous function on \([0, 1]\), differentiable in \((0, 1)\) such that \(f(1) = 0\), then there exists some \(c \in (0, 1)\) such that
 a. \(cf'(c) - f(c) = 0 \) b. \(f'(c) + cf(c) = 0 \) c. \(f'(c) - cf(c) = 0 \) d. \(cf'(c) + f(c) = 0 \)

53. Given \(g(x) = \frac{x + 2}{x - 1} \) and the line \(3x + y - 10 = 0 \), then the line is
 a. tangent to \(g(x) \) b. normal to \(g(x) \) c. chord of \(g(x) \) d. none of these

54. Let \(f \) be a continuous, differentiable and bijective function. If the tangent to \(y = f(x) \) at \(x = a \) is also the normal to \(y = f(x) \) at \(x = b \), then there exists at least one \(c \in (a, b) \) such that
 a. \(f'(c) = 0 \) b. \(f'(c) > 0 \) c. \(f'(c) < 0 \) d. None of these

55. If \(f(x) \) and \(g(x) \) are differentiable functions for \(0 \leq x \leq 1 \) such that \(f(0) = 10, g(0) = 2, f(1) = 2, g(1) = 4 \), then in the interval \((0, 1)\)
 a. \(f'(x) = 0 \) for all \(x \)
 b. \(f'(x) + 4g'(x) = 0 \) for at least one \(x \)
 c. \(f'(x) = 2g'(x) \) for at most one \(x \)
 d. none of these

56. The co-ordinates of the point(s) on the graph of the function \(f(x) = \frac{x^3 - 5x^2}{2} + 7x - 4 \), where the tangent drawn cuts off intercepts from the co-ordinate axes which are equal in magnitude but opposite in sign, is
 a. \((2, 8/3)\) b. \((3, 7/2)\) c. \((1, 6/5)\) d. None of these

57. The abscissa of a point on the curve \(xy = (a + x)^2 \), the normal which cuts off equally numerical intercepts from the coordinate axes, is
 a. \(-\frac{a}{\sqrt{2}}\) b. \(\sqrt{2}a\) c. \(\frac{a}{\sqrt{2}}\) d. \(-\sqrt{2}a\)

58. The angle formed by the positive y-axis and the tangent to \(y = x^2 + 4x - 17 \) at \((5/2, -3/4)\) is
 a. \(\tan^{-1}(9)\) b. \(\frac{\pi}{2} - \tan^{-1}(9)\) c. \(\frac{\pi}{2} + \tan^{-1}(9)\) d. None of these

59. If the tangent at any point \(P(4m^2, 8m^3)\) of \(x^3 - y^2 = 0\) is also a normal to the curve \(x^3 - y^2 = 0\), then the value of \(m\) is
 a. \(\sqrt{\frac{3}{2}}\) b. \(-\sqrt{\frac{3}{2}}\) c. \(\frac{3}{\sqrt{2}}\) d. \(-\frac{3}{\sqrt{2}}\)

60. The angle between the tangents to the curves \(y = x^2 \) and \(x = y^2 \) at \((1, 1)\) is
 a. \(\cos^{-1}\frac{1}{5}\) b. \(\sin^{-1}\frac{3}{5}\) c. \(\tan^{-1}\frac{3}{4}\) d. \(\tan^{-1}\frac{1}{3}\)
11. The angle between the tangents at any point \(P \) and the line joining \(P \) to the origin, where \(P \) is a point on the curve
\[\ln(x^2 + y^2) = c \tan^{-1} \frac{y}{x}, \]
\(c \) is a constant, is

a. independent of \(x \)

b. independent of \(y \)

c. independent of \(x \) but dependent on \(y \)

d. independent of \(y \) but dependent on \(x \)

12. Given \(f(x) = 4 - \left(\frac{1}{2} - x \right)^{2/3} \), \(g(x) = \begin{cases} \tan \left(\frac{x}{x} \right), & x \neq 0 \\ \frac{x}{1}, & x = 0 \end{cases} \)

\(h(x) = \{x\}, \ k(x) = 5 \log_2(x+3) \)
then in \([0, 1]\) Lagrange’s mean value theorem is NOT applicable to the (where \(\{ \cdot \} \) and \(\{ \} \) represents greatest integer functions and fractional part functions, respectively)

\(f \) \hspace{1cm} g \hspace{1cm} c \hspace{1cm} k \hspace{1cm} d \hspace{1cm} h \)

13. Which of the following is/are correct?

a. Between any two roots of \(e^x \cos x = 1 \), there exists at least one root of \(\tan x = 1 \).

b. Between any two roots of \(e^x \sin x = 1 \), there exists at least one root of \(\tan x = -1 \).

c. Between any two roots of \(e^x \cos x = 1 \), there exists at least one root of \(\sin x = 1 \).

d. Between any two roots of \(e^x \sin x = 1 \), there exists at least one root of \(e^x \cos x = 1 \).

14. Which of the following pair(s) of curves is/are orthogonal?

a. \(y^2 = 4ax, \ y = e^{2at} \)

b. \(y^2 = 4ax, \ x^2 = 4ay \) at \((0, 0)\)

c. \(xy = a^2, \ x^2 - y^2 = b^2 \)

15. Consider a curve \(C : y = \cos^{-1}(2x - 1) \) and a straight line \(L : 2px - 4y + 2\pi - p = 0 \)

Statement 1: The set of values of \(p \) for which the line \(L \) intersects the curve at three distinct points is \([-\pi, -\pi - 4]\)

Statement 2: The line \(L \) is always passing through point of inflection of the curve \(C \).

8. Statement 1: If \(f(x) \) is differentiable in \([0, 1]\) such that \(f(0) = f(1) = 0 \), then for any \(\lambda \in R \), there exists \(c \) such that \(f'(c) = \lambda f(c), \ 0 < c < 1 \).

Statement 2: If \(g(x) \) is differentiable in \([0, 1]\), where \(g(0) = g(1) \), then there exists \(c \) such that \(g'(c) = 0, \ 0 < c < 1 \).

9. Statement 1: For the function \(f(x) = x^3 + 3x + 2, \ LMVT \) is applicable in \([1, 2]\) and the value of \(c \) is \(3/2 \) because \(LMVT \) is known to be applicable for any quadratic polynomial in \([a, b]\) then \(c \) of \(LMVT \) is \((a + b)/2\)

Statement 2: A polynomial of degree odd \((\geq 3)\) with real coefficients and \((a, b)\) is any point

10. Let \(y = f(x) \) be a polynomial of degree odd \((\geq 3)\) with real coefficients and \((a, b)\) is any point

Statement 1: There always exists a line passing through \((a, b)\) and touching the curve \(y = f(x) \) at some point

Statement 2: A polynomial of degree odd with real coefficients have at least one real root
1. If \(P_1 \) has co-ordinates \((1, 1)\), then the sum \(\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{x_r} \) is
 (where \(x_1, x_2, \ldots \), are abscissas of \(P_1, P_2, \ldots \), respectively)
 a. \(2/3 \)
 b. \(1/3 \)
 c. \(1/2 \)
 d. \(3/2 \)

2. If \(P_1 \) has co-ordinates \((1, 1)\), then the sum \(\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{y_r} \) is
 (where \(y_1, y_2, \ldots \), are ordinates of \(P_1, P_2, \ldots \), respectively)
 a. \(1/8 \)
 b. \(1/9 \)
 c. \(8/9 \)
 d. \(9/8 \)

3. The ratio of area of \(\Delta P_1P_2P_3 \) to that of \(\Delta P_2P_3P_4 \) is
 a. \(1/4 \)
 b. \(1/2 \)
 c. \(1/8 \)
 d. \(1/16 \)

For Problems 4–6

Consider the curve \(x = 1 - 3t^2, y = t - 3t^3 \). If a tangent at point \((1 - 3t^2, t - 3t^3)\) inclined at an angle \(\theta \) to the positive x-axis and another tangent at point \(P(-2, 2) \) cuts the curve again at \(Q \).

4. The value of \(\tan \theta + \sec \theta \) is equal to
 a. \(3t \)
 b. \(t \)
 c. \(t - t^2 \)
 d. \(t^2 - 2t \)

5. The point \(Q \) will be
 a. \((1, -2)\)
 b. \((-1/3, -2/3)\)
 c. \((-2, 1)\)
 d. None of these

6. The angle between the tangents at \(P \) and \(Q \) will be
 a. \(\pi \)
 b. \(\pi /6 \)
 c. \(\pi /2 \)
 d. None of these

For Problems 7–8

A spherical balloon is being inflated so that its volume increases uniformly at the rate of 40 cm\(^3\)/min.

7. At \(r = 8 \), its surface area increases at the rate
 a. \(8 \) cm\(^2\)/min
 b. \(10 \) cm\(^2\)/min
 c. \(20 \) cm\(^2\)/min
 d. None of these

8. When \(r = 8 \), then the increase in radius in the next 1/2 min is
 a. \(0.025 \) cm
 b. \(0.050 \) cm
 c. \(0.075 \) cm
 d. \(0.01 \) cm

Matrix-Match Type

Solutions on page 5.39

Each question contains statements given in two columns which have to be matched. Statements a, b, c, d in column I have to be matched with statements p, q, r, s in column II. If the correct match are \(a - p, a - s, b - r, c - p, c - q \) and \(d - s \), then the correctly bubbled 4 x 4 matrix should be as follows:

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>D</td>
<td>Q</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>b</td>
<td>D</td>
<td>Q</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>c</td>
<td>D</td>
<td>Q</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>d</td>
<td>D</td>
<td>Q</td>
<td>F</td>
<td>G</td>
</tr>
</tbody>
</table>
Application of Derivatives: Tangents and Normals, Rate Measure

1. There is a point \((p, q)\) on the graph of \(f(x) = x^2\) and a point \((r, s)\) on the graph of \(g(x) = \frac{q}{x}\), where \(p > 0\) and \(r > 0\). If the line through \((p, q)\) and \((r, s)\) is also tangent to both the curves at these points, respectively, then the value of \(p + r\) is

2. A curve is defined parametrically by the equations \(x = f(t)\) and \(y = g(t)\). A variable pair of perpendicular lines through the origin \('O'\) meet the curve at \(P\) and \(Q\). If the locus of the point of intersection of the tangents at \(P\) and \(Q\) is \(ay^2 = bx - 1\), then the value of \((a + b)\) is

3. If \(d\) is the minimum distance between the curves \(f(x) = e^x\) and \(g(x) = \log_x\), then the value of \(d^3\)

4. Let \(f(x)\) be a non-constant thrice differentiable function defined on \((-\infty, \infty)\) such that \(f(x) = f(6 - x)\) and \(f''(0) = 0 = f''(2) = f''(5)\). If \(a\) is the minimum number of roots of \(f''(x)^2 + f'(x)f'''(x) = 0\) in the interval \([0, 6]\), then the value of \(n/2\)

5. At the point \(P(a, a^n)\) on the graph of \(y = x^n (n \in \mathbb{N})\) in the first quadrant a normal is drawn. The normal intersects the \(y\)-axis at the point \((0, b)\). If \(\lim_{x \to 0} = \frac{1}{2}\), then \(n\) equals

6. A curve is given by the equations \(x = \sec \theta, y = \cot \theta\). If the tangent at \(P\) where \(\theta = \pi/4\) meets the curve again at \(Q\), then \([PQ]\) is, where \([\cdot]\) represents the greatest integer function.

7. Water is dropped at the rate of \(2m^3/s\) into a cone of semi-vertical angle \(45^\circ\). If the rate at which periphery of water surface changes when the height of the water in the cone is \(2\) m is \(d\), then the value of \(5d\)

8. If the slope of the line through the origin which is tangent to the curve \(y = x^2 + x + 16 = m\), then the value of \(m - 4\) is

9. Let \(y = f(x)\) be drawn with \(f(0) = 2\) and for each real number the tangent to \(y = f(x)\) at \((a, f(a))\), has \(x\)-intercept \((a - 2)\). If \(f(x)\) is of the form \(k e^{ax}\), then \(\left(\frac{k}{a}\right)^{\frac{1}{2}}\)

10. Suppose \(a, b, c\) are such that the curve \(y = ax^2 + bx + c\) is tangent to \(y = 3x - 3\) at \((1, 0)\) and is also tangent to \(y = x + 1\) at \((3, 4)\), then the value of \((2a - b - 4c)\) equals

11. Let \(C\) be a curve defined by \(y = e^{ax + bx^2}\). The curve \(C\) passes through the point \((1, 1)\) and the slope of the tangent at \(P\) is \(-2\). Then the value of \(2a - b\) is

12. If the curve \(C\) in the \(xy\) plane has the equation \(x^2 + y^2 = 1\), then the fourth power of the greatest distance of a point on \(C\) from the origin, is

Subjective

1. For all \(x \in [0, 1]\), let the second derivative \(f''(x)\) of a function \(f(x)\) exist and satisfy \(|f''(x)| < 1\). If \(f(0) = f(1)\), then show that \(|f''(x)| < 1\) for all \(x \in [0, 1]\).

2. If \(f(x)\) and \(g(x)\) are differentiable functions for \(0 \leq x \leq 1\) such that \(f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2\), then show that there exists \(c\) satisfying \(0 < c < 1\) and \(f''(c) = 2g'(c)\).

3. Find the shortest distance of the point \((0, c)\) from the parabola \(y = x^2\), where \(0 \leq c \leq 5\).

4. Find all the tangents to the curve \(y = \cos(x + y)\), where \(-2\pi \leq x \leq 2\pi\), that are parallel to the line \(x + 2y = 0\).

5. Find the equation of the normal to the curve \(y = (1 + x)^3 + \sin^{-1}(\sin^2x)\) at \(x = 0\).

6. The curve \(y = ax^3 + bx^2 + cx + d\) touches the \(x\)-axis at \((\pi, 2)\) and cuts the \(y\)-axis at a point \(Q\) where its gradient is 3. Find \(a, b, c\).

7. If the function \(f(0, x)\) \(\rightarrow R\) is differentiable, then show that for \(a, b, e, f(0) = 0, f''(0) = 8f''(a)f(b)\) and \(\int_0^f(t) dt = 2(a)f''(a^2) + b[f'(0)] \forall a, \beta < 2\).

8. Using the Rolle's theorem, prove that there is at least one root in \((45^{\cdot100}, 46)\) of the equation \(P(x) = 51x^{101} - 2323(x^{100} - 45x + 1035) = 0\).

9. If \(f(x_1) - f(x_2) < (x_1 - x_2)^2\), for all \(x_1, x_2 \in R\). Find the equation of tangent to the curve \(y = f(x)\) at the point \((1, 2)\).

10. For a twice differentiable function \(f(x), g(x)\) is defined as \(g(x) = f''(x)^2 + f'(x)^2f(x)\) on \([a, b]\). If \(a < b < c < d < e, f(a) = 0, f(b) = 2, f(c) = 1, f(d) = 2, f(e) = 0\), then find the minimum number of zero of \(g(x)\).

Fill in the blanks

1. Let \(C\) be the curve \(y^3 - 3xy + 2 = 0\). If \(H\) is the set of points on the curve \(C\) where the tangent is horizontal and \(V\) is the set of points on the curve \(C\) where the tangent is vertical, then \(H\) = ___ and \(V\) = ___

Multiple choice questions with one correct answer

1. If \(a + b + c = 0\), then the quadratic equation \(3ax^2 + 2bx + c = 0\) has
 a. at least one root in \([0, 1]\)
 b. one root in \([2, 3]\) and the other in \([-2, -1]\)
 c. imaginary roots
 d. none of these

2. The normal to the curve \(x = a (\cos \theta + \sin \theta)\), \(y = a (\sin \theta - \cos \theta)\) at any point \(\theta\) is such that
 a. it makes a constant angle with the \(x\)-axis
 b. it passes through the origin
 c. it is at a constant distance from the origin
 d. none of these

3. The slope of the tangent to the curve \(y = f(x)\) at \([x, f(x)]\) is \(2x + 1\). If the curve passes through the point \((1, 2)\), then the area bounded by the curve, the \(x\)-axis and the line \(x = 1\) is
 a. \(\frac{5}{6}\)
 b. \(\frac{6}{5}\)
 c. \(\frac{1}{6}\)
 d. \(\frac{3}{6}\)
5.24 Calculus

4. If the normal to the curve \(y = f(x) \) at the point \((3, 4)\) makes an angle \(\frac{3\pi}{4}\) with the positive \(x\)-axis, then \(f'(3)\) is equal to

\[\begin{align*}
\text{a. } & -1 \\
\text{b. } & \frac{3}{4} \\
\text{c. } & \frac{4}{5} \\
\text{d. } & 1
\end{align*} \]

(IIT-JEE, 2000)

5. The triangle formed by the tangent to the curve \(f(x) = x^2 + bx - b \) at the point \((1, 1)\) and the co-ordinate axes lies in the first quadrant. If its area is 2, then the value of \(b\) is

\[\begin{align*}
\text{a. } & -1 \\
\text{b. } & 3 \\
\text{c. } & -3 \\
\text{d. } & 1
\end{align*} \]

(IIT-JEE, 2001)

6. The point(s) on the curve \(y^3 + 3x^2 = 12y \), where the tangent is vertical, is (are)

\[\begin{align*}
\text{a. } & \left(\pm \frac{4}{\sqrt{3}}, -2 \right) \\
\text{b. } & \left(\pm \frac{11}{\sqrt{3}}, 1 \right) \\
\text{c. } & (0, 0) \\
\text{d. } & \left(\pm \frac{4}{\sqrt{3}}, 2 \right)
\end{align*} \]

(IIT-JEE, 2002)

7. In \([0, 1]\), Lagrange’s mean value theorem is NOT applicable to

\[\begin{align*}
\text{a. } & f(x) = \begin{cases} \\
\frac{1}{2} - x, & x < \frac{1}{2} \\
\frac{1}{2} - x^2, & x \geq \frac{1}{2}
\end{cases} \\
\text{b. } & f(x) = \begin{cases} \\
\sin x, & x \neq 0 \\
x, & x = 0
\end{cases} \\
\text{c. } & f(x) = |x| \\
\text{d. } & f(x) = |x|
\end{align*} \]

(IIT-JEE, 2003)

8. If \(f(x) = x^2 \log x \) and \(f(0) = 0 \), then the value of \(\alpha \) for which Rolle’s theorem can be applied in \([0, 1]\)

\[\begin{align*}
\text{a. } & -2 \\
\text{b. } & -1 \\
\text{c. } & 0 \\
\text{d. } & 1/2
\end{align*} \]

(IIT-JEE, 2004)

9. If \(P(x) \) is a polynomial of degree less than or equal to 2 and \(S \) is the set of all such polynomials so that \(P(0) = 0, P(1) = 1 \) and \(P'(x) > 0 \) \(\forall \) \(x \in [0, 1] \), then

\[\begin{align*}
\text{a. } & S = \phi \\
\text{b. } & S = ax + (1-a)x^2 \forall a \in (0, 2) \\
\text{c. } & S = ax + (1-a)x^2 \forall a \in (0, \infty) \\
\text{d. } & S = ax + (1-a)x^2 \forall a \in (0, 1)
\end{align*} \]

(IIT-JEE, 2005)

10. The tangent to the curve \(y = e^x \) drawn at the point \((c, e^c)\) intersects the line joining the points \((c - 1, e^{c-1})\) and \((c + 1, e^{c+1})\)

\[\begin{align*}
\text{a. } & \text{on the left of } x = c \\
\text{b. } & \text{on the right of } x = c \\
\text{c. } & \text{at no point} \\
\text{d. } & \text{at all point}
\end{align*} \]

(IIT-JEE, 2007)

Multiple choice question with one or more than one correct answer

1. If the line \(ax + by + c = 0 \) is a normal to the curve \(xy = 1 \), then

\[\begin{align*}
\text{a. } & a > 0, b > 0 \\
\text{b. } & a > 0, b < 0 \\
\text{c. } & a < 0, b > 0 \\
\text{d. } & a < 0, b < 0
\end{align*} \]

(IIT-JEE, 1986)

2. Which one of the following curves cut the parabola \(y^2 = 4ax \) at right angles?

\[\begin{align*}
\text{a. } & x^2 + y^2 = a^2 \\
\text{b. } & y = e^{ax} \\
\text{c. } & y = ax \\
\text{d. } & x^2 = 4ay
\end{align*} \]

(IIT-JEE, 1994)

Linked comprehension type

Read the passage given below and answer the questions that follows

(IIT-JEE, 2007)

If a continuous function \(f \), defined on the real line \(R \), assumes positive and negative values in \(R \), then the equation \(f(x) = 0 \) has a root in \(R \). For example, if it is known that a continuous function \(f \) on \(R \) is positive at some point and its minimum value is negative, then the equation \(f(x) = 0 \) has a root in \(R \).

Consider \(f(x) = kx^2 - x \) for all real \(x \), where \(k \) is a real constant.

1. The line \(y = x \) meets \(y = ke^x \) for \(k \leq 0 \) at

\[\begin{align*}
\text{a. } & \text{no point} \\
\text{b. } & \text{one point} \\
\text{c. } & \text{two points} \\
\text{d. } & \text{more than two points}
\end{align*} \]

2. The positive value of \(k \) for which \(ke^x - x = 0 \) has only one root

\[\begin{align*}
\text{a. } & \frac{1}{e} \\
\text{b. } & 1 \\
\text{c. } & e \\
\text{d. } & \log 2
\end{align*} \]

3. For \(k > 0 \), the set of the values of \(k \) for which \(ke^x - x = 0 \) has two distinct roots is

\[\begin{align*}
\text{a. } & \left(0, \frac{1}{e^2} \right) \\
\text{b. } & \left(\frac{1}{e^2}, 1 \right) \\
\text{c. } & \left(\frac{1}{e^2}, \infty \right) \\
\text{d. } & (0, 1)
\end{align*} \]

Subjective Type

1. We have \(x^{2/3} + y^{2/3} = a^{2/3} \).

Differentiating, we get \(\frac{dy}{dx} = -y^{1/3}x^{1/3} \).

or \(\frac{1}{\sin \theta} = \frac{y^{1/3}}{\cos \theta} = \sqrt{\frac{(x^{1/3})^2 + (y^{1/3})^2}{\sin^2 \theta + \cos^2 \theta}} \)

\[\therefore \begin{align*}
\sin \theta &= a^{2/3} = \cos \theta, \text{ using (1).} \\
\text{or } x &= a \sin \theta, y = a \cos \theta \\
\therefore \text{equation of the normal whose slope is } \tan \theta &= -\frac{y}{x} \\
\therefore y \cos \theta - a \cos^3 \theta &= x \sin \theta - a \sin^3 \theta \\
\Rightarrow y \cos \theta - a \cos^3 \theta &= x \sin \theta - a \sin^3 \theta \\
\Rightarrow y \cos \theta - x \sin \theta &= a (\cos^2 \theta - \sin^2 \theta) \\
&= a \cos 2 \theta
\end{align*} \]
2. Given \(y = \frac{a}{2} \ln \left(\frac{a + \sqrt{a^2 - x^2}}{a - \sqrt{a^2 - x^2}} \right) - \sqrt{a^2 - x^2} \)

Let \(x = a \sin \phi \)

\[\therefore y = \frac{a}{2} \ln \left(\frac{1 + \cos \phi}{1 - \cos \phi} \right) - a \cos \phi = -a \ln \tan(\phi/2) - a \cos \phi. \]

\[\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\phi}}{\frac{dx}{d\phi}} = \frac{- \cos \phi + a \sin \phi}{a \cos \phi} = -\cot \phi \]

Equation of the tangent at \(P(x_1, y_1) \) is

\(y - y_1 = - \frac{na^n}{x_1^{n+1}} (x - x_1) \)

This meets the co-ordinate axes at \(A \left(\frac{x_1^{n+1}y_1}{na^n} + x_1, 0 \right) \) and

\(B \left(0, y_1 + \frac{na^n}{x_1^n} \right) \)

\[\therefore \text{area of } \triangle AOB = \frac{1}{2} \left(OA \times OB \right) \]

\[= \frac{1}{2} \left(\frac{x_1^{n+1}y_1}{na^n} + x_1 \right) \left(y_1 + \frac{na^n}{x_1^n} \right) \]

\[= \frac{1}{2} \left(\frac{x_1 + y_1}{n} + x_1 \right) \left(\frac{a^n}{x_1^n} + \frac{na^n}{x_1^n} \right) \quad \text{(Using (1))} \]

\[= \frac{1}{2} (n+1)^2 \frac{a^n x_1^{n-1}}{n} \]

For the area to be a constant, we must have \(1 - n = 0 \), i.e., \(n = 1 \).

3. The tangent cuts the curve again at \((x_2, y_2) \)

\[\therefore \text{Slope of the tangent} = \frac{y_2 - y_1}{x_2 - x_1} \]

\[\implies -\frac{x_1^2}{y_1} = \frac{y_2 - y_1}{x_2 - x_1} \]

Also, \(x_1^3 + y_1^3 = a^3 \) and \(x_2^3 + y_2^3 = a^3 \)

\[\therefore x_1^2 + y_1^2 = x_2^2 + y_2^2 \]

\[\therefore -\frac{x_1^2}{y_1} = 1 \]

\[\therefore y_2 - y_1 = x_2^2 + x_1 x_2 + y_1 y_2 \]

Also, \(x_1^2 + y_1^2 + y_2^2 = a^3 \)

\[\therefore x_1^2 + y_1^2 = a^3 \]

\[\therefore x_2^2 y_1 + y_2^2 y_1 = y_2^2 y_1 + y_1^2 x_2 + y_2^2 x_1 \]

\[\therefore x_2^2 y_2 - y_2^2 x_1 = x_1 y_2 (x_2 - x_1) \]

\[\therefore y_2 x_1 + y_1 x_2 = -x_1 y_1 \]

\[\therefore x_1^2 + y_1^2 = 1 \]

4. Let \(P(x_1, y_1) \) be any point on the curve \(x^a y = a^n \).

Then,

\[x_1^a y_1 = a^n \quad \text{(1)} \]

\[\therefore \frac{dy}{dx} = -\frac{y}{x} \quad \text{differentiate w.r.t. } x \]

\[\therefore \left(\frac{dy}{dx} \right)_{(x_1,y_1)} = -\frac{n y_1}{x_1} \]

\[\therefore \text{The equation of the tangent at } P(x_1, y_1) \text{ is} \]

\[y - y_1 = -\frac{na^n}{x_1^{n+1}} (x - x_1) \]

6. We know that

\[1 \leq |\sin x| + |\cos x| \leq \sqrt{2} \]

\[\therefore y = [\sin x] + [\cos x] = 1 \]
Let P and Q be the points of intersection of given curves. Clearly the given curves meet at points where $y = 1$, so we get $x^2 + 1 = 5 \Rightarrow x = \pm 2$.

Now, $P(2, 1)$ and $Q(-2, 1)$

Differentiating $x^2 + y^2 = 5$ w.r.t. x, we get $2x + 2y \frac{dy}{dx} = 0$

$\Rightarrow \frac{dy}{dx} = -\frac{x}{y}$

From (2) and (2), we get:

$\text{Slope of the line joining } O(0, 0) \text{ and } P(h, k) \text{ is } \frac{k}{h}$

Slope of the line joining $O(0, 0)$ on the curve $y = \sin x$

Since P lies on the curve $\Rightarrow k = \sin h$

Also $\frac{dy}{dx} = \cos x \Rightarrow \left(\frac{dy}{dx}\right)(h, k) = \cos h$ (2)

Given that $\cos h = \frac{k}{h}$

Squaring and adding (1) and (3), $h^2 + \frac{k^2}{h^2} = 1$

$\Rightarrow h^2 + 1 = k^2 \Rightarrow k^2 = \frac{h^2}{1 + \frac{h^2}{2}} = \frac{x^2}{1 + \frac{x^2}{3}}$

Thus, we can think about two points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ lying on the curves $x^2 + 20y$ and $(x-15)^2 + y^2 = 4$, respectively. Let D be the distance between P_1 and P_2.

Now, as per the requirements, we have to locate the points on these curves (in the first quadrant) such that the distance between them is minimum.

Since the shortest distance between two curves always occurs along the common normal, it implies that we have to locate a point $P(x_1, y_1)$ on the parabola $x^2 = 20y$ such the normal drawn to the parabola at this point passes through $(15, 0)$.

Now, the equation of the normal to the parabola at (x_1, y_1) is $\left(y - \frac{x_1^2}{20}\right) = -\frac{x}{x_1}(x - x_1)$. It should pass through $(15, 0)$.

$\Rightarrow x^2 + 200x_1 - 3000 = 0 \Rightarrow x_1 = 10 \Rightarrow y_1 = 5$

$\Rightarrow D = \sqrt{(10-15)^2 + y_1^2} = (5\sqrt{2} - 2)$.

The minimum value of the given expression is $(5\sqrt{2} - 2)^2$.

9. Let h be the height and r the radius of the cone, then

$\text{Volume } V = \frac{1}{3} \pi r^2 h$

$= \frac{1}{3} \pi (6h)^2 h = 12\pi h^3$ (From (1))

$\Rightarrow \frac{dV}{dt} = 36\pi h^2 \frac{dh}{dt}$

$\Rightarrow 12 = 36\pi h^2 \frac{dh}{dt}$

$\Rightarrow \frac{dh}{dt} = \frac{1}{3\pi h^2}$

When $h = 4 \text{ cm}$, then $\frac{dh}{dt} = \frac{1}{3\pi(4)^2} = \frac{1}{48\pi} \text{ cm/s}$.

Hence, the rate, at which the height of the sand cone increases when the height is 4 cm, is $\frac{1}{48\pi} \text{ cm/s}$.

10. Let $f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_{n-1}x + a_n$.

Integrating both sides, we get

$\Rightarrow f(x) = \frac{a_0x^{n+1}}{n+1} + \frac{a_1x^n}{n} + \frac{a_2x^{n-1}}{n-1} + \cdots + \frac{a_{n-1}x^2}{2} + a_nx + d$

$\Rightarrow f(0) = d$

and $f(1) = \frac{a_0}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-1} + \cdots + \frac{a_{n-1}}{2} + a_n + d = 0 + d = d$ (given)

$\Rightarrow f(0) = f(1)$

Now, since $f(x)$ is a polynomial, it is continuous and differentiable for all x. Consequently, $f(x)$ is continuous in the closed interval $[0, 1]$ and differentiable in the open interval $(0, 1)$.

Thus, all the three conditions of Rolle's theorem are satisfied. Hence, there is at least one value of x in the open interval $(0, 1)$ where $f'(x) = 0$, i.e., $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_{n-1}x + a_n = 0$.

11. Let $f(x) = \int (1 + \cos^2 x)(ax^2 + bx + c)dx$
\[f'(x) = (1 + \cos^8 x) (ax^2 + bx + c) \]

(1)

From the given conditions:

\[f(1) - f(0) = 0 \Rightarrow f(0) = f(1) \]

(2)

\[f(2) - f(0) = 0 \Rightarrow f(0) = f(2) \]

(3)

From (2) and (3), we get \(f(0) = f(1) = f(2) \)

By Rolle’s theorem for \(f(x) \) in \([0, 1] \), \(f'(\alpha) = 0 \), at least one \(\alpha \) such that \(0 < \alpha < 1 \).

By Rolle’s theorem for \(f(x) \) in \([1, 2] \), \(f'(\beta) = 0 \), at least one \(\beta \) such that \(1 < \beta < 2 \).

Now from (1), \(f'(\alpha) = 0 \Rightarrow (1 + \cos^8 \alpha) (a\alpha^2 + b\alpha + c) = 0 \)

\(\therefore 1 + \cos^8 \alpha \neq 0 \)

\[\Rightarrow a\alpha^2 + b\alpha + c = 0, \]

i.e., \(\alpha \) is a root of the equation \(ax^2 + bx + c = 0 \).

Similarly, \(\beta \) is a root of the equation \(ax^2 + bx + c = 0 \).

But equation \(ax^2 + bx + c = 0 \) being a quadratic equation cannot have more than two roots.

Hence, equation \(ax^2 + bx + c = 0 \) has one root \(\alpha \) between 0 and 1, and the other root \(\beta \) between 1 and 2.

12. Let \(g(x) = (f'(x))^n \). Given \(f(x) \) is continuous and differential, then \(g(x) \) is also continuous and differentiable.

Then from Lagrange’s mean value theorem, there exists at least one \(c \in (0, 1) \) for which

\[g'(c) = n f'(c) f''(c) \]

[1 - 0]

\[\Rightarrow n f'(c) f''(c) = \frac{2^n - 1}{2 - 1} = (1 + 2 + 2^2 + \ldots + 2^{n-1}) \]

\[\Rightarrow f'(c) (f''(c))^{n-1} > \frac{1 + 2 + 2^2 + \ldots + 2^{n-1}}{n} \]

\[\Rightarrow f'(c) (f''(c))^{n-1} > \sqrt{n-1}. \]

13. By Lagrange’s mean value theorem in \([a, b] \) for \(f \),

\[\frac{f(b) - f(a)}{b - a} = f'(c), \text{ where } a < u < b \]

and applying Lagrange’s mean value theorem in \([b, c] \),

\[\frac{f(c) - f(b)}{c - b} = f'(\nu), \text{ where } b < \nu < c \]

Since \(f' (x) \) is strictly increasing

\[\Rightarrow f'(u) < f'(\nu) \]

\[\Rightarrow \frac{f(b) - f(a)}{b - a} < f'(c) - f'(b) \]

\[\Rightarrow f(b) (c - b + b - a) - f(a) (c - b) - f(c) (b - a) < 0 \]

\[\Rightarrow (b - c) f(a) + (a - c) f(b) + (a - b) f(c) < 0 \]

14. Substituting \(y = a \sin \theta \)

\[\Rightarrow \frac{x + a \cos \theta}{a} = \log_e \frac{a + a \cos \theta}{a \sin \theta} = \log_e \frac{1 + \cos \theta}{\sin \theta} \]

\[\Rightarrow \frac{x}{a} = \log_e (\csc \theta + \cot \theta) \]

\[\Rightarrow \frac{x}{a} = \log_e (\csc \theta + \cot \theta) - \cos \theta \]

15. \(ax^2 + 2hxy + by^2 = 1 \)

\[\Rightarrow 2ax + 2h \left[\frac{dy}{dx} + y \right] + 2by \frac{dy}{dx} = 0 \]

\[\Rightarrow \frac{dy}{dx} = -\frac{ax + hy}{hx + by} \]

Now line \(y = mx \) and curve intersect at right angle.
5.28 Calculus

\[m \left(\frac{ax + hy}{hx + by} \right) = 1 \]

Put \(y = mx \)

We have \(m \left[\frac{ax + h \cdot mx}{hx + b \cdot mx} \right] = 1 \)

\[\Rightarrow m(a + hm) = h + hm \]

\[\Rightarrow m^2h + (a - b)m - h = 0 \]

16. We have to prove that

\[\left(\frac{y}{(dy/dx)} \right)^2 = k \cdot y \cdot \frac{dy}{dx} \]

or \(y = k \left(\frac{dy}{dx} \right)^3 \)

Differentiating \(by^2 = (x + a)^3 \) w.r.t. \(x \), we have

\[2by \frac{dy}{dx} = 3(x + a)^2 \]

\[\Rightarrow \frac{dy}{dx} = \frac{3(x + a)^2}{2by} \]

\[\Rightarrow \frac{y}{(dy/dx)^2} = \frac{y}{27(8b^3 y^3)} = \frac{8b^3 y^4}{27b^2 y^6} = \frac{8b}{27} \]

Hence proved.

17.

\[\text{Fig. 5.26} \]

\[l^2 = h^2 + x^2 \]

\[2l \frac{dl}{dt} = 0 + 2x \frac{dx}{dt} \]

\[\Rightarrow \frac{dl}{dt} = \frac{x}{l} \cdot \frac{dx}{dt} \]

where \(x = \frac{1}{2} \text{ km}, h = \frac{2}{3} \text{ km} \)

then \(l = \frac{1}{4} + \frac{4}{9} = \frac{5}{6} \text{ km} \)

\[\therefore \frac{dl}{dt} = \frac{5}{2} \text{ km/h} \]

18. Consider the function \(f(x) = e^x - 1 \) in \([0, x] \) \(\forall \), where \(x > 0 \). Therefore, \(f \) is continuous and differentiable. Hence using LMVT \(\exists \) some \(c \in (0, x) \)

\[f'(c) = \frac{(e^x - 1)}{x} = \frac{e^x - 1}{x} \left[f'(c) = \frac{f(x) - f(0)}{x - 0} \right] \]

but \(f'(c) = e^c \); hence, \(\frac{e^x - 1}{x} = e^c > 1, \text{ for } x > 0 \)

\[\therefore e^x > x \]

\[\therefore e^x > x + 1 \text{ for } x > 0. \]

Again consider the function \(f(x) = e^x - 1 \) in \([x, 0] \) where \(x < 0 \)

Using LMVT \(\exists \) some \(c \in (x, 0) \) such that

\[f'(c) = \frac{f(0) - f(x)}{0 - x} = \frac{1 - e^x}{-x} = \frac{e^x - 1}{x} \]

But \(f'(c) = e^c \). Hence \(\frac{e^x - 1}{x} = e^c < 1 \) for \(c < 0 \)

Hence \(\frac{x}{(e^x - 1)} < 1 \) for \(x < 0 \)

\[\Rightarrow (e^x - 1) > x \quad \text{(as } x \text{ is } \text{ve}) \]

From (1) and (2)

\[e^x > x + 1 \text{ for } x \neq 0 \]

\[\therefore \text{ for } x = 0 \text{ equality holds} \]

\[\therefore e^x \geq x + 1 \text{ for } x \in \mathbb{R} \]

Objective Type

1b. Given curve is \(x^{3/2} + y^{3/2} = 2a^{3/2} \)

\[\therefore \frac{3}{2} \sqrt{x} + \frac{3}{2} \sqrt{y} \frac{dy}{dx} = 0 \text{ (Differentiate w.r.t. } x) \]

or \[\frac{dy}{dx} = -\frac{\sqrt{x}}{\sqrt{y}} \]

Since the tangent is equally inclined to the axes

\[\therefore \frac{dy}{dx} = 1 \]

\[\therefore \frac{\sqrt{x}}{\sqrt{y}} = \pm 1 \Rightarrow \frac{\sqrt{x}}{\sqrt{y}} = -1 \quad [\therefore \sqrt{x} > 0, \sqrt{y} > 0] \]

\[\Rightarrow \sqrt{x} = \sqrt{y} \]

Putting \(\sqrt{y} = \sqrt{x} \) in (1), we get

\[2x^{3/2} = 2a^{3/2} \Rightarrow x^3 = a^3 \]

\[\therefore x = a \text{ and so } y = a. \]

2a. \[\frac{dx}{dt} = a + \frac{a}{2} \cos 2t = a \left[1 + \cos 2t \right] = 2a \cos^2 t \]

and \(\frac{dy}{dt} = 2a (1 + \sin t) \cos t \)

\[\Rightarrow \frac{dy}{dx} = \frac{2a (1 + \sin t) \cos t}{2a \cos^2 t} = \frac{(1 + \sin t)}{\cos t} \]

Then, the slope of the tangent

\[\tan \theta = \frac{(\cos (t/2) + \sin (t/2))^2}{\cos^2 (t/2) - \sin^2 (t/2)} \]

3. d. Differentiating w.r.t. x, we get \(e^x \frac{dy}{dx} = 2x \)

\[
\Rightarrow \frac{dy}{dx} = \frac{-2x}{1+x^2} \quad (\because \ e^x = 1 + x^2)
\]

\[
\Rightarrow m = \frac{2x}{1+x^2} \quad \text{or} \quad |m| = \frac{2 |x|}{1+|x|^2}
\]

But \(1 + |x|^2 - 2|x| = (1 - |x|)^2 \geq 0 \)

\(\Rightarrow 1 + |x|^2 \geq 2|x| \),

\(\therefore |m| \leq 1 \)

4. c. \(\frac{dy}{dx} = 3x^2 - 2ax + 1 \)

Given that \(\frac{dy}{dx} \geq 0 \)

\(\Rightarrow 3x^2 - 2ax + 1 \geq 0 \) for all x.

\(\Rightarrow D \leq 0 \) or \(4a^2 - 12 \leq 0 \)

\(\Rightarrow -\sqrt{3} \leq a \leq \sqrt{3} \)

5. a. Here \(y > 0 \). Putting \(y = x \) in \(y = \sqrt{4-x^2} \), we get

\(x = \sqrt{2}, -\sqrt{2} \).

So, the point is \((\sqrt{2}, \sqrt{2}) \).

Differentiating \(y^2 + x^2 = 4 \) w.r.t. x,

\(2y \frac{dy}{dx} + 2x = 0 \) or \(\frac{dy}{dx} = -\frac{x}{y} \)

\(\Rightarrow \) at \((\sqrt{2}, \sqrt{2}) \), \(\frac{dy}{dx} = -1 \)

6. b. Differentiating w.r.t. x, we get \(1 + \frac{dy}{dx} = e^y \left(y + \frac{dy}{dx} \right) \) or

\(\frac{dy}{dx} = \frac{ye^y - 1}{1 - xe^y} \)

\(\frac{dy}{dx} = \infty \Rightarrow 1 - xe^y = 0 \)

This holds for \(x = 1, y = 0 \).

7. c. The equation of the line is \(y - 3 = \frac{3+2}{0-5}(x-0) \), i.e.,

\(x + y - 3 = 0 \)

\(y = \frac{c}{x+1} \) \(\Rightarrow \frac{dy}{dx} = \frac{-c}{(x+1)^2} \)

Let the line touches the curve at \((\alpha, \beta) \).

\(\Rightarrow \alpha + \beta - 3 = 0 \) \(\Rightarrow (\frac{dy}{dx})_{\alpha, \beta} = -1 \) and \(\beta = \frac{c}{\alpha+1} \)

8. b. Fig. 5.27

Let \(y = mx + c \) be a tangent to \(f(x) \)

\(y = x^2 + 8 \) for \(x \geq 0 \)

\(mx + c = x^2 + 8 \)

\(x^2 - mx + 8 - c = 0 \) (for the line to be tangent \(D = 0 \))

\(\therefore m^2 = 4(8 - c) \) (1)

Again \(y = -x^2 \) for \(x < 0 \)

\(mx + c = -x^2 \)

\(x^2 + mx + c = 0 \)

\(D = 0 \Rightarrow m^2 = 4c \)

From (1) and (2), we get

\(c = 4, m = 4 \).

\(\therefore y = 4x + 4 \)

Put \(y = 0 \Rightarrow x = -1 \).

9. a. Putting \(x = 0 \) in the given curve, we obtain \(y = 1 \).

So, the given point is \((0, 1) \)

Now, \(y = e^{2x} + x^2 \) \(\Rightarrow \frac{dy}{dx} = 2e^{2x} + 2x \) \(\Rightarrow \left(\frac{dy}{dx} \right)_{(0, 1)} = 2 \)

The equation of the tangent at \((0, 1) \) is

\(y - 1 = 2(x - 0) \Rightarrow 2x - y + 1 = 0 \) (1)

Required distance = length of the \(\perp \) from \((0, 0) \) on (1)

\(= \frac{1}{\sqrt{5}} \).

10. a. Let the required point be \((x_1, y_1) \)

Now, \(3y = 6x - 5x^3 \)

\(\Rightarrow \frac{3dy}{dx} = 6 - 15x^2 \)

\(\Rightarrow \frac{dy}{dx} = 2 - 5x^2 \)

\(\Rightarrow \left(\frac{dy}{dx} \right)_{(x_1, y_1)} = 2 - 5x_1^2 \)

The equation of the normal at \((x_1, y_1) \) is

\(y - y_1 = \frac{-1}{2 - 5x_1^2} (x - x_1) \)

If it passes through the origin, then
5.30 Calculus

\[0 - y_1 = \frac{-1}{2 - 5x_1^2} (0 - x_1) \]

\[\Rightarrow y_1 = \frac{-x_1}{2 - 5x_1^2} \quad \text{(1)} \]

Since \((x_1, y_1)\) lies on the given curve.
Therefore, \(3y_1 = 6x_1 - 5x_1^3 \quad \text{(2)}\)
Solving equations (1) and (2), we obtain \(x_1 = 1\) and \(y_1 = 1/3\).
Hence, the required point is \((1, 1/3)\).

11. a. \(2x^2 + y^2 = 12 \Rightarrow \frac{dy}{dx} = -\frac{2x}{y} \).
Slope of normal at point \(A(2, 2)\) is \(\frac{1}{2} \).
Also point \(B \left(\frac{-22}{9}, \frac{-2}{9}\right)\) lies on the curve and slope of \(AB\) is \(\frac{2}{2} \).
Hence the normal meets the curve again at point \(\left(\frac{-22}{9}, \frac{-2}{9}\right)\).

12. a. \(y = \frac{2}{3} x^3 + \frac{1}{2} x^2 \)
\(\Rightarrow \frac{dy}{dx} = 2x^2 + \frac{1}{2} 2x = 2x^2 + x \)
Since the tangent makes equal angles with the axes.
\(\Rightarrow \frac{dy}{dx} = \pm 1 \)
\(\Rightarrow 2x^2 + x = \pm 1 \)
\(\Rightarrow 2x^2 + x - 1 = 0 \quad (2x^2 + x + 1 = 0 \text{ has no real roots}) \)
\(\Rightarrow (2x - 1)(x + 1) = 0 \)
\(\Rightarrow x = \frac{1}{2} \) or \(x = -1 \).

13. d. \(y = b e^{-xa}\) meets the \(y\)-axis at \((0, b)\)
Again \(\frac{dy}{dx} = b e^{-xa} \left(-\frac{1}{a}\right) \)
At \((0, b)\), \(\frac{dy}{dx} = be^0 \left(-\frac{1}{a}\right) = -\frac{b}{a} \)
\(\therefore\) required tangent is \(y - b = -\frac{b}{a} (x - 0)\) or \(\frac{x}{a} + \frac{y}{b} = 1 \).

14. b. \(x^2 - y^2 = 8 \Rightarrow \frac{dy}{dx} = \frac{x}{y} \Rightarrow -\frac{1}{dy/dx} = \frac{y}{x} \)
At the point \(\left(\frac{-5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)\), \(-\frac{1}{dy/dx} = -\frac{3i\sqrt{2}}{5\sqrt{2}} = -\frac{3}{5} \)
Also \(9x^2 + 25y^2 = 225 \)
\(\Rightarrow 18x + 50y \frac{dy}{dx} = 0 \)
\(\Rightarrow \frac{dy}{dx} = \frac{-9x}{25y} \Rightarrow \frac{dx}{dy} = \frac{25y}{9x} \)
At the point \(\left(\frac{-5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)\),

\[\frac{dx}{dy} = \frac{25 \times 3 \sqrt{2}}{9 \times 5 \sqrt{2}} = -\frac{15}{9} = -\frac{5}{3} \]
Since the product of the slopes = -1. Therefore, the normals cut orthogonally, i.e., the required angle is equal to \(\frac{\pi}{2}\).

15. b. We have \(f''(x) = 6(x - 1)\)
Integrating, we get \(f'(x) = 3(x - 1)^2 + c \quad \text{(1)}\)
At \((2, 1), y = 3x - 5 \) is tangent to \(y = f(x) \)
\(\therefore\) \(f'(2) = 3 \)
From equation (1), \(3 = 3(2 - 1)^2 + c \Rightarrow 3 = 3 + c \Rightarrow c = 0 \)
\(\therefore\) \(f'(x) = 3(x - 1)^2 \)
Integrating, we get \(f(x) = (x - 1)^3 + c' \)
Since the curve passes through \((2, 1)\)
\(\therefore\) \(1 = (2 - 1)^3 + c' \Rightarrow c' = 0 \)
\(\therefore\) \(f(x) = (x - 1)^3 \)
\(\therefore\) \(f(0) = -1 \)

16. a. \(y^2 = a(x - \beta) \Rightarrow \frac{dy}{dx} = \frac{3ax^2}{2y} \)
\(\Rightarrow\) Slope of the normal at \((2, 3)\) is
\(\left(-\frac{dx}{dy} \right)_{(2,3)} = -\frac{2 \times 3}{3 \alpha(2)^2} = -\frac{1}{2\alpha} = -\frac{1}{4} \)
\(\Rightarrow\) \(\alpha = \pm 2 \)
Also, \((2, 3)\) lies on the curve
\(\Rightarrow 9 = 8\alpha - \beta \Rightarrow \beta = 16 - 9 = 7 \Rightarrow \alpha + \beta = 9 \).

17. d. \(x = 2 \ln \cot t + 1, y = \tan t + \cot t \)
Slope of the tangent
\(\left(\frac{dy}{dx} \right)_{t = \pm \frac{\pi}{4}} = \left(\frac{\sec^2 t - \cos^2 t}{-\frac{2}{\cot t} \cdot \cos^2 t} \right)_{t = \pm \frac{\pi}{4}} = 0 \)

18. b. \(y = e^x + e^{-x} \Rightarrow \frac{dy}{dx} = e^x - e^{-x} = \tan \theta\), where \(\theta\) is the angle of the tangent with the \(x\)-axis
For \(\theta = 60^\circ\), we have \(\tan 60^\circ = e^x - e^{-x} \)
\(\Rightarrow e^{2x} - \sqrt{3} e^x - 1 = 0 \)
\(\Rightarrow e^x = \sqrt{3 \pm \sqrt{7}} \Rightarrow x = \log_e \left(\frac{\sqrt{3 + \sqrt{7}}}{2} \right) \)

19. c. \(x^2 y = e^x \)
Differentiating w.r.t. \(x\), we have
\(x^2 \frac{dy}{dx} + 2xy = 0 \Rightarrow \frac{dy}{dx} = -\frac{2y}{x} \)
Equation of the tangent at \((h, k)\) \(y - k = -\frac{2k}{h} (x - h) \)
\(y = 0\) gives \(x = \frac{3h}{2} = a\), and \(x = 0\) gives \(y = 3k = b\)
Now, \(x^2b = \frac{9h^2}{4} \) and \(\frac{27}{4} = \frac{h^2k}{4} = \frac{27}{4} \).

20. a.

\[
\frac{dy}{dx} = 3x^2 = 3t^2 \text{ at } A.
\]

\[3t = \frac{T^3 - t^3}{T - t} = T^2 + T + t^2\]

\[\Rightarrow T^2 + T - 2t^2 = 0\]

\[\Rightarrow (T - t)(T + 2t) = 0 \Rightarrow T = t \text{ or } T = -2t\]

(T = t is not possible)

Now, \(m_A = \frac{3t^3}{2t^2} = \frac{3T}{2} \) and \(m_B = \frac{3Tt}{2} \)
\[\Rightarrow m_B - m_A = \frac{T^2}{t^2} = \frac{4t^2}{t^2} \quad \text{(using } T = -2t)\]

21. d.

Fig. 5.29

Eliminating \(t \) gives \(y^2(x - 1) = 1 \)

Equation of the tangent at \(P(2, 1) \) is \(x + 2y = 4 \)

Solving with curve \(x = 5 \) and \(y = -\frac{1}{2} \)
\[\Rightarrow Q(5, -\frac{1}{2}) \Rightarrow PO = \frac{3\sqrt{5}}{2}\]

22. c.

\[\frac{a}{x^2} + \frac{b}{y^2} = 1 \Rightarrow ay^2 + bx^2 = x^2y^2\]

\[\Rightarrow \frac{2a}{x^2} - \frac{2b}{y^2} \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{-ay^3}{bx^3}\]

Equation of the tangent at \((h, k) \) is \(y - k = -\frac{ak^3}{bh^3}(x - h)\)

for x-intercept, put \(y = 0 \)
\[\Rightarrow x = \frac{bh^3}{ak^3} + h \Rightarrow x = h \left[\frac{bh^3 + ak^3}{ak^3} \right] = h \left[\frac{k^2}{ak^2} \right] = \frac{x^3}{a}\]

\(\Rightarrow \) x-intercept is proportional to the cube of abscissa.

23. a.

Fig. 5.30

Application of Derivatives: Tangents and Normals, Rate Measure 5.31

Given curve is \(2x^2y^2 - x^4 = c \).

(1)

Sub-normal at \(P(x, y) = y \frac{dy}{dx} \)

From (1), we get \(2 \left(x^2y \frac{dy}{dx} + 2xy^2 \right) - 4x^3 = 0 \)
\[\Rightarrow \frac{dy}{dx} = \frac{x(x^2 - y^2)}{x^2y}\]

(3)

Now, \(x(x - yy') = x^2 - xy' \frac{dy}{dx} = y^2 \)
\[\Rightarrow \text{Mean proportion} = \sqrt{x(x - yy')} = y\]

24. b. Length of sub-normal = length of sub-tangent \(\Rightarrow \frac{dy}{dx} = \pm 1\)

If \(\frac{dy}{dx} = 1 \), equation of the tangent \(y - 4 = x - 3 \)
\[\Rightarrow y = x + 1, \text{ area of } \Delta OAB = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}\]

If \(\frac{dy}{dx} = -1 \), equation of the tangent is \(y - 4 = -x + 3 \)
\[\Rightarrow y = x, \text{ area } \frac{1}{2} \times 7 \times 7 = 49\]

25. a. \(y = x + \sin x \Rightarrow \frac{dy}{dx} = 1 + \cos x = 0 \), then \(\cos x = -1 \)
\[\Rightarrow x = \pm \pi, \pm 3\pi, \ldots \]
Also \(y = \pm \pi, \pm 3\pi, \ldots \)

But for the given constraint on \(x \) and \(y \), no such \(y \) exists.

Hence, no such tangent exists.

26. c. Solving \(y = |x^2 - 1| \) and \(y = \sqrt{7-x^2} \)

we have \(|x^2 - 1| = \sqrt{7-x^2} \)
\[\Rightarrow x^4 - 2x^2 + 1 = 7 - x^2 \]
\[\Rightarrow x^4 - x^2 - 6 = 0 \]
\[\Rightarrow (x^2 - 3)(x^2 + 2) = 0 \]
\[\Rightarrow x = \pm \sqrt{3}\]

Points of intersection of the curves \(y = |x^2 - 1| \) and \(y = \sqrt{7-x^2} \) are \((\pm \sqrt{3}, 2)\).

Since both the curves are symmetrical about the y-axis, points of intersection are also symmetrical.

Now, \(y = x^2 - 1 \Rightarrow \frac{dy}{dx} = 2x \)
\[\Rightarrow m_1 = \frac{dy}{dx}_{(\sqrt{3}, 2)} = 2\sqrt{3}\]

and \(y = \sqrt{7-x^2} \Rightarrow \frac{dy}{dx} = -\frac{x}{y} \)
\[\Rightarrow m_2 = \frac{dy}{dx}_{(\sqrt{3}, 2)} = -\frac{\sqrt{3}}{2} \quad \Rightarrow \tan \theta = \left| \frac{\sqrt{3}}{4} \right| \]
5.32 Calculus

27. d. Differentiating \(y^3 - x^2 y + 5y - 2x = 0 \) w.r.t. \(x \), we get
\[
3y^2 y' - 2xy - x^2 y' + 5y' - 2 = 0
\]
\[
\Rightarrow \quad y' = \frac{2xy + 2}{3y^2 - x^2 + 5}
\]
\[
\Rightarrow y'_{(2,0)} = \frac{2}{5}
\]
Differentiating \(x^4 - x^3 y^2 + 5x + 2y = 0 \) w.r.t. \(x \),
we have \(4x^3 - 3x^2 y^2 - 2x^3 y' + 5 + 2y' = 0 \)
\[
\Rightarrow \quad y' = \frac{2x^2 y - 3x^3 y^2 - 5}{5 - 2x^2 y}
\]
\[
\Rightarrow y'_{(2,0)} = -\frac{5}{2}.
\]
Thus, both the curves intersect at a right angle.

28. d. Solving the curves, we get point of intersection \((a^2, a) \)

For \(x = y^2 \), \(\frac{dy}{dx} = \frac{1}{2y} \)

At \((a^2, a) \), \(\frac{dy}{dx} = \frac{1}{2a} \)

For \(xy = a^3 \), \(\frac{dy}{dx} = \frac{y}{x} \)

At \((a^2, a) \), \(\frac{dy}{dx} = \frac{a^2}{a} = \frac{a}{2} \)

Since the curves cut orthogonally.
\[
\therefore \quad x - \frac{1}{2a} = -1 \Rightarrow 2a^2 = 1 \Rightarrow a^2 = \frac{1}{2}
\]

29. b. \(4x^2 + 9y^2 = 72 \)

Differentiating w.r.t. \(x \), we have
\[
\Rightarrow 8x + 18y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{4x}{9y}
\]

At \((3, 2) \), \(\frac{dy}{dx} = \frac{4 \times 3}{9 \times 2} = \frac{2}{3} \)

Also \(x^2 - y^2 = 5 \Rightarrow \frac{dy}{dx} = \frac{x}{y} \). At \((3, 2) \), \(\frac{dy}{dx} = \frac{3}{2} \)

\(\therefore \) the curves cut orthogonally.

30. d. Using Lagrange's mean value theorem, for some \(c \in (1, 6) \)
such that \(f''(c) = \frac{f(6) - f(1)}{5} = \frac{f(6) + 2}{5} \geq 4.2 \)
\[
\Rightarrow f(6) + 2 \geq 21
\]
\[
\Rightarrow f(6) \geq 19
\]

31. c. \(f(0) = -1 \); \(f(1) = 7 \). So \(f(0) \) and \(f(1) \) have opposite sign.

32. d. \(f(x) \) vanishes at points where
\[
\sin \frac{\pi x}{k} = 0, \text{ i.e., } \frac{\pi x}{k} = k\pi, k = 1, 2, 3, 4, \ldots.
\]
Hence \(x = \frac{1}{k} \).

Also \(f''(x) = \sin \frac{\pi x}{k} - \cos \frac{\pi x}{k} \), if \(x \neq 0 \).

Since the function has a derivative at any interior point of the interval \((0, 1) \), also continuous in \([0, 1]\) and \(f(0) = f(1) \).

Hence, Rolle's theorem is applicable to any one of the intervals
\[
\left[\frac{1}{2}, 1 \right], \left[\frac{1}{3}, \frac{2}{3} \right], \ldots, \left[\frac{1}{k+1}, k \right]
\]
Hence, there exists at least one \(c \) in each of these intervals where \(f''(c) = 0 \) \(\Rightarrow \) infinite points.

33. b. Applying Rolle's theorem to \(F(x) = f(x) - 2g(x) \), we get \(F(0) = 0 \),
\[
F(1) = f(1) - 2g(1)
\]
\[
\Rightarrow 0 = 6 - 2g(1)
\]
\[
\Rightarrow g(1) = 3.
\]

34. b. Let \(f(x) = x^4 + bx^3 + cx^2 + dx \),
which is continuous and differentiable.
\[
f(0) = 0 \Rightarrow f(-1) = \frac{a}{4} - \frac{b}{3} + \frac{c}{2} - d
\]
\[
= \frac{1}{4} (a + 2c) - \frac{1}{3} (b + 3d) = 0
\]
So, according to Rolle's theorem, there exists at least one root of \(f'(x) = 0 \) in \((-1, 0) \).

35. d. \(f(x) = ax^2 + bx^2 + 11x - 6 \)
satisfies conditions of Rolle's theorem in \([1, 3]\)
\[
f(1) = f(3)
\]
\[
\Rightarrow a + b + 11 - 6 = 27a + 9b + 33 - 6
\]
\[
\Rightarrow 13a + 4b = 1 - 11
\]
\[
\Rightarrow f'(2) = 3a + \frac{2b}{3}
\]
\[
\Rightarrow f'(2) + f'(3) = 3a + \frac{2b}{3} + 2 + \frac{4}{3}
\]
\[
= 3a + \frac{4}{3} + \frac{4}{3} + \frac{2}{3}
\]
\[
= 2b + \frac{1}{3} + \frac{1}{3}
\]
\[
= 11 + 0
\]
(1)

From equations (1) and (2), we get \(a = 1, b = -6 \)

36. d. Here, \(f(x) = \log x \)
\[
\therefore f'(c) = \frac{f(b) - f(a)}{b - a} \Rightarrow \frac{1}{c} = \frac{\log e}{3 - \log e} \cdot \frac{1}{3 - 1}
\]
\[
\Rightarrow \frac{1}{c} = \frac{1}{2} \log e \Rightarrow c = 2 \log e.
\]

37. d. \(g(x) = f(x) - x^2 \). We have \(g(0) = 0, g(2) = 0, g(3) = 0 \)
\[
[\therefore f(1), f(2) = 4, f(3) = -9]
\]
From Rolle's theorem on \(g(x) \), \(g''(x) = 0 \) for at least \(x \in (1, 2) \). Let \(g(c_1) = 0 \) where \(c_1 \in (1, 2) \).
Similarly, \(g(c_2) = 0 \) for at least one \(x \in (2, 3) \). Let \(g(c_2) = 0 \) where \(c_2 \in (2, 3) \)
\[
\therefore g'(c_1) = g'(c_2) = 0
\]
By Rolle's theorem, at least one \(x \in (c_1, c_2) \) such that \(g''(x) = 0 \Rightarrow f''(x) = 2 \) for some \(x \in (1, 3) \).

38. b. \(f\left(\frac{5\pi}{6}\right) = \log\sin\left(\frac{5\pi}{6}\right) = \log\sin\frac{\pi}{6} = \log\frac{1}{2} = -\log 2, \)
\[
\Rightarrow f\left(\frac{\pi}{6}\right) = \log\sin\frac{\pi}{6} = -\log 2.
\]
\[
\Rightarrow f'(c) = \frac{1}{\cos x} = \cot x
\]
By Lagrange's mean value theorem,
\[
f\left(\frac{5\pi}{6}\right) - f\left(\frac{\pi}{6}\right) = \cot c
\]
\[
\Rightarrow \cot c = 0 \Rightarrow c = \frac{\pi}{2}
\]
Thus, \(c = \frac{\pi}{2} \in \left(\frac{\pi}{6}, \frac{5\pi}{6}\right) \).
39. d. a. Discontinuous at \(x = 1 \) \(\Rightarrow \) not applicable.

b. \(F(x) \) is not continuous (jump discontinuity) at \(x = 0 \).

c. Discontinuity (missing point) at \(x = 1 \) \(\Rightarrow \) not applicable.

d. Notice that \(x^3 - 2x^2 - 5x + 6 = (x - 1)(x^2 - x - 6) \).

Hence, \(f(x) = x^2 - x - 6 \) if \(x \neq 1 \) and \(f(1) = -6 \).

\(\Rightarrow \) \(f \) is continuous at \(x = 1 \). So \(f(x) = x^2 - x - 6 \) is continuous in the interval \([-2, 3]\).

Also, note that \(f(-2) = f(3) = 0 \). Hence, Rolle's theorem applies \(f'(x) = 2x - 1 \).

Setting \(f'(x) = 0 \), we obtain \(x = 1/2 \) which lies between -2 and 3.

40. d. We have \(y^2 = 18x \) \hspace{1cm} (1)

\(\therefore 2y \frac{dy}{dx} = 18 \Rightarrow \frac{dy}{dx} = \frac{9}{y} \)

Given that \(\frac{dy}{dx} = 2 \Rightarrow \frac{9}{y} = 2 \Rightarrow y = \frac{9}{2} \)

Putting in (1), we get \(\frac{81}{4} = 18x \Rightarrow x = \frac{9}{8} \).

Hence, the point is \(\left(\frac{9}{8}, \frac{9}{2} \right) \).

41. a. \(V = \frac{4}{3} \pi r^3, S = 4 \pi r^2 \)

\(\frac{dV}{dr} = 4 \pi r^2, \frac{dS}{dr} = 8 \pi r \)

\(\Rightarrow \frac{dV}{dS} = \frac{\frac{dV}{dr}}{\frac{dS}{dr}} = \frac{4 \pi r^2}{8 \pi r} = \frac{r}{2} \)

when \(r = 2, \frac{dV}{dS} = \frac{2}{2} = 1 \)

42. b. \(V = x^3 \) and the percent error in measuring \(x = \frac{dx}{x} \times 100 = k \)

The percent error in measuring volume = \(\frac{dV}{V} \times 100 \)

Now, \(\frac{dV}{dx} = 3x^2 \)

\(\Rightarrow dV = 3x^2 \ dx \Rightarrow \frac{dV}{V} = \frac{3x^2 \ dx}{x^3} = 3 \frac{dx}{x} \)

\(\therefore \frac{dV}{V} \times 100 = 3 \frac{dx}{x} \times 100 = 3k \)

43. b. \hspace{1cm} \hspace{1cm} \hspace{1cm}

\begin{align*}
44. a. & \text{Let } CD \text{ be the position of man at any time } t. \text{ Let } BD = x, \\
& \text{then } EC = x. \text{ Let } \angle ACE = \theta

\begin{align*}
\text{Fig. 5.32}
\end{align*}

Given, \(AB = 41.6 \text{ m}, CD = 1.6 \text{ m and } \frac{dx}{dt} = 2 \text{ m/s} \).

\(AE = AB - EB = AB - CD = 41.6 - 1.6 = 40 \text{ m} \)

We have to find \(\frac{d\theta}{dt} \) when \(x = 30 \text{ m} \)

From \(\Delta AEC, \tan \theta = \frac{AE}{EC} = \frac{40}{x} \)

Differentiating w.r.t. \(t \), \(\sec^2 \theta \frac{d\theta}{dt} = \frac{-40}{x^2} \times \frac{dx}{dt} \)

\(\Rightarrow \sec^2 \theta \frac{d\theta}{dt} = -\frac{40}{x^2} \times 2 \)

\(\Rightarrow \frac{d\theta}{dt} = -\frac{80}{x^2} \times \frac{x}{x^2} = -\frac{80}{x^2} \)

\(\Rightarrow \cos \theta = \frac{x}{\sqrt{x^2 + 40^2}} \)

\(\therefore \frac{d\theta}{dt} = -\frac{80}{x^2 + 40^2} \)

when \(x = 30 \text{ m}, \frac{d\theta}{dt} = -\frac{80}{30^2 + 40^2} = -\frac{4}{125} \text{ radian/s.} \)

45. b. Any point on the parabola \(y^2 = 8x \) \((4a = 8 \text{ or } a = 2)\) is \((ar^2, 2at)\) or \((2t^2, 4t)\).

For its minimum distance from the circle means its distance from the centre \((0, -6)\) of the circle.

Let \(D \) be the distance, then

\[z = D^2 = (2t^2)^2 + (4t + 6)^2 = 4(t^4 + 4t^2 + 12t + 9) \]

\(\therefore \frac{dz}{dt} = 4(4t^3 + 8t + 12) = 0 \)

\(\Rightarrow 16(t^3 + 2t + 3) = 0 \)

\(\Rightarrow 16(t^3 + t^2 + t + 3) = 0 \)

\(\Rightarrow t = -1 \)
5.34 Calculus

\[\frac{d^2 z}{dt^2} = 16(3r^2 + 2) = +ve, \text{ hence minimum.} \]

\[\therefore \text{ point is } (2, -4). \]

46. c. \(y = x^2 \)

\[\frac{dy}{dx} = 2nx^{n-1} = \frac{1}{x^{n-1}} \]

Slope of the normal = \(-\frac{1}{na^{n-1}}\)

![Graph](image)

Equation of the normal \(y - a^n = -\frac{1}{na^{n-1}}(x-a) \)

Put \(x = 0 \) to get y-intercept

\[y = a^n + \frac{1}{na^{n-2}} \]

\[\lim_{a \to 0} b = \begin{cases} \frac{1}{2} & \text{if } n = 2 \\ \infty & \text{if } n > 2 \end{cases} \]

47. b. Using Lagrange’s mean value theorem for \(f \) in \([1, 2]\)

\[\text{for } c \in (1, 2), \quad \frac{f(2) - f(1)}{2 - 1} = f'(c) \leq 2 \]

\[\Rightarrow f(2) - f(1) \leq 2 \]

\[\Rightarrow f(2) \leq 4 \] \hspace{5em} (1)

Again using Lagrange’s mean value theorem in \([2, 4]\)

\[\text{for } d \in (1, 2), \quad \frac{f(4) - f(2)}{4 - 2} = f'(d) \leq 2 \]

\[\Rightarrow f(4) - f(2) \leq 4 \]

\[\Rightarrow 8 - f(2) \leq 4 \]

\[\Rightarrow f(2) \geq 4 \] \hspace{5em} (2)

from (1) and (2), \(f(2) = 4 \).

48. d. Given, \(V = \pi r^2 h \)

Differentiating both sides, we get

\[\frac{dV}{dt} = \pi \left(r^2 \frac{dh}{dt} + 2rh \frac{dr}{dt} \right) = \pi r \left(\frac{dh}{dt} + 2h \frac{dr}{dt} \right) \]

\[\frac{dr}{dt} = \frac{1}{10} \text{ and } \frac{dh}{dt} = \frac{2}{10} \]

\[\frac{dV}{dt} = \pi r \left(\frac{2}{10} + 2h \frac{1}{10} \right) = \frac{\pi r}{5} (-r + h) \]

Thus, when \(r = 2 \) and \(h = 3 \),

\[\frac{dV}{dt} = \pi \left(-2 + 3 \right) = \frac{2\pi}{5} \]

49. b. \(\frac{dV}{dt} = -4 \text{ cm}^3/\text{min}; \quad \frac{dS}{dt} = ? \) when \(V = 125 \text{ cm}^2 \)

\[V = x^2; \quad S = 6x^3 \quad \Rightarrow \frac{dV}{dt} = 3x^2 \frac{dx}{dt} \]

\[-4 = 3x^2 \frac{dx}{dt} \]

Also \(\frac{dS}{dt} = 12x \frac{dx}{dt} \)

\[\frac{dS}{dt} = -\frac{15}{x}; \quad \text{ when } V = 125 = x^3 \Rightarrow x = 5 \]

\[\Rightarrow \left(\frac{dS}{dt} \right)_{x=5} = -\frac{16}{5} \text{ cm}^3/\text{min}. \]

50. d. \(\frac{dy}{dx} = ke^{kx} = k \) at \((0, 1)\). Equation of the tangent is \(y - y_1 = k(x-x_1) \).

Point of intersection with x-axis is \(x = -\frac{1}{k} \), where

\[-2 \leq -\frac{1}{k} \leq -1 \Rightarrow k \in \left[\frac{1}{2}, 1 \right] \).

51. b. Applying LMVT in \([0, 1]\) to the function \(y = f(x) \), we get

\[f'(c) = \frac{f(0) - f(1)}{1 - 0}, \text{ for some } c \in (0, 1) \]

\[\Rightarrow e^c = \frac{f(0) - f(1)}{1} \]

\[\Rightarrow f(1) - f(0) = e^c \text{ for some } c \in (0, 1) \]

but \(1 < e^c < e \) in \((0, 1)\)

\[\Rightarrow 1 < f(1) - f(0) < e \]

\[\Rightarrow 10 < f(1) < 10 + e \]

\[\Rightarrow A = 11, B = 10 + e \]

\[\Rightarrow A - B = 1 - e \]

52. d. Consider a function \(g(x) = x f(x) \)

Since \(f(x) \) is continuous, \(g(x) \) is also continuous in \([0, 1]\)

and differentiable in \((0, 1)\)

As \(f(1) = 0 \)

\[g(0) = 0 = g(1) \]

Hence Rolle’s theorem is applicable for \(g(x) \).

Therefore, there exists at least one \(c \in (0, 1) \) such that

\[g'(c) = 0 \]

\[\Rightarrow xf'(x) + f(x) = 0 \]

\[\Rightarrow cf'(c) + f(c) = 0 \]

53. a. \(g(x) = \frac{x + 2}{x - 1} \)

\[\Rightarrow g'(x) = \frac{-3}{(x - 1)^2} \]
Slope of given line $= -3$ \[\Rightarrow \frac{-3}{(x-1)^2} = -3 \]
\[\Rightarrow x = 2, \text{ also } g(2) = 4 \]
(2, 4) also lies on given line.
Hence the given line is tangent to the curve.

54. a. Since the same line is tangent at one point $x = a$ and normal at other point $x = b$
\[\Rightarrow \text{Tangent at } x = b \text{ will be perpendicular to tangent at } x = a \]
\[\Rightarrow \text{Slope of tangent changes from positive to negative or negative to positive. Therefore, it takes the value zero somewhere. Thus, there exists a point } c \in (a, b) \text{ where } f'(c) = 0 \]

55. b. We know that there exists at least one x in $(0, 1)$ for which
\[\frac{f(1) - f(0)}{g(1) - g(0)} = \frac{f'(x)}{g'(x)} \]
or
\[\frac{2 - 10}{4 - 2} = \frac{f'(x)}{g'(x)} \text{ or } f'(x) + 4g'(x) = 0 \text{ for at least one } x \text{ in } (0, 1) \]

Application of Derivatives: Tangents and Normals, Rate Measure

So, the equation of the normal at $(0, c)$ is
\[y - c = \frac{1}{c/a} (x - 0) \Rightarrow ax + cy = c^2 \]

3. a. b. c.
Clearly, $f'(0) = 0$. So, $f(x) = 0$ has two real roots 0, $c_0 (> 0)$.
Therefore, $f''(x) = 0$ has a real root c_1 lying between 0 and c_0.
So, $0 < c_1 < c_0$.
Again, $f'(x) = 0$ is a fourth-degree equation. As imaginary roots occur in conjugate pairs, $f''(x) = 0$ will have another real root c_2.
Therefore, $f''(x) = 0$ will have a real root lying between c_1 and c_2.
As $f(x) = 0$ is an equation of the fifth degree, it will have at least three real roots and so $f'(x)$ will have at least two real roots.

4. a. b. c. d.
\[y = x(c - x) \]
\[y = x^2 + ax + b \]
Slope of (1) curve $= c - 2x$
And at $(1, 0)$, $c - 2 = m_1$ (say)
Slope of (2) curve $= 2x + a$
at $(1, 0)$, $2 + a = m_1$ (say)
Curves are touching at $(1, 0)$
\[\Rightarrow m_1 = m_2 \]
\[\Rightarrow 2 + a = c - 2 \]
Also $(1, 0)$ lies on both the curves
\[\Rightarrow 0 = c - 1 \text{ and } 0 = 1 + a + b \]
Solving (3) and (4), we get
\[a = -3, b = 2, c = 1 \]

5. a. b. c. d.

a. $y^2 = 4ax \Rightarrow m_1 = y' = \frac{2a}{y}$
\[y = e^{x/2a} \Rightarrow m_2 = y' = \frac{1}{2a} e^{x/2a} = \frac{1}{2a} y \]
\[m_1m_2 = -1. \text{ Hence, orthogonal.} \]

b. $y^2 = 4ax$
\[\Rightarrow y' = \frac{4a}{2y_1} = \frac{2a}{y_1}, \text{ not defined at } (0, 0) \]
\[x^2 = 4ay \]
\[\Rightarrow y' = \frac{2x_1}{4a} = \frac{x_1}{2a} = 0 \text{ at } (0, 0) \]
\[\therefore \text{ The two curves are orthogonal at } (0, 0). \]

c. $xy = a^2, x^2 - y^2 = b^2$
\[m_1m_2 = \frac{-a^2}{x_1y_1} = -\frac{a^2}{y_1} = -1 \Rightarrow \text{ orthogonal.} \]

d. $y = ax$, \[\Rightarrow y' = a \]
\[x^2 + y^2 = c^2 \Rightarrow y' = -\frac{x_1}{y_1} \]
\[m_1m_2 = \frac{-ax_1}{y_1} = -\frac{y_1}{y_1} = -1 \Rightarrow \text{ orthogonal.} \]

6. a. b. Since the intercepts are equal in magnitude but opposite in sign
\[\Rightarrow \frac{dy}{dx} \bigg|_p = 1 \]
5.36 Calculus

now \(\frac{dy}{dx} = x^2 - 5x + 7 = 1 \)
\(\Rightarrow x^2 - 5x + 6 = 0 \)
\(\Rightarrow x = 2 \) or \(3 \).

7. a, c. \(xy = (a + x)^2 \)
\(\Rightarrow y + xy' = 2(a + x) \)
Now \(y' = \pm 1 \)
\(\Rightarrow y \pm x = 2(a + x) \)
\(\frac{(a + x)^2}{x} \pm x = 2(a + x) \)
\(\Rightarrow \pm x = 2(a + x) - \frac{(a + x)^2}{x} \)
\(\Rightarrow \pm x^2 = (a + x)(x - a) \)
\(\Rightarrow \pm x^2 = x^2 - a^2 \)
\(\Rightarrow 2x^2 = a^2 \Rightarrow x = \pm \frac{a}{\sqrt{2}} \)

8. b, c. \(y = x^2 + 4x - 17 \Rightarrow \frac{dy}{dx} = 2(x + 2) \Rightarrow \left(\frac{dy}{dx} \right)_{x = \frac{a}{2}} = 9 \)
\(\Rightarrow \tan \theta = 9, \) where \(\theta \) is the angle with positive direction of \(x \)-axis.
\(\Rightarrow \) Angle with \(y \)-axis is \(\frac{\pi}{2} \pm \theta = \frac{\pi}{2} \pm \tan^{-1} 9. \)

9. a, b.
\(x^3 - y^3 = 0 \)
\(\Rightarrow 2y \times \frac{dy}{dx} = 3x^2 \)
Slope of the tangent at \(P = \left. \frac{dy}{dx} \right|_P = \frac{3x^2}{2y} \) \((4m^2, 8m^3)\)
\(\therefore \) Equation of the tangent at \(P \) is
\(y - 8m^3 = 3m(x - 4m^2) \)
\(\Rightarrow y = 3m(m^2 - 4m^2) = -m^3 \) \(Q \) is \((m^2, -m^3)\)
Slope of the tangent at \(Q = \left. \frac{dy}{dx} \right|_Q = \frac{3(m^4)}{2(-m^3)} = \frac{-3m}{2} \)
Slope of the normal at \(Q = \frac{1}{(-3/2)m} = \frac{2}{3m} \).
Since tangent at \(P \) is normal at \(Q \) \(\Rightarrow \frac{2}{3m} = 3m \)
\(\Rightarrow 9m^2 = 2 \)

10. a, b, c.
\(y = x^2 \Rightarrow \frac{dy}{dx} = 2x = 2 \) at \((1, 1)\)
\(\Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2} \) at \((1, 1)\)
\(\Rightarrow \tan \theta = \frac{2 - \frac{1}{2}}{1 + \frac{1}{2}} = \frac{3}{4} = \frac{3}{4} \)
\(\Rightarrow \theta = \tan^{-1} \frac{3}{4} = \cos^{-1} \frac{4}{5} = \sin^{-1} \frac{3}{5} \)

11. a, b.
Let \(P(x, y) \) be a point on the curve \(\ln(x^2 + y^2) = c \tan^{-1} \frac{y}{x} \)
Differentiating both sides with respect to \(x \), we get
\(\frac{2x + 2yy'}{x^2 + y^2} = \frac{c(xy' - y)}{(x^2 + y^2)^2} \Rightarrow y' = \frac{2x + cy}{cx - 2y} = m_1 \) (say)
Slope of \(OP = \frac{y}{x} = m_2 \) (say) (where \(O \) is origin)
Let the angle between the tangents at \(P \) and \(OP \) be \(\theta \)
\(\Rightarrow \tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} = \frac{2x + cy}{cx - 2y} \times \frac{x}{1 + \frac{2xy + cy^2}{cx^2 - 2xy}} = \frac{2}{c} \)
\(\Rightarrow \theta = \tan^{-1} \left(\frac{2}{c} \right) \) which is independent of \(x \) and \(y \).

12. a, b, d.
\(f \) is not differentiable at \(x = \frac{1}{2} \).
\(g \) is not continuous in \([0, 1] \) at \(x = 0 \).
\(h \) is not continuous in \([0, 1] \) at \(x = 1 \).
\(k(x) = (x + 3)^{p - 5} = (x + 3)^p \), where \(2 < p < 3 \), which is continuous and differentiable.

13. a, b, c.
a. Let \(f(x) = e^x \cos x - 1 \)
\(\Rightarrow f'(x) = e^x(\cos x - \sin x) = 0 \)
\(\Rightarrow \tan x = 1, \) which has a root between two roots of \(f(x) = 0 \)
b. Let \(f(x) = e^x \sin x - 1 \)
\(f'(x) = e^x(\sin x + \cos x) = 0 \)
\(\Rightarrow \tan x = -1, \) which has a root between two roots of \(f(x) = 0 \)
c. Let \(f(x) = e^{-x} - \cos x \)
\(f'(x) = -e^{-x} + \sin x = 0 \)
\(\Rightarrow e^{-x} = \sin x, \) which has a root between two roots of \(f(x) = 0 \)

14. a, b, c, d.
a. \(y^2 = 4ax \) and \(y = e^{x/2a} \)
\(y' = \frac{2a}{y} \) and \(y' = \frac{1}{2a} e^{-x/2a} = \frac{1}{2a} \)
Let the intersection point be \((x_1, y_1)\)
\(y' = \frac{2a}{y_1} \) and \(y' = \frac{-1}{2a} \)
Application of Derivatives: Tangents and Normals, Rate Measure 5.37

6. d. when \(x = 1, y = 1 \)
\[
\frac{dy}{dx} = 3x^2 - 2x - 1 \quad \Rightarrow \quad \left(\frac{dy}{dx} \right)_{x=1} = 0
\]
\(\Rightarrow \) Equation of the tangent is \(y = 1 \).
Solving with the curve, \(x^2 - x^2 - x + 2 = 1 \)
\(\Rightarrow x^2 - x + 1 = 0 \Rightarrow x = -1, 1 \) (1 is repeated root)
.: the tangent meets the curve again at \(x = -1 \)
.: statement 1 is false and statement 2 is true.

7. b. Point of inflection of the curve is \(\left(\frac{1}{2}, \frac{\pi}{2} \right) \) and this satisfies the line \(L \)

\[
\begin{array}{c}
\text{Fig. 5.34}
\end{array}
\]

Slope of the tangent to the curve \(C \) at \(\left(\frac{1}{2}, \frac{\pi}{2} \right) \)

\[
\frac{dy}{dx} = \frac{-2}{(x^2 - x - 1)^{1/2}} = \frac{-1}{\sqrt{x^2 - x}} = -(x - \frac{x^2}{1})^{1/2}
\]
\[
\frac{d^2y}{dx^2} = \frac{1}{2} \left(1 - \frac{1}{x^2} \right)^{3/2} = 0; x = \frac{1}{2}
\]
\[
\frac{dy}{dx} = \frac{-2}{\sqrt{x-1}}
\]

As the slope decreases from \(-2\), line cuts the curve at three distinct points and the minimum slope of the line when it intersects the curve at three distinct points is \(\frac{\pi - \frac{\pi}{2}}{2} = -\frac{\pi}{2} \)

\[
0 - \frac{1}{2}
\]

.: \(P \in [-\pi, -2] \Rightarrow p \in [-2\pi, -4] \)

8. a. Consider, \(F(x) = e^{-x} f(x), \lambda \in R \)
\(F(0) = f(0) = 0 \)
\(F(1) = e^{-1} f(1) = 0 \)

.: By Rolle's theorem, \(F'(c) = 0 \)
\(F'(x) = e^{-x} (f'(x) - \lambda f(x)) \)
\(F'(c) = 0 \Rightarrow e^{-c} (f'(c) - \lambda f(c)) = 0 \)
\(\Rightarrow f'(c) = \lambda f(c), 0 < c < 1. \)

9. a. Verify by taking \(f(x) = bx^2 + nx + n \) in \([a, b]\)

10. a. Equation of a tangent at \((h, k)\) on \(y = f(x) \) is \(y - k = f'(h)(x - h) \) (1)
Suppose (1) passes through \((a, b)\)
\(b - k = f'(h)[a - h] \) must hold good for some \((h, k)\)
Now \(h f'(h) - f''(h) - a f'(h) + b = 0 \) represents an equation of degree odd in \(h \).

.: \(\exists \) some 'h' for which LHS vanishes
For Problems 1–3

1. a, 2.c, 3.d.
Sol.
1. a. Let \(P_1(t_1, t_1^2) \) be a point on the curve \(y = x^3 \).

\[
\frac{dy}{dx} = 3t_1^2
\]

Tangent at \(P_1 \) is \(y - t_1^3 = 3t_1^2(x - t_1) \).

The intersection of \(1 \) and \(y = x^3 \):

\[
x^3 - t_1^3 = 3t_1^2(x - t_1)
\]

\[
(x - t_1)(x^2 + xt_1 + t_1^2) - 3t_1^2(x - t_1) = 0
\]

\[
(x - t_1)(x + 2t_1) = 0
\]

If \(P_2(t_2, t_2^2) \), then

\[
t_2 = -2t_1 (t_2 \neq t_1).
\]

Similarly, the tangent at \(P_2 \) will meet the curve at the point \(P_3(t_3, t_3^2) \) when

\[
t_3 = -2t_2 = 4t_1
\]

The abscissae of \(P_1, P_2, \ldots, P_n \) are

\[
t_1, -2t_1, 4t_1, \ldots, (-2)^{n-1} t_1 \text{ in G.P.}
\]

\[
\therefore \frac{t_2}{t_1} = \frac{t_3}{t_2} = \cdots = -2
\]

\[
\therefore\ r = 3 \quad (r \text{ say})
\]

\[
\therefore t_2 = t_1 r, t_3 = t_2 r \text{ and } t_4 = t_3 r
\]

If \(x_1 = 1 \), then \(x_2 = -2, t_3 = 4, \ldots \)

Then \(\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{x_n} = \text{sum of infinite G.P. with common ratio} \)

\[
(\frac{-1}{2}) \text{ with first term 1}
\]

\[
= \frac{1}{1 - (\frac{-1}{2})} = \frac{2}{3}
\]

2. c. Then \(\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{y_n} = \text{sum of infinite G.P. with common ratio}

\[
(\frac{-1}{8}) \text{ with first term 1}
\]

\[
= \frac{1}{1 - (\frac{-1}{8})} = \frac{8}{9}
\]

3. d. Area of \(\Delta P_2 P_3 P_4 = \frac{1}{2} t_2 t_3 t_4 \)

\[
\begin{vmatrix}
1 & t_2 & t_3 \\
\frac{1}{2} t_1 & t_3 & t_4 \\
\frac{1}{2} t_4 & t_5 & t_6
\end{vmatrix}
\]

\[
= r^4 \times (\text{Area of } \Delta P_1 P_2 P_3)
\]

\[
\text{Area of } (\Delta P_2 P_3 P_4) = \frac{1}{r^4} = \frac{1}{(-2)^4} = \frac{1}{16}
\]

For Problems 4–6

4. a, 5.b, 6.c.
Sol.

4. a. \(\frac{dy}{dx} = \frac{1 - 9t_1^2}{-6t} = \tan \theta \)

\(\Rightarrow 9t_1^2 - 6 \tan \theta = 0 \)

\(\Rightarrow 3t_1 = \tan \theta \pm \sec \theta \)

\(\Rightarrow \tan \theta + \sec \theta = 3t_1 \).

5. b. \(P(-2, 2) \Rightarrow t = -1 \Rightarrow \frac{dy}{dx} \bigg|_{t=-1} = -\frac{4}{3} \)

Equation of the tangent \(y - 2 = -\frac{4}{3} (x + 2) \)

\(\Rightarrow t - 3t_1^3 - 2 = -\frac{4}{3} \left(1 - 3t_1^2 + 2 \right) \)

\(\Rightarrow 9t_1^3 + 12t_1^2 - 3t_1 - 6 = 0 \)

\(\Rightarrow 3t_1^2 + 4t_1 - 2 = 0 \)

\(\Rightarrow (3t_1^2 + t_1 + 1)(t_1 + 1) = 0 \)

\(\Rightarrow (3t_1 + 2)(t_1 + 1)^2 = 0 \)

\(\Rightarrow t = \frac{2}{3} \)

\(\Rightarrow Q(\frac{-1}{3}, \frac{-2}{3}) \)

6. c. \(\frac{dy}{dx} \bigg|_{t=2/3} = \frac{3}{4} \)

\(m_{P_0Q} = -4 \Rightarrow \text{angle} 90^\circ \)

For Problems 7–8

7. b, 8.a.
Sol. Let \(V \) be the volume and \(r \) the radius of the balloon at any time, then

\(V = \frac{4}{3} \pi r^3 \)

\(\Rightarrow \frac{dV}{dt} = \frac{4}{3} (3 \pi r^2) \frac{dr}{dt} \)

\(\Rightarrow \frac{dV}{dt} = 4 \pi r^2 \frac{dr}{dt} = 40 \) (given)

\(\Rightarrow \frac{dr}{dt} = \frac{10}{\pi r^2} \)

Now let \(S \) be the surface area of the balloon when its radius is \(r \), then \(S = 4 \pi r^2 \)

\(\Rightarrow \frac{dS}{dt} = 8 \pi r \frac{dr}{dt} \)

From (1) and (2), \(\frac{dS}{dt} = 8 \pi r \frac{10}{\pi r^2} = \frac{80}{r} \)

When \(r = 8 \), the rate of increase of \(S = \frac{80}{8} = 10 \text{ cm}^2/\text{min.} \)

\(\Rightarrow \text{Increase of } S \text{ in } \frac{1}{2} \text{ minute} = 10 \times \left(\frac{1}{2} \right) = 5 \text{ cm}^2/\text{min.} \)
If \(r_1 \) is the radius of the balloon after \((1/2)\) min, then
\[
4\pi r_1^2 = 4\pi (8)^2 + 5
\]
or \(r_1^2 - 8^2 = \frac{5}{4\pi} \approx 0.397 \) nearly or \(r_1^2 = 64.397 \) or
\(r_1 = 8.025 \) nearly.
\(\Rightarrow \) Required increase in the radius = \(r_1 - 8 = 0.025 \) cm.

Matrix-Match Type

1. \(a \rightarrow p, q; \ b \rightarrow r, s; \ c \rightarrow r, q; \ d \rightarrow p, s; \)

 \[a = \frac{b}{\sin A} = \frac{c}{\sin B} = \frac{e}{\sin C} = 2R \quad \text{(say)}\]

 \[\therefore \frac{da}{\cos A} + \frac{db}{\cos B} + \frac{dc}{\cos C} = 2R(a + b + c) \quad \text{(1)}\]

 Also \(A + B + C = \pi \), So, \(a + b + c = 0 \)

 From equations (1) and (2), we get

 \[\frac{da}{\cos A} + \frac{db}{\cos B} + \frac{dc}{\cos C} + 1 = 1 \]

 \[\Rightarrow m = \pm 1 \]

 \[\Rightarrow x^2y^2 = 16 \Rightarrow xy = \pm 4 \quad \text{(1)}\]

 \[L_{ST} = \frac{y}{dx} \]

 Differentiating (1) w.r.t. \(x \), we get \(y + xy' = 0 \Rightarrow y' = \frac{-y}{x} \)

 \[L_{ST} = \frac{y}{y/x} = k \Rightarrow L_{ST} = 2 \]

 \[\Rightarrow k = \pm 2 \]

 \[c. \ y = 2e^{x^2} \text{ intersects } y\text{-axis at } (0, 2) \]

 \[\frac{dy}{dx} = 4e^{x^2} \therefore \frac{dy}{dx} \bigg|_{x=0} = 4 \]

 \[\therefore \text{ Angle of intersection with } y\text{-axis } = \frac{\pi}{2} - \tan^{-1}4 \Rightarrow 4 = \cot^{-1}4\]

 \[\Rightarrow n = 2 \text{ or } -1 \]

 \[d. \ \frac{dy}{dx} = e^{x^2} \cos y \text{ : slope of the normal at } (1, 0) = -1 \]

 \[\text{ equation of the normal is } x + y = 1 \]

 \[\text{ Area } = \frac{1}{2} \]

 \[\Rightarrow t = 1, -2. \]

2. \(a \rightarrow q; \ b \rightarrow r; \ c \rightarrow p; \ d \rightarrow s; \)

 \[a = 6 \text{ cm } \delta r = 0.06 \]

 \[A = 4\pi \Rightarrow 2\pi \delta r = 2.46 \times 0.06 = 0.72 \pi \]

 \[b. \ V = x^2, \ \delta V = 3x^2 \delta x \]

 \[\frac{\delta V}{V} \times 100 = \frac{3}{x} \times 100 = 3 \times 2 = 6. \]

 \[c. \ (x-2) \times \frac{dx}{dt} = \frac{3}{2} \times \frac{dx}{dt} \]

 \[\Rightarrow x = 5 \]

 \[d. \ A = \frac{\sqrt{3}}{2} \]

 \[\Rightarrow \frac{dA}{dt} = \frac{\sqrt{3}}{2} \left(\frac{x \frac{dx}{dt}}{dA} \right) = \sqrt{3} \times 30 \times \frac{1}{10} = \frac{3\sqrt{3}}{2} \]

3. \(a \rightarrow p, q; \ b \rightarrow p, s; \ c \rightarrow r, d \rightarrow q; \)

 \[a. \ y^2 = 4x \text{ and } x^2 = 4y \text{ intersect at point } (0, 0) \text{ and } (4, 4) \]

 \[C_1: y^2 = 4x \quad \text{ and } \quad C_2: x^2 = 4y \]

 \[\frac{dy}{dx} = 2 \quad \therefore \frac{dy}{dx} = \frac{x}{2} \]

 \[\left. \frac{dy}{dx} \right|_{(4,4)} = 0 \quad \left. \frac{dy}{dx} \right|_{(0,0)} = 0 \]

 \[\text{ Hence, tangent } = 90^\circ \text{ at point } (0, 0) \]

 \[\tan \theta = 2 \quad \left. \frac{dx}{dy} \right|_{(4,4)} = 2 \left. \frac{dx}{dy} \right|_{(0,0)} = 0 \]

 \[\text{ b. Solving I: } 2y^2 = x^2 \text{ and II: } y^2 = 32x, \text{ we get } (0, 0), (8, 16) \text{ and } (8, -16) \]

 \[\text{ at } (0, 0) \left. \frac{dy}{dx} \right|_{(0,0)} = 0 \text{ for I} \]

 \[\text{ at } (0, 0) \left. \frac{dy}{dx} \right|_{(0,0)} = \infty \text{ for II} \]

 \[\text{ Hence, angle } = 90^\circ \]

 \[\text{ now } \left. \frac{dy}{dx} \right|_{(8,16)} = 32 \left. \frac{dy}{dx} \right|_{(8,16)} = \frac{3}{4} \frac{16}{4} = 3 \text{ for I} \]

 \[\left. \frac{dy}{dx} \right|_{(8,16)} = 32 \left. \frac{dy}{dx} \right|_{(8,16)} = \frac{16}{2y} = 1 \text{ for II} \]

 \[\therefore \tan \theta = 2 \quad \left. \frac{dx}{dy} \right|_{(8,16)} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} \]

 \[\Rightarrow \text{ angle between the two curves at the origin is } 90^\circ \]

 \[\text{ c. The two curves are} \]

 \[xy = 2^2 \quad \text{(1)} \]

 \[x^2 + y^2 = 2a^2 \quad \text{(2)} \]

 \[\text{ Solving (1) and (2), the points of intersection are } (a, a) \text{ and } (-a, -a) \]
5.40 Calculus

Differentiating (1), \(\frac{dy}{dx} = -\frac{y}{x} = m_1 \) (say)
Differentiating (2), \(\frac{dy}{dx} = -\frac{x}{y} = m_2 \) (say)
At both points, \(m_1 = -1 = m_2 \)
Hence, the two curves touch each other.

d. \(y^2 = x, x^3 + y^3 = 3xy \)

For the 1st curve, \(2y \frac{dy}{dx} = 1 \implies \frac{dy}{dx} \bigg|_P = \frac{1}{2y_1} \)

Again for the 2nd curve, \(\frac{dy}{dx} = \frac{y_1 - x_1^2}{y_1^2 - x_1} \)
solving \(y^2 = x \) and \(x^3 + y^3 = 3xy \);
\(y^6 + y^3 = 3y_1 \implies y^3 + 1 = 3 \implies y^3 = 2 \)
\(\therefore y_1 = 2^{1/3} \) and \(x_1 = 2^{-2/3} \).

Now \(m_1 = \frac{1}{2}, m_2 = \frac{2}{3} - \frac{2}{3} = -\frac{2}{3} \to \infty \)

\[\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| = \left| \frac{1 - m_1}{1 + m_1} \right| = \frac{1}{1} = \frac{4}{3} = 16 \]

\(\therefore \theta = \tan^{-1}(16) \)

Integer Type

1. (5) \(y = x^2 \) and \(y = -\frac{8}{x} \); \(q = p^2 \) and \(s = -\frac{8}{r} \)

Equating \(\frac{dy}{dx} \) at \(A \) and \(B \), we get

\[2p = \frac{8}{r^2} \]

\(\therefore pr^2 = 4 \)

\[\text{Fig. 5.35} \]

Now \(m_{AB} = \frac{q - s}{p - r} \implies 2p = \frac{8}{p - r} \)

\[\therefore p^2 = 2pr + \frac{8}{r} \implies p^2 = \frac{16}{r} \]

\[\therefore \frac{16}{r^2} = \frac{16}{r} \implies r = 1 \ (r \neq 0) \implies p = 4 \]

\(\therefore r = 1, p = 1 \)

Hence \(p + r = 5 \)

2. (7) \(x = r^2, y = r^3 \)

\[\frac{dx}{dt} = 2r, \frac{dy}{dt} = 3r^2 \]

\[\frac{dy}{dx} = \frac{3r}{2} \]

\[y - \frac{r}{2} = \frac{3r}{2} (x - r) \]

\[2k - 2r^2 = 3th - 3r^2 \]

\(\therefore r^2 - 3th + 2k = 0 \)

\[t_1 t_2 t_3 = -2k \text{ (put } t_1 t_2 = -1 \text{); hence } t_3 = 2k \]

Product of roots

Now \(t_4 \) must satisfy equation (1)

\(\therefore (2k)^3 - 3(2k) + 2k = 0 \)

\(4y^2 - 3x + 1 = 0 \) or \(4y^2 = 3x - 1 \)

\(\therefore a + b = 7 \)

3. (8)

Since the graphs of \(y = e^x \) and \(y = \log x \) are symmetrical about the line \(y = x \), minimum distance is the distance along the common normal to both the curves, i.e., \(y - x \) must be parallel to the tangent as both the curves are inverse of each other.

\[\frac{dy}{dx} \bigg|_{x_1} = e^{x_1} = 1 \]

\(\therefore x_1 = 0 \) and \(y_1 = 1 \)

\(\therefore AB = \sqrt{2} \)

4. (6) \(f(x) = f(6-x) \)

On differentiating (1) w.r.t. \(x \), we get

\[f'(x) = -f'(6-x) \]

Putting \(x = 0, 2, 3, 5 \) in (2), we get

\[f'(0) = -f'(6) = 0 \]

Similarly \(f''(2) = -f''(4) = 0 \)

\[f'(3) = 0 \]

\[f'(5) = -f'(1) = 0 \]

\(\therefore f(0) = 0 = f(2) = f(3) = f(5) = f(1) = f'(4) = f'(6) \)

\(\therefore f'(x) = 0 \) has minimum 7 roots in \([0, 6]\)

Now, consider a function \(y = f'(x) \)

As \(f'(x) \) satisfy Rolle's theorem in intervals \([0, 1], [1, 2], [2, 3], [3, 4], [4, 5] \) and \([5, 6]\) respectively.

So, by Rolle's theorem, the equation \(f''(x) = 0 \) has minimum

6 roots.

Now \(g(x) = (f'(x))^2 + f(x) f''(x) = x h(x), \) where \(h(x) = f'(x) f''(x) \)

Clearly \(h(x) = 0 \) has minimum 13 roots in \([0, 6]\)

Hence again by Rolle's theorem, \(g(x) = h(x) \) has minimum

12 zeroes in \([0, 6]\).

5. (2) \(y = x^6 \)

\[\frac{dy}{dx} = n x^{n-1} = na^{n-1} \]
8. (9) \(y = x^3 + x + 16 \)

\[\left(\frac{dy}{dx} \right)_{x_1, y_1} = 3x_1^2 + 1 \]

\[\therefore 3x_1^2 + 1 = \frac{y_1}{x_1} \]

\[\Rightarrow 3x_1^2 + x_1 = x_1^3 + x_1 + 16 \]

\[\Rightarrow 2x_1^3 = 16 \]

\[\Rightarrow x_1 = 2 \Rightarrow y_1 = 26 \]

\[\therefore m = 13 \]

9. (4) We have \(f(0) = 2 \)

Now \(y - f(a) = f'(a) [x - a] \)

For \(x \) intercept \(y = 0 \), so

\[x = a - \frac{f(a)}{f'(a)} = a - 2 \Rightarrow \frac{f(a)}{f'(a)} = 2 \]

\[\Rightarrow f'(a) = \frac{1}{2} \]

\[\therefore \text{On integrating both sides w.r.t. } a, \text{ we get} \]

\[\ln(f(a)) = \frac{a}{2} + C \]

\[f(a) = Ce^{a^2} \]

\[f(x) = Ce^{x^2} \]

\[f(0) = C \Rightarrow C = 2 \]

\[\therefore f(x) = 2e^{x^2} \]

Hence \(k = 2, \ p = \frac{1}{2} \Rightarrow \frac{k}{p} = 4 \)

10. (9) \(y = ax^2 + bx + c; \quad \frac{dy}{dx} = 2ax + b \)

When \(x = 1, y = 0 \Rightarrow a + b + c = 0 \)

\[\left(\frac{dy}{dx} \right)_{x=1} = 3 \quad \text{and} \quad \left(\frac{dy}{dx} \right)_{x=3} = 1 \]

\[2a + b = 3 \]

\[6a + b = 1 \]

Solving (1), (2) and (3)

\[a = -\frac{1}{2}; \quad b = 4, \ c = -\frac{7}{2} \]

\[\therefore 2a - b - 4c = -1 - 4 + 14 = 9 \]

11. (5) \(y = e^{ax+b} \), passes through \((1, 1)\)

\[\Rightarrow 1 = e^{a+b} \]

\[\Rightarrow a + b = 0 \]

\[\text{also} \left(\frac{dy}{dx} \right)_{(1, 0)} = -2 \]

\[\Rightarrow e^{a+b} \cdot 2b = -2 \]

\[\Rightarrow e^{a+b} \cdot 2b(1) = -2 \]

\[\Rightarrow b = -1 \text{ and } a = 1 \]

\[2a - 3b = 5 \]
5.42 Calculus

12. Let \(x = r \cos \theta, y = r \sin \theta \)

\[r^2(1 + \cos \theta \sin \theta) = 1 \]

\[r^2 = \frac{2}{2 + \sin 2\theta} \]

\[r_{\text{max}}^2 = \frac{2}{1} \]

Archives

Subjective

1. \(\therefore f''(x) \) exists for all \(x \) in \([0, 1]\)

\(\therefore f(x) \) and \(f'(x) \) are differentiable and continuous in \([0, 1]\)

Now \(f(x) \) is continuous in \([0, 1]\) and differentiable in \((0, 1)\) and \(f'(0) = f'(1) \)

\(\therefore \) By Rolle’s theorem, there is at least one \(c \) such that \(f'(c) = 0 \), where \(0 < c < 1 \)

Case I: Let \(x = c \), then \(f''(x) = f''(0) = 0 \Rightarrow f'''(x) = |0| = 0 < 1 \)

Case II: Let \(x > c \). By Lagrange’s mean value theorem for \(f''(x) \) in \([c, x]\)

\[f''(x) - f''(c) = f''(\alpha) \frac{x - c}{x - c} \]

or \(f''(x) = (x - c)f''(\alpha) \) \[\therefore f''(c) = 0 \]

or \(|f''(x)| = |x - c||f''(\alpha)| \)

But \(x \in [0, 1], c \in (0, 1) \)

\(|x - c| < 1 - 0 \Rightarrow |x - c| < 1 \) and given \(|f''(\alpha)| \leq 1, \forall x \in [0, 1] \)

\(\therefore |f''(\alpha)| \leq 1 \)

\(\therefore |f''(\alpha)| < 1 \)

\(\therefore |f''(x)| < 1 \forall x \in [0, 1]. \)

Case III: Let \(x < c \), then

\[f''(x) - f''(c) = f''(\alpha) \Rightarrow -f''(x) = |c - x||f''(\alpha)| \]

\(\Rightarrow |f''(x)| < 1 \Leftrightarrow |f''(x)| < 1 \forall x \in [0, 1]. \)

Combining all cases, we get \(|f''(x)| < 1 \forall x \in [0, 1]. \)

2. Given that \(f(x) \) and \(g(x) \) are differentiable for \(x \in [0, 1] \) such that

\(f(0) = 2; f(1) = 6 \)

\(g(0) = 0; g(1) = 2 \)

Consider \(h(x) = f(x) - 2g(x) \)

Then \(h(x) \) is continuous on \([0, 1]\) and differentiable on \((0, 1)\)

Also \(h(0) = f(0) - 2g(0) = 2 - 2 \times 0 = 2 \)

\(h(1) = f(1) - 2g(1) = 6 - 2 \times 2 = 2 \)

\(\therefore h(0) = h(1) \)

All the conditions of Rolle’s theorem are satisfied for \(h(x) \) on \([0, 1] \)

\(\therefore \) there exists at least one \(c \in (0, 1) \) such that \(h'(c) = 0. \)

\(\Rightarrow f'(c) = 2g'(c) \).

3. \((0, c)y = x^2, 0 \leq c \leq 5\)

Any point on the parabola is \((x, x^2)\)

Distance between \((x, x^2)\) and \((0, c)\) is

\[D = \sqrt{x^2 + (x^2 - c)^2} \]

To find \(D_{\text{min}} \) we consider

\[D^2 = x^4 - (2c - 1)x^2 + c^2 \]

\[= \left(x^2 - \frac{2c - 1}{2} \right)^2 + c - \frac{1}{4} \]

which is minimum when

\[x^2 - \frac{2c - 1}{2} = 0 \]

\[\Rightarrow D_{\text{min}} = \sqrt{c - \frac{1}{4}} \]

4. Slope of the given line is \(-1/2, \) \((1) \)

\[\Rightarrow \text{Slope of the tangent} = \frac{dy}{dx} = -1/2 \]

The equation of given curve \(y = \cos(x + y) \)

Differentiating the curve w.r.t. \(x, \) we get

\[\frac{dy}{dx} = -\sin(x + y) \left(1 + \frac{dy}{dx} \right) \Rightarrow \frac{dy}{dx} = -\frac{\sin(x + y)}{1 + \sin(x + y)} \]

= slope of tangent \((2) \)

From (1) and (2), \(-\sin(x + y) = \frac{1}{2} \)

\[\Rightarrow \sin(x + y) = 1 \]

\[\Rightarrow \cos(x + y) = 0 \]

From the given curve \(y = \cos(x + y) \Rightarrow y = 0 \) \((3) \)

and \(\sin(x) = 1 \)

\[\Rightarrow x = \frac{\pi}{2} \pm \frac{3\pi}{2} \]

\[\Rightarrow \text{The points are} \ P(\frac{\pi}{2}, 0), Q(-\frac{3\pi}{2}, 0). \]

Tangent at \(P \) is \(x + 2y = \frac{\pi}{2} \) and tangent at \(Q \) is \(x + 2y = -\frac{3\pi}{2} \)

5. At \(x = 0, y = 1. \)

Hence, the point at which normal is drawn is \(P(0, 1) \)

Differentiating the given equation w.r.t. \(x, \) we have

\[(1 + x)y \left(\log(1 + x) \frac{dy}{dx} + \frac{y}{1 + x} \right) \]

\[\Rightarrow \frac{dy}{dx} + \frac{1}{\sqrt{1 - \sin^2 x}} = 2 \sin x \cos x = 0 \]

\[\Rightarrow \left(\frac{dy}{dx} \right)_{(0, 1)} = \frac{1 + (1 + 0)^1}{1 + 1 - (1 + 0)^1} \log 1 \]

= Slope of the normal = \(-1 \)

Equation of the normal having slope \(-1\) at point \(P(0, 1) \)

is given by \(y - 1 = -(x - 0) \Rightarrow x + y = 1. \)

6. Since the curve \(y = ax^3 + bx^2 + cx + 5 \) touches \(x\)-axis at \(P(-2, 0) \), then \(x\)-axis is the tangent at \((-2, 0). \) The curve meets \(y\)-axis in \((0, 5). \) We have
\[
\frac{dy}{dx} = 3ax^2 + 2bx + c
\]
\[
\Rightarrow \left. \frac{dy}{dx} \right|_{(0, 5)} = 0 + 0 + c = 3 \quad \text{(given)}
\]
\[
\Rightarrow c = 3
\]
and
\[
\left. \frac{dy}{dx} \right|_{(-2, 0)} = 0
\]
\[
\Rightarrow 12a - 4b + c = 0
\]
and \((-2, 0)\) lies on the curve, then
\[
0 = -8a + 4b - 2c + 5
\]
\[
\Rightarrow 0 = -8a + 4b - 1 \quad \therefore c = 3
\]
\[
\Rightarrow 8a - 4b + 1 = 0
\]

From (2) and (3), we get
\[
a = \frac{-1}{2}, \quad b = \frac{-3}{4}
\]
Hence, \(a = \frac{-1}{2}, \quad b = \frac{-3}{4}\) and \(c = 3\).

7. \(i\) Given that \(f(x)\) is a differentiable function on \([0, 4]\)
\[\therefore \text{It will be continuous on } [0, 4]\]
\[\because \text{By Lagrange's mean value theorem, we get}
\]
\[
\frac{f(4) - f(0)}{4 - 0} = f'(a), \text{ for } a \in (0, 4)
\]
Again since \(f\) is continuous on \([0, 4]\) by intermediate mean value theorem, we get
\[
\frac{f(4) + f(0)}{2} = f(b), \text{ for } b \in (0, 4)
\]
Multiplying (1) and (2), we get
\[
\left(\frac{f(4)}{2} - f(0)^2\right)^2 = f'(a)f(b), \quad a, b \in (0, 4)
\]
\[\text{or } f(4)^2 - f(0)^2 = 8f'(a)f(b)
\]
(ii) To prove \(\int_0^4 f(t) \, dt = 2[\alpha f'(\alpha^2) + \beta f'(\beta^2)]\),
\[\forall 0 < \alpha, \beta < 2
\]
Let \(I = \int_0^4 f(t) \, dt\)
Let \(t = u^2 \Rightarrow dt = 2u \, du\)
\[\therefore I = \int_0^4 f(u^2) \cdot 2u \, du
\]
Consider \(F(x) = \int_0^x f(u^2) \cdot 2u \, du\)
Then clearly \(F(x)\) is differentiable and hence continuous on \([0, 2]\).
By Lagrange's mean value theorem, we get some, \(\mu \in (0, 2)\),
such that
\[F'(\mu) = \frac{F(2) - F(0)}{2 - 0}\]
\[\Rightarrow f(\mu^2) \cdot 2\mu = \frac{\int_0^2 f(u^2) \cdot 2u \, du}{2}
\]
Again by intermediate mean values theorem, there exist at least one \(\alpha, \beta\) such that \(0 < \alpha < \mu < \beta < 2\)
\[\Rightarrow F'(\mu) = \frac{F'(\alpha) + F'(\beta)}{2}
\]
[as \(f\) is continuous on \([0, 2] \Rightarrow F\) is continuous on \([0, 2]\)]
\[\Rightarrow f(\mu^2) \cdot 2\mu = \frac{\alpha f'(\alpha^2) + \beta f'(\beta^2)}{2}
\]
\[\Rightarrow f(\mu^2) \cdot 2\mu = \frac{\alpha f(\alpha^2) + \beta f(\beta^2)}{2}
\]
From (4) and (5), we get
\[\int_0^2 f(u^2) \cdot 2u \, du = 2[\alpha f(\alpha^2) + \beta f(\beta^2)], \text{where } 0 < \alpha, \beta < 2
\]
\[\Rightarrow \int_0^4 f(t) \, dt = 2[\alpha f(\alpha^2) + \beta f(\beta^2)], 0 < \alpha, \beta < 2
\]
8. Given that
\[P(x) = 51x^{101} - 2323x^{100} - 45x + 1035
\]
To show that at least one root of \(P(x)\) lies in \((45^{1/100}, 46)\),
using Rolle's theorem, we consider anti-derivative of \(P(x)\),
i.e., consider \(F(x) = \frac{x^{102}}{2} - \frac{2323x^{101}}{101} - \frac{45x^2}{2} + 1035 x + c\)
Then being a polynomial function \(F(x)\) is continuous and differentiable.
Now, \(F(45^{1/100}) = \frac{(45^{102})}{2} - \frac{2323(45^{101})}{101} - \frac{45(45)^{100}}{2} + \frac{1}{1035(45)^{100}} + c\)
\[= \frac{45}{2} \left(\frac{2}{(45)^{100}} - 23 \times 45(45)^{100}\right)
\]
\[= \frac{45}{2} \left(\frac{2}{(45)^{100}} - \frac{1}{2} + \frac{1}{1035(45)^{100}} + c\right)
\]
\[= c
\]
and \(F(46) = \frac{(46)^{102}}{2} - \frac{2323(46)^{101}}{101} - \frac{45(46)^{100}}{2} + \frac{1}{1035(46)^{100}} + c\)
\[= 23(46)^{101} - 23(46)^{100} - 23 \times 45 \times 46 + 1035 \times 46 = c
\]
\[\therefore F\left(\frac{1}{45^{100}}\right) = F(46) = c
\]
\[\therefore \text{Rolle's theorem is applicable.}
\]
Hence, there must exist at least one root of \(F'(x) = 0\)
i.e., \(P(x) = 0\) in the interval \((45^{1/100}, 46)\).
9. Given that \(|f(x_1) - f(x_2)| < (x_1 - x_2)^2\), \(\forall \ x_1, x_2 \in R\)
Let \(x_1 = x + h\) and \(x_2 = x\), then we get
\[|f(x + h) - f(x)| < h^2
\]
Therefore, there is only one point (1, 1) at which vertical tangent can be drawn
∴ \(y' = \{(1, 1)\} \).

Multiple choice questions with one correct answer

1. a. Consider the function \(f(x) = ax^3 + bx^2 + cx + d \) on \([0, 1]\)
then being a polynomial, it is continuous on \([0, 1]\) and differentiable on \((0, 1)\) and \(f(0) = f(1) = d \).
\(f(0) = d, f(1) = a + b + c + d = d \) as given \(a + b + c = 0 \)
∴ By Rolle’s theorem, there exists at least one \(x \in (0, 1) \)
such that \(f'(x) = 0 \)
⇒ \(3ax^2 + 2bx + c = 0 \)
Thus, equation \(3ax^2 + 2bx + c = 0 \) has at least one root in \([0, 1]\).

2. c. \(x = a \cos \theta + \theta \sin \theta, y = a \sin \theta - \theta \cos \theta \)
\[\frac{dx}{d\theta} = a(- \sin \theta + \sin \theta + \theta \cos \theta) = a\theta \cos \theta \] \hspace{1cm} (1)
\[\frac{dy}{d\theta} = a(\cos \theta - \cos \theta + \theta \sin \theta) = a\theta \sin \theta \] \hspace{1cm} (2)
⇒ \(\frac{dy}{dx} = \tan \theta \) (slope of the tangent)
⇒ Slope of the normal = \(-\cot \theta \)
∴ Equation of the normal is
\[y - a (\sin \theta - \theta \cos \theta) = \frac{-\cos \theta}{\sin \theta} (x - a (\cos \theta + \theta \sin \theta)) \]
⇒ \(y \sin \theta - a \sin^2 \theta + a\theta \sin \theta \cos \theta \)
\[= - x \cos \theta + a \cos^2 \theta + a \theta \sin \theta \cos \theta \]
⇒ \(x \cos \theta + y \sin \theta = a \)
As \(\theta \) varies, inclination is not constant. Therefore, \(a \) is not correct.
Clearly, it does not pass through \((0, 0)\).
Its distance from the origin = \(\left| \frac{a}{\sqrt{\cos^2 \theta + \sin^2 \theta}} \right| = a \),
which is a constant.

3. a. Slope of the tangent at \((x, f(x))\) is \(2x + 1 \)
⇒ \(f'(x) = 2x + 1 \)
\[f(x) = x^2 + x + c \]
Also the curve passes through \((1, 2)\). Therefore, \(f(1) = 2 \)
⇒ \(2 = 1 + 1 \Rightarrow c = 0 \Rightarrow f(x) = x^2 + x \)
⇒ Required area = \[\int_0^1 (x^2 + x) \, dx \]
\[= \frac{x^3}{3} \bigg|_0^1 + \frac{x^2}{2} \bigg|_0^1 = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}. \]

4. d. Slope of the tangent \(y = f(x) \) is \(\frac{dy}{dx} = f'(x) \)
Therefore, slope of the normal = \(\frac{1}{f'(x)_{(3,4)}} \)
\[= \frac{1}{f'(3)} \]
\[= \tan \left(\frac{3\pi}{4} \right) \] (given)
⇒ \(f'(3) = 1 \).
5. c. \(y = x^2 + bx - b \) \(\Rightarrow \frac{dy}{dx} = 2x + b \)

\(\Rightarrow \) Equation of the tangent at \((1, 1)\) is

\[y - 1 = (2 + b)(x - 1) \]

\(\Rightarrow (b + 2)x - y = b + 1 \)

\(x\)-intercept \(\frac{b + 1}{b + 2} = OA \)

and \(y\)-intercept = \(- (b + 1) = OB \)

![Graph showing the tangent to the curve](image)

Fig. 5.39

Given area of triangle \(OAB \) is 2

\[\Rightarrow \frac{1}{2} OA \times OB = 2 \]

\[\Rightarrow \frac{1}{2} \left(\frac{b + 1}{b + 2} \right) \left[- (b + 1) \right] = 2 \]

\[\Rightarrow b^2 + 2b + 1 = - 4(b + 2) \]

\[\Rightarrow b^2 + 6b + 9 = 0 \]

\(\Rightarrow (b + 3)^2 = 0 \Rightarrow b = - 3. \)

6. d. The given curve is \(y^3 + 3x^2 = 12y \)

\[\Rightarrow 3y^2 \frac{dy}{dx} + 6x = 12 \frac{dy}{dx} \]

\[\Rightarrow \frac{dy}{dx} = \frac{2x}{4 - y^2} \]

For vertical tangents \(\frac{dy}{dx} \rightarrow \infty \)

\[\Rightarrow 4 - y^2 = 0 \]

\[\Rightarrow y = \pm 2. \]

For \(y = 2, x^2 = \frac{24 - 8}{3} = \frac{16}{3} \Rightarrow x = \pm \frac{4}{\sqrt{3}} \)

For \(y = -2, x^2 = \frac{-24 + 8}{3} = -ve \) (not possible)

Hence, the required points are \(\left(\pm \frac{4}{\sqrt{3}}, \pm 2 \right) \).

7. a. It can be easily seen that functions in options (b), (c) and (d) are continuous on [0, 1] and differentiable in (0, 1)

In (a), \(f(x) = \begin{cases}
\frac{1}{2} - x, & x < 1/2 \\
\frac{1}{2} - x^2, & x \geq 1/2
\end{cases} \)

which is continuous at \(x = 1/2 \)

Also \(f'(x) = \begin{cases}
-1, & x < 1/2 \\
\frac{1}{2} - x, & x > 1/2
\end{cases} \)

Here \(f'\left(\frac{1}{2}\right) = -1 \) and \(f'(1/2^+) = -2 \left(\frac{1}{2} - \frac{1}{2}\right) = 0 \)

Since \(f'\left(\frac{1}{2}\right) \neq f'(1/2^+) \), \(f \) is not differentiable at \(x = 1/2 \).

\(\therefore \) Lagrange's mean value theorem is not applicable for this function in \([0, 1]\).

8. d For Rolle's theorem in \([a, b]\)

\[f(a) = f(b), \ln [0, 1] \Rightarrow f(0) = f(1) = 0 \]

\(\therefore \) The function has to be continuous in \([0, 1]\)

\[\Rightarrow f(0) = \lim_{x \to 0^+} f(x) = 0 \]

\[\Rightarrow \lim_{x \to 0} \frac{\log x}{x^\alpha} = 0 \]

Applying L'Hopital rule, we get

\[\Rightarrow \lim_{x \to 0} \frac{\log x}{x^\alpha} = 0 \Rightarrow - \frac{x^\alpha}{\alpha} = 0 \Rightarrow \alpha > 0 \]

\(\therefore d \) is the correct option.

9. b. Let the polynomial be \(P(x) = ax^2 + bx + c \)

Given \(P(0) = 0 \) and \(P(1) = 1 \)

\[\Rightarrow c = 0 \) and \(a + b = 1 \Rightarrow a = 1 - b \]

\(\therefore P(x) = (1 - b)x^2 + bx \)

\[\Rightarrow P'(x) = 2(1 - b)x + b \]

Given \(P'(x) > 0, \forall x \in (0, 1) \)

\[\Rightarrow 2(1 - b)x + b > 0, \forall x \in (0, 1) \]

Now when \(x = 0, b > 0 \) and when \(x = 1, b < 2 \)

\[\Rightarrow 0 < b < 2 \]

\(\therefore S = \{(1 - a)x^2 + ax, a \in (0, 2)\} \).

10. a. Slope of the tangent to \(y = e^x \) at \((c, e^c)\) is given by

\[m_1 = \left(\frac{dy}{dx}\right)_{(c, e^c)} = e^c \]

Also the slope of the line joining the points \((c - 1, e^{c-1})\) and \((c + 1, e^{c+1})\)

\[m_2 = \frac{e^{c+1} - e^{c-1}}{2} = \frac{e^{c+1} - e^{c-1}}{2} \]

\[= e^c \left(\frac{e - e^{-1}}{2}\right) \]
we observe \(m_2 > m_1 \)
\(\Rightarrow \) tangent to the curve \(y = e^x \) will intersect the given line to the left of the line \(x = c \) as shown in Fig. 5.40.

![Fig. 5.40](image)

Thus the two curves cut each other at right angles.

\(\therefore \) Also for \(y^2 = 4ax \), \(\frac{dy}{dx} = \frac{2a}{y} = m_1 \)

For \(y = e^{-x^2a} \), \(\frac{dy}{dx} = -\frac{1}{2a} e^{-x^2a} = -\frac{y}{2a} = m_2 \)

\(\Rightarrow m_1 m_2 = -1 \)
\(\Rightarrow y^2 = 4ax \) and \(y = e^{-x^2a} \) intersect at right angle.

Linked comprehension type

1. **b, c.** Let the line \(ax + by + c = 0 \) be normal to the curve \(xy = 1 \).
 Differentiate the curve \(xy = 1 \) w.r.t. \(x \), we get
 \[
 y + x \frac{dy}{dx} = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{y}{x}
 \]
 \[
 \Rightarrow \quad \left(\frac{dy}{dx} \right)_{(x_1, y_1)} = -\frac{y_1}{x_1}
 \]
 \(\therefore \) Slope of the normal = \(\frac{x_1}{y_1} \)

Slope of the given line = \(\frac{-a}{b} \)

Given that \(\frac{x_1}{y_1} = \frac{-a}{b} \) \hspace{1cm} (1)

Also \((x_1, y_1) \) lies on the given curve \(\Rightarrow x_1 y_1 = 1 \) \hspace{1cm} (2)

From (1) and (2), we can conclude that \(a \) and \(b \) must have opposite sign.

2. **b, d.**
 For \(y^2 = 4ax \), \(y \)-axis is tangent at \((0, 0) \), while for \(x^2 = 4ay \), \(x \)-axis is tangent at \((0, 0) \).

Now for \(f(x) = 0 \) to have only one root means the line \(y = x \) must be tangential to the curve \(y = ke^x \).

Let it be so at \((x_1, y_1) \), then

\[
\left(\frac{dy}{dx} \right)_{x_1} = ke^{x_1} = 1
\]

\(\Rightarrow e^{x_1} = \frac{1}{k} \) also \(y_1 = ke^{x_1} \) and \(y_1 = x_1 \)

\(\Rightarrow x_1 = 1 \) \(\Rightarrow 1 = ke \Rightarrow k = 1/e. \)

3. **a.** For \(y = x \) to be the tangent to the curve \(y = ke^x \), \(k = 1/e \)
 \(\therefore \) For \(y = ke^x \) to meet \(y = x \) at two points, we should have
 \(k < \frac{1}{e} \) \(\Rightarrow k \in \left(0, \frac{1}{e} \right) \) as \(k > 0. \)
CHAPTER 6

Monotonocity and Maxima–Minima of Functions

- Monotonocity: Introduction
- Point of Inflection
- Extremum
- Tests for Local Maximum/Minimum
- Concept of Global Maximum/Minimum
- Nature of Roots of Cubic Polynomial
- Application of Extremum
6.2 Calculus

MONOTONOCITY: INTRODUCTION

The most useful element taken into consideration among the total post mortem activities of functions is their monotonic behaviour. Functions are said to be monotonic if they are either increasing or decreasing in their entire domain, e.g., \(f(x) = e^x \); \(f(x) = \log x \) and \(f(x) = 2x + 3 \) are some of the examples of functions which are increasing, whereas \(f(x) = -x^2 \); \(f(x) = e^{-x} \) and \(f(x) = \cot^{-1}x \) are some of the examples of the functions which are decreasing.

Functions which are increasing as well as decreasing in their domain are said to be non-monotonic, e.g.,

\[f(x) = \sin x \; \text{or} \; f(x) = ax^2 + bx + c \; \text{and} \; f(x) = |x| \]; however, in the interval \(\left[0, \frac{\pi}{2} \right] \), \(f(x) = \sin x \) will be said to be increasing.

Monotonicity of a Function at a Point

- A function is said to be monotonically increasing at \(x = a \) if \(f(x) \) satisfies:
 - \(f(a + h) > f(a) \) for a small positive \(h \).

- A function is said to be monotonically decreasing at \(x = a \) if \(f(x) \) satisfies:
 - \(f(a + h) < f(a) \) for a small positive \(h \).

It should be noted that we can talk of monotonicity of \(f(x) \) at \(x = a \) only if \(x = a \) lies in the domain of \(f \), without any consideration of continuity or differentiability of \(f(x) \) at \(x = a \).

Example 6.1 For each of the following graph, comment whether \(f(x) \) is increasing or decreasing or neither increasing nor decreasing at \(x = a \).

![Graphs](Fig. 6.3)

Sol.

- **a.** Neither monotonically increasing nor decreasing as \(f(a - h) < f(a) \) and \(f(a + h) < f(a) \).
- **b.** Monotonically decreasing as \(f(a - h) > f(a) > f(a + h) \).
- **c.** Monotonically increasing as \(f(a - h) < f(a) < f(a + h) \).
- **d.** Neither monotonically increasing nor decreasing as \(f(a - h) < f(a) < f(a + h) \) but \(f(a + h) = f(a) \).

Example 6.2 Find the complete set of values of \(\lambda \), for which the function \(f(x) = \begin{cases} x + 1, & x < 1 \\ \lambda, & x = 1 \\ x^2 - x + 3, & x > 1 \end{cases} \) is strictly increasing at \(x = 1 \).

Sol. Let \(g(x) = x + 1 \), where \(x < 1 \), then \(g(x) \) is strictly increasing.

Let \(h(x) = x^2 - x + 3 \), where \(x > 1 \), \(h(x) \) is also strictly increasing. \(\therefore h'(x) = 2x - 1 > 0 \; \forall \; x > 1 \).

Since \(f(x) \) is an increasing function

\[\lim_{x \to 1^+} (x + 1) \leq \lim_{x \to 1^+} (x^2 - x + 3) \Rightarrow 2 \leq \lambda \leq 3 \]

Monotonicity in an Interval

Let \(I \) be an open interval contained in the domain of a real-valued function \(f \). Then \(f \) is said to be

- **(i) increasing on** \(I \) if \(x_1 < x_2 \) in \(I \Rightarrow f(x_1) \leq f(x_2) \) for all \(x_1, x_2 \in I \).
- **(ii) strictly increasing on** \(I \) if \(x_1 < x_2 \) in \(I \Rightarrow f(x_1) < f(x_2) \) for all \(x_1, x_2 \in I \).
- **(iii) decreasing on** \(I \) if \(x_1 < x_2 \) in \(I \Rightarrow f(x_1) \geq f(x_2) \) for all \(x_1, x_2 \in I \).
- **(iv) strictly decreasing on** \(I \) if \(x_1 < x_2 \) in \(I \Rightarrow f(x_1) > f(x_2) \) for all \(x_1, x_2 \in I \).
Monotonicity and Maxima–Minima of Functions 6.3

as \(\cos x > \cos^2 x, x \in (0, \pi/2) \)
\[f'(x) > \cos x \cdot x + \sec x \cdot x - 2 \]
\[= (\cos x - \sec x)^2 > 0, x \in (0, \pi/2) \]
Hence, \(f(x) \) is strictly increasing in \((0, \pi/2) \).
\[f'(x) = \sec x \cdot \cosec x, x \in (0, \pi/2) \]
\[\Rightarrow f'(x) = \sec x \cdot \tan x + \cosec x \cdot \cot x > 0 \forall x \in (0, \pi/2) \]
Thus, \(f(x) \) is increasing in \((0, \pi/2) \).

Example 6.4
Find the least value of \(k \) for which the function
\[x^2 + k(x + 1) \]
is an increasing function in the interval \(1 < x < 2 \).

Sol. \(f(x) = x^2 + k(x + 1) \)
For \(f(x) \) to be increasing \(f'(x) > 0 \)
\[\Rightarrow \frac{d}{dx} (x^2 + k(x + 1)) > 0 \]
\[\Rightarrow 2x + k > 0 \Rightarrow k > -2x \]
For \(x \in (1, 2) \), the least value of \(k \) is \(-2\).

Example 6.5
If \(f : [0, \infty] \rightarrow \mathbb{R} \) is the function defined by
\[f(x) = \frac{e^{x^2} - e^{-x^2}}{e^{x^2} + e^{-x^2}} \]
then check whether \(f(x) \) is injective or not.

Sol. \(y = f(x) = \frac{e^{x^2} - e^{-x^2}}{e^{x^2} + e^{-x^2}} \)
\[= \frac{e^{2x^2} - 1}{e^{2x^2} + 1} = 1 - \frac{2}{e^{2x^2} + 1} \]
Now for \(x \in [0, \infty) \), \(x^2 \) is increasing.
\[\Rightarrow 2x^2 \] is increasing
\[\Rightarrow e^{2x^2} \] is increasing
\[\Rightarrow e^{2x^2} + 1 \] is increasing
\[\Rightarrow \frac{2}{e^{2x^2} + 1} \] is decreasing
\[\Rightarrow \frac{2}{e^{2x^2} + 1} \] is increasing
\[\Rightarrow 1 - \frac{2}{e^{2x^2} + 1} \] is increasing
\[\Rightarrow f(x) \] is monotonous.
Hence, \(f(x) \) is one-one (injective).

Alternative method
\[f'(x) = \frac{4xe^{2x^2} + 1 - 2x^4 e^{2x^2} - 1}{(e^{2x^2} + 1)^2} \]
\[= \frac{4xe^{2x^2}}{(e^{2x^2} + 1)^2} \geq 0 \forall x \in [0, \infty) \]
Hence, \(f(x) \) is increasing.

Example 6.6
Let \(f(x) \) and \(g(x) \) be two continuous functions defined from \(R \rightarrow R \), such that \(f(x_1) > f(x_2) \) and \(g(x_1) < g(x_2), \forall x_1 > x_2 \), then find the solution set of \(f(g(a^2 - 2a)) > f(g(3a - 4)) \).

Sol. Obviously, \(f \) is increasing and \(g \) is decreasing in \(R \).
Hence, \(f(g(a^2 - 2a)) > f(g(3a - 4)) \)
\[\Rightarrow g(a^2 - 2a) > g(3a - 4) \quad (\because f \text{ is increasing}) \]
6.4 Calculus

\[\Rightarrow \alpha^2 - 2\alpha < 3\alpha - 4 \text{ as } g \text{ is decreasing} \\
\Rightarrow \alpha^2 - 5\alpha + 4 < 0 \\
\Rightarrow (\alpha - 1)(\alpha - 4) < 0 \\
\Rightarrow \alpha \in (1, 4) \]

Example 6.7 Prove that the function \(f(x) = \log_e(x^2 + 1) - e^x + 1 \) is strictly increasing \(\forall \ x \in R \).

Sol. \(f(x) = \log_e(x^2 + 1) - e^x + 1 \)

\[\Rightarrow f'(x) = \frac{2x}{1 + x^2} + e^x \]

\[\Rightarrow f'(x) = e^x + \frac{2}{x + \frac{1}{x}} \]

for \(x < 0, -1 < \frac{2}{x + \frac{1}{x}} < 0 \text{ and } e^x > 1 \)

\[\Rightarrow e^x + \frac{2x}{1 + x^2} > 0 \]

\[\Rightarrow f(x) \text{ is a strictly increasing function } \forall \ x \in R \]

Example 6.8 Prove that \(f(x) = x - \sin x \) is an increasing function.

Sol. \(f(x) = x - \sin x \)

\[\Rightarrow f'(x) = 1 - \cos x \]

Now, \(f'(x) > 0 \) everywhere except at \(x = 0, \pm 2\pi, \pm 4\pi \), etc., but all these points are discrete and do not form an interval. Hence, we can conclude that \(f(x) \) is monotonically increasing for \(x \in R \). In fact, we can also see it graphically.

![Graph of f(x) = x - \sin x](image)

Example 6.9 Find the values of \(p \) if \(f(x) = \cos x - 2px \) is invertible.

Sol. For \(f(x) = \cos x - 2px \) to be invertible, it must be monotonic, i.e., either always increasing or always decreasing.

\[\Rightarrow f'(x) = -\sin x - 2p \leq 0 \text{ for all } x \]

\[\Rightarrow p \geq -\frac{1}{2} \text{ sin } x \text{ for all } x \]

\[\Rightarrow p \geq \frac{1}{2} \text{ [since } -1 \leq \sin x \leq 1 \text{]} \quad (1) \]

\(f(x) \) will be monotonically increasing if \(f'(x) \geq 0 \).

\[\Rightarrow f'(x) = -\sin x - 2p \geq 0 \text{ for all } x \]

\[\Rightarrow p \leq -\frac{1}{2} \text{ sin } x \text{ for all } x \]

\[\Rightarrow p \leq -\frac{1}{2} \quad \text{[since } -1 \leq \sin x \leq 1 \text{]} \quad (2) \]

From equations (1) and (2), \(|p| \geq \frac{1}{2} \).

Example 6.10 Find the values of \(a \) if \(f(x) = 2e^x - ae^{-x} + (2a + 1)x - 3 \) is increasing for all values of \(x \).

Sol. \(f'(x) = 2e^x + ae^{-x} + 2a + 1 \)

\[= e^x(2e^x + (2a + 1)e^{-x} + a) \]

\[= 2e^x \left(e^{2x} + \left(a + \frac{1}{2} \right) e^x + \frac{a}{2} \right) \]

\[= 2e^x \left(e^x + \frac{1}{2} \right) \]

For \(f(x) \) to be increasing, \(f'(x) \geq 0 \ \forall \ x \in R \).

\[\Rightarrow e^x + a \geq 0 \ \forall \ x \in R \Rightarrow a \geq 0 \]

Example 6.11 Is every invertible function monotonic?

Sol. Consider the following function which is invertible but not monotonic.

![Graph of f(x)](image)

Example 6.12 If \(f \circ g \circ h \) is an increasing function, then which of the following is not possible?

(i) \(f(x) \), \(g(x) \) and \(h(x) \) are increasing

(ii) \(f(x) \) and \(g(x) \) are decreasing and \(h(x) \) is increasing

(iii) \(f(x) \), \(g(x) \) and \(h(x) \) are decreasing

Sol. \(f \circ g \circ h \) is increasing, then obviously \(f(x) \), \(g(x) \) and \(h(x) \) can be increasing functions.

Also, \(f(x) \) and \(g(x) \) are decreasing and \(h(x) \) is increasing.

\[\Rightarrow \text{ for } x_2 > x_1 \\
\Rightarrow f(x_2) < f(x_1) \\
\Rightarrow g(f(x_2)) < g(f(x_1)) \\
\Rightarrow f(g(f(x_2))) < f(g(f(x_1))) \\
\Rightarrow f \circ g \circ h \text{ is increasing.} \]

If all \(f(x) \), \(g(x) \) and \(h(x) \) are decreasing, then \(x_2 > x_1 \), \(f(g(f(x_2))) < f(g(f(x_1))) \), hence \(f \circ g \circ h \) is decreasing.

Example 6.13 Let \(f: [0, \infty) \rightarrow [0, \infty) \) and \(g: [0, \infty) \rightarrow [0, \infty) \) be non-increasing and non-decreasing functions and \(h(x) = g(f(x)) \). If \(f \) and \(g \) are differentiable functions, \(h(x) = g(f(x)) \). If \(f \) and \(g \) are differentiable for all points in their respective domains and \(h(0) = 0 \). Then, show \(h(x) \) is always identically zero.

Sol. Here, \(h(x) = g(f(x)) \), since \(g(x) \in [0, \infty) \)

\[h(x) \geq 0, \forall x \in \text{domain} \]

Also, \(h'(x) = g'(f(x)) \cdot f'(x) \leq 0 \text{ as } g'(x) \geq 0 \)

and \(h(x) \leq 0 \ \forall \ x \in \text{domain as } h(0) = 0. \)

Hence, \(h(x) = 0 \ \forall \ x \in \text{domain.} \)
Example 6.14
$f(x) = [x]$ is a step-up function. Is it a monotonically increasing function for $x \in R$?

Sol. No, $f(x) = [x]$ is not monotonically increasing for $x \in R$ rather, it is a non-decreasing function as illustrated in Fig. 6.8.

![Graph of $y = [x]$](image)

Fig. 6.8

Separating the Intervals of Monotonicity

Example 6.15
Separate the intervals of monotonicity of the following functions:

- a. $f(x) = 3x^4 - 8x^3 - 6x^2 + 24x + 7$
- b. $f(x) = -\sin x + 3 \sin^2 x + 5, x \in [-\pi/2, \pi/2]$
- c. $f(x) = (2x - 1)(2x - 2)^2$

Sol.

- a. $f(x) = 3x^4 - 8x^3 - 6x^2 + 24x + 7$

 $f'(x) = 12x^3 - 24x^2 - 12x + 24$

 $f'(x) = 12(x^3 - 2x^2 - x + 2)$

 $f'(x) = 12(x-1)(x-2)(x+1)$

 Now, $f''(x) = 0$ when $x = -1, 1$ and 2.

 Hence, critical points are $-1, 1$ and 2.

 The sign scheme of the derivative is given in Fig. 6.9.

![Sign scheme](image)

Fig. 6.9

Hence, the function increases in the interval $(-1, 1) \cup (2, \infty)$ and decreases in the interval $(-\infty, -1) \cup (1, 2)$.

- b. $f(x) = -\sin x + 3 \sin^2 x + 5, x \in [-\pi/2, \pi/2]$

 $f''(x) = -3 \sin x \cos x + 6 \sin x \cos x$

 $= 3 \sin x \cos x (2 - \sin x)$

 As $\cos x > 0$ and $2 - \sin x > 0 \forall x \in (-\pi/2, \pi/2)$

 and $\sin x > 0 \forall x \in (0, \pi/2), \sin x < 0 \forall x \in (-\pi/2, 0)$

 $f'(x) > 0, x \in (0, \pi/2)$ and $f'(x) < 0, x \in (-\pi/2, 0)$

 $\Rightarrow f(x)$ is increasing in $(0, \pi/2)$ and decreasing in $(-\pi/2, 0)$.

- c. $f(x) = (2x - 1)(2x - 2)^2$

 $f'(x) = 4x \log 2 (2x - 2)^2 + 2(2x - 2) \log 2 (2x - 2)$

 $f'(x) = 4x \log 2 (2x - 2)[2(2x - 2) + 2(2x - 1)]$

 $f'(x) = 2^x \log 2 (2x - 2)[3x^2 - 4]$

 $2^x - 2 = 0 \Rightarrow x = 1$

 $3x^2 - 4 = \log 2(4/3)$

 The sign scheme of $f'(x)$ is given in Fig. 6.10.

![Sign scheme](image)

Fig. 6.10

Example 6.16
Find the interval of monotonicity of the function $f(x) = |x - 1|/x^2$.

Sol.

$f(x) = \begin{cases}
\frac{x-1}{x^2}, & x < 1, x \neq 0 \\
\frac{1}{x^2}, & x > 1
\end{cases}$

Clearly $f(x)$ is continuous for all $x \in R$ except at $x = 0$.

$f'(x) = \begin{cases}
\frac{x-2}{x^3}, & x < 1, x \neq 0 \\
\frac{2}{x^3}, & x > 1
\end{cases}$

$f'(x) > 0 \Rightarrow x < 0$ or $1 < x < 2$

$f'(x) < 0 \Rightarrow 0 < x < 1$ or $x > 2$

Hence, $f(x)$ is increasing in $(-\infty, 0) \cup (1, 2)$ and decreasing in $(0, 1) \cup (2, \infty)$.

Example 6.17
Find the intervals of decrease and increase for the function $f(x) = \cos \left(\frac{\pi}{x} \right)$.

Sol. $f(x) = \cos \left(\frac{\pi}{x} \right)$. The function is defined for all x, where $x \neq 0$.

$f'(x) = -\sin \left(\frac{\pi}{x} \right) \frac{\pi}{x^2} = \frac{\pi}{x^2} \sin \left(\frac{\pi}{x} \right)$

$\therefore f$ is differentiable for all $x, (x \neq 0)$.

Here, sign of $f'(x)$ is same as that of $\sin \left(\frac{\pi}{x} \right)$.

Thus, $f'(x)$ is positive if $\sin \left(\frac{\pi}{x} \right) > 0$ and $f'(x)$ is negative if $\sin \left(\frac{\pi}{x} \right) < 0$.

or $\sin \left(\frac{\pi}{x} \right) > 0$, if $2k\pi < \frac{\pi}{x} < (2k+1)\pi, k \in Z$

and $\sin \left(\frac{\pi}{x} \right) < 0$, if $(2k+1)\pi < \frac{\pi}{x} < (2k+2)\pi, k \in Z$.

Hence, the function f is increasing in the interval $\left(\frac{1}{2k+1}, \frac{1}{2k} \right)$ and decreasing in the interval $\left(\frac{1}{2k+2}, \frac{1}{2k+1} \right)$

k being a non-negative integer.

Example 6.18
A function $y = f(x)$ is represented parametrically as follows:

$x = \phi(t) = t^2 - 5t + 7$

$y = \psi(t) = 4t^3 - 3t^2 - 18t + 3$

$-2 < t < 2$

Find the intervals of monotonicity.
6.6 Calculus

Sol. We have \(x = f(t) = t^5 - 5t^3 - 20t + 7 \)
\[y = \psi(t) = 4t^3 - 3t^2 - 18t + 3 \]
\[\frac{dx}{dt} = f'(t) = 5t^4 - 15t^2 - 20 = 5(t^2 - 4)(t^2 + 1) \]
\[\frac{dy}{dt} = \psi'(t) = 12t^2 - 6t - 18 = 6(t+1)(2t-3) \]
\[\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{6(t+1)(2t-3)}{5(t-2)(t+2)(t^2 +1)} \]

The sign scheme of \(\frac{dy}{dx} \) is given in Fig. 6.11.

\[\begin{array}{c|c|c|c|}
 & - & + & - \\
\hline
-2 & & & \\
-1 & & & \\
\frac{3}{2} & & & 2 \\
\end{array} \]

Fig. 6.11

\[y = f(x) \text{ increases if } \frac{dy}{dx} > 0 \]
\[\Rightarrow t \in (-1, 3/2) \]

\[y = f(x) \text{ decreases if } \frac{dy}{dx} < 0 \]
\[\Rightarrow t \in (-2, -1) \cup (3/2, 2) \]

Example 6.19 Let \(g(x) = f(x) + f(1-x) \) and \(f''(x) > 0 \)
\(\forall x \in (0, 1) \). Find the intervals of increase and decrease of \(g(x) \).

Sol. We have \(g(x) = f(x) + f(1-x) \), then
\[g'(x) = f'(x) - f'(1-x) \] (I)

We are given that \(f''(x) > 0 \), \(\forall x \in (0, 1) \).

It means that \(f'(x) \) would be increasing on \((0, 1)\) which leads to two cases.

Case I: Let \(g(x) \) is increasing,
\[\Rightarrow f'(x) - f'(1-x) > 0 \]
\[\Rightarrow f'(x) > f'(1-x) \]
\[\Rightarrow x > 1 - x \] (as \(f' \) is increasing)
\[\Rightarrow \frac{1}{2} < x < 1 \]

\[\Rightarrow g(x) \text{ is increasing in } \left(\frac{1}{2}, 1 \right) . \]

Case II: Let \(g(x) \) is decreasing,
\[\Rightarrow f'(x) - f'(1-x) < 0 \]
\[\Rightarrow f'(x) < f'(1-x) \]
\[\Rightarrow x < 1 - x \] (as \(f' \) is increasing)
\[\Rightarrow 0 < x < \frac{1}{2} \]

\[\Rightarrow g(x) \text{ is decreasing in } \left(0, \frac{1}{2} \right) . \]

Extra 6.20 Find the number of solution of the equation
\[3 \tan x + x^3 = 2 \text{ in } \left(0, \frac{\pi}{4} \right) . \]

Sol. Let \(f(x) = 3 \tan x + x^3 - 2 \).
Then, \(f'(x) = 3 \sec^2 x + 3x^2 > 0 \), hence \(f(x) \) increases.

Also, \(f(0) = -2 \) and \(f \left(\frac{\pi}{4} \right) > 0 \).
So, by intermediate value theorem, \(f(c) = 2 \) for some \(c \) in \(\left(0, \frac{\pi}{4} \right) \).
Hence, \(f(x) = 0 \) has only one root.

Concept/ Application Exercise 6.1

1. Prove that the following functions are strictly increasing:
 a. \(f(x) = \cot^{-1} x + x \)
 b. \(f(x) = \log(1 + x) - \frac{2x}{2 + x} \)

2. Separate the intervals of monotonicity for the following functions:
 a. \(f(x) = -2x^3 - 9x^2 - 12x + 1 \)
 b. \(f(x) = x^3 e^{-x} \)
 c. \(f(x) = \sin x + \cos x, x \in (0, 2\pi) \)
 d. \(f(x) = 3 \cos^4 x + 10 \cos^3 x + 6 \cos^2 x - 3, x \in [0, \pi] \)

3. Discuss monotonicity of \(f(x) = \frac{x}{\sin x} \) and \(g(x) = x \tan x \), where \(0 < x \leq 1 \).
4. Discuss monotonicity of \(y = f(x) \) which is given by \(x = \frac{1}{1 + t^2} \) and \(y = \frac{1}{t(1 + t^2)} , t > 0 \).
5. Find the value of \(a \) for which the function \(f(x) = (a + 2)x^3 - 3ax^2 + 9ax - 1 \) decreases monotonically for all real \(x \).
6. Find the value of \(a \) in order that \(f(x) = \sqrt{3} \sin x - \cos x - 2ax + b \) decreases for all real values of \(x \).
7. Discuss the monotonicity of \(f(x) = 2 \log |x| - x^2 + 2x + 3 \).
8. Let \(g(x) = f(\log x) + f(2 - \log x) \) and \(f''(x) < 0, \forall x \in (0, 3) \). Then find the interval in which \(g(x) \) increases.

POINT OF INFLECTION

For continuous function \(f(x) \), if \(f''(x) = 0 \) or \(f''(x) \) does not exist at points where \(f'(x) \) exists and if \(f''(x) \) changes sign when passing through \(x = x_0 \), then \(x_0 \) is called the point of inflection. At the point of inflection, the curve changes its concavity, i.e.,
 a. If \(f''(x) < 0, x \in (a, b) \), then the curve \(y = f(x) \) is concave upward in \((a, b)\).
 b. If \(f''(x) > 0, x \in (a, b) \), then the curve \(y = f(x) \) is concave downward in \((a, b)\).

\[\text{Fig. 6.12} \]
b. If \(f''(x) > 0, x \in (a, b) \), then the curve \(y = f(x) \) is concave upward in \((a, b)\).

Consider function \(f(x) = x^2 \). At \(x = 0 \), \(f'(x) = 0 \). Also, \(f''(x) = 0 \) at \(x = 0 \). Such a point is called the point of inflection. Here the 2nd derivative is zero.

Consider the function \(f(x) \) whose graph is given in Fig. 6.14.

![Diagram showing concave upward curve]

Fig. 6.14

Here \(f(x) \) is non-differentiable at \(x = c \), but curve changes its concavity. Hence, \(x = c \) is the point of inflection.

Example 6.21 Find the points of inflection for

a. \(f(x) = \sin x \)

b. \(f(x) = 3x^4 - 4x^3 \)

c. \(f(x) = x^{1/3} \)

Sol.

- **a.** \(f(x) = \sin x \)

 \[f'(x) = \cos x \]

 \[f''(x) = -\sin x \]

 \[f''(x) = 0 \Leftrightarrow x = n\pi, n \in \mathbb{Z} \]

- **b.** \(f(x) = 3x^4 - 4x^3 \)

 \[f'(x) = 12x^3 - 12x^2 \]

 \[f''(x) = 36x^2 - 24x \]

 Now \(f''(x) = 0 \Leftrightarrow x = 0 \) and \(\frac{2}{3} \) are the points of inflection.

Inequalities Using Monotonicity

Example 6.22 Prove that \(\ln(1 + x) < x \) for \(x > 0 \).

Sol. Let us assume \(f(x) = \ln(1 + x) - x \).

Investigating the behaviour of \(f(x) \), i.e.,

\[f'(x) = \frac{1}{1 + x} - 1 = \frac{-x}{1 + x} \]

In the domain of \(f(x) \), \(f'(x) > 0 \) for \(x \in (-1, 0) \) and \(f'(x) < 0 \) for all \(x \in (0, +\infty) \).

Hence, for \(x > 0 \), \(f(x) \) is decreasing.

Moreover, \(f(0) = 0 \). Hence, further \(f(x) < 0 \Rightarrow \ln(1 + x) - x \leq 0 \).

\[\Rightarrow \ln(1 + x) < x \]

Example 6.23 Show that \(0 < x \sin x - \frac{1}{2} \sin^2 x < \left(\frac{\pi - 1}{2} \right) \), \(\forall x \in \left(0, \frac{\pi}{2} \right) \).

Sol. Let \(f(x) = x \sin x - \frac{1}{2} \sin^2 x \)

\[f'(x) = x \cos x + \sin x - \sin x \cos x \]

\[= \sin x - \cos x + x \cos x \]

For \(x \in \left(0, \frac{\pi}{2} \right) \), \(\sin x > 0, 1 - \cos x > 0, \cos x > 0 \)

\[f'(x) > 0 \forall x \in \left(0, \frac{\pi}{2} \right) \]

\[f(x) \] is strictly increasing in \(\left(0, \frac{\pi}{2} \right) \)

\[\Rightarrow \] The range of \(f(x) \) is \(\left(\lim_{x \to 0} f(x), \lim_{x \to +\pi/2} f(x) \right) = \left(0, \frac{\pi - 1}{2} \right) \)

\[\Rightarrow 0 < x \sin x - \frac{1}{2} \sin^2 x < \frac{\pi - 1}{2} \]

Example 6.24 If \(a, b > 0 \) and \(0 < p < 1 \), then prove that \((a + b)^p < a^p + b^p \).

Sol. Let \(f(x) = (1 + x)^p - 1 - x^p, x > 0 \)

\[f'(x) = p(1 + x)^{p-1} - p x^{p-1} = p((1 + x)^{p-1} - x^{p-1}) \quad (1) \]

Now, \(1 + x > x \)
6.8 Calculus

\[(1 + x)^{p - 1} > x^{p - 1} \quad (\because 1 - p > 0) \]
\[\Rightarrow \frac{1}{(1 + x)^{p - 1}} < \frac{1}{x^{p - 1}} \Rightarrow (1 + x)^{p - 1} < x^{p - 1} \]
\[\Rightarrow (1 + x)^{p - 1} - x^{p - 1} < 0 \quad \text{(2)} \]

From equations (1) and (2), we get \(f'(x) < 0 \)
\[\Rightarrow f(x) \text{ is a decreasing function}. \]

Now, \(f(0) = 0 \)
\[\therefore x > 0 : f(x) < f(0) \]
\[\Rightarrow (1 + x)^{p - 1} - x^{p - 1} < 0 \Rightarrow (1 + x)^{p - 1} < 1 + x^p \]

Put \(x = \frac{a}{b} \), hence \((a + b)^p < a^p + b^p \).

Example 6.25 Prove that \(|\cos \alpha - \cos \beta| \leq |\alpha - \beta| \).

Sol. Here, first we have to select an appropriate function.
Let \(f(x) = x + \cos x \)
\[\Rightarrow f'(x) = 1 - \sin x \geq 0 \quad (\because -1 \leq \sin x \leq 1) \]

Hence, \(f(x) \) is a monotonically increasing function.
For \(\alpha \geq \beta \Rightarrow f(\alpha) \geq f(\beta) \)
or \(\alpha + \cos \alpha \geq \beta + \cos \beta \) or \(\cos \beta - \cos \alpha \leq \alpha - \beta \)
\[\Rightarrow - (\cos \alpha - \cos \beta) \leq (\alpha - \beta) \quad \text{(1)} \]

and for \(\alpha \leq \beta \)
\[\Rightarrow f(\alpha) \leq f(\beta) \quad \text{or} \quad \alpha + \cos \alpha \leq \beta + \cos \beta \]
or \(\cos \alpha - \cos \beta \leq (\alpha - \beta) \)
\[\Rightarrow (\alpha - \beta) \leq |\alpha - \beta| \quad \text{(2)} \]
Combining equations (1) and (2), we get \(|\cos \alpha - \cos \beta| \leq |\alpha - \beta| \).

Example 6.26 For \(0 < x < \frac{\pi}{2} \), prove that \(\cos (\sin x) < \sin (\cos x) \).

Sol. Let \(f(x) = x - \sin x \Rightarrow f'(x) = 1 - \cos x > 0 \quad (\because 0 < x < \frac{\pi}{2}) \)

Hence, \(f(x) \) is an increasing function in \(x \in \left(0, \frac{\pi}{2} \right) \).
\[\therefore x > 0, \text{ then } f(x) > f(0) \text{ or } x - \sin x > 0 \]
\[\Rightarrow x > \sin x \quad \text{(1)} \]

Again, \(0 < x < \frac{\pi}{2} \), therefore \(0 < \cos x < 1 \).
\[\cos x > \sin (\cos x) \quad \text{[From (1)]} \quad \text{(2)} \]

Now, \(\cos x < \sin (\cos x) \quad \text{[From (1)]} \quad \text{(3)} \]

From equations (2) and (3), we get
\[\cos x < \cos (\sin x) \quad \text{[From (1)]} \]

Hence, \(\sin (\cos x) < \sin (\sin x) \).

4. Prove that \(f(x) = \frac{\sin x}{x} \) is monotonically decreasing in \([0, \pi/2] \).

Hence, prove that \(\frac{2x}{\pi} < \sin x < x \) for \(x \in (0, \pi/2) \).

EXTREUM

Introduction

The notion of optimizing functions is one of the most useful applications of calculus used in almost every sphere of life including geometry, business, trade, industries, economics, medicines and even at home. In this section, we shall see how calculus defines the notion of maxima and minima and distinguishes it from the greatest and least value, or global maxima and global minima of a function.

Critical points of a function

Critical point of a function of a real variable is any value in the domain where either the function is not differentiable or its derivative is 0.

Basic Theorem of Maxima and Minima

![Fig. 6.18]

A function \(f(x) \) is said to have a maximum at \(x = a \) if \(f(a) \) is greater than every other value assumed by \(f(x) \) in the immediate neighbourhood of \(x = a \).

Symbolically, \(f(a) > f(a + h) \) \(\Rightarrow x = a \) gives maxima for a sufficiently small positive \(h \).

Similarly, a function \(f(x) \) is said to have a minimum value at \(x = b \) if \(f(b) \) attains the least value than every other value assumed by \(f(x) \) in the immediate neighbourhood of \(x = b \).

Symbolically, if \(f(b) < f(b + h) \) \(\Rightarrow x = b \) gives minima for a sufficiently small positive \(h \).

Note:
- The maximum and minimum values of a function are also known as local/relative maxima or local/relative minima as these are the greatest and least values of the function relative to some neighbourhood of the point in question.
- The term 'extremum' or (extremal) or 'turning value' is used for both maximum and minimum values.
- A maximum (minimum) value of a function may not be the greatest (least) value in a finite interval.
- A function can have several maximum and minimum values, and a minimum value may even be greater than a maximum value.

Concept/Application Exercise 6.2

1. Show that \(\frac{x}{1 + x} < \ln (1 + x) \) for \(x > 0 \).
2. For \(0 < x \leq \frac{\pi}{2} \), show that \(x - \frac{x^3}{6} < \sin x < x \).
3. Show that \(\tan^{-1} x > \frac{x}{1 + x^2} \), if \(x \in (0, \infty) \).
4. Show that \(\tan^{-1} x < \frac{x}{1 + x^2} \), if \(x \in (-\infty, 0) \).
Consider the interval \((a-h, a+h)\). For this interval, we find \(f(x)\) is decreasing i.e., \(\frac{df}{dx} < 0\). Similarly, for the interval \((a, a+h)\) and \((a-h, a)\) again we find \(f(x)\) is decreasing i.e., \(\frac{df}{dx} < 0\). Hence, at the point \(x = a\) \(\frac{df}{dx} = 0\) is the necessary condition for maxima or minima. Therefore, \(\frac{df}{dx} = 0\) at \(x = b\) which is the point of minima. Hence, the point \(x = b\) is the point of minima. Hence, \(f(x)\) is decreasing i.e., \(\frac{df}{dx} < 0\) and \(f(x)\) has a point of maxima.

As shown in the Fig. 6.20, it is clear that as \(x\) increases from \(a-h\) to \(a+h\), the function \(f(x)\) continuously decreases i.e., positive for \(x < a\). Hence, \(\frac{df}{dx} < 0\) at \(a\) and \(f(x)\) has a point of minimum i.e., \(a\).

Similarly, \(\frac{df}{dx} > 0\) at \(a-h\) and \(\frac{df}{dx} < 0\) at \(a+h\). Therefore, \(\frac{df}{dx}\) at \(x = a\) is a point of local maxima.

The maximum and minimum values of \(f(x)\) are obtained by solving the equation \(f'(x) = 0\) and checking the second derivative, \(f''(x)\), at these points. If \(f''(x) > 0\), then \(x\) is a point of local minima. If \(f''(x) < 0\), then \(x\) is a point of local maxima.

The function \(f(x) = x^2 - 4x + 3\) has a point of local minima at \(x = 2\) where \(f''(2) = 2 > 0\). Hence, \(x = 2\) is a point of local minima.

Similarly, \(f(x) = -x^2 + 4x - 3\) has a point of local maxima at \(x = 2\) where \(f''(2) = -2 < 0\). Hence, \(x = 2\) is a point of local maxima.

The function \(f(x) = x^3 - 6x^2 + 9x - 1\) has a point of local minima at \(x = 1\) where \(f'(1) = 0\) and \(f''(1) = 2 > 0\). Hence, \(x = 1\) is a point of local minima.

Similarly, \(f(x) = -x^3 + 6x^2 - 9x + 1\) has a point of local maxima at \(x = 3\) where \(f'(3) = 0\) and \(f''(3) = -2 < 0\). Hence, \(x = 3\) is a point of local maxima.

The function \(f(x) = x^4 - 4x^3 + 3x^2 - 1\) has a point of local minima at \(x = 0\) where \(f'(0) = 0\) and \(f''(0) = -8 < 0\). Hence, \(x = 0\) is a point of local minima.

Similarly, \(f(x) = -x^4 + 4x^3 - 3x^2 + 1\) has a point of local maxima at \(x = 1\) where \(f'(1) = 0\) and \(f''(1) = 8 > 0\). Hence, \(x = 1\) is a point of local maxima.

The function \(f(x) = x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 1\) has a point of local minima at \(x = 0\) where \(f'(0) = 0\) and \(f''(0) = -20 < 0\). Hence, \(x = 0\) is a point of local minima.

Similarly, \(f(x) = -x^5 + 5x^4 - 10x^3 + 10x^2 - 5x + 1\) has a point of local maxima at \(x = 1\) where \(f'(1) = 0\) and \(f''(1) = 20 > 0\). Hence, \(x = 1\) is a point of local maxima.

The function \(f(x) = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1\) has a point of local minima at \(x = 0\) where \(f'(0) = 0\) and \(f''(0) = 0\). Hence, \(x = 0\) is a point of local minima.

Similarly, \(f(x) = -x^6 + 6x^5 - 15x^4 + 20x^3 - 15x^2 + 6x - 1\) has a point of local maxima at \(x = 1\) where \(f'(1) = 0\) and \(f''(1) = 0\). Hence, \(x = 1\) is a point of local maxima.

The function \(f(x) = x^7 - 7x^6 + 21x^5 - 35x^4 + 35x^3 - 21x^2 + 7x - 1\) has a point of local minima at \(x = 0\) where \(f'(0) = 0\) and \(f''(0) = 0\). Hence, \(x = 0\) is a point of local minima.

Similarly, \(f(x) = -x^7 + 7x^6 - 21x^5 + 35x^4 - 35x^3 + 21x^2 - 7x + 1\) has a point of local maxima at \(x = 1\) where \(f'(1) = 0\) and \(f''(1) = 0\). Hence, \(x = 1\) is a point of local maxima.
Example 6.28 The function \(y = \frac{ax + b}{(x-1)(x-4)} \) has turning point at \(P(2, -1) \). Then find the value of \(a \) and \(b \).

\[
S \Rightarrow y = \frac{ax + b}{x^2 - 5x + 4} \text{ has turning point at } P(2, -1)
\]

\[
\Rightarrow P(2, -1) \text{ lies on the curve } \Rightarrow 2a + b = 2 \quad (1)
\]

Also, \(\frac{dy}{dx} = 0 \) at \(P(2, -1) \)

\[
\text{Now, } \frac{dy}{dx} = \frac{a(x^2 - 5x + 4) - (2x - 5)(ax + b)}{(x^2 - 5x + 4)^2}
\]

At \(P(2, -1) \), \(\frac{dy}{dx} = \frac{-2a + 2a + b}{4} = 0 \)

\[
\Rightarrow b = 0 \quad \Rightarrow \quad a = 1. \quad \text{[from equation (1)]}
\]

Example 6.29 Let \(f: [a, b] \to \mathbb{R} \) be a function such that for \(c \in (a, b) \), \(f''(c) = f''(c) = f'''(c) = f''''(c) = 0 \), then

a. \(f \) has a local extremum at \(x = c \)

b. \(f \) has neither local maximum nor minimum at \(x = c \)

c. \(f \) is necessarily a constant function

d. It is difficult to say whether \((a) \) or \((b) \).

Example 6.30 Discuss the extremum of

\[f(x) = 40(3x^4 + 8x^3 - 18x^2 + 60). \]

Sol. \(f(x) = \frac{40}{3x^4 + 8x^3 - 18x^2 + 60} \)

\[\Rightarrow f'(x) = -\frac{40(12x^3 + 24x^2 - 36x)}{(3x^4 + 8x^3 - 18x^2 + 60)^2} \]

\[= -\frac{12x(x^2 + 2x - 3)}{(3x^4 + 8x^3 - 18x^2 + 60)^2} \]

\[= -\frac{12(x-1)(x+3)}{(3x^4 + 8x^3 - 18x^2 + 60)^2} \]

The sign scheme of \(f'(x) \) is given in Fig. 6.21.

\[
\begin{array}{ccc}
-3 & - & + \\
0 & + & - \\
1 & + & + \\
\end{array}
\]

Hence, \(x = -3 \) and \(x = 1 \) are the points of maxima and \(x = 0 \) is the point of minima.

Example 6.31 Discuss the extremum of \(f(x) = \sin x (1 + \cos x) \), \(x \in (0, \pi/2) \).

Sol. Let \(f(x) = \sin x (1 + \cos x) \)

\[\Rightarrow f'(x) = \cos 2x + \cos x \]

and \(f''(x) = -2 \sin 2x - \sin x = -(2 \sin 2x + \sin x) \)

For maximum or minimum value of \(f(x) \), \(f'(x) = 0 \).

\[\Rightarrow \cos 2x + \cos x = 0 \]

\[\Rightarrow \cos x = -\cos 2x \]

\[\Rightarrow \cos x = \cos (\pi \pm 2x) \]

\[\Rightarrow x = \pi \pm 2x \] or \(x = \frac{\pi}{3} \)

Now, \(f''(\frac{\pi}{3}) = -2 \sin \frac{2\pi}{3} - \sin \frac{\pi}{3} \)

\[= -2 \cdot \sqrt{\frac{3}{2}} - \sqrt{\frac{3}{2}} = -\frac{3\sqrt{3}}{2} = -ve \]

Hence, \(f(x) \) has maxima at \(x = \frac{\pi}{3} \).

Example 6.32 Discuss the maxima/minima of the function

\[f(x) = \frac{4\sin x - 2x - x \cos x}{2 + \cos x}, \quad 0 < x < 2\pi. \]

Sol. \(y = f(x) = \frac{4\sin x - 2x - x \cos x}{2 + \cos x}, \quad 0 < x < 2\pi \)

\[= \frac{4\sin x - x}{2 + \cos x} \]

\[= \frac{(2 + \cos x)4 \cos x + 4 \sin^2 x - 1}{(2 + \cos x)^2} \]

\[= \frac{\cos x(4 - \cos x)}{(2 + \cos x)^2} \]

\[f'(x) = 0 \] at \(x = 0 \), i.e., at \(x = \pi/2, 3\pi/2 \)

\[\frac{\pi}{2} \quad \frac{3\pi}{2} \]

Hence, \(f(x) \) is an increasing function in \((0, \pi/2) \cup (3\pi/2, 2\pi)\) and decreasing function in \((\pi/2, 3\pi/2)\). Also \(x = (\pi/2) \) is the point of maxima and \(x = (3\pi/2) \) is the point of minima.

Example 6.33 Discuss the extremum of \(f(x) = x^2 + \frac{1}{x^2} \).

Sol. \(f(x) = x^2 + \frac{1}{x^2} \)

\[
\begin{align*}
f'(x) &= 2x - \frac{2}{x^3} \\
\text{Let } f'(x) &= 0 \Rightarrow x^4 = 1 \Rightarrow x = \pm 1
\end{align*}
\]

Also, \(f''(x) = 2 + \frac{6}{x^4} > 0 \) for all \(x \neq 0 \)

\[\Rightarrow \text{Both the points } x = 1 \text{ and } x = -1 \text{ are the points of minima.} \]
Note:
Here two consecutive points of extrema are minima, this is because \(f(x) \) is discontinuous at \(x = 0 \). However, discontinuous function can also have two consecutive points of extrema of which one is maxima and the other minima, e.g. for \(f(x) = \frac{1}{x} \). For continuous function, consecutive points of extrema are maxima and minima.

Example 6.34 Find the maximum value of \(f(x) = \left(\frac{1}{x} \right)^x \).

Sol.
\[
f(x) = \left(\frac{1}{x} \right)^x \Rightarrow f'(x) = \left(\frac{1}{x} \right)^x \left(\log x - 1 \right)
\]

\[
f'(x) = 0 \Rightarrow \log x = 1 \Rightarrow \frac{1}{x} = e \Rightarrow x = \frac{1}{e}
\]

Also, for \(x < 1/e \), \(f'(x) \) is positive and for \(x > 1/e \), \(f'(x) \) is negative.

Hence, \(x = 1/e \) is point of maxima.

Therefore, the maximum value of function is \(e^{1/e} \).

Also, \(\lim_{x \to 0} \left(\frac{1}{x} \right)^x = e^{-\infty} = e^{-\lim_{x \to 0} x \log x} = e^0 = 1 \)

\[
\lim_{x \to \infty} \left(\frac{1}{x} \right)^x = 0
\]

Fig. 6.24

Example 6.35 Let \(f(x) = \frac{a}{x} + x^2 \). If it has a maximum at \(x = -3 \), then find the value of \(a \).

Sol.
\[
f'(x) = -\frac{a}{x^2} + 2x
\]

For \(f'(x) = 0, x^2 = \frac{a}{2} \)

For \(x = -3, a = -54 \)

Now, \(f''(x) = \frac{2a}{x^3} + 2 \Rightarrow f''(-3) = \frac{-54}{(-3)^3} + 2 = 0 \)

Hence, \(f(x) \) cannot have maxima at \(x = -3 \).

Example 6.36

a. Discuss the extrema of \(f(x) = \frac{x}{1 + x \tan x} \), \(x \in \left(0, \frac{\pi}{2}\right) \).

b. Discuss the extremum of \(f(x) = a \sec x + b \cosec x \), \(0 < a < b \).

Sol.

a. \(f'(x) = \frac{1 - x^2 \sec^2 x}{(1 + x \tan x)^2} = \frac{\sec^2 x(\cos x + x)(\cos x - x)}{(1 + x \tan x)^2} \)

b. Discuss the extremum of \(f(x) = a \sec x + b \cosec x \), \(0 < a < b \).

Fig. 6.25

Clearly \(f'(x_0) = 0 \)

and \(f''(x) > 0 \forall x \in (0, x_0) \)

\(f'(x) < 0 \forall x \in (x_0, \pi/2) \).

Thus, \(x = x_0 \) is the only point of maxima for \(y = f(x) \).

b. \(f(x) = a \sec x + b \cosec x \), \(0 < a < b \).

\(f'(x) = a \sec x \tan x - b \cosec x \tan x \)

Let \(f''(x) = 0 \Rightarrow a \sec x \tan x - b \cosec x \tan x = \frac{\sin x}{\cos^2 x} = \frac{b \cos x}{\sin^2 x} \)

\[\tan^2 x = \frac{b}{a} \]

\[x = \tan^{-1}\left(\frac{b}{a}\right) \quad a, b > 0 \]

\[x = \tan^{-1}\left(\frac{b}{a}\right) > 0 \]

\[x \] lies in either the first or third quadrant for extremum.

Case I: \(0 < x < \pi/2 \)

\[\lim_{x \to 0} (a \sec x + b \cosec x) \to \infty \]

\[\lim_{x \to \pi/2} (a \sec x + b \cosec x) \to \infty \]

Also \(f(x) \) is \(+ve \) for this value of \(x \).

Hence, only one point of extremum is the point of minima.

and \(\tan x = \left(\frac{b}{a}\right)^{1/3} \)

\[\Rightarrow \cos x = \frac{a^{1/3}}{\sqrt{a^{2/3} + b^{2/3}}}, \quad \sin x = \frac{b^{1/3}}{\sqrt{a^{2/3} + b^{2/3}}} \]

\[\Rightarrow \text{Minimum value of } f = \frac{a \sqrt{a^{2/3} + b^{2/3}}}{a^{1/3}} + \frac{b \sqrt{a^{2/3} + b^{2/3}}}{b^{1/3}} = (a^{2/3} + b^{2/3})^{3/2} \]

Case II: \(\pi < x < 3\pi/2 \)

\[\lim_{x \to \pi} (a \sec x + b \cosec x) \to \infty \]

\[\lim_{x \to 3\pi/2} (a \sec x + b \cosec x) \to \infty \]

Also \(f(x) \) is \(-ve \) for these values of \(x \).

Hence, only one point of extremum is the point of maxima.

\[\Rightarrow \text{Maximum value } f_{\max} = -(a^{2/3} + b^{2/3})^{3/2} \]
Example 6.37 Find the range of the function
\[f(x) = \frac{x^4 + x^2 + 5}{(x^2 + 1)^2}. \]

\[f(x) = \frac{x^4 + x^2 + 5}{(x^2 + 1)^2} = \frac{(x^4 + 2x^2 + 1) + 4 - x^2}{(x^2 + 1)^2} = 1 + \frac{4 - x^2}{(x^2 + 1)^2}. \]

Let \(g(x) = \frac{4 - x^2}{(x^2 + 1)^2} \)

\[g'(x) = 0 \Rightarrow g'(x) = (x^2 + 1)^2 \cdot (-2x) - (4 - x^2) \cdot 2(x^2 + 1) \cdot 2x = 0 \]
\[\Rightarrow (x^2 + 1)2x [-x^2 - 1 - (4 - x^2)] = 0 \]
\[\Rightarrow x = 0 \text{ or } x^2 = 9 \Rightarrow x = 3 \text{ or } -2 \]
\[g(3) = \frac{1}{20} = g(-3) \quad (\because g(x) \text{ is even}) \]
\[f(3) = 1 - \frac{1}{20} = \frac{19}{20} \]

Also, \(\lim_{x \to \infty} f(x) = 1 \) and \(f(0) = 5 \)

Hence, range is \(\left[\frac{19}{20}, 5 \right] \)

When \(F(x) \) is not Differentiable at \(x = a \)

Case 1: When \(f(x) \) is continuous at \(x = a \) and \(f'(a - h) \) and \(f'(a + h) \) exist, and are non-zero, then \(f(x) \) has a local maximum or minimum at \(x = a \) if \(f'(a - h) \) and \(f'(a + h) \) are of opposite signs.

If \(f'(a - h) > 0 \) and \(f'(a + h) < 0 \), then \(x = a \) will be the point of local maximum.

If \(f'(a - h) < 0 \) and \(f'(a + h) > 0 \), then \(x = a \) will be the point of local minimum.

Consider the following cases:

\[f(x) > f(a - h) \text{ and } f(x) > f(a + h) \]
\[f(x) < f(a - h) \text{ and } f(x) < f(a + h) \]
\[f(x) > f(a - h) \text{ and } f(x) < f(a + h) \]
\[f(x) < f(a - h) \text{ and } f(x) > f(a + h) \]

Case 2: When \(f(x) \) is continuous and \(f'(a - h) \) and \(f'(a + h) \) exist but one of them is zero, then we can infer the information about the existence of local maxima/minima from the basic definition of local maxima/minima.

Case 3: If \(f(x) \) is not continuous at \(x = a \), then compare the values of \(f(x) \) at the neighbouring points of \(x = a \).

It is advisable to draw the graph of the function in the vicinity of the point \(x = a \), because the graph would give us the clear picture about the existence of local maxima/minima at \(x = a \).

Example 6.38 \(f(x) = \begin{cases} x^2 & x \leq 0 \\ 2 \sin x & x > 0 \end{cases} \)

Investigate the function at \(x = 0 \) for maxima/minima.

Sol. Analysing the graph of \(f(x) \), we get \(x = 0 \) as the point of minima.

Also, derivative changes sign from -ve to +ve and \(f(x) \) is continuous at \(x = 0 \), hence \(x = 0 \) is the point of minima.

Note:
We cannot say that the change of sign of derivative helps to determine minima because if the function was given as

\[f(x) = \begin{cases} x^2 & x < 0 \\ 2 & x = 0 \\ 2 \sin x & x > 0 \end{cases} \]
Example 6.39 Let \(f(x) = \begin{cases} x^3 + x^2 + 10x, & x < 0 \\ -3\sin x, & x \geq 0 \end{cases} \). Investigate \(x = 0 \) for local maxima/minima.

Sol. Clearly \(f(x) \) is continuous at \(x = 0 \) as \(f(0) = f(0^-) = f(0^+) = 0 \).

\[
 f'(0^-) = \lim_{h \to 0} \frac{f(-h) - f(0)}{-h} = \lim_{h \to 0} \frac{-h^3 + h^2 - 10h - 0}{-h} = 10
\]

But \(f''(0^+) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{-3\sin h}{h} = -3 \)

Since \(f'(0^-) > 0 \) and \(f''(0^+) < 0 \), \(x = 0 \) is the point of local maxima.

Example 6.40 Test \(f(x) = \{x\} \) for the existence of a local maximum and minimum at \(x = 1 \), where \(\{\} \) represents fractional part function.

Sol.

![Graph of \(f(x) = \{x\} \)](image)

Clearly \(x = 1 \) is the point of discontinuity of \(f(x) = \{x\} \) as \(f(1) = 0, f(1^-) = 1 \) and \(f(1^+) = 0 \).

Now \(f(1-h) > 0 \) and \(f(1+h) > 0 \), i.e., the value of the function at \(x = 1 \) is less than the value of the function at the neighbouring points. Thus, \(x = 1 \) is the point of minimum.

Example 6.41 \(f(x) = \frac{\cos \frac{\pi x}{2}}{x > 0} \). Find the values of \(a \) if \(x \to a, x \leq 0 \) is a point of maxima.

Sol. Clearly, \(f(x) \) increases before \(x = 0 \) and decreases after \(x = 0 \).

\(f(0) = a \).

For \(x = 0 \) to be the point of local maxima,

\[
 f(0) \geq \lim_{x \to 0^+} f(x)
\]

\[
 \Rightarrow f(0) \geq \lim_{x \to 0^+} \cos \left(\frac{\pi x}{2} \right)
\]

\[
 \Rightarrow a \geq 1
\]

Graphical method

![Graphical method](image)

For \(a = 0, x = 0 \) is not the point of extremum.
The graph of \(y = x + a \) must shift at least 1 unit upward for \(x = 0 \) to be the point of maxima.

Hence, \(a \geq 1 \).

Example 6.42 The function \(f(x) = |x-a| + c \forall x \in (-\infty, \infty) \), where \(a > 0, b > 0, c > 0 \). Find the condition if \(f(x) \) attains the minimum value only at one point.

\[
 f(x) = \begin{cases} b-(a+c)x, & x < 0 \\ b+(c-a)x, & 0 \leq x < \frac{b}{a} \\ (a+c)x + b, & x \geq \frac{b}{a} \end{cases}
\]

Sol. \(f(x) = \)

![Graph of \(f(x) = \{x\} \)](image)

\(x = 0 \) gives minima

Infinite points of minima

\(x = \frac{c}{a} \) gives minima

Figure 6.33 clearly indicates that for exactly one point of minima, \(a \neq c \).
6.14 Calculus

Example 6.43
Discuss the extremum of \(f(x) = 2x + 3x^{2/3} \).

Sol.
\[
f(x) = 2x + 3x^{2/3}
\]

\[
f'(x) = 2 + \frac{2}{3}x^{-1/3} = 2(1 + x^{-1/3})
\]

Let \(f'(x) = 0 \)
\[
\Rightarrow x^{1/3} + 1 = 0 \Rightarrow x = -1
\]

\[
f''(x) = -\frac{2}{3}x^{-4/3}
\]

and \(f''(-1) = -\frac{2}{3}(-1)^{-4/3} = -\frac{2}{3} < 0 \)
\[
\Rightarrow x = -1 \text{ is the point of maxima.}
\]

Also, \(f(x) \) is non-differentiable at \(x = 0 \).

![Fig. 6.34](image)

From the graph, \(x = 0 \) is the point of local minima.

CONCEPT OF GLOBAL MAXIMUM/MINIMUM

Let \(y = f(x) \) be a given function with domain \(D \). Let \([a, b] \subseteq D \),
Global maximum/minimum of \(f(x) \) in \([a, b] \) is basically the greatest/least value of \(f(x) \) in \([a, b] \).

Global maximum and minimum in \([a, b] \) would occur at the critical point of \(f(x) \) within \([a, b] \) or at the endpoints of the interval.

Global Maximum/Minimum in \([a, b] \)

In order to find the global maximum and minimum of \(f(x) \) in \([a, b] \), find all the critical points of \(f(x) \) in \((a, b) \). Let \(c_1, c_2, ..., c_n \) be the different critical points. Find the value of the function at these critical points.

Let \(f(c_1), f(c_2), ..., f(c_n) \) be the values of the function at critical points.

Say, \(M_1 = \max \{ f(a), f(c_1), f(c_2), ..., f(c_n), f(b) \} \)
and \(M_2 = \min \{ f(a), f(c_1), f(c_2), ..., f(c_n), f(b) \} \),
then \(M_1 \) is the greatest value of \(f(x) \) in \([a, b] \) and \(M_2 \) is the least value of \(f(x) \) in \([a, b] \).

Global Maximum/Minimum in \((a, b) \)

The method for obtaining the greatest and least values of \(f(x) \) in \((a, b) \) is almost same as the method used for obtaining the greatest and least values in \([a, b] \), however with a caution.

Let \(y = f(x) \) be a function and \(c_1, c_2, ..., c_n \) be the different critical points of the function in \((a, b) \),
Let \(M_1 = \max \{ f(c_1), f(c_2), f(c_3), ..., f(c_n) \} \)
and \(M_2 = \min \{ f(c_1), f(c_2), f(c_3), ..., f(c_n) \} \).

Now, if \(\lim_{x \to a^+} f(x) = M_1 \) or \(\lim_{x \to b^+} f(x) = M_2 \), \(f(x) \) will not have global maximum (or global minimum) in \((a, b) \).

This means that if the limiting values at the endpoints are greater than \(M_1 \) or less than \(M_2 \), then \(f(x) \) will not have global maximum/minimum in \((a, b)\).

On the other hand, if \(M_1 = \lim_{x \to a^+} f(x) \) and \(M_2 = \lim_{x \to b^-} f(x) \),
then \(M_1 \) and \(M_2 \) will, respectively, be the global maximum and global minimum of \(f(x) \) in \((a, b) \).

Consider the following cases:

![Fig. 6.35](image)

Example 6.44
Let \(f(x) = 2x^3 - 9x^2 + 12x + 6 \). Discuss the global maxima and minima of \(f(x) \) in \([0, 2]\) and \((1, 3)\) and hence, find the range of \(f(x) \) for corresponding intervals.

Sol.
\[
f(x) = 2x^3 - 9x^2 + 12x + 6
\]

\[
f'(x) = 6x^2 - 18x + 12 = 6(x^2 - 3x + 2) = 6(x-1)(x-2)
\]

Clearly, the critical point of \(f(x) \) in \([0, 2]\) is \(x = 1 \).

Now, \(f(0) = 6, f(1) = 11, f(2) = 10 \)

Thus, \(x = 0 \) is the point of minimum of \(f(x) \) in \([0, 2]\) and \(x = 1 \) is the point of global maximum.

Hence, range is \([6, 11]\).

For \(x \in (1, 3) \), clearly \(x = 2 \) is the only critical point in \((1, 3)\).

\[
f''(2) = 10. \lim_{x \to 1^+} f(x) = 11 \text{ and } \lim_{x \to 2^-} f(x) = 15
\]

Thus, \(x = 2 \) is the point of global minimum in \((1, 3)\) and the global maximum in \((1, 3)\) does not exist.

Hence, range is \([10, 15]\).

Example 6.45
Discuss the global maxima and global minima of \(f(x) = \tan^{-1} x - \log_{e} x \) in \(\left[\frac{1}{\sqrt{3}}, \sqrt{3} \right] \).

Sol.
\[
f(x) = \tan^{-1} x - \ln x
\]
\[
\Rightarrow f'(x) = \frac{1}{1 + x^2} - \frac{1}{x} = \frac{(x^2 + 1) - x^2}{x(x^2 + 1)} = \frac{1}{x(x^2 + 1)} < 0 \quad \forall x \in \left[\frac{1}{\sqrt{3}}, \sqrt{3}\right]
\]
Hence, \(f_{\text{inc}} = f\left(\sqrt{3}\right) = \tan^{-1}\sqrt{3} - \ln\sqrt{3} = \frac{\pi}{3} - \ln\sqrt{3} \)
\[f_{\text{max}} = f\left(\frac{1}{\sqrt{3}}\right) = \tan^{-1}\frac{1}{\sqrt{3}} - \ln\sqrt{3} = \frac{\pi}{6} - \ln\frac{1}{\sqrt{3}}\]

Example 6.46 Find the range of the function \(f(x) = 2\sqrt{x - 2 + 4 - x} \).

Sol. Clearly, domain of the function is \([2, 4]\).

Now, \(f'(x) = \frac{1}{\sqrt{x - 2}} - \frac{1}{2\sqrt{4 - x}} \)
\[f'(x) = 0 \Rightarrow \frac{\sqrt{x - 2}}{2\sqrt{4 - x}} = 0 \]
\[\Rightarrow \sqrt{x - 2} = 2\sqrt{4 - x} \]
\[\Rightarrow x - 2 = 16 - 4x \]
\[\Rightarrow x = 3 \]

Now, \(f(3) = \frac{18}{5} \), \(\int \frac{18}{5} - 2 + \sqrt{4 - \frac{18}{5}} = \sqrt{10} \)
\[f(4) = 2\sqrt{2} \]

Hence range of the function is \([3, \sqrt{10}]\).

Also, here \(x = (18/5) \) is the point of global maxima.

Concept Application Exercise 6.3

1. Discuss the extremum of \(f(x) = 2x^3 - 3x^2 - 12x + 5 \) for \(x \in [-2, 4] \) and find the range of \(f(x) \) for the given interval.
2. Discuss the extremum of \(f(x) = 1 + 2\sin x + 3\cos^2 x \), \(0 \leq x \leq 2\pi \).
3. Discuss the extremum of \(f(x) = \sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x \), \(0 \leq x \leq \pi \).
4. Discuss the extremum of \(f(\theta) = \sin^p \theta \cos^q \theta \), \(p, q > 0 \), \(0 < \theta < \pi/2 \).
5. Find the maximum and minimum values of the function \(y = \log_{a}(3x^4 - 2x^2 - 6x + 6 + 1) \), \(\forall x \in (0, 2) \). Given that \((3x^4 - 2x^2 - 6x + 6 + 1) > 0 \) \(\forall x \in (0, 2) \).
6. Let \(f(x) = -\sin^2 x + 3 \sin x + 5 \) on \([0, \pi/2]\). Find the local maximum and local minimum of \(f(x) \).
7. Discuss the extremum of \(f(x) = \tan^{-1} \left(\frac{x + 1}{x}\right) \).
8. Discuss the extremum of \(f(x) = x(x^2 - 4)^{-1/4} \).
9. Let \(f(x) = \begin{cases} x^2 - x^2 + 10x - 5, & x \leq 1 \\ -2x + \log_2(b^3 - 2), & x > 1 \end{cases} \)

Find the values of \(b \) for which \(f(x) \) has the greatest value at \(x = 1 \).
10. Let \(f(x) \) be defined as \(f(x) = \begin{cases} \tan^{-1} \alpha - 5x^2, & 0 < x < 1 \\ -6x, & x \geq 1 \end{cases} \)

If \(f(x) \) has a maximum at \(x = 1 \), then find the values of \(\alpha \).

NATURE OF ROOTS OF CUBIC POLYNOMIALS

Let \(f(x) = x^3 + ax^2 + bx + c \) be the given cubic polynomial, and \(f(x) = 0 \) be the corresponding cubic equation, where \(a, b, c \in R \).

Now, \(f'(x) = 3x^2 + 2ax + b \)

Let \(D = 4a^2 - 12bc = 4(a^2 - 3b) \) be the discriminant of the equation \(f'(x) = 0 \).

- If \(D < 0 \Rightarrow f'(x) > 0 \) \(\forall x \in R \). That means \(f(x) \) would be an increasing function of \(x \). Also, \(\lim_{x \to +\infty} f(x) = \infty \) and \(\lim_{x \to -\infty} f(x) = \infty \). Thus, the graph of \(f(x) \) would look like Fig. 6.36. It is clear that graph of \(y = f(x) \) would cut the \(x \)-axis only once. That means we would have just one real root, (say \(x_0 \)). Clearly \(x_0 > 0 \) if \(c < 0 \), and \(x_0 < 0 \) if \(c > 0 \).

![Graph of f(x)](image)

Fig. 6.36

- If \(D > 0 \), \(f'(x) = 0 \) would have two real roots (say \(x_1 \) and \(x_2 \), let \(x_1 < x_2 \))

\[f'(x) = 3(x - x_1)(x - x_2) \]

Clearly, \(f'(x) < 0, x \in (x_1, x_2) \) and \(f'(x) > 0, x \in (-\infty, x_1) \cup (x_2, \infty) \)

That means \(f(x) \) would increase in \((-\infty, x_1) \) and \((x_2, \infty) \), and would decrease in \((x_1, x_2) \). Hence, \(x = x_1 \) would be a point of local maxima and \(x = x_2 \) would be a point of local minima.

Thus, the graph of \(y = f(x) \) could have these five possibilities [Figs. 6.37 (a-e)].
6.16 Calculus

Fig. 6.37

Clearly, in Fig. 6.37(a), we have three real and distinct roots. In Figs. 6.37 (b) and (c), we have just one real root and in Figs. 6.37 (d) and (e), we have three real roots but one of them would be repeated.

a. If \(f(x_1) \) \(f(x_2) > 0 \), \(f(x) = 0 \) would have just one real root.

b. If \(f(x_1) \) \(f(x_2) < 0 \), \(f(x) = 0 \) would have three real and distinct roots.

c. If \(f(x_1) \) \(f(x_2) = 0 \), \(f(x) = 0 \) would have three real roots but one of the roots would be repeated.

- If \(D = 0, f'(x) = 3(x-x_1)^2 \) where \(x_1 \) is the root of \(f'(x) = 0 \)

\[f(x) = (x-x_1)^3 + k \]

Now, if \(k = 0 \), then \(f(x) = 0 \) has three equal real roots and if \(k \neq 0 \), then \(f(x) = 0 \) has one real root.

Example 6.47 Find the value of \(a \) if \(x^3 - 3x + a = 0 \) has three distinct real roots.

Sol. Let \(f(x) = x^3 - 3x + a \)

Let \(f'(x) = 0 \)

\[3x^2 - 3 = 0 \implies x = \pm 1 \]

For three distinct real roots, \(f(1)f(-1) < 0 \)

\[(1 - a)(-1 + a) < 0 \]

\[(a + 2)(a - 2) < 0 \]

\[-2 < a < 2 \]

Example 6.48 Prove that there exist exactly two non-similar isosceles triangles \(ABC \) such that \(\tan A + \tan B + \tan C = 100 \).

Sol. Let \(A = B \), then \(2A + C = 180^\circ \) and \(2 \tan A + \tan B + \tan C = 100 \)

Now \(2A + C = 180^\circ \implies \tan 2A = -\tan C \) \hspace{1cm} (1)

Also \(2 \tan A + \tan C = 100 \)

\[\implies 2 \tan A = 100 - \tan C \] \hspace{1cm} (2)

From equations (1) and (2), \(2 \tan A - 100 = -2 \tan A \)

Let \(\tan A = x \), then

\[\frac{2x}{1-x^2} = 2x - 100 \]

\[x^3 - 50x^2 + 50 = 0 \]

Let \(f(x) = x^3 - 50x^2 + 50 \). Then \(f'(x) = 3x^2 - 100x \). Thus, \(f'(x) = 0 \) has roots \(\frac{100}{3} \). Also, \(f(0) = -\frac{100}{3} < 0 \). Thus, \(f(x) = 0 \) has exactly three distinct real roots. Therefore, \(\tan A \) and hence \(A \) has three distinct values but one of them will be obtuse angle. Hence, there exist exactly two non-similar isosceles triangles.

Example 6.49 If \(t \) be a real number satisfying the equation \(2t^3 - 9t^2 + 30 - a = 0 \), then find the values of the parameter \(a \) for which the equation \(x + \frac{1}{x} = t \)

Sol. We have \(2t^3 - 9t^2 + 30 - a = 0 \)

Any real root \(t \) of this equation gives two real and distinct values of \(x \) if \(\left| g(t) \right| > 2 \). Thus, we need to find the condition for the equation in \(t \) to have three real and distinct roots, none of which lies in \([-2, 2] \).

Let \(f(t) = 2t^3 - 9t^2 + 30 - a \)

\[f'(t) = 6t^2 - 18t = 0 \implies t = 0, 3 \]

Fig. 6.38

So, the equation \(f(t) = 0 \) has three real and distinct roots if \(f(0)f(3) < 0 \).

\[\implies (30 - a)(54 - 81 + 30 - a) < 0 \implies (30 - a)(-30 - a) < 0 \]

\[\implies (a - 3)(a + 30) < 0 \implies a \in (3, 30) \] \hspace{1cm} (1)

Also, none of the roots lies in \([-2, 2] \) if \(f(-2) > 0 \) and \(f(2) > 0 \)

\[-16 - 36 + 30 + a > 0 \text{ and } 16 - 36 + 30 - a > 0 \]

\[-2a > 0 \text{ and } 10 - a > 0 \implies a + 22 < 0 \text{ and } a - 10 < 0 \]

\[a < -22 \text{ and } a < 10 \]

\[a < -22 \] \hspace{1cm} (2)

From equations (1) and (2), no real value of \(a \) exists.

APPLICATION OF EXTREMUM

Drawing the Graph of the Rational Functions

Following tips are useful for drawing the graphs of the rational functions:

1. Examine the point of intersection of \(y = f(x) \) with \(x \)-axis and \(y \)-axis.

2. Examine whether denominator has a root or not. If no, then graph is continuous and \(f \) is non-monotonic.
e.g., \(f(x) = \frac{x}{x^2 + x + 1} \), \(f(x) = \frac{x^2 + x - 2}{x^2 + x + 1} \).

If denominator has roots, then \(f(x) \) is discontinuous. Such functions can be monotonic/non-monotonic.

e.g., \(f(x) = \frac{x^2 - x}{x^2 - 3x - 4} \)

3. If numerator and denominator have a common factor (say \(x = a \)), then \(y = f(x) \) has removable discontinuity at \(x = a \),

\[f(x) = \frac{x^2 - x}{x^2 - 3x + 2} = \frac{x(x - 1)}{(x - 1)(x - 2)} = \frac{x}{x - 2}, \quad x \neq 1 \]

Functions of type linear/linear represent rectangular hyperbola excluding the point of discontinuity and will always be monotonic.

4. Compute \(\frac{dy}{dx} \) and find the intervals where \(f(x) \) is increasing or decreasing and also where it has horizontal tangent.

5. At the point of discontinuity (say \(x = a \)) check the limiting values \(\lim_{x \to a^-} f(x) \) and \(\lim_{x \to a^+} f(x) \) to find whether \(f \) approaches to \(\infty \) or \(-\infty \).

Illustrations

Example 6.50 Draw the graph of \(f(x) = \frac{x^2 - x + 1}{x^2 + x + 1} \).

Sol. The given function is continuous for all \(x \in R \).

\[f(x) = \frac{2(x^2 - 1)}{(x^2 + x + 1)^2} \]

\[f'(x) = 0 \Rightarrow x = \pm 1 \]

The sign scheme of \(f'(x) \) is given in Fig. 6.39.

From the sign scheme, \(x = 1 \) is the point of minima and \(x = -1 \) is the point of maxima.

Also, \(f(1) = \frac{1}{3} \) and \(f(-1) = 3, f(0) = 1 \)

Further \(\lim_{x \to \pm \infty} \frac{x^2 - x + 1}{x^2 + x + 1} = 1 \)

From the above information, graph of \(y = f(x) \) is

Example 6.51 Draw the graph of \(f(x) = \frac{x^2 - 5x + 6}{x^2 - x} \).

Sol. \(f(x) = \frac{(x - 2)(x - 3)}{x(x - 1)} \)

i. The function is discontinuous when \(x^2 - x = 0 \) or \(x = 0 \) and \(x = 1 \)

ii. Also, \(y = f(x) \) intersects the x-axis when \(x^2 - 5x + 6 = 0 \) or at \(x = 2 \) and \(x = 3 \)

iii. \(\lim_{x \to 0} \frac{x - 2}{x(x - 1)} = 1 \)

iv. \(\lim_{x \to 1} \frac{x - 2}{x(x - 1)} = -\infty \) and \(\lim_{x \to -\infty} \frac{x - 2}{x(x - 1)} = -\infty \)

v. \(f'(x) = \frac{(2x - 9)(x^2 - x) - (2x - 1)(2x - 5x + 6)}{(x^2 - x)^2} \)

\[= \frac{2x^2 - 6x + 3}{(x^2 - x)^2} \]

\(f'(x) = 0 \Rightarrow 2x^2 - 6x + 3 = 0 \) or \(x = \frac{3 \pm \sqrt{3}}{2} \)

Clearly \(x = \frac{3 + \sqrt{3}}{2} \) is the point of minima and \(x = \frac{3 - \sqrt{3}}{2} \) is the point of maxima.

From the above information, graph of \(y = f(x) \) is:

Example 6.52 Draw the graph of \(f(x) = \left| \frac{x^2 - 2}{x^2 - 1} \right| \).

Sol. Consider the function \(g(x) = \frac{x^2 - 2}{x^2 - 1} \)

i. \(g(x) \) is even function, hence graph is symmetrical about the y-axis.

ii. \(g(x) \) is discontinuous at \(x = \pm 1 \).

iii. \(y = g(x) \) intersects the x-axis at \(x = \pm \sqrt{2} \).

iv. \(\lim_{x \to 1} \frac{x^2 - 2}{x^2 - 1} = 1 \)

v. \(\lim_{x \to \pm \infty} \frac{x^2 - 2}{x^2 - 1} = -\infty \) and \(\lim_{x \to 1} \frac{x^2 - 2}{x^2 - 1} = -\infty \)

Hence, the graph of \(y = g(x) \) is as follows:
6.18 Calculus

Then the graph of \(y = f(x) = |g(x)| \) or \(y = f(x) = \) is as follows:

![Graph of \(y = f(x) = |g(x)| \) or \(y = f(x) = \)](image)

Optimization

Example 6.53 Find two positive numbers \(x \) and \(y \) such that \(x + y = 60 \) and \(x^2y \) is maximum.

Sol.

\[
x + y = 60 \\
\Rightarrow y = 60 - x \\
\Rightarrow x^2y = (60 - x)x^3 \\
\text{Let } f(x) = (60 - x)x^3; x \in (0, 60) \\
f'(x) = 3x^2(60 - x) - x^3 = 0 \\
\Rightarrow x = 45 (\because x \neq 0) \\
f''(45') < 0 \text{ and } f''(45') > 0 \\
\text{Hence, local maxima is at } x = 45. \\
\text{So, } x = 45 \text{ and } y = 15.
\]

Example 6.54 Two towns \(A \) and \(B \) are 60 km apart. A school is to be built to serve 150 students in town \(A \) and 50 students in town \(B \). If the total distance to be travelled by 200 students is to be as small as possible, then the school should be built at

- a. town \(B \)
- b. 45 km from town \(A \)
- c. town \(A \)
- d. 45 km from town \(B \)

Sol.

Given that \(AB = 60 \)

![Diagram of \(AB = 60 \)](image)

Let the school be at a distance \(x \) from \(A \) (with 150 students), then the distance travelled by 200 students is

\[
D = 150x + 50(60 - x) = 100x + 3000 \\
D \text{ will be least and equal to 3000 if } x = 0, \text{ i.e., school is built at } A.
\]

Example 6.55 Assuming the petrol burnt (per hour) in driving a motor boat varies as the cube of its velocity, show that the most economical speed when going against the current of \(c \) miles per hour is (3c/2) miles per hour.

Sol. Let the speed of the motor boat be \(v \) mph.

\[
\Rightarrow \text{Velocity of the boat relative to the current } = (v - c) \text{ mph.} \\
\text{If } s \text{ miles is the distance covered, then the time taken to cover this distance is } t = \frac{s}{(v - c)} \text{ hours.} \\
\text{Since, the petrol burnt } = kv^3 \text{ per hour.} \\
\text{where } k \text{ is a constant} \\
\Rightarrow z = \text{total amount of petrol burnt for a distance of } s \text{ miles} = kv^3 \frac{s}{(v - c)} \\
\Rightarrow \frac{dz}{dv} = \frac{2kvn^2(v - 3c^2/3)}{(v - c)^2} \\
\text{For maximum or minimum of } z, \frac{dz}{dv} = 0 \Rightarrow v = 3c/2. \\
\text{If } v \text{ is little less or little greater than } 3c/2, \text{ then the sign of } \frac{dz}{dv} \text{ changes from } -ve \text{ to } +ve. \text{ Hence, } z \text{ is minimum when } v = 3c/2 \text{ mph.} \\
\text{Since, minima is the only extreme value, } z \text{ is least at } v = 3c/2, \text{ i.e., the most economical speed is } 3c/2 \text{ mph.}
\]

Plane Geometry

Example 6.56 Rectangles are inscribed inside a semi-circle of radius \(r \). Find the rectangle with maximum area.

Sol. Let us choose coordinate system with origin as the centre of circle.

Area, \(A = xy \)

![Diagram of semi-circle with inscribed rectangle](image)

\[
\Rightarrow A = 2(r \cos \theta)(r \sin \theta), \theta \in \left(0, \frac{\pi}{2}\right) \\
\Rightarrow A = r^2 \sin 2\theta \\
\text{A is maximum when } \sin 2\theta = 1 \Rightarrow 2\theta = \pi/2 \\
\Rightarrow \theta = \pi/4 \\
\Rightarrow \text{Sides of the rectangle are } 2r \cos (\pi/4) = \sqrt{2}r \text{ and } \text{and } r \sin (\pi/4) = r \sqrt{2}
\]

Example 6.57 A running track of 440 ft is to be laid out enclosing a football field, the shape of which is a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum, then find the lengths of its sides.

Sol.

![Diagram of running track with semi-circle and rectangle](image)

Perimeter = 440 ft.

\[
\Rightarrow 2x + \pi r + 4r = 440 \text{ or } 2x + 2\pi r = 440
\]
\[A = \text{Area of the rectangular portion} = x \times 2r, \]
\[\Rightarrow A = x \left(\frac{440 - 2x}{\pi}\right) = \frac{1}{\pi} \left(440x - 2x^2\right) \]
\[\text{Let } \frac{dA}{dx} = \frac{1}{\pi} \left(440 - 4x\right) = 0 \]
\[\Rightarrow x = 110 \text{ for which } \frac{d^2A}{dx^2} < 0 \]
\[\Rightarrow A \text{ is maximum when } x = 110 \]
\[\Rightarrow 2r = \frac{440 - 2x}{\pi} = \frac{440 - 220}{22/7} = 70 \]
\[\Rightarrow r = 35 \text{ ft and } x = 110 \text{ ft} \]

Example 6.58 If the sum of the lengths of the hypotenuse and another side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between these sides is \(\pi/3\).

Sol.

Let \(ABC\) be a right-angled triangle in which side \(BC = x\) (say) and hypotenuse \(AC = y\) (say). Given \(x + y = k\) (const.)
\[\Rightarrow y = k - x \]
Now, the area of the triangle \(ABC\) is given by
\[A = \frac{1}{2} BC \times AB = \frac{1}{2} x \sqrt{(y^2 - x^2)} = \frac{1}{2} x \sqrt{((k-x)^2 - x^2)} \]
Let \(u = A^2 = \frac{1}{4} x^2 (k^2 - 2kx)\)
\[\Rightarrow \frac{du}{dx} = \frac{1}{2} k (x - 3x^2) \text{ and } \frac{d^2u}{dx^2} = \frac{1}{2} k(k - 6x) \]
For maximum or minimum of \(u\), \(du/dx = 0 \Rightarrow x = k/3\)
\[(\because x \neq 0) \]
When \(x = k/3\), \(d^2u/dx^2 = \frac{1}{2} k(k - 6 \times \frac{1}{3}) = \frac{1}{2} k^2 (-ve) \)
\[\Rightarrow u, \text{ i.e. } A \text{ is maximum when } x = k/3 \text{ and when } y = k - x = 2k/3. \]
Now, \(\cos \theta = BC/AC = x/y = 1/2 \Rightarrow \theta = \pi/3. \)
Hence, the required angle is \(\pi/3\).

Coordinate Geometry

Example 6.59 The tangent to the parabola \(y = x^2\) has been drawn so that the abscissa \(x_0\) of the point of tangency belong to the interval \([1, 2]\). Find \(x_0\) for which the triangle is to be bounded by the tangent, the axis of ordinates, and the straight line \(y = x_0^2\) has the greatest area.

Sol.

\[y = x^2 \Rightarrow \frac{dy}{dx} = 2x \]
\[\Rightarrow \text{Equation of the tangent at } (x_0, y_0^2) \text{ is } y - y_0^2 = 2x(x - x_0). \]
It meets \(-y\)-axis in \(R(0, -x_0^2)\). \(Q\) is \((0, x_0^2)\)
\[\Rightarrow Z = \text{area of the triangle } PQR \]
\[= \frac{1}{2} 2x_0^3 \quad x_0 = x_0^3, 1 \leq x_0 \leq 2 \]
\[\frac{dZ}{dx_0} = 3x_0^2 > 0 \text{ in } 1 \leq x_0 \leq 2 \]
\[\Rightarrow Z \text{ is an increasing function in } [1, 2]. \]
Hence, \(Z\), i.e., the area of \(\Delta PQR\) is greatest at \(x_0 = 2\).

Example 6.60 Find the point \((\alpha, \beta)\) on the ellipse \(4x^2 + 3y^2 = 12\), in the first quadrant, so that the area enclosed by the lines \(y = x\), \(y = \beta\), \(x = \alpha\) and the \(x\)-axis is maximum.

Sol. The equation of the ellipse is \(x^2/3 + y^2/4 = 1\).
Let point \(P\) be \((\sqrt{3} \cos \theta, 2 \sin \theta)\), \(\theta \in (0, \pi/2)\)

\[\text{Clearly, line } PQ \text{ is } y = 2 \sin \theta, \]
line \(PR\) is \(x = \sqrt{3} \cos \theta\) and \(OQ = y = x\), and \(Q\) is \((2 \sin \theta, 2 \sin \theta)\).
\(Z = \text{area of the region } PQORP \text{ (trapezium)}\)
\[= \frac{1}{2} (OR + PQ) \cdot PR \]
\[= \frac{1}{2} \left(\sqrt{3} \cos \theta + (\sqrt{3} \cos \theta - 2 \sin \theta) \right) \sin \theta \]
\[= \frac{1}{2} (2 \sqrt{3} \cos \theta \sin \theta - 2 \sin^2 \theta) \]
\[= \frac{1}{2} \left(\sqrt{3} \sin 2\theta + \cos 2\theta - 1 \right) \]
\[= \cos \left(\frac{2\theta - \pi}{3} \right) - \frac{1}{2} \]
which is maximum when \(\cos \left(\frac{2\theta - \pi}{3} \right) = 1\) or \(2\theta - \pi = 0\) or \(\theta = \frac{\pi}{2}\)
Hence, point \(P\) be \((3/2, 1)\).

Example 6.61 \(LL'\) is the latus rectum of the parabola \(y^2 = 4ax\) and \(PP'\) is a double ordinate drawn between the vertex and the latus rectum. Show that the area of the trapezium \(PP' LL'\) is maximum when the distance \(PP'\) from the vertex is \(a/9\).
6.20 Calculus

Sol. Let $LL' = 4a$ be the latus rectum of the parabola $y^2 = 4ax$ and let $(a^2, 2at)$ be the coordinates of the point P.

Fig. 6.50

Here PP' is the double ordinate of the parabola.

$OM = a^2 \Rightarrow MN = ON - OM = a - at^2$ and $PP' = 2PM = 4at$.

Now, area of the trapezium $PP'L'L$

$= A = \frac{1}{2} (PP' + LL') \times MN$

$= A = \frac{1}{2} (4at + 4a)(a - at^2) = 2a^2(-t^2 - t + t + 1)$

$= dA/dt = 2a^2(-3t^2 - 2t + t + 1)$ and $d^2A/dt^2 = 2a^2(-6t - 2)$

For maximum or minimum of A, $dA/dt = 0$

$\Rightarrow -2a^2(3t - 1)(t + 1) = 0$

$\Rightarrow t = -1, 1/3$ when $t = -1, d^2A/dt^2 = 8a^2$ (+ve)

$\Rightarrow A$ is minimum when $t = 1$

And when $t = 1/3, d^2A/dt^2 = -8a^2$, (-ve)

$\Rightarrow A$ is maximum when $t = 1/3$ (only point of maxima)

\Rightarrow For the area of the trapezium $PP'L'L'$ to be maximum, distance of PP' from vertex $O = OM = a^2 - a(1/3)^2 = a/9$.

Example 6.62 Find the points on the curve $5x^2 - 8xy + 5y^2 = 4$ whose distance from the origin is maximum or minimum.

Sol. Let (r, θ) be the polar coordinates of any point P on the curve where r is the distance of the point from the origin.

$\Rightarrow r^2 [5 \cos^2 \theta + \sin^2 \theta] - 8 \sin \theta \cos \theta = 4$

$\Rightarrow r^2 = \frac{4}{5 - 4 \sin 2\theta}$

r^2 is maximum when $5 - 4 \sin 2\theta$ is minimum $= 5 - 4 = 1$

When $\sin 2\theta = 1$

$\Rightarrow 2\theta = 90^\circ \Rightarrow \theta = 45^\circ \Rightarrow r = \pm 2$, $\theta = 45^\circ$ (1)

Again r^2 is minimum when $5 - 4 \sin 2\theta$ is maximum.

$\Rightarrow r = \pm \frac{2}{\sqrt{3}}$, $\theta = \frac{3\pi}{4}$

Hence, the points are $(r \cos \theta, r \sin \theta)$ where r and θ are given by equations (1) and (2).

Thus, we get four points $(\sqrt{2}, \sqrt{2})$, $(-\sqrt{2}, -\sqrt{2})$, $(\frac{\sqrt{2}}{3}, -\frac{\sqrt{2}}{3})$ and $(-\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3})$.

Solid Geometry

Useful Formulae of Mensuration

- Volume of a cuboid $= l\times b \times h$, where l, b, and h are length, breadth, and height, respectively.
- Volume of a prism = area of the base \times height
- Volume of a pyramid $= \frac{1}{3}$ (area of the base) \times (height)
- Volume of a cone $= \frac{1}{3} \pi r^2 h$
- Curved surface area of a cylinder $= 2 \pi rh$
- Total surface area of a cylinder $= 2\pi r(h + r)$
- Volume of a sphere $= \frac{4}{3} \pi r^3$
- Surface area of a sphere $= 4 \pi r^2$
- Area of a circular sector $= \frac{1}{2} r^2 \theta$, where θ is in radians

Example 6.63 A sheet of area 40 m2 is used to make an open tank with square base. Find the dimensions of the base such that the volume of this tank is maximum.

Sol. Let the length of base be x m and height be y m.

Fig. 6.51

Volume $V = x^2 y$

Again x and y are related to the surface area of this tank which is equal to 40 m2.

$\Rightarrow x^2 + 4xy = 40$

$y = \frac{40 - x^2}{4x}, x \in (0, \sqrt{40})$

$\Rightarrow V(x) = x^2 \left(\frac{40 - x^2}{4x} \right) = \frac{40x - x^3}{4}$

Maximizing volume,

$V'(x) = \frac{40 - 3x^2}{4} = 0 \Rightarrow x = \sqrt{\frac{40}{3}}$ m

and $V''(x) = \frac{3x}{2} \Rightarrow V'' \left(\sqrt{\frac{40}{3}} \right) < 0$

\Rightarrow volume is maximum at $x = \sqrt{\frac{40}{3}}$ m

Example 6.64 The lateral edge of a regular hexagonal pyramid is 1 cm. If the volume is maximum, then find its height.
Monotonicity and Maxima–Minima of Functions 6.21

Volume $V = \pi x^2 y$

x, y can be related by using similar triangles

$$\frac{y}{r-x} = \frac{h}{r}$$

$$\Rightarrow \quad y = \frac{h}{r} (r-x)$$

$$\Rightarrow V(x) = \frac{\pi h}{r} (x^2 - x^2)$$

$$\Rightarrow V'(x) = \frac{\pi h}{r} (2x - 3x)$$

$$V'(x) = 0 \Rightarrow x = \frac{2r}{3}$$

Also, $V''(x) = \frac{\pi h}{r} (2r - 6x)$

$$\Rightarrow V''\left(\frac{2r}{3}\right) < 0$$

Thus, volume is maximum when $x = \frac{2r}{3}$ and $y = \frac{h}{3}$.

Concept Application Exercise 6.4

1. A private telephone company serving a small community makes a profit of ₹12.00 per subscriber, if it has 725 subscribers. It decides to reduce the rate by a fixed sum for each subscriber over 725, thereby reducing the profit by 1 paisa per subscriber. Thus, there will be profit of ₹11.99 on each of the 726 subscribers, ₹11.98 on each 727 subscribers, etc. What is the number of subscribers which will give the company the maximum profit?

2. The lateral edge of a regular rectangular pyramid is a cm long. The lateral edge makes an angle α with the plane of the base. Find the value of α for which the volume of the pyramid is greatest.

3. A figure is bounded by the curves $y = x^2 + 1, y = 0, x = 0$ and $x = 1$. At what point (a, b), a tangent should be drawn to the curve $y = x^2 + 1$ for it to cut off a trapezium of the greatest area from the figure.

4. Prove that the cone of the greatest volume which can be inscribed in a given cone such that its volume is maximum.

5. Let x be the radius of cylinder and y be its height.

Example 6.66 A right-circular cylinder is inscribed in a given cone. Find the dimensions of the cylinder such that its volume is maximum.

Sol. Let x be the radius of cylinder and y be its height.
EXERCISES

Subjective Type

1. Find the values of \(x \) where \(f(x) = \sin (\ln x) - \cos (\ln x) \) is strictly increasing.

2. Let \(f(x) = x^4 + ax^3 + bx + 5 \sin^2 x \) be an increasing function on the set \(R \). Then find the condition on \(a \) and \(b \).

3. Find the possible values of \(a \) such that \(f(x) = e^{x^2 - (a + 1)e^x + 2x} \) is monotonic for \(x \in R \).

4. Prove that for any two numbers \(x_1 \) and \(x_2 \),
 \[
 \frac{e^{2x_1} + e^{2x_2}}{3} > \frac{e^{x_1} + e^{x_2}}{3}.
 \]

5. If \(0 < x_1 < x_2 < x_3 < \pi \), then prove that \(\sin \left(\frac{x_1 + x_2 + x_3}{3} \right) > \frac{\sin x_1 + \sin x_2 + \sin x_3}{3} \). Hence or otherwise prove that if \(A, B, C \) are angles of a triangle, then the maximum value of \(\sin A + \sin B + \sin C \) is \(\frac{3\sqrt{3}}{2} \).

6. Discuss the monotonicity of \(Q(x) \), where
 \[
 Q(x) = 2f\left(\frac{x}{2} \right) + f(6-x^2) \forall x \in R.
 \]
 It is given that \(f''(x) > 0 \forall x \in R \). Find also the points of maxima and minima of \(Q(x) \).

7. Prove that
 \[
 \left(\tan^{-1} \frac{1}{e} \right)^2 + \frac{2e}{\sqrt{e^2 + 1}} < (\tan^{-1} e)^2 + \frac{2}{\sqrt{e^2 + 1}}.
 \]

8. Prove that \(\sin^2 \theta < \theta \sin (\sin \theta) \) for \(0 < \theta < \frac{\pi}{2} \).

9. Let \(f(x) = x^3 - 3x^2 + 6 \forall x \in R \)
 and \(g(x) = \max \{ f(t) : x + 1 \leq t \leq x + 2, -3 \leq t \leq 0 \}
 \[
 \left[1 - x \text{ for } x \geq 0 \right.
 \]
 Test continuity of \(g(x) \) for \(x \in [-3, 1] \).

10. If \(f \) is a real function such that \(f(x) > 0, f'(x) \) is continuous for all real \(x \) and \(ax^2 + 6 \) \(f(x) \geq 2 \sqrt{f(x)} - 2af(x), (ax \neq 2) \),
 show that \(\sqrt{f(x)} \geq \frac{\sqrt{f(0)}}{x}, x \geq 1 \).

11. The lower corner of a leaf in a book is folded over so as to reach the inner edge of the page. Show that the fraction of the width folded over when the area of the folded part is minimum is 2/3.

12. From a fixed point \(A \) on the circumference of a circle of radius \(r \), the perpendicular \(AY \) falls on the tangent at \(P \). Find the maximum area of the triangle \(APY \).

13. For what values of \(a \) the function
 \[
 f(x) = \left(\frac{\sqrt{a+4}}{1-a} \right) x^2 - 3x + \log(5) \]
 decreases for all real \(x \).

14. Find the greatest value of \(f(x) = \frac{1}{2ax - x^2 - 5a^2} \) in \([-3, 5] \) depending upon the parameter \(a \).

15. \(P \) and \(Q \) are two points on a circle of centre \(C \) and radius \(a \). The angle \(PCQ \) being \(2\theta \), find the value of \(\sin \theta \) when the radius of the circle inscribed in the triangle \(CPQ \) is maximum.

16. If \(f(\theta) = \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x + 1}{\sqrt{3}} \right) \) \(-\log(x^2 + x + 1) + (2x - 5x + 3)x + 10 \) is a decreasing function for all \(x \in R \), find the permissible values of \(\lambda \).

17. Discuss the number of roots of the equation \(e(k - x \log x) = 1 \), for different values of \(k \).

18. Prove that \(\sin 1 > \cos (\sin 1) \). Also show that the equation \(\sin (\cos (\sin x)) = \cos (\cos (\sin x)) \) has only one solution in \(\left[0, \frac{\pi}{2} \right] \).

19. Let \(f: R \to R \) be a twice differentiable function such that \(f(x + a) = f(x) \) and \(f''(x) + f(x) \geq 0 \forall x \in R \). Show that \(f(x) \geq 0 \forall x \in R \).

20. Show that \(5x \leq 8 \sin x - \sin 2x \leq 6x \) for \(0 \leq x \leq \frac{\pi}{3} \).

21. Let \(f(x), x \geq 0 \), be a non-negative continuous function. If
 \[
 f''(x) \cos x \leq f(x) \sin x, \forall x \geq 0,
 \]
 then find \(\int \frac{\pi}{3} \).

Objective Type

Each question has four choices a, b, c and d, out of which only one is correct.

1. If \(f(x) = kx^3 - 9x^2 + 9x + 3 \) is monotonically increasing in \(R \), then
 a. \(k < 3 \)
 b. \(k = 2 \)
 c. \(k \geq 3 \)
 d. None of these

2. If the function \(f(x) = \frac{K \sin x + 2 \cos x}{\sin x + \cos x} \) is strictly increasing for all values of \(x \), then
 a. \(K < 1 \)
 b. \(K > 1 \)
 c. \(K < 2 \)
 d. \(K > 2 \)

3. Let \(f: R \to R \) be a function such that \(f(x) = ax + 3 \sin x + 4 \cos x \). Then \(f(x) \) is invertible if
 a. \(a \in (-\infty, -5) \)
 b. \(a \in (-\infty, 5) \)
 c. \(a \in (-5, +\infty) \)
 d. None of these

4. Let \(g(x) = 2f\left(\frac{x}{2} \right) + f(2-x) \) and \(f''(x) < 0 \forall x \in (0, 2) \). Then \(g(x) \) increases in
 a. \((1/2, 2)\)
 b. \((4/3, 2)\)
 c. \((0, 2)\)
 d. \((0, 4/3)\)

5. On which of the following intervals is the function \(x^{100} + \sin x - 1 \) decreasing?
 a. \((0, \pi/2)\)
 b. \((0, 1)\)
 c. \((\pi/2, \pi)\)
 d. None of these
6. A function is matched below against an interval where it is supposed to be increasing. Which of the following parts is incorrectly matched?

<table>
<thead>
<tr>
<th>Interval</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\left[\frac{1}{2}, \infty \right))</td>
<td>(2x^3 - 3x^2 - 1?x + 6)</td>
</tr>
<tr>
<td>b. ((-\infty, \infty))</td>
<td>(x^3 - 3x^2 + 3x + 3)</td>
</tr>
<tr>
<td>c. ((-\infty, -4))</td>
<td>(x^3 + 6x^2 + 6)</td>
</tr>
<tr>
<td>d. ((-\infty, \frac{1}{3}))</td>
<td>(3x^2 - 2x + 1)</td>
</tr>
</tbody>
</table>

7. The function \(f(x) = \tan^{-1}(\sin x + \cos x) \) is an increasing function in

a. \(\left(-\frac{\pi}{2}, \frac{\pi}{4} \right) \)

b. \(\left(0, \frac{\pi}{2} \right) \)

c. \(\left(-\frac{\pi}{4}, \frac{\pi}{2} \right) \)

d. \(\left(\frac{\pi}{4}, \frac{\pi}{2} \right) \)

\[\square \]

8. The function \(x^2 \) decreases in the interval

a. \((0, e) \)

b. \((0, 1) \)

c. \((0, \frac{1}{e}) \)

d. None of these

9. The function \(f(x) = \sum_{K=1}^{5} (x - K)^2 \) assumes the minimum value of \(x \) given by

a. \(5 \)

b. \(\frac{5}{2} \)

c. \(3 \)

d. \(2 \)

\[\square \]

10. Which of the following statements is always true?

a. If \(f(x) \) is increasing, then \(f^{-1}(x) \) is decreasing.

b. If \(f(x) \) is increasing, then \(\frac{1}{f(x)} \) is also increasing.

c. If \(f \) and \(g \) are positive functions and \(f \) is increasing and \(g \) is decreasing, then \(f/g \) is a decreasing function.

d. If \(f \) and \(g \) are positive functions and \(f \) is decreasing and \(g \) is increasing, then \(f/g \) is a decreasing function.

\[\square \]

11. Let \(f: R \rightarrow R \) be a differentiable function for all values of \(x \) and has the property that \(f(x) \) and \(f'(x) \) have opposite signs for all values of \(x \). Then,

a. \(f(x) \) is an increasing function

b. \(f(x) \) is a decreasing function

c. \(f'(x) \) is a decreasing function

d. \(|f(x)| \) is an increasing function

\[\square \]

12. Let \(f(x) = \sqrt[3]{4ax - x^2}, (a > 0) \). Then \(f(x) \) is

a. increasing in \((0, 3a) \), decreasing in \((3a, 4a) \)

b. increasing in \((a, 4a) \), decreasing in \((5a, \infty) \)

c. increasing in \((0, 4a) \)

d. None of these

\[\square \]

13. Let \(f: R \rightarrow R \) be a differentiable function \(\forall x \in R \). If the tangent drawn to the curve at any point \(x \in (a, b) \) always lies below the curve, then

a. \(f'(x) > 0, f''(x) < 0 \forall x \in (a, b) \)

b. \(f'(x) < 0, f''(x) < 0 \forall x \in (a, b) \)

c. \(f'(x) > 0, f''(x) > 0 \forall x \in (a, b) \)

d. None of these

\[\square \]

14. If \(f''(x) = |x| - \{x\} \) where \(\{x\} \) denotes the fractional part of \(x \), then \(f(x) \) is decreasing in

a. \(\left(-\frac{1}{2}, 0 \right) \)

b. \(\left(\frac{1}{2}, 2 \right) \)

c. \(\left(-\frac{1}{2}, 2 \right) \)

d. \(\left(\frac{1}{2}, \infty \right) \)

\[\square \]

15. Function \(f(x) = |x| - |x - 1| \) is monotonically increasing when

a. \(x < 0 \)

b. \(x > 1 \)

c. \(x < 1 \)

d. \(0 < x < 1 \)

\[\square \]

16. Let \(f \) be continuous and differentiable function such that \(f(x) \) and \(f'(x) \) have opposite signs everywhere. Then

a. \(f \) is increasing

b. \(f \) is decreasing

c. \(f \) is non-monotonic

d. \(f \) is decreasing

\[\square \]

17. If the function \(f(x) \) increases in the interval \((a, b) \), and \(\phi(x) = [f(x)]^2 \), then

a. \(\phi(x) \) increases in \((a, b) \)

b. \(\phi(x) \) decreases in \((a, b) \)

c. We cannot say that \(\phi(x) \) increases or decreases in \((a, b) \)

d. None of these

\[\square \]

18. If \(\phi(x) \) is a polynomial function and \(\phi'(x) > \phi(x), \forall x \geq 1 \) and \(\phi(1) = 0 \), then

a. \(\phi(x) \geq 0, \forall x \geq 1 \)

b. \(\phi(x) < 0, \forall x \geq 1 \)

c. \(\phi(x) = 0, \forall x \geq 1 \)

d. None of these

\[\square \]

19. Which of the following statements is true for the function \(f(x) = \sqrt{x}, x \geq 1 \)?

a. It is monotonic increasing \(\forall x \in R \).

b. \(f(x) \) fails to exist for three distinct real values of \(x \).

c. \(f'(x) \) changes its sign twice as \(x \) varies from \(-\infty \) to \(\infty \).

d. The function attains its extreme values at \(x_1 \) and \(x_2 \), such that \(x_1, x_2 > 0 \).

\[\square \]

20. If \(f''(x) > 0, \forall x \in R, f'(3) = 0 \) and \(g(x) = \tan^2 x - 2 \tan x + 4 \),

\[\left[\begin{array}{l} 0 < x < \frac{\pi}{2} \end{array} \right] \) then \(g(x) \) is increasing in

a. \(\left(0, \frac{\pi}{4} \right) \)

b. \(\left(\frac{\pi}{4}, \frac{\pi}{6} \right) \)

c. \(\left(0, \frac{\pi}{3} \right) \)

d. \(\left(\frac{\pi}{4}, \frac{\pi}{2} \right) \)

\[\square \]

21. Let \(f(x) \) be a function such that \(f'(x) = \log_{10} [\log_3 (\sin x + a)] \).

If \(f(x) \) is decreasing for all real values of \(x \), then

a. \(a \in (1, 4) \)

b. \(a \in (4, \infty) \)

c. \(a \in (2, 3) \)

d. \(a \in (2, \infty) \)

\[\square \]

22. If \(f(x) = x + \sin x; g(x) = e^x; u = \sqrt{c + 1 - \sqrt{c}; \quad v = \sqrt{c} - \sqrt{c - 1}; \ (c > 1), \) then

a. \(f \circ g < g \circ f \)

b. \(g \circ f < g \circ f \)

c. \(g \circ f > g \circ f \)

d. \(f \circ g < g \circ f \)

\[\square \]
23. The length of the largest continuous interval in which the function \(f(x) = 4x - \tan 2x \) is monotonic is:
 a. \(\pi/2 \)
 b. \(\pi/4 \)
 c. \(\pi/8 \)
 d. \(\pi/16 \)

24. \(f(x) = |x - 1| |x - 2| (x - 3) \) if then \(f' \) decreases in:
 a. \(\left(2 - \frac{1}{\sqrt{3}}, 2 \right) \)
 b. \((2, 2 + \frac{1}{\sqrt{3}}) \)
 c. \(\left(2 + \frac{1}{\sqrt{3}}, 4 \right) \)
 d. \((3, \infty) \)

25. The number of solutions of the equation \(x^3 + 2x^2 + 5x + 2\cos x = 0 \) in \([0, 2\pi]\) is:
 a. one
 b. two
 c. three
 d. zero

26. \(f(x) = (x - 2)|x - 3| \) is monotonically increasing in:
 a. \((-\infty, 5/2) \cup (3, \infty) \)
 b. \((5/2, \infty) \)
 c. \((2, \infty) \)
 d. \((-\infty, 3) \)

27. \(f(x) = (x - 8)^4 (x - 9)^5, 0 \leq x \leq 10 \), monotonically decreases in:
 a. \(\left[\frac{76}{9}, 10 \right] \)
 b. \(\left(\frac{8}{76}, \frac{76}{9} \right) \)
 c. \([0, 8) \)
 d. \(\left(\frac{76}{9}, \frac{10}{76} \right) \)

28. If \(f(x) = x^3 + 4x^2 + \lambda x + 1 \) is a monotonically decreasing function of \(x \) in the largest possible interval \((-2, -2/3)\), then:
 a. \(\lambda = 4 \)
 b. \(\lambda = 2 \)
 c. \(\lambda = -1 \)
 d. \(\lambda \) has no real value

29. \(f(x) = x \log x \) monotonically decreases in:
 a. \((0, 1/e)\)
 b. \((1/e, 1)\)
 c. \((1, \infty)\)
 d. \((1/e, \infty)\)

30. Given that \(f''(x) > g'(x) \) for all real \(x \), and \(f(0) = g(0) \), then:
 a. \(f(x) < g(x) \) for all \(x \) belongs to:
 b. \((0, \infty) \)
 c. \((-\infty, 0) \)
 d. None of these

31. A function \(g(x) \) is defined as \(g(x) = \frac{1}{4} f(2x^2 - 1) \)

32. Let \(f(x) \) be a function defined as below:
 \[f(x) = \sin(x^2 - 3x), x \leq 0; \text{and } 6x + 5x^2, x > 0 \]
 Then at \(x = 0, f(x) \)
 a. has a local maximum
 b. has a local minimum
 c. is discontinuous
 d. None of these

33. The greatest value of \(f(x) = \cos (x \text{e}^{[x]} + 7x^2 - 3x), x \in [-1, \infty) \) is (where \([\cdot]\) represents the greatest integer function)
 a. \(-1 \)
 b. \(1 \)
 c. \(0 \)
 d. None of these

34. If \(f(x) = x^5 - 5ax^4 + 5x^2 - 10 \) has local minimum and maximum at \(x = p \) and \(x = q \), respectively, then \((p, q) = \)
 a. \((0, 1) \)
 b. \((1, 3) \)
 c. \((1, 0) \)
 d. None of these

35. The maximum value of \(\frac{1}{\ln x} \) is:
 a. 1
 b. \(2/e \)
 c. \(e \)
 d. 1/e

36. If a function \(f(x) \) has \(f''(x) = 0 \) and \(f'''(x) = 0 \), then:
 a. \(x = a \) is a maximum for \(f(x) \)
 b. \(x = a \) is a minimum for \(f(x) \)
 c. it is difficult to say \(a \) and \(b \)
 d. \(f(x) \) is necessarily a constant function

37. The minimum value of \(2^{(2^x - 3^y + 27)} \) is:
 a. \(2^{27} \)
 b. \(2 \)
 c. 1
 d. None of these

38. The number of real roots of the equation \(e^{x-1} + x - 2 = 0 \) is:
 a. 1
 b. 2
 c. 3
 d. 4

39. The greatest value of the function \(f(x) = \frac{\sin 2x}{\sin \left(x + \frac{\pi}{4} \right)} \) on the interval \(\left(0, \frac{\pi}{2} \right) \) is:
 a. \(\frac{1}{\sqrt{2}} \)
 b. \(\sqrt{2} \)
 c. 1
 d. \(-\sqrt{2} \)

40. The function \(f(x) = (4 \sin^2 x - 1)^n (x^2 - x + 1), n \in N \), has a local minimum at \(x = \frac{\pi}{6} \), then:
 a. \(n \) is any even number
 b. \(n \) is an odd number
 c. \(n \) is odd prime number
 d. \(n \) is any natural number

41. All possible values of \(x \) for which the function \(f(x) = x \ln x - x + 1 \) is positive is:
 a. \((1, \infty)\)
 b. \((1/e, \infty)\)
 c. \([-1, 0)\)
 d. \((0, 1) \cup (1, \infty)\)

42. The greatest value of \(f(x) = (x + 1)^{1/3} - (x - 1)^{1/3} \) on \([0, 1]\) is:
 a. \(1 \)
 b. 2
 c. \(\frac{1}{3} \)
 d. \(\frac{1}{2} \)

43. If the function \(f(x) = 2x^3 - 9ax^2 + 12a^2x + 1 \), where \(a > 0 \), attains its maximum and minimum at \(p \) and \(q \), respectively such that \(p^2 = q \), then \(a \) equals to:
 a. \(1 \)
 b. \(2 \)
 c. \(\frac{1}{2} \)
 d. \(1 \)

44. The real number \(x \) when added to its inverse gives the minimum value of the sum at \(x \) equals to:
 a. \(1 \)
 b. \(-1 \)
 c. \(-2 \)
 d. \(2 \)

45. The function \(f(x) = \frac{x + \frac{2}{x}}{x} \) has a local minimum at:
 a. \(x = 2 \)
 b. \(x = -2 \)
 c. \(x = 0 \)
 d. \(x = 1 \)
46. The maximum value of the function \(f(x) = \sin \left(x + \frac{\pi}{6} \right) + \cos \left(x + \frac{\pi}{6} \right) \) in the interval \(\left(0, \frac{\pi}{2} \right) \) occurs at

\[
\begin{align*}
\text{a.} & \quad \frac{\pi}{12} \\
\text{b.} & \quad \frac{\pi}{6} \\
\text{c.} & \quad \frac{\pi}{4} \\
\text{d.} & \quad \frac{\pi}{3}
\end{align*}
\]

47. Let \(f(x) = \begin{cases}
2, & x < 0 \\
1, & x = 0 \\
\frac{x}{2}, & 0 < x \leq 1
\end{cases} \)

Then on \([-1, 1]\), this function has

\[
\begin{align*}
\text{a.} & \quad \text{a minimum} \\
\text{b.} & \quad \text{a maximum} \\
\text{c.} & \quad \text{either a maximum or a minimum} \\
\text{d.} & \quad \text{neither a maximum nor a minimum}
\end{align*}
\]

48. The maximum value of \(f(x) = \frac{x}{1 + 4x + x^2} \) is

\[
\begin{align*}
\text{a.} & \quad -\frac{1}{4} \\
\text{b.} & \quad -\frac{1}{3} \\
\text{c.} & \quad \frac{1}{6} \\
\text{d.} & \quad \frac{1}{3}
\end{align*}
\]

49. The maximum slope of the curve \(y = -x^3 + 3x^2 + 9x - 27 \) is

\[
\begin{align*}
\text{a.} & \quad 0 \\
\text{b.} & \quad 12 \\
\text{c.} & \quad 16 \\
\text{d.} & \quad 32
\end{align*}
\]

50. Let \(f(x) = \cos \pi x + 10x + 3x^2 + x^3, -2 \leq x \leq 3 \). The absolute minimum value of \(f(x) \) is

\[
\begin{align*}
\text{a.} & \quad 0 \\
\text{b.} & \quad -15 \\
\text{c.} & \quad 3 - 2\pi \\
\text{d.} & \quad \text{None of these}
\end{align*}
\]

51. The minimum value of \(e^{(2x^2-2x+1)} \sin^2 x \) is

\[
\begin{align*}
\text{a.} & \quad e \\
\text{b.} & \quad 1/e \\
\text{c.} & \quad 1 \\
\text{d.} & \quad 0
\end{align*}
\]

52. The maximum value of \(x^4 e^{-x^2} \) is

\[
\begin{align*}
\text{a.} & \quad e^2 \\
\text{b.} & \quad e^{-2} \\
\text{c.} & \quad 12e^2 \\
\text{d.} & \quad 4e^3
\end{align*}
\]

53. If \(a^2 x^4 + b^2 y^4 = c^6 \), then the maximum value of \(xy \) is

\[
\begin{align*}
\text{a.} & \quad \frac{c^2}{\sqrt{ab}} \\
\text{b.} & \quad \frac{c^3}{ab} \\
\text{c.} & \quad \frac{c^3}{\sqrt{2ab}} \\
\text{d.} & \quad \frac{c^3}{2ab}
\end{align*}
\]

54. The global maximum value of \(f(x) = \log_{10} (4x^3 - 12x^2 + 11x - 3), x \in [2, 3] \) is

\[
\begin{align*}
\text{a.} & \quad -\frac{3}{2} \log_{10} 3 \\
\text{b.} & \quad 1 + \log_{10} 3 \\
\text{c.} & \quad \log_{10} 3 \\
\text{d.} & \quad \frac{3}{2} \log_{10} 3
\end{align*}
\]

55. The least natural number \(a \) for which \(x + ax^2 > 2, \forall x \in (0, \infty) \) is

\[
\begin{align*}
\text{a.} & \quad 1 \\
\text{b.} & \quad 2 \\
\text{c.} & \quad 5 \\
\text{d.} & \quad \text{None of these}
\end{align*}
\]

56. A function \(f \) is defined by \(f(x) = |x|^m |x - 1|^n, x \in R \). The local maximum value of the function is \((m, n) \in \mathbb{N} \)

\[
\begin{align*}
\text{a.} & \quad m^n \\
\text{b.} & \quad m^n n^m \\
\text{c.} & \quad \frac{m^n - n^m}{(m + n)^{m+n}} \\
\text{d.} & \quad \frac{(mn)^m}{(m + n)^{m+n}}
\end{align*}
\]

57. \(f(x) = \begin{cases}
4x - x^3 + \ln(a^2 - 3a + 3), & 0 \leq x < 3 \\
x - 18, & x \geq 3
\end{cases} \)

Complete set of values of \(a \) such that \(f(x) \) as a local minima at \(x = 3 \) is

\[
\begin{align*}
\text{a.} & \quad [-1, 2] \\
\text{b.} & \quad (-\infty, 1) \cup (2, \infty) \\
\text{c.} & \quad [1, 2] \\
\text{d.} & \quad (-\infty, -1) \cup (2, \infty)
\end{align*}
\]

58. Let the function \(f(x) \) be defined as follows

\[
\begin{align*}
\cos x, & \quad 0 \leq x < \pi/2 \\
1 + \sin x, & \quad \pi/2 \leq x \leq \pi
\end{align*}
\]

Then \(f(x) \) has

\[
\begin{align*}
\text{a.} & \quad \text{a local minimum at } x = \pi/2 \\
\text{b.} & \quad \text{a global maximum at } x = \pi/2 \\
\text{c.} & \quad \text{an absolute minimum at } x = -1 \\
\text{d.} & \quad \text{an absolute maximum at } x = \pi
\end{align*}
\]

59. A differentiable function \(f(x) \) has a relative minimum at \(x = 0 \), then the function \(y = f(x) + ax + b \) has a relative minimum at \(x = 0 \) for

\[
\begin{align*}
\text{a.} & \quad \text{all } a \text{ and all } b \\
\text{b.} & \quad \text{all } b \text{ if } a = 0 \\
\text{c.} & \quad b > 0 \\
\text{d.} & \quad \text{all } a > 0
\end{align*}
\]

60. If \(f(x) = 4x^3 - x^2 - 2x + 1 \) and \(g(x) = \begin{cases}
\min f(t) : 0 \leq t \leq x, & 0 \leq x \leq 1 \\
3 - x, & 1 < x \leq 2
\end{cases} \)

\[
\begin{align*}
\text{a.} & \quad \frac{1}{4} \\
\text{b.} & \quad \frac{3}{4} \\
\text{c.} & \quad \frac{5}{4}
\end{align*}
\]

then \(g \left(\frac{1}{4} \right) + g \left(\frac{3}{4} \right) + g \left(\frac{5}{4} \right) \) has the value equal to

\[
\begin{align*}
\text{a.} & \quad 7/4 \\
\text{b.} & \quad 9/4 \\
\text{c.} & \quad 13/4 \\
\text{d.} & \quad 5/2
\end{align*}
\]

61. The set of values of \(a \) for which the function \(f(x) = \frac{ax^3}{3} + (a + 2)x^2 + (a - 1)x + 2 \) possesses a negative point of inflection is

\[
\begin{align*}
\text{a.} & \quad (-\infty, -2) \cup (0, \infty) \\
\text{b.} & \quad (-4/5) \\
\text{c.} & \quad (-2, 0) \\
\text{d.} & \quad \text{empty set}
\end{align*}
\]

62. Suppose that \(f \) is a polynomial of degree 3 and that \(f''(x) \neq 0 \) at any of the stationary point. Then

\[
\begin{align*}
\text{a.} & \quad f \text{ has exactly one stationary point} \\
\text{b.} & \quad f \text{ must have no stationary point} \\
\text{c.} & \quad f \text{ must have exactly two stationary points} \\
\text{d.} & \quad f \text{ has either zero or two stationary point}
\end{align*}
\]
63. The maximum value of the function \(f(x) = \frac{(1+x)^{0.6}}{1+x^{0.6}} \) in the interval \([0, 1]\) is

a. 2^0.4

b. 2^0.4

c. 1

d. 2^0.4

71. If \(f(x) = \begin{cases}
\frac{\pi}{2}, & x = 0, \\
\cos^{-1}(\cos x), & x < 0
\end{cases} \), then

a. \(x = 0 \) is a point of maxima

b. \(x = 0 \) is a point of minima

c. \(x = 0 \) is a point of intersection

d. None of these

65. Consider the function \(f: (-\infty, \infty) \to (-\infty, \infty) \) defined by

\[f(x) = \frac{x^2 - a}{x^2 + a}, \quad a > 0. \]
Which of the following is not true?

a. Maximum value of \(f \) is not attained even though \(f \) is bounded.

b. \(f(x) \) is increasing on \((0, \infty)\) and has minimum at \(x = 0 \).

c. \(f(x) \) is decreasing on \((-\infty, 0)\) and has minimum at \(x = 0 \).

d. None of these

66. If \(f: R \to R \) and \(g: R \to R \) are two functions such that \(f(x) + f''(x) = -x + g(x)f'(x) \) and \(g(x) > 0 \forall x \in R \), then the functions \(f(x) + (f''(x))^2 \) has

a. a maxima at \(x = 0 \)

b. a minima at \(x = 0 \)

c. a point of inflexion at \(x = 0 \)

d. None of these

67. Let \(h(x) = x^m \) for \(x \in R \), where \(m \) and \(n \) are odd numbers and \(0 < m < n \), then \(y = h(x) \) has

a. no local extremum

b. one local maximum

c. one local minimum

d. None of these

68. If \(f(x) = 4 \tan x - \tan^2 x + \tan^3 x, x \neq n\pi + \frac{\pi}{2} \)

a. is monotonically increasing

b. is monotonically decreasing

c. has a point of maxima

d. has a point of minima

69. If for a function \(f(x), f'(a) = 0, f''(a) = 0, f'''(a) > 0, \)
then at \(x = a, f(x) \) is

a. minimum

b. maximum

c. not an extreme point

d. extreme point

70. The function \(f(x) = x(x+4) e^{x/2} \) has its local maxima at \(x = a \), then

a. \(a = 2\sqrt{2} \)

b. \(a = 1 - \sqrt{3} \)

c. \(a = -1 + \sqrt{3} \)

d. \(a = -4 \)

74. If the function \(f(x) = \frac{t+3x-x^2}{x-4} \), where \(t \) is a parameter that has a minimum and maximum, then the range of values of \(t \) is

a. \((0, 4)\)

b. \((0, \infty)\)

c. \((-\infty, 4)\)

d. \((4, \infty)\)

75. The value of \(a \) for which the function \(f(x) = a \sin x + (1/3) \sin 3x \) has an extremum at \(x = \pi/3 \) is

a. 1

b. -1

c. 0

d. 2

77. The largest term in the sequence \(a_n = \frac{n^2}{n^3 + 200} \) is given by

a. 529

b. 8

c. 49

d. 543

78. The number of values of \(k \) for which the equation \(x^3 - 3x + k = 0 \) has two distinct roots lying in the interval \((0, 1)\) is

a. three

b. two

c. infinitely many

d. zero
79. Consider the function \(f(x) = x \cos x - \sin x \), then identify the statement which is correct:
 a. \(f \) is neither odd nor even
 b. \(f \) is monotonic decreasing at \(x = 0 \)
 c. \(f \) has a maxima at \(x = \pi \)
 d. \(f \) has a minima at \(x = -\pi \)

80. Let \(f(x) = ax^2 + bx^2 + cx + 1 \) have extrema at \(x = \alpha, \beta \) such that \(\alpha \beta < 0 \) and \(f(\alpha) < f(\beta) < 0 \). Then the equation \(f(x) = 0 \) has
 a. three equal real roots
 b. one negative root if \(f(\alpha) < 0 \) and \(f(\beta) > 0 \)
 c. one positive root if \(f(\alpha) > 0 \) and \(f(\beta) < 0 \)
 d. None of these

81. A factory \(D \) is to be connected by a road with a straight-railway line on which a town \(A \) is situated. The distance \(DB \) of the factory to the railway line is \(5\sqrt{3} \) km. Length \(AB \) of the railway line is 20 km. Freight charges on the road are twice the charges on the railway. The point \(P \) (\(AP < AB \)) on the railway line should the road \(DP \) be connected so as to ensure minimum freight charges from the factory to the town is
 a. \(BP = 5 \) km
 b. \(AP = 5 \) km
 c. \(BP = 7.5 \) km
 d. None of these

\[\text{The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is} \]
 a. 4000 \(\pi /3 \) cubic cm
 b. 400 \(\pi /3 \) cubic cm
 c. 4000 \(\pi /\sqrt{3} \) cubic cm
 d. None of these

83. A rectangle of the greatest area is inscribed in a trapezium \(ABCD \). One of whose non-parallel sides \(AB \) is perpendicular to the base, so that one of the rectangle’s sides lies on the larger base of the trapezium. The base of trapezium are 6 and 10 cm and \(AB \) is 8 cm long. Then the maximum area of the rectangle is
 a. 24 sq. cm
 b. 48 sq. cm
 c. 36 sq. cm
 d. None of these

84. A bell tent consists of a conical portion above a cylindrical portion near the ground. For a given volume and a circular base of a given radius, the amount of the canvas used is a minimum when the semi-vertical angle of the cone is
 a. \(\cos^{-1}2/3 \)
 b. \(\sin^{-1}2/3 \)
 c. \(\cos^{-1}1/3 \)
 d. None of these

85. A rectangle is inscribed in an equilateral triangle of side length 2a units. The maximum area of this rectangle can be
 a. \(\sqrt{3}a^2 \)
 b. \(\frac{\sqrt{3}a^2}{4} \)
 c. \(a^2 \)
 d. \(\frac{\sqrt{3}a^2}{2} \)

86. Tangents are drawn to \(x^2 + y^2 = 16 \) from the point \(P (0, h) \). These tangents meet the x-axis at \(A \) and \(B \). If the area of triangle \(PAB \) is minimum, then
 a. \(h = 12 \sqrt{2} \)
 b. \(h = 6 \sqrt{2} \)
 c. \(h = 8 \sqrt{2} \)
 d. \(h = 4 \sqrt{2} \)

87. The largest area of a trapezium inscribed in a semi-circle of radius \(R \), if the lower base is on the diameter, is
 a. \(\frac{3\sqrt{3}}{4} R^2 \)
 b. \(\frac{\sqrt{3}}{2} R^2 \)
 c. \(\frac{3\sqrt{3}}{8} R^2 \)
 d. \(R^2 \)

88. In a \(\triangle ABC \), \(\angle B = 90^\circ \) and \(b + a = 4 \). The area of the triangle is maximum when \(\angle C \) is
 a. \(\pi /4 \)
 b. \(\pi /6 \)
 c. \(\pi /3 \)
 d. None of these

89. The three sides of a trapezium are equal, each being 8 cm. The area of the trapezium, when it is maximum, is
 a. 24 \(\sqrt{3} \) sq. cm
 b. 48 \(\sqrt{3} \) sq. cm
 c. 72 \(\sqrt{3} \) sq. cm
 d. None of these

90. The fuel charges for running a train are proportional to the square of the speed generated in km per hour, and the cost is \(\text{Rs} \) 48 at 16 km per hour. If the fixed charges amount to \(\text{Rs} \) 300 per hour, the most economical speed is
 a. 60 kmph
 b. 40 kmph
 c. 48 kmph
 d. 36 kmph

91. A cylindrical gas container is closed at the top and open at the bottom, if the iron plate of the top is 5/4 times as thick as the plate forming the cylindrical sides, the ratio of the radius to the height of the cylinder using minimum material for the same capacity is
 a. 3:4
 b. 5:6
 c. 4:5
 d. None of these

92. The least perimeter of an isosceles triangle in which a circle of radius \(r \) can be inscribed is
 a. \(4\sqrt{3}r \)
 b. \(2\sqrt{3}r \)
 c. \(6\sqrt{3}r \)
 d. \(8\sqrt{3}r \)

93. A given right cone has a volume \(p \), and the largest right circular cylinder that can be inscribed in the cone has a volume \(q \). Then \(p : q \) is
 a. 9:4
 b. 8:3
 c. 7:2
 d. None of these

94. A wire of length \(a \) is cut into two parts which are bent, respectively, in the form of a square and a circle. The least value of the sum of the areas so formed is
 a. \(\frac{a^2}{\pi + 4} \)
 b. \(\frac{a}{\pi + 4} \)
 c. \(\frac{a}{4(\pi + 4)} \)
 d. \(\frac{a^2}{4(\pi + 4)} \)

95. A box, constructed from a rectangular metal sheet, is 21 cm by 16 cm by cutting equal squares of sides \(x \) from the corners of the sheet and then turning up the projected portions. The value of \(x \) so that volume of the box is maximum is
 a. 1
 b. 2
 c. 3
 d. 4

96. The vertices of a triangle are \((0, 0), (x, \cos x)\) and \((\sin^3 x, 0)\) where \(0 < x < \frac{\pi}{2}\). The maximum area for such a triangle in sq. units is
Let \(f(x) = ax^2 - b \mid x \), where \(a \) and \(b \) are constants. Then at \(x = 0 \), \(f(x) \) has

- a. maxima whenever \(a > 0, b > 0 \)
- b. maxima whenever \(a > 0, b < 0 \)
- c. minima whenever \(a > 0, b < 0 \)
- d. neither a maxima nor a minima whenever \(a > 0, b < 0 \)

9. The function \(y = \frac{2x - 1}{x - 2} \) \((x \neq 2)\)

- a. is its own inverse
- b. decreases at all values of \(x \) in the domain
- c. has a graph entirely above the \(x \)-axis
- d. is unbounded

10. Let \(g'(x) > 0 \) and \(f'(x) < 0, \forall x \in \mathbb{R} \), then

- a. \(f(0) < f(1) \)
- b. \(f(g(x)) > f(g(x + 1)) \)
- c. \(f(g(x)) < f(g(x + 1)) \)
- d. \(f(g(x + 1)) < f(g(x)) \)

11. If \(f(x) = x^3 - x^2 + 100x + 200 \), then

- a. \(f(1000) > f(1001) \)
- b. \(f\left(\frac{1}{2000}\right) > f\left(\frac{1}{2001}\right)\)
- c. \(f(x - 1) > f(x - 2) \)
- d. \(f(2x - 3) > f(2x) \)

12. If \(f'(x) = g(x) (x - a) \) where \(g(a) \neq 0 \) is continuous at \(x = a \), then

- a. \(f \) is increasing in the neighbourhood of \(a \) if \(g(a) > 0 \)
- b. \(f \) is increasing in the neighbourhood of \(a \) if \(g(a) < 0 \)
- c. \(f \) is decreasing in the neighbourhood of \(a \) if \(g(a) > 0 \)
- d. \(f \) is decreasing in the neighbourhood of \(a \) if \(g(a) < 0 \)

13. The value of \(a \) for which the function \(f(x) = 4a - 3 \) \((x + \log 5) + 2(a - 7) \cot \frac{x}{2} \sin \frac{x}{2} \) does not possess critical points is

- a. \((-\infty, -4/3)\)
- b. \((-\infty, -1)\)
- c. \([1, \infty)\)
- d. \((2, \infty)\)

14. Let \(f(x) = (x - 1)^n (x - 2^n), n \in \mathbb{N} \). Then \(f(x) \) has

- a. a maximum at \(x = 1 \) if \(n \) is odd
- b. a maximum at \(x = 1 \) if \(n \) is even
- c. a minimum at \(x = 1 \) if \(n \) is odd
- d. a minimum at \(x = 2 \) if \(n \) is even

15. Let \(f(x) = \sin x + ax + b \), then which of the following is/are true.

- a. \(f(x) = 0 \) has only one real root which is positive if \(a > 1, b > 0 \)
- b. \(f(x) = 0 \) has only one real root which is negative if \(a > 1, b > 0 \)
- c. \(f(x) = 0 \) has only one real root which is negative if \(a < -1, b < 0 \)
- d. None of these

16. The function \(\sin (x + a) \) has no maxima or minima if

- a. \(b - a = n \pi, n \in \mathbb{N} \)
- b. \(b - a = (2n + 1) \pi, n \in \mathbb{N} \)
- c. \(b - a = 2n \pi, n \in \mathbb{N} \)
- d. None of these

17. If composite function \(f_1(f_2(f_3(\ldots(f_n(x))))) \) \(n \) times is an increasing function and if \(r \) of \(f_i \) are decreasing function while rest are increasing, then maximum value of \(r (n - r) \) is
Let $f(x) = a_n x^n - a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, where a_i's are real and $f(x) = 0$ has a positive root α. Then

a. $f'(x) = 0$ has a root α, such that $0 < \alpha < \alpha_0$
b. $f''(x) = 0$ has at least two real roots
c. $f''(x) = 0$ has at least one real root
d. None of these

24. If $f(x)$ and $g(x)$ are two positive and increasing functions, then which of the following is not always true?

a. $[f(x)]^{\alpha_0}$ is always increasing
b. if $[f(x)]^{\alpha_0}$ is decreasing, then $f(x) < 1$
c. if $[f(x)]^{\alpha_0}$ is increasing, then $f(x) > 1$
d. if $f(x) > 1$, then $[f(x)]^{\alpha_0}$ is increasing

25. An extremum of the function $f(x) = \frac{2-x}{\pi} \cos \pi(x + 3)$ + $\frac{1}{\pi^2} \sin \pi(x + 3)$, $0 < x < 4$ occurs at

a. $x = 1$
b. $x = 2$
c. $x = 3$
d. $x = \pi$

26. For the function $f(x) = x^4(12 \log_e x - 7)$

a. the point $(-1, -7)$ is the point of inflection
b. $x = e^{7/12}$ is the point of minima
c. the graph is concave downwards in $(0, 1)$
d. the graph is concave upwards in $(1, \infty)$

27. Let $f(x) = \log(2x - x^2) + \sin \frac{\pi x}{2}$. Then which of the following is/are true?

a. graph of f is symmetrical about the line $x = 1$
b. maximum value of f is 1
c. absolute minimum value of f does not exist
d. None of these

28. Which of the following hold(s) good for the function $f(x) = 2x - 3x^{2/3}$?

a. $f(x)$ has two points of extremum
b. $f(x)$ is concave upward for $\forall x \in R$
c. $f(x)$ is non-differentiable function
d. $f(x)$ is continuous function

29. For the function $f(x) = \frac{e^x}{1 + e^x}$, which of the following hold good?

a. f is monotonic in its entire domain
b. maximum of f is not attained even though f is bounded
c. f has a point of inflection
d. f has one asymptote

30. Which of the following is true about point of extremum $x = a$ of function $y = f(x)$?

a. at $x = a$, function $y = f(x)$ may be discontinuous
b. at $x = a$, function $y = f(x)$ may be continuous but non-differentiable
c. at $x = a$, function $y = f(x)$ may have point of inflection
d. None of these

31. Which of the following function has point of extremum at $x = 0$?

a. $f(x) = e^{2x}$
b. $f(x) = \sin |x|$
32. Which of the following function functions has have point of inflection?
 a. \(f(x) = x^6 \)
 b. \(f(x) = x^5 \)
 c. \(f(x) = \cos x + 2x \)
 d. \(f(x) = x^3 \) (where \(\{x\} \) represents fractional part function).

33. The function \(f(x) = x^2 + \frac{\lambda}{x} \) has a
 a. minimum at \(x = 2 \) if \(\lambda = 16 \)
 b. maximum at \(x = 2 \) if \(\lambda = 16 \)
 c. maximum for no real value of \(\lambda \)
 d. point of inflection at \(x = 1 \) if \(\lambda = -1 \)

34. The function \(f(x) = x^{1/3} (x-1) \)
 a. has two inflection points
 b. has one point of extremum
 c. is non-differentiable
 d. Range of \(f(x) \) is \([-\infty, 0) \cup (0, \infty)\).
For Problems 1–2

\(f(x) = \sin^{-1} x + x^2 - 3x + \frac{x^3}{3}, x \in [0, 1] \)

1. Which of the following is true about \(f(x) \)?
 a. \(f(x) \) has a point of maxima
 b. \(f(x) \) has a point of minima
 c. \(f(x) \) is increasing
 d. \(f(x) \) is decreasing

2. Which of the following is true for \(x \in [0, 1] \)?
 a. \(\sin^{-1} x + x^2 - \frac{x(9-x^2)}{3} \leq 0 \)
 b. \(\sin^{-1} x + x^2 - \frac{x(9-x^2)}{3} \geq 0 \)
 c. \(\sin^{-1} x + x^2 - \frac{x(9-x^2)}{3} \leq 1 \)
 d. \(\sin^{-1} x + x^2 - \frac{x(9-x^2)}{3} \geq 1 \)

For Problems 3–4

Let \(f''(\sin x) < 0 \) and \(f''(\cos x) > 0 \) for all \(x \in \left(0, \frac{\pi}{2} \right) \).

3. Which of the following is true?
 a. \(g(x) \) is increasing
 b. \(g'(x) \) is decreasing
 c. \(g'(x) \) has a point of minima
 d. \(g'(x) \) has a point of maxima

4. Which of the following is true?
 a. \(g(x) \) is decreasing in \(\left(\frac{\pi}{4}, \frac{\pi}{2} \right) \)
 b. \(g(x) \) increasing in \(\left(0, \frac{\pi}{4} \right) \)
 c. \(g(x) \) is monotonically increasing
 d. None of these

For Problems 5–8

Consider function \(f(x) = \begin{cases} -x^2 + 4x + a, & x \leq 3 \\ ax + b, & 3 < x < 4 \\ -x + 6, & x \geq 4 \end{cases} \)

(For questions 6 to 8 consider \(f(x) \) as a continuous function).

5. Which of the following is true?
 a. \(f(x) \) is discontinuous function for any value of \(a \) and \(b \)
 b. \(f(x) \) is continuous for finite number of values of \(a \) and \(b \)
 c. \(f(x) \) cannot be differentiable for any value of \(a \) and \(b \)
 d. \(f(x) \) is continuous for infinite values of \(a \) and \(b \)

6. If \(x = 3 \) is the only point of minima in its neighbourhood and \(x = 4 \) is neither a point of maxima nor a point of minima, then which of the following can be true?
 a. \(a > 0, b < 0 \)
 b. \(a < 0, b < 0 \)
 c. \(a > 0, b \in \mathbb{R} \)
 d. None of these

7. If \(x = 4 \) is the only point of maxima in its neighbourhood but \(x = 3 \) is neither a point of maxima nor a point of minima, then which of the following can be true?
 a. \(a < 0, b > 0 \)
 b. \(a > 0, b < 0 \)
 c. \(a > 0, b > 0 \)
 d. Not possible

8. If \(x = 3 \) is a point of minima and \(x = 4 \) is a point of maxima, then which of the following is true?
 a. \(a < 0, b > 0 \)
 b. \(a > 0, b < 0 \)
 c. \(a > 0, b > 0 \)
 d. Not possible

For Problems 9–10

If \(\phi(x) \) is a differentiable real-valued function satisfying \(\phi'(x) + 2\phi(x) \leq 1 \), then it can be adjusted as \(e^{2x}\phi'(x) + 2e^{2x}\phi(x) \leq e^{2x} \) or

\[
\frac{d}{dx} \left(e^{2x}\phi(x) - \frac{e^{2x}}{2} \right) \leq 0 \quad \text{or} \quad \frac{d}{dx} e^{2x} \left(\phi(x) - \frac{1}{2} \right) \leq 0.
\]

Here \(e^{2x} \) is called integrating factor which helps in creating single differential coefficient as shown above. Answer the following questions:

9. If \(P(1) = 0 \) and \(\frac{dP(x)}{dx} > P(x) \) for all \(x \geq 1 \), then
 a. \(P(x) > 0 \forall x > 1 \)
 b. \(P(x) \) is a constant function
 c. \(P(x) < 0 \forall x > 1 \)
 d. None of these

10. If \(H(x) = 0 \) for some \(x = x_0 \) and \(\frac{d}{dx} H(x) > 2cxH(x) \) for all \(x \geq x_0 \) where \(c > 0 \), then
 a. \(H(x) = 0 \) has root for \(x > x_0 \)
 b. \(H(x) = 0 \) has no roots for \(x > x_0 \)
 c. \(H(x) \) is a constant function
 d. None of these

For Problems 11–13

Let \(h(x) = f(x) - a(f(x))^2 - a(f(x))^3 \) for every real number \(x \).

11. \(h(x) \) increases as \(f(x) \) increases for all real values of \(x \) if
 a. \(a \in (0, 3) \)
 b. \(a \in (-2, 2) \)
 c. \([3, \infty) \)
 d. None of these

12. \(h(x) \) increases as \(f(x) \) decreases for all real values of \(x \) if
 a. \(a \in (0, 3) \)
 b. \(a \in (-2, 2) \)
 c. \((3, \infty) \)
 d. None of these

13. If \(f(x) \) is strictly increasing function, then \(h(x) \) is non-monotonic function given
 a. \(a \in (0, 3) \)
 b. \(a \in (-2, 2) \)
 c. \((3, \infty) \)
 d. \(a \in (-\infty, 0) \cup (3, \infty) \)

For Problems 14–16

\(f(x) = x^3 - 9x^2 + 24x + c = 0 \) has three real and distinct roots \(\alpha, \beta, \gamma \)

14. Possible values of \(c \) are
 a. \((-20, -16) \)
 b. \((-20, -18) \)
 c. \((-18, -16) \)
 d. None of these

15. If \(\lceil \alpha \rceil + \lceil \beta \rceil + \lceil \gamma \rceil = 8 \), then the values of \(c \), where \(\lceil \cdot \rceil \)
 represents the greatest integer function, are
 a. \((-20, -16) \)
 b. \((-20, -18) \)
 c. \((-18, -16) \)
 d. None of these

16. If \(\lceil \alpha \rceil + \lceil \beta \rceil + \lceil \gamma \rceil = 7 \), then the values of \(c \), where \(\lceil \cdot \rceil \)
 represents the greatest integer function, are
 a. \((-20, -16) \)
 b. \((-20, -18) \)
 c. \((-18, -16) \)
 d. None of these

For Problems 17–21

Consider the graph of \(y = g(x) = f'(x) \), given that \(f(c) = 0 \), where \(y = f(x) \) is a polynomial function.
17. The graph of \(y = f(x) \) will intersect the x-axis
 a. twice b. once c. never d. None of these
18. The equation \(f(x) = 0, a \leq x \leq b \) has
 a. four real roots b. no real roots c. two distinct real roots.
 d. at least three repeated roots
19. The graph of \(y = f(x), a \leq x \leq b \), has
 a. two points of inflection b. one point of inflection
 c. no point of inflection d. none of these
20. The function \(y = f(x), a < x < b \), has
 a. exactly one local maxima b. one local minima and one maxima
 c. exactly one local minima d. none of these
21. The equation \(f''(x) = 0 \)
 a. has no real roots b. has at least one real root
 c. has at least two distinct real roots d. None of these

For Problems 22–24
Let \(f(x) = 4x^2 - 4ax + a^2 - 2a + 2 \) and the global minimum value of \(f(x) \) for \(x \in [0, 2] \) is equal to 3.
22. The number of values of \(a \) for which the global minimum value equal to 3 for \(x \in [0, 2] \) occurs at the end point of interval \([0, 2]\) is
 a. 1 b. 2 c. 3 d. 0
23. The number of values of \(a \) for which the global minimum value equal to 3 for \(x \in [0, 2] \) occurs for the value of \(x \) lying in \((0, 2)\) is
 a. 1 b. 2 c. 3 d. 0
24. The values of \(a \) for which \(f(x) \) is monotonic for \(x \in [0, 2] \) are
 a. \(a \leq 0 \) or \(a \geq 4 \) b. \(0 \leq a \leq 4 \)
 c. \(a > 0 \) d. None of these

For Problems 25–27
Let \(f(x) = x^3 - 3(7-a)x^2 - 3(9-a^2)x + 2. \)
25. The values of parameter \(a \) if \(f(x) \) has a negative point of local minimum are
 a. \(\phi \) b. \(-3, 3\)
 c. \((\infty, \frac{58}{14}) \) d. None of these
26. The values of parameter \(a \) if \(f(x) \) has a positive point of local maxima are
 a. \(\phi \) b. \(-\infty, -3) \cup (\frac{58}{14}, \infty) \)
 c. \((\infty, \frac{58}{14}) \) d. None of these
27. The values of parameter \(a \) if \(f(x) \) has points of extrema which are opposite in sign are
 a. \(\phi \) b. \(-3, 3\)
 c. \((\infty, \frac{58}{14}) \) d. None of these

For Problems 28–30
Consider the function \(f(x) = \left(1 + \frac{1}{x}\right)^x \).
28. The domain of \(f(x) \) is
 a. \((-1, 0) \cup (0, \infty)\) b. \(R \setminus \{0\}\)
 c. \((-\infty, -1) \cup (0, \infty)\) d. \((0, \infty)\)
29. The function \(f(x) \)
 a. has a maxima but no minima b. has a minima but no maxima
 c. has exactly one maxima and one minima d. is monotonic
30. The range of the function \(f(x) \) is
 a. \((0, \infty)\) b. \((-\infty, e)\)
 c. \((1, \infty)\) d. \((1, e) \cup (e, \infty)\)

For Problems 31–33
Consider the function \(f(x) = x + \cos x - a \)
31. Which of the following is not true about \(y = f(x) \)?
 a. it is an increasing function b. it is a monotonic function
 c. it has infinite points of inflections d. None of these
32. Values of \(a \) for which \(f(x) = 0 \) has exactly one positive root.
 a. \((0, 1)\) b. \((-\infty, 1)\) c. \((-1, 1)\) d. \((1, \infty)\)
33. Values of \(a \) for which \(f(x) = 0 \) has exactly one negative root.
 a. \((0, 1)\) b. \((-\infty, 1)\) c. \((-1, 1)\) d. \((1, \infty)\)

For Problems 34–36
Consider the function \(f(x) = 3x^4 + 4x^3 - 12x^2 \)
34. \(y = f(x) \) increases in the interval
 a. \((-1, 0) \cup (2, \infty)\) b. \((-\infty, 0) \cup (1, 2)\)
 c. \((-2, 0) \cup (1, \infty)\) d. None of these
35. The range of the function \(y = f(x) \) is
 a. \((-\infty, \infty)\) b. \([-32, \infty)\)
 c. \((0, \infty)\) d. None of these
36. The range of values of \(a \) for which \(f(x) = a \) has no real roots is
 a. \((4, \infty)\) b. \((10, \infty)\)
 c. \((20, \infty)\) d. None of these

For Problems 37–39
Consider the function \(f: R \to R, f(x) = \frac{x^2 - 6x + 4}{x^2 + 2x + 4} \)
37. \(f(x) \)
 a. unbounded function b. one-one function
 c. onto function d. None of these
38. Which of the following is not true about $f(x)$?
 a. $f(x)$ has two points of extremum
 b. $f(x)$ has only one asymptote
 c. $f(x)$ is differentiable for all $x \in R$
 d. None of these

39. Range of $f(x)$ is
 a. $(-\infty, -\frac{2}{3}) \cup [2, \infty)$
 b. $\left[-\frac{1}{3}, 5\right]
 c. (-\infty, 2] \cup \left[\frac{7}{3}, \infty\right)
 d. None of these

For Problems 40–42
Consider a polynomial $y = P(x)$ of the least degree passing through $A(-1, 1)$ and whose graph has two points of inflection $B(1, 2)$ and C with abscissa 0 at which the curve is inclined to the positive axis of abscissa at an angle of $\sec^{-1}\sqrt{2}$.

40. The value of $P(-1)$ is
 a. -1
 b. 0
 c. 1
 d. 2

41. The value of $P(0)$ is
 a. $\frac{3}{4}$
 b. 0
 c. $\frac{1}{2}$
 d. None of these

42. The equation $P'(x) = 0$ has
 a. three distinct real roots
 b. one real root
 c. three real roots such that one root is repeated
 d. none of these

For Problems 43–45
Let $f(x)$ be a real-valued continuous function on R defined as $f(x) = x^2e^{-|x|}$.

43. The values of k for which the equation $x^2 e^{-k} = k$ has four real roots
 a. $0 < k < e$
 b. $0 < k < \frac{8}{e^2}$
 c. $0 < k < \frac{4}{e^2}$
 d. None of these

44. Which of the following is not true?
 a. $y = f(x)$ has two points of maxima
 b. $y = f(x)$ has only one asymptote
 c. $f'(x) = 0$ has three real roots
 d. None of these

45. Number of points of inflection for $y = f(x)$ is
 a. 1
 b. 2
 c. 3
 d. 4

Matrix-Match Type

Each question contains statements given in two columns which have to be matched. Statements a, b, c and d in column I have to be matched with statements p, q, r and s in column II. If the correct match are a-p, a-s, b-q, b-r, c-p, c-q and d-s, then the correctly bubbled 4 x 4 matrix should be as follows:

1. Consider function $f(x) = x^4 - 14x^2 + 24x - 3$.

<table>
<thead>
<tr>
<th>Column I: equation $f(x)$</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>p. $x - 1$ has two negative real roots</td>
<td>p. for $p \geq 120$</td>
</tr>
<tr>
<td>q. $x - 2$ has two real roots of opposite sign</td>
<td>q. for $-3 \leq p \leq 5$</td>
</tr>
<tr>
<td>r. $x - 3$ has four real roots</td>
<td>r. for $3 \leq p \leq 120$</td>
</tr>
<tr>
<td>s. $x - 4$ has no real roots</td>
<td>s. for $p \leq -8$ or $5 < p \leq 3$</td>
</tr>
</tbody>
</table>

2. Let $f(x) = (x-1)^m(2-x)^n$; $m, n \in N$ and $m + n > 2$.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. $f(x) = x^2 \log x$</td>
<td>p. $f(x)$ has one point of minima</td>
</tr>
<tr>
<td>b. $f(x) = x + \log x$</td>
<td>q. $f(x)$ has one point of maxima</td>
</tr>
<tr>
<td>c. $f(x) = \log x$</td>
<td>r. $f(x)$ increases in $(0, \infty)$</td>
</tr>
<tr>
<td>d. $f(x) = x^2$</td>
<td>s. $f(x)$ decreases in $(0, \infty)$</td>
</tr>
</tbody>
</table>

3. The function $f(x) = \sqrt{ax^2 + bx + c} + d$ has its non-zero local minimum and maximum values at $x = -2$ and $x = 2$, respectively. If a is a root of $x^2 - x - 6 = 0$, then match the following:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. $x = 1$ and $x = 2$ are the points of minima if</td>
<td>p. m is even</td>
</tr>
<tr>
<td>b. $x = 1$ is a point of minima and $x = 2$ is a point of inflection if</td>
<td>q. m is odd</td>
</tr>
<tr>
<td>c. $x = 2$ is a point of minima and $x = 1$ is a point of inflection if</td>
<td>r. n is even</td>
</tr>
<tr>
<td>d. Both $x = 1$ and $x = 2$ are the points of inflection if</td>
<td>s. n is odd</td>
</tr>
</tbody>
</table>

downloaded from jeemain.guru
6.34 Calculus

5.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(x) = \sin x - x^2 + 1)</td>
<td>p. has point of minima</td>
</tr>
<tr>
<td>b. (f(x) = x \log x - x + e^x)</td>
<td>q. has point of maxima</td>
</tr>
<tr>
<td>c. (f(x) = -x^3 + 2x^2 - 3x + 1)</td>
<td>r. is always increasing</td>
</tr>
<tr>
<td>d. (f(x) = \cos x + 10x + 3x^2 + x^3)</td>
<td>s. is always decreasing</td>
</tr>
</tbody>
</table>

6.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(x) =</td>
<td>2x - 1</td>
</tr>
<tr>
<td>b. (f(x) = 2 \sin x - x)</td>
<td>q. has one point of maxima</td>
</tr>
<tr>
<td>c. (f(x) =</td>
<td>x - 1</td>
</tr>
<tr>
<td>d. (f(x) =</td>
<td>x</td>
</tr>
</tbody>
</table>

7.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(x) = (x - 1)^3 (x - 2)^5)</td>
<td>p. has points of maxima</td>
</tr>
<tr>
<td>b. (f(x) = 3\sin x + 4\cos x - 5x)</td>
<td>q. has point of minima</td>
</tr>
<tr>
<td>c. (f(x) = \begin{cases} \frac{\pi x}{2} & 0 < x \leq 1 \ x^2 - 4x + 4, 1 < x < 2 \end{cases})</td>
<td>r. has point of inflection</td>
</tr>
<tr>
<td>d. (f(x) = (x - 1)^{3/5})</td>
<td>s. has no point of extrema</td>
</tr>
</tbody>
</table>

8.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. At (x = 1, f(x) = \begin{cases} \log x, x < 1 \ 2x - x^2, x \geq 1 \end{cases})</td>
<td>p. is increasing</td>
</tr>
<tr>
<td>b. At (x = 2, f(x) = \begin{cases} x - 1, x < 2 \ 0, x = 2 \ \sin x, x > 2 \end{cases})</td>
<td>q. is decreasing</td>
</tr>
<tr>
<td>c. At (x = 0, f(x) = \begin{cases} 2x + 3, x < 0 \ 5, x = 0 \ x^2 + 7, x > 0 \end{cases})</td>
<td>r. has point of maxima</td>
</tr>
<tr>
<td>d. At (x = 0, f(x) = \begin{cases} e^{-x}, x < 0 \ 0, x = 0 \ -\cos x, x > 0 \end{cases})</td>
<td>s. has point of minima</td>
</tr>
</tbody>
</table>

Solutions on page 6.66

1. If \(a \) is an integer satisfying \(|a| \leq 4 - |[x]| \), where \(x \) is a real number for which \(2x \tan^{-1} x \) is greater than or equal to \(\ln(1 + x^2) \), then the number of maximum possible values of \(a \) (where \([\cdot] \) represents the greatest integer function)

2. From a given solid cone of height \(H \), another inverted cone is carved whose height is \(h \) such that its volume is maximum. Then the ratio \(H/h \) is

3. Let \(f(x) = \begin{cases} x^3 + x^2 + 3x + \sin x \left(3 + \sin \frac{1}{x} \right) & x \neq 0 \\ 0 & x = 0 \end{cases} \). Then the number of points where \(f(x) \) attains its minimum value is

4. Let \(f(x) \) be a cubic polynomial which has local maximum at \(x = 1 \) and \(f'(x) \) has a local minimum at \(x = 1 \). If \(f(-1) = 10 \) and \(f(3) = -22 \), then one fourth of the distance between its two horizontal tangents is

5. Consider \(P(x) \) be a polynomial of degree 5 having extremum at \(x = -1 \) and \(\lim_{x \to 0} \frac{P(x)}{x^3 - 2} = 4 \). Then the value of \([P(1)] \) is (where \([\cdot] \) represents greatest integer function)

6. If \(m \) is the minimum value of \(f(x, y) = x^2 - 4xy + y^2 + 6y \) when \(x \) and \(y \) are subjected to the restrictions \(0 \leq x \leq 1 \) and \(0 \leq y \leq 1 \), then the value of \([m] \) is

7. For a cubic function \(y = f(x) \), \(f''(x) = 4x \) at each point \((x, y)\) on it and it crosses the \(x \)-axis at \((-2, 0)\) at an angle of \(45^\circ \) with positive direction of the \(x \)-axis. Then the value of \(\frac{f(1)}{5} \) is

8. Number of integral values of \(b \) for which the equation \(\frac{x^3}{3} - x = b \) has 3 distinct solutions is

9. Let \(f(x) = \begin{cases} x^2 + 2, x < -1 \\ x + 2, \ x \geq 1 \end{cases} \), then number of times \(f'(x) \) changes its sign in \((-\infty, +\infty)\) is
10. The number of non-zero integral values of ‘a’ for which the function \(f(x) = x^4 + ax^3 + \frac{3x^2}{2} + 1 \) is concave upward along the entire real line is.

11. Let \(f(x) = \begin{cases} x^{0.5} & \text{if } x \leq 1 \\ -(x-2)^3 & \text{if } x > 1 \end{cases} \), then the number of critical points on the graph of the function is.

12. A right triangle is drawn in a semicircle of radius \(\frac{1}{2} \) with one of its legs along the diameter. If the maximum area of the triangle is \(M \), then the value of \(32\sqrt{3}M \) is.

13. A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines \(y=0, y=3x \) and \(y=30-2x \). If \(M \) is the largest area of such a rectangle, then the value of \(\frac{2M}{27} \) is.

14. The least integral value of \(x \) where \(f(x) = \log_{12}(x^2-2x-3) \) is monotonically decreasing is.

15. The least area of a circle circumscribing any right triangle of area \(\frac{9}{\pi} \) is.

16. Let \(f(x) = \begin{cases} x^2 - 3x + a & \text{if } 0 \leq x < \frac{3}{2} \\ -2x + 3 & \text{if } x \geq \frac{3}{2} \end{cases} \). If \(f(x) \) has a local maxima at \(x = \frac{3}{2} \), then greatest value of \(|4a| \) is.

Archives

Solutions on page 6.68

Subjective

1. Prove that the minimum value of \(\frac{(a+x)(b+x)}{(c+x)} \), \(a, b > c \),

\[x > -c \text{ is } \left(\sqrt{a-c} + \sqrt{b-c} \right)^2. \] (IIT-JEE, 1979)

2. Let \(x \) and \(y \) be two real variables such that \(x > 0 \) and \(xy = 1 \). Find the minimum value of \(x + y \). (IIT-JEE, 1981)

3. Use the function \(f(x) = x^\alpha x^\beta \), \(x > 0 \), to determine the bigger of the two numbers \(x^\alpha \) and \(x^\beta \). (IIT-JEE, 1981)

4. Find the shortest distance of the point \((0, c) \) from the parabola \(y = x^2 \), where \(0 \leq c \leq 5 \). (IIT-JEE, 1982)

5. If \(ax^2 + \frac{b}{x} \geq c \) for all positive \(x \) where \(a > 0 \) and \(b > 0 \), show that \(27a^2b^2 \geq 4c^3 \). (IIT-JEE, 1982)

6. Show that \(1 + x \in \left(x + \sqrt{x^2 + 1} \right) \geq \sqrt{1 + x^2} \) for all \(x \geq 0 \). (IIT-JEE, 1983)

7. A swimmer \(S \) is in the sea at a distance \(d \) km from the closest point \(A \) on a straight shore. The house of the swimmer is on the shore at distance \(L \) km from \(A \). He can swim at a speed of \(u \) km per hour and walk at a speed of \(v \) km per hour, \(u < v \). At what point on the shore should he land so that he reaches his house in the shortest possible time? (IIT-JEE, 1983)

8. Find the co-ordinates of the point on the curve \(y = \frac{x}{1 + x^2} \) where the tangent to the curve has the greatest slope. (IIT-JEE, 1994)

9. Let \(f(x) = \sin^3 x + \lambda \sin^2 x, -\frac{\pi}{2} < x < \frac{\pi}{2} \). Find the intervals in which \(\lambda \) should lie in order that \(f(x) \) has exactly one minimum and exactly one maximum. (IIT-JEE, 1985)

10. Let \(A(p^2, -p), B(p^2, q), C(q^2, -r) \) be the vertices of the triangle \(ABC \). A parallelogram \(AFDE \) is drawn with \(D, E \) and \(F \) on the line segments \(BC, CA \) and \(AB \), respectively. Using calculus show that the maximum area of such a parallelogram is \(\frac{1}{2} (p+q)(q+r)(p-r) \). (IIT-JEE, 1986)

11. Find the point on the curve \(4x^2 + a^2y^2 = 4a^2 \), \(4 < a^2 < 8 \) that is farthest from the point \((0, -2) \). (IIT-JEE, 1987)

12. Investigate for the maxima and minima of the function \(f(x) = \int_{-1}^{1} \left(2(t-1)(t-3)^2 + 3(t-1)^2(t-2)^2 \right) dt \). (IIT-JEE, 1988)

13. Find the maxima and minima of the function \(y = x (x-1)^2 \), \(0 \leq x \leq 2 \). (IIT-JEE, 1989)

14. Show that \(2 \sin x + \tan x \geq 3x \), where \(0 \leq x < \frac{\pi}{2} \). (IIT-JEE, 1990)

15. A point \(P \) is given on the circumference of a circle of radius \(r \). Chords \(QR \) are parallel to the tangent at \(P \). Determine the maximum possible area of the triangle \(PQR \). (IIT-JEE, 1990)

16. A window of perimeter \(P \) (including the base of the arch) is in the form of a rectangle surrounded by a semi-circle. The semi-circular portion is fitted with the coloured glass while the rectangular part is fitted with the clear glass that transmits three times as much light per square meter as the coloured glass does. What is the ratio for the sides of the rectangle so that the window transmits the maximum light? (IIT-JEE, 1991)

17. A cubic function \(f(x) \) vanishes at \(x = -2 \) and has relative minimum/maximum at \(x = -1 \) and \(x = \frac{1}{3} \) if \(\int_{-1}^{1} f(x) \, dx = \frac{14}{3} \). Find the cubic function \(f(x) \). (IIT-JEE, 1992)

18. Let \(f(x) = \begin{cases} -x^3 + \frac{(b^3 - b^2 + b - 1)}{(b^2 + 3b + 2)} & \text{if } 0 \leq x < 1 \\ 2x - 3, & 1 \leq x \leq 3 \end{cases} \). Find all the possible real values of \(b \) such that \(f(x) \) has the smallest value at \(x = 1 \). (IIT-JEE, 1993)
19. The circle \(x^2 + y^2 = 1\) cuts the x-axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the x-axis and the line segment PQ at S. Find the maximum area of the triangle QSR.

 (IIT-JEE, 1994)

20. Let \((h, k)\) be a fixed point, where \(h > 0, k > 0\). A straight line passing through this point cuts the positive direction of the co-ordinates axes at the points P and Q. Find the minimum area of the triangle OPQ, O being the origin.

 (IIT-JEE, 1995)

21. Determine the points of maxima and minima of the function
\[f(x) = \frac{1}{8} \log_a x - bx + x^2, x > 0,\]
where \(b \geq 0\) is a constant.

 (IIT-JEE, 1996)

22. Let \(f(x) = \begin{cases} xe^x, & x \leq 0 \\ x + ax^2 - x^3, & x > 0 \end{cases}\) where \(a\) is a positive constant. Find the interval in which \(f'(x)\) is increasing.

 (IIT-JEE, 1993)

23. Suppose \(f(x)\) is a function satisfying the following conditions:
 a. \(f(0) = 2, f(1) = 1\)
 b. \(f\) has a minimum value at \(x = 5/2,\)
 c. For all \(x, f''(x) = \begin{bmatrix} 2ax & 2ax - 1 & 2ax + b + 1 \\ b & b + 1 & -1 \\ 2(ax + b) & 2ax + 2b + 1 & 2ax + b \end{bmatrix}\)
where \(a, b\) are some constants. Determine the constants \(a, b,\) and the function \(f(x)\).

 (IIT-JEE, 1984)

24. Let \(-1 \leq p \leq 1\). Show that the equation \(4x^3 - 3x^2 - px = 0\) has a unique root in the interval \([1/2, 1]\) and identify it.

 (IIT-JEE, 2001)

25. Using the relation \(2(1 - \cos x) < x^2, x \neq 0\) or otherwise, prove that \(\sin (\tan x) \geq x, \forall x \in \left[0, \frac{\pi}{4}\right]\).

 (IIT-JEE, 2003)

26. If \(P(1) = 0\) and \(\frac{dP(x)}{dx} > P(x)\) for all \(x \geq 1,\) then prove \(P(x) > 0\) for all \(x > 1.\)

 (IIT-JEE, 2004)

27. Prove that for \(x \in \left[0, \frac{\pi}{2}\right], \) \(\sin x + 2x \geq \frac{3x(x + 1)}{\pi}.\) Explain the identity, if any, used in the proof.

 (IIT-JEE, 2004)

28. If \(P(x)\) be a polynomial of degree 3 satisfying \(P(-1) = 10, P(1) = -6\) and \(P(x)\) has maxima at \(x = -1\) and \(P'(x)\) has minima at \(x = 1.\) Find the distance between the local maxima and local minima of the curve.

 (IIT-JEE, 2005)

Objective

Fill in the blanks

1. The larger of \(\cos (\ln \theta)\) and \(\cos (\theta)\) if \(e^{-\pi/2} < \theta < \frac{\pi}{2}\) is ________.

 (IIT-JEE, 1983)

2. The function \(y = 2x^2 - \ln|x|\) is monotonically increasing for values of \(x\) (\(\neq 0\)) satisfying the inequalities ________ and ________.

 (IIT-JEE, 1998)

3. The set of all for which \(\log_a (1 + x) \leq x\) is equal to ________.

 (IIT-JEE, 1997)

4. The maximum value of the function \(f(x) = 2x^3 - 15x^2 + 36x - 48\) on the set \(A = \{x | x^2 + 20 \leq 9x\}\) is ________.

 (IIT-JEE, 2009)

5. If \(f(x) = x^{32} (3x - 10), x \geq 0,\) then \(f(x)\) is increasing in ________.

 (IIT-JEE, 2011)

True or false

1. If \(x - r\) is a factor of the polynomial \(f(x) = a_0x^n + a_1x^{n-1} + \ldots + a_n\) repeated \(m\) times (\(1 < m \leq n\)), then \(r\) is a root of \(f'(x)\) repeated \(m\) times.

 (IIT-JEE, 1984)

2. For \(0 < a < x,\) the minimum value of the function \(\log_a x + \log_a x\) is 2.

 (IIT-JEE, 1984)

Multiple choice question with one correct answer

1. \(AB\) is a diameter of a circle and \(C\) is any point on the circumference of the circle. Then
 a. the area of \(ABC\) is maximum when it is isosceles
 b. the area of \(ABC\) is minimum when it is isosceles
 c. the perimeter of \(ABC\) is minimum when it is isosceles
 d. none of these

 (IIT-JEE, 1983)

2. If \(f(x) = a \log |x| + bx^2 + x\) has its extremum values at \(x = -1\) and \(x = 2,\) then
 a. \(a = 2, b = -1\)
 b. \(a = 2, b = -1/2\)
 c. \(a = -2, b = 1/2\)
 d. None of these

 (IIT-JEE, 1983)

3. The function \(f(x) = \frac{\ln (\pi + x)}{\ln (e + x)}\) is
 a. increasing in \((0, \infty)\)
 b. decreasing in \((0, \infty)\)
 c. increasing in \((0, \pi/e)\), decreasing in \((\pi/e, \infty)\)
 d. decreasing in \((0, \pi/e)\), increasing in \((\pi/e, \infty)\)

 (IIT-JEE, 1995)

4. In the interval \([0, 1]\), the function \(x^{25} (1 - x)^75\) takes its maximum value at the point
 a. \(0\)
 b. \(\frac{1}{4}\)
 c. \(\frac{1}{2}\)
 d. \(\frac{1}{3}\)

 (IIT-JEE, 1995)

5. If \(f(x) = \frac{x}{\sin x}\) and \(g(x) = \frac{x}{\tan x}\), where \(0 < x \leq 1,\) then in this interval
 a. both \(f(x)\) and \(g(x)\) are increasing function
 b. both \(f(x)\) and \(g(x)\) are decreasing function
 c. \(f(x)\) is an increasing function
 d. \(g(x)\) is an increasing function

 (IIT-JEE, 1997)

6. The function \(f(x) = \sin^2 x + \cos^2 x\) increases if
 a. \(0 < x < \pi/8\)
 b. \(\pi/4 < x < 3\pi/8\)
 c. \(3\pi/8 < x < 5\pi/8\)
 d. \(5\pi/8 < x < 3\pi/4\)

 (IIT-JEE, 1999)

7. Consider the following statements in \(S\) and \(R\)
 a. Both \(\sin x\) and \(\cos x\) are decreasing functions in the interval \([\pi/2, \pi]\).
 b. \(\sin^2 x - \cos^2 x = \sin 2x\) is an identity.
 c. \(\sin^2 x + \cos^2 x = 1\) is an identity.
 d. \(\sin x + \cos x = 1\) is an identity.

 (IIT-JEE, 1999)
8. Let \(f(x) = \int e^x (x - 1) (x - 2) \, dx \). Then \(f \) decreases in the interval
- a. \((\infty, -2)\)
- b. \((-2, -1)\)
- c. \((1, 2)\)
- d. \((2, +\infty)\)

9. Let \(f(x) = \begin{cases}
 1, & \text{for } 0 < |x| < 2 \\
 0, & \text{for } x = 0 \end{cases} \) then \(f \) has
- a. a local maximum
- b. a local minimum
- c. a local maximum
- d. no maximum
- e. none of these

10. For all \(x \in (0, 1) \)
- a. \(e^x < 1 + x \)
- b. \(\log(1 + x) < x \)
- c. \(\sin x > x \)
- d. \(\log x > x \)

11. If \(f(x) = x^e - (x - 1) \), then \(f'(x) \) is
- a. increasing on \([-\infty, 0]\)
- b. decreasing on \([0, 1]\)
- c. increasing on \([0, 1]\)
- d. decreasing on \([-\infty, 0]\)

12. Let \(f(x) = (1 + b^2)x^2 + 2bx + 1 \) and let \(m(b) \) be the minimum value of \(f(x) \). As \(b \) varies, the range of \(m(b) \) is
- a. \([0, 1]\)
- b. \([0, 1/2]\)
- c. \([1/2, 1]\)
- d. \([0, 1]\)

13. The length of the longest interval in which the function \(3 \sin x - 4 \sin^2 x \) is increasing is
- a. \(\pi/3 \)
- b. \(\pi/2 \)
- c. \(3\pi/2 \)
- d. \(\pi \)

14. Tangent is drawn to ellipse \(\frac{x^2}{27} + \frac{y^2}{4} = 1 \) at \((3\sqrt{3} \cos \theta, \sin \theta) \) (where \(\theta \in (0, \pi/2) \)). Then the value of \(\theta \) such that sum of intercepts on axes made by this tangent is minimum, is
- a. \(\pi/3 \)
- b. \(\pi/6 \)
- c. \(\pi/8 \)
- d. \(\pi/4 \)

15. If \(f(x) = x^3 + bx^2 + cx + d \) and \(0 < b^2 < c \), then in \((-\infty, \infty)\)
- a. \(f(x) \) is a strictly increasing function
- b. \(f(x) \) has a local maximum
- c. \(f(x) \) is a strictly decreasing function
- d. \(f(x) \) is bounded

16. The function defined by \(f(x) = (x + 2) e^x \) is
- a. decreasing for all \(x \)
- b. decreasing in \((-\infty, -1)\) and increasing in \((-1, \infty)\)
- c. increasing for all \(x \)
- d. decreasing in \((-\infty, -1)\) and increasing in \((-1, \infty)\)

Multiple choice question with one or more than one correct answer

1. Let \(P(x) = a_0 + a_1 x^2 + a_2 x^4 + \ldots + a_n x^{2n} \) be a polynomial in a real variable \(x \) with \(0 < a_0 < a_1 < a_2 < \ldots < a_n \). The function \(f(x) \) has
- a. neither a maximum nor a minimum
- b. only one maximum
- c. only one minimum
- d. only one maximum and only one minimum
- e. none of these

2. The smallest positive root of the equation \(\tan x - x = 0 \) lies in
- a. \(\left(0, \frac{\pi}{2} \right) \)
- b. \(\left(\frac{\pi}{2}, \pi \right) \)
- c. \(\left(\frac{3\pi}{2}, 2\pi \right) \)
- d. \(\left(\frac{3\pi}{2}, \frac{5\pi}{2} \right) \)
- e. None of these

3. Let \(f \) and \(g \) be increasing and decreasing functions, respectively from \([0, \infty)\) to \([0, \infty)\). Let \(h(x) = f(g(x)) \). If \(h(0) = 0 \), then \(h(x) - h(0) \) is
- a. always zero
- b. always negative
- c. always positive
- d. strictly increasing
- e. none of these

4. If \(f(x) = \left\{ \begin{array}{ll}
 3x^3 + 12x - 1, & \text{for } 0 < x < 2 \\
 37 - x, & \text{for } x \geq 2
\end{array} \right. \), then
- a. \(f(x) \) is increasing in \([-1, 2]\)
- b. \(f(x) \) is increasing on \([-1, 3]\)
- c. \(f''(x) \) does not exist
- d. \(f(x) \) has the maximum value at \(x = 2 \)

5. Let \(h(x) = f(x) - (f(x))^3 + (f(x))^4 \) for every real number \(x \), then
- a. \(h(x) \) is increasing whenever \(f \) is increasing
- b. \(h(x) \) is increasing whenever \(f \) is decreasing
- c. \(h(x) \) is decreasing whenever \(f \) is decreasing
- d. nothing can be said in general

6. If \(f(x) = \frac{x^2 - 1}{x^2 + 1} \), for every real number \(x \), then the minimum value of \(f \)
- a. does not exist because \(f \) is unbounded
- b. is not attained even through \(f \) is bounded
- c. is equal to 1
- d. is equal to 1

7. The number of values of \(x \) where the function \(f(x) = \cos x + \cos(\sqrt{2}x) \) attains its maximum is
- a. 0
- b. 1
- c. 2
- d. infinite

8. The function \(f(x) = \int_{-1}^{x} (t^2 - 1) (t - 1) (t - 2) (t - 3)^5 \, dt \) has a local minimum at \(x = \)
- a. 0
- b. 1
- c. 2
- d. 3

9. \(f(x) \) is a cubic polynomial with \(f(2) = 18 \) and \(f(1) = -1 \). Also \(f(x) \) has local maxima at \(x = -1 \) and \(f''(x) \) has local minima at \(x = 0 \), then
- a. the distance between \((-1, 2)\) and \((a, f(a))\), where \(x = a \)
- b. is the point of local minima is \(2\sqrt{3} \)
- c. \(f(x) \) is increasing for \(x \in [-1, 2] \)
- d. \(f(x) \) has local minima at \(x = 1 \)

10. \(f(x) = \begin{cases}
 2 - c^{x-1}, & 1 < x \leq 2 \\
 x - c, & 2 < x \leq 3
\end{cases} \) and \(g(x) = \int_{0}^{x} f(t) \, dt \), \(x \in [1, 3] \)
- a. then \(g(x) \) has
6.38 Calculus

a. local maxima at \(x = 1 + \ln 2 \) and local minima at \(x = e \)

b. local maxima at \(x = 1 \) and local minima at \(x = 2 \)

c. no local maxima

d. no local minima

(IIT-JEE, 2006)

Match the column type

1. Match the statements/expressions in Column I with the open intervals in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Interval contained in the domain of definition of non-zero solutions of the differential equation ((x - 3)^2 y' + y = 0)</td>
<td>p. (\left(\frac{-\pi}{4}, \frac{\pi}{2}\right))</td>
</tr>
<tr>
<td>b. Interval containing the value of the integral</td>
<td>q. (\left(0, \frac{\pi}{2}\right))</td>
</tr>
</tbody>
</table>

(IIT-JEE, 2009)

Integer type

1. Let \(f \) be a function defined on \(R \) (the set of all real numbers) such that \(f'(x) = 2010(x - 2009)(x - 2010)^2(x - 2011)^3(x - 2012)^4 \), for all \(x \in R \). If \(g \) is a function defined on \(R \) with values in the interval \((0, \infty)\) such that \(f(x) = \ln(g(x)) \), for all \(x \in R \), then the number of points in \(R \) at which \(g \) has a local maximum is

(a) \(\frac{\pi}{2}, \frac{5\pi}{4} \)
(b) \(\left(0, \frac{\pi}{8}\right) \)
(c) \((-\pi, \pi)\)

(IITJEE 2010)

ANSWERS AND SOLUTIONS

Subjective Type

1. Since \(f(x) = \sin(\ln x) - \cos(\ln x), x > 0 \)

\[
= \sqrt{2}\sin\left(\ln x - \frac{\pi}{4}\right)
\]

\[
\therefore f'(x) = \frac{\sqrt{2}}{x}\cos\left(\ln x - \frac{\pi}{4}\right)
\]

\[
= \frac{\sqrt{2}}{x}\sin\left(\frac{\pi}{2} + \ln x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{x}\sin\left(\frac{\pi}{4} + \ln x\right) > 0 \quad (\because x > 0)
\]

or \(\sin\left(\frac{\pi}{4} + \ln x\right) > 0 \)

or \(2n\pi < \frac{\pi}{4} + \ln x < (2n + 1)\pi, n \in I \)

or \(2n\pi - \frac{\pi}{4} < \ln x < 2n\pi + \frac{3\pi}{4}, n \in I \)

\[
\Rightarrow e^{2n\pi - \frac{\pi}{4}} < x < e^{2n\pi + \frac{3\pi}{4}}, n \in I
\]

Therefore, \(f(x) \) is strictly increasing when \(x \in \left(e^{2n\pi - \frac{\pi}{4}}, e^{2n\pi + \frac{3\pi}{4}}\right), n \in I \).

2. \(f(x) = x^2 + ax^2 + bx + 5 \sin^2 x \) is increasing on \(R \)

\[
f'(x) > 0 \quad \text{for all } x \in R
\]

\[
\Rightarrow 3x^2 + 2ax + b + 5 \sin 2x > 0 \quad \text{for all } x \in R
\]

\[
\Rightarrow 3x^2 + 2ax + (b - 5) > 0 \quad \text{for all } x \in R
\]

\[
\Rightarrow (2a)^2 - 4 \times 3 \times (b - 5) < 0
\]

\[
a^2 - 3b + 15 < 0
\]

3. \(f(x) = e^{2x} - (a + 1) e^x + 2x \)

\[
f'(x) = 2e^{2x} - (a + 1) e^x + 2
\]

Now, \(2e^{2x} - (a + 1) e^x + 2 \geq 0 \) for all \(x \in R \)

\[
\Rightarrow 2 \left(e^x + \frac{1}{e^x}\right) - (a + 1) \geq 0 \quad \text{for all } x \in R
\]

\[
\Rightarrow (a + 1) \leq 2 \left(e^x + \frac{1}{e^x}\right) \quad \text{for all } x \in R
\]

\[
\Rightarrow a + 1 \leq 4 \quad \text{since } e^x + \frac{1}{e^x} \text{ has minimum value } 2
\]

4. Assume \(f(x) = e^x \) and let \(x_1 \) and \(x_2 \) be two points on the curve \(y = e^x \).

Let \(R \) be another point which divides \(P \) and \(Q \) in the ratio \(1:2 \). \(y \)-coordinate of point \(R \) is \(\frac{e^{2x_1} + e^{2x_2}}{3} \) and \(y \)-co-ordinate of point \(S \) is \(e^x \frac{2x_1 + x_2}{3} \).

\[
\Rightarrow \frac{e^{2x_1} + e^{2x_2}}{3} > e^x \frac{2x_1 + x_2}{3}
\]

5. Let point \(A, B, C \) form a triangle. \(y \)-co-ordinate of centroid \(G \) is \(\frac{\sin x_1 + \sin x_2 + \sin x_3}{3} \) and \(y \)-co-ordinate of point \(F \) is

\[
\sin\left(\frac{x_1 + x_2 + x_3}{3}\right)
\]

From Fig. 6.58, \(FD > GD \).

Hence, \(\sin\left(\frac{x_1 + x_2 + x_3}{3}\right) > \frac{\sin x_1 + \sin x_2 + \sin x_3}{3} \)

If \(A + B + C = \pi \), then

\[
\sin\left(\frac{A + B + C}{3}\right) > \frac{\sin A + \sin B + \sin C}{3}
\]
Now, let \(f(x) = \left(\tan^{-1} x\right)^2 + \frac{2}{\sqrt{x^2 + 1}} \) \hspace{1cm} (1)

\[
\begin{align*}
\therefore \quad f'(x) &= \frac{2 \tan^{-1} x}{1 + x^2} - \frac{2x}{(x^2 + 1)^{3/2}} \\
&= \frac{2}{1 + x^2} \left[\tan^{-1} x - \frac{x}{\sqrt{x^2 + 1}} \right] \\
\end{align*}
\]

To find the sign of \(f'(x) \) we consider

\[
\begin{align*}
g(x) &= \tan^{-1} x - \frac{x}{\sqrt{x^2 + 1}} \\
\therefore \quad g'(x) &= \frac{1}{1 + x^2} \left[1 - \frac{1}{\sqrt{x^2 + 1}} \right] > 0 \\
\Rightarrow \quad g'(x) > 0 \\
\Rightarrow \quad g(x) \text{ is an increasing function} \Rightarrow f'(x) > 0 \quad \{\text{From (2)}\} \\
\Rightarrow \quad f(x) \text{ is an increasing function} \\
\end{align*}
\]

\[
\begin{align*}
\Rightarrow \quad \left(\tan^{-1} \frac{1}{e} \right)^2 + \frac{2}{e^2 + 1} &< \left(\tan^{-1} e \right)^2 + \frac{2}{\sqrt{e^2 + 1}} \\
\text{(From equation (1))}
\end{align*}
\]

Hence, \[\left(\tan^{-1} \frac{1}{e} \right)^2 + \frac{2}{e^2 + 1} < \left(\tan^{-1} e \right)^2 + \frac{2}{\sqrt{e^2 + 1}}. \]

8. In this problem, first we have to select an appropriate function.

Now by observation, given inequality can be set as \(\sin \left(\frac{\sin \theta}{\theta} \right) > \frac{\sin \theta}{\theta} \). This clearly gives indication that one has to study the function \(f(x) = \frac{\sin x}{x} \).

\[
\Rightarrow \quad f'(x) = \left(\frac{x \cos x - \sin x}{x^2} \right) = \frac{\cos x(x - \tan x)}{x^2} < 0 \quad \text{(as in first quadrant } x < \tan x) \\
\Rightarrow \quad f(x) \text{ is a decreasing function}
\]

Now, \(\sin \theta < \theta \text{ for } 0 < \theta < \frac{\pi}{2} \)

\[
\Rightarrow \quad f(\sin \theta) > f(\theta) \Rightarrow \frac{\sin(\sin \theta)}{\sin \theta} > \frac{\sin \theta}{\theta} \quad \{\text{From (1)}\}
\]

Hence, \[\sin^2 \theta < \theta \sin(\sin \theta) \text{ for } 0 < \theta < \frac{\pi}{2}. \]

9. \(f(x) = x^3 - 3x^2 + 6 \)

If \(f'(x) = 3x^2 - 6x = 0 \) then \(x = 0, 2 \) are the critical points of \(f(x) \)

\(x = 0 \) is a point of local maxima and \(x = 2 \) is a point of local minima.

Clearly, \(f(x) \) is increasing in \((- \infty, 0)\) and \((2, \infty)\) and decreasing in \((0, 2)\).
6.40 Calculus

Case 1: \(x + 2 \leq 0 \Rightarrow x \leq -2 \)
\[\Rightarrow g(x) = f(x + 2), -3 \leq x \leq -2 \]

Case 2: \(x + 1 < 0 \) and \(0 < x + 2 < 2 \)
\[x < -1 \) and \(-2 < x < 0 \)
i.e., \(-2 < x < -1\)
\[g(x) = f(0) \]

Case 3: \(0 \leq x + 1, x + 2 \leq 2 \)
\[\Rightarrow -1 \leq x \leq 0, g(x) = f(x + 1) \]
\[\Rightarrow g(x) = \begin{cases}
 f(x + 2), & -3 \leq x < -2 \\
 f(0), & -2 \leq x < -1 \\
 f(x + 1), & -1 \leq x < 0 \\
 1 - x, & x \geq 0
\end{cases} \]

Hence, \(g(x) \) is continuous in the interval \([-3, 1]\).

10. We have to prove that \(\sqrt{f(x)} = \frac{\sqrt{f(0)}}{x} \), \(x \geq 1 \) or
\[x\sqrt{f(x)} \geq 1/\sqrt{f(0)} \]
This suggests that we have to consider function \(x\sqrt{f(x)} \).

Now, given that \(ax f'(x) \geq 2 \sqrt{f(x)} - 2af(x) \),
dividing both sides by \(2\sqrt{f(x)} \) we have
\[\frac{ax}{2\sqrt{f(x)}} \frac{f'(x)}{\sqrt{f(x)}} + a\sqrt{f(x)} - 1 \geq 0 \]
\[\Rightarrow \frac{d}{dx} \left(ax\sqrt{f(x)} - x \right) \geq 0 \]
\[\Rightarrow \text{Hence, } ax\sqrt{f(x)} - x \text{ is an increasing function.} \]
\[\Rightarrow x \geq 1 \text{ then } f(x) \geq f(1) \]
\[\Rightarrow ax\sqrt{f(x)} - x \geq a\sqrt{f(1)} - 1 \]
\[\Rightarrow ax\sqrt{f(x)} \geq a\sqrt{f(1)} + x - 1 \geq a\sqrt{f(1)} \text{ (as } x \geq 1) \]
\[\Rightarrow \frac{\sqrt{f(x)}}{x} \geq \frac{\sqrt{f(1)}}{x} \]

11. Let the corner \(A \) of the leaf \(ABCD \) be folded over to \(A' \)
which is on the inner edge \(BC \) of the page.
Let \(AP = x \) and \(AB = a, \therefore BP = a - x \)

\[\text{Fig. 6.60} \]

If \(\angle A'PB = \theta \), then \(\angle EA'F = \theta, EF \) is parallel to \(AB \), then \(EF = a \).
In \(\Delta A'B'P \), \(\cos \theta = BP/PA' = (a - x)/x \)
In \(\Delta A'E \), \(A'E = EF \csc \theta = a/\sqrt{1 - \cos^2 \theta} \)

\[= \frac{ax}{\sqrt{x^2 - (a - x)^2}} = \frac{ax}{\sqrt{2ax - a^2}} = AE \]

The triangle \(APE \) is folded to \(A'PE \)
\[\Rightarrow \text{Area of folded part} = \text{Area of } \Delta PAE = \frac{1}{2} \frac{ax}{\sqrt{2ax - a^2}} \]
\[= \frac{1}{2} \frac{ax}{\sqrt{2ax - a^2}} = A \text{ (say) or } A^2 = \frac{a^2 x^4}{4(2ax - a^2)} \]
\[= \frac{a^2}{4} \frac{1}{y} \text{ where } y = \left(2ax^3 - a^2x^4 \right) \]
\[0 < x < a \]
Obviously, \(A^2 \) (i.e., \(A \)) is minimum when \(y \) is maximum.

Now, \(y = 2ax^3 - a^2x^4 \Rightarrow \frac{dy}{dx} = \frac{6a}{x^4} + \frac{4a^2}{x^5} \text{ and} \]
\[\frac{d^2y}{dx^2} = \frac{24a}{x^5} - \frac{20a^2}{x^6} \]
For maximum or minimum of \(y, \frac{dy}{dx} = \frac{6a}{x^4} + \frac{4a^2}{x^5} = 0 \)
\[\Rightarrow x = 2a/3 \]
When \(x = 2a/3, \frac{d^2y}{dx^2} = \frac{24a}{x^5} - \frac{20a^2}{x^6} = 4a \left(\frac{3}{2a} \right)^5 \left(6 - 5a \right) \left(\frac{3}{2a} \right) = -4a \left(\frac{3}{2a} \right)^5 \left(\frac{3}{2} \right) < 0 \)
\[\Rightarrow y \text{ is maximum, i.e., } A \text{ is minimum when } x = 2a/3 \text{ which is the only critical point (least). Hence, the folded area is minimum when 2/3 of the width of the page is folded over.} \]

12. \[\text{Fig. 6.61} \]

From Fig. 6.61, \(AP = 2r \sin \theta \)
\(PY = 2r \sin \theta \cos \theta = r \sin 2\theta \)
\[\Rightarrow AY = 2r \sin \theta \sin \theta \]
\[\Rightarrow \Delta = \text{area of } APY = \frac{1}{2} \frac{PY \cdot AY}{2} \]
\[\text{or } \Delta = r^2 \sin^2 \theta \sin 2\theta, 0 < \theta < \pi/2 \]
\[\Rightarrow \Delta = r^2 \sin^2 \theta \sin 2\theta, 0 < \theta < \pi/2 \]
\[\Rightarrow \Delta = \int_{0}^{\pi/2} \int_{0}^{\theta} \left[\sin^2 \theta \cos^2 \theta + 2 \sin^2 \theta \cos 2\theta \right] d\theta d\theta \]
\[= 2r^2 \sin^3 \theta \left[2 \cos^2 \theta - \cos \theta \right] \]
\[= 2r^2 \sin^3 \theta \left[2 \cos^2 \theta - \cos \theta \right] \]
\[\Rightarrow \theta \text{ is maximum, } \sin \theta = \pm 1/2 \]
Therefore, the only critical point within \((0, \pi/2)\) is \(\pi/3 \).
Clearly \(\left(\frac{d\Delta}{d\theta} \right)_{(\pi/3-h)} > 0 \) and \(\left(\frac{d\Delta}{d\theta} \right)_{(\pi/3+h)} < 0 \)

\[\Rightarrow \Delta \text{ is maximum at } \theta = \pi/3. \text{ Being the only extrema, area is also greatest at } \pi/3. \]

\[\Rightarrow \text{The greatest area of such triangle } = \left(3\sqrt{3}\right)/8. \]

13. \(f(x) = \left(\frac{\sqrt{a+4}}{1-a} - 1\right) x^5 - 3x + \log 5. \)

\[\Rightarrow f'(x) = 5 \left(\frac{\sqrt{a+4}}{1-a} - 1\right) x^4 - 3 < 0 \text{ for all } x \in R. \]

as \(f(x) \) decreases for real \(x \).

\[\Rightarrow \left(\frac{\sqrt{a+4}}{1-a} - 1\right) x^4 < 3/5 \text{ for all } x \in R \]

\[\Rightarrow \left(\frac{\sqrt{a+4}}{1-a} - 1\right) < 0. \]

\[\Rightarrow \frac{\sqrt{a+4}}{1-a} - 1 < 0. \]

For \(a > 1 \), (1) is satisfied.

For \(-4 \leq a < 1 \),

\[\sqrt{(a+4)} - 1 \leq 1 - a \]

\[\Rightarrow a + 4 \leq a^2 - 2a + 1 \]

\[\Rightarrow a^2 - 3a - 3 \geq 0 \]

\[\Rightarrow a \leq \frac{3 - \sqrt{21}}{2} \text{ or } a \geq \frac{3 + \sqrt{21}}{2} \]

But \(-4 \leq a < 1 \)

\[\Rightarrow -4 \leq a \leq \frac{3 - \sqrt{21}}{2} \text{ or } a > 1. \]

14. \(f(x) = \frac{1}{2ax - x^2 - 5a^2} = \frac{-1}{4a^2 - (x-a)^2} \)

Clearly \(f(x) \) is continuous \(\forall x \in R. \)

\[\text{The graph is symmetrical about the line } x = a. \]

If \(a = 1 \) (mid point of \(x = -3 \) and \(x = 5 \)), greatest value is \(f(5) = f(-3) \)

If \(a < 1 \), \(f_{\text{max}}(x) = f(5) = \frac{-1}{5(a^2 - 2a + 5)} \)

and if \(a > 1 \), \(f_{\text{max}}(x) = f(-3) = \frac{-1}{5a^2 + 6a + 9} \)

15. We know that \(r = \frac{\Delta}{s} \) where \(\Delta = \text{Area of triangle } CPQ \) and \(s = \text{semiperimeter of } \Delta CPQ. \)

\[\Rightarrow r = \frac{\alpha^2 \sin 2\theta}{2s} = \frac{\alpha^2 \sin 2\theta}{2\alpha + 2\alpha \sin \theta} = \frac{x}{2 + \sin \theta} \]

Now, for \(f(\theta) = \frac{\sin 2\theta}{1 + \sin \theta} \)

\[f'(\theta) = \frac{(1 + \sin \theta) 2 \cos 2\theta - \sin 2\theta \cdot \cos \theta}{(1 + \sin \theta)^2} = 0 \]

\[\Rightarrow 2(1 + \sin \theta)(1 - 2 \sin^2 \theta) - 2 \sin \theta (1 - \sin^2 \theta) = 0 \]

\[\Rightarrow 2(1 - 2 \sin^2 \theta) - 2 \sin \theta (1 - \sin^2 \theta) = 0 \]

\[\Rightarrow 1 - 2 \sin^2 \theta = -\sin \theta + \sin \theta - 1 = 0 \]

\[\Rightarrow \sin \theta = \frac{\sqrt{5} - 1}{2} \]

16. \(f(x) = \frac{2}{\sqrt{\frac{1}{x^3 + x + 1}} + (\lambda^2 - 5\lambda + 3)} \leq 0 \)

\[\Rightarrow \frac{-2x}{x^2 + x + 1} + (\lambda^2 - 5\lambda + 3) \leq 0 \]

\[\Rightarrow (\lambda^2 - 5\lambda + 3) \leq \frac{2x}{x^2 + x + 1} \]

Now, let \(y = \frac{2x}{x^2 + x + 1} = \frac{2}{x + 1 + \frac{1}{x}} \)

putting \(x = 1 \) and \(x = -1; y = \frac{2}{3}, y = -2 \)

So range of \(y = \left[-\frac{2}{3}, \frac{2}{3} \right] \)

From (1) \(\Rightarrow \lambda^2 - 5\lambda + 3 < -2 \)

\[\Rightarrow \lambda^2 - 5\lambda + 5 < 0 \]

\[\Rightarrow \left(\lambda - \frac{5 - \sqrt{5}}{2} \right) \left(\lambda - \frac{5 + \sqrt{5}}{2} \right) \leq 0 \]

\[\Rightarrow \lambda \in \left[\frac{5 - \sqrt{5}}{2}, \frac{5 + \sqrt{5}}{2} \right] \]

17. \(e(k - x \ln x) = 1 \)

\[\Rightarrow k - \frac{1}{e} = x \ln x \]

Then equation (1) has solution where graphs of \(y = x \ln x \) and \(y = k - \frac{1}{e} \) intersect.
Now, consider the function \(f(x) = x \log_e x \)
\[
f'(x) = 1 + \log_e x
\]
\[
f''(x) = 0 \quad \Rightarrow \quad x = \frac{1}{e},
\]
\[
f'''(x) = \frac{1}{x} \quad \Rightarrow \quad f'''(1/e) = e > 0
\]
\[
\Rightarrow \quad x = \frac{1}{e} \text{ is the point of minima.}
\]

Also, \(\lim_{x \to 0} x \log_e x = \lim_{x \to 0} -\frac{1}{x} = -\lim_{x \to 0} \frac{1}{x} = 0 \)

Hence, the graph of \(f(x) = x \log_e x \) is as follows:

![Graph of f(x) = x log_e x](image)

\(f(1/e) = -1/e \)

Hence, equation \(k - \frac{1}{e} = x \log_e x \) has two distinct roots.

if \(-\frac{1}{e} < k - \frac{1}{e} < 0 \Rightarrow 0 < k < \frac{1}{e} \)

Equation has no roots if \(k - \frac{1}{e} < -\frac{1}{e} \Rightarrow k < 0 \)

Equation has one root if \(k - \frac{1}{e} = -\frac{1}{e} \quad \text{or} \quad k - \frac{1}{e} = 0 \Rightarrow k = 0 \)

or \(k \geq \frac{1}{e} \)

18. \(\sin x > \cos (\sin x) \)

if \(\cos \left(\frac{\pi}{2} - 1 \right) > \cos (\sin 1) \)

if \(\frac{\pi}{2} - 1 < \sin 1 \)

if \(\sin 1 > \left(\frac{\pi - 2}{2} \right) \)

and \(\sin 1 > \sin \frac{\pi}{4} > \frac{1}{\sqrt{2}} \)

Hence (1) is true \(\Rightarrow \sin 1 > \cos (\sin 1) \)

Now, let \(f(x) = \sin (\cos (\sin x)) - \cos (\sin (\cos x)) \)

\(f'(x) = \cos (\cos (\sin x)) \sin (\sin x) - \sin (\sin x) \cos (\cos x) \sin x \)

\(\Rightarrow f'(x) < 0 \quad \forall x \in [0, \frac{\pi}{2}] \)

\(\Rightarrow f(x) \) is decreasing in \([0, \frac{\pi}{2}] \)

and \(f(0) = \sin 1 - \cos (\sin 1) > 0 \)

\(f\left(\frac{\pi}{2} \right) = \sin (\cos (1)) - 1 < 0 \)

Since, \(f(0) \) is positive and \(f\left(\frac{\pi}{2} \right) \) is negative.

\(f(x) = 0 \) has one solution in \([0, \frac{\pi}{2}] \).

19. For a real number \(a \in R \) we define a function \(g : R \to R \) by

\(g(x) = f'(x) \sin x - f(x) \cos x \)

then \forall \ x \in [0, \pi], we have

\(g'(x) = \sin x (f(x + a) + f''(x + a)) \geq 0 \)

and therefore \(g \) is a non-decreasing function. Hence, for every \(a \in R \)

\(0 \leq g(\pi) - g(0) = f(\pi + a) + f(a) = 2f(a) \)

\(\Rightarrow f(a) \geq 0 \)

20. Let \(f(x) = 8 \sin x - \sin 2x \)

\(f'(x) = 8 \cos x - 2 \cos 2x \)

\(f''(x) = -8 \sin x + 4 \sin 2x = -8 \sin x (1 - \cos x) \)

for these we see that \(f''(0) = 6 \)

\(f''(\frac{\pi}{3}) = 5, f'(0) = 0, f''(x) < 0 \in \left[0, \frac{\pi}{3} \right] \)

Therefore \(5 \leq f'(x) \leq 6 \in \left[0, \frac{\pi}{3} \right] \)

Integrating from 0 to \(x \), gives

\(5x \leq f(x) \leq 6x \in \left[0, \frac{\pi}{3} \right] \)

21. Given \(f(x) \geq 0 \) \(\forall x \geq 0 \)

and \(f'(x) \cos x - f(x) \sin x \leq 0 \)

\(\Rightarrow (f(x) \cos x)' \leq 0 \)

Let \(g(x) = f(x) \cos x \)

\(g'(x) \leq 0 \)

\(\Rightarrow g(x) \) is a decreasing function. \(\) (from (2))

\(\Rightarrow g\left(\frac{\pi}{2} \right) \geq g\left(\frac{5\pi}{3} \right) \)

\(\Rightarrow g\left(\frac{5\pi}{3} \right) \leq 0 \)

\(\Rightarrow f\left(\frac{5\pi}{3} \right) \leq 0 \)

From equations (1) and (3),

\(f\left(\frac{5\pi}{3} \right) = 0 \)

Objective Type

1. c. \(f'(x) = 3k^2 - 18x + 9 = 3 \left[k x^2 - 6x + 3 \right] \geq 0 \), \(\forall x \in R \)

\(\Rightarrow D = b^2 - 4ac \leq 0, k > 0, i.e., 36 - 12k \leq 0 \)

\(\Rightarrow k \geq 3. \)
2. d. Since \(f(x) = \frac{K \sin x + 2 \cos x}{\sin x + \cos x} \) is increasing for all \(x \), therefore \(f'(x) > 0 \) for all \(x \).
\[
\Rightarrow \frac{K - 2}{(\sin x + \cos x)^2} > 0 \text{ for all } x
\]
\[
\Rightarrow K < 2 \implies K > 2
\]
3. d. \(f'(x) = a + 3 \cos x - 4 \sin x \)
\[
= a + 5 \cos (x + \alpha), \text{ where } \cos \alpha = \frac{3}{5}
\]
For invertible, \(f(x) \) must be monotonic.
\[
\Rightarrow f''(x) \geq 0 \text{ or } f'(x) \leq 0 \forall x
\]
\[
\Rightarrow a + 5 \cos (x + \alpha) \geq 0 \text{ or } a + 5 \cos (x + \alpha) \leq 0
\]
\[
\Rightarrow a \geq 5 \cos (x + \alpha) \text{ or } a \leq -5 \cos (x + \alpha)
\]
\[
\Rightarrow a \geq 5 \text{ or } a \leq -5
\]
4. d. We have \(g'(x) = f\left(\frac{x}{2}\right) - f'(2-x) \)
Given \(f''(x) < 0 \forall x \in (0,2) \)
So, \(f'(x) \) is decreasing on \((0,2)\)
\[
\Rightarrow x > 2 - x \implies f'\left(\frac{x}{2}\right) < f'(2-x)
\]
Thus, \(\forall x > \frac{4}{3}, g'(x) < 0 \)
\[
\Rightarrow g(x) \text{ decreasing in } \left[\frac{4}{3}, 2\right]
\]
and increasing in \([4/3, 2]\).
5. d. \(f(x) = x^{100} + \sin x - 1 \)
\[
\Rightarrow f'(x) = 100x^{99} + \cos x
\]
If \(0 < x < \frac{\pi}{2} \), then \(f'(x) > 0 \), therefore \(f(x) \) is increasing on \((0, \pi/2)\).
If \(0 < x < 1 \), then \(100x^{99} > 0 \text{ and } \cos x > 0 \) \(\Rightarrow f'(x) = 100x^{99} + \cos x > 0 \)
\[
\Rightarrow f(x) \text{ is increasing on } (0, 1).
\]
If \(\frac{\pi}{2} < x < \pi \), then
\[
100x^{99} > 1 \Rightarrow x^{99} > 1
\]
\[
\Rightarrow 100x^{99} + \cos x > 0 \text{ or } x \geq 1 \Rightarrow 100x^{99} + \cos x > 99
\]
\[
\Rightarrow f'(x) > 0 \Rightarrow f(x) \text{ is increasing in } (\pi/2, \pi).
\]
6. d. When \(f(x) = 3x^2 - 2x + 1 \)
\[
\Rightarrow f'(x) = 6x - 2
\]
f is increasing \(\Rightarrow f'(x) \geq 0 \)
\[
\Rightarrow 6x - 2 \geq 0 \Rightarrow x \geq \frac{1}{3}
\]
7. a. Here \(f(x) = \tan^{-1}(\sin x + \cos x) \)
\[
\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} (\cos x - \sin x)
\]
\[
= \frac{\cos x - \sin x}{2 + \sin 2x}
\]
For \(-\frac{\pi}{2} < x < \frac{\pi}{4} \), \(\cos x > \sin x \)
\[
\Rightarrow y = f(x) \text{ is increasing in } \left(\frac{\pi}{4}, \frac{\pi}{2}\right).
\]
8. c. \(f'(x) = x^{[1 + \log x]} = x^{1 + \log (ex)} \)
\[
\Rightarrow f'(x) < 0 \Rightarrow \log (ex) < 0
\]
\[
\Rightarrow 0 < ex < 1
\]
\[
\Rightarrow 0 < x < \frac{1}{e}
\]
9. c. \(f(x) = (x-1)^2 + (x-2)^2 + (x-3)^2 + (x-4)^2 + (x-5)^2 \)
\[
\Rightarrow f'(x) = 2[(x-1)+2(x-2)+3(x-3)+x-4+x-5+2] = 2[5x-15]
\]
\[
\Rightarrow f'(x) = 0 \text{ gives } x = 3 \text{ and } f''(x) > 0 \text{ for all } x
\]
\[
\Rightarrow f(x) \text{ is minimum for } x = 3
\]
10. d. If \(f(x) \) increases then \(f^{-1}(x) \) increases. Refer Fig. 6.65.
\[
\text{Fig. 6.65}
\]
\[
\text{If } f(x) \text{ increases, then } f'(x) > 0
\]
\[
\Rightarrow \frac{d}{dx} f(x) = f'(x) < 0 \Rightarrow \frac{1}{f(x)} \text{ decreases}
\]
\[
\frac{d}{dx} \left(\frac{f}{g}\right) = \frac{gf' - fg'}{g^2}
\]
\[
\text{If } f \text{ and } g \text{ are + ve functions and } f' < 0 \text{ and } g' > 0, \text{ then} \frac{d}{dx} \left(\frac{f}{g}\right) < 0.
\]
11. c. \(f(x) \) is decreasing \(\forall x \in \mathbb{R} \)
\[
\Rightarrow \frac{1}{2} \frac{d}{dx} (f^2(x)) < 0
\]
\[
\Rightarrow \frac{1}{2} \frac{d}{dx} (f^2(x)) < 0
\]
\[
\Rightarrow f'(x) \text{ is a decreasing function.}
\]
12. a. \(f(x) = x\sqrt{4ax-x^2} \) (domain is \([0, 4a]\))
\[
\Rightarrow f'(x) = \frac{\sqrt{4ax-x^2} \cdot (4a-2x)}{2\sqrt{4ax-x^2}}
\]
\[
= \frac{2x(3a-x)}{\sqrt{4ax-x^2}}
\]
Now if \(f'(x) > 0 \)
\[
\Rightarrow 2x(3a-x) > 0
\]
\[
\Rightarrow 2x(x-3a) < 0
\]
\[
\Rightarrow x \in (0, 3a)
\]
Thus, \(f(x) \) increases in \((0, 3a)\) and decreases in \((3a, 4a)\).
13. c. \(f'(x) < 0, f''(x) < 0 \)

\[(a): \text{For } f'(x) < 0, f''(x) < 0 \]

\[(b): \text{For } f'(x) < 0, f''(x) < 0 \]

\[(c): \text{For } f'(x) > 0, f''(x) > 0 \]

\[(d): \text{For } f'(x) < 0, f''(x) > 0 \]

Fig. 6.66

Clearly for \(f'(x) > 0, f''(x) > 0 \) [in Fig. (6.66(c)) tangent always lies below the graph.

Or \(f'(x) < 0, f''(x) > 0 \) [in Fig. (6.66(d))] tangent always lies below the graph.

14. a. \[f(x) = |x| - \{x\} = |x| - (x - [x]) = |x| - x + [x] \]

For \(x \in (-1/2, 0) \),
\[f'(x) = -x - x - 1 = -2x - 1 \]

Also, for \(\frac{1}{2} < x < 0 \) \Rightarrow 0 < -2x < 1 \Rightarrow -1 < -2x - 1 < 0 \]
\Rightarrow \(f'(x) < 0 \) \Rightarrow f(x) decreases in \((-1/2, 0)\).

Similarly, we can check for other given options say for \(x \in (-1/2, 2) \),
\[f'(x) = \begin{cases} \frac{-1}{2} < x < 0 \\ \end{cases} \]
\[x - x + 0, \quad 0 \leq x < 1 \\
\[x - x + 1, \quad 1 \leq x < 2 \\
\[\vdots \\
\]

Here \(f(x) \) decreases only in \((-1/2, 0)\), otherwise \(f(x) \) in other intervals is constant.

15. d. \[f(x) = |x| - [x - 1| \\
\[= \begin{cases} -x - (1-x), \quad x < 0 \\
\[x - (1-x), \quad 0 \leq x < 1 \\
\[x - (x - 1), \quad x \geq 0 \\
\[\]
\[= \begin{cases} -1, \quad x < 0 \\
\[2x - 1, \quad 0 \leq x < 1 \\
\[1, \quad x \geq 1 \\
\[\]

Fig. 6.67

Graph of the function is that \(f(x) \) clearly increases in \((0, 1)\).

16. d. \[f(x) = \begin{cases} f(x) \geq 0 \\
\[-f(x), \quad f(x) < 0 \\
\[\]
\[\Rightarrow \frac{d}{dx} f(x) = \begin{cases} f'(x), \quad f(x) > 0 \\
\[-f'(x), \quad f(x) < 0 \\
\[\]

Now as \(f(x) \) and \(f'(x) \) keep opposite sign, then
\[\frac{d}{dx} f(x) < 0 \]

Hence \(f(x) \) is decreasing.

17. c. \[\phi'(x) = 2\phi(x) f'(x) \]

We do not know the sign of \(f(x) \) in \((a, b)\), so we cannot say about the sign of \(\phi'(x) \).

18. a. Given \[\phi'(x) - \phi(x) > 0 \quad \forall x \geq 1 \]
\[\Rightarrow \quad e^{-x} \left(\phi'(x) - \phi(x) \right) > 0 \quad \forall x \geq 1 \]
\[\Rightarrow \quad \frac{d}{dx} e^{-x} \phi(x) > 0 \quad \forall x \geq 1 \]

\[\therefore \quad e^{-x} \phi(x) \] is an increasing function \(\forall x \geq 1 \)

Since \(\phi(x) \) is a polynomial
\[\Rightarrow \quad e^{-x} \phi(x) = e^{-x} \cdot \phi(1) \Rightarrow e^{-x} \phi(x) > 0 \quad \left[\therefore \phi(1) = 0 \right] \]
\[\Rightarrow \quad \phi(x) > 0. \]

19. c. Function is increasing in \((-\infty, -2) \cup (0, \infty)\), function is decreasing in \((-2, 0)\).

Fig. 6.68

\[x = -2 \] is local maxima, \(x = 0 \) \rightarrow local minima

Derivative \(\forall x \in R \rightarrow \{0, 1\} \)

Continuous \(\forall x \in R \).

20. d. \[g'(x) = f'(x)^2 + 3 \]

Since \(f''(x) > 0 \Rightarrow f'(x) \) is increasing

So, \(f'(x - 1)^2 + 3 > f'(3) = 0 \quad \forall x \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \)

Also, \((x - 1) > 0 \) \Rightarrow \(x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \)

So, \(g(x) \) is increasing in \(\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \).

21. b. We must have \(\log_{1/2} \left(\log_{3}(\sin x + a) \right) < 0 \quad \forall x \in R \)
\[\Rightarrow \quad \log_{3}(\sin x + a) > 1 \quad \forall x \in R \]
\[\Rightarrow \quad \sin x + a > 3 \quad \forall x \in R \]
\[\Rightarrow \quad a > 3 - \sin x \quad \forall x \in R \]
\[\Rightarrow \quad a > 4 \]
22. c. \(u = \sqrt{c+1} - \sqrt{c} \)
\[
u = \frac{1}{\sqrt{c+1} + \sqrt{c}} \quad \text{and} \quad \nu = \frac{1}{\sqrt{c-1} + \sqrt{c}}
\]
Clearly \(u < \nu \)
Also, \(f \) is increasing whereas \(g \) is decreasing.
Thus \(u < \nu \)
\Rightarrow \(f(u) < f(\nu) \)
\Rightarrow \(g(\nu) > g(f(\nu)) \)

23. b. \(f'(x) = 4 - 2 \sec^2 2x = 2(1 - \tan^2 2x) \)

For the continuous domain \(\left(-\frac{\pi}{4}, \frac{\pi}{4} \right), f'(x) \geq 0 \text{ in } \left[-\frac{\pi}{8}, \frac{\pi}{8} \right] \)
and \(f'(x) \leq 0 \text{ in } \left(-\frac{\pi}{4}, -\frac{\pi}{8} \right) \cup \left(\frac{\pi}{8}, \frac{\pi}{4} \right) \)
So the required largest continuous interval is \(\left[-\frac{\pi}{8}, \frac{\pi}{8} \right] \)

length = \(\frac{\pi}{4} \).

24. a.

\(f(x) = (x - 1)(x - 2)(x - 3) \)
let \(g(x) = (x - 1)(x - 2)(x - 3) \)
\[
= x^3 - 6x^2 + 11x - 6
\Rightarrow \quad g'(x) = 3x^2 - 12x + 11
\]
g'(x) = 0 \Rightarrow \(x = \frac{12 \pm \sqrt{144 - 132}}{6} = \frac{12 \pm \sqrt{12}}{6} = \frac{2 \pm 1}{\sqrt{3}} \)
Hence, \(f(x) \) decreases in \(\left(-1 - \frac{1}{\sqrt{3}}, 2 \right) \cup \left(2 + \frac{1}{\sqrt{3}}, 3 \right) \).

25. d. Let \(f(x) = x^3 + 2x^2 + 5x + 2 \cos x \)
\Rightarrow \(f'(x) = 3x^2 + 4x + 5 - 2 \sin x \)
Now the least value of \(3x^2 + 4x + 5 \) is
\[
\frac{D}{4a} = -\frac{(4)^2 - 4(3)(5)}{4(3)} = \frac{11}{3}
\]
and the greatest value of \(2 \sin x = 2 \)
\Rightarrow \(3x^2 + 4x + 5 > 2 \sin x \forall x \in R \)
\Rightarrow \(f'(x) = 3x^2 + 4x + 5 - 2 \sin x > 0 \forall x \in R \)
\Rightarrow \(f(x) \) is strictly an increasing function
also \(f(0) = 2 \) and \(f(2\pi) > 0 \).
Thus, for the given interval, \(f(x) \) never becomes zero.
Hence, the number of roots is zero.

26. a. \(f(x) = (x - 2)(x - 3) \)
For, \(f(x) = (x - 2)(x - 3) = x^2 - 5x + 6 \)
\[
f'(x) = 2x - 5 = 0 \Rightarrow x = 2.5/2
\]
Now, the graph of \(f(x) = (x - 2)(x - 3) \) is

27. b. \(f(x) = (x-8)^4(x-9)^5, 0 \leq x \leq 10 \)
\Rightarrow \(f'(x) = 4(x-8)^3(x-9)^5 + 5(x-9)^4(x-8)^4 \)
\[
= (x-8)^3(x-9)^4[4(x-9) + 5(x-8)]
\]
\[
= 9(x-8)^3(x-9)^4(x-76/9).
\]
Sign scheme of \(f'(x) \)

\[
\begin{array}{ccccccccc}
& & & + & & & - & & & + \\
& & & 8 & & & 76/9 & & & 9 \\
\end{array}
\]

\(f'(x) < 0, \text{ if } x \in \left(\frac{8}{76/9} \right) \Rightarrow f(x) \) decreases if \(x \in \left(\frac{8}{76/9} \right) \).

28. a. Here \(f'(x) \leq 0 \)
\Rightarrow \(3x^2 + 8x + \lambda \leq 0 \forall x \in \left(-2, -\frac{2}{3} \right) \)
Then situations for \(f'(x) \) is as follow:

\[
\begin{array}{ccccccccc}
& & & + & & & - & & & + \\
& & & 2 & & & 2/3 & & & 2/3 \\
\end{array}
\]

Given that \(f(x) \) decreases in the largest possible interval \(\left(-2, -\frac{2}{3} \right) \), then \(f'(x) = 0 \) must have roots -2 and -2/3.
\Rightarrow \text{ Product of roots is } \left(-2 \right) - \left(-\frac{2}{3} \right) = \frac{\lambda}{3} \Rightarrow \lambda = 4.

29. b. \(f(x) = [x \log x] \)
For \(g(x) = x \log_e x \),
\[
g'(x) = x \frac{1}{x} + \log_e x = 1 + \log_e x
\]
\Rightarrow \(g(x) \) increases for \(\left(0, \frac{1}{e} \right) \) and decreases for \(\left(\frac{1}{e}, \infty \right) \).

Graph of \(y = g(x) = x \log_e x \)

(a)
6.46 Calculus

Graph of \(y = f(x) = |x \log_e x| \)

(b)

Fig. 6.73

From the graph, \(f(x) = |x \log_e x| \) decreases in \(\left(\frac{1}{e}, 1 \right) \).

30. b. Let \(h(x) = f(x) - g(x) \)
\[h'(x) = f'(x) - g'(x) > 0 \quad \forall x \in R \]
\[\Rightarrow h(x) \text{ is an increasing function and} \]
\[h(0) = f(0) - g(0) = 0 \]
Therefore, \(h(x) > 0 \quad \forall x \in (0, \infty) \) and \(h(x) < 0 \quad \forall x \in (-\infty, 0) \).

31. b. \(g'(x) = x^2 (2x^2 - 1) - x^2 (1 - x^2) = x(f'(x) - f'(1 - x^2)) \)
\[g'(x) > 0 \]
if \(x > 0, 2x^2 - 1 > 1 - x^2 \) (as \(f' \) is an increasing function)
\[\Rightarrow 3x^2 > 2 \Rightarrow x \in \left(-\infty, -\frac{\sqrt{2}}{3} \right) \cup \left(\frac{\sqrt{2}}{3}, \infty \right) \]
\[\Rightarrow x \in \left(\frac{\sqrt{2}}{3}, \infty \right) \]
If \(x < 0, 2x^2 - 1 < 1 - x^2 \)
\[\Rightarrow 3x^2 < 2 \Rightarrow x \in \left(-\infty, -\frac{\sqrt{2}}{3} \right) \cup \left(\frac{\sqrt{2}}{3}, 0 \right) \]

32. b. \(f(0) = \sin 0 = 0 \)
\[f'(0) = \lim_{x \to 0} \frac{\sin(x^2 - 3x)}{x^2 - 3x} = \lim_{x \to 0} \frac{\sin h}{h(0)} \to 0^+ \]
Thus, \(f'(0) > f(0) \) and \(f'(0) > 0 \)
Hence, \(x = 0 \) is a point of minima.

33. b. Since \(\cos \theta \leq 1 \) for all \(\theta \). Therefore, \(f(x) \leq 1 \) for all \(x \).

34. b. \(\frac{dy}{dx} = 5x^2 (x - 1) (x - 3) = 0 \)
\[\therefore x = 0, 1, 3 \]

Fig. 6.74

Clearly \(x = 0 \) is neither a point of maxima nor a point of minima as derivative does not change sign at \(x = 0 \).
\(x = 1 \) is a point of maxima and \(x = 3 \) is a point of minima.

35. d. \(y = \frac{\log x}{x} \)
\[\Rightarrow \frac{dy}{dx} = - \frac{1}{x^2} \log x + 1 + \frac{1}{x} \frac{1}{x} \]
\[= \frac{1}{x^2} (1 - \log x) = 0 \]
\[\frac{dy}{dx} = 0 \Rightarrow \log x = 1 \text{ or } x = e \]
For \(x < e \Rightarrow \log x < 1 \)
and \(x > e \Rightarrow \log x > 1 \)

At \(x = e, \frac{dy}{dx} \) changes sign from +ive to −ive and hence \(y \)
is maximum at \(x = e \) and its value is
\[\log e = e^{-1} \cdot \frac{1}{e} \]

36. c. When \(f''(a) = 0 \), then \(f'''(a) \) must also be zero and sign of \(f''''(a) \) will decide about maximum or minimum.

37. c. Then given expression is minimum when
\[y = (x^2 - 3)^2 + 27 \]
is minimum, which is so when \(x = 0 \)
Hence \(y_{\text{min}} = 0 \).
\[\Rightarrow \text{ Min. value of } 2(x^2 - 3)^2 + 27 \text{ is } 2^2 = 1. \]

38. a. Let \(f(x) = e^{-x} - x^2 \Rightarrow f'(x) = e^{-x} - 1 > 0 \quad \forall x \in R \)
Also when \(x \to -\infty, f(x) \to -\infty \) and when \(x \to -\infty, f(x) \to -\infty \)
Further \(f(x) \) is continuous, hence its graph cuts \(x \)-axis only
at one point.
Hence, equation \(f(x) = 0 \) has only one root.
Alternative method:
Also \(e^{-x} = 2 - x \)
As shown in the figure, graphs of \(y = e^{-x} \) and \(y = 2 - x \) cuts at only one point. Hence, there is only one root.

Fig. 6.75

39. c. \(f(x) = \frac{\sin x + \cos x}{2} - \frac{1}{1 + \frac{1}{2}} = \sqrt{2} \frac{t^2 - 1}{t} \)
\[\text{ or } f(x) = \phi(t) = \sqrt{2} \left(t - \frac{1}{t} \right) \]
where \(t = g(x) = \sin x + \cos x, x \in [0, \pi/2] \)
\[g''(x) = \cos x - \sin x = 0 \Rightarrow \tan x = 1 \]
\[\Rightarrow x = \frac{\pi}{4} \text{ and } g''(x) = -1 \text{ -- ine } \]
At \(x = 0, t = 1 \ldots t \in [1, \sqrt{2}] \)
Now \(\phi(t) = \sqrt{2} \left(t - \frac{1}{t} \right) \) where \(t \in [1, \sqrt{2}] \)
\[\phi'(t) = \sqrt{2} \left(1 + \frac{1}{t^2} \right) = + \text{ ine } \]
Therefore, \(\phi(t) \) is increasing.
Hence \(\phi(t) \) is greatest at the endpoint of interval \([1, \sqrt{2}]\)
i.e. \(t = \sqrt{2} \).
\[\therefore f(x) = \phi(t) = \sqrt{2} \left(\sqrt{2} - \frac{1}{\sqrt{2}} \right) = 1 \]
Alternative method:
\[f(x) = \frac{\sin 2x}{\sin \left(x + \frac{\pi}{4} \right)} = \frac{2 \sin x \cos x}{\sin \left(x + \frac{\pi}{4} \right)} = \frac{2 \sqrt{2} - 1}{\sec x + \cosec x} \]
For \(x \in (0, \pi/2] \), maximum value of \(\sec x + \cosec x \) occurs when \(\sec x = \cosec x \) or \(x = \pi/4 \)
Hence, $f_{\text{max}} = \frac{2\sqrt{2}}{\sec \frac{\pi}{4} + \csc \frac{\pi}{4}} = \frac{2\sqrt{2}}{2\sqrt{2}} = 1$

40. a. $f(x) = (4 \sin^2 x - 1)^2(x^2 - x + 1)$

\[f\left(\frac{\pi}{6}\right) = 0 \]

\[f\left(\frac{\pi}{6}^+\right) = \lim_{x \to \frac{\pi}{6}^+} (4 \sin^2 x - 1)^2(x^2 - x + 1) = 0^+ \]

\[f\left(\frac{\pi}{6}^-\right) = \lim_{x \to \frac{\pi}{6}^-} (4 \sin^2 x - 1)^2(x^2 - x + 1) = (-0)^+ \text{ (a positive value)} \]

\[f\left(\frac{\pi}{6}\right) > 0 \text{ if } n \text{ is an even number}. \]

41. d. $f(x) = x \ln x - x + 1$

\[f'(x) = 1 + \ln x - 1 = \ln x \]

\[f'(x) < 0 \text{ if } 0 < x < 1 \]

and $f'(x) > 0 \text{ if } x > 1$.

42. b. We have $f(x) = (x + 1)^{3/2} - (x - 1)^{3/2}$

\[f'(x) = \frac{1}{3} (x + 1)^{1/2} - \frac{1}{3} (x - 1)^{1/2} \]

\[= \frac{(x - 1)^{1/2} - (x + 1)^{1/2}}{3(x^2 - 1)^{1/3}} \]

Clearly, $f'(x)$ does not exist at $x = \pm 1$.

\[f'(x) = 0 \Rightarrow (x - 1)^{1/2} = (x + 1)^{1/2} \Rightarrow x = 0. \]

Clearly, $f'(x) \neq 0$ for any other values of $x \in [0, 1]$.

The value of $f(x)$ at $x = 0$ is 2.

Hence, the greatest value of $f(x) = 2$.

43. b. $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$

\[f'(x) = 6x^2 - 18ax + 12a^2 \text{ and } f''(x) = 12x - 18a \]

For maximum/minimium, $6x^2 - 18ax + 12a^2 = 0$

\[\Rightarrow x^2 - 3ax + 2a^2 = 0 \]

\[\Rightarrow (x - a)(x - 2a) = 0 \]

\[\Rightarrow x = a \text{ or } x = 2a \]

Now, $f''(a) = 12a - 18a = -6a < 0$

and $f''(2a) = 24a - 18a = 6a > 0$.

\[f(x) \text{ is maximum at } x = a \text{ and minimum at } x = 2a \]

\[\Rightarrow p = a \text{ and } q = 2a \]

Given that $p^2 = q \Rightarrow a^2 = 2a \Rightarrow a(a - 2) = 0 \Rightarrow a = 2.$

44. a. Let $f(x) = x + \frac{1}{x}$

\[f'(x) = 1 - \frac{1}{x^2} \text{ and } f''(x) = \frac{2}{x^3} \]

For maximum/minimium, $f'(x) = 0 \Rightarrow 1 - \frac{1}{x^2} = 0$

\[\Rightarrow x^2 = 1 \Rightarrow x = \pm 1 \]

45. a. We have $f(x) = x + \frac{2}{x}$

\[f'(x) = 1 - \frac{2}{x^2} \text{ and } f''(x) = \frac{4}{x^3} \]

Now $f'(x) = 0 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2$

\[f''(x) > 0 \text{ for } x = \pm 2 \]

Therefore, f has maximum at $x = 2$.

46. a. $f(x) = \sin \left(x + \frac{\pi}{6}\right) + \cos \left(x + \frac{\pi}{6}\right)$

\[= \sqrt{2} \sin \left(x + \frac{\pi}{6} + \frac{\pi}{6}\right) \]

\[= \sqrt{2} \sin \left(x + \frac{5\pi}{12}\right) \]

Its maximum value is $\sqrt{2}$ when $x = \frac{5\pi}{12}$.

47. d. $f(0) > f(0^+)$ and $f(0) < f(0^-)$, hence $x = 0$ is neither a maximum nor a minimum.

48. c. $f'(x) = 3(1 + 4x + x^2)(1 - x)(4 + 2x) = \frac{1 - x^2}{(1 + 4x + x^2)^2}$

For maximum or minimum $f'(x) = 0 \Rightarrow x = \pm 1$.

For $x = 1$, $f'(x)$ changes sign from positive to negative as x passes through 1.

Therefore, $f(x)$ is maximum for $x = 1$, and maximum value

\[\frac{1}{1 + 4 + 1} = \frac{1}{6}. \]

49. b. $y = x^3 + 3x^2 + 9x - 27$

\[\frac{dy}{dx} = 3x^2 + 6x + 9 \]

Let the slope of tangent to the curve at any point be m (say)

\[\Rightarrow m = -3x^2 + 6x + 9 \Rightarrow \frac{dm}{dx} = -6x + 6 \]

\[\frac{d^2m}{dx^2} = -6 < 0 \text{ for all } x \]

Therefore, m is maximum when $\frac{dm}{dx} = 0$, i.e., when $x = 1$

Therefore, maximum slope $= -3 + 6 + 9 = 12$.

50. b. $f'(x) = -\pi \sin \pi x + 10 + 6x + 3x^2$

\[= 3(x + 1)^2 + 7 - \pi \sin \pi x > 0 \text{ for all } x. \]

\[f(x) \text{ is increasing in } -2 \leq x \leq 3. \]

So, the absolute minimum is $f(-2) = 1 - 20 + 12 = -7.$

51. c. Given $y = e^{x^2 - 2 + 1/4}$

Clearly, the minimum value occurs when $\sin^2 x = 0$ as

\[\left(x - \frac{1}{2}\right)^2 + \frac{1}{4} \geq 1/4. \]
6.48 Calculus

52. d. \(f(x) = x^4 e^{-x^2} \Rightarrow f'(x) = 4x^3 e^{-x^2} + x^4 e^{-x^2} (-2x) \)
\[= 2x^3 e^{-x^2}(2-x^2) \]

Sign scheme of \(f'(x) \)

\[\begin{array}{c|c|c}
 x & f'(x) & f(x) \\
 \hline
 -\sqrt{2} & - & - \\
 0 & 0 & + \\
 \sqrt{2} & + & + \\
 \end{array} \]

Hence, \(f(x) \) is maximum at \(x = \sqrt{2} \Rightarrow \text{Maximum value} = 4e^{-2} \)

53. c. \(a^2x^4 + b^2y^4 = c^6 \)
\[\Rightarrow y = \left(\frac{c^6 - a^2x^4}{b^2} \right)^{1/4} \]
\[\Rightarrow f(x) = xy = x \left(\frac{c^6 - a^2x^4}{b^2} \right)^{1/4} \]
\[\Rightarrow f(x) = \left(\frac{c^6x^4 - a^2x^8}{b^2} \right)^{1/4} \]

Differentiate \(f(x) \) w.r.t. \(x \),
\[\Rightarrow f'(x) = \frac{1}{4} \left(\frac{c^6x^4 - a^2x^8}{b^2} \right)^{3/4} \left(\frac{4x^3c^6 - 8x^7a^2}{b^2} \right) \]

Put \(f'(x) = 0, \)
\[\Rightarrow 4x^3c^6 - 8x^7a^2 = 0 \]
\[\Rightarrow x^4 = \frac{2}{a^2} \Rightarrow x = \pm \frac{2^{1/4}}{\sqrt{a}} \]
At \(x = \frac{2^{1/4}}{\sqrt{a}}, f(x) \) will be maximum,
\[\Rightarrow f \left(\frac{2^{1/4}}{\sqrt{a}} \right) = \left(\frac{c^{12}}{2^3a^2b^2 - 4a^2b^2} \right)^{1/4} = \left(\frac{c^{12}}{4a^2b^2} \right)^{1/4} \]
\[= \frac{c^3}{\sqrt{2ab}} \]

Iterative method:
Since A.M. ≥ G.M.,
\[\frac{a^2x^4 + b^2y^4}{2} \geq \sqrt{a^2x^4b^2y^4} \]
\[\Rightarrow abxy \leq \frac{c^6}{2} \]
\[\Rightarrow xy \leq \frac{c^3}{\sqrt{2ab}} \]

Hence, maximum value of \(xy \) is \(\frac{c^3}{\sqrt{2ab}} \).

54. b. Let \(g(x) = 4x^3 - 12x^2 + 11x - 3 \)
\[\Rightarrow g'(x) = 12x^2 - 24x + 11 \]
\[= 12(x-1)^2 - 1 \]
\[\Rightarrow g'(x) > 0 \text{ for } x \in [2, 3] \]
\[\Rightarrow g(x) \text{ is increasing in } [2, 3] \]
\[f(x)_{\text{max}} = f(3) = \log_{10}(4.27 - 12.9 + 11.3 - 3) = \log_{10} (30) = 1 + \log_{10} 3. \]

55. b. Let \(f(x) = x + ax^{-2} - 2 \)
\[\Rightarrow f'(x) = 1 - 2ax^{-3} = 0 \Rightarrow x = (2a)^{1/3} \]

Also \(f''(x) = 6a x^{-4} \Rightarrow f'' \left((2a)^{1/3} \right) > 0 \)
\[\Rightarrow x = (2a)^{1/3} \text{ is the point of minima.} \]
For \(x + ax^{-2} - 2 > 0 \) \(\forall x \) we must have \(f \left((2a)^{1/3} \right) > 0 \)
\[\Rightarrow (2a)^{1/3} + a \left(2a \right)^{2/3} - 2 > 0 \]
\[\Rightarrow 2a + a - 2 (2a)^{2/3} > 0 \]
\[\Rightarrow 3a > 2 (2a)^{2/3} \]
\[\Rightarrow 27a^3 > 32a^2 \]
\[\Rightarrow a > 32/27 \]
Hence, the least value of \(a \) is 2.

56. c. We have \(f(x) = \begin{cases} (-1)^{m+n} x^m (x-1)^n, & \text{if } x < 0 \\ (-1)^n x^m (x-1)^n, & \text{if } 0 \leq x < 1 \\ x^m (x-1)^n, & \text{if } x \geq 1 \end{cases} \)
Let \(g(x) = x^m (x-1)^n \), then
\[g'(x) = mx^{m-1} (x-1)^n + nx^m (x-1)^{n-1} = x^{m-1} (x-1)^{n-1} \{ mx - m + nx \} \]
Now \(f'(x) = 0 \Rightarrow g'(x) = 0 \Rightarrow x = 0, 1 \) or \(\frac{m}{m+n} \)
\[f(0) = 0, f(1) = 0 \text{ and} \]
\[f \left(\frac{m}{m+n} \right) = (-1)^n \frac{m^n n^m}{(m+n)^{m+n}} \]
\[= \frac{m^n n^m}{(m+n)^{m+n}} > 0 \]
\[: \text{ the maximum value} = \frac{m^n n^m}{(m+n)^{m+n}}. \]

57. b. Clearly, \(f(x) \) is decreasing just before \(x = 3 \) and increasing after \(x = 3 \). For \(x = 3 \) to be the point of local minima, \(f(3) \leq f(3) \).
\[\Rightarrow -15 \leq 12 - 27 + \ln(12 - 3a + 3) \]
\[\Rightarrow a^2 - 3a + 3 \geq 1 \]
\[\Rightarrow a \in (\infty, 1) \cup (2, \infty). \]

58. c.

59. b. Since \(f(x) \) has a relative minimum at \(x = 0 \), therefore \(f''(0) = 0 \)
and \(f'''(0) > 0 \).
If the function \(y = f(x) + ax + b \) has a relative minimum at \(x = 0 \), then
\[
\frac{dy}{dx} = 0 \quad \text{at} \quad x = 0 \quad \Rightarrow \quad f'(x) + a = 0 \quad \text{for} \quad x = 0
\]
\[
\Rightarrow \quad f'(0) + a = 0 \Rightarrow 0 + a = 0 \quad \therefore f'(0) = 0 \Rightarrow a = 0
\]
Now, \(\frac{d^2y}{dx^2} = f''(x) \Rightarrow \left(\frac{d^2y}{dx^2} \right)_{x=0} = f''(0) > 0 \)
\[
\therefore f''(0) > 0
\]
Hence, \(y \) has a relative minimum at \(x = 0 \) if \(a = 0 \) and \(b \) can attain any real value.

60. \(f'(x) = 12x^2 - 2x - 2 = 2(6x^2 - x - 1) = 2(3x + 1)(2x - 1) \)

\[
\text{Fig. 6.77}
\]

Hence \(g(x) = f\left(\frac{1}{4}\right) + g\left(\frac{3}{4}\right) + g\left(\frac{5}{4}\right) = f\left(\frac{1}{4}\right) + f\left(\frac{1}{2}\right) + g\left(\frac{5}{4}\right) = \frac{5}{2} \)

61. \(f'(x) = ax^2 + 2(a + 2)x + (a - 1) \),
\(f''(x) = 2ax + 2(a + 2) = 0 \)
\[
\Rightarrow \quad x = \frac{-a + 2}{a} \quad \text{which is the point of inflection}
\]
Given that, we must have \(\frac{-a + 2}{a} < 0 \)
\[
\Rightarrow \quad (-\infty, 2) \cup (0, \infty).
\]

62. \(\text{The derivative of a degree 3 polynomial is quadratic. This must have either 0, 1 or 2 roots. If this has precisely one root, then this must be repeated. Hence, we have } f'(x) = m(x - \alpha)^2, \text{ where } \alpha \text{ is the repeated root and } m \in \mathbb{R}. \text{ So, our original function } f(x) \text{ has a critical point at } x = \alpha. \text{ Also, } f''(x) = 2m(x - \alpha), \text{ in which case } f''(\alpha) = 0. \text{ But we are told that the 2nd derivative is non-zero at critical point. Hence, there must be either 0 or 2 critical points.} \)**

63. \(f'(x) = \frac{0.6(1+x)^{-0.4} (1+x)^{0.6} - 0.6x^{-0.4}(1+x)^{0.6}}{(1+x)^{0.6}} \)
\[
= 0.6(1 + x)^{0.6} - x^{-0.4}(1+x) \quad = 0.6 \left(1 + x \right)^{0.6} \left(1 + x \right)^{0.4} \quad = 0.6 \left(1 + x \right)^{-0.4} \quad \text{for } x \in (0, 1)
\]
Hence, \(f'(x) \) is decreasing.
\[
\Rightarrow \quad f''(x) = f''(0) = 1
\]

64. \(f'(x) = k(5x^2 + 1) \Rightarrow f'(x) f''(x) = k(5x^2 + 1) \)
\[
\Rightarrow \quad f(x) \text{ is always increasing or decreasing as } k(5x^2 + 1) \text{ is either always negative or positive.}
\]

65. \(f(x) = \frac{x^2 - a}{x^2 + a} = \frac{1 - \frac{2a}{x^2 + a}}{x^2 + a} \)
\[
\text{Clearly range of } f(x) \text{ is } [-1, 1]
\]
Now, \(f''(x) = \frac{4ax}{(x^2 + a)^2} \)
\[
\text{and } f'''(x) = \frac{4a}{(x^2 + a)^3} (a - 3x^2)
\]
Sign scheme of \(f''(x) \)

\[
\text{Fig. 6.78}
\]
\[
\Rightarrow \quad f(x) \text{ is decreasing on } (-\infty, 0) \text{ and increasing on } (0, \infty)
\]
Therefore, \(f(x) \) has a local minimum at \(x = 0 \).

66. \(f(x) + f''(x) = -x g(x) f'(x) \)
Let \(h(x) = f''(x) + f'(x)^2 \)
\[
\Rightarrow \quad h'(x) = 2f'(x) f''(x) + f'(x) f'''(x) \quad = 2f'(x) [-x g(x) f'(x)] \quad = -2x f'(x)^3 g(x)
\]
\[
\Rightarrow \quad x = 0 \text{ is a point of maxima for } h(x).
\]

67. \(h'(x) = \frac{m-n}{n} = \frac{m}{n} \quad \text{even} \)

As \(h'(x) \) is undefined at \(x = 0 \) and \(h'(x) \) does not change its sign in the neighbourhood. So, no extremums.

68. \(f(x) = 4 \tan x - \tan^2 x + \tan^3 x \)
\[
\Rightarrow \quad f'(x) = 4 \sec^2 x - 2 \tan x \sec^2 x + 3 \tan^2 x \sec^2 x
\]
\[
= \sec^2 x (4 - 2 \tan x + 3 \tan^2 x)
\]
\[
= 3 \sec^2 x \left(\tan x - \frac{2}{3} \right)^2 + \frac{4}{3} \left(\frac{4}{3} - \frac{1}{9} \right)
\]
\[
= 3 \sec^2 x \left(\tan x - \frac{1}{3} \right)^2 + \frac{11}{9} > 0, \forall x
\]

Therefore, \(f(x) \) is increasing for all \(x \in \text{domain} \).

69. \(\text{It is a fundamental property.} \)

70. \(f(x) = -\frac{1}{2} e^{-\frac{x}{2} x^2 - 8} \)

Clearly, \(x = 2 \sqrt{2} \) is the point of local maxima.
6.50 Calculus

71. a. \(f(0) = \pi/2, f'(0) = 0, f(0^+) = 0. \)
 Hence \(x = 0 \) is the point of maxima.

72. a. \(f(x) \) will have maxima at \(x = -2 \) only if \(a^2 + 1 \geq 2 \Rightarrow |a| \geq 1 \)

73. b. Given \(A + B = 60^\circ \Rightarrow B = 60^\circ - A \)
 \[\Rightarrow \tan B = \tan (60^\circ - A) = \frac{\sqrt{3} - \tan A}{1 + \sqrt{3} \tan A} \]
 Now \(z = \tan A \tan B \)
 \[z = \frac{t(\sqrt{3} - t)}{1 + \sqrt{3} t} = \frac{\sqrt{3} t - t^2}{1 + \sqrt{3} t} \]

74. c. \(f(x) = \frac{3x - x^2}{x - 4} ; f'(x) = \frac{(x - 4)(3 - 2x) - (x - 3)x^2}{(x - 4)^2} \)

75. d. If \(f'(x) \) has an extremum at \(x = \frac{\pi}{3} \), then \(f'(x) = 0 \) at \(x = \frac{\pi}{3} \)

76. a. Since \(a = \left(\frac{4}{\sin x} + \frac{1}{1 - \sin x} \right) \), \(a \) is least.
 \[\Rightarrow \frac{da}{dx} = \left[-\frac{4}{\sin^2 x} + \frac{1}{(1 - \sin x)^2} \right] \cos x = 0 \]

77. c. Consider the function \(f(x) = \frac{x^2}{x^3 + 200} \)
 \[f'(x) = \frac{2x(x^3 + 200) - x^2(3x^2)}{(x^3 + 200)^2} = 0 \]
 When \(x = (400)^{1/3} \),
 \[x = (400)^{1/3} - h \Rightarrow f'(x) > 0 \]
 \[x = (400)^{1/3} + h \Rightarrow f'(x) < 0 \]
 \(f(x) \) has maxima at \(x = (400)^{1/3} \)

78. b. \(f'(x) = -x \sin x = 0 \) when \(x = 0 \) or \(\pi \)
 \[f''(0^-) = (-)(-)(-) < 0 \]
 \[f''(0^+) = (-)(+)(+) < 0 \] no sign change
This also implies that \(f \) is decreasing at \(x = 0 \)
\[\Rightarrow (b) \text{ is correct.} \]
\[f''(x) = -(\cos x + \sin x)\]
\[f''(-\pi) = -(\pi) > 0 \text{ minima at } x = \pi \]
\[f''(\pi) = -(\pi) < 0 \text{ maxima at } x = -\pi \]
80. d. From the given data, graph of \(f(x) \) can be shown as

![Graphs](Image)

Fig. 6.81

Thus from graph, nothing can be said about roots when
the sign of \(f(\alpha) \) and \(f(\beta) \) is given.

81. a.

![Diagram](Image)

Fig. 6.82

Let the charges for railway line be \(k \) \$/km.

Now the total freight charges, \(T = kx + 2k \sqrt{(20-x)^2 + 75} \)

\[\text{Let } \frac{dT}{dx} = 0 \Rightarrow k + 2k \frac{2(x-20)}{2(20-x)^{1/2} + 75} = 0 \]
\[\Rightarrow 4(x-20)^2 = 75 + (x-20)^2 \]
\[\Rightarrow (x-20)^2 = 25 \Rightarrow x = 25, 15 \Rightarrow \text{as } AP < AB \]
\[\Rightarrow PB = AB - AP = 20 - 15 = 5 \text{ km} \]

82. a.

![Diagram](Image)

Fig. 6.83

From geometry, we have \(\frac{r}{30 \tan 30^\circ} = \frac{30 - h}{30} \)
\[\Rightarrow h = 30 - \sqrt{3}r \]
Now, the volume of cylinder, \(V = \pi r^2 h = \pi r^3 (30 - \sqrt{3}r) \)

83. b.

![Diagram](Image)

Fig. 6.84

Let rectangle \(BEFG \) is inscribed.
Its area, \(A = xy \)
Now \(\Delta FEC \) and \(\Delta DHC \) are similar, i.e.,
\[\Rightarrow \frac{x}{8} = \frac{10 - y}{4} \Rightarrow y = 10 - \frac{x}{2} \Rightarrow A = x \left(10 - \frac{x}{2}\right) \text{ where} \]
\[x \in (0, 8] \]
Now \(\frac{dA}{dx} = 10 - x. \text{ Now for } x \in (0, 8) \)
\[\frac{dA}{dx} > 0 \Rightarrow \text{ A increases. Hence } A_{\text{max}} \text{ occurs when } x = 8. \]

Hence, max area \(A_{\text{max}} = 8(10 - \frac{8}{2}) = 48 \text{ cm}^2 \).

84. a.

![Diagram](Image)

Fig. 6.85

Given volume and \(r \)
Now, \(V = \text{volume of cone} + \text{volume of cylinder} \)
\[= \frac{\pi}{3} r^2 h + \pi r^2 H \]
\[V = \frac{\pi}{3} r^2 (h+3H) \Rightarrow H = \frac{\frac{3V}{\pi r^2} - h}{3}. \]
Now, surface area, \(S = \pi rl + 2\pi H = \pi r \sqrt{h^2 + r^2} + 2\pi r \times \left(\frac{\frac{3V}{\pi r^2} - h}{3}\right) \)
Now, let \(\frac{dS}{dh} = 0 \Rightarrow \pi r \frac{h}{\sqrt{h^2 + r^2}} - \frac{2\pi r}{3} = 0 \)
6.52 Calculus

\[\Rightarrow \frac{h}{\sqrt{h^2 + r^2}} = \frac{2}{3} \Rightarrow 5h^2 = 4r^2 \Rightarrow r = \frac{\sqrt{5}}{2} = \tan \theta \]

\[\Rightarrow \cos \theta = \frac{2}{3} \Rightarrow \theta = \cos^{-1} \frac{2}{3} \]

85. d.

![Fig. 6.86](image)

Let \(BD_1 = x \Rightarrow BC_1 = (a - x) \)

\[\Rightarrow BC = (a - x) \tan \frac{\pi}{3} = \sqrt{3}(a - x). \]

Now, area of rectangle \(ABDC_1 \),

\[\Delta = (AB)(BC) = 2\sqrt{3}x(a - x). \]

\[\Rightarrow \Delta \leq 2\sqrt{3} \left(\frac{x + a - x}{2} \right)^2 = \frac{3a^2}{2} \]

(using A.M. ≥ G.M.)

86. d.

![Fig. 6.87](image)

Let \(\angle COA = \theta \Rightarrow OA = OC \; \sec \theta = 4 \sec \theta \)

Also \(\angle OPC = \theta \Rightarrow OP = OC \; \csc \theta = 4 \csc \theta \)

Now, \(\Delta_{PAB} = OA \; OP = \frac{32}{\sin 2\theta} \)

For \(\Delta_{PAB} \) to be minimum \(\sin 2\theta = 1 \Rightarrow \theta = \frac{\pi}{4} \)

\[\Rightarrow P = (0, 4\sqrt{2}) \]

87. a.

![Fig. 6.88](image)

\(AD = AB \cos \theta = 2R \cos \theta, \ AE = AD \cos \theta = 2R \cos^2 \theta \)

\[\Rightarrow EF = AB - 2AE = 2R - 4R \cos^2 \theta \]

\(DE = AD \sin \theta = 2R \sin \theta \cos \theta \)

\(\Rightarrow \) Area of trapezium,

\[S = \frac{1}{2} (AB + CD) \times DE \]

\[= \frac{1}{2} (2R + 2R - 4R \cos^2 \theta) \times 2R \sin \theta \cos \theta \]

\[= 4R^2 \sin^3 \theta \cos \theta \]

\[\frac{dS}{d\theta} = 12R^2 \sin^3 \theta \cos^2 \theta - 4R^2 \sin^4 \theta \]

\[= 4R^2 \sin^2 \theta (3 \cos^2 \theta - \sin^2 \theta) \]

For maximum area, \(\frac{dS}{d\theta} = 0 \Rightarrow \tan^2 \theta = 3 \Rightarrow \tan \theta = \sqrt{3} \)

(\(\theta \) is acute) \(\Rightarrow S_{\text{max}} = \frac{3\sqrt{3}}{4} R^2 \).

88. c.

![Fig. 6.89](image)

\(b \cos \theta = a \Rightarrow b \cos \theta + b = 4 \) or \(b = \frac{4}{1 + \cos \theta} \)

\[\Rightarrow a = \frac{4 \cos \theta}{1 + \cos \theta} \]

\[\Rightarrow \text{area} = \Delta = \frac{1}{2} ab \sin \theta \]

\[= \frac{1}{2} \left(\frac{4}{1 + \cos \theta} \right) \times 4 \cos \theta \times \sin \theta = \frac{4 \sin 2\theta}{(1 + \cos \theta)^2} \]

\[\Rightarrow \frac{d\Delta}{d\theta} = 4 \frac{2 \cos 2\theta(1 + \cos \theta)^2 + 2 \sin 2\theta(1 + \cos \theta)\sin \theta}{(1 + \cos \theta)^4} \]

\[\Rightarrow \frac{d\Delta}{d\theta} = 0 \Rightarrow \cos 2\theta (1 + \cos \theta) + \sin 2\theta \sin \theta = 0 \]

or \(\cos 2\theta + \cos \theta = 0 \) or \(\cos 2\theta = -\cos \theta = \cos (\pi - \theta) \)

or \(\theta = \frac{\pi}{3} \)

Therefore, \(\Delta \) is maximum when \(\theta = \frac{\pi}{3} \).

89. b.

![Fig. 6.90](image)

\(\Delta = (AB \times AE) + 2 \left(\frac{1}{2} DE \times AE \right) \)

\[= (8 \times 8 \sin \theta) + 8 \sin \theta \times 8 \cos \theta = 64 \sin \theta + 32 \sin 2\theta \]

Let \(\frac{d\Delta}{d\theta} = 0 \Rightarrow 64 \cos \theta + 64 \cos 2\theta = 0 \)

\[\Rightarrow 2 \cos^2 \theta + \cos \theta - 1 = 0 \Rightarrow (2 \cos \theta - 1)(\cos \theta + 1) = 0 \]

\[\Rightarrow \cos \theta = 1/2 \Rightarrow \theta = \pi/3 \]
\[A_{\text{max}} = 64 \frac{\sqrt{3}}{2} + 32 \frac{\sqrt{3}}{2} = 32 \sqrt{3} + 16 \sqrt{3} = 48 \sqrt{3}. \]

90. b. Fuel charges \(\propto v^2 \). Let \(F \) represents fuel charges \(\Rightarrow F \propto v \Rightarrow F = kv^2 \)
\(\text{Given that } F = 48 \text{ per hour, } v = 16 \text{ km per hour} \)
\[\Rightarrow 48 = k (16)^2 \Rightarrow k = \frac{3}{16} \]

From (1), \(F = \frac{3v^2}{16} \)
Let the train covers \(\lambda \) km in \(t \) hours \(\Rightarrow \lambda = vt \text{ or } t = \frac{\lambda}{v} \)
\[\Rightarrow \text{ Fuel charges in time } t = \frac{3v^2}{16} \times \frac{\lambda}{v} = \frac{3\lambda v}{16} \]
\[\Rightarrow \text{ Total cost for running the train, } C = \frac{3\lambda v}{16} + 300 \times \frac{\lambda}{v} \]
\[\Rightarrow \frac{dC}{dv} = \frac{3\lambda}{16} - 300 \frac{\lambda}{v^2} \quad \text{and} \quad \frac{d^2C}{dv^2} = -600 \frac{\lambda}{v^3} \]

For the maximum or minimum value of \(C \), \(\frac{dC}{dv} = 0 \) \(\Rightarrow v = 40 \text{ km/hr. Also, } \frac{d^2C}{dv^2} \bigg|_{v=40} = \frac{60\lambda}{40^3} > 0 \quad (\because \lambda > 0) \]
\[\Rightarrow C \text{ is minimum when } v = 40 \text{ km/hr.} \]

91. c. \[\text{Fig. 6.91} \]

Let \(x \) be the radius and \(y \) the height of the cylindrical gas container. Also let \(k \) be the thickness of the plates forming the cylindrical sides. Therefore, the thickness of the plate forming the top will be \(5k/4 \).

Capacity of the vessel = vol. of cylinder
\[= \pi x^2 y = V \text{ (Given)} \Rightarrow y = \frac{V}{\pi x^2} \quad (1) \]

Now, the volume \(V_1 \) of the iron plate used for construction of the container is given by
\[V_1 = \pi (x + k)^2 (y + 5k/4) - \pi x^2 y \]
\[\Rightarrow \frac{dV_1}{dx} = 2\pi k (x + k) \times (\frac{5\pi}{4V} \times \frac{1}{x^2}) \]

For maximum or minimum of \(V_1, \frac{dV_1}{dx} = 0 \) \(\Rightarrow x = \left[4\frac{V}{(5\pi)}\right]^{1/3} \)

For this value of \(x, \frac{d^2V_1}{dx^2} > 0 \) \(\Rightarrow \) \(x \)
Hence, \(V_1 \) is minimum when \(x = \left[4\frac{V}{(5\pi)}\right]^{1/3} \).

Now \[x = \left[4\frac{V}{(5\pi)}\right]^{1/3}, \]
\[\Rightarrow 5\pi x^3 = 4V - 4\pi x^2 y \Rightarrow x/y = 4/5 \]
Hence, the required ratio is \(4 : 5 \).

92. c.

Let \(ABC \) be an isosceles triangle in which a circle of radius \(r \) is inscribed.

Let \(\angle BAD = \theta \) (semi-vertical angle)

In \(\Delta OAE, OA = OE \cos \theta = r \cos \theta, AE = r \cot \theta \)
\[\Rightarrow AD = OA + OD = r \cos \theta + 1 \]
In \(\Delta ABD, BD = AD \tan \theta = r \cos \theta + 1 \tan \theta \)
\[AB = AD \sec \theta = r \cos \theta + 1 \sec \theta \]
Now, the perimeter of the \(\Delta ABC \) is
\[S = AB + AC + BC = 2AB + 2BD \]
\[= 2AB + 2BD \]
\[(\because AC = AB) \]
\[S = 2r (\cos \theta + 1) (\sec \theta + \tan \theta) \text{ or } S = \frac{4r(1 + \sin \theta)^2}{\sin 2\theta}. \]
\[\Rightarrow \frac{dS}{d\theta} = 4r [2(1 + \sin \theta) \cos \theta - \sin \theta \cos 2\theta] \]
\[= 8r(1 + \sin \theta)[\sin 2\theta \cos \theta - \cos 2\theta \sin \theta - (\sin 2\theta)(\sin 2\theta)^2] \]
\[= 8r(1 + \sin \theta)[\sin \theta - 2 \sin^2 \theta - \cos \theta + \frac{1}{2} \sin 2\theta] \]
\[= 16r(1 + \sin \theta)[\sin \theta - 1/2] (\sin 2\theta) \]

For maximum or minimum of \(S, \frac{dS}{d\theta} = 0 \Rightarrow \sin \theta = 1/2 \).
\[\therefore \theta = \pi/6 \quad (\because \sin \theta = 1/2 \text{ as } \theta \text{ is an acute angle}) \]

Now if \(\theta \) is little less and little greater than \(\pi/6 \), then sign of \(dS/d\theta \) changes from -ve to +ve. Hence \(S \) is minimum when \(\theta = \pi/6 \), which is the point of minima.
Hence, the least perimeter of the triangle is \(\Delta = 4r [1 + \sin (\pi/6)^2]/\sin (\pi/3) = 6\sqrt{3}r \).

93. a.

Let \(H \) be the height of the cone and \(\alpha \) be its semi-vertical angle. Suppose that \(x \) is the radius of the inscribed cylinder and \(k \) is its height \(h = OQ = OL - OQ = H - x \cot \alpha, V \) is the volume of the cylinder, \(x^2 = H - x \cot \alpha). \)
Also, \(p = \frac{1}{3} \pi (H \tan \alpha)^2 H \)

\[
\frac{dV}{dx} = \frac{\pi (2Hx - 3x^2 \cot \alpha)}{\tan \alpha}
\]

So, \(\frac{dV}{dx} = 0 \Rightarrow x = 0 \) or \(x = \frac{2}{3} H \tan \alpha \);

\[
\frac{d^2V}{dx^2} \bigg|_{x = \frac{2}{3} H \tan \alpha} = -2\pi H < 0
\]

So, \(V \) is maximum when \(x = \frac{2}{3} H \tan \alpha \)

\[
q = V_{\text{max}} = \frac{4}{9} \pi H^2 \tan^2 \alpha \frac{1}{3} H
\]

\[
= \frac{4}{27} \pi \tan^2 \alpha \frac{1}{9} P. \quad \text{[from (1)]}
\]

Hence, \(p : q = 9 : 4 \).

94. d. Given \(4x + 2\pi r = a \)
where \(x \) is side length of the square and \(r \) is radius of the circle

\[
A = x^2 + \pi r^2 = \frac{1}{16} (a - 2\pi r)^2 + \pi r^2
\]

\[
\frac{dA}{dr} = 0 \text{ gives } r = \frac{a}{2(\pi + 4)} \text{ for which } \frac{d^2A}{dr^2} \text{ is + ve and hence minimum.}
\]

\[
\Rightarrow 4x = a - 2\pi r = a - \frac{a\pi}{\pi + 4} = \frac{4a}{\pi + 4}
\]

\[
x = \frac{a}{\pi + 4}
\]

\[
\therefore A = x^2 + r^2 = \frac{a^2}{4(\pi + 4)}.
\]

95. c. The dimensions of the box after cutting equal squares of side \(x \) on the corner will be

21 - 2x, 16 - 2x and height \(x \).

\[
V = x(21 - 2x)(16 - 2x)
\]

\[
x(x = 336 - 74x + 4x^2)
\]

or \(V = 4x^3 + 336x - 74x^2 \Rightarrow \frac{dV}{dx} = 12x^2 + 336 - 148x \)

\[
\Rightarrow \frac{dV}{dx} = 0 \text{ gives } x = 3 \text{ for which } \frac{d^2V}{dx^2} \text{ is - ve and hence maximum.}
\]

96. a. \(f(x) = \frac{\sin^3 x \cos x}{2} \)

\[
f'(x) = \frac{3 \sin^2 x \cos^2 x - \sin^4 x}{2}
\]

\[
f(x) = 0 \Rightarrow 3 \sin^2 x \cos^2 x - \sin^4 x = 0
\]

\[
\Rightarrow 3 \cos^2 x - \sin^2 x = 0
\]

\[
\Rightarrow 4 \cos^2 x - 1 = 0
\]

\[
\Rightarrow \cos x = \frac{1}{2}
\]

\[
\Rightarrow x = \frac{\pi}{3}, \text{ which is the point of maxima.}
\]

Multiple Correct Answers

1. \(a, b, c, d \).

Fig. 6.94

From the graph, global minimum value is \(f(-1) = \frac{8}{2} \) and global maximum value is \(f(0) = f(\pi) = 0 \).

2. \(a, c \).

\(f'(x) = 4(x^3 - 3x^2 + 3x - 1) = 4(x - 1)^3 \) for \(x > 1 \).

Hence, \(f \) increases in \([1, \infty) \). Moreover, \(f''(x) < 0 \) for \(x < 1 \).

Hence, \(f \) has a minimum at \(x = 1 \).

3. \(a, b, c, d \).

\(f(x) = 2x - \sin x \Rightarrow f'(x) = 2 - \cos x > 0 \forall x \). Hence, \(f(x) \) is strictly increasing, hence one-one and onto \(g(x) = x^{1/3} \).

\[
\Rightarrow g'(x) = \frac{1}{3} x^{-2/3} > 0 \forall x \text{, hence } g(x) \text{ is strictly increasing and hence one-one and onto.}
\]

Also, \(g f \) is one-one.

\(g f(x) = (2x - \sin x)^{1/3} \) has range \(R \) as the range of \(2x - \sin x \) is \(R \).

4. \(a, d \).

We have

\[
f(x) = 2x + \cot^{-1} x + \log(\sqrt{1 + x^2} - x)
\]

\[
f'(x) = 2 - \frac{1}{1 + x^2} + \frac{1}{\sqrt{1 + x^2}} \left(\frac{x}{\sqrt{1 + x^2}} - 1 \right)
\]

\[
= \frac{1 + 2x^2}{1 + x^2} + \frac{1 + 2x^2}{1 + x^2} \sqrt{1 + x^2}
\]

\[
= \frac{x^2 + \sqrt{1 + x^2} (\sqrt{1 + x^2} - 1)}{1 + x^2} > 0 \text{ for all } x
\]

Hence, \(f(x) \) is an increasing function in \((-\infty, \infty) \) and in particular in \((0, \infty) \).

5. \(a, b, c, d \).

Fig. 6.95

Refer the graph for the answers.
6. b, d.

\[f'(x) = \frac{\sin x}{x} \]

For \(f''(x) = 0 \), \(\frac{\sin x}{x} = 0 \) \(\Rightarrow x = n\pi \) \((n \in I, n \neq 0)\)

\[f''(x) = \frac{\cos nx}{nx} - \frac{\sin x}{x^2} \]

\[f''(nx) = \frac{\cos nx}{nx} - \frac{\sin x}{x^2} \]

\(\text{Hence, } f(x) \text{ has local maxima at } x = n\pi, \text{ where } n = 2k - 1 \text{ and local minima at } x = n\pi, n = 2k, \text{ where } k \in I'. \)

7. a, b.

Given that \(\frac{x^2 + x + 2}{x^2 + 5x + 6} < 0 \Rightarrow x \in (-3, -2) \)

We have to find the extrema for the function

\[f(x) = x + a^2 - x^3 \]

For maximum or minimum, \(f'(x) = 0 \)

\[\Rightarrow a^2 - 3x^2 = 0 \text{ or } x = \pm \frac{a}{\sqrt{3}} \text{ and } f''(x) = -6x \text{ is +ve when } x \text{ is negative.} \]

If \(a \) is positive, then the point of minima is \(\frac{-a}{\sqrt{3}} \)

i.e., \(-3 < \frac{-a}{\sqrt{3}} < -2 \text{ or } 2\sqrt{3} < a < 3\sqrt{3} \).

And if \(a \) is negative, then the point of minima is \(\frac{a}{\sqrt{3}} \)

i.e., \(-3 < \frac{a}{\sqrt{3}} < -2 \text{ or } -3\sqrt{3} < a < -2\sqrt{3} \).

Then, \(a \in (-3\sqrt{3}, -2\sqrt{3}) \cup (2\sqrt{3}, 3\sqrt{3}) \).

8. a, c.

\[y = ax^2 - bx \ (a > 0, b > 0) \]

\[y = ax^2 - bx \ (a > 0, b < 0) \]

\[y = ax^2 - bx \ (a > 0, b < 0) \]

\[y = ax^2 - bx \ (a > 0, b > 0) \]

\[y = \frac{x^2}{2} \quad \text{when } n \text{ is even} \]

\[y = \frac{x^2}{2} \quad \text{when } n \text{ is odd} \]

\[y = \frac{2x - 1}{x - 2} \]

\[\Rightarrow \frac{dy}{dx} = \frac{2(x - 2) - (2x - 1)}{(x - 2)^2} = \frac{-3}{(x - 2)^2} < 0 \forall x \neq 2 \]

Therefore, \(y \) is decreasing in \((-\infty, 2)\) as well as in \((2, \infty)\)

\[y = \frac{2x - 1}{x - 2} \Rightarrow x = \frac{2y - 1}{y - 2} \]

\[\Rightarrow f'(x) = \frac{2x - 1}{x - 2} \Rightarrow f(x) \text{ is its own inverse.} \]

10. b, c.

\[\Rightarrow g(x + 1) > g(x - 1) \text{ and } f(x + 1) < f(x - 1) \]

\[\Rightarrow f(g(x + 1)) < f(g(x - 1)) \text{ and } \]

\[g(f(x + 1)) < g(f(x - 1)) \]

11. b, c.

\[f(x) = x^3 - x^2 + 100x + 2002 \]

\[f'(x) = 3x^2 - 2x + 100 > 0 \forall x \in R \]

\[\therefore f(x) \text{ is increasing (strictly)} \]

\[\therefore f(\frac{1}{2000}) > f(\frac{1}{2001}) \]

Also, \(f(\text{x-1}) > f(\text{x-2}) \) as \(x-1 > x-2 \) for \(\forall x \).

12. a, d.

Since \(g(a) \neq 0 \), therefore either \(g(a) > 0 \) or \(g(a) < 0 \).

Let \(g(a) < 0 \). Since \(g(x) \) is continuous at \(x = a \), therefor\ there exists a neighbourhood of \(a \) in which \(g(x) > 0 \).

\[\Rightarrow f'(x) > 0 \Rightarrow f(x) \text{ is increasing in the neighbourhood of } a. \]

Let \(g(a) < 0 \). Since \(g(x) \) is continuous at \(x = a \), therefor\ there exists a neighbourhood of \(a \) in which \(g(x) < 0 \).

\[\Rightarrow f'(x) < 0 \Rightarrow f(x) \text{ is decreasing in the neighbourhood of } a. \]

13. a, d.

We have \(f(x) = (4a - 3)(x + 5 + a - 1) \cot \frac{x}{2} \sin^2 \frac{x}{2} \)

\[= (4a - 3)(x + 5 + a - 1) \]

\[= (4a - 3) + (a - 7) \sin x \]

\[\Rightarrow f'(x) = (4a - 3) + (a - 7) \cos x \]

If \(f(x) \) does not have critical points, then \(f'(x) = 0 \) does not have any solution in \(R \).

Now, \(f'(x) = 0 \Rightarrow \cos x = \frac{4a - 3}{7 - a} \)

\[\Rightarrow \left| \frac{4a - 3}{7 - a} \right| \leq 1 \]

\[\Rightarrow -1 \leq \frac{4a - 3}{7 - a} \leq 1 \]

\[\Rightarrow a \geq 4/3 \text{ and } a \leq 2 \]

Thus, \(f'(x) = 0 \) has solutions in \(R \) if \(-4/3 \leq a \leq 2 \).

So, \(f'(x) = 0 \) not solvable in \(R \) if \(a < -4/3 \) or \(a > 2 \), i.e.,

\[a \in (-\infty, -4/3) \cup (2, \infty). \]
15. a, b, c

\[f'(x) = \cos x + a \]

If \(a > 1 \), then \(f'(x) > 0 \) or \(f(x) \) is an increasing function, then
\[f(x) = 0 \] has +ve root if \(b < 0 \) and -ve root if \(b > 0 \)
\[f'(x) = \cos x + a \]
If \(a < -1 \), then \(f'(x) < 0 \) or \(f(x) \) is a decreasing function, then
\[f(x) = 0 \] has negative root if \(b < 0 \).

16. a, b, c.

\[
\begin{align*}
 f(x) &= \frac{\sin(x+a)}{\sin(x+b)} \\
 f'(x) &= \frac{\sin(b-a)}{\sin^2(x+b)}
\end{align*}
\]

If \(\sin(b-a) = 0 \), then \(f'(x) = 0 \), \(f(x) \) will be a constant, i.e., \(b-a = n\pi \) or \(b-a = (2n+1)\pi \) or \(b-a = 2n\pi \).

17. a, b, c.

\[r \] must be an even integer because two decreasing functions are required to make it increasing function.

Let \(y = r(n-r) \)

When \(n \) is odd, \(r = \frac{n-1}{2} \) or \(\frac{n+1}{2} \) for maximum values of \(y \)
when \(n \) is even, \(r = \frac{n}{2} \) for maximum value of \(y \).

Therefore, maximum \(y = \frac{n^2-1}{4} \) when \(n \) is odd and \(\frac{n^2}{4} \) when \(n \) is even.

18. a, b, d.

\[f'(x) = \frac{12x^2 - 12x + 5}{(2x-1)^2} > 0 \forall x \in \mathbb{R} \]

Hence, \(f \) is increasing \(\forall x \in \mathbb{R} \).
\(x = 1/2 \) is the point of inflection as concavity changes at \(x = 1/2 \).

19. a, b, d.

At the point of inflection, concavity of the curve changes irrespective of any other factor.

20. b, c, d.

Since \(f \) is defined on \((0, \infty)\).
Therefore, \(2a^2 + a + 1 > 0 \) which is true as \(D < 0 \)
also \(3a^2 - 4a + 1 > 0 \)
\[(3a - 1)(a - 1) > 0 \Rightarrow a < 1/3 \text{ or } a > 1 \]
as \(f \) is increasing hence
\[f(2a^2 + a + 1) > f(3a^2 - 4a + 1) \]
\[\\
\Rightarrow 2a + a + 1 > 3a^2 - 4a + 1 \\
\Rightarrow 0 > a^2 - 5a \\
\Rightarrow a(a - 5) < 0 \Rightarrow (0, 5) \]
From (1) and (2), we get hence, \(a \in (0, 1/3) \cup (1, 5) \).
Therefore, possible integers are \(\{2, 3, 4\} \).

21. a, d.

\[f(x) = (\sin^2 x - 1)^a \]
\[
\begin{align*}
 f\left(\frac{\pi}{2}\right) &= 0 \\
 f\left(\frac{-\pi}{2}\right) &= (\rightarrow 0)^a \text{ and } f\left(\frac{\pi}{2}\right) = (\rightarrow 0)^a
\end{align*}
\]

If \(n \) is even \(f\left(\frac{\pi}{2}\right) \) and \(f\left(-\frac{\pi}{2}\right) > 0 \), then \(x = \frac{\pi}{2} \) is the point of minima.

If \(n \) is odd \(f\left(\frac{\pi}{2}\right) \) and \(f\left(-\frac{\pi}{2}\right) < 0 \), then \(x = -\frac{\pi}{2} \) is the point of maxima.

22. a, b, d.

\[f(x) = 2x^3 + 9x^2 + 12x + 1 \]
\[f'(x) = 6(x^2 + 3x + 2) \]
\[= 6(x+2)(x+1) \]
\[f'(x) < 0 \text{ for } x \in (-2, -1), \text{ where } f(x) \text{ decreases.} \]
\[f'(x) > 0 \text{ for } x \in (-\infty, -2) \cup (-1, \infty), \text{ where } f(x) \text{ increases.} \]
\[f''(x) = 2x + 3 = 0 \]
\[x = -3/2 \text{ is the point of inflection.} \]

From the graph, \(f \) is many—one, hence it is not bijective.

23. a, b, c.

\[f(x) = ax^5 + bx^4 + cx^3 + x^2 + a \]
\[f'(x) = 0 \text{ has one root } x = 0 \]
Also, given that \(f(x) = 0 \) has positive root \(a_0 \).
Thus, the equation must have at least three real roots (as complex root occurs in conjugate pair). Thus \(f'(x) = 0 \) has at least two real roots as between two roots of \(f(x) = 0 \), there lies at least one root of \(f'(x) = 0 \).

Similarly, we can say that \(f''(x) = 0 \) has at least one real root.

Further, \(f'(x) = 0 \) has one root between roots \(x = 0 \) and \(x = a_0 \) of \(f(x) = 0 \).

24. a, b, c.

Let \(y = f(x) \).

\[
\Rightarrow \quad \frac{dy}{dx} = f(x)g'(x) + g(x) \frac{f'(x)}{f(x)} \log f(x)
\]

\[f(x)g(x), g(x), f(x), f'(x) \text{ and } g'(x) \text{ are positive, but}
\]

\[\log f(x) \text{ can be negative, which can cause } \frac{dy}{dx} < 0, \text{ hence statement (a)} \text{ is false.}
\]

If \(f(x) < 1 \Rightarrow \log f(x) < 0 \), which does not necessarily make
\[
\frac{dy}{dx} < 0, \text{ hence statement (b) is false.}
\]

\[f(x) < 0 \text{ can also cause } \frac{dy}{dx} > 0, \text{ hence statement (c) is false.}
\]

But reverse of (c) is true.

25. a, c.

\[f(x) = \frac{2-x}{\pi} \cos \pi x + \frac{1}{\pi} \sin \pi x + 3\]

\[f''(x) = \frac{1}{\pi} \cos \pi x + 3 - (2 \cdot x) \sin \pi x + 3
\]

\[+ \frac{1}{\pi} \cos \pi (x + 3) = (x - 2) \sin \pi x + 3 = 0
\]

\[x = 2, 1, 3
\]

\[f''(x) = \sin \pi x + 3 + \pi (x - 2) \cos \pi x + 3
\]

\[f'(1) = -\pi < 0, f''(2) = 0, f''(3) = \pi > 0
\]

Therefore, \(x = 1 \) is a maximum and \(x = 3 \) is a minimum, hence \(x = 2 \) is the point of inflection.

26. a, b, c, d.

\[f(x) = x^2 (12 \log x - 7); x > 0
\]

\[
\Rightarrow \quad \frac{dy}{dx} = 16x^3 (3 \log x - 1) \quad \text{and} \quad \frac{d^2 y}{dx^2} = x^2 (9 \log x)
\]

\[
\frac{dy}{dx} = 0 \Rightarrow x = e^{1/3}
\]

at \(x = e^{1/3} \), \(\frac{d^2 y}{dx^2} > 0 \), hence \(x = e^{1/3} \) is point of minima.

Also, for \(0 < x < 1 \), \(\frac{d^2 y}{dx^2} < 0 \) and for \(x > 1 \), \(\frac{d^2 y}{dx^2} > 0 \)

Hence \(x = 1 \) point of inflection and for \(0 < x < 1 \), graph is concave downward and for \(x > 1 \), graph is concave upward.

27. a, b, c.

\[f(x) = \log(2x - x^2) + \sin \frac{\pi x}{2}
\]

\[= \log(1 - (x - 1)^2) + \sin \frac{\pi x}{2}
\]

Monotonicity and Maxima-Minima of Functions 6.57

\[f(1-x) = \log(1 - (1 - (x - 1)^2)) + \sin \frac{\pi(1-x)}{2}
\]

\[= \log(1-x^2) + \cos \frac{\pi x}{2}
\]

Also, \(f(1+x) = \log(1 - (1 + (x - 1)^2)) + \sin \frac{\pi(1+x)}{2}
\]

\[= \log(1-x^2) + \cos \frac{\pi x}{2}
\]

Hence, function is symmetrical about line \(x = 1 \).

Also, \(f(1) = \frac{1}{2} \)

Also, for domain of the function is \(2x - x^2 > 0 \) or \(x \in (0, 2) \)

For \(x > 1 \), \(f(x) \) decreases hence \(x = 1 \) is point of maxima.

Also, maximum value of the function is \(1 \).

Also, \(f(x) \to \infty \), when \(x \to 2 \), hence absolute minimum value of \(f \) does not exists.

28. a, b, c, d.

\[f'(x) = 2 - \frac{2x}{\sqrt[3]{x}} = 2 \left(1 - \frac{1}{x^{1/3}} \right) = 2 \left(\frac{x^{1/3} - 1}{x^{1/3}} \right)
\]

Sign scheme of derivative is

Fig. 6.101

\(f(x) \) has point of maxima at \(x = 0 \) and point of minima at \(x = 1 \).

Also \(f(x) \) is non-differentiable at \(x = 0 \).

Fig. 6.102

29. a, b, c.

\[f(x) = \frac{e^x}{1 + e^x}
\]

\[
\Rightarrow f'(x) = \frac{e^x (1 + e^x) - e^x e^x}{(1 + e^x)^2} = \frac{e^x}{(1 + e^x)^2} > 0 \forall x \in R
\]

\[\Rightarrow f(x) \text{ is an increasing function.}
\]

Also, \(\lim_{x \to -1} \frac{e^x}{1 + e^x} = 0 \) and \(\lim_{x \to 1} \frac{e^x}{1 + e^x} = \lim_{x \to 1} \frac{1}{1 + e^x} = 1
\]

Hence, the graph of \(f(x) = \frac{e^x}{1 + e^x} \) is as shown

Fig. 6.103
Also, \(f''(x) = \frac{e^x(1 + e^x)^2 - 2(1 + e^x)e^x e^x}{(1 + e^x)^4} = 0 \)

\[\Rightarrow (1 + e^x) - 2e^x = 0 \]
\[\Rightarrow e^x = 1 \]
\[\Rightarrow x = 0 \text{ which is point of inflection} \]
\[x = 0 \text{ is the inflection point and } f \text{ is bounded in (0, 1).} \]
No maxima and \(f \) has two asymptotes.

30. \(a, b, c. \)

The following function is discontinuous at \(x = 2 \), but has point of maxima.

\[f(x) = |x| \text{ has point of minima at } x = 0, \text{ though it is non-differentiable at } x = 0 \]

\[f(x) = x^{2/3} \text{ has point of inflection at } x = 0, \text{ as curve changes its concavity at } x = 0, \text{ however } x = 0 \text{ is point of minima for the function.} \]

31. \(a, b, d. \)

\[f(x) = 2x - \frac{\lambda}{x^2} \quad \therefore f''(x) = 0 \quad \Rightarrow x = \left(\frac{\lambda}{2} \right) \]
If \(\lambda = 16, x = 2 \)

Now, \(f''(x) = 2 + \frac{2\lambda}{x^3} \)

\[\therefore \text{ if } \lambda = 16, f''(x) > 0, \text{ i.e. } f(x) \text{ has a minimum at } x = 2 \]

Also, \(f'' \left(\frac{\lambda}{2} \right) = 2 + \frac{2\lambda}{\lambda/2} = 2 + 4 > 0 \)

Hence, \(f(x) \) has maximum for no real value of \(\lambda. \)

When \(\lambda = -1, f''(x) = 0 \) if \(x = 1. \) So, \(f(x) \) has a point of inflection at \(x = 1. \)

32. \(c, d. \)

\[f(x) = x^{6/7} \]

\[\Rightarrow f''(x) = -\frac{6 \cdot 13}{7 \cdot 7} x^{-8/7} \text{, here } f''(x) \text{ does not change sign, hence has no point of inflection.} \]

33. \(a, c, d. \)

\[f(x) = x^2 - \frac{\lambda}{x^2} \quad \therefore f''(x) = 0 \quad \Rightarrow x = \left(\frac{\lambda}{2} \right) \]

If \(\lambda = 16, x = 2 \)

Now, \(f''(x) = 2 + \frac{2\lambda}{x^3} \)

\[\therefore \text{ if } \lambda = 16, f''(x) > 0, \text{ i.e. } f(x) \text{ has a minimum at } x = 2 \]

Also, \(f'' \left(\frac{\lambda}{2} \right) = 2 + \frac{2\lambda}{\lambda/2} = 2 + 4 > 0 \)

Hence, \(f(x) \) has maximum for no real value of \(\lambda. \)

When \(\lambda = -1, f''(x) = 0 \) if \(x = 1. \) So, \(f(x) \) has a point of inflection at \(x = 1. \)

34. \(a, b, c, d. \)

\[f(x) = x^{1/3}(x - 1) \]
4. c. Both \(f(x) = x \) and \(g(x) = x^3 \) are increasing in \((-1, 0)\) but \(h(x) = x^3 \) is decreasing.

5. a. Suppose \(f(x) = 0 \) has real root say \(x = a \), then \(f(x) < 0 \) for all \(x < a \).
 Thus \(|f(x)| \) becomes strictly decreasing in \((-\infty, a)\) which is a contradiction.

6. d. Statement 1 is false as \(f(x) = 5 - 4(x-2)^{2/3} \) attains the greatest value at \(x = 2 \), though it is not differentiable at \(x = 2 \), and for extreme value it is not necessary that \(f''(x) \) exists at that point.
 Statement 2 is obviously true.

7. b. \(f(x) = x + \cos x \)
 \[f'(x) = 1 - \sin x > 0 \quad \forall x \in \mathbb{R}, \]
 \[f(x) \text{ is increasing.} \]
 Statement 2 is true but does not explain statement 1.
 Therefore, according to statement 2, \(f'(x) \) may vanish at finite number of points but in statement 1 \(f'(x) \) vanishes at infinite number of points.

8. a. Statement 2 is obviously true.
 Also, \(g(x) = \sin^{-1} \frac{x}{\sqrt{3}} - \tan^{-1} \frac{2}{3} \). Hence, statement 1 is true.

9. a. \(f(x) = \frac{x^3}{3} + \frac{ax^2}{2} + x + 5 \)
 \[f'(x) = x^2 + ax + 1 \]
 If \(f(x) \) has positive point of maxima, then point of minima is also positive. Hence, both the roots of equation \(x^2 + ax + 1 = 0 \) must be positive.
 \[\Rightarrow \text{sum or roots} - a > 0, \text{product of roots} 1 > 0 \text{ and discriminant} D = a^2 - 4 > 0 \]
 \[\Rightarrow a < -2. \]

10. a. \(\frac{dy}{dx} = 12 x (x^2 - x + 1) + a \) and \(\frac{d^2 y}{dx^2} = 12 (3x^2 - 2x + 1) > 0 \)
 \[\Rightarrow \frac{dy}{dx} \text{ is an increasing function.} \]
 But \(\frac{dy}{dx} \) is a polynomial of degree 3 \(\Rightarrow \) it has exactly one real root.

11. b. Let \(f(x) = \sin x \tan x - x \), then \(f'(x) = \sin x \sec^2 x + \sin x - 2x \)
 \[f''(x) = 2 \sin x \sec^2 x \tan x + \sec x + \cos x - 2 \]
 \[= 2 \sin x \tan x \sec^2 x + (\cos x + \sec x - 2) \]
 \[> 0 \forall x \in \left(0, \frac{\pi}{2}\right) \]
 \[\Rightarrow f'(x) \text{ is an increasing function.} \]
 \[\Rightarrow f'(x) > f'(0) \Rightarrow \sin x \sec^2 x + \sin x - 2 > 0 \]
 \[\Rightarrow f(x) \text{ is an increasing function} \]
 \[\Rightarrow f(x) > f(0) \]
 \[\sin x \tan x > x^2 \]
 Thus, statement 1 is true, also statement 2 is true but it does not explain statement 1.
12. b. \(f(x) = \sin(x) \cos(x) \)

\[
\Rightarrow f'(x) = -\sin(x) \cos(x) < 0 \quad \forall x \in \left[0, \frac{\pi}{2} \right].
\]

Statement 2 is also true, but it is not the only reason for statement 1 to be correct.

13. c. \(f(x) = (x^2 - 6x^2 + 12x - 8) e^x \)

\[
\Rightarrow f'(x) = e^x (x^2 - 6x + 12x - 8) + e^x (3x^2 - 12x + 12).
\]

\[
= e^x (x^2 - 3x^2 + 4).
\]

\[
= e^x (x^2 - 3x^2 + 4).
\]

\[
= e^x (x^2 - 3x^2 + 4).
\]

\[
= e^x (x^2 - 3x^2 + 4).
\]

Clearly, \(f''(2) = f''(2) = 0 \) and \(f'''(2) \neq 0 \), hence \(x = 2 \) is the point of inflection and hence not a point of extrema. Thus, statement 1 is true. But statement 2 is false, as it is necessary that at point of inflection, extrema does not occur. Consider the following graph (Fig. 6.112).

![Graph](image)

Fig. 6.112

14. a. \(f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21 \)

\[
f'(x) = 4x^3 - 24x^2 + 44x - 24
\]

\[
= 4(x - 1)(x - 2)(x - 3)
\]

Sign scheme of \(f'(x) \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-)</th>
<th>(+)</th>
<th>(+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

From the sign scheme of \(f'(x) \), \(f(x) \) increases for \(x \in (1, 2) \cup (3, \infty) \).

Since \(f(x) \) is a polynomial function, which is continuous, and has no point of inflection, intervals of increase and decrease occur alternatively.

15. a. \(f''(x) = \ln(x + \sqrt{1 + x^2}) = -\ln(\sqrt{1 + x^2} - x) \)

\[
\Rightarrow f''(x) > 0 \quad \text{for} \quad x > 0 \quad \text{and} \quad f''(x) < 0 \quad \text{for} \quad x < 0
\]

\(f(x) \) is increasing when \(x > 0 \) and decreasing for \(x < 0 \)

Hence, for \(x > 0 \), \(f(x) > f(0) \) \(\Rightarrow f(x) > 0 \).

Again \(f(x) \) is decreasing in \((-\infty, 0) \)

Then for \(x < 0 \), \(f(x) > f(0) \) \(\Rightarrow f(x) > 0 \).

\(f(x) \) is positive for all \(x \in R_0 \)

Thus, Statement 1 is true and follows from Statement 2.

Linked Comprehension Type

For Problems 1–2

1.b. 2.a.

Sol. \(f(x) = \sin^{-1} x + x^2 - 3x + \frac{x^3}{3} \)

\[
\Rightarrow f'(x) = \frac{1}{\sqrt{1-x^2}} + 2x - 3 + x^2
\]

\[
= f'(x) = 0 \quad \text{for some} \quad x = x_1 \in (0, 1)
\]

![Graph](image)

Fig. 6.114

and \(f''(x) = \frac{x}{(1-x^2)^{3/2}} + 2 + 2x > 0 \), \(\forall x \in (0, 1) \)

\[
\Rightarrow x = x_1 \quad \text{is the point of minimum}
\]

\(f(x) \) is continuous \(\forall x \in [0, 1] \).

Hence, the global maxima exist at \(x = 0 \) or \(x = 1 \)

\(f(0) = 0 \), \(f(1) = \pi^2/2 - 5/3 < 0 \)

\(f(0) \) is global maxima \(\forall x \in [0, 1] \)

\[
\Rightarrow f(x) \leq f(0), x \in [0, 1] \Rightarrow \sin^{-1} x + x^2 - 3x + x^3/3 \leq 0
\]

\[
\Rightarrow \sin^{-1} x + x^2 \leq \frac{x(9-x^2)}{3} \quad \forall x \in [0, 1]
\]

For Problems 3–4

3. a. 4.d.

Sol. \(g'(x) = f'(x) \sin x - f''(x) \cos x \sin x \)

\[
\Rightarrow g''(x) = -f'(x) \sin x \sin x + \cos^2 x f''(x) \cos x \sin x
\]

\[
= f''(x) \sin x - f''(x) \cos x \cos x
\]

\(\Rightarrow g'(x) \) is increasing in \((0, \pi/2) \). Also \(g'(\pi/4) = 0 \)

\(\Rightarrow g'(x) > 0 \quad \forall x \in \left(\frac{\pi}{4}, \frac{\pi}{2} \right) \) and \(g'(x) < 0 \quad \forall x \in (0, \pi/4) \).

Thus \(g(x) \) is decreasing in \((0, \pi/4) \).

For Problems 5–8

5.d. 6.a. 7.d. 8.e.

Sol. If \(f(x) \) is continuous then \(f(3^-) = f(3^+) \Rightarrow -9 + 12 + a = 3a + b \Rightarrow 2a + b = 3 \) (1)
Also $f'(4^+) = f(4^-)$ \[4a + b = -b + 6 \Rightarrow 2a + b = 3 \] (2)
$\Rightarrow f(x)$ is continuous for infinite values of a and b.

Also, $f'(x) = \begin{cases} -2x + 4, & x < 3 \\ a, & 3 < x < 4 \\ -\frac{b}{4}, & x > 4 \end{cases}$
For $f(x)$ to be differentiable, $f''(3) = f'(3) \Rightarrow a = -2$ and $\frac{b}{4} = a = -2$

$\Rightarrow b = 8$.

Hence, $f(x)$ can be differentiable.

For Problems 9–10

9.a. $\frac{dP(x)}{dx} > P(x)$

$\Rightarrow e^{-x} \frac{dP(x)}{dx} - e^{-x} P(x) > 0$

$\Rightarrow \frac{d}{dx} \left(P(x)e^{-x} \right) > 0$

$\Rightarrow P(x)e^{-x}$ is an increasing function.

$\Rightarrow P(x)e^{-x}$ is an increasing function.

$\Rightarrow P(1)e^{-1} < 1$

$\Rightarrow P(x)e^{-x} > 0 \forall x > 1 \Rightarrow P(x) > 0 \forall x > 1$.

10.b. Given that $\frac{d}{dx} H(x) > 2cxH(x)$

$\Rightarrow e^{-cx^2} \frac{d}{dx} H(x) - e^{-cx^2} 2cxH(x) > 0$

$\Rightarrow \frac{d}{dx} \left(H(x)e^{-cx^2} \right) > 0$

$\Rightarrow H(x) e^{-cx^2}$ is an increasing function.

But $H(x_0) = 0$ and e^{-cx^2} is always positive.

$\Rightarrow H(x) > 0$ for all $x > x_0$

$\Rightarrow H(x)$ cannot be zero for any $x > x_0$.

For Problems 11–13

11.a. $h(x) = f(x) - a (f(x))^2 + a (f(x))^3$

$\Rightarrow k'(x) = f'(x) - 2a f(x) f'(x) + 3a (f(x))^2 f'(x)$

$\Rightarrow k'(x)$ changes signs for all real values of x if $3a (f(x))^2 - 2a f(x) + 1 < 0$ for all $x \in R$

$\Rightarrow 3a < 0$ and $4a^2 - 12a < 0$

$\Rightarrow a < 0$ and $a \in (0, 3)$

$\Rightarrow a \in (0, 3)$.

12.d. $h(x)$ increases as $f(x)$ decreases for all real values of x if $3a (f(x))^2 - 2a f(x) + 1 < 0$ for all $x \in R$

$\Rightarrow 3a < 0$ and $4a^2 - 12a < 0$

$\Rightarrow a < 0$ and $a \in [0, 3]$

$\Rightarrow no such a is possible.$$}

For Problems 14–16

14.a. 15.c, 16.b.

Sol. Let $g(x) = x^3 - 9x^2 + 24x = x(x^2 - 9x + 24)$

$\Rightarrow g'(x) = 3x(x-2)(x-4)$

Sign scheme of $g(x)$

For Problems 11–13

11.a. $h(x) = f(x) - a (f(x))^2 + a (f(x))^3$

$\Rightarrow k'(x) = f'(x) - 2a f(x) f'(x) + 3a (f(x))^2 f'(x)$

$\Rightarrow h'(x) = f''(x)[3a (f(x))^2 - 2a f(x) + 1]$

Now $h(x)$ increases if $f(x)$ increases and $3a (f(x))^2 - 2a f(x) + 1 > 0$ for all $x \in R$

$\Rightarrow 3a > 0$ and $4a^2 - 12a < 0$

$\Rightarrow a > 0$ and $a \in (0, 3)$

$\Rightarrow a \in (0, 3)$.

12.d. $h(x)$ increases as $f(x)$ decreases for all real values of x if $3a (f(x))^2 - 2a f(x) + 1 < 0$ for all $x \in R$

$\Rightarrow 3a < 0$ and $4a^2 - 12a < 0$

$\Rightarrow a < 0$ and $a \in [0, 3]$

$\Rightarrow no such a is possible.$$

13.d. $h(x)$ is non-monotonic functions if $3a (f(x))^2 - 2a f(x) + 1$ changes sign

for which $D > 0$ or $4a^2 - 12a > 0$

$\Rightarrow a \in (-\infty, 0) \cup (3, \infty)$.

For Problems 14–16

14.a. 15.c, 16.b.

Sol. Let $g(x) = x^3 - 9x^2 + 24x = x(x^2 - 9x + 24)$

$\Rightarrow g'(x) = 3x(x-2)(x-4)$

Sign scheme of $g(x)$

For Problems 11–13

11.a. $h(x) = f(x) - a (f(x))^2 + a (f(x))^3$

$\Rightarrow k'(x) = f'(x) - 2a f(x) f'(x) + 3a (f(x))^2 f'(x)$

$\Rightarrow h'(x) = f''(x)[3a (f(x))^2 - 2a f(x) + 1]$

Now $h(x)$ increases if $f(x)$ increases and $3a (f(x))^2 - 2a f(x) + 1 > 0$ for all $x \in R$

$\Rightarrow 3a > 0$ and $4a^2 - 12a < 0$

$\Rightarrow a > 0$ and $a \in (0, 3)$

$\Rightarrow a \in (0, 3)$.

12.d. $h(x)$ increases as $f(x)$ decreases for all real values of x if $3a (f(x))^2 - 2a f(x) + 1 < 0$ for all $x \in R$

$\Rightarrow 3a < 0$ and $4a^2 - 12a < 0$

$\Rightarrow a < 0$ and $a \in [0, 3]$

$\Rightarrow no such a is possible.$$

13.d. $h(x)$ is non-monotonic functions if $3a (f(x))^2 - 2a f(x) + 1$ changes sign

for which $D > 0$ or $4a^2 - 12a > 0$

$\Rightarrow a \in (-\infty, 0) \cup (3, \infty)$.
For Problems 17–21

Sol.
17.b. \(f'(x) \leq 0 \ \forall x \in [a, b] \), so \(f(x) \) is a decreasing function and \(f(c) = 0 \Rightarrow f(x) \) cuts x-axis once when \(x = c \).
18.d. We note that \(f(c) = 0, f''(c) = 0 \). Also tangent to \(f'(x) \) at \(x = c \) is \(y = c \) so \(f''(c) = 0 \).
\(\therefore x = c \) is the repeated root of third order. That is, the equation \(f(x) = 0 \) has at least three repeated roots.
19.b. We have \(f''(c) = 0 \). So the graph of \(y = f(x) \) has one point of inflection at \(x = c \).
20.d. As \(f(x) \) is a decreasing functions for all \(x \in (a, b) \), so \(f(x) \) has no local maxima or minima.
21.b. \(f'''(c) = 0 \Rightarrow x = c \) is a root of \(f'''(x) = 0 \).

For Problems 22–24

22.b, 23.d, 24.a
Sol. \(f(x) = 4x^2 - 4ax + a^2 - 2a + 2 \). Vertex of this parabola is \(\left(\frac{a}{2}, -2a \right) \).
Case 1: \(0 < \frac{a}{2} < 2 \)
In this case, \(f(x) \) will attain the minimum value at \(x = \frac{a}{2} \).
Thus, \(f\left(\frac{a}{2} \right) = 3 \).
\[x \]
\[0 \]
\[2 \]
\[f(x) = 4x^2 - 49x + a^2 - 2a + 2 \] is monotonic in \([0, 2] \).
Hence, the point of minima of function should not lie in \([0, 2] \).
Now \(f'(x) = 0 \Rightarrow 8x - 4a = 0 \Rightarrow x = a/2 \). If \(a \geq 0 \), \(a \in [0, 2] \).
\[a \in [0, 4] \).
For \(f(x) \) to be monotonic in \([0, 2] \), \(a \not\in [0, 4] \Rightarrow a \leq 0 \) or \(a \geq 4 \).

For Problems 25–27

25.a, 26.b, 27.b
Sol. \(f(x) = x^3 - 3(7 - a)x^2 - 3(9 - a^2)x + 2 \)
\[f'(x) = 3x^2 - 6(7 - a)x - 3(9 - a^2) \]
For real root \(D \geq 0 \),
\[49 + a^2 - 14a + 9 - a^2 \geq 0 \Rightarrow a \leq \frac{58}{14} \] (1)
When point of minima is negative, point of maxima is also negative.
Hence, equation \(f'(x) = 3x^2 - 6(7 - a)x - 3(9 - a^2) = 0 \) has both roots negative.
For which sum of roots \(= 2(7 - a) < 0 \) or \(a > 0 \), which is not possible as from (1), \(a \leq \frac{58}{14} \).
When point of maxima is positive, point of minima is also positive.
Hence, equation \(f'(x) = 3x^2 - 6(7 - a)x - 3(9 - a^2) = 0 \) has both roots positive.
For which sum of roots \(= 2(7 - a) > 0 \) \(a < 7 \) (2)
Also product of roots is positive \(= -(9 - a^2) > 0 \) or \(a^2 > 9 \)
or \(a \in (-\infty, -3) \cup (3, \infty) \) (3)
From (1), (2) and (3); \(a \in (-\infty, -3) \cup (3, 58/14) \)
For points of extreme of opposite sign, equation (1) has roots of opposite sign.
\[a \in (-3, 3) \]

For Problems 28–30

28. c, 29. d, 30. d
Sol. \(f(x) = \left(1 + \frac{1}{x} \right)^x \), \(f(x) \) is defined if \(1 + \frac{1}{x} > 0 \)
\[x + 1 \]
\[x > 0 \Rightarrow (-\infty, -1) \cup (0, \infty) \]
Now \(f'(x) = \left(1 + \frac{1}{x} \right)^x \left[\ln \left(1 + \frac{1}{x} \right) - \frac{1}{1 + x} \right] \)
\[= \left(1 + \frac{1}{x} \right)^x \ln \left(1 + \frac{1}{x} \right) - \frac{1}{1 + x} \]
\[\ln \left(1 + \frac{1}{x} \right) \]
Now \(\left(1 + \frac{1}{x} \right)^x \) is always positive, hence the sign of \(f'(x) \)
depends on sign of \(\ln \left(1 + \frac{1}{x} \right) - \frac{1}{1 + x} \)
Let \(g(x) = \ln \left(1 + \frac{1}{x} \right) - \frac{1}{1 + x} \)
\[g'(x) = \frac{1}{x + 1} - \frac{1}{x} \]
\[= \frac{-1}{x + 1} \]
\[= \frac{1}{x + 1} - \frac{1}{(x + 1)^2} \]
(1) for \(x \in (0, \infty), g'(x) < 0 \)
\[\Rightarrow g(x) \text{ is monotonically decreasing for } x \in (0, \infty) \]
\[\Rightarrow g(x) > \lim_{x \to \infty} g(x) \]
\[\Rightarrow g(x) > 0 \]
and since \(g(x) > 0 \) \(\Rightarrow f'(x) > 0 \)

(2) for \(x \in (-\infty, -1), g'(x) > 0 \)
\[\Rightarrow g(x) > \lim_{x \to -\infty} g(x) \]
\[\Rightarrow g(x) > 0 \Rightarrow f'(x) > 0 \]
Hence from (1) and (2) we get \(f'(x) > 0 \) for all \(x \in (-\infty, -1) \cup (0, \infty) \)
\[\Rightarrow f(x) \text{ is monotonically increasing in its domain} \]

Also \(\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e \)
\[\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = 1 \text{ and } \lim_{x \to 1} \left(1 + \frac{1}{x}\right)^x = \infty \]
The graph of \(f(x) \) is shown in Fig. 6.121.

Thus, we have,
\[f(-2) = -32 \text{ and } f(1) = -5 \]
Hence, range of the function is \([-32, \infty)\).
Also, \(f(x) = a \) has no real roots if \(a < -32 \).

For Problems 37–39
Sol.
37. d, 38. d, 39.b
\[f(x) = \frac{x^2 - 6x + 4}{x^2 + 2x + 4} = 1 - \frac{8x}{x^2 + 2x + 4} \]
\[f'(x) = -8 \frac{(x^2 + 2x + 4) - (x(2x + 2))}{(x^2 + 2x + 4)^2} \]
\[= -8 \frac{-x^2 + 4}{(x^2 + 2x + 4)^2} = \frac{8(x^2 - 4)}{(x^2 + 2x + 4)^2} \]
\[f'(2) = \frac{4 - 12 + 4}{4 + 4 + 4} = \frac{-1}{3} \]
\[f(-2) = \frac{4 + 12 + 4}{4 - 4 + 4} = 5 \]
The graph of \(y = f(x) \) is as shown

hence \(\frac{1}{3} \leq f(x) \leq 5 \)

For Problems 40–42
40.c, 41.d, 42.c
Sol. Since two points of inflection occur at \(x = 1 \) and \(x = 0 \)
\[\Rightarrow P''(1) = P''(0) = 0 \]
\[\Rightarrow P'(x) = a(x^2 - x) \]
\[\Rightarrow P'(x) = a \left(x^3 - \frac{x^2}{3} - \frac{x^2}{2} \right) + b \]
Also, Given \(\frac{dy}{dx} = \sec^{-1}\sqrt{2} = \tan^{-1} \)
Hence, \(P(0) = 1 \), so \(b = 1 \)
\[\Rightarrow P'(x) = a \left(x^3 - \frac{x^2}{3} + \frac{x^2}{2} \right) + 1 \]
\[\Rightarrow P(x) = a \left(x^4 - \frac{x^3}{3} + x + c \right) \]
As \(P(-1) = 1 \)
\[\Rightarrow a \left(\frac{1}{12} + \frac{1}{6} \right) - 1 + c = 1 \]
\[\Rightarrow a + c = 2 \]
\[P(1) = 2 \]
\[\Rightarrow a \left(\frac{1}{12} - \frac{1}{6} \right) + 1 + c = 1 \]
6.64 Calculus

\[\Rightarrow \quad \frac{a}{12} + c = 0 \]
Solving (1) and (2),
We have \(a = 6 \) and \(c = \frac{1}{2} \)
\[\Rightarrow \quad P(x) = 6 \left(\frac{x^4}{12} - \frac{x^3}{6} \right) + x + \frac{1}{2} \]
\[\Rightarrow \quad P(-1) = 6 \left(\frac{1}{12} + \frac{1}{6} \right) - 1 + \frac{1}{2} = 1 \text{ and } P(0) = \frac{1}{2} \]
\[\Rightarrow \quad P'(x) = 6 \left(\frac{x^3}{3} - \frac{x^2}{2} \right) + 1 = (x-1)^2(2x+1) \]

For Problems 43–45
43. c, 44. d, 45. d.
Sol.
We have \(f(x) = x^2 e^{-|x|} = \begin{cases} x^2 e^{-x}, & x \geq 0 \\ x^2 e^{x}, & x < 0 \end{cases} \)
\[\Rightarrow \quad f'(x) = \begin{cases} x^2 e^{-x} (2x - x^2), & x \geq 0 \\ x^2 e^{x} (x^2 + 2x), & x < 0 \end{cases} \]
\(f(x) \) increases in \((-\infty, -2) \cup (0, 2)\)
and \(f(x) \) decreases in \((2, \infty) \)
\[\Rightarrow \quad f''(x) = \begin{cases} x^2 e^{-x} (x^2 - 4x + 2), & x \geq 0 \\ x^2 e^{x} (x^2 + 4x + 2), & x < 0 \end{cases} \]
\[f''(x) = 0 \] has four roots. Hence, four points of inflection.

Now, nature of roots of \(f(x) + p = 0 \) can be obtained by shifting the graph of \(y = f(x) \) by \(p \) units upward or downward depending on whether \(p \) is positive or negative.

2. \(a \to p, s; b \to p, s; c \to q, r; d \to q \)
\(f'(x) = x^2 \log x \)
for \(f'(x) = x (2 \log x + 1) = 0 \Rightarrow x = \frac{1}{\sqrt{e}} \) which is the point of minima as derivative changes sign from negative to positive.
Also, the function decreases in \(\left(0, \frac{1}{\sqrt{e}} \right) \).

b. \(y = x \log x \)
\[\Rightarrow \quad \frac{dy}{dx} = x \times \frac{1}{x} + \log x \times 1 = 1 + \log x \text{ and } \frac{d^2 y}{dx^2} = \frac{1}{x} \]
For \(\frac{dy}{dx} = 0 \Rightarrow \log x = -1 \Rightarrow x = \frac{1}{e} \)
\[\frac{d^2 y}{dx^2} = \frac{1}{\lfloor x \rfloor} = e > 0 \text{ at } x = \frac{1}{e} \]
\[\Rightarrow \quad y \text{ is min for } x = \frac{1}{e} \]

c. \(f(x) = \frac{\log x}{x} \)
For \(f'(x) = \frac{1 - \log x}{x^2} = 0 \Rightarrow x = e. \) Also, derivative changes sign from positive to negative at \(x = e \), hence it is the point of maxima.

d. \(f(x) = x^2 \)
\[f'(x) = -x^2 (1 + \log x) = 0 \Rightarrow x = 1/e, \text{ which is clearly point of maxima.} \]

3. \(a \to p, r; b \to p, s; c \to q, r; d \to q, s \)
a

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both (m) and (n) are even</td>
<td>(m) is even and (n) is odd</td>
</tr>
</tbody>
</table>

\[\text{Fig. 6.126} \]

<table>
<thead>
<tr>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m) is odd (n) is even</td>
<td>Both (m) and (n) are odd</td>
</tr>
</tbody>
</table>

\[\text{Fig. 6.127} \]
4. \(a \rightarrow s; b \rightarrow p; c \rightarrow q; d \rightarrow r\)

Since \(f(x)\) is minimum at \(x = -2\) and maximum at \(x = 2\), let
\[g(x) = ax^3 + bx^2 + cx + d \]
\[\therefore \ g(x) \ is \ also \ minimum \ at \ x = -2 \ and \ maximum \ at \ x = 2 \]
\[a < 0 \]
\[a = -2 \]
Then, \(g'(x) = -2ax^2 + 2bx + c = -6(2) + 2(3) + c = 0\)
\[\therefore \ g(x) \ is \ minimum \ at \ x = -2 \ and \ maximum \ at \ x = 2 \]

On comparing, we get
\[b = 0 \ and \ c = 24 \]

\[\text{Fig. 6.128} \]

Since minimum and maximum values are positive
\[\therefore \ g(-2) > 0 \Rightarrow 16 - 48 + d > 0 \Rightarrow d > 32 \]
and \(g(2) > 0 \Rightarrow -16 + 48 + d > 0 \Rightarrow d > 32 \)
It is clear \(d > 32\)
Hence, \(a = -2, b = 0, c = 24, d = 32\).

5. \(a \rightarrow q, b \rightarrow p, c \rightarrow s, d \rightarrow r\).

\(f(x) = \sin x - x^2 + 1\)
\[f'(x) = \cos x - 2x \]

\[\Rightarrow f'(x) < 0 \ for \ x > x_0 \]
\[f'(x) > 0 \ for \ x < x_0 \]
Hence \(x = x_0\) is point of maxima.

\[\text{b.p.} \ f(x) = x \log x - x + e^x \]
\[f'(x) = \log x + 1 - e^x = \log x - e^x \]

\[\text{Fig. 6.130} \]

From the graph for \(x < x_0, e^x > \log x \Rightarrow f'(x) > 0\)
For \(x > x_0, e^x < \log x, \Rightarrow f'(x) < 0\)
Hence, \(x = x_0\) is point of minima.

\[\text{c.s.} \ f(x) = -x^3 + 2x^2 - 3x + 1 \]
\[f'(x) = -3x^2 + 4x - 3 \]

Now \(D = 16 - 4(-3)(-3) = -20 < 0\)
Hence \(f'(x) < 0\), for all real \(x\)
\[\Rightarrow f(x) \ is \ always \ decreasing. \]

\[\text{d.r.} \ f(x) = \cos \pi x + 10x + 3x^2 + x^3 \]
\[f'(x) = -\pi \sin \pi x + 10 + 6x + 3x^2 \]
\[= 3(x^2 + 2x + 10/3) - \pi \sin \pi x \]
\[= 3((x + 1)^2 + 7/3) - \pi \sin \pi x \]
Now min. value of \(3((x + 1)^2 + 7/3)\) is 7 but maximum value of \(\pi \sin \pi x\) is \(\pi\).
Hence, \(f'(x) > 0\) for all real \(x\).
Hence, \(f(x)\) is always increasing.

6. \(a \rightarrow s; b \rightarrow s; c \rightarrow r; d \rightarrow q\)

\[\text{a.s.} \ \text{Graph of} \ f(x) = |2x - 1| + |2x - 3| \]

\[\text{b.s.} \ f(x) = 2 \sin x = -x \Rightarrow \ f'(x) = 2 \cos x - 1 = 0 \]
we have \(\cos x = \frac{1}{2} \), which has infinite points of extremum.

\[\text{c.r.} \ \text{Graph of} \ f(x) = |x - 1| + |2x - 3| \]

From the graph \(f(x)\) has infinite points of extremum.

\[\text{d.q.} \ \text{Graph of} \ f(x) = |x| - |2x - 3| \]

From the graph \(f(x)\) has one point of minima.

7. \(a \rightarrow q, r; b \rightarrow r, s; c \rightarrow p, r; d \rightarrow r, s\)

\[\text{a.q.r.} \ f(x) = (x - 1)^3(x + 2)^5 \]
\[f'(x) = 3(x - 1)^2(x + 2)^5 + 5(x - 1)^3(x + 2)^4 \]
\[= (x - 1)^2(x + 2)^4(3(x + 2) + 5(x - 1)) \]
\[= (x - 1)^2(x + 2)^4(8x + 1) \]
6.66 Calculus

Sign of derivative does not change at \(x = 1 \) and \(x = -2 \).
Sign of derivative changes sign at \(x = -1/8 \) from -ve to +ve.

Hence, function has point of minima.

Also, \(f''(x) = 0 \) for \(x = 1 \) and \(x = -2 \)

Hence, function has two points of inflection.

\[
f(x) = 3\sin x + 4\cos x - 5x
\]

\[
f'(x) = 3\cos x - 4\sin x - 5 \leq 0, \text{ hence } f(x) \text{ is decreasing function}
\]

Also, \(f''(x) = -3\sin x - 4\cos x = 0 \) for infinite values of \(x \),

hence function has infinite points of inflection.

c. p. r

\[
\text{Fig. 6.134}
\]

From the graph \(x = 1 \) point of maxima as well as point of inflection.

d. r, s

\[
f(x) = (x-1)^{\frac{3}{5}} \Rightarrow f'(x) = \frac{3}{5}(x-1)^{-\frac{2}{5}} \geq 0 \text{ for all real } x
\]

Also, \(f''(x) = -\frac{3}{5}(x-1)^{-\frac{7}{5}} \) which changes sign at \(x = 1 \)

Hence, \(x = 1 \) is point of inflection.

8. a → r; b → s; c → p; d → q

a. r. From the graph \(x = 1 \) is point of maxima

\[
\text{Fig. 6.135}
\]

\[
b. s. \ f(x) = \begin{cases}
 x - 1, & x < 2 \\
 0, & x = 2 \\
 \sin x, & x > 2
\end{cases}
\]

\(f(2) = 0, f'(2) = \sin(2^\circ) > 0 \) and \(f''(2) > 0 \), hence \(x = 2 \) is point of minima.

c. p. f(x) = \begin{cases}
 2x + 3, & x < 0 \\
 5, & x = 0 \\
 x^2 + 7, & x > 0
\end{cases}
\]

\(f(0') = 3, f(0) = 5, f(0'') = 7 \), hence \(f(0') < f(0) < f(0'') \)

Thus, \(f(x) \) is increasing at \(x = 0 \)

d. q. \ f(x) = \begin{cases}
 e^{-x}, & x < 0 \\
 0, & x = 0 \\
 \cos x, & x > 0
\end{cases}
\]

\(f(0) = 0, f(0') = -1, f(0'') = 1 \)

Thus, \(f(0') > f(0) > f(0'') \)

Hence, \(f(x) \) is decreases at \(x = 0 \)

9. (a) → s, (b) → r, (c) → q, (d) → p.

Integer Type

1. (9) Let \(y = 2x \tan^{-1} x - \ln(1 + x^2) \)

\[
y' = 2 \tan^{-1} x + \frac{2x}{1 + x^2} - \frac{2x}{1 + x^2}
\]

\(\Rightarrow \ y' > 0 \forall x \in R^+, y' < 0 \forall x \in R^- \)

\(\Rightarrow y \geq 0, \forall x \in R \)

\(\therefore 4 - [x] \) takes the values \(0, 1, 2, 3, 4 \quad \{ \therefore \left| a \right| \leq 4 - [x] \}

\(\left| a \right| \leq 4 - [x] \) is satisfied by \(a = 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5 \)

Therefore, number of values of \(a \) is 9.

2. (3)

\[
r = \frac{H - h}{H}
\]

\[
R = \frac{R(H - h)}{H}
\]

Volume \(V = \frac{1}{3} \pi R^2 (H - h)^2 h \)

\[\therefore V = \frac{\pi R^2}{3H^2} (H - h)^2 h \]

\[\therefore \frac{dV}{dh} = \frac{\pi R^2}{3H^2} \left[(H - h)^2 - 2h(H - h)\right]
\]

\[\therefore \frac{dV}{dh} = 0 \text{ if } h = \frac{H}{3} \]

and \(h = \frac{H}{3} \) is a point of maximum \(\Rightarrow \frac{H}{h} = 3 \)

3. (1) \(f(x) = \begin{cases}
 x^3 + x^2 + 3x + \sin x \left(3 + \sin \left(\frac{1}{x}\right)\right), & x \neq 0 \\
 0, & x = 0
\end{cases}
\]

Let \(g(x) = x^3 + x^2 + 3x + \sin x \)

\(\therefore f'(x) = 3x^2 + 2x + 3 + \cos x \)
4. (8) Let $f''(x) = 6a(x-1) \; (a > 0)$

\[f''(x) = 6a \left(\frac{x^2}{2} - x \right) + b = 3a(x^2 - 2x) + b. \]

Given $f''(-1) = 0$

\[9a + b = 0 \quad \Rightarrow \quad b = -9a. \]

\[f''(x) = 3a(x^2 - 2x - 3) = 0 \]

\[x = -1 \quad \text{and} \quad 3. \]

So, $y = f(-1)$ and $y = f(3)$ are two horizontal tangents.

\[\text{Distance between these tangents} = |f(3) - f(-1)| = |-22 - 10|. \]

5. (2) Given \(\lim_{x \to 0} \left(\frac{P(x)}{x^3} - 2 \right) = 4 \)

\[\lim_{x \to 0} \frac{P(x)}{x^3} = 6 \]

Consider $P(x) = ax^5 + bx^4 + 6x^3$

\[P'(x) = 5ax^4 + 4bx^3 + 18x^2 \]

Now, $P'(-1) = 0 \Rightarrow 5a - 4b = -18$

and $P'(1) = 0 \Rightarrow 5a + 4b = -18$

\[\therefore \text{On solving, we get} \quad a = \frac{-18}{5}, \quad b = 0 \]

\[\therefore \text{Hence,} \quad P(x) = \frac{-18}{5}x^3 + 6x^3. \]

\[\Rightarrow P(1) = \frac{12}{5} \]

6. (3) We have $f(x, y) = x^2 + y^2 - 4x + 6y$

Let $(x, y) = (\cos \theta, \sin \theta)$, then $\theta \in [0, \pi/2]$ and $f(x, y) = f(\theta) = \cos^2 \theta + \sin^2 \theta - 4 \cos \theta + 6 \sin \theta$

\[f'(\theta) = 6 \cos \theta + 4 \sin \theta > 0 \quad \forall \theta \in [0, \pi/2] \]

\[f'(\theta) \text{ is strictly increasing in} \quad [0, \pi/2] \]

\[f(\theta)_{\min} = f(0) = 1 - 4 + 0 = -3 \]

7. (3) $f''(x) = 4x$

\[f'(x) = 2x^2 + C \]

given $f'(-2) = 1 \Rightarrow C = -7$

\[f(x) = \frac{2}{3}x^3 - 7x + C, \quad f(-2) = 0 \]

\[0 = \frac{16}{3} + 14 + C \Rightarrow C = -\frac{3}{26} \]

\[f(x) = \frac{2}{3}x^3 - 7x - \frac{26}{3} = \frac{1}{3}(2x^3 - 21x - 26) \]

\[f(1) = -15 \]

8. (1) $f(x) = \frac{x^3}{3} - x - b$

\[f'(x) = x^2 - 1 = 0 \]

\[x = 1 \quad \text{or} \quad 1 \]

for three distinct roots $f(x_1), f(x_2), f(x_3) < 0$ where x_1 and x_2 are the roots of $f'(x) = 0$

\[f'(x_1) = \frac{1}{3} - 1 - b \left(\frac{1}{3} + 1 - b \right) < 0 \]

\[\left(b + \frac{2}{3} \right) \left(b - \frac{2}{3} \right) < 0 \]

\[b \in \left(-\frac{2}{3}, \frac{2}{3} \right) \]

9. (4) $f''(x) = \begin{cases} 1, & x < -1 \\ 0, & -1 < x < 1 \\ 2, & x > 1 \end{cases}$

\[f''(x) \text{ changes sign at} \quad x = -1, 0, 1, 2 \]

At B, it has vertical tangent, hence non-differentiable

At A, it is non-differentiable

At C, $\frac{dy}{dx} = 0$

12. (9) $BC \times CE = AC \times CD$

\[(BC)(CE) = x(1-x) \]

but $BC = CE$

\[BC = \sqrt{x(1-x)} \]

\[\text{Area} \Delta = \frac{v(x-x^2)}{2} \]
6.68 Calculus

\[\Delta^2 = \frac{x^3 - x^4}{2} \]
\[\Rightarrow \frac{d\Delta^2}{dx} = \frac{3x^2 - 4x^3}{2} \]
If \(\frac{d\Delta^2}{dx} = 0 \)
\[\Rightarrow x = \frac{3}{4} \] which is the point of maxima.

Hence, maximum area is \(\frac{3\sqrt{3}}{32} \).

13. (5)

Fig. 6.141

\[A = (x_2 - x_1)y \]
\[y = 3x_1 \quad \text{and} \quad y = 30 - 2x_2 \]
\[A(y) = \left(\frac{30 - y}{2} \right) y \]
\[6A'(y) = (90 - 3y - 2y)y = 90y - 5y^2 \]
\[6A''(y) = 90 - 10y = 0 \]
\[\Rightarrow y = 9; \quad A''(y) = -10 < 0 \]
\[x_1 = 3; \quad x_2 = \frac{21}{2} \]
\[\Rightarrow A_{max} = \left(\frac{21}{2} - 3 \right) 9 = \frac{15 \cdot 9}{2} = \frac{135}{2} \]

14. (4) \(x^2 - 2x - 3 > 0 \)
\[\Rightarrow (x - 3)(x + 1) > 0 \]
\[\Rightarrow x < -1 \quad \text{or} \quad x > 3 \]
Now, \(f(x) = \log_{12} (x^2 - 2x - 3) \)
\[\log_e (x^2 - 2x - 3) \]
\[f'(x) = \frac{2x - 2}{(\log_e (1/2))(x^2 - 2x - 3)} \]
For \(f(x) \) to be decreasing \(f'(x) < 0 \)
\[\Rightarrow \frac{x - 1}{(\log_e (1/2))(x - 3)(x + 1)} < 0 \]
\[\Rightarrow x > 1 \]
From (1) and (2), \(x > 3 \)

15. (9)

Fig. 6.142

\[\frac{9}{\pi} = S = \frac{\pi y}{2} = \text{constant} \]

Area of the circles \(A(x) = \pi r^2 = \frac{\pi(x^2 + y^2)}{4}; (x^2 + y^2 = 4r^2) \)
\[A(x) = \frac{\pi}{4} \left[x^2 + \left(\frac{2S}{x} \right)^2 \right] \]
\[A'(x) = \frac{\pi x}{2} - \frac{2\pi S^2}{x^3} = 0 \]
\[\Rightarrow x^4 = 4S^2 \]
\[\Rightarrow x^2 = 2S \]
\[\Rightarrow S^2 = \frac{x^2 y^2}{4} = \frac{2S^2}{4} \]
\[\Rightarrow y^2 = 2S \]

Therefore, least area of circle = \(\pi r^2 = \frac{\pi}{4}(x^2 + y^2) = \pi S = 9 \) sq. units.

16. (9) \(f' \left(\frac{3}{2} \right) = 0 \Rightarrow \lim_{x \to \frac{3}{2}} \left| x^2 - 3x \right| + a \leq 0 \Rightarrow a \leq \frac{9}{4} \]

Hence, greatest value of \(|4a| \) is 9.

Subjective

1. \(y = \frac{(a + x)(b + x)}{(c + x)} \)
Let \(x + c = t \)
\[\Rightarrow y = \frac{(a - c + t)(b - c + t)}{t} \]
\[= \frac{t^2 + [(a - c) + (b - c)t] + (a - c)(b - c)}{t} \]
\[= t + \frac{(a - c)(b - c)}{t} + (a - c) + (b - c) \]
\[= \left(\sqrt{t} - \frac{(a - c)(b - c)}{t} \right)^2 + \left(\sqrt{a - c} + \sqrt{b - c} \right)^2 \]

Hence, the minimum value of \(y \) is \(\sqrt{a - c} + \sqrt{b - c} \)
when \(\sqrt{t} = \frac{(a - c)(b - c)}{t} \).

2. We know that \(A.M. \geq G.M. \).
\[\Rightarrow \frac{x + y}{2} \geq (xy)^{1/2} \]
\[\Rightarrow x + y \geq 2 \]
Hence, the minimum value \(x + y \) is 2.

3. Let \(f(x) = x^{1/2} \)
\[\Rightarrow \log f(x) = (1/2) \log x \]
Differentiating w.r.t. \(x \), we get
\[\frac{f'(x)}{f(x)} = \frac{1}{x} - \frac{1}{2x^2} \log x = \frac{1}{x^2} \left(1 - \log x \right) \]
\[\Rightarrow f''(x) = \frac{x^{1/2}}{x^2} (1 - \log x) \]
Obviously, for \(x > e \), \(\log x > 1 \) so \(f''(x) < 0 \).
\[f(x) \text{ is a monotonically decreasing function of } x \text{ for } x \geq e \]

Also, \(e > e \Rightarrow f(e) < f(e) \)

\[\Rightarrow \pi/\pi < e^{\pi/\pi} \Rightarrow (\pi/\pi) < (e^{\pi/\pi}) \Rightarrow \pi < (e^{\pi/\pi}) \Rightarrow \pi < e^\pi. \]

4. \((0, c) y = x^2, 0 \leq c \leq 5\)

Any point on the parabola is \((x, x^2)\).

Distance between \((x, x^2)\) and \((0, c)\) is

\[
D = \sqrt{x^2 + (x^2 - c)^2}
\]

\[\Rightarrow D^2 = x^4 - (2c - 1)x^2 + c^2
\]

\[= \left(x^2 - \frac{2c - 1}{2}\right)^2 + c - \frac{1}{4}
\]

which is minimum when \(x^2 - \frac{2c - 1}{2} = 0\)

\[\Rightarrow D_{\text{min}} = \sqrt{c - \frac{1}{4}}
\]

5. Given \(ax^2 + \frac{b}{x} \geq c\)

\[\forall x > 0, a > 0, b > 0\]

To show that \(27ab^2 \geq 4c^3\).

Let us consider the function \(f(x) = ax^2 + \frac{b}{x} - c\),

then \(f'(x) = 2ax - \frac{b}{x^2} = 0 \Rightarrow x = \sqrt{\frac{b}{2a}}\)

Also, \(f''(x) = 2a + \frac{2b}{x^3} \Rightarrow f''\left(\frac{b}{2a}\right) = 6a > 0\)

Therefore, \(f\) is minimum at \(x = \sqrt[3]{\frac{b}{2a}}\)

As (1) is true \(\forall x \Rightarrow \text{ so for } x = \left(\frac{b}{2a}\right)^{\frac{1}{3}}\)

\[\Rightarrow d\left(\frac{b}{2a}\right)^{\frac{1}{3}} + \frac{b}{(b/2a)^{1/3}} \geq c
\]

\[\Rightarrow \left(\frac{b}{2a}\right)^{\frac{1}{3}} + \frac{b}{(b/2a)^{1/3}} \geq c
\]

\[\Rightarrow \frac{3b}{2} \left(\frac{2a}{b}\right)^{1/3} \geq c
\]

As \(a, b\) are +ve, cubing both sides, we get \(\frac{27b^3}{8} \frac{2a}{b} \geq c^3\)

\[\Rightarrow 27ab^2 \geq 4c^3.
\]

6. To show \(1 + x \ln \left(x + \sqrt{x^2 + 1}\right) \geq \sqrt{1 + x^2}\) for \(x \geq 0\)

consider \(f(x) = 1 + x \ln \left(x + \sqrt{x^2 + 1}\right) - \sqrt{1 + x^2}\)

Here, \(f'(x) = \ln \left(x + \sqrt{x^2 + 1}\right) + \frac{x}{x + \sqrt{x^2 + 1}}
\]

\[\times \left[1 + \frac{x}{\sqrt{x^2 + 1}}\right] \frac{x}{\sqrt{1 + x^2}}
\]

\[= \ln \left(x + \sqrt{x^2 + 1}\right)
\]

As \(x + \sqrt{x^2 + 1} \geq 1\) for \(x \geq 1\)

\[\Rightarrow \ln \left(x + \sqrt{x^2 + 1}\right) \geq 0
\]

\[\Rightarrow f'(x) \geq 0, \forall x \geq 0
\]

Hence, \(f(x)\) is an increasing function.

Now for \(x \geq 0 \Rightarrow f(x) \geq f(0)
\]

\[\Rightarrow 1 + x \ln \left(x + \sqrt{x^2 + 1}\right) - \sqrt{1 + x^2} \geq 0
\]

\[\Rightarrow 1 + x \ln \left(x + \sqrt{x^2 + 1}\right) \geq \sqrt{1 + x^2}.
\]

7. Let the swimmer lands at the point \(P, x \text{ km. from } A\) and then walks from \(P\) to the point \(B\) to be reached.

![Diagram](Fig. 6.143)

Given that \(AB = L \text{ km.} \Rightarrow PR = (L - x) \text{ km.}\)

\(t = \text{ total time from } S \text{ to } B\)

\(= \text{(time taken from } S \text{ to } P) + \text{(time taken from } P \text{ to } B)\)

\(= \frac{SP}{u} + \frac{PB}{v}\)

\[= \frac{\sqrt{(d^2 + x^2)}}{u} + \frac{(L - x)/v}{v}
\]

\[\Rightarrow \frac{dt}{dx} = \frac{1}{u\sqrt{(d^2 + x^2)}} - \frac{x^2}{u(d^2 + x^2)^{3/2}}
\]

and \(\frac{d^2t}{dx^2} = \frac{1}{u(d^2 + x^2)^{3/2}} - \frac{x^2}{u(d^2 + x^2)^{3/2} - v^2}\)

\[= \frac{d^2}{u(d^2 + x^2)^{3/2}} \text{ which is +ve.}
\]

For maximum or minimum of \(t, \frac{dt}{dx} = 0\)

\[\Rightarrow \sqrt{x^2} = u^2(d^2 + x^2)^{1/2}
\]

\[\Rightarrow x = \frac{ud}{\sqrt{v^2 - u^2}}
\]

Therefore, \(t\) is minimum for this value of \(x\) \(\Rightarrow \frac{d^2t}{dx^2} = +ve\).

Hence, the swimmer will reach his house in the shortest possible time if he lands at a distance \(L - x = \frac{ud}{\sqrt{v^2 - u^2}}\) from his house to be reached.

8. \(y = \frac{x}{1 + x^2}\) is an odd function.

Also, \(x > 0 \Rightarrow y > 0\) and \(x < 0 \Rightarrow y < 0\)
6.70 Calculus

When \(x \rightarrow \pm \infty, y \rightarrow 0 \)

\[
\frac{dy}{dx} = \frac{1 + x^2 - x(2x)}{(1 + x^2)^2} = \frac{1 - x^2}{(1 + x^2)^2}
\]

which has greatest value at \(x = 0 \).

9. \(f(x) = \sin^2 x + \lambda \sin^2 x \)

\[
\therefore \quad f'(x) = 3 \sin^2 x (\cos x) + \lambda \cdot 2 \sin x (\cos x)
\]

\[
= \sin x \cos x (3 \sin x + 2\lambda)
\]

For extremum, let \(f'(x) = 0 \)

\[
\therefore \quad \sin x = 0, \cos x = 0, \sin x = -\frac{2\lambda}{3}
\]

Since \(-\pi/2 < x < \pi/2\)

\[
\therefore \quad \cos x \neq 0
\]

\[
\Rightarrow \quad \sin x = 0 \Rightarrow x = 0
\]

and \(\sin x = -\frac{2\lambda}{3} \Rightarrow x = \sin^{-1}(\frac{-2\lambda}{3}) \) (1)

From (1), one of these will give maximum and one minimum, provided \(-1 < \sin x = -\frac{2\lambda}{3} < 1\).

\[
\Rightarrow \quad -1 < -\frac{2\lambda}{3} < 1
\]

\[
\Rightarrow \quad -3 < -2\lambda < 3
\]

i.e., \(-3/2 < \lambda < 3/2\).

But if \(\lambda = 0 \), then \(\sin x = 0 \) has only one solution.

\[
\therefore \quad \lambda \in (-3/2, 3/2) - \{0\}
\]

\[
\Rightarrow \quad \lambda \in (-3/2, 0) \cup (0, 3/2).
\]

For this value of \(\lambda \), there are two distinct solutions.

Since, \(f(x) \) is continuous, these solutions give one maximum and one minimum because for a continuous function, between two maxima there must lie one minima and vice versa.

10.

\[
0 < x < c
\]

\[
\Rightarrow \quad \frac{dZ}{dx} = \frac{b \sin A}{c} (c - 2x) = 0 \Rightarrow x = c/2
\]

\[
\left(\frac{d^2Z}{dx^2} \right)_{x=c/2} = -\frac{2b \sin A}{c} < 0
\]

\[
\Rightarrow \quad Z \text{ has maxima at } x = \frac{c}{2}, \text{ so the greatest area of parallelogram } AFDE
\]

\[
= (b/c) \sin A (c^2/4) = \frac{1}{2} \left(\frac{1}{2} bc \sin A \right)
\]

\[
= \frac{1}{2} \Lambda_{ABC}
\]

\[
= \frac{1}{2} \times \frac{1}{2} q^2 - p \quad q \quad 1
\]

\[
= \frac{1}{4} q^2 - p^2 \quad q + p \quad 0
\]

\[
= \frac{1}{4} q^2 - p^2 \quad q + p \quad 0
\]

\[
= \frac{1}{4} (q + p) (q + r) (q - r)
\]

11. Given curve is \(4x^2 + a^2y^2 = 4a^2 \)

\[
\Rightarrow \quad \frac{x^2}{a^2} + \frac{y^2}{4} = 1
\]

(1)

Let point \(P (a \cos \phi, 2 \sin \phi) \) be on (1), also given a point \(Q (0, -2) \).

Let \(u = (PO)^2 = (a \cos \phi)^2 + (2 \sin \phi + 2)^2 \)

Differentiating both sides w.r.t. \(\phi \), we have

\[
\frac{du}{d\phi} = \cos \phi [(8 - 2a^2) \sin \phi + 8]
\]

For the extremum value of \(u \), \(\frac{du}{d\phi} = 0 \)

\[
\Rightarrow \quad \phi = \frac{\pi}{2} \text{ and } \sin \phi = \frac{4}{a^2 - 4}
\]

\[
\therefore \quad 4 < a^2 < 8 \Rightarrow 0 < a^2 - 4 < 4
\]

\[
\Rightarrow \quad \frac{a^2 - 4}{4} < 1 \Rightarrow \frac{4}{a^2 - 4} > 1
\]

\[
\Rightarrow \quad \sin \phi > 1 \text{ (not possible)}
\]

\[
\Rightarrow \quad \phi = \pi/2
\]

Again, \(\frac{d^2u}{d\phi^2} = (8 - 2a^2) \cos^2 \phi + (2a^2 - 8) \sin^2 \phi - 8 \sin \phi \)

\[
\Rightarrow \quad \frac{d^2u}{d\phi^2} \left|_{\phi=\pi/2} \right. = 0 + (2a^2 - 8) - 8 = 2(a^2 - 8) < 0
\]

\[
\therefore \quad u \text{ is maximum at } \phi = \pi/2.
\]

So, \(\sqrt{PQ} \) is also maximum at \(\phi = \pi/2 \).

Hence, co-ordinates of required point \(P \) are \((0, 2)\).
12. We have
\[f(x) = \int_1^x \left[2(t-1)(t-2)^3 + (t-1)^2(3(t-2)^2) \right] \, dt \]
\[\Rightarrow f'(x) = 2(x-1)(x-2)^3 + 3(x-1)^2(x-2)^2 \]
\[= (x-1)(x-2)^2(2x^3 - 4x^2 + 3x - 3) \]
\[= (x-1)(x-2)^2(5x - 7) \]
Critical points are \(x = 1, 2, 7/5 \)
Sign scheme of \(f'(x) \) is

\[\begin{array}{ccc}
1 & 7/5 & 2 \\
+ & - & + \\
\end{array} \]

Fig. 6.146

Clearly \(x = 1 \) is the point of maxima
\(x = 7/5 \) is the point of minima
\(x = 2 \) is the point of inflection (derivative does not change sign at \(x = 2 \)).

13. We have \(y = x(x-1)^3, 0 \leq x \leq 2 \)
\[\frac{dy}{dx} = (x-1)^2 + 2x(x-1) = (x-1)(3x-1) \]
Sign scheme of \(f'(x) \) is

\[\begin{array}{c}
1/3 \\
+ \\
1 \\
- \\
\end{array} \]

Fig. 6.147

Clearly \(x = 1 \) is the point of minima (local) and \(x = 1/3 \) is the point of maxima (local).

14. Let \(f(x) = 2 \sin x + \tan x - 3x \)
\[\Rightarrow f'(x) = 2 \cos x + \sec^2 x - 3 \]
\[= \sec^2 x (2 \cos x - 3 \cos^2 x + 1) \]
\[= \sec^2 x (1 - \cos x) \square (1 + 2 \cos x) \]
\[\Rightarrow f'(x) \geq 0, \forall 0 \leq x \leq \pi/2 \]
\[\Rightarrow f(x) \text{ is an increasing function of } x, \forall 0 \leq x \leq \pi/2 \]
\[\Rightarrow f(x) \geq f(0) \quad (\because x > 0) \]
\[\Rightarrow f(x) \geq 0 \]
\[\Rightarrow 2 \sin x + \tan x \geq 3x, \forall 0 \leq x \leq \pi/2. \]

15.

16. Let \(x \) and \(y \) metres be the lengths of the sides of rectangle \(ABCD \) and let there be a semi-circle on side \(CD \) of length \(x \).

Let \(O \) be the centre and \(r \) the radius of the circle.
Let \(QR \) be the chord parallel to the tangent at the point \(P \) on the circle.
Let \(\angle QPR = \theta, \quad \angle QOD = \angle ROD = \theta \)
Area of \(\Delta PQR \)
\[= \frac{1}{2} (QR)(PD) = QD(OP + OD) \]
\[= r \sin \theta (r + r \cos \theta) \]
\[= \frac{1}{2} r^2 (2 \sin \theta + \sin 2\theta), \quad 0 < \theta \leq \pi/2 \]
\[\Rightarrow \frac{dA}{d\theta} = r^2 (\cos \theta + \cos 2\theta), \]
and \(\frac{d^2 A}{d\theta^2} = -r^2 (\sin \theta + 2 \sin 2\theta) \)

For maximum or minimum of \(A, \frac{dA}{d\theta} = 0 \)
\[\Rightarrow \cos 2\theta + \cos \theta = 0 \]
\[\Rightarrow 2 \cos^2 \theta + \cos \theta - 1 = 0 \]
\[\Rightarrow (2 \cos \theta - 1)(\cos \theta + 1) = 0 \]
\[\Rightarrow \cos \theta = 1/2 \quad \text{or} \quad \cos \theta = -1 \]
\[\Rightarrow \theta = \pi/3 \quad (\because 0 < \theta < \pi/2) \]

When \(\theta = \pi/3, \quad \frac{d^2 A}{d\theta^2} = \frac{3\sqrt{3}}{2} \) (–ve)
\[\Rightarrow A \text{ is max., when } \theta = \pi/3, \text{ the only critical point.} \]
Thus, max. (greatest) area \(A = \frac{1}{2} r^2 [2 \sin(\pi/3) + \sin(2\pi/3)] \)
\[= \frac{1}{4} (3\sqrt{3})r^2. \]

16. Let \(x \) and \(y \) metres be the lengths of the sides of rectangle \(ABCD \) and let there be a semi-circle on side \(CD \) of length \(x \).
Let \(k \) be the light per square metre transmitted by coloured
glass so that transmitted by clear glass will be \(3k \) per square
metre.

Hence, the total light transmitted by the window is given by
\[
A = \text{(Area of coloured glass) } k + \text{(Area of clear glass) } 3k
\]
\[
= \frac{1}{2} \pi (x/2)^2 k + \frac{\pi}{2} \left(c - 2x \right)
\]
\[
= \frac{1}{8} \pi k x^2 + \frac{3}{2} k \left(c - 2x \right) - \frac{3}{2} \pi k x
\]

[substituting for \(y \) from (1)]
\[
= \frac{1}{8} k (5 \pi x^2 - 24 x^2 + 12c)
\]
\[
\Rightarrow \quad \frac{dA}{dx} = \frac{1}{8} k (-10 \pi x - 48 x + 12 c)
\]
and \[
\frac{d^2 A}{dx^2} = -\frac{1}{4} (5 \pi + 24) k = -ve
\]

For maximum or minimum of \(A, dA/dx = 0 \)
\[\Rightarrow \quad x = 6c/(5 \pi + 24)\]
\[\therefore \quad (1), y = (\pi + 6) c/(5 \pi + 24)\]

Since \(\frac{d^2 A}{dx^2} \) is -ve, therefore \(A \) has maxima
Hence, ratio \(x/y = 6(\pi + 6) \).

17. Let \(f(x) = ax^3 + bx^2 + cx + d \)
\[f(x) \text{ vanishes at } x = -2\]
\[\Rightarrow \quad -8a + 4b - 2c + d = 0\]
and \(f'(x) = 3a - 2b + c = 0 \)

Also, \(f(x) \) has relative max./min at \(x = -1 \) and \(x = \frac{1}{3} \)
\[\Rightarrow \quad f''(-1) = 0 = f''(1/3)\]
\[\therefore \quad a + 2b + 3c = 0\]
and \(3a - 2b + c = 0 \)

Also, \[
\int_{-1}^{1} f'(x) dx = \frac{14}{3}
\]
\[\Rightarrow \quad \left[\frac{ax^4}{4} + \frac{bx^3}{3} + \frac{cx^2}{2} + dx \right]_{-1}^{1} = \frac{14}{3}
\]
\[\Rightarrow \quad \left[\frac{a + b + c}{4} + \frac{d}{2} \right] - \left[\frac{a - b + c}{4} - \frac{d}{2} \right] = \frac{14}{3}
\]
\[\Rightarrow \quad \frac{b + d}{3} = \frac{7}{3}
\]
\[\Rightarrow \quad b + 3d = 7\]

From (1), (2), (3), (4) on solving, we get
\(a = 1, b = 1, c = -1, d = 2 \)
\[
\therefore \quad \text{The required cubic is } x^3 + x^2 - x + 2.
\]

18. We have \(f(x) = \begin{cases}
-x^3 + \frac{b^3 - b^2 + b - 1}{b^2 + 3b + 2}, & 0 \leq x < 1 \\
2x - 3, & 1 \leq x \leq 3
\end{cases} \)

Let \(\frac{(b^3 - b^2 + b - 1)}{(b^2 + 3b + 2)} = a \) (constant)

Let \(a = 0 \), then \(f(x) = \begin{cases}
-x^3, & 0 \leq x < 1 \\
2x - 3, & 1 \leq x \leq 3
\end{cases} \)

The graph is as follows

If \(a > 0 \), then the graph of \(-x^3 + a \) shifts upward.
If \(a < 0 \), then the graph of \(-x^3 + a \) shifts downward.

For point of minima at \(x = 1, a > 0 \)
\[
\Rightarrow \quad \frac{b^3 - b^2 + b - 1}{b^2 + 3b + 2} \geq 0
\]
\[
\Rightarrow \quad \frac{(b + 1)(b - 1)}{(b + 2)(b + 1)} \geq 0
\]
\[
\Rightarrow \quad (b - 1)(b + 1)(b + 2) \geq 0
\]
Sign Scheme is

\[
\Rightarrow \quad b \in (-2, -1) \cup (1, \infty).
\]

19. \(b \in (-2, -1) \cup (1, \infty). \)

\[
\therefore \quad \text{Circle } x^2 + y^2 = 1 \text{ cuts } x\text{-axis at } P \text{ and } Q, \text{ then } P = (-1, 0) \text{ and } Q = (1, 0).
\]

Equation of circle with centre at \(Q(1, 0) \) and having variable radius \(r \) is \((x - 1)^2 + (y - 0)^2 = r^2 \) or \((x - 1)^2 + y^2 = r^2 \)

Solving two curves
\[
\Rightarrow \quad (x - 1)^2 + 1 - x^2 = r^2 \quad \text{[} \because x^2 + y^2 = 1 \]
\[
\Rightarrow \quad (2x - 1)^2 = r^2
\]
\[
\Rightarrow \quad x = 1 - \frac{r^2}{2} \text{ and } y = \pm \sqrt{(1 - x^2)}
\]
\[
\Rightarrow \quad y = \sqrt{1 - \left(1 - \frac{r^2}{2}\right)^2} = \sqrt{\left(\frac{r^2 - \frac{r^4}{4}}{4}\right)}
\]
\[
\therefore \quad R \text{ is above the } x\text{-axis.} \]
21. Here \(f(x) = \frac{1}{8} \log x - bx + x^2 \) is defined and continuous for all \(x > 0 \).

Then \(f'(x) = \frac{1}{8x} - b + 2x \)

or \(f'(x) = \frac{8x}{16x^2 - 8bx + 1} \)

for extrema, let \(f'(x) = 0 \)

\[16x^2 - 8bx + 1 = 0 \]

so, \(x = \frac{8b \pm \sqrt{64(b^2 - 1)}}{2 \times 16} \) or \(x = \frac{b \pm \sqrt{b^2 - 1}}{4} \)

Obviously, the roots are real if \(b^2 - 1 \geq 0 \)

\[\Rightarrow b > 1 \quad \text{[as} \ x > 0 \text{]} \]

Sign scheme of \(f'(x) \) as shown in Fig. 6.154.

\[\frac{b - \sqrt{b^2 - 1}}{4} \quad \frac{b + \sqrt{b^2 - 1}}{4} \]

Fig. 6.154

\(f'(x) \) changes sign from +ve to -ve at \(x = \frac{b - \sqrt{b^2 - 1}}{4} \)

\[\therefore \quad f(x)_{\text{max}} \text{ at } x = \frac{b - \sqrt{b^2 - 1}}{4} \]

and \(f'(x) \) changes sign from -ve to +ve at \(x = \frac{b + \sqrt{b^2 - 1}}{4} \)

\[\therefore \quad f(x)_{\text{min}} \text{ at } x = \frac{b + \sqrt{b^2 - 1}}{4} \]

also if \(b = 1 \)

\[f'(x) = 16x^2 - 8bx + 1 = \frac{(4x - 1)^2}{x} \quad \text{no changes in sign.} \]

\[\therefore \quad \text{neither maximum or minimum if } b = 1 \]

Thus, \(f(x) \)

\[\left\{ \begin{array}{l}
 f(x)_{\text{max.}}, \text{ when } x = \frac{b - \sqrt{b^2 - 1}}{4} \text{ and } b > 1 \\
 f(x)_{\text{min.}}, \text{ when } x = \frac{b + \sqrt{b^2 - 1}}{4} \text{ and } b > 1 \\
 f(x) \text{ neither maximum nor minimum, when } b = 1
\end{array} \right. \]

22. Given that \(f(x) = \begin{cases} xe^{ax}, & x \leq 0 \\ x + ax^2 - x^3, & x > 0 \end{cases} \)

Differentiating both sides, we have

\[f'(x) = \begin{cases} \frac{ae^{ax} + e^{ax}}{1 + 2ax - 3x^2}, & x < 0 \\ \frac{2ae^{ax} + a^2xe^{ax}}{2a - 6x}, & x > 0 \end{cases} \]

Again differentiating both sides, we have

\[f''(x) = \begin{cases} \frac{2ae^{ax} + a^2xe^{ax}}{2a - 6x}; & x < 0 \\ \frac{2ae^{ax} + 3ax^2e^{ax}}{2a - 6x}, & x > 0 \end{cases} \]

Putting \(a = 2h \) in (1), \(\Delta = \frac{1}{2} \frac{1}{a^2} \frac{1}{a} = \frac{1}{2} \frac{1}{h} \frac{k}{h} = \frac{kh}{a} \)

Now, put \(a = 2h \) in (1), \(\Delta = \frac{1}{2} \frac{1}{a^2} \frac{1}{a} = \frac{1}{2} \frac{1}{h} \frac{k}{h} = \frac{kh}{a} \)
6.74 Calculus

For critical points, we put \(f''(x) = 0 \)

\[x = \pm \frac{a}{2} \] if \(x < 0 \) and \(x = \frac{a}{3} \) if \(x > 0 \)

\[-\infty \rightarrow -\frac{a}{2} \quad +\frac{a}{2} \quad -\frac{a}{3} \quad +\infty \]

Fig. 6.155

It is clear from number line that \(f''(x) \) is + ve in \(\left(-\frac{2a}{a}, \frac{a}{3} \right) \).

\[f'(x) \] increases in \(\left(-\frac{2a}{a}, \frac{a}{3} \right) \).

23. Applying \(R_3 \rightarrow R_3 - R_1 - 2R_2 \)

we get \(f'(x) = \begin{vmatrix} 2ax & 2ax - a & 2ax + b + 1 \\ b & b+1 & -1 \\ 0 & 0 & 1 \end{vmatrix} \)

\[= \begin{vmatrix} 2ax & -a \ &= \begin{vmatrix} 2ax & 1 \\ b & 1 \ &= \begin{vmatrix} 2ax \ &= 1 \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} \] [Using \(C_2 \rightarrow C_2 - C_1 \)]

\[f'(x) = 2ax + b \]

Integrating, we get \(f(x) = ax^2 + bx + c \) where \(c \) is an arbitrary constant.

Since, \(f \) has a maximum at \(x = 5/2 \)

\(f'(5/2) = 0 \Rightarrow 5a + b = 0 \) \hspace{1cm} (1)

Also \(f(0) = 0 \Rightarrow c = 2 \)

And \(f(1) = 1 \Rightarrow a + b + c = 1 \)

\[\therefore \quad a + b = -1 \] \hspace{1cm} (2)

Solving (1) and (2) for \(a, b \) we get, \(a = 1/4, b = -5/4 \)

Thus, \(f(x) = \frac{1}{4}x^2 - \frac{5}{4}x + 2. \)

24. Given \(-1 \leq p \leq 1 \) and equation \(4x^3 - 3x - p = 0 \)

Also, \(\cos 3\theta = 4\cos^3 \theta - 3 \cos \theta \).

Then let \(x = \cos \theta \)

Then \(4x^3 - 3x - p = 0 \Rightarrow 4\cos^3 \theta - 3 \cos \theta - p = 0 \)

\[\cos 3\theta = p \]

Since, \(x = \cos \theta \in [1/2, 1] \)

\[\Rightarrow \quad \theta \in [0, \pi/3] \]

\[\Rightarrow \quad 3\theta \in [0, \pi] \] for which \(\cos 3\theta = p \in [-1, 1] \)

Hence proved.

Also \(\cos 3\theta = p \)

\[\Rightarrow \quad 3\theta = \cos^{-1} p \]

\[\Rightarrow \quad \theta = \frac{1}{3} \cos^{-1} (p) \]

\[\Rightarrow \quad x = \cos \theta = \cos \left(\frac{1}{3} \cos^{-1} (p) \right) \]

25. Given that \(2(1 - \cos x) < x^2, x \neq 0 \)

To prove \(\sin (\tan x) \geq x, x \in \left(0, \frac{\pi}{4} \right] \)

Let us consider \(f(x) = \sin (\tan x) - x \)

\[f'(x) = \cos (\tan x) \sec^2 x - 1 \]

\[= \frac{\cos (\tan x) - \cos^2 x}{\cos^2 x} \]

As given \(2(1 - \cos x) < x^2, x \neq 0 \)

\[\Rightarrow \quad \cos x > 1 - \frac{x^2}{2} \]

Similarly, \(\cos (\tan x) > 1 - \frac{\sin^2 x}{2} \)

\[\therefore \quad f'(x) > \frac{\cos^2 x}{\cos^2 x} \]

\[= \frac{\sin^2 x (\cos 2x)}{2 \cos^4 x} > 0, \forall x \in [0, \pi/4] \]

\[\therefore \quad f'(x) > 0 \Rightarrow f(x) \text{ is an increasing function} \]

\[\therefore \quad \text{For } x \in [0, \pi/4] \]

we have \(x \geq 0 \Rightarrow f(x) \geq f(0) \)

\[\Rightarrow \quad \sin (\tan x) - x \geq \sin (\tan 0) - 0 \]

\[\Rightarrow \quad \sin (\tan x) - x \geq 0 \]

\[\Rightarrow \quad \sin (\tan x) \geq x. \]

26. Given that \(\frac{dP(x)}{dx} > P(x), \forall x \geq 1 \) and \(P(1) = 0 \)

\[\Rightarrow \quad \frac{dP(x)}{dx} - P(x) > 0 \]

Multiplying by \(e^x \), we get

\[e^{-x} \frac{dP(x)}{dx} - e^{-x} P(x) > 0 \]

\[\Rightarrow \quad \frac{d}{dx} \left[e^{-x} P(x) \right] > 0 \]

\[\Rightarrow \quad e^{-x} P(x) \text{ is an increasing function.} \]

\[\therefore \quad \forall x > 1, e^{-x} P(x) > e^{-x} P(1) = 0 \quad \text{[Using } P(1) = 0 \]}

\[\Rightarrow \quad e^x P(x) > 0, \forall x > 1 \]

\[P(x) > 0, \forall x > 1. \quad \text{[} e^x > 0 \text{]} \]

27. Let \(f(x) = \sin x + 2x - \frac{3x(x+1)}{\pi} \)

\[\Rightarrow \quad f'(x) = \cos x + 2 - \frac{3}{\pi} (2x + 1) \]

\[y = (\frac{6}{\pi})x + 3/\pi - 2 \]

Fig. 6.156
\[f''(x) = \sin x - \frac{3}{\pi} (2) < 0 \]

\[f'(x) \text{ is a decreasing function.} \]

Also, for \(x \in \left[0, \frac{\pi}{2} \right] \) if \(f'(x) = 0 \), then \(\cos x = \frac{6}{\pi} x + \frac{3}{\pi} - 2 \)

As graph of \(y = \cos x \) and \(y = \frac{6}{\pi} x + \frac{3}{\pi} - 2 \) intersect only once.

\(f'(x) = 0 \) has one root in \(\left(0, \frac{\pi}{2} \right) \).

Also \(f''(x) \) changes its sign from +ve to -ve.

Hence, graph of \(f(x) \) is as follows.

\[f(x) \geq 0 \Rightarrow \sin x + 2x - \frac{3x}{\pi} (x+1) \geq 0 \]

Also \(f(x) \) has a point of maxima.

28. Let \(p(x) = ax^2 + bx^2 + cx + d \)

\(p(-1) = 10 \Rightarrow -a + b - c + d = 10 \) \hspace{1cm} (1)

\(p(1) = -6 \Rightarrow a + b + c + d = -6 \) \hspace{1cm} (2)

\(p(x) \) has max. at \(x = -1 \) \(\Rightarrow p'(-1) = 0 \)

\[3a - 2b + c = 0 \]

\(p'(x) \) has min. at \(x = 1 \) \(\Rightarrow p''(1) = 0 \)

\[6a + 2b = 0 \]

Solving (1), (2), (3) and (4), we get

From (4), \(b = -3a \)

from (3), \(3a + 6a + c = 0 \Rightarrow c = -9a \)

from (2), \(a - 3a - 9a + d = -6 \Rightarrow d = 11a - 6 \)

from (1), \(-a - 3a + 9a + 11a - 6 = 10 \)

\[16a = 16 \Rightarrow a = 1 \]

\[b = -3, c = -9, d = 5 \]

\[p(x) = x^2 - 3x^2 - 9x + 5 \]

\[p'(x) = 0 \Rightarrow 3x^2 - 6x - 9 = 0 \]

\[3(x+1)(x-3) = 0 \]

\[x = -1 \text{ is a point of maxima (given)} \]

and \(x = 3 \) is a point of minima

\[\therefore \text{maxima and minima occur alternatively} \]

\[\therefore \text{point of local maxima is } (-1, 10) \text{ and local minima is } (3, -22). \]

And the distance between them is

\[\sqrt{[3 - (-1)]^2 + (-22 - 10)^2} \]

\[= \sqrt{16 + 1024} \]

\[= \sqrt{1040} = 4\sqrt{65}. \]

Objective

Fill in the blanks

1. We have \(e^{-\theta^2} < \theta < \pi/2 \)

\[\Rightarrow -\frac{\pi}{2} < \ln \theta < \ln \frac{\pi}{2} \]

\[\Rightarrow \cos \left(-\frac{\pi}{2} \right) < \cos (\ln \theta) < \cos \left(\ln \frac{\pi}{2} \right) \]

\[\Rightarrow \cos \left(\ln \theta \right) > 0 \]

Also, \(-1 \leq \cos \theta \leq 1 \forall \theta \in R \)

\[\therefore -\infty < \ln \cos \theta \leq 0, \forall 0 < \cos \theta \leq 1 \]

\[\Rightarrow \ln \cos \theta \leq 0 \]

From (1) and (2), we get \(\cos (\ln \theta) > \ln \cos \theta \)

\[\therefore \cos (\ln \theta) \text{ is larger.} \]

2. \(y = 2x^2 - \ln |x| \)
5. \(f(x) = \frac{3}{2} (x)^{1/2} (3x - 10) + (x)^{3/2} \times 3 \)
\[= \frac{15}{2} (x)^{1/2} (\sqrt{x} - 2) \]
\[\therefore f(x) \text{ is increasing, when } x \geq 2. \]

True or false

1. If \((x - r)\) is a factor of \(f(x)\) repeated \(m\) times then \(f'(x)\) is a polynomial with \((x - r)\) as factor repeated \((m - 1)\) times. Therefore, statement is false.

2. Given that \(0 < a < x\)

Let \(f(x) = \log_a x + \log_a a = \log_a x + \frac{1}{\log_a x} \)

Consider \(g(y) = y + \frac{1}{y} \) where \(\log_a x = y \)

\[\therefore y + \frac{1}{y} = \left(\sqrt{y} - \frac{1}{\sqrt{y}} \right)^2 + 2 \geq 2 \]

But equality holds when \(y = 1\)
\[\Rightarrow x = a \text{ which is not possible} \]

Therefore, \(y + \frac{1}{y} > 2 \Rightarrow \) \(g_{\min}\) cannot be 2.

Therefore, \(f_{\min}\) cannot be 2.
Therefore, statement is false.

Multiple choice questions with one correct answer

1. a

![Fig. 6.160](attachment:image)

Area of \(\triangle ABC\), \(A = \frac{1}{2} AC \times BC \)
\[= \frac{1}{2} (d \sin \theta) (d \cos \theta), \text{where } \theta \in (0, \pi/2) \]
\[= \frac{d^2}{2} \sin 2\theta \]

which is maximum when \(\sin 2\theta = 1\) or \(\theta = \pi/4\)

Hence, \(AC = BC\), then the triangle is isosceles.

2. b
We have \(f(x) = a \log |x| + bx^2 + x \)
\[\Rightarrow f'(x) = \frac{a}{x} + 2bx + 1 \]

Since, \(f(x)\) attains its extremum values at \(x = -1, 2\)
\[\Rightarrow f'(-1) = 0 \text{ and } f'(2) = 0 \]
\[\Rightarrow -a - 2b + 1 = 0 \text{ and } \frac{a}{2} + 4b + 1 = 0 \Rightarrow a = 2 \text{ and } b = -1/2. \]

3. b
\[f'(x) = \frac{x \ln \left(\frac{e + x}{\pi + x} \right) + (e \ln(e + x) - \pi \ln(\pi + x))}{(\ln(e + x))^2 \pi (\pi + x)(e + x)} \]

Now \(\pi + x > e + x \Rightarrow \ln \left(\frac{e + x}{\pi + x} \right) < 0 \Rightarrow f'(x) < 0 \)

and also \(e \ln(e + x) < \pi \ln(\pi + x) \Rightarrow f'(x) < 0 \)

Thus, \(f(x)\) is decreasing.

4. b
Let \(y = x^{25} (1 - x)^{25} \)
\[\Rightarrow \frac{dy}{dx} = 25x^{24} (1 - x)^{25} - 75x^{25} (1 - x)^{24} \]
\[= 25x^{24} (1 - x)^{24} (1 - x - 3x) = 25x^{24} (1 - x)^{24} (1 - 4x) \]

Clearly, critical points are 0, 1/4 and 1.

Sign scheme of \(\frac{dy}{dx}\)

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>+</th>
<th>-</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6.161

Thus, \(x = 1/4\) is the point of maxima.

5. c
We have \(f(x) = \frac{x}{\sin x}, 0 < x \leq 1 \)
\[\Rightarrow f'(x) = \frac{\sin x - x \cos x}{\sin^2 x} \]
\[= \frac{\cos x (\tan x - x)}{\sin^2 x} \]

We know that \(\tan x > x\) for \(0 < x < \pi/2\)
\[\Rightarrow f'(x) > 0 \text{ for } 0 < x \leq 1 \]

Hence, \(f(x)\) is an increasing function.

\(g(x) = \frac{x}{\tan x} \)
\[\Rightarrow g'(x) = \frac{\tan x \cdot x - \tan^2 x - \sin x \cos x}{\tan^3 x} \]
\[= \frac{x \sin x \cos x - \sin x}{\tan^2 x} \]
\[= \frac{x \sin x - x \cos x}{\tan^2 x} \]
\[= \frac{\sin 2x - 2x}{2 \sin^2 x} \]
\[= \frac{\sin \theta - \theta}{2 \sin^2 (\theta/2)}, \text{where } \theta \in (0, 2) \]

We know that \(\sin \theta < \theta\) for \(\forall \theta > 0 \)
\[\Rightarrow g'(x) < 0 \Rightarrow g(x) \text{ is a decreasing function}. \]

6. b
We have \(f(x) = \sin^4 x + \cos^4 x = \frac{3}{4} - 2 \cos 4x \)
\[\Rightarrow f'(x) = -8 \cos 4x \]

Now, \(f'(x) > 0 \Rightarrow \sin 4x > 0 \Rightarrow \sin 4x < 0 \Rightarrow \pi/4 < 4x < 2\pi \Rightarrow \pi/2 < x < \pi/2. \)

7. d
From the graph, it is clear that both \(\sin x\) and \(\cos x\) in the internal \((\pi/2, \pi)\) are the decreasing functions.
Monotonicity and Maxima–Minima of Functions

\[f'(x) = e^{(1-x)2}(2x^2 - x - 1) \]
\[= e^{(1-x)2}(2x + 1)(x - 1) \]

Sign scheme of \(f'(x) \)

\[\therefore g(x) \text{ is increasing in } [-1/2, 1]. \]

12. d. \(f(x) = (1 + b^2)x^2 + 2bx + 1 \)

The graph of \(f(x) \) is upward parabola as coefficient of \(x^2 \) is \(1 + b^2 > 0 \).

\[\Rightarrow \text{ The range of } f(x) \text{ is } \left[-\frac{D}{4a}, \infty \right), \text{ where } D \text{ is discriminant of } f(x). \]
\[\Rightarrow m(b) = \frac{4b^2 - 4(1 + b^2)}{4(1 + b^2)} \]
\[\Rightarrow m(b) = \frac{1}{1 + b^2} \in (0, 1]. \]

13. a. \(3 \sin x - 4 \sin^3 x = 3 \sin x \) which increases for \(3x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \Rightarrow x \in \left(-\frac{\pi}{6}, \frac{\pi}{6} \right) \) whose length is \(\frac{\pi}{3} \).

14. b. Equation of the tangent to the ellipse \(\frac{x^2}{27} + \frac{y^2}{1} = 1 \) at \((3\sqrt{3} \cos \theta, \sin \theta), \theta \in (0, \pi/2) \)

is \(\frac{\sqrt{3} x \cos \theta}{9} + y \sin \theta = 1 \)

\[\therefore \text{ Sum of the intercepts } S = 3\sqrt{3} \sec \theta + \cosec \theta \]

For minimum values of \(S, \frac{dS}{d\theta} = 0 \)
\[\Rightarrow 3\sqrt{3} \sec \theta \tan \theta - \cosec \theta \cot \theta = 0 \]
\[\Rightarrow \frac{3\sqrt{3} \sin \theta}{\cos \theta} = \frac{\cos \theta}{\sin^2 \theta} = 0 \]
\[\Rightarrow 3\sqrt{3} \sin \theta - \cos^3 \theta = 0 \]
\[\Rightarrow \tan^3 \theta = \frac{1}{3\sqrt{3}} = \left(\frac{1}{\sqrt{3}} \right)^3 \]
\[\Rightarrow \tan \theta = \frac{\sqrt{3}}{3} \text{ or } \tan \pi/6 \Rightarrow \theta = \pi/6. \]

15. a. \(f(x) = x^3 + bx^2 + cx + d, 0 < b^2 < c \)
\[f''(x) = 3x^2 + 2bx + c \]

Discriminant: \(4b^2 - 12c = 4(b^2 - 3c) < 0 \)
\[\therefore f''(x) > 0 \forall x \in R \]
\[\Rightarrow f(x) \text{ is strictly increasing } \forall x \in R. \]

16. d. \(f'(x) = -x(x+2) + x^2 + e^x = -x(x+1) + e^x = 0 \)
\[\Rightarrow x = -1 \]
For \(x \in (-\infty, -1) \), \(f'(x) > 0 \) and for \(x \in (-1, \infty), f'(x) < 0 \)
6.78 Calculus

\[\therefore f(x) \text{ is increasing in } (-\infty, -1) \text{ and decreasing in } (-1, \infty). \]

Multiple choice question with one or more than one correct answer

1. c. The given polynomial is \(p(x) = a_0 + a_1x^2 + a_2x^4 + \cdots + a_nx^{2n}, x \in \mathbb{R} \text{ and } 0 < a_0 < a_1 < a_2 < \cdots < a_n \)
Here we observe that all coefficients of different powers of \(x \), i.e., \(a_0, a_1, a_2, \ldots, a_n \) are positive.
Also, only even powers of \(x \) are involved.
Therefore, \(P(x) \) cannot have any maximum value.
Moreover, \(P(x) \) is minimum, when \(x = 0 \), i.e., \(a_0 \)
Therefore, \(P(x) \) has only one minimum.

Alternative method

We have
\[
P'(x) = 2a_1x + 4a_2x^3 + \cdots + 2na_nx^{2n-1}
\]
Clearly \(P'(x) > 0 \) for \(x > 0 \) and \(P'(x) < 0 \) for \(x < 0 \)
\[\Rightarrow P(x) \text{ increases for all } x > 0 \text{ and decreases for all } x < 0 \]
Therefore, \(P'(x) \) has \(x = 0 \) as the point of maxima.

2. c.

![Fig. 6.166](image)

It is clear from the graph that the curves \(y = \tan x \) and \(y = x \) intersect at \(P \) in \((\pi, 3\pi/2).\)
Thus, the smallest positive root of \(tan x = x \) is \((\pi, 3\pi/2).\)

3. a. Since \(g \) is decreasing in \([0, \infty)\)
\[\therefore \text{ For } x \geq y \geq 0, g(x) \leq g(y) \quad (1) \]
Also \(g(x), g(y) \in [0, \infty) \) and \(f \) is increasing from \([0, \infty) \) to \([0, \infty) \)
\[\therefore \text{ For } g(x), g(y) \in [0, \infty) \] such that \(g(x) \leq g(y) \)
\[\Rightarrow f(g(x)) \leq f(g(y)) \text{ where } x \geq y \]
\[\Rightarrow h(x) \leq h(y) \]
\[\Rightarrow \ h \text{ is a decreasing function from } [0, \infty) \text{ to } [0, \infty) \]
\[\therefore h(x) \leq h(0), \forall x \geq 0 \]
But \(h(0) = 0 \) (given)
\[\therefore h(x) \leq 0, \forall x \geq 0 \quad (2) \]
Also \(h(x) \geq 0, \forall x \geq 0 \)
\[\text{[as } h(x) \in [0, \infty)] \]
From (2) and (3) we get \(h(x) = 0, \forall x \geq 0 \)
Hence, \(h(x) - h(0) = 0 - 0 = 0, \forall x \geq 0. \)

4. a, b, c, d.

We are given that \(f(x) = \begin{cases} 3x^2 + 12x - 1, & -1 \leq x \leq 2 \\ 37 - x, & 2 < x \leq 3 \end{cases} \)

Then in \([-1, 2], f'(x) = 6x + 12 \)
\[f'(x) = 0 \Rightarrow x = -2 \]
\[\Rightarrow f(x) \text{ decreases in } (-\infty, -2) \text{ and increases in } (-2, \infty) \]
Also \(f(\frac{3}{2}) = \frac{3}{2} \) and \(f(2) = 1 \)
and \(f'(\frac{3}{2}) = -\frac{1}{2} - 2 = -\frac{5}{2} \)
Hence \(f(x) \) is continuous.
\[f'(x) = \begin{cases} 6x + 12, & x < 2 \\ -1, & 2 \leq x \leq 3 \end{cases} \]
\[\Rightarrow f'(2) = 24 \text{ and } f'(3) = -1 \]
Hence, \(f(x) \) is non-differentiable at \(x = 2 \).
Also, \(f(2) < f(3) \text{ and } f(2) < f(2) \)
Hence, \(x = 2 \) is the point of maxima.

5. a, c. We have \(h(x) = f(x) [1 - 2f(x) + 3f(x)^2] \)
\[= 3f(x) \left[f(x)^2 - \frac{2}{3} f(x) + \frac{1}{3} \right] \]
\[= 3f(x) \left[f(x)^2 - \frac{1}{3} f(x)^2 + \frac{2}{9} \right] \]
Note that \(h'(x) < 0 \) whenever \(f'(x) < 0 \) and \(h'(x) > 0 \)
whenever \(f'(x) > 0 \),
thus \(h(x) < 0 \) increases (decreases) whenever \(f(x) \) increases (decreases)
\[\therefore \text{(a) and (e) are the correct options.} \]

6. d. \(f(x) = \frac{x^2 - 1}{x^2 + 1} = \frac{(x^2 + 1)^2}{x^2 + 1} = 1 - \frac{2}{x^2 + 1} \)
For \(f(x) \) to be minimum \(\frac{2}{x^2 + 1} \) should be maximum, which is so if \(x^2 + 1 \) is minimum.
\[\therefore f_{\min} = 0 - \frac{1}{0 + 1} = -1 \]

7. b. The maximum value of \(f(x) = \cos x + \cos (\sqrt{2}x) \) occurs when \(\cos x = 1 \text{ and } \cos (\sqrt{2}x) = 1 \)
\[\Rightarrow x = 2n\pi, n \in \mathbb{Z} \text{ and } \sqrt{2}x = 2m\pi, m \in \mathbb{Z}. \]
Comparing the value of \(x, 2n\pi = \frac{2m\pi}{\sqrt{2}} \Rightarrow m = n \Rightarrow x = 0 \)
only.

8. b, d. \(f(x) = \int_{-1}^{x} (e^t - 1)(t - 1)(t - 2)^3(t - 3)^2 \, dt \)
\[\Rightarrow f'(x) = x(e^x - 1)(x - 1)(x - 2)^3(x - 3)^5 \]
The critical points are \(0, 1, 2, 3. \)
Sign scheme of \(f'(x) \)

![Fig. 6.167](image)

Clearly \(x = 1 \) and \(x = 3 \) are the points of minima.

9. b, c. Let \(f(x) = ax^2 + bx^2 + cx + d \)
\[
\begin{align*}
f(2) & = 18 \Rightarrow 8a + 4b + 2c + d = 18 \\
f(1) & = -1 \Rightarrow a + b + c + d = -1 \\
f(x) & \text{ has local max at } x = -1 \\
\Rightarrow f'(x) & = 0 \Rightarrow 3a - 2b + c = 0 \\
f'(x) & \text{ has local min at } x = 0 \\
\Rightarrow f''(x) & = 0 \Rightarrow b = 0
\end{align*}
\]
6.78 Calculus

\[f(x) \] is increasing in \((-\infty, -1)\) and decreasing in \((-1, \infty)\).

Multiple choice question with one or more than one correct answer

1. a. The given polynomial is \(p(x) = a_0 + a_1x^2 + a_2x^4 + \ldots + a_nx^{2n}, x \in R \) and \(0 < a_0 < a_1 < a_2 < \ldots < a_n \)
 Here we observe that all coefficients of different powers of \(x \), i.e., \(a_0, a_1, a_2, \ldots, a_n \) are positive.
 Also, only even powers of \(x \) are involved.
 Therefore, \(P(x) \) cannot have any maximum value.
 Moreover, \(P(x) \) is minimum, when \(x = 0 \), i.e., \(a_0 \)
 Therefore, \(P(x) \) has only one minimum.

Alternative method

We have
\[P'(x) = 2a_1x + 4a_2x^3 + \ldots + 2na_{2n-1}x^{2n-1} \]
\[= x(2a_1 + 4a_2x^2 + \ldots + 2na_{2n-1}x^{2n-2}) \]
Clearly \(P'(x) > 0 \) for \(x > 0 \) and \(P'(x) < 0 \) for \(x < 0 \)
\(\Rightarrow P(x) \) increases for all \(x > 0 \) and decreases for all \(x < 0 \)
Therefore, \(P'(x) \) has \(x = 0 \) as the point of maxima.

2. b. \[f(x) = \frac{x^2 - 1}{x^2 + 1} = \frac{(x^2 + 1) - 2}{x^2 + 1} = 1 - \frac{2}{x^2 + 1} \]
 For \(f(x) \) to be min \(\frac{2}{x^2 + 1} \) should be max, which is so if \(x^2 + 1 \)
 + 1 is min and \(x^2 + 1 \) is min at \(x = 0 \)
 \(\therefore f_{min} = 0 - 1 = -1 \).

7. b. The maximum value of \(f(x) = \cos x + \cos \sqrt{2}x \) occurs when \(\cos x = 1 \) and \(\cos \sqrt{2}x = 1 \)
\(\Rightarrow x = 2n\pi, n \in Z \) and \(\sqrt{2}x = 2m\pi, m \in Z \).
Comparing the value of \(x, 2n\pi = \frac{2m\pi}{\sqrt{2}} \Rightarrow m = n = 0 \Rightarrow x = 0 \)
only.

8. b. d. \[f(x) = \int_{-1}^{x} \left[(t - 1)(t - 2)(t - 3)^2 \right] dt \]
\(\Rightarrow f'(x) = x(t - 1)(x - 1)(x - 2)^2(x - 3)^2 \)
The critical points are 0, 1, 2, 3.
Sign scheme of \(f'(x) \)

\[
\begin{array}{c|c|c|c|c|c}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline
- & + & + & - & - & - \\
\end{array}
\]

Clearly \(x = 1 \) and \(x = 3 \) are the points of minima.

9. b. c. Let \(f(x) = ax^3 + bx^2 + cx + d \)
\(f(2) = 18 \Rightarrow 8a + 4b + 2c + d = 18 \)
\(f(1) = -1 \Rightarrow a + b + c + d = -1 \)
\(f(x) \) has local max at \(x = -1 \)
\(\Rightarrow f'(-1) = 0 \Rightarrow 3a - 2b + c = 0 \)
\(f'(x) \) has local min. at \(x = 0 \)
\(\Rightarrow f''(0) = 0 \Rightarrow b = 0 \)
Solving (1), (2), (3) and (4), we get
\[f(x) = \frac{1}{4}(19x^3 - 57x + 34) \Rightarrow f'(0) = \frac{17}{2} \]

Also, \(f''(x) = \frac{57}{4}(x^2 - 1) > 0, \quad \forall x > 1 \)
Also, \(f''(1) = 0 \Rightarrow x = 1, -1 \)
\(f''(-1) < 0, f''(1) > 0 \)
\(x = -1 \) is a point of local max. and \(x = 1 \) is a point of local minimum distance between \((-1, 2)\) and \((1, f(1))\), i.e.,
\((1, -1) \) is \(\sqrt{3} = 2\sqrt{5} \).

10. a, b.
\[
g'(x) = \begin{cases}
 c^x, & 0 \leq x \leq 1 \\
 2 - c^x - 1, & 1 < x \leq 2 \\
 x - c, & 2 < x \leq 3
\end{cases}
\]
\(g'(x) = 0, \text{ when } x = 1 + \ln 2 \) and \(x = c \)
\(g''(x) = \begin{cases}
 -c^{x-1}, & 1 < x < 2 \\
 1, & 2 < x < 3
\end{cases} \)
\(g''(1 + \ln 2) = -c^{\ln 2} < 0 \) hence at \(x = 1 + \ln 2, g(x) \) has a local maximum. \(g''(c) = 1 > 0 \) hence at \(x = c, g(x) \) has local minimum.
Therefore, \(f(x) \) is discontinuous at \(x = 1 \), then we get local maxima at \(x = 1 \) and local minima at \(x = 2 \).

Match the column type
1. a → p, q, s; b → p, t; c → p, q, r, t; d → s
 a. \((x - 3)^2 \frac{dy}{dx} + y = 0 \)

\[\int \frac{dx}{(x-3)^2} = -\int \frac{dy}{y} \]
\[\Rightarrow \frac{1}{x-3} = \ln|y| + c \]
So, domain is \(R - \{3\} \).

b. Put \(t = x + 3 \)
\[\int (t^2 - 1)(t + 1)(t - 1)(t - 2) dt \]
\[= \int (t^2 - 1)(t^2 - 4) dt = 0 \text{ (being odd function)} \]
c. \(f(x) = \frac{5}{4} \left(\sin x - \frac{1}{2} \right)^2 \)
Maximum value occurs when \(\sin x = \frac{1}{2} \).
d. \(f'(x) > 0 \) if \(\cos x > \sin x \)

Integer type
1. (I)
\[f(x) = \ln \{g(x)\} \]
\[g(x) = e^x \]
\[g'(x) = e^{g(x)}, f(x) \]
\[g'(x) = 0 \Rightarrow f'(x) = 0 \text{ as } e^{g(x)} \neq 0 \]
\[\Rightarrow 2010(x - 2009)(x - 2010)^2 (x - 2011)^3 (x - 2012)^4 = 0 \]
since there is only one point of local maxima.
CHAPTER 7

Indefinite Integration

- Integration as Reverse Process of Differentiation
- Elementary Integration
- Integration by Substitution
- Integration by Parts
- Integration by Cancellation
- Integration by Partial Fractions
- Integrations of Irrational Functions
7.2 Calculus

INTEGRATION AS REVERSE PROCESS OF DIFFERENTIATION

The concept of integration originated during the course of finding the area of a plane figure. It is based on the limit of the sum of the series whose each term tends to zero and the number of terms that tends to infinity. In fact, it is called integration because of the process of summation as integration means summation. But, later it was observed that integration is just the inverse process of differentiation.

In integration, we find the function whose differential coefficient is given. For example, consider the function $5x^4$, we want to know the function whose differential coefficient w.r.t. x is $5x^4$. One such function is x^5. Again since the differential coefficient of $x^5 + c$ is $5x^4$, where c is an arbitrary constant, therefore the general form of the function whose differential coefficient is $5x^4$ is $x^5 + c$.

If the differential coefficient of a function $F(x)$ is $f(x)$, i.e., if \[\frac{d}{dx}(F(x)) = f(x), \] then we will say that one integral or primitive of $f(x)$ is $F(x)$, and in symbols we write \[\int f(x)\,dx = F(x). \]

The process of finding the integral of a function is called integration, and the function which is integrated is called the integrand.

If \[\frac{d}{dx}F(x) = f(x), \] then also \[\frac{d}{dx}(F(x) + c) = f(x), \] where c is an arbitrary constant. Thus, here the general value of \[\int f(x)\,dx \] is $F(x) + c$ and c is called the constant of integration.

Clearly, the integral will change if c changes. Thus, the integral of a function is not unique. Thus, \[\int f(x)\,dx \] will have infinite number of values, and hence it is called the indefinite integral of $f(x)$.

ELEMENTARY INTEGRATION

Fundamental Integration Formulae

\[\frac{d}{dx}\{g(x)\} = f(x) \iff \int f(x)\,dx = g(x) + c \]

Based upon this definition and various standard differentiation formulae, we obtain the following integration formulae:

1. \[\int x^n\,dx = \frac{x^{n+1}}{n+1} + c, \quad n \neq -1 \]
2. \[\int \frac{1}{x}\,dx = \log|x| + c, \text{ when } x \neq 0 \]
3. \[\int e^x\,dx = e^x + c \]
4. \[\int a^x\,dx = \frac{a^x}{\log a} + c \]
5. \[\int \sin x\,dx = -\cos x + c \]
6. \[\int \cos x\,dx = \sin x + c \]
7. \[\int \sec^2 x\,dx = \tan x + c \]
8. \[\int \csc^2 x\,dx = -\cot x + c \]
9. \[\int \sec x \tan x\,dx = \sec x + c \]
10. \[\int \csc x \cot x\,dx = -\csc x + c \]
11. \[\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x + C \quad \text{or} \quad -\cos^{-1} x + C \]
12. \[\int \frac{dx}{1+x^2} = \tan^{-1} x + C \quad \text{or} \quad -\cot^{-1} x + C \]
13. \[\int \frac{dx}{x\sqrt{x^2 - 1}} = \sec^{-1} x + C \quad \text{or} \quad -\cosec^{-1} x + C \]

Example 7.1 Evaluate \[\int \frac{(1+x)^3}{\sqrt{x}}\,dx. \]

Sol.

\[\int \frac{(1+x)^3}{\sqrt{x}}\,dx = \int \left[1 + 3x + 3x^2 + x^3\right]\frac{dx}{\sqrt{x}} = \int \left[x^{-1/2} + 3x^{1/2} + 3x^{3/2} + x^{5/2}\right]dx \]

\[= \frac{x^{1/2}}{1/2} + 3\frac{x^{3/2}}{3/2} + 3\frac{x^{5/2}}{5/2} + x^{7/2} + c \]

\[= 2\sqrt{x} + 2x^{3/2} + \frac{6}{5}x^{5/2} + \frac{2}{7}x^{7/2} + c \]

Example 7.2 Evaluate \[\int \frac{2^{x+1} - 5^{x-1}}{10^x}\,dx. \]

Sol.

\[I = \int \frac{2^{x+1} - 5^{x-1}}{10^x}\,dx \]

\[= \int \left[2\left(\frac{1}{5}\right)^x - \frac{1}{10}\left(\frac{1}{2}\right)^x\right]\,dx \]

\[= 2\left(\frac{1}{5}\right)^x - \frac{1}{2}\left(\frac{1}{2}\right)^x + c \]

Example 7.3 Evaluate \[\int \sec^2 x \csc^2 x\,dx \]

Sol.

\[I = \int \sec^2 x \csc^2 x\,dx \]

\[= \int \frac{\cos^2 x + \sin^2 x}{\cos x \sin x}\,dx \]

\[= \int \left[\sec^2 x + \csc^2 x\right]\,dx \]

\[= \tan x - \cot x + c \]
Example 7.4 Evaluate \(\int \frac{x^2 + \cos^2 x}{1 + x^2} \csc^2 x \, dx \).

Sol. \(\int \frac{(x^2 + \cos^2 x)}{(1 + x^2)} \csc^2 x \, dx \)

\[= \int \frac{(1 + x^2 - \sin^2 x)}{(1 + x^2)} \csc^2 x \, dx \]

\[= \csc^2 x \, dx - \int \frac{dx}{1 + x^2} \]

\[= -\cot x - \tan^{-1} x + C \]

Example 7.5 Evaluate \(\int \frac{1}{1 + \sin x} \, dx \).

Sol. \(\int \frac{1}{1 + \sin x} \, dx \)

\[= \int \frac{1}{(1 - \sin x)} \frac{dx}{(1 + \sin x)} \]

\[= \int \frac{1 - \sin x}{1 - \sin^2 x} \, dx \]

\[= \int \frac{1 - \sin x}{\cos^2 x} \, dx \]

\[= \int \sec^2 x \, dx - \int \tan x \, dx \]

\[= \sec x - \sec x \tan x + C \]

Example 7.6 Evaluate \(\int \tan^{-1} \left(\frac{1 - 2x}{\sqrt{1 + 2x}} \right) \, dx \), \(0 < x < \pi/2 \).

Sol. \(\int \tan^{-1} \left(\frac{1 - 2x}{\sqrt{1 + 2x}} \right) \, dx \)

\[= \int \tan^{-1} \left(\frac{2\sin^2 x}{2\cos^2 x} \right) \, dx \]

\[= \int \tan^{-1}(\tan x) \, dx = \int x \, dx = \frac{x^2}{2} + C \]

Example 7.7 Evaluate \(\int \frac{\sec x}{\sec x + \tan x} \, dx \).

Sol. \(\int \frac{\sec x}{\sec x + \tan x} \, dx \)

\[= \int \frac{\sec x(\sec x - \tan x)}{(\sec x + \tan x)(\sec x - \tan x)} \, dx \]

\[= \int \frac{\sec^2 x - \sec x \tan x}{\sec^2 x - \tan^2 x} \, dx \]

\[= \sec x \, dx - \sec x \tan x \, dx \]

\[= \sec x \, dx - \sec x \tan x \, dx \]

\[= \sec x \, dx - \sec x \tan x \, dx \]

\[= \sec x \, dx - \sec x \tan x \, dx \]

\[= \tan x - \sec x + C \]

Concept Application Exercise 7.1

Evaluate the following:

1. \(\int (\sec x + \tan x)^2 \, dx \)
2. \(\int (1 - \cos x) \cos^2 x \, dx \)
3. \(\int a^x \, dx \)
4. \(\int \frac{\tan x}{\sec x + \tan x} \, dx \)
5. If \(\int \frac{1}{x + x^2} \, dx = f(x) + c \), then evaluate \(\int \frac{x^4}{x + x^2} \, dx \).
6. Evaluate \(\int \frac{x^3 + 8(x-1)}{x^2 - 2x + 4} \, dx \).
7. Find \(\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} \, dx \).
8. Evaluate \(\int \tan^{-1}(\sec x + \tan x) \, dx \), \(-\pi/2 < x < \pi/2 \)

Properties of Indefinite Integration

1. \(\int k f(x) \, dx = k \int f(x) \, dx \), where \(k \) is a constant
2. \(\int \{f_1(x) + f_2(x) + \ldots + f_n(x)\} \, dx \)
 \[= \int f_1(x) \, dx + \int f_2(x) \, dx + \ldots + \int f_n(x) \, dx \]
3. \(\int f(x) \, dx = F(x) + C \)
 then \(\int f(ax + b) \, dx = \frac{F(ax + b)}{a} + c \)

Proof: Let \(ax + b = t \), then \(dx = \frac{dt}{a} \)

\[\therefore \int f(ax + b) \, dx = \frac{1}{a} \int f(t) \, dt \]

\[= \frac{1}{a} F(t) + c = \frac{1}{a} [F(ax + b) + C] \]

Example 7.8 Evaluate \(\int \frac{x + 2}{(x + 1)^2} \, dx \).

Sol. \(\int \frac{x + 2}{(x + 1)^2} \, dx \)
7.4 Calculus

\[\int \frac{x+1+1}{(x+1)^3} \, dx \]

\[= \int \frac{x+1}{(x+1)^2} + \frac{1}{(x+1)^2} \, dx \]

\[= \int \frac{1}{x+1} \, dx + \int (x+1)^{-2} \, dx \]

\[= \log |x+1| + \frac{(x+1)^{-1}}{-1} + C = \log |x+1| - \frac{1}{x+1} + C \]

Example 7.9 Evaluate \(\int \frac{8x+13}{\sqrt{4x+7}} \, dx \).

Sol.

\[\int \frac{8x+13}{\sqrt{4x+7}} \, dx \]

\[= \int \frac{8x+14-1}{\sqrt{4x+7}} \, dx \]

\[= \int 2(4x+7)-1 \sqrt{4x+7} \, dx \]

\[= 2 \left(\sqrt{4x+7} \right)^{3/2} - \frac{1}{4} \left(\sqrt{4x+7} \right)^{1/2} + C \]

Example 7.10 Evaluate \(\int \sin^3 x \, dx \).

Sol.

\[\sin 3x = 3 \sin x - 4 \sin^3 x \]

\[\Rightarrow \sin^3 x = \frac{3 \sin x - \sin 3x}{4} \]

\[\Rightarrow \int \sin^3 x \, dx = \int \frac{3 \sin x - \sin 3x}{4} \, dx \]

\[= \frac{3}{4} \int \sin x \, dx - \frac{1}{4} \int \sin 3x \, dx \]

\[= \frac{3}{4} (-\cos x) - \frac{1}{4} \left(\frac{\cos 3x}{3} \right) + C \]

\[= -\frac{3}{4} \cos x + \frac{\cos 3x}{12} + C \]

Example 7.11 Evaluate \(\int \sin 2x \sin 3x \, dx \).

Sol.

\[\int \sin 2x \sin 3x \, dx \]

\[= \frac{1}{2} \int 2 \sin 3x \sin 2x \, dx \]

\[= \frac{1}{2} \int \left[\cos(3x - 2x) - \cos(3x + 2x) \right] \, dx \]

\[= \frac{1}{2} \int \left[\cos x - \cos 5x \right] \, dx \]

\[= \frac{1}{2} \int \cos x \, dx - \frac{1}{2} \int \cos 5x \, dx \]

\[= \frac{1}{2} \left(\sin x \right) - \frac{1}{2} \left(\frac{\sin 5x}{5} \right) + C \]

\[= \frac{\sin x}{2} - \frac{\sin 5x}{10} + C \]

Example 7.12 Evaluate \(\int \frac{dx}{(2x-7) \sqrt{(x-3)(x-4)}} \).

Sol.

\[\int \frac{dx}{(2x-7) \sqrt{(x-3)(x-4)}} \]

\[= \int \frac{2dx}{(2x-7) \sqrt{(2x-7)^2-1}} \]

\[= \frac{1}{2} \sec^{-1} (2x-7)+C \]

Example 7.13 Evaluate \(\int \frac{1}{\sqrt{3x+4} - \sqrt{3x+1}} \, dx \).

Sol.

\[\int \frac{1}{\sqrt{3x+4} - \sqrt{3x+1}} \, dx \]

\[= \int \frac{\sqrt{3x+4} + \sqrt{3x+1}}{(\sqrt{3x+4} + \sqrt{3x+1})(\sqrt{3x+4} - \sqrt{3x+1})} \, dx \]

\[= \int \sqrt{3x+4} + \sqrt{3x+1} \, dx \]

\[= \frac{1}{3} \int \sqrt{3x+4} + \sqrt{3x+1} \, dx \]

\[= \frac{1}{3} \int \sqrt{3x+4} \, dx + \frac{1}{3} \int \sqrt{3x+1} \, dx \]

\[= \frac{1}{3} \left(\frac{(3x+4)^{3/2}}{3 \times 3/2} \right) + \frac{1}{3} \left(\frac{(3x+1)^{3/2}}{3 \times 3/2} \right) + C \]

\[= \frac{2}{27} \left((3x+4)^{3/2} + (3x+1)^{3/2} \right) + C \]

Example 7.14 Find the values of \(a \) and \(b \) such that

\[\int \frac{dx}{1 + \tan x} = \tan \left(\frac{x}{2} + a \right) + b \]

Sol.

\[\int \frac{dx}{1 + \tan x} = \int \frac{1}{1 + \cos(\pi/2 - x)} \, dx \]

\[= \int \frac{1}{2 \cos^2 (\pi/4 - x/2)} \, dx \]

\[= \frac{1}{2} \int \sec^2 \left(\frac{\pi}{4} - \frac{x}{2} \right) \, dx \]
\[
\frac{1}{2} \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) + c
\]

\[
= \frac{1}{2} \tan\left(\frac{\pi}{2} + \frac{x}{2}\right) + c
\]

\[
= \tan\left(\frac{x}{2} + \frac{\pi}{4}\right) + c
\]

Given, \(\int \frac{dx}{1 + \sin x} = \tan \left(\frac{x}{2} + a\right) + b\)

\[
\Rightarrow \tan \left(\frac{x}{2} + \frac{\pi}{4}\right) + c = \tan \left(\frac{x}{2} + a\right) + b
\]

\[
\therefore a = \frac{\pi}{4} \text{ and } b = c = \text{ an arbitrary constant.}
\]

Example 7.15 Evaluate \(\int \left(x + \frac{1}{x}\right)^{3/2} \left(x^2 - 1\right) dx\).

Sol.
\[
I = \int \left(x + \frac{1}{x}\right)^{3/2} \left(x^2 - 1\right) dx
\]

\[
= \int \left(x + \frac{1}{x}\right)^{3/2} \left(1 - \frac{1}{x^2}\right) dx
\]

Let \(t = x + \frac{1}{x}\) \(\Rightarrow dt = \left(1 - \frac{1}{x^2}\right) dx\)

\[
\Rightarrow I = \int t^{3/2} dt = \frac{2}{5} t^{5/2} + c = \frac{2}{5} \left(x + \frac{1}{x}\right)^{5/2} + C
\]

Example 7.16 Evaluate \(\int \frac{x}{\sqrt{x^2 + 2}} dx\).

Sol.
\[
\int \frac{x}{\sqrt{x^2 + 2}} dx
\]

\[
= \frac{x + 2 - 2}{\sqrt{x^2 + 2}} dx
\]

\[
= \int \frac{x + 2}{\sqrt{x^2 + 2}} dx - \int \frac{2}{\sqrt{x^2 + 2}} dx
\]

\[
= \sqrt{x^2 + 2} dx - 2 \int (x + 2)^{-1/2} dx
\]

\[
= \frac{(x + 2)^{3/2}}{1/2} - 2 \frac{(x + 2)^{1/2}}{1/2} + C
\]

\[
= 2 \left(3x^2 + 2\right)^{3/2} - 4 \sqrt{x^2 + 2} + C
\]

FORM 1: \(\int \frac{f'(x)}{f(x)} dx = \log |f(x)| + C\)

Proof: Let \(f(x) = t\) \(\Rightarrow dt = f'(x) dx\)

\[
\Rightarrow \int \frac{f'(x)}{f(x)} dx = \int \frac{dt}{t} = \log |t| + C = \log |f(x)| + C
\]

Example 7.17 Evaluate \(\int \frac{\sec^2 x}{3 + \tan x} dx\).

Sol.
\[
\int \frac{\sec^2 x}{3 + \tan x} dx = \int \frac{d(3 + \tan x)}{3 + \tan x} dx = \log |3 + \tan x| + C
\]

Example 7.18 Evaluate \(\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx\).

Sol. \(\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx = \int \frac{d(e^x - e^{-x})}{e^x + e^{-x}} dx = \log |e^x + e^{-x}| + C\)

Example 7.19 Evaluate \(\int \frac{1}{1 + \tan x} dx\).

Sol. \(\int \frac{1 - \tan x}{1 + \tan x} dx = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx\)

\[
= \int \frac{\frac{d}{dx}(\cos x + \sin x)}{\cos x + \sin x} dx = \log |\cos x + \sin x| + C
\]

Example 7.20 Evaluate \(\int \frac{1}{1 + e^x} dx\).

Sol. \(\int \frac{1}{1 + e^x} dx = \int \frac{e^x}{e^x + 1} dx\)

\[
= \int \frac{d(e^x + 1)}{e^x + 1} dx = \log(1 + e^x) + C
\]

Example 7.21 Evaluate \(\int \frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} dx\).

Sol. \(\int \frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} dx = (a^2 - b^2) \sin 2x\)

Now, \(\int \frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} dx\)

\[
= \frac{1}{a^2 - b^2} \int \frac{(a^2 - b^2) \sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} dx
\]

\[
= \frac{1}{a^2 - b^2} \int \frac{d(a^2 \sin^2 x + b^2 \cos^2 x)}{a^2 \sin^2 x + b^2 \cos^2 x} dx
\]

\[
= \frac{1}{a^2 - b^2} \log |a^2 \sin^2 x + b^2 \cos^2 x| + C
\]

FORM 2: \(\int \frac{f'(x)}{f(x)} dx = \frac{f(x)^{n+1}}{n+1} + C\)

Proof: Let \(f(x) = t\) \(\Rightarrow dt = f'(x) dx\)

\[
\Rightarrow \int f'(x) f(x) dx = \int t^{n+1} dt = \frac{t^{n+1}}{n+1} + C = \frac{f(x)^{n+1}}{n+1} + C
\]

Example 7.22 Evaluate \(\int \frac{\log \left(\tan \frac{x}{2}\right)}{\sin x} dx\).

Sol. \(d\left[\log \left(\tan \frac{x}{2}\right)\right] = \frac{1}{2} \sec^2 \frac{x}{2} = \frac{1}{2} \frac{1}{\sin x} = \frac{1}{2} \frac{1}{\sin x}\)

Now, \(\int \frac{\log \left(\tan \frac{x}{2}\right)}{\sin x} dx = \int \log \left(\tan \frac{x}{2}\right) \frac{d}{dx} \left[\log \left(\tan \frac{x}{2}\right)\right] dx\)

\[
= \left[\frac{\log \left(\tan \frac{x}{2}\right)^2}{2}\right] + C
\]
Example 7.23 Evaluate \(\int \frac{\sqrt{2 + \log x}}{x} \, dx \).

Sol.
\[
\int \frac{\sqrt{2 + \log x}}{x} \, dx = \int \left(2 + \log x\right)^{\frac{3}{2}} \, dx = \frac{2}{3} \left(2 + \log x\right)^{\frac{3}{2}} + C = \frac{2}{3} \left(2 + \log x\right)^{\frac{3}{2}} + C
\]

Example 7.24 Evaluate \(\int \tan^3 x \, dx \).

Sol.
\[
\int \tan^3 x \, dx = \int \tan^2 x \tan x \, dx = \int \sec^2 x \, dx - \tan x + C
\]

Example 7.25 Evaluate \(\int (\tan x - x)^2 \, dx \).

Sol.
\[
\int (\tan x - x)^2 \, dx = \int (\tan x - x)(\sec^2 x - 1) \, dx
\]

Example 7.26 Evaluate \(\int \frac{(\sin^{-1} x)^3}{\sqrt{1 - x^2}} \, dx \).

Sol.
\[
\int \frac{(\sin^{-1} x)^3}{\sqrt{1 - x^2}} \, dx = \int (\sin^{-1} x)^3 \cdot (\sin^{-1} x) \, dx = \frac{(\sin^{-1} x)^4}{4} + C
\]

Example 7.27 Evaluate \(\int \frac{(x + 1)}{x} \log x \, dx \).

Sol.
\[
\int (x + \log x)^2 \, dx = \int (x + \log x)^2 \left(1 + \frac{1}{x}\right) \, dx
\]

Example 7.28 Evaluate \(\int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \).

Sol.
\[
\int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx = \int \frac{\tan x}{\cos^2 x} \, dx = \frac{1}{2} \int \sec^2 x \, dx = \frac{1}{2} \tan x + C
\]

Example 7.29 Evaluate \(\int \frac{\cot x}{\sqrt{\sin x}} \, dx \).

Sol.
\[
\int \frac{\cot x}{\sqrt{\sin x}} \, dx = \int \frac{\cos x}{\sin x \sqrt{\sin x}} \, dx = \int \frac{(\sin x)^{-1/2} \cos x \, dx}{\sqrt{\sin x}} - \frac{1}{2} \frac{1}{\sqrt{\sin x}} + C = -\frac{2}{\sqrt{\sin x}} + C
\]

Example 7.30 Evaluate \(\int \frac{dx}{x^2 (x^4 + 1)^{\frac{3}{4}}} \).

Sol.
\[
I = \int \frac{dx}{x^2 (x^4 + 1)^{\frac{3}{4}}}
\]

Let \(1 + \frac{1}{x^4} = t \Rightarrow \frac{-4}{x^5} \, dx = dt
\]

\[
\frac{1}{4} \int t^4 dt = \frac{1}{4} \frac{t^5}{5} + C = \frac{1}{4} \frac{1}{5} + C
\]

Concept Application Exercise 7.2

Evaluate the following:

1. \(\int \frac{dx}{\sqrt{2ax - x^2}} \)
2. \(\int e^{3x} + e^{5x} \, dx \)
3. \(\int \frac{\tan^2 x}{\sin^2 x} \, dx \)
4. \(\int \cos x - \sin x \, dx \)
5. \(\int \csc^3 x \, dx \)
6. \(\int \frac{\sin 2x}{4 + \cos x} \, dx \)
7. \(\int \sin x \cos x \cos 2x \cos 4x \cos 8x \, dx \)
8. \(\int \frac{(1 + \ln x)^5}{x} \, dx \)
9. \(\int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} \, dx \)
10. \(\int \frac{x^3}{x + 1} \, dx \)
11. \(\int \frac{dx}{\sqrt{x + 2x^2}} \)
12. \(\int \left(1 + 2x + 3x^2 + 4x^3 + \ldots\right) \, dx \quad (0 < |x| < 1) \)
13. \(\int \frac{\ln (\ln x)}{x \ln x} \, dx \) is \(x > 0 \)
14. \[\int \frac{dx}{x + x \log x} \]
15. \[\int \sec^p x \tan x \, dx \]
16. \[\int \frac{\sin^6 x}{\cos^8 x} \, dx \]
17. \[\int (\tan x - x) \tan^2 x \, dx \]

Some More Standard Formulae

1. \[\int \tan x \, dx = \ln |\sec x| + c \]
 Proof: \[\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\ln |\cos x| + c \]

2. \[\int \cot x \, dx = \ln |\sin x| + c \]
 Proof: \[\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \ln |\sin x| + c \]

3. \[\int \sec x \, dx = \ln |\sec x + \tan x| + c \]
 Proof: \[\int \sec x \, dx = \int \sec x \left(\sec x + \tan x \right) \, dx \]

Example 7.31: Evaluate \(\int \sin 2x \tan x \, dx \).

Sol. \[I = \int \sin 2x \, d(\tan x) \]
\[= \int \sin 2x \cdot d(\tan x) \, dx \]
\[= \int \sin 2x \sec^2 x \, dx \]
\[= 2 \int \tan x \, dx \]
\[= 2 \ln |\sec x| + c \]

Example 7.32: Evaluate \(\int \tan x \tan 2x \tan 3x \, dx \).

Sol. \[\tan 3x = \frac{\tan 2x + \tan x}{1 - \tan 2x \tan x} \]
\[\Rightarrow \tan 3x \tan 2x \tan x = \tan 3x - \tan 2x - \tan x \]
\[\Rightarrow \int (\tan 3x - \tan 2x - \tan x) \, dx \]
\[= -\frac{1}{3} \log |\cos 3x| + \frac{1}{2} \log |\cos 2x| + \log |\cos x| + c \]

Example 7.33: Evaluate \(\int \frac{1}{\sqrt{3} \sin x + \cos x} \, dx \).

Sol. Let \(\sqrt{3} = r \sin \theta \) and \(1 = r \cos \theta \)
Then \(r = \sqrt{(\sqrt{3})^2 + 1^2} = 2 \) and \(\tan \theta = \frac{\sqrt{3}}{1} \Rightarrow \theta = \frac{\pi}{3} \)

\[
\int \frac{1}{\sqrt{3} \sin x + \cos x} \, dx = \int \frac{1}{r \sin \theta \sin x + r \cos \theta \cos x} \, dx = \int \frac{1}{\cos (x - \theta)} \, dx = \int \sec (x - \theta) \, dx = \frac{1}{r} \log \left| \tan \left(\frac{\pi}{4} + \frac{x - \theta}{2} \right) \right| + c
\]

\[
= \frac{1}{2} \log \left| \tan \left(\frac{\pi}{4} + \frac{x - \theta}{2} \right) \right| + c
\]

\[
= \frac{1}{2} \log \left| \tan \left(\frac{x + \pi}{12} \right) \right| + c
\]

Example 7.34 Evaluate \(\int \frac{1}{\sin(x-a)\sin(x-b)} \, dx \).

Sol.

\[
\int \frac{1}{\sin(x-a)\sin(x-b)} \, dx = \int \frac{1}{\sin(a-b)} \frac{\sin[(x-b)-(x-a)]}{\sin(x-a)\sin(x-b)} \, dx
\]

\[
= \frac{1}{\sin(a-b)} \int \left\{ \cot(x-a) - \cot(x-b) \right\} \, dx
\]

\[
= \frac{1}{\sin(a-b)} \left\{ \log |\sin(x-a)| - \log |\sin(x-b)| \right\} + c
\]

\[
= \csc(a-b) \log \left| \frac{\sin(x-a)}{\sin(x-b)} \right| + c
\]

Example 7.35 Evaluate \(\int \left\{ 1 + 2 \tan x (\tan x + \sec x) \right\}^{\frac{1}{2}} \, dx \).

Sol.

\[
\int \left\{ 1 + 2 \tan^2 x + 2 \tan x \sec x \right\}^{\frac{1}{2}} \, dx
\]

\[
= \int \left(\sec^2 x + \tan^2 x + 2 \tan x \sec x \right)^{\frac{1}{2}} \, dx
\]

\[
= \int (\sec x + \tan x) \, dx
\]

\[
= \log (\sec x + \tan x) + \log \sec x + c
\]

\[
= \log \sec (\sec x + \tan x) + c
\]

Concept Application Exercise 7.3

Evaluate the following:

1. \(\int \frac{dx}{(1 + \sin x)^{\frac{3}{2}}} \)
2. \(\int \frac{dx}{\cos x - \sin x} \)
3. \(\int \frac{\sin x}{\sin(x-a)} \, dx \)
4. \(\int \tan^3 x \, dx \)

INTEGRATION BY SUBSTITUTIONS

If \(g(x) \) is a continuously differentiable function, then to evaluate the integrals of the form \(I = \int f(g(x))g'(x) \, dx \), we substitute \(g(x) = t \) and \(g'(x) \, dx = dt \).

The substitution reduces the integral to \(\int f(t) \, dt \).

After evaluating this integral we substitute the value of \(t \).

Example 7.36 Evaluate \(\int \sin(e^x) \, d(e^x) \).

Sol.

\[I = \int \sin(e^x) \, d(e^x) \]

Let \(e^x = t \)

\[\Rightarrow I = \int \sin(t) \, dt = -\cos t + C = -\cos(e^x) + c \]

Example 7.37 Evaluate \(\int \cos^3 x \sqrt{\sin x} \, dx \).

Sol. [Here, the power of \(\cos x \) is 3 which is an odd positive integer, therefore, put \(z = \sin x \)]

Let \(z = \sin x \), then \(dz = \cos x \, dx \)

Now \(\int \cos^3 x \sqrt{\sin x} \, dx \)

\[
= \int \cos^2 x \sqrt{\sin x} \cos x \, dx
\]

\[
= \int (1 - \sin^2 x) \sqrt{\sin x} \cos x \, dx
\]

\[
= \int (1 - z^2) \sqrt{z} \, dz
\]

\[
= \int \left(\sqrt{z} - z^{\frac{3}{2}} \right) \, dz
\]

\[
= \frac{z^{\frac{3}{2}}}{\frac{3}{2}} - \frac{z^{\frac{7}{2}}}{\frac{7}{2}} + C = \frac{2}{3} z^{\frac{3}{2}} - \frac{2}{7} z^{\frac{7}{2}} + c
\]

\[
= \frac{2}{3} \sin^{\frac{3}{2}} x - \frac{2}{7} \sin^{\frac{7}{2}} x + c
\]
Example 7.38 Evaluate \(\int \frac{\sin 2x}{a^2 + b^2 \sin^2 x} \, dx \).

Sol. Let \(z = a^2 + b^2 \sin^2 x \),
\[\Rightarrow \quad \frac{dz}{dx} = 2b^2 \sin x \cos x \, dx = b^2 \sin 2x \, dx \]
\[\Rightarrow \quad I = \int \frac{\sin 2x}{a^2 + b^2 \sin^2 x} \, dx \]
\[\quad = \frac{1}{b^2} \int \frac{dz}{z} \]
\[\quad = \frac{1}{b^2} \log |z| + C \]
\[\quad = \frac{1}{b^2} \log |a^2 + b^2 \sin^2 x| + C \]

Example 7.39 Evaluate \(\int 2^{2x} 2^{2x} 2^x \, dx \).

Sol. \(I = \int 2^{2x} 2^{2x} 2^x \, dx \)
Let \(2^{2x} = t \) \(\Rightarrow \quad 2^{2x} 2^x (\log 2)^3 \, dx = dt \)
\[\Rightarrow \quad I = \int \frac{1}{(\log 2)^3} \, dt = \frac{1}{(\log 2)^3} t + C \]
\[= \frac{1}{(\log 2)^3} 2^{2x} + C \]

Example 7.40 Evaluate \(\int \frac{1}{x^{1/2} + x^{1/3}} \, dx \).

Sol. \(\frac{1}{x^{1/2} + x^{1/3}} = \frac{1}{x^{1/3} (1 + x^{1/6})} \)
Let \(x = t^6 \) \(\Rightarrow \quad dx = 6t^5 \, dt \)
\[\therefore \quad \int \frac{1}{x^{1/2} + x^{1/3}} \, dx = \int \frac{1}{x^{1/3} (1 + x^{1/6})} \, dx = \int \frac{6t^5}{t^5 (1 + t)} \, dt \]
\[= \frac{6}{1 + t} \, dt \]
On dividing, we obtain
\[\int \frac{1}{x^{1/2} + x^{1/3}} \, dx = 6 \int \left(t^2 - t + 1 \right) - \frac{1}{1 + t} \, dt \]
\[= 6 \left[\left(\frac{t^3}{3} \right) - \left(\frac{t^2}{2} \right) + t - \log |1 + t| \right] + C \]
\[= 2x^{1/2} - 3x^{1/3} + 6x^{1/6} - 6 \log \left(1 + x^{1/6} \right) + C \]

Example 7.41 Evaluate \(\int x^2 \tan^{-1} \frac{x^3}{1 + x^6} \, dx \).

Sol. \(I = \int x^2 \tan^{-1} \frac{x^3}{1 + x^6} \, dx \)
Let \(\tan^{-1} x^3 = t \)
\[\Rightarrow \quad \frac{1}{1 + x^6} 3x^2 \, dx = dt \Rightarrow dx = \frac{(1 + x^6)}{3x^2} \, dt \]
\[\Rightarrow \quad I = \int x^2 \frac{t}{1 + x^6} \times \frac{1 + x^6}{3x^2} \, dt \]
\[= \frac{1}{3} \int t \, dt \]
\[= \frac{1}{6} t + C \]
\[= \frac{1}{6} \left(\tan^{-1} x^3 \right)^2 + C \]

Example 7.42 Evaluate \(\int \frac{2x - \sqrt{\sin^{-1} x}}{\sqrt{1 - x^2}} \, dx \).

Sol. \(I = \int \frac{2x - \sqrt{\sin^{-1} x}}{\sqrt{1 - x^2}} \, dx \)
\[= - \int \frac{-2x}{\sqrt{1 - x^2}} \, dx - \int \left(\sin^{-1} x \right)^{1/2} \, dx \]
\[= - \int \left(1 - x^2 \right)^{1/2} \left(1 - x^2 \right) \, dx - \int \left(\sin^{-1} x \right)^{1/2} \, dx \]
\[= - \frac{1}{2} \left(1 - x^2 \right)^{3/2} + C \]

Example 7.43 Evaluate \(\int \frac{e^{\sqrt{x}} \cos(e^{\sqrt{x}})}{\sqrt{x}} \, dx \).

Sol. \(\frac{e^{\sqrt{x}} \cos(e^{\sqrt{x}})}{\sqrt{x}} = t \)
\[\Rightarrow \quad \frac{e^{\sqrt{x}} \cos(e^{\sqrt{x}})}{\sqrt{x}} \, dx = 2dt \]
\[\Rightarrow \quad \int \frac{e^{\sqrt{x}} \cos(e^{\sqrt{x}})}{\sqrt{x}} \, dx = 2 \int \cos t \, dt \]
\[= 2 \sin t + C \]
\[= 2 \sin e^{\sqrt{x}} + C \]

Example 7.44 Evaluate \(\int \frac{\tan x}{a + b \tan^2 x} \, dx \).

Sol. \(\int \frac{\tan x}{a + b \tan^2 x} \, dx \)
\[= \int \frac{\sin x}{a \sin^2 x + b \cos^2 x} \, dx \]
\[= \int \frac{\sin x \cos x}{a \cos^2 x + b \sin^2 x} \, dx \]
\[= \frac{1}{2} \int \frac{\sin 2x}{a \cos^2 x + b \sin^2 x} \, dx \]
\[= \frac{1}{2b - a} \log |a \cos^2 x + b \sin^2 x| + C \]
Example 7.45 Find \(\int \frac{e^{x}(1+x)}{\cos^2(xe^x)} \, dx \).

Sol. Let \(z = xe^x \), then \(dz = (1+xe^x) \, dx = (1+x) \, dx \)

\[
\Rightarrow \quad \int \frac{e^x(1+x)}{\cos^2(xe^x)} \, dx = \int \frac{dz}{\cos^2 z} = \int \sec^2 zdz = \tan z + c = \tan(xe^x) + c
\]

FORM4:
\[
\int (\sin^m x \cdot \cos^n x) \, dx, \quad \text{where} \quad m, n \quad \text{belong to natural number.}
\]

Working Rule:

a. If one of them is odd, then substitute for the term of even power.

b. If both are odd, substitute either of them.

c. If both are even, use trigonometric identities only.

d. If \(m \) and \(n \) are rational numbers and \(\left(\frac{m+n-2}{2} \right) \) is a negative integer, then substitute cot \(x = p \) or tan \(x = p \) whichever is found suitable.

Example 7.46 Find \(\int \sin^5 x \, dx \).

Sol. [Here power of \(\sin x \) is 5 which is an odd positive integer, therefore, put \(z = \cos x \)]

Let \(z = \cos x \) then \(dz = -\sin x \, dx \)

Now \(\int \sin^5 x \, dx = \int \sin^4 x \sin x \, dx \)

\[
= \int (\sin^2 x)^2 \sin x \, dx = \int (1-\cos^2 x)^2 \sin x \, dx = \int (1-z^2)^2 (-dz) \quad [\because \quad z = \cos x]
\]

\[
= -\int (1-2z^2 + z^4) \, dz = -z - 2z^3 + 5z^5 + c = -z + 2\frac{z^3}{3} - \frac{z^5}{5} + c = -\cos x + 2\frac{\cos^3 x}{3} - \frac{\cos^5 x}{5} + c
\]

Example 7.47 Find \(\int \sin^3 x \cos^5 x \, dx \).

Sol. [Here, powers of both \(\cos x \) and \(\sin x \) are odd positive integers; therefore, put \(z = \cos x \) or \(z = \sin x \), but the power of \(\cos x \) is greater, therefore, it is convenient to put \(z = \cos x \)]

Let \(z = \cos x \), then \(dz = -\sin x \, dx \)

Now \(\int \sin^3 x \cos^5 x \, dx \)

\[
= \int \sin^2 x \cos^5 x \sin x \, dx = \int (1-\cos^2 x) \cos^5 x \sin x \, dx = \int (1-z^2)^2 z^3 (-dz) = -\int (z^5 - z^3) \, dz = \int \frac{z^6 - z^4}{6} + c = \frac{\cos^6 x}{6} + \frac{\cos^8 x}{8} + c
\]

Example 7.48 Find \(\int \frac{dx}{\sin x \cos^3 x} \).

Sol. [Here, the power of \(\sin x \) is \(-1\) and that of \(\cos x \) is \(-3\). Since the sum of powers of \(\sin x \) and \(\cos x \) is \(-4\) which is even and negative, therefore, put \(z = \tan x \).]

Let \(z = \tan x \), then \(dz = sec^2 x \, dx \)

Now \(I = \int \frac{dx}{\sin x \cos^3 x} \)

\[
= \int \frac{\sec^4 x \, dx}{\tan x} = \int \frac{1+\tan^2 x}{\tan x} \sec^2 x \, dx \quad \text{tan} x
\]

Let \(\tan x = z \). Then, \(sec^2 x \, dx = dz \)

\[
\Rightarrow I = \int \frac{1+z^2}{z} \, dz = \int \left(\frac{1}{z} + z \right) \, dz = \log|z| + \frac{z^2}{2} + c = \log|\tan x| + \frac{\tan^2 x}{2} + c
\]

Example 7.49 Evaluate \(\int \sin^2 x \cos^2 x \, dx \).

Sol. [Here, the power of neither \(\sin x \) nor \(\cos x \) is an odd positive integer, but the sum of their powers is an even positive integer. Hence, we will have to change \(\sin^2 x \cos^2 x \) as sines or cosines of multiple angles.]

Now \(\int \sin^2 x \cos^2 x \, dx = \int \frac{1-\cos 2x}{2} \cdot \frac{1+\cos 2x}{2} \, dx \)

\[
= \frac{1}{4} \int (1-\cos^2 2x) \, dx = \frac{1}{4} \int \sin^2 2x \, dx = \frac{1}{4} \int \frac{1-\cos 4x}{2} \, dx = \frac{1}{4} \int \frac{1}{2} - \frac{\cos 4x}{2} \, dx
\]

\[
= \frac{1}{8} \left[x - \frac{\sin 4x}{4} \right] + c
\]
Example 7.50 Evaluate \(\int \frac{1}{x^2 - x + 1} \, dx \).

Sol. \(\int \frac{1}{x^2 - x + 1} \, dx = \int \frac{1}{(x-1/2)^2 + 3/4} \, dx = \int \frac{1}{(x-1/2)^2 + (\sqrt{3}/2)^2} \, dx = \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x-1}{\sqrt{3}} \right) + C \)

Example 7.51 Evaluate \(\int \frac{1}{2x^2 + x - 1} \, dx \).

Sol. \(\int \frac{1}{2x^2 + x - 1} \, dx = \frac{1}{2} \int \frac{1}{x^2 + \frac{x}{2} - \frac{1}{2}} \, dx = \frac{1}{2} \int \frac{1}{(x+1/4)^2 - (3/4)^2} \, dx = \frac{1}{2 \cdot 3(3/4)} \ln \left| \frac{x + 1}{x + 4/3} \right| + C = \frac{1}{3} \ln \left| \frac{x + 1/2}{x + 1} \right| + C = \frac{1}{3} \ln \left| \frac{2x - 1}{2(x + 1)} \right| + C \)

Example 7.52 Evaluate \(\int \frac{\cos x}{\sin \left(\frac{x - \pi}{6} \right) \sin \left(\frac{x + \pi}{6} \right)} \, dx \).

Sol. \(I = \int \frac{\cos x}{\sin \left(\frac{x - \pi}{6} \right) \sin \left(\frac{x + \pi}{6} \right)} \, dx = \int \frac{\cos x}{\sin^2 \left(\frac{x - \pi}{6} \right)} \, dx \)

Let \(\sin x = t \)
\[dt = \cos x \, dx \]
\[I = \int \frac{dt}{t^2 - \frac{1}{4}} \]
\[= \int \frac{dt}{t^2 - \frac{1}{4}} = \int \frac{dt}{\left(t - \frac{1}{2} \right)^2 + \frac{3}{4}} = \frac{1}{2} \ln \left| t - \frac{1}{2} \right| + C = \frac{1}{2} \ln \left| \frac{t - \frac{1}{2}}{2} \right| + C \]
\[I = \frac{1}{3} \int \frac{dt}{(t + \frac{1}{3})^2 + \left(\frac{2\sqrt{2}}{3}\right)^2} \]
\[= \frac{1}{3} \tan^{-1} \left(\frac{t + \frac{1}{3}}{\frac{2\sqrt{2}}{3}}\right) + C \]
\[= \frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{3t + 1}{2\sqrt{2}}\right) + C \]

FORM7:
\[\int \frac{1}{a + b \sin x + c \cos x} \, dx \]

Working Rule:
Write \(\sin x \) and \(\cos x \) in terms of \(\tan(x/2) \), and then substitute \(t \) for \(\tan(x/2) \).

Example 7.53
Evaluate \(\int \frac{\sin x}{\sin 3x} \, dx \).

Sol.
\[I = \int \frac{\sin x}{\sin 3x} \, dx = \int \frac{\sin x}{3 \sin x - 4 \sin^3 x} \, dx \]
\[= \int \frac{\sec^2 x}{3 \sec^2 x - 4 \tan^2 x} \, dx \quad \text{[Dividing } N^* \text{ and } D^* \text{ by } \cos^2 x] \]

Putting \(\tan x = t \) and \(\sec^2 x \, dx = dt \), we get
\[I = \int \frac{dt}{3(1 + t^2) - 4t^2} = \int \frac{dt}{3 - t^2} = \int \frac{1}{\sqrt{3} - t^2} \, dt \]
\[= \frac{1}{2\sqrt{3}} \log \left| \frac{\sqrt{3} + t}{\sqrt{3} - t} \right| + C \]
\[= \frac{1}{2\sqrt{3}} \log \left| \frac{\sqrt{3} + \tan x}{\sqrt{3} - \tan x} \right| + C \]

Example 7.54
Evaluate \(\int \frac{1}{3 + \sin 2x} \, dx \).

Sol.
\[I = \int \frac{1}{3 + \sin 2x} \, dx \]
\[= \int \frac{1}{3(\sin^2 x + \cos^2 x) + 2 \sin x \cos x} \, dx \]
\[= \int \frac{1}{3 \tan^2 x + 2 \tan x + 3} \, dx \quad \text{[Dividing } N^* \text{ and } D^* \text{ by } \cos^2 x] \]

Putting \(\tan x = t \) and \(\sec^2 x \, dx = dt \), we get
\[\therefore I = \int \frac{dt}{3t^2 + 2t + 3} = \frac{1}{3} \int \frac{dt}{t^2 + \frac{2}{3} t + 1} \]

Example 7.55
Evaluate \(\int \frac{1}{1 + \sin x + \cos x} \, dx \).

Sol.
Putting \(\sin x = \frac{2 \tan x/2}{1 + \tan^2 x/2} \) and \(\cos x = \frac{1 - \tan^2 x/2}{1 + \tan^2 x/2} \),
we have
\[I = \int \frac{1}{1 + \sin x + \cos x} \, dx \]
\[= \int \frac{1}{1 + \frac{2 \tan x/2}{1 + \tan^2 x/2} + \frac{1 - \tan^2 x/2}{1 + \tan^2 x/2}} \, dx \]
\[= \int \frac{1 + \tan^2 x/2}{1 + \tan^2 x/2 + 2 \tan x/2 - \tan^2 x/2} \, dx \]
\[= \int \frac{\sec^2 x/2}{2 + 2 \tan x/2} \, dx \]

Putting \(\tan x/2 = t \) and \(\frac{1}{2} \, \sec^2 \frac{x}{2} \, dx = dt \), we get
\[I = \int \frac{2 \, dt}{2 + 2t} = \int \frac{1}{t + 1} \, dt = \log |t + 1| + C \]
\[= \log \left| \tan \frac{x}{2} + 1 \right| + C \]

FORM8:
\[\int \frac{p \cos x + q \sin x + r}{a \cos x + b \sin x + c} \, dx \]

Working Rule:
In this integral, express numerator as \(\lambda \) (denominator) + \(\mu \) (differentiation of denominator) + \(\gamma \).
Find \(\lambda, \mu \) and \(\gamma \) by comparing coefficients of \(\sin x, \cos x \) and constant term and splitting the integral into the sum of three integrals.

\[
\lambda \int \frac{dx}{x} + \mu \int \frac{1}{x^2 + 1} dx + n \int \frac{dx}{a \sin x + b \cos x + c}
\]

Example 7.56 Evaluate \(\int \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} dx \).

Sol. We have, \(I = \int \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} dx \)

Let \(3 \sin x + 2 \cos x = \mu \frac{dx}{3 \cos x + 2 \sin x} \)

\(\Rightarrow 3 \sin x + 2 \cos x = \mu (-3 \sin x + 2 \cos x) \)

Comparing the coefficients of \(\sin x \) and \(\cos x \) on both sides, we get

\(-3 \mu + 3 = 3 \) and \(2 \mu + 2 \lambda = 2 \) \(\Rightarrow \lambda = \frac{12}{13} \) and \(\mu = -\frac{5}{13} \)

\(\therefore I = \int \frac{\mu (-3 \sin x + 2 \cos x) + \lambda (3 \cos x + 2 \sin x)}{3 \cos x + 2 \sin x} dx \)

\(= \lambda \int \frac{dx}{x} + \mu \int \frac{dx}{3 \cos x + 2 \sin x} \)

\(= \lambda x + \mu \int \frac{dt}{t}, \) where \(t = 3 \cos x + 2 \sin x \)

\(= \frac{12}{13} x - \frac{5}{13} \log |3 \cos x + 2 \sin x| + C \)

Bi-quadratic Form

Example 7.57 Evaluate \(\int \frac{x^2 + 1}{x^4 + 1} dx \).

Sol. \(I = \int \frac{x^2 + 1}{x^4 + 1} dx = \int \frac{1 + \frac{1}{x^4}}{x^2 + \frac{1}{x^2}} \left(x - \frac{1}{x} \right)^2 + 2 \)

Let \(x - \frac{1}{x} = t \) \(\Rightarrow d \left(x - \frac{1}{x} \right) dx = dt \Rightarrow \left(1 + \frac{1}{x^2} \right) dx = dt \)

\(\therefore I = \int \frac{dt}{t^2 + (\sqrt{2})^2} = \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{t}{\sqrt{2}} \right) + C \)

\(= \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x - \frac{1}{x}}{\sqrt{2}} \right) + C \)

\(= \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x^2 - 1}{\sqrt{2}x} \right) + C \)

Example 7.58 Evaluate \(\int \frac{x^2 - 1}{x^4 + x^2 + 1} dx \).

Sol. \(I = \int \frac{x^2 - 1}{x^4 + x^2 + 1} dx = \int \frac{1 - \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} dx \)

\(= \int \frac{1 - \frac{1}{x^2}}{\left(x + \frac{1}{x} \right)^2 - 1^2} dx \)

Let \(x + \frac{1}{x} = u \) then \(d \left(x + \frac{1}{x} \right) = du \Rightarrow \left(1 - \frac{1}{x^2} \right) dx = du \)

\(\Rightarrow I = \int \frac{du}{u^2 - 1^2} = \frac{1}{2(1)} \log \left| \frac{u - 1}{u + 1} \right| + C \)

\(= \frac{1}{2} \log \left| \frac{x + \frac{1}{x} - 1}{x + \frac{1}{x} + 1} \right| + C = \frac{1}{2} \log \left| \frac{x^2 - x + 1}{x^2 + x + 1} \right| + C \)

Example 7.59 Evaluate \(\int \frac{x^2 + 4}{x^3 + 16} dx \).

Sol. \(I = \int \frac{x^2 + 4}{x^3 + 16} dx = \int \frac{1 + \frac{4}{x^2}}{x^2 + 16} \frac{dx}{x^2} \)

\(= \int \frac{1 + \frac{4}{x^2}}{x^2 + \left(4 \left(\frac{1}{2} \right) \right)^2 - 8 + 8} \frac{dx}{x^2} \)

\(= \int \frac{1 + \frac{4}{x^2}}{x^2 + \left(\frac{4}{2} \right)^2} \frac{dx}{x^2} \)

Let \(x - \frac{4}{x} = t \) then \(d \left(x - \frac{4}{x} \right) = dt \Rightarrow \left(1 + \frac{4}{x^2} \right) dx = dt \)

\(\therefore I = \int \frac{dt}{t^2 + (2 \sqrt{2})^2} = \frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{t}{2\sqrt{2}} \right) + C \)

\(= \frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{x - \frac{4}{x}}{2\sqrt{2}} \right) + C \)

\(= \frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{x^2 - 4}{2x \sqrt{2}} \right) + C \)

Example 7.60 Evaluate \(\int \tan \theta \; d\theta \).

Sol. Let \(I = \int \tan \theta \; d\theta \)
Let \(\tan \theta = x^2 \). Then, \(d(\tan \theta) = d(x^2) \Rightarrow \sec^2 \theta \, d\theta = 2x \, dx \)
or, \(d\theta = \frac{2x \, dx}{\sec^2 \theta} = \frac{2x \, dx}{1 + \tan^2 \theta} = \frac{2x \, dx}{1 + x^4} \)

\[
I = \int \frac{2x \, dx}{x^4 + 1} = \int \frac{2x^2 \, dx}{x^4 + 1} = \frac{2}{x^2 + 1/x^2} \, dx
\]

\[
I = \int \frac{1}{x^2 + 1/x^2} \, dx = \int \frac{1}{x^2 + 1/x^2} \, dx + \int \frac{1}{x^2 + 1/x^2} \, dx
\]

Putting \(x = u \) in 1st integral and \(x = 1/x \) in 2nd integral, we get

\[
I = \int \frac{du}{u^2 + (\sqrt{2})^2} + \int \frac{dv}{v^2 - (\sqrt{2})^2}
\]

\[
= \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{u}{\sqrt{2}} \right) + \frac{1}{2\sqrt{2}} \log \left| \frac{v - \sqrt{2}}{v + \sqrt{2}} \right| + C
\]

\[
= \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x-1/x}{\sqrt{2}} \right) + \frac{1}{2\sqrt{2}} \log \left| \frac{x+1/x - \sqrt{2}}{x+1/x + \sqrt{2}} \right| + C
\]

\[
= \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\tan \theta - 1}{\sqrt{2} \tan \theta} \right) + \frac{1}{2\sqrt{2}} \log \left| \frac{\tan \theta - \sqrt{2} \tan \theta + 1}{\tan \theta + \sqrt{2} \tan \theta + 1} \right| + C
\]

Example 7.61 Evaluate \(\int \frac{x^2 - 1}{(x^2 + 1)^{\sqrt{1} + x^4}} \, dx \).

Sol.

\[
I = \int \frac{x^2 - 1}{(x^2 + 1)^{\sqrt{1} + x^4}} \, dx
\]

\[
= \int \frac{x^2(1-1/x^2)}{x^2(x+1/x)\sqrt{x^2 + 1/x^2}} \, dx
\]

\[
= \int \frac{(1-1/x^2)}{(x+1/x)\sqrt{x+1/x}} \, dx - 2
\]

Putting \(x + 1/x = t \), we have \(I = \int \frac{dt}{t\sqrt{t^2 - 2}} \)

Again putting \(t^2 - 2 = y^2 \), \(2t \, dt = 2y \, dy \),

\[
I = \int \frac{y \, dy}{(y^2 + 2)y} = \frac{1}{\sqrt{2}} \tan^{-1} \frac{y}{\sqrt{2}} = \frac{1}{2} \tan^{-1} \frac{\sqrt{x^2 + 1/x^2}}{\sqrt{2}} + C.
\]

Concept Application Exercise 7.5

Evaluate the following:

1. \(\int \frac{1}{2x^2 + x - 1} \, dx \)
2. \(\int \frac{x}{x^4 + x^2 + 1} \, dx \)
3. \(\int \frac{(4x^2 + 1) \, dx}{x^2 + 3x + 2} \)
4. \(\int \frac{x^3 + x + 1}{x^2 - 1} \, dx \)
5. \(\int \frac{x^2 - 1}{(x^4 + 3x^2 + 1) \tan^{-1} \left(\frac{x + 1/x}{x + 1} \right)} \, dx \)
6. \(\int \frac{1}{x^4 + 1} \, dx \)
7. \(\int \frac{1}{\sin^4 x + \cos^4 x} \, dx \)

Some Standard Trigonometric Substitutions

<table>
<thead>
<tr>
<th>Expression</th>
<th>Substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = a \tan \theta) or (a \cot \theta)</td>
<td>(x = a \sin \theta) or (a \cos \theta)</td>
</tr>
<tr>
<td>(a = x)</td>
<td>(a = x) sec (\theta) or (a \cos \theta)</td>
</tr>
<tr>
<td>(a = x) (\sqrt{a + x}) or (\sqrt{a - x})</td>
<td>(a = x) (\sqrt{a + x}) or (\sqrt{a - x})</td>
</tr>
<tr>
<td>(x = \alpha \cos 2 \theta)</td>
<td>(x = \alpha \cos^2 \theta + \beta \sin^2 \theta)</td>
</tr>
</tbody>
</table>

Example 7.62 Evaluate \(\int \frac{1}{x^2 + 1 + x^2} \, dx \).

Sol. Let \(x = \tan \theta \) \(\Rightarrow dx = \sec^2 \theta \, d\theta \)

\[
\Rightarrow \int \frac{1}{x^2 + 1 + x^2} \, dx = \int \frac{\sec^2 \theta \, d\theta}{\tan^2 \theta \sec \theta}
\]

\[
= \int \cosec \theta \cot \theta \, d\theta = -\cosec \theta + C
\]

Example 7.63 Evaluate \(\int \frac{dx}{(a^2 + x^2)^{3/2}} \).

Sol. \(I = \int \frac{dx}{(a^2 + x^2)^{3/2}} \)
Put \(x = a \tan \theta \Rightarrow dx = a \sec^2 \theta d\theta \)

\[
\therefore \quad I = \int \frac{a \sec^2 \theta}{(a^2 + a^2 \tan^2 \theta)^{3/2}} d\theta \\
= \int \frac{a \sec^2 \theta}{a^3 (\sec^2 \theta)^{3/2}} d\theta \\
\Rightarrow \quad I = \frac{1}{a^2} \int \frac{d\theta}{\sec \theta} = \frac{1}{a^2} \int \cos \theta \, d\theta = \frac{1}{a^2} \sin \theta + c \\
\Rightarrow \quad I = \frac{x}{a^2 (x^2 + a^2)^{1/2}} + c
\]

FORM9:

\[
\int \frac{dx}{\sqrt{\text{Quadratic}}}
\]

Standard Formulae

1. \(\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + c \)

Proof:

Let \(x = a \sin \theta, \) then \(dx = a \cos \theta \, d\theta \).

Now \(\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a \cos \theta}{a \cos \theta} \, d\theta \\
= \int \frac{a \cos \theta}{\sqrt{a^2 (1 - \sin^2 \theta)}} \, d\theta \\
= \int \frac{a \cos \theta}{a \cos \theta} \, d\theta = \theta + c = \sin^{-1} \frac{x}{a} + c \\
= \sin^{-1} \frac{x}{a} + c
\]

2. \(\int \frac{dx}{\sqrt{x^2 + a^2}} = \log(x + \sqrt{x^2 + a^2}) + c \)

Proof: Here integrand involves an expression of the form \(\sqrt{a^2 + x^2} \); therefore substitution \(x = a \tan \theta \) may be tried.

Let \(x = a \tan \theta, \) then \(dx = a \sec^2 \theta \, d\theta \).

Now, \(\int \frac{dx}{\sqrt{a^2 + x^2}} = \int \frac{a \sec^2 \theta}{\sqrt{a^2 + a^2 \tan^2 \theta}} \, d\theta \\
= \int \frac{a \sec^2 \theta}{\sqrt{a^2 (1 + \tan^2 \theta)}} \, d\theta \\
= \int \frac{a \sec^2 \theta}{a \sec \theta} \, d\theta = \int \sec \theta \, d\theta = \log |\sec \theta + \tan \theta| + c
\]

Example 7.64 Evaluate \(\int \frac{1}{\sqrt{(x-1)(x-2)}} \, dx \).

Sol.

\[
I = \int \frac{1}{\sqrt{x^2 - 3x + 2}} \, dx \\
= \int \frac{1}{\sqrt{x^2 - 3x + \frac{9}{4} - \frac{9}{4} + 2}} \, dx \\
= \int \frac{1}{\sqrt{(x - \frac{3}{2}) - \left(\frac{1}{2}\right)^2}} \, dx \\
= \log \left| x - \frac{3}{2} + \sqrt{\left(x - \frac{3}{2}\right)^2 - \left(\frac{1}{2}\right)^2} \right| + C \\
= \log \left| x - \frac{3}{2} + \sqrt{x^2 - 3x + 2} \right| + C
\]

Example 7.65 Evaluate \(\int \frac{\sec^2 x}{\sqrt{16 + \tan^2 x}} \, dx \).

Sol.

\[
I = \int \frac{\sec^2 x}{\sqrt{16 + \tan^2 x}} \, dx = \int \frac{\sec^2 x}{\sqrt{4^2 + \tan^2 x}} \, dx \\
\]

Let \(\tan x = t \Rightarrow \sec^2 x \, dx = dt \)

\[
\Rightarrow \quad I = \int \frac{dt}{\sqrt{16 + t^2}} = \int \frac{dt}{\sqrt{4^2 + t^2}} \\
= \log \left| t + \sqrt{4^2 + t^2} \right| + C \\
= \log \left| \tan x + \sqrt{16 + \tan^2 x} \right| + C
\]
Example 7.66 Evaluate \(\int \frac{e^x}{\sqrt{4-e^{2x}}} \, dx \).

Sol.
\[
I = \int \frac{e^x}{\sqrt{4-e^{2x}}} \, dx = \int \frac{e^x}{\sqrt{2^2-(e^x)^2}} \, dx
\]

Let \(e^x = t \) \(\Rightarrow \) \(e^x \, dx = dt \)

\[
\therefore I = \int \frac{dt}{\sqrt{4-t^2}} = \int \frac{dt}{\sqrt{2^2-t^2}}
\]

\[
= \sin^{-1} \left(\frac{t}{2} \right) + C = \sin^{-1} \left(\frac{e^x}{2} \right) + C
\]

Example 7.67 Evaluate \(\int \frac{e^x}{2e^x + 6e^x + 5} \, dx \).

Sol.
\[
I = \int \frac{e^x}{e^{2x} + 6e^x + 5} \, dx = \int \frac{e^x}{(e^x)^2 + 6e^x + 5} \, dx
\]

Let \(e^x = t \) \(\Rightarrow \) \(e^x \, dx = dt \)

\[
\therefore I = \int \frac{dt}{t^2 + 6t + 5}
\]

\[
= \int \frac{1}{(t+3)^2 - 2^2} \, dt
\]

\[
= \frac{1}{2 \times 2} \log \left| \frac{t+3-2}{t+3+2} \right| + C = \frac{1}{4} \log \left| \frac{e^x+1}{e^x+5} \right| + C
\]

Example 7.68 Evaluate \(\int \frac{4x+1}{x^2+3x+2} \, dx \).

Sol.
\[
I = \int \frac{4x+1}{x^2+3x+2} \, dx
\]

\[
= \int \frac{2(2x+3)-5}{x^2+3x+2} \, dx
\]

\[
= 2 \int \frac{2x+3}{x^2+3x+2} \, dx - 5 \int \frac{1}{x^2+3x+2} \, dx
\]

\[
= 2 \log |x^2+3x+2| - 5 \int \frac{1}{x^2+3x+(9/4)-(9/4)+2} \, dx
\]

\[
= 2 \log |x^2+3x+2| - 5 \int \frac{1}{(x+3/2)^2 -(1/2)^2} \, dx
\]

\[
= 2 \log |x^2+3x+2| - \frac{5}{2(1/2)} \log \left| \frac{x+3}{2} - \frac{1}{2} \right| + C
\]

Example 7.69 Evaluate \(\int \frac{1+x}{x} \, dx \).

Sol.
\[
\int \frac{1+x}{x} \, dx = \int \frac{1}{x} + \frac{1}{x} \, dx
\]

\[
= \int \frac{1}{1+x} \, dx = \int \frac{1}{\sqrt{x} \left(1 + \frac{1}{x} \right)} \, dx
\]

\[
= \frac{1}{2} \log \left| \frac{x+1}{2} + \sqrt{x^2 + x} \right| + C
\]

Concept Application Exercise 7.6

Evaluate the following:

1. \(\int \frac{x^2}{\sqrt{1-x^6}} \, dx \)
2. \(\int \frac{x}{\sqrt{a^2-x^2}} \, dx \)
3. \(\int \frac{1}{\sqrt{1-e^{2x}}} \, dx \)
4. \(\int \frac{2x+3}{\sqrt{x^2+4x+1}} \, dx \)
5. \(\int \frac{e^{2x}}{\sqrt{1+x^2}} \, dx \)
6. \(\int x^2 \, d(tan^{-1} x) \)

Integration by Parts

Theorem

If \(u \) and \(v \) are two functions of \(x \), then

\[
\int uv \, dx = u \left(\int v \, dx \right) - \left\{ \frac{du}{dx} \int v \, dx \right\} \, dx
\]
That is the integral of product of two functions = (first function) ×
(integral of second function) − integral of (differential of first
function × integral of second).

Proof:
For any two functions \(f(x) \) and \(g(x) \), we have

\[
\frac{d}{dx} \{ f(x) g(x) \} = f(x) \frac{d}{dx} (g(x)) + g(x) \frac{d}{dx} \{ f(x) \}
\]

\[
\int \left(f(x) \frac{d}{dx} (g(x)) + g(x) \frac{d}{dx} \{ f(x) \} \right) dx = f(x) g(x)
\]

\[
\int \left(f(x) \frac{d}{dx} (g(x)) \right) dx + \int \left(g(x) \frac{d}{dx} \{ f(x) \} \right) dx = f(x) g(x)
\]

\[
\int \left(f(x) \frac{d}{dx} (g(x)) \right) dx = f(x) g(x) - \int \left(g(x) \frac{d}{dx} \{ f(x) \} \right) dx
\]

Let, \(f(x) = u \) and \(\frac{d}{dx} \{ g(x) \} = v \). So that \(g(x) = \int v dx \)

\[
\therefore \int uv \, dx = u \left(\int v \, dx \right) - \int \left(\frac{du}{dx} \int v \, dx \right) \, dx
\]

Example 7.70 Evaluate \(\int x \sin 3x \, dx \).

Sol. Here, both the functions, viz., \(x \) and \(\sin 3x \) are easily
integrable and the derivative of \(x \) is one, a less complicated function. Therefore, we take \(x \) as the first
function and \(\sin 3x \) as the second function.

\[
\therefore \int x \sin 3x \, dx = \int x \left(\frac{3}{3} \right) \sin 3x \, dx
\]

\[
= -x \left(\frac{3}{3} \right) \cos 3x - \int \left(\frac{3}{3} \right) \sin 3x \, dx
\]

\[
= -x \cos 3x + \frac{1}{3} \cos 3x + C
\]

Example 7.71 Evaluate \(\int x \log x \, dx \).

Sol.

\[
\int x \log x \, dx
\]

\[
= \log x \left(\int x \, dx \right) - \int \left(\frac{d}{dx} (\log x) \int x \, dx \right) \, dx
\]

\[
= \log x \left(\frac{x^2}{2} \right) - \int \frac{1}{x} \frac{x^2}{2} \, dx
\]

\[
= \frac{x^2}{2} \log x - \frac{1}{2} \int x \, dx
\]

\[
= \frac{x^2}{2} \log x - \frac{1}{2} \left(\frac{2}{2} \right) + C
\]

Example 7.72 Evaluate \(\int \sin^{-1} x \, dx \).

Sol. Let \(\sin^{-1} x = t \). Then \(x = \sin t \Rightarrow dx = \cos t \, dt \)

\[
\therefore \int \sin^{-1} x \, dx = \int t \cos t \, dt
\]

\[
= t \sin t - \int 1 \sin t \, dt
\]

\[
= t \sin t - \int \sin t \, dt
\]

\[
= t \sin t + \cos t + C
\]

\[
= x \sin^{-1} x + \sqrt{1 - x^2} + C
\]

Example 7.73 Evaluate \(\int \frac{x - \sin x}{1 - \cos x} \, dx \).

Sol.

\[
\int \frac{x - \sin x}{1 - \cos x} \, dx = \int \frac{x}{1 - \cos x} - \int \frac{\sin x}{1 - \cos x} \, dx
\]

\[
= \int \frac{\cos x}{2} \, dx
\]

\[
= \frac{2 \sin x}{2 \cos x} \frac{x}{2} \, dx
\]

\[
= \frac{2 \sin x}{2 \cos x} \frac{x}{2} \, dx
\]

In the above stated order, the function on the left is always
chosen as the first function. This rule is called as ILATE.
\[\frac{1}{2} \int x \csc^2 \frac{x}{2} \, dx = \frac{1}{2} \left\{ x \left(-2 \cot \frac{x}{2} \right) - \int 1 \left(-2 \cot \frac{x}{2} \right) \, dx \right\} \]
\[= -x \cot \frac{x}{2} + \int \cot \frac{x}{2} \, dx = \int \cot \frac{x}{2} \, dx + C \]
\[= -x \cot \frac{x}{2} + C \]

Example 7.74 If \(f(x) \) is a polynomial function of the \(n \)th degree, prove that \(\int e^x f(x) \, dx = e^x \left[f(x) - f'(x) + \ldots + (-1)^n f^{(n)}(x) \right] + C \),

where \(f^{(n)}(x) \) denotes \(\frac{d^n f}{dx^n} \).

Sol. \[I = \int e^x f(x) \, dx \]
\[= f(x) e^x - \int e^x f'(x) \, dx \]
\[= f(x) e^x - f'(x) e^x \frac{e^x}{e^x} + \int e^x f''(x) \, dx \]
\[= f(x) e^x - f'(x) e^x + f''(x) e^x \frac{e^x}{e^x} - \int e^x f'''(x) \, dx \]
\[= f(x) e^x - f'(x) e^x + f''(x) e^x - f'''(x) e^x + \int e^x f''''(x) \, dx \]
continuing this way we get \(I = e^x \left[f(x) - f'(x) + f''(x) - f'''(x) + \ldots + (-1)^n f^{(n)}(x) \right] + C \)

Example 7.75 Evaluate \(\int \sin^{-1} \frac{x}{\sqrt{a^2 + x^2}} \, dx \).

Sol. \[I = \int \sin^{-1} \frac{x}{\sqrt{a^2 + x^2}} \, dx \]
Let \(x = a \tan^2 \theta \Rightarrow dx = 2a \tan \theta \sec^2 \theta \, d\theta \)
\[\Rightarrow \int \sin^{-1} (\tan \theta) \frac{2a \sec^2 \theta \tan \theta \, d\theta}{2a} \]
\[= 2a \int \frac{\tan \theta \sec^2 \theta \tan \theta \, d\theta}{2} \]
\[= 2a \left[\tan \theta \frac{\tan \theta}{2} \right] \]
\[= a \left[\tan \theta \frac{\tan \theta}{2} - \left(\frac{\tan \theta}{2} \right) \right] \]
\[= a \left[\tan \theta \frac{\tan \theta - \tan \theta + \theta}{2} + \theta \right] + C \]
where, \(\theta = \tan^{-1} \frac{x}{a} \).

Example 7.76 Evaluate \(\int \left(\frac{\cos x}{x} - \log x \sin x \right) \, dx \)

Sol. \[\int \left(\frac{\cos x}{x} - \log x \sin x \right) \, dx = \int \frac{\cos x}{x} \, dx - \int \sin x \log x \, dx \]
\[= \cos x \log x - \left(-\sin x \log x - \int \sin x \, dx \right) + C \]
\[= \cos x \log x + C \]

Example 7.77 Find an anti-derivative of the function \(f(x)g''(x) - f''(x)g(x) \).

Sol. The required anti-derivative is given by
\[\int \left[f(x)g''(x) - f''(x)g(x) \right] \, dx \]
\[= \int f(x) g''(x) \, dx - \int f''(x) g(x) \, dx \]
\[= \left[f(x) g'(x) - \int f'(x) g'(x) \, dx \right] - \left(g(x) f'(x) - \int f'(x) g'(x) \, dx \right) + C \]
\[= f(x) g'(x) - g(x)f''(x) + C \]

Example 7.78 Evaluate \(\int \left(3x^2 \tan \frac{1}{x} - x \sec^2 \frac{1}{x} \right) \, dx \).

Sol. \[\int \left(3x^2 \tan \frac{1}{x} - x \sec^2 \frac{1}{x} \right) \, dx \]
\[= 3 \int x^2 \tan \frac{1}{x} \, dx - \int x \sec^2 \frac{1}{x} \, dx \]
\[= \tan \frac{1}{x} - \int \left(\sec^2 \frac{1}{x} \right) \left(-\frac{1}{x^2} \right) x^3 \, dx - \int x \sec^2 \frac{1}{x} \, dx \]
\[= x^3 - \tan \frac{1}{x} + c \]

Example 7.79 Evaluate \(\int e^x \left(\frac{1}{x} - \frac{1}{x^2} \right) \, dx \).

Sol. \[\int e^x \left(\frac{1}{x} - \frac{1}{x^2} \right) \, dx \]
\[= \left(-\frac{1}{x} + \frac{1}{x} \right) \, dx \]
\[= \frac{1}{e^x} + C \]
Example 7.80 Evaluate \(\int e^x \frac{x}{(x+1)^2} \, dx \).

Sol. \(\int e^x \frac{x}{(x+1)^2} \, dx \)

\[= \int e^x \frac{x + 1 - 1}{(x+1)^2} \, dx \]

\[= \int e^x \left(\frac{1}{x + 1} + \left(\frac{1}{x + 1} \right)' \right) \, dx = \frac{1}{x + 1} e^x + c \]

Example 7.81 Evaluate \(\int e^x \left(\frac{1 - \sin x}{1 - \cos x} \right) \, dx \).

Sol. \(\int e^x \left(\frac{1 - \sin x}{1 - \cos x} \right) \, dx \)

\[= \int e^x \left(1 - 2 \sin \frac{x}{2} \cos \frac{x}{2} \right) \, dx \]

\[= e^x \left(\frac{x}{2} - \cot \frac{x}{2} \right) \, dx \]

\[= - \int e^x \left(\cot \frac{x}{2} + \left(\cot \frac{x}{2} \right)' \right) \, dx \]

\[= -e^x \cot \frac{x}{2} + c \]

Example 7.82 Evaluate \(\int (\sin (\log x) + \cos (\log x)) \, dx \).

Sol. \(I = \int (\sin (\log x) + \cos (\log x)) \, dx \)

Let \(\log x = t \). Then \(x = e^t \) \(\Rightarrow dx = e^t \, dt \)

\[I = \int e^t \left(\sin t + \cos t \right) \, dt \]

\[= e^t \sin t + c \]

\[= x \sin (\log x) + c \]

Example 7.83 Evaluate \(\int \frac{\log x}{(1 + \log x)^2} \, dx \).

Sol. \(I = \int \frac{\log x}{(1 + \log x)^2} \, dx \)

Let \(\log x = t \). Then \(x = e^t \) \(\Rightarrow dx = e^t \, dt \).

\[\therefore I = \int \frac{t e^t}{(t + 1)^2} \, dt \]

\[= \int e^t \left(\frac{1}{t + 1} - \frac{1}{(t + 1)^2} \right) \, dt \]

\[= \frac{e^t}{t + 1} + c = \frac{x}{(\log x + 1)} + c \]

Formula

\[\int e^x \sin bx \, dx = \frac{e^x}{a^2 + b^2} (a \sin bx - b \cos bx) + c \]

Proof: \(I = \int e^x \sin bx \, dx \)

\[= e^x \int \sin bx \, dx - \frac{a}{b} \int e^x \cos bx \, dx + c \]

\[= -e^x \cos bx + \frac{a}{b} \int e^x \cos bx \, dx + c \]

\[= -e^x \cos bx + \frac{a}{b} \left[e^x \cos bx - \frac{a}{b} \int e^x \sin bx \, dx \right] + c \]

\[= -e^x \cos bx + \frac{a}{b} \left[e^x \sin bx - \frac{a}{b} \int e^x \sin bx \, dx \right] + c \]

\[\Rightarrow \left(1 + \frac{a^2}{b^2} \right) I = -e^x \cos bx + \frac{a}{b} e^x \sin bx + c \]

\[\Rightarrow I = e^x \left(a \sin bx - b \cos bx \right) + c \]

Similarly, we can prove that

\[\int e^x \cos bx \, dx = \frac{e^x}{a^2 + b^2} (b \sin bx + a \cos bx) + c \]

Example 7.84 Evaluate \(\int e^{2x} \sin 3x \, dx \).

Sol. \(\int e^{2x} \sin 3x \, dx \)

\[= \frac{e^{2x}}{2^2 + 3^2} (2 \sin 3x - 3 \cos 3x) + c \]

\[= \frac{2^{2x}}{13} (2 \sin 3x - 3 \cos 3x) + c \]

Example 7.85 Evaluate \(\int \sin (\log x) \, dx \).

Sol. Let \(I = \int \sin (\log x) \, dx \).

Let \(\log x = t \). Then \(x = e^t \) \(\Rightarrow dx = e^t \, dt \).

\[\therefore I = \int e^t (\sin t - \cos t) \, dt + c \]

Hence, \(\int \sin (\log x) \, dx = \frac{x}{2} [\sin (\log x) - \cos (\log x)] + c \)

Example 7.86 Evaluate \(\int e^{\sin^{-1} x} \, dx \).

Sol. \(I = \int e^{\sin^{-1} x} \, dx \)

let \(\sin^{-1} x = t \) \(\Rightarrow x = \sin t \) \(\Rightarrow dx = \cos t \, dt \)

\[\Rightarrow I = \int e^t \, dt \]
Proper and Improper Fractions

Any rational algebraic function is called a proper fraction if the degree of numerator is less than that of its denominator, otherwise it is called an improper fraction.

For example \(\frac{x^2 + x + 2}{x^3 + 4x^2 - 7x + 1} \) is a proper fraction.

Whereas \(\frac{x^4 - 9x^2 - 10x + 7}{x^2 + 4x + 5} \)

\[= \left(\frac{(x^2 - 4x + 2) + \frac{2x - 3}{x^2 + x + 5}}{x^2 + 4x + 5} \right) \]

is an improper fraction.

To integrate the rational function on the L.H.S., it is enough to integrate the two fractions on the R.H.S, which is easy. This is known as the method of partial fractions. Here, we assume that the denominator can be fractional into linear or quadratic factors.

Partial Fractions

Consider the rational function \(\frac{x + 7}{(2x - 3)(3x + 4)} \)

\[= \frac{1}{2x - 3} - \frac{1}{3x + 4}. \]

The two fractions on the R.H.S. are called the partial fractions.

Note:

While using the method of partial fractions, we must have the degree of polynomial in numerator \(P(x) \) always less than that of denominator \(Q(x) \). If it is not so, then we carry out the division of \(P(x) \) by \(Q(x) \) and reduce the degree of the numerator to less than that of the denominator.

\[\frac{P(x)}{Q(x)} = \frac{P_1(x)}{Q(x)} + \frac{P_2(x)}{Q(x)} \]

where the degree of \(P_1(x) \) is the degree of \(Q(x) \), then to integrate, we apply the method of partial fractions to \(\frac{P_2(x)}{Q(x)} \).

The partial fractions depend on the nature of the factors of \(Q(x) \). We have to deal with the following different type of partial fractions to the factors of \(Q(x) \) are:

(i) linear and non-repeated.
(ii) linear and repeated.
(iii) quadratic and non-repeated.

Case I: When denominator is expressible as the product of non-repeated linear factors.

Let \(Q(x) = (x - a_1)(x - a_2)(x - a_3) \ldots (x - a_n) \).

Then, we assume that

\[\frac{P(x)}{Q(x)} = \frac{A_1}{x - a_1} + \frac{A_2}{x - a_2} + \frac{A_3}{x - a_3} + \ldots + \frac{A_n}{x - a_n} \]
where A_1, A_2, \ldots, A_n are constants and can be determined by equating the numerator on R.H.S. to the numerator on L.H.S. and then substituting $x = a_i$ for $i = 1, 2, \ldots, n$.

Shortcut method: Consider $x - a_1 = 0$, then $x = a_1$ put this value of x in all the expressions other than $x - a_1$, and so on, e.g.,

$$
\frac{x^2 + 1}{x(x-1)(x+1)} = \frac{0 + 1}{0(0-1)(0+1)} \Rightarrow 1 + 1 + 1
$$

Case II: When the denominator $g(x)$ is expressible as the product of the linear factors such that some of them are repeating. (Linear and Repeated).

Let $Q(x) = (x - a_1)^2 (x - a_2)^2 \ldots (x - a_n)$. Then we assume that

$$
P(x) \quad A_1 \quad A_2 \quad \ldots \quad A_n
$$

$$
Q(x) = (x - a_1)^2 (x - a_2)^2 \ldots (x - a_n)
$$

Case III: When some of the factors in denominator are quadratic but non-repeating. Corresponding to each quadratic factor $ax^2 + bx + c$, we assume the partial fraction of the type

$$
\frac{Ax + B}{ax^2 + bx + c}
$$

where A and B are constants to be determined by comparing the coefficients of similar power of x in numerator on both sides.

Example 7.87 Evaluate $\int \frac{2x-1}{(x-1)(x+2)(x-3)} \, dx$.

Sol. Since all the factors in the denominator are linear, we have

$$
\int \frac{2x-1}{(x-1)(x+2)(x-3)} \, dx = \int \left[\frac{1}{(x-1)(3(-2))} + \frac{-5}{(-3)(x+2)(-5)} + \frac{5}{(2)(5)(x-3)} \right] \, dx
$$

$$
= -\frac{1}{6} \log |x-1| - \frac{1}{3} \log |x+2| + \frac{1}{2} \log |x-3| + C
$$

Example 7.88 Evaluate $\int \frac{2x}{(x^2 + 1)(x^2 + 2)} \, dx$.

Sol. Let $I = \int \frac{2x}{(x^2 + 1)(x^2 + 2)} \, dx$.

Putting $x = t$ and $2x \, dx = dt$, we get

$$
I = \int \frac{dt}{(t+1)(t+2)} = \int \left[\frac{1}{t+1} - \frac{1}{t+2} \right] \, dt
$$

$$
= \log |t+1| - \log |t+2| + C
$$

$$
= \log |x^2 + 1| - \log |x^2 + 2| + C
$$

Example 7.89 Evaluate $\int \frac{1}{\sin x - \sin 2x} \, dx$.

Sol.

$$
I = \int \frac{1}{\sin x - \sin 2x} \, dx = \int \frac{1}{\sin x - 2 \sin x \cos x} \, dx
$$

$$
= \int \frac{1}{\sin x (1 - 2 \cos x)} \, dx
$$

$$
= \int \frac{1}{\sin x} \, dx = \int \frac{\sin x}{\sin^2 x} \, dx
$$

$$
= \int \frac{1}{\sin x} \, dx
$$

Putting $\cos x = t$, and $- \sin x \, dx = dt$ or $\sin x \, dx = -dt$, we get

$$
I = \int \frac{-dt}{(1 - t^2)(1 - 2t)}
$$

$$
= \int \left[\frac{1}{(t-1)(1+t)(1-2t)} \right] \, dt
$$

$$
= \int \left[\frac{1}{(t-1)(2)(-1)} + \frac{(2)(1+t)}{(1-2t)} \right] \, dt
$$

$$
= -\frac{1}{6} \log |1-t| - \frac{1}{3} \log |1+t| + \frac{2}{3} \log |1-2t| + C
$$

Example 7.90 Evaluate $\int \frac{1-\cos x}{\cos x(1+\cos x)} \, dx$.

Sol. Let $I = \int \frac{1-\cos x}{\cos x(1+\cos x)} \, dx$.

Let $\cos x = y$.

Then

$$
\frac{1-\cos x}{\cos x(1+\cos x)} = \frac{1-y}{y(1+y)} = \frac{1-2}{y} = \frac{1}{\cos x} - \frac{2}{1+\cos x}
$$

$$
\therefore I = \int \frac{1-\cos x}{\cos x(1+\cos x)} \, dx = \int \frac{1}{\cos x} \, dx - \int \frac{2}{1+\cos x} \, dx
$$

$$
\Rightarrow I = \int \sec x \, dx - \int \frac{2}{2\cos^2 x/2} \, dx
$$

$$
= \int \sec x \, dx - \int \sec^2 x/2 \, dx
$$

$$
\Rightarrow I = \log |\sec x + \tan x| - \log |\tan x| + C
$$
7.22 Calculus

Example 7.91 Evaluate \(\int \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-6)} \, dx \).

Sol.

Improper fraction

\[
I = \int \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-6)} \, dx
\]

Proper fraction

\[
= \int \left[\frac{3 \times 2 \times 1}{(x-4)(-1)(-2)} + \frac{4 \times 3 \times 2}{(x-5)(-1)(-2)} + \frac{5 \times 4 \times 3}{(x-6)(-1)(-2)} \right] \, dx
\]

(adding and subtracting 1)

\[
= \int \left[\frac{3}{2(x-4)} - \frac{2}{x-5} + \frac{3}{2(x-6)} \right] \, dx
\]

\[
= 1 + 3 \log|x-4| - 24 \log|x-5| + 30 \log|x-6| + C
\]

Example 7.92 Evaluate \(\int \frac{x^2 + 1}{(x-1)^2(x+3)} \, dx \).

Sol. \(E = \int \frac{x^2 + 1}{(x-1)^2(x+3)} \, dx \)

Let \(\frac{x^2 + 1}{(x-1)^2(x+3)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+3} \) (1)

\(\Rightarrow x^2 + 1 = A(x-1)(x+3) + B(x+3) + C(x-1)^2 \) (2)

Putting \(x = 1 \), i.e., \(x = 1 \) in equation (2), we get

\(2 = 4B \Rightarrow B = \frac{1}{2} \).

Putting \(x = 3 \), i.e., \(x = -3 \) in equation (2), we get

\(10 = 16C \Rightarrow C = \frac{5}{8} \).

Equating the coefficient of \(x^2 \) on both the sides of the identity of equation (2), we get

\(1 = A + C \Rightarrow A = 1 - C = 1 - \frac{5}{8} = \frac{3}{8} \).

Substituting the values of \(A, B \) in equation (1), we get

\[
\frac{x^2 + 1}{(x-1)^2(x+3)} = \frac{3}{8(x-1)} + \frac{1}{2(x-1)^2} + \frac{5}{8(x+3)}
\]

\(\Rightarrow I = \frac{3}{8} \int \frac{1}{x-1} \, dx + \frac{1}{2} \int \frac{1}{(x-1)^2} \, dx + \frac{5}{8} \int \frac{1}{x+3} \, dx
\]

\(\Rightarrow I = \frac{3}{8} \log|x-1| - \frac{1}{2(x-1)} + \frac{5}{8} \log|x+3| + C
\]

Example 7.93 Evaluate \(\int \frac{x}{(x-1)(x^2+4)} \, dx \).

Sol. \(\int \frac{x}{(x-1)(x^2+4)} \, dx \)

Let \(\frac{x}{(x-1)(x^2+4)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+4} \) (1)

\(\Rightarrow x = A(x^2+4) + (Bx+C)(x-1) \) (2)

Putting \(x = 1 \) in equation (2), we get \(1 = 5A \)

Putting \(x = 0 \) in equation (2), we get \(0 = 4A - C \).

Putting \(x = -1 \) in equation (2), we get \(-1 = 5A + 2B - 2C \).

Solving these equations, we obtain \(A = \frac{1}{5}, B = -\frac{1}{5} \) and \(C = \frac{4}{5} \).

Substituting the values of \(A, B \) and \(C \) in equation (1), we obtain

\[
\frac{x}{(x-1)(x^2+4)} = \frac{1}{5(x-1)} - \frac{1}{5} \log\left|\frac{x-4}{x^2+4}\right|
\]

\(\Rightarrow I = \frac{1}{5} \int \frac{1}{x-1} \, dx - \frac{1}{5} \int \frac{x-4}{x^2+4} \, dx
\]

\(\Rightarrow I = \frac{1}{5} \int \frac{1}{x-1} \, dx - \frac{1}{10} \int \frac{2x}{x^2+4} \, dx + \frac{4}{5} \int \frac{1}{x^2+4} \, dx
\]

\(\Rightarrow I = \frac{1}{5} \log|x-1| - \frac{1}{10} \log(x^2+4) + \frac{4}{5} \times \frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) + C
\]

\(\Rightarrow I = \frac{1}{5} \log|x-1| - \frac{1}{10} \log(x^2+4) + \frac{2}{5} \tan^{-1} \left(\frac{x}{2} \right) + C
\]

Example 7.94 Evaluate \(\int \frac{x^2}{(x^2+1)(x^2+4)} \, dx \).

Sol. \(\int \frac{x^2}{(x^2+1)(x^2+4)} \, dx = \frac{1}{3} \left[\frac{4}{x^2+4} - \frac{1}{x^2+1} \right] \, dx
\]

\(\Rightarrow I = \frac{1}{3} \int \frac{1}{x^2+1} \, dx - \frac{1}{3} \int \frac{1}{x^2+4} \, dx
\]

\(\Rightarrow I = -\frac{1}{3} \tan^{-1} \left(\frac{x}{2} \right) + C
\]

\(\Rightarrow I = -\frac{1}{3} \tan^{-1} \left(\frac{x}{2} \right) + C
\]

Example 7.95 Evaluate \(\int \frac{\sin x}{\sin 4x} \, dx \).

Sol.

\(I = \int \frac{\sin x}{\sin 4x} \, dx = \int \frac{\sin x}{2 \sin 2x \cos 2x} \, dx
\]

\(= \int \frac{\sin x}{4 \sin x \cos x \cos 2x} \, dx
\]

\(\Rightarrow I = \frac{1}{4} \int \frac{\cos x}{\cos 2x \cos 2x} \, dx
\]

\(\Rightarrow I = \frac{1}{4} \int \frac{\cos x}{(1-\sin^2 x)(1-2\sin^2 x)} \, dx
\]

Putting \(\sin x = t \) and \(\cos x \, dx = dt \), we get

\(I = \frac{1}{4} \int \frac{dt}{(1-t^2)(1-2t^2)}
\]

\(I = \frac{1}{4} \left[\frac{2}{1-2t^2} - \frac{1}{1-t^2} \right] \, dt
\)
\[
\int \frac{1}{x(x^2-1)} \, dx
\]

\[
\int \frac{x^2+1}{x(x^2-1)} \, dx
\]

\[
\int \frac{x^3}{(x-1)(x-2)} \, dx
\]

\[
\int \frac{dx}{\sin x(3+\cos^2 x)}
\]

\[
\int \frac{\cos 2x \sin 4x \, dx}{\cos x(1+\cos^2 2x)}
\]

INTEGRATIONS OF IRRATIONAL FUNCTIONS

Fормулы

\[
\int \sqrt{\text{Quadratic} \, dx}
\]

Стандартные формулы

1. \[
\int \sqrt{a^2+x^2} \, dx = \frac{x}{2} \sqrt{a^2+x^2} + \frac{a^2}{2} \ln \left|x + \sqrt{a^2+x^2}\right| + C
\]

Пример I: \[
\int \sqrt{a^2+x^2} \, dx = \int \left[\frac{x}{2} \sqrt{a^2+x^2} \right] \, dx + C
\]

\[
= \frac{x}{2} \sqrt{a^2+x^2} - \int \frac{1}{2} \left(\frac{a^2}{a^2+x^2} \right) \, dx + C
\]

\[
= \frac{x}{2} \sqrt{a^2+x^2} - \frac{a^2}{2a} \ln \left| x + \sqrt{a^2+x^2} \right| + C
\]

\[
\Rightarrow \quad I = \frac{x}{2} \sqrt{a^2+x^2} + \frac{a^2}{2} \ln \left| x + \sqrt{a^2+x^2} \right| + C
\]

2. \[
\int \sqrt{x^2-a^2} \, dx = \frac{x}{2} \sqrt{x^2-a^2} - \frac{a^2}{2} \ln \left| x + \sqrt{x^2-a^2} \right| + C
\]

3. \[
\int \sqrt{a^2-x^2} \, dx = \frac{a}{2} \arcsin \left(\frac{x}{a} \right) + C
\]

Пример 7.96

Evaluate \(\int \sqrt{x^2+2x+5} \, dx \).

Пример 7.97

Evaluate \(\int \sqrt{\frac{1}{1-x}} \, dx \).

Решение:

\[
I = \int \sqrt{\frac{1}{1-x}} \, dx
\]

Putting \(x = t^2 \) and \(dx = 2t \, dt \), we get \(I = 2 \int \frac{1-t}{\sqrt{1+t}} \, dt \)

\[
\Rightarrow I = 2 \int \frac{1-t}{\sqrt{1+t}} \, dt
\]

\[
= \int \frac{2t}{\sqrt{1-t^2}} \, dt + 2 \int \frac{\sqrt{1-t^2}}{\sqrt{1-t^2}} \, dt
\]

\[
I = \int \frac{2t}{\sqrt{1-t^2}} \, dt + 2 \int \frac{1-t^2}{\sqrt{1-t^2}} \, dt
\]

\[
I = -\int \frac{-2t}{\sqrt{1-t^2}} \, dt + 2 \int \frac{1-t^2}{\sqrt{1-t^2}} \, dt - 2 \int \frac{1}{\sqrt{1-t^2}} \, dt
\]

\[
I = -2\sqrt{1-t^2} + 2 + \frac{1}{2} \left[t\sqrt{1-t^2} + \sin^{-1} t \right] - 2\sin^{-1} t + C
\]

\[
I = -2\sqrt{1-t^2} + t \sqrt{1-t^2} - \sin^{-1} t + C
\]

\[
I = \sqrt{1-x^2} - \sin^{-1} \frac{x}{a} + C
\]

Пример 7.98

Evaluate \(\int (x-5)\sqrt{x^2+x} \, dx \).

Решение:

Let \(x-5 = \lambda \left(x^2+x \right) + \mu \). Then,

\[
x-5 = \lambda (2x+1) + \mu
\]
Comparing coefficient of like power of \(x \), we get \(1 = 2\lambda \) and

\[
\lambda + \mu = -5 \Rightarrow \lambda = \frac{1}{2} \quad \text{and} \quad \mu = -\frac{11}{2}.
\]

\[
\therefore \int \left(x - 5 \right) \sqrt{x^2 + x} \, dx
\]

\[
= \int \left[\frac{1}{2} \left(2x + 1 \right) - \frac{11}{2} \right] \sqrt{x^2 + x} \, dx
\]

\[
= \frac{1}{2} \int \left(2x + 1 \right) \sqrt{x^2 + x} \, dx - \frac{11}{2} \int \sqrt{x^2 + x} \, dx
\]

\[
= \frac{1}{2} \int \sqrt{t} \, dt - \frac{11}{2} \int \left(x + \frac{1}{2} \right)^2 - \left(\frac{1}{2} \right)^2 \, dx,
\]

where \(t = x^2 + x \)

\[
= \frac{1}{2} \frac{t^{3/2}}{3/2} - \frac{11}{2} \left[\frac{1}{2} \left(x + \frac{1}{2} \right) \sqrt{x + 1} \right] \left(x + \frac{1}{2} \right)^2 - \left(\frac{1}{2} \right)^2 \right] + C
\]

\[
+ \frac{1}{2} \left(\frac{1}{2} \right)^2 \log \left(x + \frac{1}{2} \right) + \sqrt{\left(x + \frac{1}{2} \right)^2 - \left(\frac{1}{2} \right)^2} + C
\]

\[
I = \int \frac{1}{t} \left(\frac{1}{t^2 - \left(\frac{1}{2} \right)^2} \right) \, dt
\]

\[
= - \int \frac{dt}{\sqrt{1 - 2t}} = - \int \left(1 - 2t \right)^{-1/2} \, dt
\]

\[
= \left(\frac{1}{2} \right) \left(1 - 2t \right)^{1/2} + C = \sqrt{1 - 2t} + C
\]

\[
= \frac{2}{x + 1} + C = \frac{x - 1}{x + 1} + C
\]

Example 7.100 Evaluate \(I = \int \frac{1}{x + 1} \sqrt{x^2 - 1} \, dx \).

Sol. Let \(I = \int \frac{1}{x + 1} \sqrt{x^2 - 1} \, dx \).

Let \(x + 1 = t \) and \(dx = \frac{dt}{2} \).

\[
\therefore I = \int \frac{1}{t} \sqrt{t^2 - 1} \, dt
\]

\[
= \frac{1}{2} \log \left(\frac{t + \sqrt{t^2 - 1}}{t - \sqrt{t^2 - 1}} \right) + C
\]

Example 7.101 Evaluate \(I = \int \frac{1}{1 + x^2} \sqrt{1 + x^2} \, dx \).

Sol. Putting \(x = \frac{1}{t} \) and \(dx = -\frac{1}{t^2} \, dt \), we get

\[
\therefore I = \int \frac{1}{t} \left(\frac{1}{t^2} \right) \frac{dt}{\sqrt{1 - \left(\frac{1}{t^2} \right)}}
\]

\[
= - \int \frac{dt}{\sqrt{1 - 2t}} = - \int \left(1 - 2t \right)^{-1/2} \, dt
\]

\[
= \left(\frac{1}{2} \right) \left(1 - 2t \right)^{1/2} + C = \sqrt{1 - 2t} + C
\]

\[
= \frac{2}{x + 1} + C = \frac{x - 1}{x + 1} + C
\]
Concept Application Exercise 7.5

Evaluate the following:

1. \[\int \frac{1}{(x+1)\sqrt{x^2 - 1}} \, dx \]
2. \[\int \frac{x^2 - 1}{(x^2 + 1)\sqrt{1+x^4}} \, dx \]
3. \(\int \sec^3 x \, dx \)
4. \[\int \frac{x+1}{(x-1)\sqrt{x+2}} \, dx \]
5. \[\int \frac{x}{(x^2+4)\sqrt{x^2+1}} \, dx \]
6. \[\int \frac{1}{(x+1)\sqrt{x^2+x+1}} \, dx \]
7. \[\int \frac{x^3+1}{\sqrt{x^2+x}} \, dx \]

MISCELLANEOUS SOLVED PROBLEMS

1. Evaluate \(\int \frac{dx}{x^2\sqrt{1+x^2}} \).

\[I = \int \frac{dx}{x^2\sqrt{1+x^2}} = \int \frac{dx}{x^2 \sqrt{1+\frac{1}{x^2}}} \]

Put \(t = \frac{1}{x} \) and solve

\[\Rightarrow t = \sqrt{1 + \frac{1}{x^2}} \Rightarrow \frac{dt}{dx} = \frac{\sqrt{1+\frac{1}{x^2}}}{2x} \quad \Rightarrow \frac{dx}{x^2} = -\frac{dt}{t} \]

\[\Rightarrow I = -\int \frac{t \, dt}{t} = -t + C = -\sqrt{1 + \frac{1}{x^2}} + C \]

\[= \frac{1}{x} \sqrt{1+x^2} + C \]

Evaluate \(\int x^{11} (1+x^4)^{-1/2} \, dx \).

\[I = \int \frac{dx}{x^{11} (1+x^4)^{1/2}} = \int \frac{dx}{x^{11} . (1+1/x^4)^{1/2}} \]

Let \(1 + \frac{1}{x^4} = t \) and \(-\frac{4}{x^5} \, dx = 2t \, dt \)

\[\Rightarrow I = \int \frac{dx}{x^{13} (1+1/x^4)^{1/2}} \]

\[= -\frac{1}{4} \int \frac{2t}{x^8} \, dt \]

\[= -\frac{1}{2} \int (t^2 - 1)^2 \, dt \]

\[= -\frac{1}{2} \left[\frac{t^4}{4} - \frac{2t^2}{3} + t \right] + C \]

where \(t = \sqrt{1 + \frac{1}{x^4}} \)

3. Evaluate \(\int \frac{(x^3)^{1/3}}{x^2} \, dx \).

\[I = \int \frac{(x^3)^{1/3}}{x^2} \, dx = \int \frac{1}{x^{2/3}} \, dx \]

Putting \(\frac{1}{x^2} = t, \frac{1}{x^3} \, dx = -\frac{dt}{2} \), we get

\[I = -\frac{1}{2} \int t^{1/3} \, dt = -\frac{3}{8} t^{4/3} + C \]

\[= -\frac{3}{8} \left(\frac{1}{x^2} - 1 \right)^{4/3} + C \]

4. Evaluate \(\int \frac{1}{[(x-1)^2(x+2)^4]^{1/4}} \, dx \).

\[I = \int \frac{1}{[(x-1)^2(x+2)^4]^{1/4}} \, dx \]

Let \(\frac{x-1}{x+2} = t \Rightarrow \frac{3dx}{(x+2)^2} = dt \)

\[\Rightarrow I = \frac{1}{3} \int t^{1/4} \, dt \]

\[= \frac{1}{3} \left(\frac{t^{1/4}}{1/4} \right) + C \]

\[= \frac{4}{3} t^{1/4} + C \]

\[= \frac{4}{3} \left(\frac{x-1}{x+2} \right)^{1/4} + C \]

5. Evaluate \(\int \log \left(\frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}} \right) \, dx \).

\[\text{Sol. Put} \ log \left(\frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}} \right) = t \Rightarrow \frac{1}{\sqrt{1 + x^2}} \, dx = dt, \text{then} \]

\[\int \log \left(\frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}} \right) \, dx \]

\[= \int t \, dt = \frac{1}{2} \left[\log (x + \sqrt{1 + x^2}) \right]^2 + C \]

6. Evaluate \(\int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \).

\[\text{Sol.} \quad \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx = \int \frac{\sqrt{\tan x}}{\tan x} \sec^2 x \, dx \]
7.26 Calculus

\[I = \int \frac{dt}{\sqrt{t}}, \text{ where } t = \tan x \]

\[I = 2t^2 + C = 2\sqrt{\tan x} + C \]

7. \(I = \int \frac{dx}{\sqrt{\sin^{11/3} x \cos x}} \)

Sol. Here both the exponents \(-\frac{11}{3}\) and \(-\frac{1}{3}\) are negative numbers and their sum \(-\frac{11}{3} + \left(-\frac{1}{3}\right)\) is \(-4\) which is an even number, therefore we put \(t = \tan x\); \(\frac{dx}{\cos^2 x} = dt\)

\[I = \int \frac{dx}{\sin^{11/3} x \cos^{11/3} x} \]

\[= \int \frac{dx}{\tan^{11/3} x \cos^{11/3} x} \]

\[= \frac{(1 + \tan^2 x) \sec^2 x dx}{\tan^{11/3} x} \]

\[= \frac{(1 + t^2) dt}{t^{11/3}} \]

\[= -\frac{3}{8} \cdot \frac{t^{-3/2} - 3}{2} + C \text{ (where } t = \tan x) \]

8. \(\int \frac{\sin x}{2 + \sin 2x} \, dx \)

Sol. \(\int \frac{\sin x}{2 + \sin 2x} \, dx \)

\[= \frac{1}{2} \int \frac{\sin x + \cos x - (\cos x - \sin x)}{2 + \sin 2x} \, dx \]

\[= \frac{1}{2} \int \frac{\sin x + \cos x}{2 + \sin 2x} \, dx - \frac{1}{2} \int \frac{\cos x - \sin x}{2 + \sin 2x} \, dx \]

\[= \frac{1}{2} \int \frac{\sin x + \cos x}{3 - (\sin x - \cos x)^2} \, dx - \frac{1}{2} \int \frac{\cos x - \sin x}{2 + (\sin x + \cos x)^2} \, dx \]

\[= \frac{1}{2} \int \frac{dt}{3 - t^2} - \frac{1}{2} \int \frac{du}{1 + u^2} \left(\text{ where } t = \sin x - \cos x \right) \]

\[\text{and } u = \sin x + \cos x \]

\[= \frac{1}{2} \left[\frac{1}{2\sqrt{3}} \log \left| \frac{\sqrt{3} - t}{\sqrt{3} + t} \right| - \frac{1}{2} \tan^{-1} u + C \right] \]

\[= \frac{1}{4\sqrt{3}} \left[\frac{3 - (\sin x - \cos x)}{\sqrt{3} + (\sin x - \cos x)} \right] - \frac{1}{2} \tan^{-1}(\sin x + \cos x) + C \]

Concept Application: Exercise 7.10

Evaluate the following:

1. \(\int \frac{dx}{x^2(1 + x^5)^{1/2}} \)

2. \(\int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx \)

3. \(\int \frac{1}{x^2(x^4 + 1)^{3/4}} \, dx \)

4. \(\int \frac{(x^4 - x)^{1/4}}{x^5} \, dx \)

5. \(\int \frac{x - 1}{(x + 1)\sqrt{x^2 + x^2 + x}} \, dx \)

6. \(\int x^4 \ln(x^4) \, dx \)

7. \(\int \frac{dx}{(x - p)\sqrt{(x - p)(x - q)}} \)

8. \(\int \frac{dx}{\sqrt{1 + x^2 + x}} \)

9. \(\int \frac{dx}{\cos^3 x \sin 2x} \)

10. \(\int \sec^2 x \cos x \sec^3 x \, dx \)

EXERCISES

Subjective Type: Solutions on page 7.38

1. Evaluate \(\int \left(\frac{1 + x^2}{x^2 - x} \right) \, dx \).

2. Evaluate \(\int \frac{(\cos 2x)^{1/2}}{\sin x} \, dx \).

3. Evaluate \(\int \frac{x^2 - 1}{(x^2 + 1)\sqrt{1 + x^4}} \, dx \).

4. If \(I_n = \int \cos^n x \, dx \), prove that

\[I_n = \frac{1}{n} \left(\cos^{n-1} x \sin x \right) + \frac{(n-1)}{x} I_{n-2} \]
5. Evaluate \[\int \frac{(1 - x \sin x)}{x(1 - x^3 e^{3\cos x})} \, dx. \]

6. Evaluate \[\int \frac{e^{\tan^{-1} x}}{(1 + x^2)^2} \left(\frac{1}{\sqrt{1 + x^2}} + \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right) \, dx \quad (x > 0). \]

7. Evaluate \[\int \frac{x^2 - 1}{x \sqrt{2x + 2\alpha x + 1} (x^2 + \beta x + 1)} \, dx. \]

8. Evaluate \[\int \frac{2x}{(1 - x^2)\sqrt{x^4 - 1}} \, dx. \]

9. Evaluate \[\int \frac{dx}{x^3 \sqrt{x^2 - 1}}. \]

10. Evaluate \[\int \frac{\sin^{-1} \left(\frac{1}{\sqrt{6}} \sqrt{3 - x} \right)}{\sqrt{3 + x}} \, dx. \]

11. Evaluate \[\int \frac{dx}{\sqrt{\sec x - 1}}. \]

12. Evaluate \[\int \frac{\cos^4 x}{\sin^3 x (\sin^5 x + \cos^3 x)^{1/5}} \, dx. \]

13. Evaluate \[\int \frac{\sin 2x}{\sin 3x \sin 3x} \, dx \]

a. \[\frac{1}{2} \sin 2x + C \]

b. \[-\frac{1}{2} \sin 2x + C \]

c. \[\frac{1}{2} \sin x + C \]

d. \[-\frac{1}{2} \sin x + C \]

4. If \[\int \frac{\cos 4x + 1}{\cot x - \tan x} \, dx = A \cos 4x + B, \]

 a. \[A = -1/2 \]
 b. \[A = -1/8 \]
 c. \[A = -1/4 \]
 d. None of these

5. The primitive of the function \(x \cos x \) when \(\frac{\pi}{2} < x < \pi \) is given by

 a. \[\cos x + x \sin x + C \]
 b. \[-\cos x - x \sin x + C \]
 c. \[x \sin x - \cos x + C \]
 d. None of these + C

6. \[\int \frac{dx}{x (x^n + 1)} \] is equal to

 a. \[\frac{1}{n} \log \left(\frac{x^n}{x^n + 1} \right) + C \]
 b. \[\frac{1}{n} \log \left(\frac{x^n + 1}{x^n} \right) + C \]
 c. \[\log \left(\frac{x^n}{x^n + 1} \right) + C \]
 d. None of these

7. \[\int 4 \sin x \cos \frac{x}{2} \cos \frac{3x}{2} \, dx \] is equal to

 a. \[\cos x + \frac{1}{2} \cos 2x - \frac{1}{3} \cos 3x + C \]
 b. \[\cos x - \frac{1}{2} \cos 2x - \frac{1}{3} \cos 3x + C \]
 c. \[\cos x + \frac{1}{2} \cos 2x + \frac{1}{3} \cos 3x + C \]
 d. \[\cos x - \frac{1}{2} \cos 2x + \frac{1}{3} \cos 3x + C \]

8. Let \(x = f'(t) \cos t + f''(t) \sin t \) and \(y = -f''(t) \sin t + f'(t) \cos t \). Then \[\int \left[\frac{dx}{dt} \right]^2 + \left[\frac{dy}{dt} \right]^2 \] \(dt \) equals

 a. \[f'(t) + f''(t) + c \]
 b. \[f''(t) + f'''(t) + c \]
 c. \[f(t) + f''(t) + c \]
 d. \[f'(t) - f''(t) + c \]

9. \[\int \frac{1}{\sqrt{\sin^3 x \sin(x + \alpha)}} \, dx, \alpha \neq n\pi, n \in Z \] is equal to

 a. \[-2 \csc \alpha \cos \alpha - \tan x \sin \alpha \alpha^2 + C \]
 b. \[-2 \cos \alpha + \cot x \sin \alpha \alpha^2 + C \]
 c. \[-2 \csc \alpha \cos \alpha + \cot x \sin \alpha \alpha^2 + C \]
 d. \[-2 \csc \alpha (\sin \alpha + \cot x \cos \alpha) \alpha^2 + C \]

10. \[\int \frac{p x^{p+2q-1} - q x^{q-1}}{x^{2p+2q} + 2 x^{p+q} + 1} \, dx \] is equal to

 a. \[\frac{1}{2} \sin 2x + C \]
 b. \[-\frac{1}{2} \sin 2x + C \]
 c. \[\frac{1}{2} \sin x + C \]
 d. \[-\frac{1}{2} \sin x + C \]
7.28 Calculus

18. If \(y = \frac{dx}{x} + C \) and \(y = 0 \) when \(x = 0 \), find the value of \(\int \frac{dx}{1+x^2} \) when \(x = 1 \) is

a. \(\frac{1}{\sqrt{2}} \)

b. \(\sqrt{2} \)

c. \(2\sqrt{2} \)

d. None of these

19. \(\int x (1 + x^{13/4}) \) is equal to

a. \(2 \left\{ x^{1/3} \right. + \frac{4}{11} x^{11/6} + \frac{6}{13} x^{13/6} + \frac{4}{15} x^{5/2} \)

b. \(2 \left\{ x^{1/3} - \frac{4}{11} x^{11/6} + \frac{6}{13} x^{13/6} - \frac{4}{15} x^{5/2} \)

c. \(2 \left\{ x^{1/3} + \frac{4}{11} x^{11/6} + \frac{6}{13} x^{13/6} + \frac{4}{15} x^{5/2} \)

d. None of these

20. If \(\int x^5 (1 + x^{3/3}) \) \(= A (1 + x^{3/3}) + B (1 + x^{3/3}) + C \), then

a. \(A = \frac{1}{4}, B = \frac{1}{5} \)

b. \(A = \frac{1}{8}, B = -\frac{1}{5} \)

c. \(A = -\frac{1}{8}, B = \frac{1}{5} \)

d. None of these

21. The value of the integral \(\int (1 - \cos \theta)^{2/7} \) \((1 + \cos \theta)^{9/7} \) d\(\theta \) is

a. \(\frac{7}{11} \left(\tan \frac{\theta}{2} \right)^{11/2} + C \)

b. \(\frac{7}{11} \left(\cos \frac{\theta}{2} \right)^{11/2} + C \)

c. \(\frac{7}{11} \left(\sin \frac{\theta}{2} \right)^{11/2} + C \)

d. None of these

22. If \(\int \frac{1 - x^7}{x(1 + x^9)} \) \(= a \ln |x| + b \ln |x^7 + 1| + C \), then

a. \(a = 1, b = \frac{2}{7} \)

b. \(a = -1, b = \frac{2}{7} \)

c. \(a = 1, b = -\frac{2}{7} \)

d. \(a = -1, b = -\frac{2}{7} \)

23. \(\int \frac{2x}{(1 + x^2)} \) is equal to

a. \(\log (1 + \sqrt{2}) \)

b. \(\log (1 + \sqrt{2}) - \frac{\pi}{4} \)

c. \(\log (1 + \sqrt{2}) + \frac{\pi}{2} \)

d. None of these
24. \(\int \frac{\ln (\tan x)}{\sin x \cos x} \, dx \) is equal to
 a. \(\frac{1}{2} \ln(\tan x) + c \)
 b. \(\frac{1}{2} \ln(\tan^2 x) + c \)
 c. \(\frac{1}{2} (\ln(\tan x))^2 + c \)
 d. None of these

25. \(\int \frac{2 \sin x}{(3 + \sin 2x)} \, dx \) is equal to
 a. \(\frac{1}{2} \ln \left| \frac{2 + \sin x - \cos x}{2 - \sin x + \cos x} \right| \)
 b. \(\frac{1}{2} \ln \left| \frac{2 + \sin x - \cos x}{2 - \sin x + \cos x} \right| - \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\sin x + \cos x}{\sqrt{2}} \right) + c \)
 c. \(\frac{1}{4} \ln \left| \frac{2 + \sin x - \cos x}{2 - \sin x + \cos x} \right| \)
 d. None of these

26. \(\int \frac{x^9 \, dx}{(4x^2 + 1)^6} \) is equal to
 a. \(\frac{1}{5x} \left(\frac{4 + 1}{x^2} \right)^5 + c \)
 b. \(\frac{1}{5} \left(\frac{4 + 1}{x^2} \right)^5 + c \)
 c. \(\frac{1}{10} \left(1 + 4x^2 \right)^{-5} + c \)
 d. None of these

27. \(e^{\tan^{-1} x} (1 + x + x^2) \, d(\cot^{-1} x) \) is equal to
 a. \(-e^{\tan^{-1} x} + c \)
 b. \(e^{\tan^{-1} x} + c \)
 c. \(-x e^{\tan^{-1} x} + c \)
 d. None of these

28. \(\int \frac{dx}{\sqrt{\sin^3 x \cos^5 x}} = a \sqrt{\cot x + b} \tan^3 x + c, \) then
 a. \(a = -1, b = 1/3 \)
 b. \(a = -3, b = 2/3 \)
 c. \(a = -2, b = 4/3 \)
 d. None of these

29. \(\int \frac{\cos 4x - 1}{\cot x - \tan x} \, dx \) is equal to
 a. \(\frac{1}{2} \ln \left| \sec 2x \right| - \frac{1}{4} \cos^2 2x + c \)
 b. \(\frac{1}{2} \ln \left| \sec 2x \right| + \frac{1}{4} \cos^2 2x + c \)
 c. \(\frac{1}{2} \ln \left| \cos 2x \right| - \frac{1}{4} \cos^2 2x + c \)
 d. \(\frac{1}{2} \ln \left| \cos 2x \right| + \frac{1}{4} \cos^2 2x + c \)

30. If \(\int \frac{dx}{x \sqrt{1 - x^3}} = a \log \left| \frac{\sqrt{1-x^3} - 1}{\sqrt{1-x^3} + 1} \right| + b, \) then \(a \) is equal to
 a. \(1/3 \)
 b. \(2/3 \)
 c. \(-1/3 \)
 d. \(-2/3 \)

31. If \(\int \frac{dx}{x^2 (x^n + 1)^{n-1}/n} = -[f(x)]^{1/n} + c, \) then \(f(x) \) is
 a. \((1 + x^n)^n \)
 b. \(1 + x^n \)
 c. \(x^n + x^{-n} \)
 d. None of these

32. \(\int \frac{x - 1}{x \sqrt{x + 1}} \, dx \) is equal to
 a. \(\ln |x - \sqrt{x^2 - 1}| - \tan^{-1} x + c \)
 b. \(\ln |x + \sqrt{x^2 - 1}| - \tan^{-1} x + c \)
 c. \(\ln |x - \sqrt{x^2 - 1}| - \sec^{-1} x + c \)
 d. None of these

33. If \(I = \int \frac{dx}{(2ax + x^2)^{3/2}}, \) then \(I \) is equal to
 a. \(-\frac{x + a}{\sqrt{2ax + x^2}} + c \)
 b. \(\frac{1}{a} \frac{x + a}{\sqrt{2ax + x^2}} + c \)
 c. \(-\frac{1}{a^2} \frac{x + a}{\sqrt{2ax + x^2}} + c \)
 d. None of these

34. If \(f'(x) = \frac{1}{x - x + \sqrt{x^2 + 1}} \) and \(f(0) = -\frac{1 + \sqrt{2}}{2}, \) then \(f(1), \)
 a. \(-\log (\sqrt{2} + 1) \)
 b. \(1 \)
 c. \(1 + \sqrt{2} \)
 d. None of these
35. \[\int e^x \left(\frac{2 \tan x}{1 + \tan x} + \cot^2 \left(\frac{x + \pi}{4} \right) \right) \, dx \] is equal to

a. \(e^x \tan \left(\frac{x}{4} \right) + C \)

b. \(e^x \tan \left(x - \frac{\pi}{4} \right) + C \)

c. \(e^x \tan \left(\frac{3\pi}{4} - x \right) + C \)

d. None of these

36. The value of the integral \(\int \left(x^2 + x \right)^{11/10} \, dx \) is

a. \(\frac{5}{11} \left(x^2 + 2x \right)^{11/10} + C \)

b. \(\frac{5}{6} \left(x + 1 \right)^{11/10} + C \)

c. \(\frac{6}{7} \left(x + 1 \right)^{11/10} + C \)

d. None of these

37. If \(\int \frac{dx}{(x + 2)(x^2 + 1)} = a \ln (1 + x^2) + b \tan^{-1} x \)

+ \frac{1}{5} \ln |x + 2| + C, then

a. \(a = \frac{1}{10}, b = \frac{2}{5} \)

b. \(a = \frac{1}{10}, b = \frac{2}{5} \)

c. \(a = \frac{1}{10}, b = \frac{2}{5} \)

d. \(a = \frac{1}{10}, b = \frac{2}{5} \)

38. If \(\int \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \, dx = ax + b \ln |2 \sin x + 3 \cos x| + C, \) then

a. \(a = \frac{12}{13}, b = \frac{15}{39} \)

b. \(a = \frac{7}{13}, b = \frac{6}{13} \)

c. \(a = \frac{12}{13}, b = \frac{15}{39} \)

d. \(a = \frac{7}{13}, b = \frac{6}{13} \)

39. \(\int \frac{3e^x - 5e^{-x}}{4e^x + 5e^{-x}} \, dx = ax + b \ln \left(4e^x + 5e^{-x} \right) + C, \) then

a. \(a = \frac{1}{8}, b = \frac{7}{8} \)

b. \(a = \frac{1}{8}, b = \frac{7}{8} \)

c. \(a = \frac{1}{8}, b = \frac{7}{8} \)

d. \(a = \frac{1}{8}, b = \frac{7}{8} \)

40. \(\sqrt{\frac{\cos x - \cos^3 x}{1 - \cos^3 x}} \) is equal to

a. \(\frac{2}{3} \sin^{-1}(\cos^{3/2} x) + C \)

b. \(\frac{3}{2} \sin^{-1}(\cos^{3/2} x) + C \)

c. \(\frac{2}{3} \cos^{-1}(\cos^{3/2} x) + C \)

d. None of these

41. If \(I'(x) \) means \(\log \log \log \ldots x, \) the log being repeated \(r \) times, then \(\int [x(I(x))^2 (x)]^r \, dx \) is equal to

a. \(I'(x) + C \)

b. \(\frac{I'(x)}{r} + C \)

c. \(I(x) + C \)

d. None of these

42. If \(I = \int \left(\sqrt{\tan x} - \sqrt{\cot x} \right) \, dx, \) then \(I \) equals

a. \(\sqrt{2} \log \left(\tan x - \sqrt{\cot x} \right) + C \)

b. \(\sqrt{2} \log \left(\tan x + \sqrt{\cot x} \right) + C \)

c. \(\sqrt{2} \log \left| \sin x + \cos x + \sqrt{\sin 2x} \right| + C \)

d. \(\sqrt{2} \log \left| \sin x - \cos x + \sqrt{\sin 2x} \cos x \right| + C \)

43. If \(I = \int \frac{dx}{\left(a^2 - b^2 x^2 \right)^{3/2}}, \) then \(I \) equals

a. \(\frac{x}{a^3 \sqrt{a^2 - b^2 x^2}} + C \)

b. \(\frac{x}{a^2 \sqrt{a^2 - b^2 x^2}} + C \)

c. \(\frac{ax}{a^2 - b^2 x^2} + C \)

d. None of these

44. \(\int e^x \left(x^3 + x^2 + 2x^4 \right) e^{x^2} \, dx \) is equal to

a. \(\frac{1}{2} x e^x e^{x^2} + C \)

b. \(\frac{1}{2} x^2 e^x + C \)

c. \(\frac{1}{2} x e^x e^{x^2} + C \)

d. \(\frac{1}{2} x^2 e^x e^{x^2} + C \)

45. \(\int \left(\frac{\ln a^{a^{a^a}}} {3a^{5/2} b^{3a^a} + \frac{\ln a^{a^{a^a}}}{2a^{2a} b^{2a}}} \right) \, dx \) (where \(a, b \in R^+ \)) is equal to

a. \(\frac{1}{6 \ln a^2} a^{2a} b^{3a} \ln \frac{a^{2a} b^{3a}}{e} + k \)

b. \(\frac{1}{6 \ln a^2} a^{2a} b^{3a} \ln \frac{a^{2a} b^{3a}}{e} + k \)

c. \(\frac{1}{6 \ln a^2} a^{2a} b^{3a} \ln (a^{2a} b^{3a}) + k \)

d. \(\frac{1}{6 \ln a^2} a^{2a} b^{3a} \ln (a^{2a} b^{3a}) + k \)

46. If \(\int \frac{\ln (x + \sqrt{1 + x^2}) \, dx} {\sqrt{1 + x^2}} \)

= \(a \sqrt{1 + x^2} \ln (x + \sqrt{1 + x^2}) + bx + c, \) then

a. \(a = 1, b = -1 \)

b. \(a = 1, b = 1 \)

c. \(a = -1, b = 1 \)

d. \(a = -1, b = -1 \)
47. \[\int \frac{\csc^2 x - 2005}{\cos^{2005} x} \, dx \] is equal to
 a. \[\frac{\cot x}{\cos x^{2005}} + c \]
 b. \[\frac{\tan x}{\cos x^{2005}} + c \]
 c. \[\frac{-(\tan x)}{\cos x^{2005}} + c \]
 d. None of these

48. If \(xf(x) = 3f^2(x) + 2 \), then \(\int \frac{2x^2 - 12xf(x) + f(x)}{(6f(x) - x)(x^2 - f(x))^2} \, dx \)
equals
 a. \[\frac{1}{x^2 - f(x)} + c \]
 b. \[\frac{1}{x^2 + f(x)} + c \]
 c. \[\frac{1}{x - f(x)} + c \]
 d. \[\frac{1}{x + f(x)} + c \]

49. If \(\int f(x) \sin x \cos x \, dx = \frac{1}{2(b^2 - a^2)} \ln f(x) + c \), then \(f(x) \) is equal to
 a. \[\frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} \]
 b. \[\frac{1}{a^2 \sin^2 x - b^2 \cos^2 x} \]
 c. \[\frac{1}{a^2 \cos^2 x + b^2 \sin^2 x} \]
 d. \[\frac{1}{a^2 \cos^2 x - b^2 \sin^2 x} \]

50. The value of integral \(\int e^x \left(\frac{1}{\sqrt{1 + x^2}} + \frac{1 - 2x^2}{\sqrt{(1 + x^2)^3}} \right) \, dx \) is equal to
 a. \[e^x \left(\frac{1}{\sqrt{1 + x^2}} + \frac{x}{\sqrt{(1 + x^2)^3}} \right) + c \]
 b. \[e^x \left(\frac{1}{\sqrt{1 + x^2}} - \frac{x}{\sqrt{(1 + x^2)^3}} \right) + c \]
 c. \[e^x \left(\frac{1}{\sqrt{1 + x^2}} + \frac{x}{\sqrt{(1 + x^2)^3}} \right) + c \]
 d. None of these

51. \[\int \frac{dx}{\sqrt{1 + \sqrt{x}} \sqrt{x - x^2}} \] is equal to
 a. \[\frac{1 + \sqrt{x}}{(1 - x)^2} + c \]
 b. \[\frac{1 + \sqrt{x}}{(1 + x)^2} + c \]
 c. \[\frac{1 - \sqrt{x}}{(1 - x)^2} + c \]
 d. \[\frac{2(\sqrt{x} - 1)}{\sqrt{(1 - x)^2}} + c \]

52. The value of \(\int \frac{(ax^2 - b)}{x \sqrt{c^2 x^2 - (ax^2 + b)^2}} \, dx \) is equal to
 a. \[\frac{1}{c} \sin^{-1} \left(\frac{ax + b}{x} \right) + k \]
 b. \[\frac{1}{c} \sin^{-1} \left(\frac{a + b}{x} \right) + c \]
 c. \[\frac{1}{c} \sin^{-1} \left(\frac{ax + b}{c} \right) + k \]
 d. None of these

53. If \(\frac{dx}{\cos^3 x \sqrt{2x}} = a (\tan^2 x + b) \, \sqrt{\tan x} + c \), then
 a. \[a = \frac{\sqrt{2}}{5}, \quad b = \frac{1}{\sqrt{5}} \]
 b. \[a = \frac{\sqrt{2}}{5}, \quad b = 5 \]
 c. \[a = \frac{\sqrt{2}}{5}, \quad b = -\frac{1}{\sqrt{5}} \]
 d. \[a = \frac{\sqrt{2}}{5}, \quad b = \sqrt{5} \]

54. If \(\int x \log(1 + 1/x) \, dx = f(x) \log(x + 1) + g(x) x^2 + Ax + C \), then
 a. \[f(x) = \frac{1}{2} x^2 \]
 b. \[g(x) = \log x \]
 c. \[A = 1 \]
 d. None of these

55. If \(I = \int \frac{dx}{x^3 \sqrt{x^2 - 1}} \), then \(I \) equals
 a. \[\frac{1}{2} \left(\frac{\sqrt{x^2 - 1}}{x^2} + \tan^{-1} \sqrt{x^2 - 1} \right) + C \]
 b. \[\frac{1}{2} \left(\frac{\sqrt{x^2 - 1}}{x^2} + x \tan^{-1} \sqrt{x^2 - 1} \right) + C \]
 c. \[\frac{1}{2} \left(\frac{\sqrt{x^2 - 1}}{x} + \tan^{-1} \sqrt{x^2 - 1} \right) + C \]
 d. \[\frac{1}{2} \left(\frac{\sqrt{x^2 - 1}}{x^2} + \tan^{-1} \sqrt{x^2 - 1} \right) + C \]

56. If \(I_{m,n} = \int \cos^m x \sin^nx \, dx \), then \(7 I_{4,3} - 4 I_{3,2} \) is equal to
 a. constant
 b. \[-\cos^2 x + C \]
 c. \[-\cos^3 x \cos 3 x + C \]
 d. \[\cos 7 x - \cos 4x + C \]

57. If \(\int \frac{dx}{x^2 (x^4 + 1)^{(n-1)/n}} = -[f(x)]^{1/n} + C \), then \(f(x) \) is
 a. \((1 + x^n) \)
 b. \(1 + x^n \)
 c. \(x^n + x^m \)
 d. None of these
58. \[\int \frac{d^5 + x^3}{x} \, dx \] is equal to

a. \(\sqrt{d^5 + x^3} + \frac{a^2}{2} \ln \left| \frac{d^5 + x^3 + a^3}{d^5 + x^3 - a^3} \right| + C \)

b. \(d^5 \ln \left| \frac{d^5 + x^3 - a^3}{\sqrt{d^5 + x^3 + a^3}} \right| + C \)

c. \(\sqrt{d^5 + x^3} + \frac{a^3}{2} \ln \left| \frac{d^5 + x^3 - a^3}{d^5 + x^3 + a^3} \right| + C \)

d. \(d^5 \ln \left| \frac{d^5 + x^3 + a^3}{d^5 + x^3 - a^3} \right| + C \)

60. If \(\int e^x \cos x \, dx = ae^x (b(1-x) \sin x + cx \cos x) + d \), then \(I \) equals

a. \(x + (e^x + 1) \log (e^x + 1) + C \)

b. \(x + (e^x + 1) \log (e^x + 1) + C \)

c. \(x - (e^x + 1) \log (e^x + 1) + C \)

d. None of these

61. If \(I = \int \frac{5-x}{2+x} \, dx \), then \(I \) equals

a. \(\sqrt{x+2} \sqrt{5-x} + 3 \sin^{-1} \sqrt{\frac{x+2}{3}} + C \)

b. \(\sqrt{x+2} \sqrt{5-x} + 7 \sin^{-1} \sqrt{\frac{x+2}{7}} + C \)

c. \(\sqrt{x+2} \sqrt{5-x} + 5 \sin^{-1} \sqrt{\frac{x+2}{5}} + C \)

d. None of these

62. \(\int e^{\tan x} (\sec x - \sin x) \, dx \), is equal to

a. \(e^{\tan x} \cos x + C \)

b. \(e^{\tan x} \sin x + C \)

c. \(-e^{\tan x} \cos x + C \)

d. \(e^{\tan x} \sec x + C \)

63. \(\int \frac{x^3 \, dx}{\sqrt{1+x^2}} \) is equal to

a. \(\frac{1}{3} \sqrt{1+x^2} (2+x^2) + C \)

b. \(\frac{1}{3} \sqrt{1+x^2} (x^2 - 1) + C \)

c. \(\frac{1}{3} (1+x^2)^{3/2} + C \)

d. \(\frac{1}{3} \sqrt{1+x^2} (x^2 - 2) + C \)

64. If \(I = \int \frac{dx}{\sec x + \csc x} \), then \(I \) equals

a. \(\frac{1}{2} \left(\cos x + \sin x - \frac{1}{\sqrt{2}} \log (\cos x - \cos x) \right) + C \)

b. \(\frac{1}{2} \left(\sin x - \cos x - \frac{1}{\sqrt{2}} \log (\csc x + \cot x) \right) + C \)

c. \(\frac{1}{\sqrt{2}} \left(\sin x + \cos x - \frac{1}{2} \log (\csc x - \cos x) \right) + C \)

d. \(\frac{1}{2} \left(\sin x - \cos x - \frac{1}{\sqrt{2}} \log (\csc x + \cot x) \right) + C \)

65. If \(I = \int \frac{\sin 2x}{(3+4 \cos x)^3} \, dx \), then \(I \) equals

a. \(\frac{3 \cos x + 8}{(3+4 \cos x)^2} + C \)

b. \(\frac{3+8 \cos x}{16 (3+4 \cos x)^2} + C \)

c. \(\frac{3+\cos x}{(3+4 \cos x)^2} + C \)

d. \(\frac{3-8 \cos x}{16 (3+4 \cos x)^2} + C \)

66. \(\int \frac{\ln (\frac{x-1}{x+1})}{x^2-1} \, dx \) is equal to

a. \(\frac{1}{2} \ln \left(\frac{x-1}{x+1} \right)^2 + C \)

b. \(\frac{1}{2} \ln \left(\frac{x+1}{x-1} \right)^2 + C \)

c. \(\frac{1}{4} \ln \left(\frac{x-1}{x+1} \right)^2 + C \)

d. \(\frac{1}{4} \ln \left(\frac{x+1}{x-1} \right)^2 + C \)

67. \(\int \sqrt{e^x - 1} \, dx \) is equal to

a. \(2 \left[\sqrt{e^x - 1} - \tan^{-1} \sqrt{e^x - 1} \right] + C \)

b. \(\sqrt{e^x - 1} - \tan^{-1} \sqrt{e^x - 1} + C \)

c. \(\sqrt{e^x - 1} + \tan^{-1} \sqrt{e^x - 1} + C \)

d. \(2 \left[\sqrt{e^x - 1} + \tan^{-1} \sqrt{e^x - 1} \right] + C \)
68. \[\int x \sin x \sec^3 x \, dx \text{ is equal to} \]
 a. \(\frac{1}{2} \left[\sec^2 x - \tan x \right] + c \)
 b. \(\frac{1}{2} \left[x \sec^2 x - \tan x \right] + c \)
 c. \(\frac{1}{2} \left[x \sec^2 x + \tan x \right] + c \)
 d. \(\frac{1}{2} \left[\sec^2 x + \tan x \right] + c \)

69. \[\int e^x \left(\frac{x^2 + 1}{x + 1} \right)^2 \, dx \text{ is equal to} \]
 a. \(\left(\frac{x - 1}{x + 1} \right) e^x + c \)
 b. \(e^x \left(\frac{x + 1}{x - 1} \right) + c \)
 c. \(e^x (x + 1)(x - 1) + c \)
 d. None of these

70. \[\int \left(\frac{x + 2}{x + 4} \right)^2 e^x \, dx \text{ is equal to} \]
 a. \(e^x \left(\frac{x}{x + 4} \right) + c \)
 b. \(e^x \left(\frac{x + 2}{x + 4} \right) + c \)
 c. \(e^x \left(\frac{2x + 2}{x + 4} \right) + c \)
 d. None of these

71. \[\int \frac{3 + 2 \cos x}{(2 + 3 \cos x)^2} \, dx \text{ is equal to} \]
 a. \(\left(\frac{\sin x}{3 \cos x + 2} \right) + c \)
 b. \(\left(\frac{2 \cos x}{3 \sin x + 2} \right) + c \)
 c. \(\frac{2 \cos x}{3 \cos x + 2} + c \)
 d. \(\frac{2 \sin x}{3 \sin x + 2} + c \)

72. \[\text{If} \int x \sin x + \sin^3 x \cos 2x \, dx = P \cos x + Q \log |f(x)| + R \text{, then} \]
 a. \(P = 1/2, Q = -\frac{3}{4\sqrt{2}} \)
 b. \(P = 1/4, Q = -\frac{1}{\sqrt{2}} \)
 c. \(f(x) = \frac{\sqrt{2} \cos x + 1}{\sqrt{2} \cos x - 1} \)
 d. \(f(x) = \frac{\sqrt{2} \cos x - 1}{\sqrt{2} \cos x + 1} \)

8. \[\int \frac{2x}{x^2 - 5x + 4} \, dx = AF(x - 1) + BF(x - 4) + C \text{ and} \]
 \[F(x) = \int \frac{e^x}{x} \, dx \text{, then} \]
 a. \(A = -2/3 \)
 b. \(B = (4/3) e^3 \)
 c. \(A = 2/3 \)
 d. \(B = (8/3) e^3 \)

9. \[\int x^2 e^{-2x} \, dx = e^{-2x} (ax^2 + bx + c) + d \text{, then} \]
 a. \(a = 1 \)
 b. \(b = 2 \)
 c. \(c = \frac{1}{2} \)
 d. \(d \in R \)
10. If \(\int \frac{x^4 + 1}{x^5 + 1} \, dx = \tan^{-1} f(x) - \frac{2}{3} \tan^{-1} g(x) + C \), then
 a. both \(f(x) \) and \(g(x) \) are odd functions
 b. \(f(x) \) is monotonic function
 c. \(f(x) = g(x) \) has no real roots
 d. \(\int \frac{f(x)}{g(x)} \, dx = -\frac{1}{x} + \frac{3}{x^2} + c \)

11. If \(\int \frac{x^2 - x + 1}{2} e^x \, dx = e^x f(x) + c \), then
 a. \(f(x) \) is an even function
 b. \(f(x) \) is a bounded function
 c. The range of \(f(x) \) is \((0, 1]\)
 d. \(f(x) \) has two points of extrema

12. If \(\int \frac{\cos^4 x + 1}{\cot x - \tan x} \, dx = A f(x) + B \), then
 a. \(A = -\frac{1}{8} \)
 b. \(B = \frac{1}{2} \)
 c. \(f(x) \) has fundamental period \(\frac{\pi}{2} \)
 d. \(f(x) \) is an odd function

13. If \(\int \sin^{-1} x \cos^{-1} x \, dx = f^{-1}(x) \)
 \[A x - x f^{-1}(x) - 2\sqrt{1 - x^2} + 2x + C, \]
 then
 a. \(f(x) = \sin x \)
 b. \(f(x) = \cos x \)
 c. \(A = \frac{\pi}{4} \)
 d. \(A = \frac{\pi}{2} \)

14. If \(f(x) = \int \frac{x^4 + 4}{x^4 - 2x^2 + 2} \, dx \) and \(f(0) = 0 \), then
 a. \(f(x) \) is an odd function
 b. \(f(x) \) has range \(R \)
 c. \(f(x) \) has at least one real root
 d. \(f(x) \) is a monotonic function

15. \(\int \frac{dx}{x^2 + a} + 1 \) = \(f(g(x)) + c \), then
 a. \(f(x) \) is inverse trigonometric function for \(|a| > 2\)
 b. \(f(x) \) is logarithmic function for \(|a| < 2\)
 c. \(f(x) \) is quadratic function for \(|a| > 2\)
 d. \(g(x) \) is rational function for \(|a| < 2\)
For Problems 1–3

\(y = f(x) \) is a polynomial function passing through point \((0, 1)\) and which increases in the intervals \((1, 2)\) and \((3, \infty)\) and decreases in the intervals \((-\infty, 1)\) and \((2, 3)\).

1. If \(f(1) = -8 \), then the value of \(f(2) \) is
 a. \(-3\)
 b. \(-6\)
 c. \(-20\)
 d. \(-7\)

2. If \(f(1) = -8 \), then the range of \(f(x) \) is
 a. \([3, \infty)\)
 b. \([-8, \infty)\)
 c. \([-7, \infty)\)
 d. \((-\infty, 6]\)

3. If \(f(x) = 0 \) has four real roots, then the range of values of leading co-efficient of polynomial is
 a. \([4/9, 1/2]\)
 b. \([4/9, 1]\)
 c. \([1/3, 1/2]\)
 d. None of these

For Problems 4–6

If \(A \) is square matrix and \(e^A \) is defined as \(e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots = \frac{1}{2!} \begin{bmatrix} f(x) & g(x) \\ x & x \end{bmatrix} \), where \(\begin{bmatrix} x & x \\ x & x \end{bmatrix} \) and \(0 < x < 1, I \) is an identity matrix.

4. \(\int \frac{g(x)}{f(x)} \, dx \) is equal to
 a. \(\log(e^x + e^{-x}) + c \)
 b. \(\log |e^x - e^{-x}| + c \)
 c. \(\log |e^{2x} - 1| + c \)
 d. None of these

5. \(\int (g(x) + 1) \sin x \, dx \) is equal to
 a. \(\frac{e^x}{2} (\sin x - \cos x) \)
 b. \(\frac{e^{2x}}{5} (2 \sin x - \cos x) \)
 c. \(\frac{e^x}{5} (\sin 2x - \cos 2x) \)
 d. None of these

6. \(\int \frac{f(x)}{\sqrt{g(x)}} \, dx \) is equal to
 a. \(\frac{1}{2\sqrt{e^x} - 1} \)
 b. \(\frac{2}{\sqrt{e^x} - e^{-x}} \)
 c. \(\frac{1}{\sqrt{e^{2x} - 1}} + \sec^{-1}(e^x) + c \)
 d. None of these

For Problems 7–9

Euler's substitution

Integrals of the form \(\int R(x, \sqrt{ax^2 + bx + c}) \, dx \) are calculated with the aid of one of the three Euler substitutions

1. \(\sqrt{ax^2 + bx + c} = t \pm x \sqrt{a} \) if \(a > 0 \);
2. \(\sqrt{ax^2 + bx + c} = \pm x \sqrt{c} \) if \(c > 0 \);
3. \(\sqrt{ax^2 + bx + c} = (x - a) \) if \(ax^2 + bx + c = a(x - a)(x - b) \) i.e., if \(a \) is a real root of \(ax^2 + bx + c = 0 \).

7. Which of the following functions does not appear in the primitive of \(\frac{1}{1 + \sqrt{x^2 + 2x + 2}} \) if \(r \) is a function of \(x \)?
 a. \(\log \left[r^2 + 1 \right] \)
 b. \(\log \left[r^2 + 2 \right] \)
 c. \(\frac{1}{r^2 + 2} \)
 d. None of these

8. Which of the following functions does not appear in the primitive of \(\frac{dx}{x + \sqrt{x^2 + x + 1}} \) if \(r \) is a function of \(x \)?
 a. \(\log |r| \)
 b. \(\log |r - 2| \)
 c. \(\log |r - 1| \)
 d. \(\log |r + 1| \)

9. \(\int \frac{xdx}{(\sqrt{7x - 10} - x^3)^3} \) can be evaluated by substituting for \(x \) as
 a. \(x = \frac{5 + 2t^2}{t^2 + 1} \)
 b. \(x = 5 - \frac{t^2}{t^2 + 2} \)
 c. \(x = \frac{2t^2 - 5}{3t^2 - 1} \)
 d. None of these

Matrix-Match Type

Each question contains statements given in two columns which have to be matched.

Statements (a, b, c, d) in column 1 have to be matched with statements (p, q, r, s) in column 2. If the correct match are a-p, b-q, c-p, q and d-s, then the correctly bubbled 4 x 4 matrix should be as follows:

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>p</td>
<td>q</td>
<td>r</td>
</tr>
<tr>
<td>b</td>
<td>p</td>
<td>q</td>
<td>s</td>
</tr>
<tr>
<td>c</td>
<td>p</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>d</td>
<td>p</td>
<td>q</td>
<td>r</td>
</tr>
</tbody>
</table>
```
7.36 Calculus

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. If (\int \frac{2^x}{\sqrt{1-4^x}} , dx = k \sin^{-1}(f(x)) + C), then (k) is greater than p. 0.</td>
<td></td>
</tr>
<tr>
<td>b. If (\int \frac{(\sqrt{x})^3}{(\sqrt{x})^2 + x^5} , dx = a \ln \frac{x^k}{x^4 + 1} + C), then (ak) is less than q. 1</td>
<td></td>
</tr>
<tr>
<td>c. (\int \frac{x^4 + 1}{x(x^2 + 1)^2} , dx = k \ln</td>
<td>x</td>
</tr>
<tr>
<td>d. (\int \frac{dx}{5 + 4 \cos x} = k \tan^{-1} \left(\frac{m \tan \frac{x}{2}}{n} \right) + C), then (km) is greater than s. 4</td>
<td></td>
</tr>
</tbody>
</table>

2.

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\int \frac{e^{2x} - 1}{e^{2x} + 1} , dx) is equal to p. x = log \left(1 + \frac{1}{e^{2x}} \right) + C</td>
<td></td>
</tr>
<tr>
<td>b. (\int \frac{1}{(e^x + e^{-x})} , dx) is equal to q. log \left(e^x + 1 \right) - x - e^{-x} + C</td>
<td></td>
</tr>
<tr>
<td>c. (\int \frac{e^x}{1 + e^x} , dx) is equal to r. log \left(e^{2x} + 1 \right) + x - e^x + C</td>
<td></td>
</tr>
<tr>
<td>d. (\int \frac{1}{\sqrt{1 - e^{2x}}} , dx) is equal to s. \frac{1}{2} \log \left(e^{2x} + 1 \right) + C</td>
<td></td>
</tr>
</tbody>
</table>

3.

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\int \frac{x^2 - x + 1}{x^3 - 4x^2 + 4x} , dx) (\text{which of the following functions appear in integration of function in Column 1}) p. log</td>
<td>x</td>
</tr>
<tr>
<td>b. (\int \frac{x^2 - 1}{x(x - 2)^2} , dx) q. log</td>
<td>x - 2</td>
</tr>
<tr>
<td>c. (\int \frac{x^3 + 1}{x(x - 2)^2} , dx) r. \frac{1}{(x - 2)}</td>
<td></td>
</tr>
<tr>
<td>d. (\int \frac{x^3 + 1}{x(x - 2)^2} , dx) s. \frac{1}{x - 2}</td>
<td></td>
</tr>
</tbody>
</table>

Integer Type

1. Let \(f(x) = \int x^{\sin x} (1 + x \cos x \ln x + \sin x) \, dx \) and \(f(\frac{\pi}{2}) = \frac{\pi^2}{4} \), then the value of \(|\cos(f(\pi))| \) is

Solutions on page 7.55

2. Let \(g(x) = \int \frac{1 + 2 \cos x}{(\cos x + 2)^2} \, dx \) and \(g(0) = 0 \), then the value of \(8g(\frac{\pi}{2}) \) is

3. Let \(k(x) = \int \frac{(x^2 + 1)}{\sqrt{x^3 + 3x + 6}} \, dx \) and \(k(-1) = \frac{1}{3\sqrt{2}} \), then the value of \(k(-2) \) is

10.

11.
4. If \(\int x^2 \cdot e^{-2x} \, dx = e^{-2x} (ax^2 + bx + c) + d \), then the value of \(|a/bc|\) is

5. If \(f(x) = \int \frac{3x^2 + 1}{(x^2 - 1)^3} \, dx \) and \(f(0) = 0 \), then the value of \(|2/f(2)|\) is

6. If \(f(x) = \sqrt{x} \), \(g(x) = e^x - 1 \), and \(\int f \circ g \, dx = A \sqrt{\tan^{-1} (fog(x))} + C \), then \(A + B \) is equal to

7. If \(\int \frac{2 \cos x - \sin x + \lambda}{\cos x + \sin x - 2} \, dx = A \ln |\cos x + \sin x - 2| + Bx + C \).

Then the value of \(A + B + |\lambda| \) is

8. \(\int \left[\left(\frac{x}{e} \right)^x + \left(\frac{e}{x} \right)^x \right] \ln x \, dx = A \left(\frac{x}{e} \right)^x + B \left(\frac{e}{x} \right)^x + C \), then the value of \(A + B \) is

\[\sin x \]
\[\sin x - \cos x \]

1. Evaluate \(\int \frac{\sin x}{\sin x - \cos x} \, dx \). (IT-JEE, 1978)

2. Evaluate \(\int \frac{x^2}{(a + bx)^2} \, dx \). (IT-JEE, 1979)

3. Evaluate the following integrals:
 a. \(\int \frac{1 + \sin \left(\frac{x}{2} \right)}{\sqrt{1 - x}} \, dx \)
 b. \(\int \frac{x^2}{\sqrt{1 - x}} \, dx \)

4. Evaluate \(\int (e^{\log x} + \sin x) \cos x \, dx \). (IT-JEE, 1981)

5. Evaluate \(\int \frac{x - 1}{x + 1} \frac{e^x}{x^3} \, dx \). (IT-JEE, 1983)

6. Evaluate \(\int \frac{dx}{x^2(x^4 + 1)^{3/4}} \). (IT-JEE, 1984)

7. Evaluate \(\int \frac{1 - \sqrt{x}}{\sqrt{x}} \). (IT-JEE, 1985)

8. Evaluate \(\int \frac{\sqrt{x} - \cos^{-1} \sqrt{x}}{\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x}} \). (IT-JEE, 1986)

9. Evaluate \(\int \frac{\cos 2x}{\sin x} \, dx \). (IT-JEE, 1987)

10. Evaluate \(\int (\sqrt{\tan x} + \sqrt{\cot x}) \, dx \). (IT-JEE, 1989)

11. Evaluate \(\int \frac{1}{\sqrt{x + \sqrt{x}}} + \frac{\ln (1 + \sqrt{x})}{\frac{1}{3}x + \sqrt{x}} \, dx \). (IT-JEE, 1992)

12. Evaluate \(\int \frac{x^2}{(x + 1)(x^2 + 1)} \, dx \). (IT-JEE, 1996)

14. Evaluate \(\int \frac{1}{x} \sqrt{\sqrt{x} + \frac{1}{x}} \). (IT-JEE, 1997)

15. Evaluate \(\int \frac{x^3 + 3x + 2}{(x^3 + 1)(x + 1)} \, dx \). (IT-JEE, 1999)

16. Evaluate \(\int \frac{2x + 2}{\sqrt{x^2 + 8x + 13}} \). (IT-JEE, 2001)

17. Evaluate for \(m \in N \),
 \(\int (x^{3m} + x^{2n} + x^m)(2x^{2m} + 3x^m + 6)^{1/m} \, dx \), \(x > 0 \).

(IT-JEE, 2002)

Objective

Fill in the blanks

1. \(\int \frac{4e^x + 6e^{-x}}{9e^x - 4e^{-x}} \, dx = A \sqrt{9e^x - 4e^{-x}} + C \), then \(A = \boxed{______} \), \(B = \boxed{______} \), \(C = \boxed{______} \).

Multiple choice questions with one correct answer

1. The value of the integral \(\int \frac{\cos^3 x + \sin^3 x}{\sin^2 x + \sin^4 x} \, dx \) is
 a. \(\sin x - 6 \tan^{-1} (\sin x) + C \)
 b. \(\sin x - 2 (\sin x)^{-1} + C \)
 c. \(\sin x - 2 (\sin x)^{-1} - 6 \tan^{-1} (\sin x) + C \)
 d. \(\sin x - 2 (\sin x)^{-1} + 5 \tan^{-1} (\sin x) + C \)

2. Evaluate \(\int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2}} \, dx \) is equal to
 a. \(\frac{\sqrt{2x^4 - 2x^2} + 1}{x^3} \) + C
 b. \(\frac{\sqrt{2x^4 - 2x^2} + 1}{x} \) + C
 c. \(\frac{\sqrt{2x^4 - 2x^2} + 1}{x^2} \) + C
 d. \(\frac{\sqrt{2x^4 - 2x^2} + 1}{2x^2} \) + C
Subjective Type

1. \(\int \sqrt{\frac{1+x^2}{x^2-x^4}} \, dx = \int \frac{1+x^2}{x\sqrt{1-x^4}} \, dx \)

\(= \int \frac{dx}{x\sqrt{1-x^4}} \, + \, \int \frac{xdx}{\sqrt{1-x^4}} \)

\(= \int \frac{x^3dx}{x^4\sqrt{1-x^4}} \, + \, \int \frac{xdx}{\sqrt{1-x^4}} \)

\(= \frac{1}{2} \int \frac{udu}{(1-u^2)u} \, + \, \frac{1}{2} \int \frac{dv}{\sqrt{1-v^2}} \)

(Putting \(1-x^4 = u^2, -4x^3 \, dx = 2u \, du \) in the first integral and \(x^2 = v, 2x \, dx = dv \) in the second integral)

\(= \frac{1}{2} \int \frac{du}{u^2-1} \, + \, \frac{1}{2} \sin^{-1} v + c \)

\(= \frac{1}{2} \log \left| \frac{u-1}{u+1} \right| + \frac{1}{2} \sin^{-1} v + c \)

\(= \frac{1}{4} \log \left[\frac{(1-x^4)-1}{(1-x^4)+1} \right] + \frac{1}{2} \sin^{-1} (x^2) + c \)

2. \(I = \int \frac{(2\cos^2 x - 1)^{3/2}}{\sin x} \, dx \)

\(= \int \frac{(2\cos^2 x - 1) \sin x \, dx}{\sin^2 x (2\cos^2 x - 1)} \)

\(= -\int \frac{(2t^2-1)dt}{(1-t^2)\sqrt{(2t^2-1)}} \)

(Putting \(\cos x = t, -\sin x \, dx = dt\))

\(= -\int \frac{-2(1-t^2)+1}{(1-t^2)\sqrt{(2t^2-1)}} \, dt \)

\(= 2\int \frac{dt}{\sqrt{(2t^2-1)}} - \int \frac{dt}{(1-t^2)\sqrt{(2t^2-1)}} \)

\(= I_1 + I_2 \) (say)

Now \(I_1 = \frac{2}{\sqrt{2}} \log \left| \sqrt{2t+\sqrt{2t^2-1}} \right| + C_1 \)

And putting \(t = 1/z, dt = (-1/z^2)dz\), we get

\(I_2 = \int \frac{zdz}{(z^2-1)\sqrt{(2-z^2)}} = \int \frac{dv}{\sqrt{v^2-1}} \)

Putting \(2-z^2 = \nu^2, -z \, dz = \nu \, d\nu\)

\(\Rightarrow \quad I_2 = \frac{1}{2} \log \left(\frac{\nu-1}{\nu+1} \right) + C_2 \)

3. \(I = \int \frac{x^2-1}{(x^2+1)(x^4+1)} \, dx \)

\(= \int \frac{x^2(1-1/x^2)}{x^2(x+1/x)(x^2+1/x^2)} \, dx \)

\(= \int \frac{(1-1/x^2)dx}{(x+1/x)(x^2+1/x^2)} \)

Putting \(x + 1/x = t\), we have \(I = \int \frac{dt}{t\sqrt{t^2-2}} \)

Again putting \(t^2 - 2 = y^2, 2t \, dt = 2y \, dy\), we get

\(I = \int \frac{ydy}{(y^2+2)y} = \frac{1}{\sqrt{2}} \tan^{-1} \frac{y}{\sqrt{2}} \)

\(= \frac{1}{2} \tan^{-1} \left(\frac{\sqrt{x^2+1}+x^2}{\sqrt{2}} \right) + C \)

4. \(I_n = \int \cos^n x \, dx \)

\(= \cos^{n-1} x \int \cos x \, dx + (n-1) \int [\sin^2 x] \cos^{n-2} x \, dx \)

\(= (\cos^{n-1} x \sin x) + (n-1) \int \cos^{n-2} x \cos x \, dx \)

\(= (\cos^{n-1} x \sin x) + (n-1) \int [\cos^{n-2} x - \cos^n x] \, dx \)

\(\Rightarrow I_n + (n-1) I_n = (\cos^{n-1} x \sin x) + (n-1)(I_{n-2}) \)

\(\Rightarrow I_n = \frac{1}{n} \left(\cos^{n-1} x \sin x \right) + \frac{n-1}{n} I_{n-2} \)

5. Here, \(I = \int \frac{(1-x\sin x) \, dx}{x \left(1-x(\cos x)^3 \right)^2} \)

put \(x\cos x = t\) so that \((x\cos x \, (-\sin x) + e^{\cos x}) \, dx = dt \)
.: \[I = \int \frac{dt}{t(1-t^2)} \]
\[= \int \frac{dt}{t^4 \left(\frac{1}{t^2} - 1 \right)} \]

Let \(\frac{1}{t^2} - 1 = y \Rightarrow dy = -\frac{3}{t^3} dt \)

\[\Rightarrow I = -\frac{1}{3} \int \frac{dy}{y} = -\frac{1}{3} \log |y| + C \]
\[= -\frac{1}{3} \log |\frac{1}{t^2} - 1| + C \]

\[\Rightarrow I = \int \frac{dt}{t} + \frac{1}{3} \int \frac{dt}{1-t} + \frac{\left(-\frac{2}{3} t - \frac{1}{3} \right)}{1 + t + t^2} dt \]
\[= \log |t| - \frac{1}{3} \log |1-t| - \frac{1}{3} \log |1+t+t^2| \]

where, \(t = xe^{\cos x} \)

6. Note that \(\sec^{-1} \sqrt{1+x^2} = \tan^{-1} x \);
\[\cos^{-1} \left(\frac{1-\frac{1}{x^2}}{1+\frac{1}{x^2}} \right) = 2 \tan^{-1} x \] (for \(x > 0 \))

\[\Rightarrow I = \int e^{\tan^{-1} x} \left[(\tan^{-1} x)^2 + 2 \tan^{-1} x \right] dx \]
\[= \int e^{t^2} \left[(t^2 + 2t) dt \right] \]
\[= e^{t^2} = e^{\tan^{-1} x} \left(\tan^{-1} x \right)^2 + C \]

7. \[I = \int \frac{x^2 \left(1 - \frac{1}{x^2} \right)}{\sqrt{\left[\left(x + \frac{1}{x} + \alpha \right) \sqrt{x + \frac{1}{x} + \beta} \right]}} \]

Put \(x + \frac{1}{x} = z \) \(\therefore \) \(\left(1 - \frac{1}{x^2} \right) dx = dz \)

\[\Rightarrow I = \int \frac{dz}{\sqrt{(z + \alpha) (z + \beta)}} \]
\[= \int \frac{dz}{\sqrt{z^2 + (\alpha + \beta) z + \alpha \beta}} \]
\[= \int \frac{dz}{\sqrt{\left(z + \frac{\alpha + \beta}{2} \right)^2 - \left(\frac{\alpha - \beta}{2} \right)^2}} \]
\[= \log \left| z + \frac{\alpha + \beta}{2} - \sqrt{(z + \alpha)(z + \beta)} \right| \]
\[+ \log \left| z + \frac{\alpha + \beta}{2} + \sqrt{(z + \alpha)(z + \beta)} \right| + C \]
\[= \log \left| x + \frac{1}{x} + \alpha + \beta - \sqrt{(x + x + \alpha)(x + x + \beta)} \right| + C \]
\[= \log \left[\frac{2x^2 + (\alpha + \beta) x + 2}{2x} \right] \]
\[+ \log \left| \frac{\sqrt{x^2 + \alpha x + 1} - \sqrt{x^2 + \beta x + 1}}{x} \right| + C \]
\[= \log \frac{1}{2} \left(\frac{x^2 + \alpha x + 1}{\sqrt{x^2 + \beta x + 1}} \right)^2 + C \]

8. \[\int \frac{2x}{(1-x^2) \sqrt{x^4 - 1}} \]
\[= \int \frac{-2x}{(x^2 - 1)^{3/2} \sqrt{x^2 + 1}} \]

Put \(\sqrt{x^2 + 1} = z \)
\[\Rightarrow \frac{1}{2} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{1/2} \frac{(x^2 - 1) 2x - (x^2 + 1) 2x}{(x^2 - 1)^2} dx = dz \]
\[\Rightarrow \frac{\sqrt{x^2 - 1} - 2x}{\sqrt{x^2 + 1}} \frac{-2x}{(x^2 - 1)^2} dx = dz \]
\[\Rightarrow - \frac{2x}{(x^2 - 1)^{3/2} \sqrt{x^2 + 1}} dx = dz \]
\[\Rightarrow \text{given integral} = \int dz = z + C = \frac{x^2 + 1}{\sqrt{x^2 - 1} + 1} + C \]

9. Write \(I = \int \frac{xdx}{x^2 \sqrt{x^2 - 1}} \) and put \(x^2 - 1 = t^2 \), so that
\[2x \ dx = 2t \ dt \] and
\[I = \int \frac{t}{(t^2 + 1)^2} \]
\[= \int \frac{dt}{(t^2 + 1)^2} \]

But \(\tan^{-1} t = \int \frac{dt}{t^2 + 1} = \int \frac{1}{t^2 + 1} \ dt \)
Let \(\cos x = t \). Then \(d(\cos x) = dt \Rightarrow -\sin x \, dx = dt \)

\[
I = \int \frac{-dt}{\sqrt{t^2 + t}}
= \int \frac{dt}{\sqrt{(t + \frac{1}{2})^2 - \left(\frac{1}{2}\right)^2}}
= -\log \left| t + \frac{1}{2} + \sqrt{t + \frac{1}{2}^2 - \left(\frac{1}{2}\right)^2} \right| + C
= -\log \left(\cos x + \frac{1}{2} + \sqrt{\cos^2 x + \cos x} \right) + C
\]

10. Here, \(I = \int \frac{3-x}{3+x} \sin^{-1} \left(\frac{1}{\sqrt{6}} \sqrt{3-x} \right) \, dx \),

put \(x = 3 \cos 2\theta \Rightarrow dx = -6 \sin 2\theta \, d\theta
\]

\[
= \int \frac{3-3 \cos 2\theta}{3 + 3 \cos 2\theta} \sin^{-1} \left(\frac{1}{\sqrt{6}} \sqrt{3 - 3 \cos 2\theta} \right) \, d\theta
= \int \sin \theta \, \sin^{-1} \left(\sin \theta \right) (-6 \sin 2\theta) \, d\theta
= -6 \int \theta \, (2 \sin^2 \theta) \, d\theta
= -6 \int \theta \, (1 - \cos 2\theta) \, d\theta
= -6 \left[\frac{\theta^2}{2} - \int \theta \cos 2\theta \, d\theta \right]
= -6 \left[\frac{\theta^2}{2} - \left(\frac{\sin 2\theta}{2} - \int \frac{\sin 2\theta}{2} \, d\theta \right) \right]
= -3\theta^2 + 6\left(\frac{\sin 2\theta}{2} + \frac{\cos 2\theta}{4} \right) + c
= \frac{1}{4} \left[-3 \left(\sin^{-1} \left(\frac{x}{3} \right) \right)^2 + \frac{2\sqrt{9-x^2} \cos^{-1} \left(\frac{x}{3} \right)}{2} + 2x \right] + c .
\]

11. \(I = \int \frac{1}{\sec x} \, dx = \int \frac{1 - \cos x}{\cos x} \, dx
\]

\[
= \int \left(\frac{1 - \cos x}{\cos x} \right) \, dx
= \int \frac{1 - \cos^2 x}{\cos x + \cos^3 x} \, dx
= \int \frac{\sin x}{\sqrt{\cos^2 x + \cos x}} \, dx
\]

12. \(I = \int \frac{1}{1 + \csc x} \, dx
\]

\[
= \int \frac{\sin x + \cos x}{\sqrt{2 \sin x \cos x}} \, dx
= \int \frac{\sin x}{\sqrt{2 \sin \frac{x}{2} \cos \frac{x}{2}}} \, dx
= \int \frac{\sin x}{\sqrt{2 \sin \frac{x}{2} \cos \frac{x}{2}}} \, dx
\]

Put \(\sin \frac{x}{2} - \cos \frac{x}{2} = t \Rightarrow \left(\cos \frac{x}{2} + \sin \frac{x}{2} \right) \, dx = 2 \, dt
\]

\[
\therefore \ I = \int \frac{2 \, dt}{\sqrt{1 - t^2}} = 2 \sin^{-1} t + c
= 2 \sin^{-1} \left(\sin \frac{x}{2} - \cos \frac{x}{2} \right) + c
\]

13. \(I = \int \frac{\cos^4 x}{\sin^3 x (\sin^5 x + \cos^5 x)^3} \, dx
\]

\[
= \int \frac{\cos^4 x}{\sin^6 x (1 + \cos^4 x)^3} \, dx
= \int \sec^2 x \, dx
= \tan^6 \left(1 + \frac{1}{\tan^5 x} \right)^5
\]
Let \(\tan x = p \), then \(\sec^2 x \, dx = dp \)

\[
I = \int \frac{dp}{p^6 \left(1 + \frac{1}{p^5}\right)^{3/5}}
\]

Let \(1 + \frac{1}{p^5} = k \) \(\Rightarrow -5 \frac{1}{p^6} \, dp = dk \)

\[
I = \frac{1}{5} \int (k)^{-3/5} \, dk
\]

\[
= \frac{1}{5} \left(\frac{k^{2/5}}{2} \right) + c
\]

\[
I = -\frac{1}{2} \left[\frac{p^5 + 1}{p^5} \right]^{2/5}
\]

\[
= -\frac{1}{2} \left(\frac{\tan^5 x + 1}{\tan^5 x} \right)^{2/5}
= -\frac{1}{2} \left(1 + \cot^5 x \right)^{2/5} + c
\]

Objective Type

1. c. \(\int \frac{\sin 2x}{\sin 5x \sin 3x} \, dx \)

\[
= \int \frac{\sin (5x - 3x)}{\sin 5x \sin 3x} \, dx
\]

\[
= \int \frac{5x \cos 3x - \cos 5x \sin 3x}{\sin 5x \sin 3x} \, dx
\]

\[
= \frac{1}{3} \log |\sin 3x| - \frac{1}{5} \log |\sin 5x| + C
\]

2. a. \(I = \int \frac{\sqrt{1 + \sin x}}{\sqrt{1 - \sin x}} \, dx \)

\[
= \int \frac{\cos x}{\sqrt{1 - \sin x}} \, dx = -2 \sqrt{1 - \sin x} + C
\]

3. b. \(\int \frac{\sin^8 x - \cos^8 x}{12 \sin^2 x \cos^2 x} \, dx \)

\[
= \int \frac{(\sin^2 x - \cos^2 x)(\sin^4 x + \cos^4 x)}{12 \sin^2 x \cos^2 x} \, dx
\]

\[
= \int -2 \cos 2xdx = -\frac{1}{2} \sin 2x + C
\]

4. b. \(\int \frac{\cot x - \tan x}{\cos^2 x + 1} \, dx \)

\[
= \int -\frac{2 \cos^2 x}{\cos x - \sin^2 x} \, dx
\]

\[
= \int \cos 2x \sin 2xdx
\]

\[
= \frac{1}{4} \sin 4xdx = -\frac{1}{8} \cos 4x + C
\]

5. b. \(f(x) = x[\cos x], \frac{\pi}{2} < x < \pi = -x \cos x, \) because \(\cos x \) is negative in \(\left\{ \frac{\pi}{2}, \pi \right\} \).

\[
\therefore \text{ the required primitive function } = \int -x \cos x \, dx
\]

Now, use integration by parts

6. a. \(I = \int \frac{dx}{x(x^n + 1)} = \int \frac{x^{n-1}}{x^n (x^n + 1)} \, dx \)

Putting \(x^n = t \) so that \(n x^{n-1} \, dx = dt \)

\[
\Rightarrow \int \frac{1}{n} \, dt
\]

\[
\therefore \, I = \frac{1}{n} \int \frac{1}{t(t + 1)} \, dt
\]

\[
= \frac{1}{n} \left(\log t - \log(t+1) \right) + C
\]

\[
= \frac{1}{n} \log \left(\frac{x^n}{x^n + 1} \right) + C
\]

7. b. \(I = \int 4 \sin x \cos x \cos \frac{3x}{2} \, dx \)

\[
= 2 \sin x(\cos 2x + \cos x)dx
\]

\[
= \int (3x - \sin x + \sin 2x)dx
\]

\[
= \cos x - \frac{1}{3} \cos 3x - \frac{1}{2} \cos 2x + C
\]

8. c. \(\frac{dx}{dt} = f''''(t) \cos t + f''(t) \sin t + f'(t) \cos t \)

\[
= [f''''(t) + f''(t)] \cos t
\]

\[
\frac{dy}{dt} = -f''''(t) \sin t - f''(t) \cos t - f'(t) \sin t
\]

\[
= -[f''''(t) + f''(t)] \sin t
\]

\[
\Rightarrow \left[\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 \right]^{1/2}
\]

\[
= [(f''''(t) + f''(t))^2 \cos^2 t + \sin^2 t]^{1/2}
\]

\[
= f''''(t) + f''(t)
\]

\[
\Rightarrow \int \left[\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 \right]^{1/2} \, dt = f''''(t) + f''(t) + C
\]

9. c. \(\sin^3 x \sin (x + \alpha) \)

\[
= \sin^3 x (\sin x \cos \alpha + \cos x \sin \alpha)
\]

\[
= \sin^4 x (\cos \alpha + \cot x \sin \alpha)
\]

\[
I = \int \frac{1}{\sqrt{\sin^3 x \sin (x + \alpha)}} \, dx
\]
7.42 Calculus

\[I = \int \frac{1}{\sin^2 x \sqrt{\cos \alpha + \cot x \sin \alpha}} \, dx \]

\[= \int \frac{\csc^2 x}{\sqrt{\cos \alpha + \cot x \sin \alpha}} \, dx \]

Putting \(\cos \alpha + \cot x \sin \alpha = t \) and \(-\csc^2 x \sin \alpha \, dx = dt \), we have

\[I = \int -\frac{1}{\sin \alpha \sqrt{t}} \, dt = -\frac{1}{\sin \alpha} \int t^{-1/2} \, dt \]

\[= \frac{1}{\sin \alpha} \left(\frac{t^{1/2}}{1/2} \right) + C \]

\[\Rightarrow \quad I = -2 \csc \alpha \sqrt{t} + C = -2 \csc \alpha (\cos \alpha + \cot x \sin \alpha)^{1/2} + C \]

10. c. \(\int \frac{px^{p+2q-1} - qx^{q-1}}{(x^{p+q} + 1)^2} \, dx \)

\[= \int \frac{px^{p-1} - qx^{q-1}}{(x^p + x^q)^2} \, dx \]

(Dividing \(N \) and \(D \) by \(x^2 \))

\[= \int \frac{dt}{t^2} = \frac{1}{t} + C = -\frac{1}{x^p + x^q} + C = -\frac{x^q}{x^{p+q} + 1} + C \]

11. c. \(I_n = x (\ln x)^n - \frac{x (n) (\ln x)^{n-1}}{x} \, dx \)

\[= x (\ln x)^n - n I_{n-1} \]

\[\Rightarrow \quad I_n + n I_{n-1} = x (\ln x)^n \]

12. Let \(I = \int \frac{x^2 + 1}{(x^2 + 3x + 3) \sqrt{x + 1}} \, dx \)

Putting \(x + 1 = t^2 \), \(dx = 2t \, dt \), we get

\[I = 2 \int \frac{t^2 + 1}{t^4 + t^2 + 1} \, dt \]

\[= 2 \int \frac{1 + (1/2)^2}{t - (1/2)^2 + 3} \, dt \]

\[= \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{t - (1/2)}{\sqrt{3}} \right) + C \]

\[= \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3(x+1)}} \right) + C \]

13. b. \(I = \int \frac{\sin 2x}{\sin^4 x + \cos^4 x} \, dx \)

\[= \int \frac{2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]

\[= \int \frac{2 \tan x \sec^2 x}{1 + \tan^4 x} \, dx \]

Let \(\tan^2 x = t \), \(2 \tan x \sec^2 x \, dx = dt \),

\[\Rightarrow \quad I = \int \frac{dt}{1 + t} = \tan^{-1} t + C = \tan^{-1} (\tan^2 x) + C \]

14. c. \(I = \int \frac{\sec x \, dx}{\sqrt{2} \sin (x + A) \cos x} \)

\[= \int \frac{\sec^2 x \, dx}{\sqrt{2} \tan (x + A)} \]

\[= \frac{1}{\sqrt{2}} \int \frac{\sec^2 x \, dx}{\tan x \cos A + \sin A} \]

\[= \frac{1}{\sqrt{2}} \int \frac{2 \sec^2 x \, dx}{\tan x \cos A + \sin A} \]

(\(\tan x \cos A + \sin A = p \), then \(\cos A \sec^2 x \, dx = 2p \, dp \))

\[I = \sqrt{2} \sec A \int \frac{dp}{\sqrt{2} \sec A \sqrt{\tan x \cos A + \sin A} + C} \]

15. a. Differentiating both sides, we get

\[\sqrt{1 + \sin x} \, f(x) = \frac{2}{3} \frac{2}{3} (1 + \sin x)^{1/2} \cos x \]

\[\Rightarrow \quad f(x) = \cos x \]

16. c. Here, \(\int e^x \left(f(x) - f'(x) \right) \, dx = \phi(x) \)

and \(\int e^x \left(f(x) + f'(x) \right) \, dx = e^x f(x) \)

On adding, we get \(2 \int e^x f(x) \, dx = \phi(x) + e^x f(x) \)

17. b. \(f(x) = \int \frac{x^2 \, dx}{(1 + x^2) (1 + \sqrt{1 + x^2})} \)

Let \(x = \tan \theta \), \(dx = \sec^2 \theta \, d\theta \), \((1 + x^2) \, d\theta \).

\[\Rightarrow \quad f(x) = \int \frac{x^2 \, dx}{(1 + x^2) (1 + \sqrt{1 + x^2})} \]

\[= \int \frac{\tan^2 \theta \sec^2 \theta \, d\theta}{\sec \theta (1 + \sec \theta)} \]

\[= \int \frac{\tan^2 \theta \, d\theta}{1 + \sec \theta} \]

\[= \int \frac{\sin^2 \theta \, d\theta}{\cos \theta (1 + \cos \theta)} \]

\[= \int \frac{1 - \cos^2 \theta \, d\theta}{\cos \theta (1 + \cos \theta)} \]
\[
= \int \left(1 - \cos \theta \right) d\theta
= \int \sec \theta d\theta - \int d\theta
= \log (x + \sqrt{1 + x^2}) - \tan^{-1} x + C
\]

Given \(f(0) = 0\)

\[0 = \log 1 - 0 + C\]

\[C = 0\]

\[f(1) = \log (1 + \sqrt{1 + 1}) - \tan^{-1} (1)\]

\[= \log \left(1 + \frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}\]

18. a. Let \(x = \tan \theta\), then \(dx = \sec^2 \theta \, d\theta\)

Now \(y = \int \frac{dx}{\sqrt{1 + x^2}} = \int \sec^2 \theta \, d\theta = 2\tan \theta\)

\[= \int \sec^2 \theta \, d\theta = \int \frac{d\theta}{\sec^2 \theta} = \int \cos \theta \, d\theta\]

Hence, \(y = \sin \theta + c = \frac{x}{\sqrt{1 + x^2}} + c\) \hspace{1cm} (1)

Given when \(x = 0, y = 0 \Rightarrow \text{from equation (1), } 0 = 0 + c\)

\[\Rightarrow c = 0\]

\[\Rightarrow \text{from equation (1), } y = \frac{x}{\sqrt{1 + x^2}}\]

\[\Rightarrow \text{when } x = 1, y = \frac{1}{\sqrt{2}}\]

19. c. Let \(x = t^6 \Rightarrow dx = 6t^5 \, dt\)

\[\Rightarrow I = \int t^3 \left(1 + t^2\right)^6 6t^5 \, dt\]

\[\Rightarrow I = 6 \int \left(t^8 + 4t^6 + 6t^4 + 4t^2 + 1\right) \, dt\]

\[= \int \left(t^8 + 4t^6 + 6t^4 + 4t^2 + 1\right) \, dt\]

\[= \frac{t^9}{9} + \frac{4t^7}{7} + \frac{6t^5}{5} + \frac{4t^3}{3} + \frac{t}{1} + C\]

20. b. Here, \(\int x^5 (1 + x^3)^{2/3} \, dx\)

Let \(1 + x^3 = t^2\) and \(3x^2 \, dx = 2t \, dt\)

\[\Rightarrow \int x^5 (1 + x^3)^{2/3} \, dx\]

\[= \int x^3 (1 + x^3)^{2/3} \, dx\]

21. a. Let \(I = \int \frac{1 - \cos \theta}{\sin^2 \theta} \, d\theta\)

\[
I = \int \frac{\sin^2 \theta}{\sin^2 \theta} \, d\theta
= \frac{1}{2} \int \left(\sin \theta / 2\right)^{1/2} \, d\theta
\]

Put \(\theta = t \Rightarrow d\theta = dt\)

\[\Rightarrow I = \frac{1}{2} \int \left(\sin t / 2\right)^{1/2} \, dt\]

(Here \(m + n = -2\))

\[= \int \left(\tan t / 2\right)^{1/2} \, dt\]

Put \(t = u \Rightarrow \sec^2 t \, dt = du\)

\[\Rightarrow I = \int \left(\tan u / 2\right)^{1/2} + C\]

\[= \frac{7}{11} \left(\tan u / 2\right)^{1/2} + C\]

22. c. \(I = \int \frac{1 - x^7}{x(1 + x^7)} \, dx = a \ln |x| + b \ln |1 + x^7| + C\)

Diff. both sides, we get \(\frac{1 - x^7}{x(1 + x^7)} = \frac{a + b \cdot 7x^6}{1 + x^7}\)

\[\Rightarrow 1 - x^7 = a(1 + x^7) + 7bx^7\]

\[\Rightarrow a = 1, b = -1\]

\[\Rightarrow b = -\frac{7}{27}\]

23. d. \(I = \int \sin^{-1}\left(\frac{2x}{1 + x^2}\right) \, dx\), let \(x = \tan \theta\)

\(\Rightarrow dx = \sec^2 \theta \, d\theta\)

\[\Rightarrow I = \int \sin^{-1}\left(\frac{2 \tan \theta}{1 + \tan^2 \theta}\right) \sec^2 \theta \, d\theta\]

\[= 2 \int \sec^2 \theta \, d\theta\]

\[= 2 (\theta + \ln |\sec \theta + \tan \theta|) + C\]

\[= 2 (\theta + \ln |\tan(x^2)\sec x|) + C\]

24. c. \(I = \int \frac{\ln(x)}{\sin x \cos x} \, dx\), let \(t = \ln (\tan x)\)
\[\int \frac{\sec^2 x}{\tan x} \, dx \]
\[\Rightarrow \quad dt = - \tan^{-1} x \, dx \]
\[\Rightarrow \quad I = \int t \, dt = \frac{t^2}{2} + C = \frac{1}{2} \left(\ln(\tan x) \right)^2 + C \]

28. d. \[I = \int \frac{dx}{\sqrt{\tan^3 x}} \]
\[= \int \frac{dx}{\sqrt{\tan^3 x} \cos^2 x} \]
\[= \int \frac{dx}{\sqrt{\sec^4 x}} \]
\[= \int \frac{dx}{\tan^3 x} \]
\[= \int \frac{(1 + \tan^2 x) \sec^2 x \, dx}{\sqrt{\tan^3 x}} \]
Let \(t = \tan x \Rightarrow dt = \sec^2 x \, dx \)
\[\Rightarrow \quad I = \int \frac{1 + t^2}{t^{3/2}} \, dt \]
\[= \int \left(t^{-3/2} + t^{1/2} \right) \, dt \]
\[= -2t^{-1/2} + \frac{2}{3} t^{3/2} + C \]
\[= -2 \cot x + \frac{2}{3} \sqrt{\tan^3 x} + C \]

29. c. \[I = \int \cot x \, dx \]
\[= \int \frac{\cos 4x - 1}{\cot x - \tan x} \, dx \]
\[= \int -2 \frac{\sin^2 2x (\sin x \cos x)}{(\cos^2 x - \sin^2 x)} \, dx \]
\[= -\int \frac{\sin^2 2x \sin 2x}{\cos 2x} \, dx \]
\[= \int \frac{(\cos^2 2x - 1) \sin 2x}{\cos 2x} \, dx \]
Let \(t = \cos 2x \Rightarrow dt = -2 \sin 2x \, dx \)
\[\Rightarrow \quad I = \frac{1}{2} \int \left(\frac{1 - t^2}{t} \right) \, dt = \frac{1}{2} \ln \left| - \frac{1}{4} \right| + C \]
\[= \frac{1}{2} \ln \cos 2x \left| - \frac{1}{4} \cos^2 2x + c \right| \]

30. a. Putting \(1 - x^3 = y^2 \), \(-3x^2 \, dx = 2y \, dy \), we get
\[\int \frac{1}{x \sqrt{1-x^3}} \, dx \]
\[= - \frac{2}{3} \int \frac{1}{1 - y^2} \, dy \]
\[= \frac{1}{3} \log \left| \frac{y - 1}{y + 1} \right| + C \]
31. b. We have
\[\int \frac{dx}{x^2(x^n + 1)^{(n-1)/n}} = \int \frac{dx}{x^{n+1} \left(1 + \frac{1}{x^n}\right)^{(n-1)/n}} \]
Put \(1 + x^{-n} = t\)
\[-nx^{-n-1} \, dx = dt \Rightarrow \frac{dx}{x^{n+1}} = -\frac{dt}{n} \]
\[\Rightarrow \int \frac{dx}{x^2(x^n + 1)^{(n-1)/n}} = -\frac{1}{n} \int \frac{dt}{t^{(n-1)/n}} \]
\[= -\frac{1}{n} \left(\frac{t^{1/n-1}}{1/n-1} + C\right) \]
\[= -\frac{1}{n} \left(\frac{1}{n-1} + C\right) = -(1 + x^{-n})^{1/n} + C \]

32. d. \[
I = \int \frac{\sqrt{x-1}}{x\sqrt{x+1}} \, dx
\]
\[= \int \frac{x-1}{x\sqrt{x^2-1}} \, dx \]
\[= \int \frac{dx}{\sqrt{x^2-1}} - \int \frac{dx}{x\sqrt{x^2-1}} \]
\[= \ln |x + \sqrt{x^2+1}| - \sec^{-1} x + C \]

33. c. Write \(2ax + x^2 = (x + a)^2 - a^2\), and put \(x + a = a \sec \theta\), so that \(dx = a \sec \theta \tan \theta \, d\theta\)
\[I = \int \frac{a \sec \theta \tan \theta}{a^3 \sec^3 \theta} \, d\theta \]
\[= \frac{1}{a^2} \int \frac{\cos \theta}{\sin^2 \theta} \, d\theta \]
\[= -\frac{1}{a^2 \sin \theta} + C \]
\[= -\frac{1}{a^2} \sec \theta \tan \theta + C = -\frac{1}{a^2} \sqrt{2ax + x^2} + C \]

34. d. By rationalizing the integrand, the given integral can be written as
\[f(x) = \int \left(x + \sqrt{x^2 + 1} \right) \, dx \]
\[= \frac{x^2}{2} + \frac{x}{2} \sqrt{x^2 + 1} + \frac{1}{2} \log |x + \sqrt{x^2 + 1}| + C \]
Putting \(x = 0\), we have \(f(0) = C\) so \(C = -\frac{1}{2} - \frac{1}{\sqrt{2}}\)
and \(f(1) = \frac{1}{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \log |1 + \sqrt{2}| + \left(-\frac{1}{2} - \frac{1}{\sqrt{2}}\right)\)

35. b. \[
e^{t} \left(\frac{2 \tan x}{1 + \tan x} + \tan^2 \left(x - \frac{\pi}{4}\right)\right) \, dx
\]
\[= \int e^t \left(\tan \left(x - \frac{\pi}{4}\right) + \sec^2 \left(x - \frac{\pi}{4}\right)\right) \, dx \]
\[= e^t \tan \left(x - \frac{\pi}{4}\right) + C \]

36. a. Given that \(I = \int \left(\sqrt{x^2 + x}(x^2 + 2x^3)^{1/10} \right) \, dx\)
or \[I = \int (x+1)(x^2 + 2x)^{1/10} \, dx \]
Now put \(x^2 + 2x = t \Rightarrow (x+1)dx = \frac{dt}{2}\)
\[\Rightarrow I = \int t^{1/10} \, dt = \frac{t^{11/10}}{11/10} + C \]
\[= \frac{11}{11} (x^2 + 2x)^{11/10} + C \]

37. c. \[
\int \frac{dx}{(x+2)(x^2+1)} = a \ln (1 + x^2) + b \tan^{-1} x + \frac{1}{5} \ln |x+2| + C
\]
Differentiating both sides, we get
\[
\frac{1}{(x+2)(x^2+1)} = \frac{2ax}{(1+x^2)} + \frac{b}{(1+x^2)} + \frac{1}{5(x+2)}
\]
\[\Rightarrow \frac{1}{(x+2)(x^2+1)} = \frac{x(2b+10a)}{5(x^2+3x)} + \frac{1}{5(x+2)} \]
\[\Rightarrow 5 = (1+x^2) + (2b+10a)(x+2) \]
Comparing the like powers of \(x\) on both sides, we get
\[1 + 10a = 0, b + 4a = 0, 10b + 1 = 5 \]
\[\Rightarrow a = -\frac{1}{10}, b = \frac{2}{5} \]

38. c. Differentiating both sides, we get
\[
\frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} = a + \frac{b(2 \cos x - 3 \sin x)}{(2 \sin x + 3 \cos x)}
\]
\[\Rightarrow \frac{\sin x (2a - 3b) + \cos x (3a + 2b)}{(3 \cos x - 2 \sin x)} \]
Comparing like terms on both sides, we get
\[3 = 2a - 3b, 2 = 3a + 2b \Rightarrow a = \frac{12}{13}, b = -\frac{15}{39} \]

39. a. \[
\int \frac{3e^x - 5e^{-x}}{4e^x + 5e^{-x}} \, dx = a \ln (4e^x + 5e^{-x}) + C
\]
Differentiating both sides, we get
\[
\frac{3e^x - 5e^{-x}}{4e^x + 5e^{-x}} = a + \frac{b(4e^x - 5e^{-x})}{4e^x + 5e^{-x}}
\]
\[\Rightarrow 3e^x - 5e^{-x} = a(4e^x + 5e^{-x}) + b(4e^x - 5e^{-x}) \]
Comparing the coefficient of like terms on both sides, we get

\[3 = 4(a + b) - 5 = 5a - 5b \Rightarrow a = \frac{1}{8}, \ b = \frac{7}{8} \]

40. c. \[\int \frac{\cos x - \cos^3 x}{1 - \cos^3 x} \sin x \, dx = \int \frac{\cos x}{1 - \cos^3 x} \, dx \]
\[= \int \frac{t}{1 - t^3} \, dt = - \int \frac{\sqrt{t}}{1 - \left(\sqrt[3]{t} \right)^2} \, dt, \] where \(t = \cos x \)
\[= - \frac{2}{3} \int \frac{\sqrt{t}}{1 - \left(\sqrt[3]{t} \right)^2} \, dt = - \frac{2}{3} \cos^{-1} \left(\sqrt[3]{t} \right) + C \]

41. a. Putting,

\[f(t + 1) = t \text{ and } \frac{1}{x(t(x))^{3/2}} \sin x \, dx = dt, \]
we get \[\int \frac{1}{x(t(x))^{3/2}} \sin x \, dx = \int 1 \, dt + C = t + C + f(t + 1) + C \]

42.b. \[I = \int \frac{\cos x - \sin x}{\sqrt{\cos x \sin x}} \, dx \]
Put \(\sin x + \cos x = t, \) so that \(2 \sin x \cos x = t^2 - 1 \)
\[\therefore I = \int \frac{dt}{\sqrt{t^2 - 1}} = \sqrt{2} \log \left| t + \sqrt{t^2 - 1} \right| + C \]

43. Write \(I = \int \sqrt{x^3 \left(a^2 + x^2 - b^2 \right)^{3/2}} \, dx \)
and put \(a^2 x^2 = t + b^2, \) so that \((-2a^2 x^3) \, dx = dt \)
\[\therefore I = \int \frac{-1}{2a^2} \, dt = \frac{1}{a^2} \log \left| t + \sqrt{t^2 - 1} \right| + C \]

44. d. Putting \(x^2 = t, \)
\[I = \int \frac{1}{2} \left[e^{t/2} \left(1 + \frac{1}{2} t + \frac{t^2}{3} \right) + e^{2t/3} \right] \, dt \]
\[= \frac{1}{2} \int e^{t/2} \left(e^{t/2} + e^{-t/2} + \frac{3}{2} e^{2t/3} \right) \, dt \]
\[= \frac{1}{2} \int e^t (e^{t^2/2} + e^{3t/4}) \, dt = \frac{1}{2} e^{t^2/2} + C \]

45. b. \[I = \int \frac{\ln a^{x^{2/3}} + \ln b^{x^{2/3}}}{3a^{x^{2/3}} + 2b^{x^{2/3}}} \, dx \]
\[= \int \frac{\ln a^{x^{2/3}} + \ln b^{x^{2/3}}}{6a^{x^{2/3}} - b^{x^{2/3}}} \, dx \]

46. a. \[I = \int x \left(\frac{\ln x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \right) \, dx, \] let \(a^2 x^3 = t, \) then \(t \ln a^2 x^3 \, dx = dt \)
\[I = \int \frac{1}{6 \ln a^2 x^3} \ln t \, dt \]
\[= \frac{1}{6 \ln a^2 x^3} \left(-\ln t \cdot \int \frac{-1}{t^2} \, dt \right) \]
\[= -\frac{1}{6 \ln a^2 x^3} \left(\ln et \right) + k \]
\[= -\frac{1}{6 \ln a^2 x^3} \left(\ln \left(a^{2/3} x^{3/2} \right) + k \right) \]

47. d. \[\int \csc^2 x - 2005 \cos x \, dx \]
\[= \int \csc^2 x \, dx - 2005 \int \frac{dx}{\cos x} \]
\[= (\csc x)^{2005} - \cot x - \int (-2005)(\csc x)^{2006} (-\csc x)(-\cot x) \, dx - 2005 \int \frac{dx}{\cos x} \]
\[= \cot x + C \]

48. a. \[f(x) = \frac{x^2 f(x)}{6f(x) - x} \]
Now \(I = \int \frac{-2x(x-6f(x)) + f(x)}{(6f(x) - x)(x^2 - f(x))^{3/2}} \, dx \)
\[= -\int \frac{2x - f'(x)}{(x^2 - f(x))^{3/2}} \, dx = \frac{1}{x^2 - f(x)} + C \]

49. a. Differentiating, we get
\[\frac{f'(x)}{f(x)^2} = 2 \left(b^2 - a^2 \right) \sin x \, \cos x \]
Integrating both sides w.r.t. x

$$\Rightarrow \frac{1}{f(x)} = -\frac{b^2 \cos^2 x - a^2 \sin^2 x}{x}$$

$$\Rightarrow f(x) = \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x}$$

50. a.

$$\int e^x \left(\frac{1}{\sqrt{1+x^2}} - \frac{x}{\sqrt{(1+x^2)^3}} + \frac{x}{\sqrt{(1+x^2)^5}} \right) dx = \frac{e^x}{\sqrt{1+x^2}} + \frac{x}{\sqrt{(1+x^2)^3}} + C$$

Using $\int e^x (f(x) + f'(x)) dx$, we get

$$e^x f(x) + c$$

51. d. Let $I = \int \frac{dx}{1 + \sqrt{x}} \sqrt{x - x^2}$

If $\sqrt{x} = \sin p$, then $\frac{1}{2\sqrt{x}} dx = \cos p dp$

$$I = \int \frac{2 \sin p \cos p dp}{(1 + \sin p) \cos p} = 2 \int \frac{dp}{1 + \sin p}$$

$$= 2 \int \frac{(1 - \sin p) dp}{\cos^2 p} = 2 \left(\frac{\sec^2 p}{p} - \int \frac{\tan p \sec p}{p} dp \right)$$

$$= 2 \left(\frac{x}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} \right) + C = \frac{2(\sqrt{x} - 1)}{\sqrt{1-x}} + C$$

52. c. Let $I = \int \frac{(a^2 - b^2) dx}{x \sqrt{c^2 x^2 - (a^2 + b^2)^2}}$

$$= \int \frac{(a - \frac{b}{x}) dx}{\sqrt{c^2 - \left(\frac{a + \frac{b}{x}}{x} \right)^2}} \quad \text{put } ax + \frac{b}{x} = t$$

$$= \int \frac{dt}{\sqrt{c^2 - t^2}} = \sin^{-1} \left(\frac{t}{c} \right) + k = \sin^{-1} \left(\frac{ax + b}{c} \right) + C$$

53. b.

$$I = \int \frac{dx}{\cos^3 x \sqrt{\sin 2x}}$$

$$= \int \frac{dx}{\cos^3 x \sqrt{2 \sin x \cos x \cos^2 x}}$$

$$= \int \frac{\sec^4 dx}{\sqrt{2} \tan x} = \frac{1}{\sqrt{2}} \int \sec^2 x (1 + \tan^2 x) dx$$

$$\Rightarrow dt = \frac{\sec^2 x dx}{2 \sqrt{\tan x}}$$

$$\Rightarrow I = \frac{2}{\sqrt{2}} \int (1 + t^4) dt$$

$$= \frac{\sqrt{2}}{5} (t^5 + 5) + C = \frac{\sqrt{2}}{5} \tan x (\tan^2 x + 5) + C$$

$$\Rightarrow a = \frac{\sqrt{2}}{5}, b = 5$$

54. d.

$$\int x \log \left(1 + \frac{1}{x} \right) dx$$

$$= \int x \log(x + 1) dx - \int x \log x dx$$

$$= \frac{x^2}{2} \log(x + 1) - \frac{1}{2} \int x^2 \log x + \frac{1}{2} \int x^2 dx$$

$$= \frac{x^2}{2} \log(x + 1) - \frac{1}{2} \left(\frac{x^2}{2} - \log x + \frac{1}{2} x^2 \right)$$

$$= \frac{x^2}{2} \log(x + 1) - \frac{x^2}{2} + \frac{x^2}{2} - \frac{1}{2} \log x + \frac{1}{4} x^2 + C$$

$$= \frac{x^2}{2} \log(x + 1) - \frac{x^2}{2} \log x - \frac{1}{2} \log(x + 1) + \frac{1}{2} x + C$$

Hence, $f(x) = \frac{x^2}{2} - \frac{1}{2}$, $g(x) = -\frac{1}{2} \log x$ and $A = \frac{1}{2}$

55. d.

$$I = \int \frac{dx}{x^4 \sqrt{x^2 - 1}}$$

Let $x^2 - 1 = t^2 \Rightarrow 2x dx = 2t dt$

$$\Rightarrow I = \int \frac{t}{(t^2 + 1)^2} t dt = \int \frac{dt}{(t^2 + 1)^2}$$

But $\tan^{-1} t = \int \frac{dt}{t^2 + 1} = \int \frac{1}{t^2 + 1} dt$

$$= \frac{t}{t^2 + 1} + \int \frac{2t}{(t^2 + 1)^2} dt$$
59. \(I = -e^{-x} \log \left(e^{x} + 1\right) + \int \frac{e^{-x} e^{x}}{e^{x} + 1} \, dx \)
\(= -e^{-x} \log (e^{x} + 1) + \int \frac{e^{-x}}{e^{x} + 1} \, dx \)
\(= -e^{-x} \log (e^{x} + 1) - \log (e^{x} + 1) + C \)
\(= -e^{-x} \log (e^{x} + 1) - \log (1 + e^{x}) + x + C \)
\(= -(e^{x} + 1) \log (e^{x} + 1) + x + C \)

60. \(I = \int x e^{x} \cos x \, dx \)
\(= x e^{x} \sin x - \int \left((x e^{x} + e^{x}) \sin x - (x e^{x} + e^{x}) \cos x \right) \, dx \)
\(= -\int e^{x} \sin x \, dx \)
\(= x e^{x} \sin x + x e^{x} \cos x - \int x e^{x} \cos x \, dx \)
\(\Rightarrow 2I = x e^{x} \sin x + x e^{x} \cos x + e^{x} \sin x + d \)
\(\Rightarrow 2I = e^{x}((x-1) \sin x + x \cos x) + d \)
\(\Rightarrow I = \frac{1}{2} e^{x}((x-1) \sin x + x \cos x) + d \)
\(\Rightarrow a = \frac{1}{2}, \quad b = -1, \quad c = 1 \)

61. \(I = \int \frac{\sqrt{7-t^2}}{t} \, dt \)
\(= \int \frac{\sqrt{7-t^2}}{t} \, dt \)
\(= \int \sqrt{7-t^2} \cos x \, dx \)
\(= \int \frac{1}{2} \sqrt{7-x^2} \, dx \)
\(= \sqrt{x+2} \sqrt{5-x} + 7 \sin^{-1} \left(\frac{\sqrt{x+2}}{\sqrt{7}} \right) + C \)

62. \(I = \int e^{\tan x} (\sin x - \sec x) \, dx \)
\(= \int \sin x e^{\tan x} \, dx - \int \sec x e^{\tan x} \, dx \)
\(= -e^{\tan x} \cos x + \int e^{\tan x} \sec^2 x \, dx - \int \sec x e^{\tan x} \, dx \)
\(= -e^{\tan x} \cos x + C \)

63. \(I = \int \frac{x^2 \, dx}{\sqrt{1+x^2}} \) \(\Rightarrow t = \sqrt{1+x^2} \)
\(\Rightarrow I = \int (t^2 - 1) \, dt \)
\(\Rightarrow I = \frac{3}{2} t + C = \frac{3}{2} (t^2 - 3) + C \)

56. \(I_{4,3} = \int \cos^4 x \sin 3x \, dx \)
Integrating by parts, we have
\(I_{4,3} = -\cos^3 x \sin^3 x \cos 3x \) \(\frac{4}{3} \int \cos^3 x \sin x \cos 3x \, dx \)
But \(\sin x \cos 3x = -\sin 2x \sin 3x \cos x \), so
\(I_{4,3} = -\cos^3 x \cos^3 x \) \(\frac{4}{3} \int \cos^3 x \sin 2x \, dx \)
\(= \frac{4}{3} \int \cos^4 x \sin 3x \, dx + C \)
Therefore, \(\frac{7}{3} I_{4,3} - \frac{4}{3} I_{3,2} = -\cos^3 x \cos^3 x + C \)
or \(7I_{4,3} - 4I_{3,2} = -\cos 3x \cos^4 x + C \).

57. \(\int \frac{dx}{x^2 (x^n+1)^{n-1}/n} \)
\(= \int \frac{dx}{x^n (1+x^n)^{(n-1)/n}} \)
\(= \int \frac{dx}{x^n+1} \)
Put \(1+x^n = t \), \(n x^{-n} \, dx = dt \) \(\Rightarrow \frac{dx}{x^n+1} = -\frac{dt}{n} \)
\(\Rightarrow \int \frac{dx}{x^2 (x^n+1)^{(n-1)/n}} = -\frac{1}{n} \int \frac{dt}{t^{(n-1)/n}} \)
\(= -\frac{1}{n} \frac{t^{1/n}}{1/n} + C \)
\(= -\frac{1}{n} \frac{t^{1/n}}{1/n} + C \)

58. Putting \(a^2 + x^2 = t^2 \), we get
\(\Rightarrow I = \int \frac{t^2}{t^2 - a^2} \, dt = \frac{a^2}{2} \ln \left| \frac{t-a^2}{t+a^2} \right| + C \)
64. \(I = \int \frac{\sin x \cos x}{\sin x + \cos x} \, dx \)

\[= \frac{1}{2} \int \left(\frac{\sin x + \cos x}{\sin x + \cos x} \right)^2 \frac{1}{\sqrt{2} \sin (x+\pi/4)} \, dx \]

\[= \frac{1}{2} \int \sin x \cos x - \frac{\sin (x+\pi/4)}{\sqrt{2}} \, dx \]

\[= \frac{1}{2} \left[\sin x \cos x - \frac{1}{\sqrt{2}} \log |\csc (x+\pi/4) - \cot (x+\pi/4)| \right] + C \]

65. \(I = \int \frac{\sin 2x}{(3 + 4 \cos x)^3} \, dx \)

and put \(3 + 4 \cos x = t \), so that \(-4 \sin x \, dx = dt \)

\[I = \int \frac{-1}{8} \frac{(t-3)}{t^3} \, dt = \frac{1}{8} \left[\frac{1}{t} - \frac{3}{2} \frac{1}{t^2} \right] + C \]

\[= \frac{2t - 3}{16t^2} = \frac{8 \cos x + 3}{16(3 + 4 \cos x)^2} + C \]

66. \(J = \int \frac{\ln \left(\frac{x-1}{x+1} \right)}{x^2 - 1} \, dx \), let \(t = \ln \left(\frac{x-1}{x+1} \right) \)

\[\Rightarrow \frac{dt}{dx} = \frac{x+1}{x-1} \left(\frac{x+1-(x-1)}{(x+1)^2} \right) = \frac{2}{(x^2-1)} \]

\[\Rightarrow \frac{dx}{x^2-1} = \frac{-dt}{2} \]

\[\Rightarrow J = \frac{1}{2} \int \frac{t}{4} + C = \frac{1}{4} \left(\ln \left(\frac{x-1}{x+1} \right) \right)^2 + C \]

67. \(I = \int \sqrt{e^x - 1} \, dx \)

Let \(e^x - 1 = t^2 \Rightarrow e^x \, dx = 2t \, dt \Rightarrow dx = \frac{2t}{t^2 + 1} \, dt \)

\[\Rightarrow I = \int \frac{2t}{t^2 + 1} \, dt = \int \frac{2t^2}{t^2 + 1} - \frac{2}{t^2 + 1} \, dt \]

\[= \int \frac{2(t^2 + 1) - 2}{t^2 + 1} \, dt = \int 2dt - \int \frac{2dt}{t^2 + 1} \]

\[= 2t - 2 \tan^{-1} t + C \]

\[= 2 \sqrt{e^x - 1 - 2 \tan^{-1} \sqrt{e^x - 1}} + C \]

68. \(I = \int x \sec x \, dx \)

\[= \int x \sin x \frac{1}{\cos^3 x} \, dx \]

69. \(a. \)

\[\int e^x \left(\frac{x^2 + 1}{(x+1)^2} \right) \, dx \]

\[= \int e^x \left(1 + \frac{x^2 - 1 + 2}{(x+1)^2} \right) \, dx \]

\[= \int e^x \left(x + 1 + \frac{2}{(x+1)^2} \right) \, dx \]

\[= \int e^x \left(f(x) + f'(x) \right) \, dx, \text{ where } f(x) = \frac{x-1}{x+1} \text{ and } f'(x) = \frac{2}{(x+1)^2} \]

\[= e^x \left(\frac{x-1}{x+1} \right) + C \]

70. \(a. \)

\[I = \int \left(\frac{x + 2}{x + 4} \right)^2 \, e^x \, dx = \int e^x \left(\frac{x^2 + 4x + 4}{(x + 4)^2} \right) \, dx \]

\[= \int e^x \left(x + 4 + \frac{4}{(x + 4)^2} \right) \, dx \]

\[= \int e^x \left(\frac{x}{x + 4} + \frac{4}{(x + 4)^2} \right) \, dx \]

\[= e^x \left(\frac{x}{x + 4} \right) + C \]

71. \(a. \) Let \(I = \int \frac{3 \cos x}{(2 + 3 \cos x)^2} \, dx \). Multiplying \(N' \) and \(D' \) by \(\csc^2 x \), we get

\[\Rightarrow I = \int \frac{3 \csc^2 x + 2 \cot x \csc x}{(2 \csc x + 3 \cot x)^2} \, dx \]

\[= \int \frac{-3 \cot x \csc x}{(2 \csc x + 3 \cot x)^2} \, dx \]

\[= \frac{1}{2 \csc x + 3 \cot x} + C = \left(\frac{\sin x}{2 + 3 \cos x} \right) + C \]
Multiple Correct Answers Type

1. b, c, d.

\[I = \int \frac{x^2 + \cos^2 x}{x^2 + 1} \csc^2 x \, dx \]

\[= \int \frac{x^2 + 1 + \cos^2 x - 1}{x^2 + 1} \csc^2 x \, dx \]

\[= \int \left(1 - \frac{\sin^2 x}{x^2 + 1} \right) \csc^2 x \, dx \]

\[= \int \left(\csc^2 x - \frac{1}{x^2 + 1} \right) \, dx \]

\[= -\cot x + \tan^{-1} x + C \]

\[= -\cot x + \cot^{-1} x - \frac{\pi}{2} + C \]

\[= -\cot x + \cot^{-1} x + C \]

2. b, d.

\[\int \sin x \, d(\sec x) \]

\[= \int \sin x \frac{d(\sec x)}{dx} \, dx = \int \sin x \sec x \tan x \, dx \]

\[= \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \tan x - x + C \]

\[\Rightarrow f(x) = \tan x, \quad g(x) = x \]

3. a, d.

\[I = \int \frac{1 + \sin x}{\sin x (1 - \sin x)} \, dx \]

\[= \int \frac{\cos x}{\sin x (1 - \sin x)} \, dx \]

\[= \int \frac{\cos x}{\sqrt{\frac{1}{4} - \left(\frac{1}{2} - \sin x \right)^2}} \, dx \]

\[= \int \frac{-dt}{\sqrt{\left(\frac{1}{2} \right)^2 - t^2}} \quad \text{(Putting } \frac{1}{2} - \sin x = t) \]

\[= -\sin^{-1} \left(\frac{t}{1/2} \right) + C = -\sin^{-1} (1 - 2 \sin x) + C \]

\[= \cos^{-1} (1 - 2 \sin x) + C - \frac{\pi}{2} \]

\[= \cos^{-1} (1 - 2 \sin x) + C \]

\[= \cos^{-1} \left(1 - 2 \sqrt{\sin x} \right) + C \]

\[= \cos^{-1} \left(1 - 2 \sin^2 t \right) + C \]

\[= \cos^{-1} (\cos 2t) + C \]

\[= 2t + C \]

\[\therefore \quad \sin x > 0 \Rightarrow \sin t > 0 \Rightarrow t \in \left(0, \frac{\pi}{2} \right) \]

\[= 2 \sin^{-1} (\sin x) + C \]

4. a, c.

\[I = \int \sec^2 x \csc^4 x \, dx \]

\[= \int \frac{(\sin^2 x + \cos^2 x)^2}{\cos^2 x \sin^4 x} \, dx \]

\[= \int \frac{\sin^4 x + \cos^4 x + 2 \sin^2 x \cos^2 x}{\cos^2 x \sin^4 x} \, dx \]

\[= \int \left(\sec^2 x + 2 \csc^2 x + \frac{\cos^2 x}{\sin^4 x} \right) \, dx \]

\[= \tan x - 2 \cot x + \int \cot^2 x \csc^2 x \, dx \]

\[= \tan x - 2 \cot x \frac{\cot^3 x}{3} + D \]

5. a, c.

\(g(x) = \int x^{27} (1 + x + x^2)^6 (6x^5 + 5x + 4) \, dx \]

\[= \int (x^4 + x^5 + x^6)^6 (6x^5 + 5x + 4x^3) \, dx \]

\[\text{Let } x^6 + x^5 + x^4 = t \Rightarrow (6x^5 + 5x^4 + 4x^3) \, dx = dt \]

\[\therefore \quad g(x) = \int t^6 dt = \frac{t^7}{7} + C = \frac{1}{7} (x^4 + x^5 + x^6)^7 + C \]

\[g(0) = 0 \Rightarrow x = 0 \Rightarrow g(1) = \frac{3^7}{7} \quad \text{also } g(-1) = \frac{1}{7} \]

6. b, d.

\[I = \int \frac{\cot x}{\cot x - 1} \, dx = \int \frac{\cot x}{\frac{\cot x}{\csc x - 1}} \, dx \]

put \(\csc x - 1 = t^2 \Rightarrow -\csc x \cot x \, dx = 2tdt \]

\[\Rightarrow \quad I = -\int -\cot x \csc x \frac{dx}{\csc x - 1} = -\left[\frac{2dt}{1+t^2} \right] \]

\[= -2 \tan^{-1} t + t - 2 \tan^{-1} \sqrt{\csc x - 1} + C \]

\[= 2 \cot^{-1} \sqrt{\csc x - 1} + C \]

\[= 2 \cot^{-1} \frac{\cot x}{\csc x + 1} + C \]

7. a, c.

Let \(\cos x = t \Rightarrow \cos x = t \Rightarrow \cos 2x = 2t^2 - 1 \) and \(dt = -\sin x \, dx \). Thus

\[I = \int \frac{t^2 - 2}{2t^2 - 1} \, dt = \frac{1}{2} \int \frac{2t^2 - 4}{2t^2 - 1} \, dt \]
\[\int_{x}^{x+1} \frac{dt}{x^2 + 1} = \frac{1}{2} \left[\frac{1}{x^2 - 1} + \frac{1}{x^2 + 1} \right] \]

\[= \frac{1}{2} \int \frac{dt}{2x^2 - 1} \]

\[= \frac{1}{2} \int \frac{t - 1}{2t^2 + 1} \frac{dt}{x^2 - 1} + C \]

\[= \frac{1}{2} \log \left| \frac{\sqrt{2} t - 1}{\sqrt{2} t + 1} \right| + C \]

So, \(P = 1/2, Q = -\frac{3}{4\sqrt{2}}, f(x) = \frac{\sqrt{2} \cos x - 1}{\sqrt{2} \cos x + 1} \)

or \(P = 1/2, Q = \frac{3}{4\sqrt{2}}, f(x) = \frac{\sqrt{2} \cos x + 1}{\sqrt{2} \cos x - 1} \)

8. a, d.

\[\frac{2x}{(x-1)(x-4)} = \frac{C}{x-1} + \frac{D}{x-4} \]

\[2x = C(x-4) + D(x-1) \]

\[C = -2/3, D = 8/3 \]

\[\int \frac{e^{x-1}}{(x-1)(x-4)} \cdot 2x \, dx = \int e^{x-1} \left(-\frac{2/3}{x-1} + \frac{8/3}{x-4} \right) \, dx \]

\[= -\frac{2}{3} F(x-1) + \frac{8}{3} F(x-4) + C \]

\[A = -2/3, B = 8/3 e^2 \]

9. a, c, d.

\[\int (x-1) \, dx = e^{-2x} (ax^2 + bx + c) + d \]

Differentiating both sides, we get

\[x^3 e^{-2x} = e^{-2x} (2ax + b) + (ax^2 + bx + c) (-2e^{-2x}) \]

\[= e^{-2x} (-2ax^2 + 2(a-b)x + b - 2c) \]

\[\Rightarrow a = 1, 2(a-b) = 0, b - 2c = 0 \]

\[\Rightarrow b = 1, c = \frac{1}{2} \]

10. a, c, d.

Let \(I = \int \frac{(x^4 + 1)}{(x^6 + 1)} \, dt \)

\[= \int \frac{(x^2 + 1)^2 - 2x^2}{(x^2 + 1)(x^4 - x^2 + 1)} \, dx \]

\[= \int \frac{(x^2 + 1)dx}{(x^4 - x^2 + 1)} - 2 \int \frac{x^2 dx}{(x^4 + 1)} \]

\[= \int \frac{(1 + \frac{1}{x^2})}{(x^2 + 1)} \, dx - 2 \int \frac{x^2 dx}{(x^4 + 1)} \]

In the first integral, put \(x = \frac{1}{x} = t \)

\[\therefore \int (1 + \frac{1}{x}) \, dx = dt \]

and in the second integral put \(x^3 = u \)

\[\therefore x^3 = \frac{du}{3} \]

then \(I = \int \frac{dt}{1 + t^2} - \frac{2}{3} \int \frac{du}{1 + u^2} \)

\[= \tan^{-1} t - \frac{2}{3} \tan^{-1} u + C \]

\[= \tan^{-1} \left(x - \frac{1}{x} \right) - \frac{2}{3} \tan^{-1} (x^3) + C \]

Here, \(f(x) = x - \frac{1}{x} \) and \(g(x) = x^3 \)

Both the functions are one-one.

Also \(f''(x) = 1 + \frac{1}{x^2} \neq 0 \). Hence, \(f(x) \) is monotonic.

Also \(\int \frac{f(x)}{g(x)} \, dx = \int \frac{x-1}{x^3} \, dx = \int \left(\frac{1}{x^2} - \frac{1}{x^4} \right) \, dx \)

\[= \frac{1}{x} + \frac{3}{x^3} + C \]

11. a, b, c.

\[I = \int \frac{x^2 + 1}{(x^2 + 1)^{3/2}} \, dx \]

\[= \int e^x \left[\frac{x^2 + 1}{(x^2 + 1)^{3/2}} - \frac{x}{(x^2 + 1)^{3/2}} \right] \, dx \]

\[= \int e^x \left[\frac{1}{x^2 + 1} - \frac{x}{(x^2 + 1)^{3/2}} \right] \, dx \]

\[= \int e^x (f(x) + f'(x)) \, dx, \text{ where } f(x) = \frac{1}{\sqrt{x^2 + 1}} \]

\[= e^x f(x) + c = \frac{e^x}{\sqrt{x^2 + 1}} + c \]

The graph of \(f(x) \) is given in Fig. 7.1.

\[\text{Fig. 7.1} \]

From the graph, \(f(x) \) is even, bounded function and has the range (0, 1).

12. a, c.

\[\int \frac{\cos^2 2x \sin 2x}{\cos 2x} \, dx = \frac{1}{2} \int \sin 4x \, dx = -\frac{1}{8} \cos 4x + B \]
13. a, d.
\[
\int \sin^{-1} x \cos^{-1} x \, dx = \int \left[\frac{\pi}{2} \sin^{-1} x - (\sin^{-1} x)^2 \right] \, dx
\]
\[
= \frac{\pi}{2} \left(x \sin^{-1} x + \sqrt{1 - x^2} \right) - \left(x (\sin^{-1} x)^2 + \sin^{-1} x \sqrt{1 - x^2} - x \right) + C
\]
(integrating by parts)
\[
= \sin^{-1} x \left(\frac{\pi}{2} x \sin^{-1} x - 2 \sqrt{1 - x^2} \right) + \frac{\pi}{2} \sqrt{1 - x^2} + 2x + C
\]
\[\therefore f^{-1}(x) = \sin^{-1} x, f(x) = \sin x\]

14. a, b, c, d.
\[
\int \frac{x^8 + 4 + 4x^4 - 4x^4}{x^4 - 2x^2 + 2} \, dx
\]
\[
= \int \frac{(x^4 + 2 - (2x^2))^2}{(x^4 - 2x^2 + 2)} \, dx
\]
\[
= \int \frac{(x^4 + 2 - 2x^2)(x^4 + 2 + 2x^2)}{(x^4 - 2x^2 + 2)} \, dx
\]
\[
= \frac{x^5}{5} + \frac{2x^3}{3} + 2x + C
\]

15. a, b, d.
\[
\int \frac{dx}{x^2 + ax + 1} = \int \frac{dx}{\left(x + \frac{a}{2} \right)^2 + \left(1 - \frac{a^2}{4} \right)}
\]

Reasoning Type

1.a. \(\int e^x \sin x \, dx\)
\[
\int e^x (\sin x + \cos x) \, dx
\]
\[
= \frac{1}{2} \left(e^x \sin x - e^x \cos x \right) + c
\]

2.d. For \(x^2 + 2(a-1)x + a + 5 = 0\)

if \(D < 0 \Rightarrow 4(a-1)^2 - 4(a + 5) < 0\)

\(a^2 - 3a - 4 < 0\) or \((a - 4)(a + 1) < 0\) or \(-1 < a < 4\)

Thus for these value of a, \(x^2 + 2(a-1)x + a + 5\) cannot be factorized, hence
\[
\int \frac{dx}{x^2 + 2(a-1)x + a + 5} = \lambda \tan^{-1}|g(x)| + c
\]

Hence, statement 1 is false and statement 2 is true.

3.b. \(\int \frac{\sin x \, dx}{x} \) cannot be evaluated as there does not exist any method for evaluating this (integration by parts also does not work); however, \(\sin x \) \((x > 0)\) is a differentiable function. Hence, both the statements are true but statement 2 is not a correct explanation of statement 1.

4.b. \(I = \int \frac{dx}{x^3 \sqrt{1 + x^4}} = \int \frac{dx}{x^3 \sqrt{1 + \frac{1}{x^4} + 1}}\)

Let \(\frac{1}{x^4} + 1 = t \Rightarrow dt = -\frac{4}{x^5} \, dx\)

\(\Rightarrow I = -\frac{1}{4} \sqrt{t} = -\frac{1}{2} \sqrt{1 + \frac{1}{x^4} + 1} + C\)

Thus, both the statements are true but statement 2 is not a correct explanation of statement 1.

5.b. \(f(x) = \pi \sin \pi x + 2x - 4\)

\(\Rightarrow g(x) = \int (\pi \sin \pi x + 2x - 4) \, dx = -\cos \pi x + x^2 - 4x + c\)

Also \(f(1) = 3 \Rightarrow 1 + 1 - 4 + c = 3 \Rightarrow c = 0\)

\(\Rightarrow g(x) = -\cos \pi x + x^2 - 4x\)

Fig. 7.2

Hence, both the statements are true but statement 2 is not a correct explanation of statement 1.

6.a. \(I = \int \frac{f(x) \phi'(x) - f'(x) \phi(x)}{f(x) \phi(x)} \log \phi(x) - \log f(x) \, dx\)

\(= \int \log f(x) \, d\left(\log \phi(x) \right) = \frac{1}{2} \log f(x) \log \phi(x) + c\)

Linked Comprehension Type

For Problems 1–3

1. d., 2. b., 3. a.

Sol. From the given data, we can conclude that \(\frac{dy}{dx} = 0\), at \(x = 1, 2, 3\).

Hence, \(f'(x) = a(x-1)(x-2)(x-3), a > 0\)
\[f(x) = \int (x^3 - 6x^2 + 11x - 6) \, dx \]
\[= a \int (x^3 - 6x^2 + 11x - 6) \, dx \]
\[= a \left(\frac{x^4}{4} - 2x^3 + \frac{11x^2}{2} - 6x \right) + C \]

Also, \(f(0) = 1 \Rightarrow c = 1 \)

\[\Rightarrow f(x) = a \left(\frac{x^4}{4} - 2x^3 + \frac{11x^2}{2} - 6x \right) + 1 \quad (1) \]

\[f(1) = a \left(\frac{9}{4} \right) + 1, f(2) = -2a + 1, \]

\[f(3) = a \left(-\frac{9}{4} \right) + 1 \quad (2) \]

\[\Rightarrow \text{The graph is symmetrical about line } x = 2 \text{ and the range is } f(1), +\infty \text{ or } f(3), +\infty \]

1.d. \(f(1) = -8 \Rightarrow a = 4 \) (from (2))

\[\Rightarrow f(2) = -7 \]

2.b. \(f(3) = -8. \) Hence the range is \([-8, +\infty)\)

3.a. If \(f(2) = 0, \) then \(a = \frac{1}{2} \)

If \(f(1) = 0, \) then \(a = \frac{4}{9} \)

\[\Rightarrow \text{For four roots of } f(x) = 0, a \in [4/9, 1/2] \]

![Graph](image)

For Problems 4–6

4.a., 5.b., 6.c.

Sol. \(A = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \Rightarrow A^2 = \begin{bmatrix} 2x^2 & 2x^2 \\ 2x^2 & 2x^2 \end{bmatrix}, A^3 = \begin{bmatrix} 2^2 x^3 & 2^2 x^3 \\ 2^2 x^3 & 2^2 x^3 \end{bmatrix} \)

\[\text{and so on} \]

Then \(e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots \]

\[= \left[1 + \frac{2x^2}{2!} \left(\frac{2^2 x^3}{3!} + \ldots \right) + \frac{2x^2}{2!} \right] + \left[\frac{2x^2}{2!} \left(\frac{2^2 x^3}{3!} + \ldots \right) + \frac{2x^2}{2!} \right] + \ldots \]

For Problems 7–9

7.d. Here \(a = 1 > 0; \) therefore we make the substitution

\[\sqrt{x^2 + 2x + 2} = t - x \text{. Squaring both sides of this equality and reducing the similar terms, we get} \]

\[2x + 2tx = t^2 - 2 \Rightarrow x = \frac{t^2 - 2}{2(1 + t)} \Rightarrow dx = \frac{t^2 + 2t + 2}{2(1 + t)^2} \, dt; \]

\[1 + \sqrt{x^2 + 2x + 2} = 1 + t - \frac{t^2 - 2}{2(1 + t)} = \frac{t^2 + 4t + 4}{2(1 + t)} \]

Substituting into the integral, we get

\[I = \int \frac{2}{(1 + t) (t^2 + 2t + 2)} \, dt \]

Now let us expand the obtained proper rational fraction into partial fractions:

\[\frac{t^2 + 2t + 2}{(t + 1)(t + 2)^3} = A \frac{1}{t + 1} + B \frac{1}{t + 2} + C \frac{1}{(t + 2)^2} \]
8. b. \(I = \int \frac{dx}{x + \sqrt{x^2 - x + 1}} \)

Since here \(c = 1 > 0 \), we can apply the second Euler substitution:

\[\sqrt{x^2 - x + 1} = tx - 1 \]

\[\Rightarrow (2t-1)x = (t^2-1)x^2, x = \frac{2t-1}{t^2-1} \]

Substituting into \(I \), we get an integral of a rational fraction:

\[\int \frac{dx}{x + \sqrt{x^2 - x + 1}} = \int \frac{-2t^2 + 2t - 2}{(t-1)(t+1)^2} dt, \]

Now
\[\frac{-2t^2 + 2t - 2}{(t-1)(t+1)^2} = \frac{A}{t} + \frac{B}{t-1} + \frac{D}{(t+1)^2} + \frac{E}{t+1} \]

9. a. In this case, \(a < 0 \) and \(c < 0 \); therefore neither the first nor the second Euler substitution is applicable. But the quadratic \(7x^2 - 10 - x^2 \) has real roots \(\alpha = 2, \beta = 5 \); therefore we use the third Euler substitution:

\[\sqrt{7x^2 - 10} - x^2 = (x - 2) (5 - x) = (x - 2)^2 \]

\[\Rightarrow \quad 5 - x = (x - 2) t^2 \]

\[\Rightarrow \quad x = \frac{5 + 2t^2}{t^2 + 1} \]

Matrix-Match Type

1. a. \(\rightarrow p, q \), b. \(\rightarrow r, s \), c. \(\rightarrow p, s \), d. \(\rightarrow p, q \).

a. Let \(I = \int \frac{2^t}{\sqrt{1 - 4^t}} \) dx = \(\frac{1}{\log 2} \int \frac{1}{\sqrt{1-t^2}} dt \)

Putting \(2^t = t \), \(2^t \log 2 \) dx = dt

\[I = \frac{1}{\log 2} \sin^{-1} \left(\frac{t}{1} \right) + C = \frac{1}{\log 2} \sin^{-1}(2^t) + C \]

(: \(K = \frac{1}{\log 2} \)

b. \(\int \frac{dx}{(\sqrt{x})^2 + (\sqrt{x})^2} = \int \frac{dx}{(\sqrt{x})^2 \left(1 + \frac{1}{(\sqrt{x})^2} \right)} \)

Put \(\frac{1}{(\sqrt{x})^2} = y \), \(\frac{dy}{dx} = -\frac{5}{2(\sqrt{x})^3} \)

\[\therefore I = \int -\frac{2dy}{5(1+y)} = -\frac{2}{5} \ln |1+y| + C = \frac{2}{5} \ln \left(\frac{1}{1+\frac{1}{(\sqrt{x})^2}} \right) \]

\[\Rightarrow a = \frac{2}{5}, k = \frac{5}{2} \]

c. Add and subtract \(2e^x \) in the numerator, then \(k = 1 \) and \(m = 1 \).

d. \(I = \int \frac{dx}{5 + 4 \cos x} \)

\[= \int \frac{dx}{5 \left(\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} \right) + 4 \left(\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} \right)} \]

\[= \int \frac{dx}{9 \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}} = \int \frac{\sec^2 \frac{x}{2}}{9 + \tan^2 \frac{x}{2}} dx \]

Let \(t = \tan \frac{x}{2} \Rightarrow 2dt = \frac{2}{3} \tan^{-1} \left(\frac{t}{3} \right) + C \)

\[\Rightarrow k = \frac{2}{3}, m = \frac{1}{3} \]

2. a. \(\rightarrow r \), b. \(\rightarrow s \), c. \(\rightarrow q \), d. \(\rightarrow p \).

a. \(\int \frac{e^x - 1}{e^{2x} + 1} \) dx

\[= \int \frac{e^x - e^{-x}}{e^x + e^{-x}} \) dx

\[= \int \left(\frac{e^x}{e^x + e^{-x}} \right)' \) dx

\[= \log(e^x + e^{-x}) \]

\[= \log(e^{2x} + 1) - x + C \]

b. \(I = \int \frac{1}{(e^x + e^{-x})^2} \) dx = \(\int \frac{e^{2x}}{(e^{2x} + 1)^2} \) dx

Put \(e^x + 1 = t \Rightarrow 2e^x \) dx = dt, we get

\[\Rightarrow I = \frac{1}{2} \int \frac{1}{t^2} dt = -\frac{1}{2} \ln t + C = -\frac{1}{2} \ln (e^{2x} + 1) + C. \]

c. \(I = \int \frac{e^{-x}}{1 + e^x} \) dx = \(\int \frac{e^{-x}}{e^{-x} + 1} \) dx

Put \(e^{-x} + 1 = t \Rightarrow -e^{-x} \) dx = dt

\[\Rightarrow I = -\int \frac{dt}{t} = \int \left(\frac{1}{t} \right) dt \]

\[= \ln t - t + C \]
\[
\frac{1}{\sqrt{1-e^{2x}}-1} dx = \int \frac{e^{-x}}{\sqrt{e^{2x}-1}} dx \\
\Rightarrow I = -\int \frac{1}{\sqrt{t^2-1}} dt = -\log \left(t + \sqrt{t^2-1} \right) + C \\
= -\log \left(e^{-x} + \sqrt{e^{-2x} - 1} \right) + C \\
= -\log \left(1 + \frac{1 - e^{-2x}}{e^{-x}} \right) + C \\
= x - \log \left(1 + \sqrt{1 - e^{-2x}} \right) + C
\]

2. (4) \(g(x) = \int \frac{\sin x \cdot \cos x + 2}{(\cos x + 2)^2} dx \\
= \int \frac{\sin x}{\cos x + 2} dx + \int \frac{\sin^2 x}{(\cos x + 2)^2} dx \\
= \frac{1}{\cos x + 2} \sin x - \int \frac{\sin^2 x}{(\cos x + 2)^2} dx + \int \frac{\sin^2 x}{(\cos x + 2)^2} dx \\
= \frac{\sin x}{\cos x + 2} + C \\
g(0) = 0 \Rightarrow C = 0 \\
g(\frac{\pi}{2}) = \frac{1}{2}
\]

3. (2) \(k(x) = \int \frac{(x^2 + 1) dx}{(x^2 + 3x + 6)^{3/2}} \\
\text{Put } x^2 + 3x + 6 = t \Rightarrow 3(x^2 + 1) dx = 3t^2 dt \\
k(x) = \int \frac{t^2 dt}{t} = \frac{t^2}{2} + C \\
k(x) = \frac{1}{2} (x^2 + 3x + 6)^{3/2} + C \Rightarrow C = 0 \\
k(-1) = \frac{1}{2} (2)^{3/2} = 1 \\
k(x) = \frac{1}{2} (x^2 + 3x + 6)^{3/2}; f(-2) = \frac{1}{2} (-8)^{3/2} = \frac{1}{2} (-2)^3 = 2
\]

4. (4) \(I = \int x^2 \cdot e^{-2x} dx = e^{-2x} (ax^2 + bx + c) + d \\
\text{Differentiating both sides, we get} \\
x^2 \cdot e^{-2x} = e^{-2x} (2ax + b) + (ax^2 + bx + c) (-2e^{-2x}) \\
= e^{-2x} (-2ax^2 + 2(a - b)x + b - 2c) \\
\Rightarrow a = -\frac{1}{2}, b = 0, b - 2c = 0 \\
\Rightarrow a = -\frac{1}{2}, b = -\frac{1}{2}, c = -\frac{1}{4}
\]

5. (9) \(f(x) = \int \frac{3x^2 + 1}{(x^2 - 1)^3} dx \\
= \int \frac{x^2 - 1}{(x^2 - 1)^3} dx + \frac{4x^2}{(x^2 - 1)^3} dx \\
= \int \frac{1}{(x^2 - 1)^2} dx + \int \frac{4x^2}{(x^2 - 1)^3} dx
\]
\[
\int \left[\frac{-1}{(x^2-1)^2} + \frac{4x}{(x^2-1)^3} \right] dx = \int \frac{dx}{(x^2-1)^2} + x \left(\int \frac{4x}{(x^2-1)^3} dx - \int \frac{4x}{(x^2-1)^3} dx \right) dx
\]
\[
= x \left(\frac{-1}{(x^2-1)^2} \right) + C
\]
\[
= -\frac{x}{(x^2-1)^2} + C
\]
\[
f(0) = 0 \implies C = 0
\]
\[
\Rightarrow f(x) = -\frac{x}{(x^2-1)^2}
\]

Subjective

1. \[I = \int \frac{\sin x}{\sin x - \cos x} \, dx \]
 \[= \int \frac{2 \sin x}{\sin x - \cos x} \, dx \]
 \[= \int \frac{\sin x + \cos x + \sin x - \cos x}{\sin x - \cos x} \, dx + \ln |\sin x - \cos x| + \frac{x}{2} + C \]

2. \[I = \int \frac{x^2}{(a + bx)^2} \, dx \]
 Let \(a + bx = t \) \(\Rightarrow x = \frac{t - a}{b} \)
 \[dx = \frac{dt}{b} \]
 \[\Rightarrow I = \frac{1}{b^3} \int \frac{t^2 - 2at + a^2}{t^2} \, dt \]
 \[= \frac{1}{b^3} \int \left(t - \frac{2a}{t} + \frac{a^2}{t^2} \right) \, dt \]
 \[= \frac{1}{b^3} \left[t - 2a \log |t - \frac{a^2}{t}| + C \right] \]
 \[= \frac{1}{b^3} \left[a + bx - 2a \log |a + bx| - \frac{a^2}{a + bx} \right] + C \]

3. \[\sqrt{1 + \sin \left(\frac{x}{2} \right)} \, dx \]
 \[= \int \sqrt{\sin^2 \frac{x}{4} + \cos^2 \frac{x}{4} + 2 \sin \frac{x}{4} \cos \frac{x}{4}} \, dx \]
 \[= \pm \int \left(\frac{\sin \frac{x}{4} + \cos \frac{x}{4}}{4} \right) \, dx \]
\[= \pm \left[-\cos \frac{x}{4} \frac{1}{4} + \sin \frac{x}{4} \frac{1}{4} \right] + C \]
\[= \pm 4 \left[\sin \frac{x}{4} - \cos \frac{x}{4} \right] + C \]

h. \[I = \int \frac{x^2}{\sqrt{1-x}} \, dx \]
Let \(1-x=t^2 \Rightarrow dx = -2t \, dt \)
\[\Rightarrow I = \int \frac{(1-t^2)^2}{t} (-2t) \, dt \]
\[= -2 \int (t^4 - 2t^2 + 1) \, dt \]
\[= -2 \left[\frac{t^5}{5} - \frac{2t^3}{3} + t \right] + C \]
\[= -2 \left[\frac{(1-x)^{5/2}}{5} - \frac{2(1-x)^{3/2}}{3} + \sqrt{1-x} \right] + C \]

4. \[\int (e^{\log x} + \sin x) \cos x \, dx \]
\[= \int (x + \sin x) \cos x \, dx \]
\[= \int x \cos x + \frac{1}{2} \int \sin 2x \, dx \]
\[= x \sin x - \int \sin x \, dx + \frac{1}{2} \left(\frac{-\cos 2x}{2} \right) + C \]
\[= x \sin x + \cos x - \frac{1}{4} \cos 2x + C \]

5. \[I = \int \frac{(x-1) e^x}{(x+1)^3} \, dx \]
\[= \int \frac{(x+1-2) e^x}{(x+1)^3} \, dx \]
\[= \int \left[\frac{1}{(x+1)^2} - \frac{2}{(x+1)^3} \right] e^x \, dx \]
\[= \int \left[\frac{1}{(x+1)^2} + \frac{1}{(x+1)^2} \right] e^x \, dx \]
\[= \frac{e^x}{(x+1)^2} + C \]

6. Let \(I = \int \frac{dx}{x^3 \cdot x^2 \left(1 + \frac{1}{x^4} \right)^{3/4}} \)

Put \(1 + \frac{1}{x^4} = t \Rightarrow \frac{-4}{x^5} \, dx = dt \Rightarrow \frac{dx}{x^3} = -\frac{dt}{4} \)
\[\therefore I = \int \frac{-dt}{4 t^{3/4}} = -\frac{1}{4} t^{-3/4+1} + C \]
\[= -t^{1/4} + C = -\left(1 + \frac{1}{x^4} \right)^{1/4} + C \]

7. \[I = \int \frac{1-\cos \theta}{\sqrt{1+\cos \theta}} \, d\theta \]
Put \(x = \cos^2 \theta \Rightarrow dx = -2 \cos \theta \sin \theta \, d\theta \)
\[\therefore I = -\int \frac{1-\cos \theta}{\sqrt{1+\cos \theta}} \frac{2 \sin \theta \cos \theta \, d\theta}{2} \]
\[= -2 \int (1-\cos \theta) \cos \theta \, d\theta \]
\[= -2 \int (\cos \theta - \cos^3 \theta) \, d\theta \]
\[= -2 \left(\cos \theta - \frac{1 + \cos 2\theta}{2} \right) + C \]
\[= -2 \left[\sin \theta \left(\frac{1}{2} \left(\theta + \sin 2\theta \right) \right) \right] + C \]
\[= -2 \sqrt{1-x} + \frac{2}{2} \left[\cos^{-1} \sqrt{x} + \sqrt{x} \sqrt{1-x} \right] + C \]
[using \(\sin x = \sqrt{1-x}\)]
\[= -2 \sqrt{1-x} + \cos^{-1} \sqrt{x} + \sqrt{x} \sqrt{1-x} + C \]

8. Let \(I = \int \frac{\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}}{\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x}} \, dx \)

We know that
\[
\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x} = \pi/2 \quad \text{(1)}
\]
Also \(\cos^{-1} \sqrt{x} = \pi/2 - \sin^{-1} \sqrt{x} \quad \text{(2)}
\]
Using equations (1) and (2), we get
\[\int \frac{\sin^{-1} \sqrt{x} - \left(\pi/2 - \sin^{-1} \sqrt{x} \right)}{\pi/2} \, dx \]
\[= \frac{2}{\pi} \int (2 \sin^{-1} \sqrt{x} - \pi/2) \, dx \]
\[= \frac{4}{\pi} \int \sin^{-1} \sqrt{x} \, dx - \frac{1}{1} \int dx \]
Let \(x = \sin^2 \theta \Rightarrow dx = 2 \sin \theta \cos \theta \, d\theta \)
\[I = \frac{\sin^{-1}(\sin \theta)}{\pi} \int 2 \sin \theta \cos \theta \, d\theta - x + C \]
\[= \frac{4}{\pi} \int \theta \sin 2\theta \, d\theta - x + C \]
\[= \frac{4}{\pi} \left[-\frac{\theta \cos 2\theta}{2} + \frac{1}{2} \int \cos 2\theta \, d\theta \right] - x + C \]
\[= \frac{4}{\pi} \left[-\frac{\theta \cos 2\theta}{2} + \frac{\sin \theta}{4} \right] - x + C \]
\[= \frac{4}{4 \pi} \left[-2 \sin^{-1} \sqrt{x} (1 - 2x) + 2 \sqrt{x} \cdot \sqrt{1 - x} \right] - x + C \]
\[= \frac{2}{\pi} \left[-x^2 - (1 - 2x) \sin^{-1} \sqrt{x} \right] - x + C \]

9. \[I = \int \frac{\sqrt{\cos 2x}}{\sin x} \, dx \]
\[= \int \frac{\cos^2 x - \sin^2 x}{\sin x} \, dx \]
\[= \int \cot^2 x - 1 \, dx \]

Put \(\cot^2 x - 1 = y^2 \)
\[\Rightarrow \cot^2 x = x^2 + 1 \]
\[\Rightarrow -2 \cot x \csc^2 x \, dx = 2y \, dy \]
\[\Rightarrow dx = \frac{-y \, dy}{\sqrt{1 + y^2}} \]
\[\Rightarrow I = -\int \frac{y \times y \, dy}{\sqrt{1 + y^2}} \]
\[= -\int \frac{1}{\sqrt{y^2 + 1}} \, dy + 2 \int \frac{dy}{y^2 + 1} \]
\[= -\log |y + \sqrt{y^2 + 1}| + 2I_1 \quad (1) \]

where \(I_1 = \int \frac{dy}{(y^2 + 2) \sqrt{y^2 + 1}} \)

Put \(y = \frac{1}{t} \Rightarrow dy = -\frac{dt}{t^2} \)
\[\Rightarrow I_1 = \int \frac{-dt}{t^2} \]
\[= \int \frac{dt}{t^2} \]
\[= -\left(t^2 + 1 \right) \]
\[\Rightarrow I = \frac{t \, dt}{t^2 + 1} \]

Now let \(t^2 + 1 = z^2 \)

\[\Rightarrow I = \frac{dt}{t^2 + 1} \]

10. \[\int (\csc x + \sqrt{\cot x}) \, dx \]
\[= \int \frac{\sin x + \cos x}{\sin x} \, dx \]
\[= \sqrt{2} \int \frac{\sin x + \cos x}{\sqrt{2}} \, dx \]
\[= \sqrt{2} \int \frac{\sin x + \cos x}{\sqrt{1 - (\sin x - \cos x)^2}} \, dx \]
\[= \sqrt{2} \int \frac{dt}{\sqrt{1 - t^2}} \]
\[= \sqrt{2} \sin^{-1} t + C \]
\[= \sqrt{2} \sin^{-1} (\sin x - \cos x) + C \]

11. \[\int \left(\frac{1}{\sqrt{3x + \sqrt{x}} + \frac{\ln (1 + \sqrt{x})}{\sqrt{x + \sqrt{x}}} \right) \, dx \]

Let \(I = \int \frac{1}{\sqrt{3x + \sqrt{x}}} \, dx + \int \frac{\ln (1 + \sqrt{x})}{\sqrt{x + \sqrt{x}}} \, dx \)
Let \(I_1 = \int \frac{1}{\sqrt[4]{x} + \sqrt[6]{x}} \, dx \)

Let \(x = y^{12} \) so that \(dx = 12 \, y^{11} \, dy \)

\[\therefore I_1 = 12 \int \frac{y^{11}}{y^4 + y^3} \, dy = 12 \int \frac{y^8}{1 + y} \, dy \]

\[= 12 \left[\frac{y^7}{7} - \frac{y^6}{6} + \frac{y^5}{5} - \frac{y^4}{4} + \frac{y^3}{3} - \frac{y^2}{2} - y + \log|y + 1| \right] + C \]

\[= \frac{2}{3} x^{2/3} - \frac{12}{7} x^{7/12} + 2x^{1/2} - \frac{12}{5} x^{5/12} + 3x^{1/3} - 4x^{1/4} + 6x^{1/6} - 12x^{1/12} + 12 \log|x^{1/12} + 1| + C_1 \] \(\text{(2)} \)

\[I_2 = \int \frac{\ln(1 + x^{1/6})}{x^{1/3} + x^{1/2}} \, dx \]

Let \(x = z^6 \) so that \(dx = 6z^5 \, dz \)

\[\Rightarrow I_2 = \int \frac{\ln(1 + z)}{z^2 + z} \, 6z^5 \, dz \]

\[= \int \frac{6z^3 \ln(z + 1)}{z + 1} \, dz \]

Put \(z + 1 = t \Rightarrow dz = dt \)

\[\therefore I_2 = \int \frac{6(t - 1)^3 \ln t}{t} \, dt \]

\[= 6 \left[\int t^2 - 3t + 3 - \frac{1}{t} \right] \ln t \, dt \]

\[= 6 \left[\int (t^2 - 3t + 3) \ln t \, dt - \int \frac{1}{t} \ln t \, dt \right] \]

\[= 6 \left[\left(\frac{t^3}{3} - 3t^2 + 3t \right) \ln t - \int \left(\frac{t^3}{3} - 3t^2 + 3t \right) \frac{1}{t} \, dt \right] - \frac{(\ln t)^2}{2} \]

\[= 6 \left[\left(\frac{t^3}{3} - 3t^2 + 3t \right) \ln t - \left(\frac{t^9}{9} - 4t^3 + 3t \right) \frac{(\ln t)^2}{2} \right] + C \] \(\text{(3)} \)

Thus, we get the value of \(I \) on substituting the values of \(I_1 \) and \(I_2 \) from equations (2) and (3) in equation (1).

12. Let \(\int \cos 2\theta \ln \left(\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \right) \, d\theta \)

\[= \ln \left(\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \right) \int \cos 2\theta \, d\theta \]

13. \(I = \int \left(\frac{x + 1}{x(1 + xe^x)^2} \right) \, dx \)

Put \(1 + xe^x = t \Rightarrow (xe^x + e^x) \, dx = dt \)

\[= \int \frac{dt}{(t - 1)^2} \]

\[= \int \left(\frac{1}{t - 1} + \frac{1}{1 - t} \right) \, dt \]

\[= -\log|1 - t| + \log|t + \frac{1}{t}| + C \]

\[= -\log \left| 1 - t \right| - \frac{1}{t} + C \]

\[= -\log \left| \frac{1 + xe^x}{1 - xe^x} \right| + \frac{1}{1 + xe^x} + C \]

\[= -\log \left(\frac{1 + xe^x}{xe^x} \right) - \frac{1}{1 + xe^x} + C \]

14. Put \(x = \cos^2 \theta \Rightarrow dx = -2 \cos \theta \sin \theta \, d\theta \)

\[= \int \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right)^{1/2} \left(-2 \cos \theta \sin \theta \, d\theta \right) \]

\[= -\int \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} \frac{4 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\cos \frac{\theta}{2} \, d\theta} \]

\[= -\int \frac{4 \sin^3 \frac{\theta}{2}}{\cos \frac{\theta}{2}} \, d\theta \]
\[\int \frac{x^3 + 3x + 2}{(x^2 + 1)^2} \, dx \]

\[\int x \left(\frac{x^2 + 1}{(x^2 + 1)^2 (x + 1)} \right) \, dx \]

\[= \int \frac{x}{(x^2 + 1) (x + 1)} \, dx \quad + \quad 2 \int \frac{dx}{(x^2 + 1)^2} \]

\[= \int \left(\frac{x + 1}{2 (x^2 + 1)} - \frac{1}{2 (x + 1)} \right) \, dx \quad + \quad \int \frac{2}{(x^2 + 1)^2} \, dx \]

\[= \frac{1}{4} \log |x^2 + 1| - \frac{1}{2} \log |x + 1| + \frac{1}{2} \tan^{-1} x + 2 \cdot \left(\frac{1}{2} \right) \]

where \(I = \int \frac{dx}{(x^2 + 1)^2} \). Put \(x = \tan \theta \Rightarrow dx = \sec^2 \theta \, d\theta \)

\[\Rightarrow I = \frac{\sec^2 \theta}{(1 + \tan^2 \theta)^2} \]

\[= \int \cos^2 \theta \, d\theta \]

\[= \int \frac{1 + \cos 2\theta}{2} \, d\theta \]

\[= \frac{1}{2} \left(\theta + \frac{\sin 2\theta}{2} \right) + C \]

\[= \frac{1}{2} \left(\theta + \frac{\tan \theta}{1 + \tan^2 \theta} \right) + C \]

\[= \frac{1}{2} \tan^{-1} x + \frac{x}{2(1 + x^2)} + C \]

\[\therefore \text{the given integral} \]

\[= \frac{1}{4} \log |x^2 + 1| - \frac{1}{2} \log |x + 1| + \frac{1}{2} \tan^{-1} x \]

\[+ \tan^{-1} x + \frac{x}{1 + x^2} + C \]

\[= \frac{1}{4} \log \left| \frac{x^2 + 1}{(x + 1)^2} \right| + \frac{3}{2} \tan^{-1} x + \frac{x}{1 + x^2} + C \]

16. \(I = \int \frac{2x + 2}{\sqrt{4x^2 + 8x + 13}} \, dx \)

\[= \int \frac{2x + 2}{\sqrt{(2x + 2)^2 + 3^2}} \, dx \]

[put \(2x + 2 = 3 \tan \theta \Rightarrow 2 \, dx = 3 \sec^2 \theta \, d\theta \)]

\[= \int \frac{3 \tan \theta}{3 \sec \theta} \cdot \frac{3}{2} \sec^2 \theta \, d\theta \]

\[= \frac{3}{2} \int \sec^3 \theta \, d\theta \]

\[= \frac{3}{2} \left(\tan \theta - \int \tan \theta \, d\theta \right) \]

\[= \frac{3}{2} \left(\tan \theta - \log |\sec \theta| \right) + C \]

\[\Rightarrow I = \frac{3}{2} \left(\frac{2x + 2}{3} \tan^{-1} \left(\frac{2x + 2}{3} \right) - \log \left(1 + \left(\frac{2x + 2}{3} \right)^2 \right) \right) + C \]

\[= \frac{3}{2} \left(2(x + 1) \tan^{-1} \left(\frac{2}{3} (x + 1) \right) - \log (x^2 + 8x + 13) \right) + C \]

17. \(I = \int \left(x^{3m} + x^{2m} + x^m \right) (2x^{2m} + 3x^m + 6)^{1/m} \, dx \)

\[= \int \left(\frac{x^{3m} + x^{2m} + x^m}{x} \right) (2x^{2m} + 3x^m + 6)^{1/m} \, dx \]

\[= \int \left(x^{m-1} + x^{m-1} \right) (2x^m + 3x^{m-1} + 6x^m)^{1/m} \, dx \]

Let \(2x^m + 3x^{m-1} + 6x^m = t \Rightarrow dt = 6m(x^{m-1} + x^{2m-1} + x^m) \, dx \)

\[\Rightarrow I = \int \frac{1}{6} \frac{m \, dt}{6m} = \frac{1}{6} \int \frac{t^{m+1}}{m+1} \, dt \]

\[= \frac{1}{6} (m+1) \left(2x^{3m} + 3x^{2m} + 6x^m \right)^{(m+1)/m} + C \]

Objective

Fill in the blanks

1. We have \(\int \frac{4e^x + 6e^{-x}}{9e^x - 4e^{-x}} \, dx = A x + B \ln (9e^x - 4e^{-x}) + C \)

Differentiating both sides w.r.t. \(x \), we get

\[\frac{4e^x + 6e^{-x}}{9e^x - 4e^{-x}} = A + \frac{18B}{9e^x - 4e^{-x}} \]
\[4e^x + 6e^{-x} = \frac{(9A + 18B)e^x - 4Ae^{-x}}{9e^x - 4e^{-x}} \]

\[9A + 18B = 4; -4A = 6 \]

\[A = -3/2, \ B = \left(4 + \frac{27}{2} \right) \frac{1}{18} = \frac{35}{36} \]

C can have any real value.

Multiple choice questions with one correct answer

1. c. Let

\[I = \int \frac{\cos^3 x + \cos^5 x}{\sin^2 x + \sin^4 x} \, dx \]

\[= \int \frac{(\cos^2 x + \cos^4 x) \cos x}{\sin^2 x (1 + \sin^2 x)} \, dx \]

\[= \int \frac{[1 - \sin^2 x + (1 - \sin^2 x)^2] \cos x}{\sin^2 x (1 + \sin^2 x)} \, dx \]

\[= \int \frac{2 - 3 \sin^2 x + \sin^4 x}{\sin^2 x (1 + \sin^2 x)} \cos x \, dx \]

Put \(\sin x = t \Rightarrow \cos x \, dx = dt \)

\[\Rightarrow I = \int \frac{2 - 3t^2 + t^4}{t^4 + t^2} \, dt \]

\[= \int \left(1 + \frac{2}{t^2} - \frac{6}{t^2 + 1} \right) \, dt \]

\[= t - \frac{2}{t} - 6 \tan^{-1} (t) + C \]

\[= \sin x - 2 (\sin x)^{-1} - 6 \tan^{-1} (\sin x) + C \]

2. d. \[I = \int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx \]

\[= \frac{1}{4} \int \frac{4 - 4}{x^3 - \frac{x^5}{x^3}} \, dx \]

\[\Rightarrow \text{Put } 2 - \frac{2}{x^2} + \frac{1}{x^4} = t \Rightarrow \left(\frac{4}{x^3} - \frac{4}{x^5} \right) \, dx = dt \]

\[\Rightarrow I = \frac{1}{4} \int \frac{dt}{\sqrt{t}} = \frac{2\sqrt{t}}{4} + C \]

\[= \sqrt{2 - \frac{2}{x^2} + \frac{1}{x^4}} + C \]

\[= \frac{\sqrt{2x^4 - 2x^2 + 1}}{2x^2} + C \]
CHAPTER 8

Definite Integration

- Definite Integration
- Properties of Definite Integrals
- Definite Integration of Odd and Even Functions
- Definite Integration of Periodic Functions
- Leibniz's Rule
- Inequalities
DEFINITE INTEGRATION

Definite Integral as the Limit of a Sum Integration by First Principle Rule

Let \(f \) be a continuous function defined on a close interval \([a, b]\). Assume that all the values taken by the function are non-negative, so the graph of the function is a curve above the x-axis.

The definite integral \(\int_a^b f(x) \, dx \) is the area bounded by the curve \(y = f(x) \), the ordinates \(x = a, x = b \) and the x-axis. To evaluate its area, consider the region \(PRSOP \) between the curve, x-axis and the ordinates \(x = a, x = b \).

![Fig. 8.1](https://via.placeholder.com/150)

Divide the interval \([a, b]\) into \(n \) equal sub-intervals denoted by \([x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n] \), where \(x_0 = a, x_1 = a + h, x_2 = a + 2h, \ldots, x_n = a + nh \) and \(x_n = b = a + nh \) or \(n = \frac{b-a}{h} \).

We note that as \(n \to \infty, h \to 0 \).

The region \(PRSOP \) under consideration is the sum of \(n \) sub-regions, where each sub-region is defined on sub-intervals \([x_{r-1}, x_r], r = 1, 2, 3, \ldots, n\).

From Fig. 8.1, we have area of the rectangle \(ABLC < \text{area of the rectangle } ABDM. \) (1)

Evidently, as \(x_r - x_{r-1} \to 0 \), i.e., \(h \to 0 \), all the three areas shown in Fig. 8.1 become nearly equal to each other.

Now, we form the following sums:

\[
s_n = h[f(x_0) + \cdots + f(x_{n-1})] = h \sum_{r=0}^{n-1} f(x_r)
\]

\[
S_n = h[f(x_1) + f(x_2) + \cdots + f(x_n)] = h \sum_{r=1}^{n} f(x)
\]

Here, \(s_n \) and \(S_n \) denote the sum of area of all lower and upper rectangles raised over sub-intervals \([x_{r-1}, x_r]\) for \(r = 1, 2, 3, \ldots, n \), respectively.

A view of the inequality (1) for an arbitrary sub-interval \([x_{r-1}, x_r]\), we have

\[
< \text{area of the region } PRSOP < S_n
\]

As \(n \to \infty \) the strips become narrower. It is assumed that the limiting values of equations (2) and (3) are same in both the cases. The common limiting value is the required area under the curve. Symbolically, we can write

\[
\lim_{n \to \infty} s_n = \lim_{n \to \infty} S_n = \text{area of the region } PRSOP = \int_a^b f(x) \, dx
\]

Second Fundamental Theorem of Integral Calculus

We state below an important theorem which enables us to evaluate definite integrals using anti-derivative.

Theorem: Let \(f \) be a continuous function defined on a closed interval \([a, b]\) and \(F \) be an anti-derivative of \(f \). Then

\[
\int_a^b f(x) \, dx = [F(x)]_a^b = F(b) - F(a),
\]

where \(a \) and \(b \) are called the limits of integration, \(a \) being the lower or inferior limit and \(b \) being the upper or superior limit.
Geometrical Interpretation of the Definite Integral

First, we construct the graph of the integrand $y = f(x)$, then in the case of $f(x) \geq 0$, $\forall \ x \in [a, b]$, the integral $\int_{a}^{b} f(x) \, dx$ is numerically equal to the area bounded by the curve $y = f(x)$, the x-axis and the ordinates $x = a$ and $x = b$.

![Graph of $y = f(x)$](image)

$\int_{a}^{b} f(x) \, dx$ is numerically equal to the area of curvilinear trapezoid bounded by the given curve, the straight lines $x = a$ and $x = b$ and the x-axis.

In general, $\int_{a}^{b} f(x) \, dx$ represents an algebraic sum of areas of the region bounded by the curve $y = f(x)$, the x-axis and the ordinates $x = a$ and $x = b$.

The area above the x-axis are taken positive, while those below the x-axis are taken negative.

![Graph of x^2](image)

Example 8.1 Evaluate $\int_{a}^{b} e^x \, dx$ using limit of sum.

Sol. We have

$$\int_{a}^{b} e^x \, dx = \lim_{h \to 0} \left[\int_{a}^{a+h} e^x \, dx + \int_{a+h}^{a+2h} e^x \, dx + \ldots + \int_{a+(n-1)h}^{a+nh} e^x \, dx \right]$$

where $\frac{b-a}{h} = \frac{n}{h}$

$$= \lim_{n \to \infty} \frac{h}{n} \left[\left(e^{a+h} - e^a \right) + \left(e^{a+2h} - e^{a+h} \right) + \ldots + \left(e^{a+nh} - e^{a+(n-1)h} \right) \right]$$

$$= \lim_{n \to \infty} \frac{e^{a+h} - e^{a}}{n}$$

Example 8.2 Evaluate $\int_{a}^{b} \sin x \, dx$ using limit of sum.

Sol. We have

$$\int_{a}^{b} \sin x \, dx = \lim_{h \to 0} \left[\sin a + \sin (a+h) + \sin (a+2h) + \ldots \right. + \sin \left(a+(n-1)h \right)$$

where $nh = b - a$

$$= \lim_{n \to \infty} \frac{h}{n} \left[\frac{\sin \left(a + \frac{1}{2} (n-1)h \right)}{\sin \left(\frac{1}{2} h \right)} \right]$$

$$= \lim_{h \to 0} \frac{2}{n} \left(\frac{\sin \left(a + \frac{1}{2} (nh-h) \right)}{\sin \left(\frac{1}{2} h \right)} \right) \left(\frac{1}{2} h \right)$$

$$= 2 \sin \left(a + \frac{1}{2} (b-a) \right) \cdot \sin \frac{1}{2} (b-a)$$

[$*: \text{as } n \to \infty, h \to 0; \text{ and } nh = b - a$]

$$= 2 \sin \left(\frac{1}{2} (b+a) \right) \sin \left(\frac{1}{2} (b-a) \right)$$

$$= \cos a - \cos b$$

Example 8.3 Evaluate $\int_{a}^{b} x^2 \, dx$ using limit of sum.

Sol.

$$\int_{a}^{b} x^2 \, dx = \lim_{n \to \infty} h\left[a^2 + (a+h)^2 + (a+2h)^2 + \ldots \right.$$

$$\left. + \left(a+(n-1)h \right)^2 \right], \text{ where } nh = b - a$$
3.4 Calculus

\[
\lim_{n \to \infty} h[n(a^2 + 2ah \{1 + 2 + \ldots + (n-1)\} + h^2 \{1^2 + 2^2 + \ldots + (n-1)^2\})]
\]

\[
= \lim_{n \to \infty} \left[nh \cdot a^2 + 2ah^2 \sum_{r=1}^{n-1} r + h^3 \sum_{r=1}^{n-1} r^2 \right]
\]

\[
= \lim_{n \to \infty} \left[nh \cdot a^2 + 2ah^2 \cdot \frac{1}{2} (n - 1) n + h^3 (1/6)(n-1)n(2n-1) \right]
\]

\[
= \lim_{n \to \infty} \left[(nh)a^2 + a(nh - h)(nh) + (1/6)(nh - h)(nh) \times (2nh - h) \right]
\]

\[
= b(a^2 + a(b-a-0)(b-a) + (1/6)(b-a-0)(b-a) \times (2(b-a)-0)
\]

\[
= \frac{1}{3} (b-a) \left[3a^2 + 3a(b-a) + (b-a)^2 \right]
\]

\[
= \frac{1}{3}(b-a) \left[a^2 + ab + b^2 \right] = \frac{1}{3}(b^3 - a^3)
\]

Example 8.4 Evaluate \(\int_a^b \frac{dx}{\sqrt{x}} \), where \(a, b > 0 \).

Sol. \(I = \int_a^b \frac{dx}{\sqrt{x}} \) as \(a > 0, b > 0 \)

\[
i = \lim_{h \to 0} \left[\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{a} + h} + \frac{1}{\sqrt{a} + 2h} + \ldots + \frac{1}{\sqrt{a} + (n-1)h} \right]
\]

We know that \(\sqrt{r} + \sqrt{r-h} < 2\sqrt{r} < \sqrt{r + h} + \sqrt{r} \) (for sufficiently small \(h > 0 \)).

\[
\Rightarrow \frac{1}{\sqrt{r + h} + \sqrt{r}} < \frac{1}{2\sqrt{r}} < \frac{1}{\sqrt{r} - h + \sqrt{r}}
\]

\[
\Rightarrow \frac{\sqrt{r + h} - \sqrt{r}}{h} < \frac{1}{2\sqrt{r}} < \frac{\sqrt{r} - \sqrt{r-h}}{h}
\]

Let put \(r = a, a + h, a + 2h, \ldots, a + (n-1)h \)

\[
\Rightarrow \frac{\sqrt{a + h} - \sqrt{a}}{h} < \frac{1}{2\sqrt{a}} < \frac{\sqrt{a} - \sqrt{a-h}}{h}
\]

\[
\Rightarrow \frac{\sqrt{a + 2h} - \sqrt{a + h}}{h} < \frac{1}{2\sqrt{a + h}} < \frac{\sqrt{a + h} - \sqrt{a}}{h}
\]

\[
\Rightarrow \frac{\sqrt{a + 3h} - \sqrt{a + 2h}}{h} < \frac{1}{2\sqrt{a + 2h}} < \frac{\sqrt{a + 2h} - \sqrt{a + h}}{h}
\]

\[
\Rightarrow \frac{\sqrt{a + nh} - \sqrt{a + (n-1)h}}{h} < \frac{1}{2\sqrt{a + (n-1)h}} < \frac{\sqrt{a + (n-1)h} - \sqrt{a + (n-2)h}}{h}
\]

Adding, we get

\[
\frac{\sqrt{a + nh} - \sqrt{a}}{h} < \sum_{r=0}^{n-1} \frac{1}{2\sqrt{a + rh}} < \frac{\sqrt{a + (n-1)h} - \sqrt{a-h}}{h}
\]

\[
\Rightarrow 2\left(\sqrt{a + b-a - \sqrt{a}}\right) < \frac{1}{h} \sum_{r=0}^{n-1} \frac{1}{\sqrt{a + rh}} < 2\left(\sqrt{a + b-a - \sqrt{a}}\right)
\]

(Put \(nh = b-a \))

\[
\Rightarrow \lim_{h \to 0} 2\left(\sqrt{a + b-a - \sqrt{a}}\right) < \lim_{h \to 0} \sum_{r=0}^{n-1} \frac{1}{\sqrt{a + rh}} < 2\left(\sqrt{a + b-a - \sqrt{a}}\right)
\]

\[
\Rightarrow 2\left(\sqrt{b-a} - \sqrt{a}\right) < \frac{1}{\sqrt{n}} \sum_{r=0}^{n-1} \frac{1}{\sqrt{a + rh}} < 2\left(\sqrt{b-a} - \sqrt{a}\right)
\]

\[
\Rightarrow 2\left(\sqrt{b-a} - \sqrt{a}\right) < \frac{1}{n} \sum_{r=0}^{n-1} \frac{1}{\sqrt{a + rh}} < 2\left(\sqrt{b-a} - \sqrt{a}\right)
\]

\[
\Rightarrow \int_a^b \frac{1}{\sqrt{x}} \, dx = 2\left(\sqrt{b-a} - \sqrt{a}\right)
\]

Limits using Definite Integration

We know that \(\int_a^b f(x) \, dx = \lim_{h \to 0} h \sum_{r=0}^{n} f(a + rh) \).

Now in a special case, let \(a = 0 \) and \(b = 1 \), then we have

\[
\int_0^1 f(x) \, dx = \lim_{h \to 0} \frac{1}{n} \sum_{r=0}^{n} f\left(\frac{r}{n}\right)
\]

More generally, \(\int_a^b f(x) \, dx = \lim_{h \to 0} \frac{1}{n} \sum_{r=0}^{n} f\left(\frac{r}{n}\right) \)

Example 8.5 Evaluate

\[
\lim_{n \to \infty} \left[\frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+4)} + \ldots + \frac{1}{6n^2} \right]
\]

Sol. The given limit is

\[
L = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{(n+r)(n+r+2)}
\]

\[
= \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \left(\frac{1}{(1+r/n)(1+2r/n)} \right)
\]

\[
= \int_0^1 \frac{dx}{(1+x)(1+2x)}
\]

\[
= \int_0^1 \left(\frac{-1}{1+x} + \frac{2}{1+2x} \right) dx
\]

\[
= \left[-\log (1+x) + \log (1+2x) \right]_0^1
\]

\[
= \left[(\log 3 - \log 1) - (\log 2 + \log 3) \right]_0^1
\]

\[
= \log (3/2)
\]
Example 8.6 Evaluate \(\lim_{n \to \infty} \left[\frac{1}{na} + \frac{1}{na + 1} + \frac{1}{na + 2} + \ldots + \frac{1}{na + (b-a)} \right] \)

Sol. The given limit is
\[
L = \lim_{n \to \infty} \left[\frac{1}{na} + \frac{1}{na + 1} + \frac{1}{na + 2} + \ldots + \frac{1}{na + n(b-a)} \right]
\]
\[
= \lim_{n \to \infty} \sum_{r=0}^{(b-a)/a} \frac{1}{a + r}
\]
\[
= \lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{(b-a)/n} \frac{1}{a + r/n}
\]
\[
= \int_0^{b-a} \frac{dx}{a + x}
\]
\[
= \log b - \log a = \log (b/a)
\]

Example 8.7 Evaluate \(\lim_{n \to \infty} \frac{[(n+1)(n+2)\ldots(n+n)]^{1/n}}{n} \)

Sol. Let \(L = \lim_{n \to \infty} \frac{[(n+1)(n+2)\ldots(n+n)]^{1/n}}{n} \)
\[
= \lim_{n \to \infty} \frac{[(n+1)(n+2)\ldots(n+n)]^{1/n}}{n^n}
\]
\[
= \lim_{n \to \infty} \left[\frac{n+1}{n} \cdot \frac{n+2}{n} \cdot \ldots \cdot \frac{n+n}{n} \right]^{1/n}
\]
\[
= \lim_{n \to \infty} \left[\left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right) \ldots \left(1 + \frac{n}{n}\right) \right]^{1/n}
\]
\[
= \log L = \lim_{n \to \infty} \frac{1}{n} \left[\log \left(1 + \frac{1}{n}\right) + \log \left(1 + \frac{2}{n}\right) + \ldots + \log \left(1 + \frac{n}{n}\right) \right]
\]
\[
= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \log \left(1 + \frac{r}{n}\right) = \int_0^1 \log (1 + x) \, dx
\]
\[
= \left[x \log (1 + x) \right]_0^1 - \int_0^1 \frac{x}{1 + x} \, dx
\]
\[
= \log 2 - \int_0^1 \left[1 - (1/(1 + x))\right] \, dx = \log 2 - [x - \log (1 + x)]_0^1
\]
\[
= \log 2 - [(1 - \log 2) - (0 - \log 1)]
\]
\[
= 2 \log 2 - 1 = \log (2/e)
\]
\[
\therefore L = 2^2/e = 4/e
\]

Example 8.9 Evaluate \(\int_{-1}^0 \frac{dx}{x^2 + 2x + 2} \)

Sol. \(\int_{-1}^0 \frac{dx}{x^2 + 2x + 2} = \int_{-1}^0 \frac{dx}{(x + 1)^2 + 1} \)
\[
= \tan^{-1} (x + 1)|_{-1}^0 = \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4}
\]

Example 8.10 If \(f(x) = \min \left(|x|, 1 - |x|, \frac{1}{4} \right) \), \(\forall x \in \mathbb{R} \), then find the value of \(\int_{-1}^1 f(x) \, dx \).

Sol. \(f(x) = \min \left(|x|, 1 - |x|, \frac{1}{4} \right) \)
\[\text{Fig. 8.4} \]

\[\text{Fig. 8.4} \]
Now, from Fig. 8.4,
\[\int_{-1}^{1} f(x) \, dx = 2(\text{Area of trapezium } OABC) \]
\[= 2 \left(\frac{1}{2} \left(1 + \frac{1}{2} \right) \right) \frac{1}{4} = \frac{3}{8} \]

Example 8.11 Find the mistake in the following evaluation of the integral \(I = \int_{0}^{\pi} \frac{dx}{1 + 2 \sin^2 x} \)

\[I = \int_{0}^{\pi} \frac{dx}{\cos^2 x + 3 \sin^2 x} \]
\[= \int_{0}^{\pi} \frac{\sec^2 x \, dx}{1 + 3 \tan^2 x} = \frac{1}{\sqrt{3}} \left[\tan^{-1} \left(\sqrt{3} \tan x \right) \right]_{0}^{\pi} = 0. \]

Sol. Here, the anti-derivative \(\tan^{-1} \left(\sqrt{3} \tan x \right) = F(x) \) is discontinuous at \(x = \pi/2 \) in the interval \([0, \pi]\).

Since \(F \left(\frac{\pi}{2} \right) + \lim_{h \to 0} F \left(\frac{\pi}{2} + h \right) \)
\[= \lim_{h \to 0} \left(\frac{1}{\sqrt{3}} \right) \tan^{-1} \left(\frac{\sqrt{3} \tan \left(\frac{\pi}{2} + h \right)}{1} \right) \]
\[= \lim_{h \to 0} \left(\frac{1}{\sqrt{3}} \right) \tan^{-1} \left(-\infty \right) = -\pi/(2\sqrt{3}) \]

Also, \(F \left(\frac{1}{2} \pi - 0 \right) = \pi/(2\sqrt{3}) \neq F \left(\frac{1}{2} \pi + 0 \right) \)

Hence, the second fundamental theorem of integral calculus is not applicable.

Example 8.12 Find the value of \(\int_{-1}^{1} \frac{d}{dx} \left(\tan^{-1} \frac{1}{x} \right) \, dx \).

Sol. We have \(\frac{d}{dx} \left(\tan^{-1} \frac{1}{x} \right) = \frac{1}{1+x^2} \)
\[\therefore \int_{-1}^{1} \frac{d}{dx} \left(\tan^{-1} \frac{1}{x} \right) \, dx \]
\[= \int_{-1}^{1} \frac{dx}{1+x^2} \]
\[= 2 \int_{0}^{1} \frac{dx}{1+x^2} \quad \because \text{for even function } f(x)dx = 2 \int_{0}^{a} f(x)dx \]
\[= 2 \left[\tan^{-1} \frac{1}{x} \right]_{0}^{1} = -2(\pi/4) = -\pi/2. \]

Note that \(\int_{-1}^{1} \frac{d}{dx} \left(\tan^{-1} \frac{1}{x} \right) \, dx \)
\[= \left[\tan^{-1} \frac{1}{x} \right]_{-1}^{1} \]

= \tan^{-1} 1 - \tan^{-1} (-1) = \pi/2 \]

is incorrect, because \(\tan^{-1} \frac{1}{x} \) is not an anti-derivative (primitive) of \(\frac{d}{dx} \left(\tan^{-1} \frac{1}{x} \right) \) on \([-1, 1]\), as \(\tan^{-1} \frac{1}{x} \) does not exist for \(x \neq 0 \).

Example 8.13 Let \(\frac{d}{dx} F(x) = \left(\frac{e^{\sin x}}{x} \right), x > 0. \)

If \(\int_{x}^{4x} e^{\sin x} \, dx = F(k) - F(1) \), then find the possible value of \(k \).

Sol. For \(\int_{x}^{4x} e^{\sin x} \, dx \), putting \(x^3 = t \), so that \(3x^2 dx = dt \)

When \(x = 1, t = 1; \) when \(x = 4, t = 64 \)

\[= \int_{1}^{64} e^{\sin t} \, dt = \int_{1}^{64} \frac{e^{\sin t}}{3x^2} \, dt = \int_{1}^{64} \frac{d}{dt} \left(\frac{e^{\sin t}}{3x} \right) \, dt \]

Hence, \(k = 64. \)

Example 8.14 If \(\int_{0}^{1} e^{x} \, dx = \log_e (1 + e) + K \), then find the value of \(K \).

Sol. \(I = \int_{0}^{1} e^{x} \, dx = \int_{0}^{1} \frac{dx}{e^{x}(1 + e^{x})} \)

Put \(\frac{e^x}{z} = \frac{dx}{z} \quad \Rightarrow \frac{dx}{z} = \frac{dx}{z} \)

\[\Rightarrow I = \int_{0}^{1} \frac{dx}{z} = \int_{1}^{z} \frac{1}{z - 1} \, dz \]
\[= \left[\log (1+z) - \log z \right]_{1}^{z} = \left(\log (1+e) - \log \frac{1-e}{e} \right) - (\log 2 - \log 1 - 1) \]
\[= \log (1+e) - \frac{1}{e} - \log 2 \]
\[\therefore K = -\left(\frac{1}{e} + \log 2 \right) \]

Example 8.15 Find the value of \(\int_{0}^{1} \log x dx \).

Sol. \(I = \int_{0}^{1} \log x dx = \int_{0}^{1} \log x \, dx = \int_{0}^{1} \log x \, dx \)
\[= 1 \times \log 1 - \left(\lim_{x \to 0} \log x \right) = 1 \]
\[= 0 - \lim_{x \to 0} \frac{\log x}{x} - 1 \]
\[= -\lim_{x \to 0} \frac{x - 1}{x} \quad (\text{using L'Hopital's Rule}) \]
\[= \lim_{x \to 0} x - 1 \quad (\text{Integrating parts}) \]
\[= \lim_{x \to 0} \left(f'(t)^2 - f(t)^2 \right) = \frac{1}{4} \left(f'(t)^2 - f(t)^2 \right) \]
\[\Rightarrow I_1 = \frac{1}{2} \left(f'(2)^2 - f(2)^2 + f(0) \right) = \frac{1}{4} (10 - 3 + 1) = 2 \]

\[\text{Example 8.16} \quad \text{If } f(0) = 1, f(2) = 3, f'(2) = 5, \text{ then find the value of } \int_0^1 xf''(2x)dx. \]

\[\text{Sol.} \quad I_1 = \int_0^1 xf''(2x)dx, \quad \text{putting } t = 2x, \text{ i.e.,} \]
\[dx = \frac{dt}{2}, \quad \text{we get} \]
\[I_1 = \frac{1}{4} \int_0^2 tf''(t)dt \]
\[= \frac{1}{4} \left[\int_0^2 t f''(t)dt + \int_0^2 2 f'(t)dt \right] \]
\[= \frac{1}{4} \left[\int_0^2 f''(t)dt - f(t)^2 \right] \]
\[\Rightarrow I_1 = \frac{1}{4} \left(f'(2)^2 - f(2)^2 + f(0) \right) = \frac{1}{4} (10 - 3 + 1) = 2 \]

Concept—Application Exercise 8.2

1. Consider the integral \(I = \int_0^{2\pi} \frac{dx}{5 - 2 \cos x} \).

Making the substitution \(\tan \frac{1}{2} x = t \),

we have \(I = \int_0^{2\pi} \frac{dx}{5 - 2 \cos x} \)
\[= \int_0^0 \frac{2dt}{(1 + t^2) \left[5 - 2(1 - t^2) \right] / (1 + t^2)} = 0 \]

The result is obviously wrong, since the integrand is positive and consequently the integral of this function cannot be equal to zero. Find the mistake.

2. \(\int_0^{\pi} \frac{dx}{1 + \sin x} \)

3. \(\int_1^\infty \left(e^{x+1} + e^{3-x} \right) dx \)

4. \(\int_0^{\pi/2} \frac{\sin^{-1} x}{\sqrt{1 - x^2}} dx \)

5. \(\int_0^1 \frac{2 - x^2}{\sqrt{1 + x}} \sqrt{1 - x^2} dx \)

6. \(\int_0^{\pi/2} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} \)

PROPERTIES OF DEFINITE INTEGRALS

Property I

Changing dummy variable: \(\int_a^b f(x)dx = \int_a^b f(t)dt \),

i.e., the value of the definite integral does not change with the change of argument (variable of integration) provided the limits of integration remain the same.

Property II

Interchanging limits: \(\int_a^b f(x)dx = -\int_b^a f(x)dx \),

i.e., the sign of the definite integral is changed when the order of the limits changed.

Property III

Splitting limits: \(\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx \),

where \(c \) may lie inside or outside the interval \([a, b]\).

This property is useful when the function is in the form of piecewise definition for \(f \) i.e., \(f(x) \) or when \(f(x) \) is discontinuous or non-differentiable at \(a \) or \(b \).

Proof: Analytical Method

Let \(\int_a^b f(x)dx = F(x) \)

R.H.S. = \(\int_a^c f(x)dx + \int_c^b f(x)dx \)
\[= F(x)|_a^c + F(x)|_c^b \]
\[= F(c) - F(a) + F(b) - F(c) \]
\[= F(b) - F(a) \quad (1) \]

L.H.S. = \(\int_a^b f(x)dx = F(x)|_a^b = F(b) - F(a) \quad (2) \)

From equations (1) and (2), we get
\[\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx \]

Graphical Method

The proof of the property is more clear from the graph.

Case I: If \(a < c < b \)

It is clear from the figure,

Area of \(ABB'A' = \text{Area of } (ACC'A') + \text{Area of } (CBB'C') \)
\[\text{i.e., } \int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx \]
Case II: If $c < a < b$

![Figure 8.6](image1)

It is clear from the figure,

Area of $(CBB'C'C) = $ Area of $(CAA'C) + $ Area of $(ABB'A')$

i.e., $\int_c^b f(x)dx = \int_c^a f(x)dx + \int_a^b f(x)dx$

$\Rightarrow \int_a^b f(x)dx = -\int_a^c f(x)dx + \int_c^b f(x)dx$

$= \int_a^c f(x)dx + \int_c^b f(x)dx$ (By Property II)

Case III: If $a < b < c$

![Figure 8.7](image2)

It is clear from the figure,

Area of $(ACC'A'A) = $ Area of $(ABB'A'A) + $ Area of $(BCC'B'B)$

i.e., $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$

$\Rightarrow \int_a^b f(x)dx = \int_a^c f(x)dx - \int_c^b f(x)dx$

$= \int_a^c f(x)dx + \int_c^b f(x)dx$ (By property II)

Generalization: The above property can be generalized in the following form:

$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^{c_1} f(x)dx + \int_{c_1}^{c_2} f(x)dx + \int_{c_2}^{c_3} f(x)dx + \ldots + \int_{c_n}^b f(x)dx$

Example 8.17 Evaluate $\int_{-1}^1 |x|dx$.

Sol. We know that in the interval $[-1, 1]$,

$|x| = \begin{cases}
-x, & -1 \leq x \leq 0 \\
0, & 0 \leq x \leq 1
\end{cases}$

Example 8.18 Evaluate $\int_{-\pi/2}^{\pi/2} \sin^{-1}(\sin x)dx$.

Sol. The graph of $f(x) = \sin^{-1}(\sin x)$ is as shown in Fig. 8.8

![Figure 8.8](image3)

$\Rightarrow \int_{-\pi/2}^{\pi/2} \sin^{-1}(\sin x)dx = \int_{-\pi/2}^{\pi/2} \sin^{-1}(\sin x)dx$

$+ \int_{0}^{\pi} \sin^{-1}(\sin x)dx$

$+ \int_{\pi}^{2\pi} \sin^{-1}(\sin x)dx$

$= \text{Area of shaded region}$

$= \left[\frac{1}{2} \pi \times \pi \times \frac{\pi}{2} \right] - \left[\frac{1}{2} \pi \times \frac{\pi}{2} \right].$

$= \frac{\pi^2}{8}$

Example 8.19 Evaluate $\int_{-\pi/2}^{\pi/2} \sqrt{\cos x - \cos^3 x}dx$.

Sol. Given integral

$I = \int_{-\pi/2}^{\pi/2} \sqrt{\cos x (1 - \cos^2 x)} dx$

$= \int_{-\pi/2}^{\pi/2} \sqrt{\cos x \sin^2 x} dx$

$= \int_{-\pi/2}^{\pi/2} \sqrt{\cos x} |\sin x| dx$ (1)

Now, $|\sin x| = \begin{cases}
\sin x, & \text{if } -\pi/2 \leq x < 0 \\
\sin x, & \text{if } 0 < x \leq \pi/2
\end{cases}$

\therefore from equation (1), we have

$I = \int_{-\pi/2}^{\pi/2} \sqrt{\cos x} (-\sin x)dx + \int_{0}^{\pi/2} \sqrt{\cos x} \sin x dx$

Putting $\cos x = t$, $-\sin x dx = dt$

$\Rightarrow I = \int_{1}^{0} t^{1/2} dt + \int_{0}^{1} t^{1/2} dt$

$= 2 \left(\frac{2}{3} \right) t^{3/2} \bigg|_0^1 = 4 \left(\frac{2}{3} \right)$

Example 8.20 If $[x]$ denotes the greatest integer less than or equal to x, then find the value of the integral $\int_0^2 x^2 [x] dx$.
Sol. \[\int_0^1 x^2 \text{[x]} \, dx = \int_0^1 x^2 \, dx + \int_1^2 x^2 \, dx \]
\[= \int_0^1 x^2 \, (0) \, dx + \int_1^2 x^2 \, (1) \, dx \]
\[= 0 + \int_1^2 x^2 \, dx = \frac{x^3}{3} \bigg|_1^2 = \frac{8-1}{3} = \frac{7}{3} \]

Example 8.21 Show that \(\int_a^b \frac{|x|}{x} \, dx = |a| - |b| \).

Sol. Case I: If \(0 \leq a < b \), then \(|x| = x \)
\[\therefore I = \int_a^b \frac{|x|}{x} \, dx = \int_a^b 1 \, dx = |b| - |a| \]
Case II: If \(a < b \leq 0 \), then \(|x| = -x \)
\[\therefore I = \int_a^b \frac{|x|}{x} \, dx = \int_a^b (-1) \, dx = |b| - |a| \]
Case III: If \(a < 0 < b \), then \(|x| = -x \) when \(a < x < 0 \)
and \(|x| = x \) when \(0 < x < b \)
\[I = \int_a^b \frac{|x|}{x} \, dx = \int_a^0 \frac{-x}{x} \, dx + \int_0^b \frac{x}{x} \, dx \]
\[= \int_a^0 (-1) \, dx + \int_0^b 1 \, dx \]
\[= [-x]_a^0 + [x]_0^b = a + b = b - (a) = |b| - |a| \]
Hence, in all the cases, \(I = \int_a^b \frac{|x|}{x} \, dx = |b| - |a| \).

Property IV

\[\int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \]

Proof:
In R.H.S., put \(a + b - x = t \)
\[\therefore dx = -dt \]
When \(x = a \Rightarrow t = b \) and \(x = b \Rightarrow t = a \)
then R.H.S. = \(\int_a^b f(t) \, dt = \int_a^b f(t) \, dt = \int_b^a f(t) \, dt \)
\[= \int_b^a f(x) \, dx = \text{L.H.S.} \]

Example 8.22 Evaluate \(\int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx \).

Sol. Given integral \(I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx \) (1)
\[\Rightarrow I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx \] (Replacing \(x \) by \(\frac{\pi}{2} - x \)) (2)
Adding equations (1) and (2), we get
\[2I = \int_{\pi/6}^{\pi/3} \left(\frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right) \, dx \]

Example 8.23 Evaluate \(\int_{-\pi}^{3\pi} \log(\sec \theta - \tan \theta) \, d\theta \).

Sol. Let \(I = \int_{-\pi}^{3\pi} \log(\sec \theta - \tan \theta) \, d\theta \) (1)
Using the property \(\int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \), we get
\[I = \int_{-\pi}^{3\pi} \log(\sec(2\pi - \theta) - \tan(2\pi - \theta)) \, d\theta \]
\[= \int_{-\pi}^{3\pi} \log(\sec \theta + \tan \theta) \, d\theta \] (2)
Adding equations (1) and (2), we get
\[2I = \int_{-\pi}^{3\pi} \log(|\sec \theta - \tan \theta|)(\sec \theta + \tan \theta) \, d\theta \]
\[= \int_{-\pi}^{3\pi} \log(1) \, d\theta = \int_{-\pi}^{3\pi} 0 \, d\theta = 0 \Rightarrow I = 0 \]

Example 8.24 Evaluate \(\int_{-\pi}^{\pi} \frac{x \sin x \, dx}{e^x + 1} \).

Sol. Let \(I = \int_{-\pi}^{\pi} \frac{x \sin x \, dx}{e^x + 1} \) (1)
Using property IV, we replace \(x \) by \(0 - x \) or \(-x \)
\[\Rightarrow I = \int_{-\pi}^{\pi} \frac{(-x) \sin(-x) \, dx}{e^{-x} + 1} = \int_{-\pi}^{\pi} \frac{e^{-x} \sin x \, dx}{e^{-x} + 1} \] (2)
Adding equations (1) and (2), we get \(2I = \int_{-\pi}^{\pi} x \sin x \, dx \)
or \(I = \int_{-\pi}^{\pi} x \sin x \, dx \)
\[\Rightarrow I = \int_{-\pi}^{\pi} (\pi - x) \sin(x - x) \, dx = \int_{-\pi}^{\pi} \pi \sin x \, dx - I \Rightarrow I = \pi \]

Example 8.25 Evaluate \(\int_{0}^{\pi/2} \frac{1}{x + \sqrt{(a^2 - x^2)} \, dx} \) or \(\int_{0}^{\pi/2} \frac{d\theta}{1 + \tan \theta} \).

Sol. Putting \(x = a \sin \theta \), we get \(dx = a \cos \theta \, d\theta \),
when \(x = 0 \Rightarrow \sin \theta = 0 \), \(\theta = 0 \)
when \(x = a \Rightarrow \sin \theta = 1 \), \(\theta = \frac{\pi}{2} \).
The given integral
\[I = \int_{0}^{\pi/2} \frac{\cos \theta \, d\theta}{\sin \theta + \cos \theta} \] (1)
Now using Property IV, we get
\[I = \int_{0}^{\pi/2} \frac{\sin \left(\frac{1}{2} \pi - \theta \right) \, d\theta}{\cos \left(\frac{1}{2} \pi - \theta \right) + \cos \left(\frac{1}{2} \pi - \theta \right)} \] (or)
\[I = \int_{0}^{\pi/2} \frac{\sin \theta \, d\theta}{\cos \theta + \sin \theta} \] (2)
Adding equations (1) and (2), we get
2I = \int_0^{\pi/2} \frac{\sin x + \cos x}{\sin x + \cos x} \, dx = \int_0^{\pi/2} \, dx
or 2I = \left[\frac{\sin x}{x} \right]_0^{\pi/2} = \pi/2
\therefore I = \pi/4

Example 8.26
Evaluate \(\int_0^{\pi/2} \frac{\sin^2 x \, dx}{\sin x + \cos x} \). (1)

Sol. Let \(I = \int_0^{\pi/2} \frac{\sin^2 x \, dx}{\sin x + \cos x} \).

Using property IV, we have

\[
I = \int_0^{\pi/2} \frac{\sin^2 \left(\frac{\pi}{2} - x \right) \, dx}{\sin \left(\frac{\pi}{2} - x \right) + \cos \left(\frac{\pi}{2} - x \right)}, \quad \text{or} \]

\[
I = \int_0^{\pi/2} \frac{\cos^2 x \, dx}{\cos x + \sin x}
\]

Now adding equations (1) and (2), we get

\[
2I = \int_0^{\pi/2} \frac{\sin^2 x + \cos^2 x}{\sin x + \cos x} \, dx
\]

or \(I = \frac{1}{2} \int_0^{\pi/2} \frac{dx}{\sin x + \cos x} \)

\[
= \left(\frac{1}{2\sqrt{2}} \right) \int_0^{\pi/2} \sec \left(x + \frac{\pi}{4} \right) \, dx
\]

\[
= \left(\frac{1}{2\sqrt{2}} \right) \left[\log \left(\frac{\sin \left(x + \frac{\pi}{4} \right) - \cot \left(x + \frac{\pi}{4} \right) \, dx \right) \right]_0^{\pi/2}
\]

\[
= \left(\frac{1}{2\sqrt{2}} \right) \left[\log \left(\frac{\sin \left(\frac{\pi}{4} \right) + \tan \left(\frac{\pi}{4} \right) - \log \left(\sqrt{2} - 1 \right) \right) \right]_0^{\pi/2}
\]

\[
= \left(\frac{1}{2\sqrt{2}} \right) \left[\log \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right) \right] _0^{\pi/2}
\]

\[
= \left(\frac{1}{2\sqrt{2}} \right) \log \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right)
\]

Example 8.28
Evaluate \(\int_0^1 \frac{dx}{(5 + 2x - 2x^2)(1 + e^{2-4x})} \). (1)

Sol. Let \(I = \int_0^1 \frac{dx}{(5 + 2x - 2x^2)(1 + e^{2-4x})} \).

Also, \(I = \int_0^1 \frac{dx}{5 + 2(1 - x) - 2(1 - x)^2} \left[1 + e^{2-4(1-x)} \right] \)

\[
= \int_0^1 \frac{dx}{(5 + 2x - 2x^2)(1 + e^{2-4x})}
\]

\[
= \int_0^1 \frac{dx}{5 + 2x - 2x^2}(e^{2-4x} + 1)
\]

Adding equations (1) and (2), we get

\[
2I = \int_0^1 \frac{1 + e^{2-4x} \, dx}{5 + 2x - 2x^2}
\]

\[
= \int_0^1 \frac{dx}{2 + 5 - 2(x - \frac{1}{2})^2}
\]

\[
= \frac{1}{2} \int_0^1 \frac{dx}{\left(\frac{1}{4} - \left(x - \frac{1}{2} \right)^2 \right)}
\]

\[
= \frac{1}{4\sqrt{11}/2} \left[\log \left(\frac{\sqrt{11} + 1}{\sqrt{11} - 1} \right) \right]_0^1
\]

\[
= \frac{1}{2\sqrt{11}} \left[2 \log \left(\frac{\sqrt{11} + 1}{\sqrt{11} - 1} \right) \right]
\]

\[
= \frac{1}{\sqrt{11}} \log \left(\frac{\sqrt{11} + 1}{\sqrt{11} - 1} \right)
\]

\[
= \frac{1}{\sqrt{11}} \log \left(\frac{\sqrt{11} + 1}{\sqrt{11} - 1} \right)
\]
Example 8.30 Evaluate \[\int_0^{4\pi} \frac{dx}{\cos^2 x(2 + \tan^2 x)} \]

Sol. \[\int_0^{4\pi} \frac{dx}{\cos^2 x(2 + \tan^2 x)} = \frac{1}{2} \int_0^{2\pi} \frac{2\sec^2 x \, dx}{2 + \tan^2 x} \]
\[= \frac{1}{2} \int_0^{2\pi} \sec^2 x \, dx \]
\[= 2 \int_0^{\pi/2} \sec^2 x \, dx = 2 \left(\left. \tan x \right|_0^{\pi/2} \right) \]
\[= 2 \left(\tan \frac{\pi}{2} - \tan 0 \right) = 2\sqrt{2} \pi \]

Property V

\[\int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(2a - x) \, dx \]

Proof:

\[\int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(2a - x) \, dx \]
Put \(x = 2a - t \) in second integral on R.H.S.
Therefore, \(dx = -dt \)
When \(x = a \Rightarrow t = a \)
\[x = 2a \Rightarrow t = 0 \]
Then
\[\int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(2a - t)(-dt) \]
\[= \int_0^a f(x) \, dx + \int_0^a f(2a - t) \, dt \]
\[= \int_0^a f(x) \, dx + \int_0^a f(2a - x) \, dx \]

Important Result

\[\int_0^{\pi/2} \log \sin x \, dx = \int_0^{\pi/2} \log \cos x \, dx = \frac{1}{2} \pi \log \left(\frac{1}{2} \right) \]

Proof:

Let \(I = \int_0^{\pi/2} \log \sin x \, dx \)
By using property IV, we have
\[I = \int_0^{\pi/2} \log \sin \left(\frac{\pi}{2} - x \right) \, dx \]
\[= \int_0^{\pi/2} \log \cos x \, dx \]
(1)

Adding equations (1) and (2), we get
\[2I = \int_0^{\pi/2} \log \sin x + \log \cos x \, dx \]
\[= \int_0^{\pi/2} \log (\sin x \cos x) \, dx \]
\[= \int_0^{\pi/2} \log \left(\frac{\sin 2x}{2} \right) \, dx \]
\[= \int_0^{\pi/2} \log 2 \sin 2x \, dx - \int_0^{\pi/2} \log 2 \, dx \]
\[= \frac{1}{2} \left(\int_0^{\pi/2} \log 2 \sin 2x \, dx - \log 2 \right) \]
\[= \frac{\pi}{2} \log \sin 2x - \log 2 \left(\frac{\pi}{2} \right) \]
\[= \frac{1}{2} \pi \log \sin \frac{\pi}{2} \]

[Putting \(2x = t \), \(dx = \frac{1}{2} \, dt \)]

\[= \frac{1}{2} \int_0^{\pi/2} \log \sin t \, dt - \frac{\pi}{2} \log 2 \] (by property V)

or \(2I = \int_0^{\pi/2} \log \sin x \, dx - \frac{\pi}{2} \log 2 \) (by property I)

Hence, \(I = \int_0^{\pi/2} \log \sin x \, dx = -\frac{\pi}{2} \log 2 \)
\[= \frac{1}{2} \pi \log \left(\frac{1}{2} \right) \]
8.12 Calculus

Example 8.31 Evaluate \(\int_0^\pi x \log \sin x \, dx \).

Sol. Let \(I = \int_0^\pi x \log \sin x \, dx \) (1) Now using property IV, we have

\[
I = \int_0^\pi (\pi - x) \log \sin (\pi - x) \, dx
\]

\[
\Rightarrow I = \int_0^\pi (\pi - x) \log \sin x \, dx
\] (2)

Adding equations (1) and (2), we get \(2I = \pi \int_0^\pi \log \sin x \, dx \)

\[
\Rightarrow 2I = 2\pi \int_0^{\pi/2} \log \sin x \, dx \quad \text{(by Property V)}
\]

\[
\Rightarrow I = \pi \int_0^{\pi/2} \log x
\]

\[
= \pi \left(\frac{1}{2} \pi \log (1/2) \right) = \frac{1}{2} \pi^2 \log (1/2)
\]

Example 8.32 Evaluate \(\int_{\pi/4}^{3\pi/4} \log(\sin x + \cos x) \, dx \).

Sol. Let \(I = \int_{\pi/4}^{3\pi/4} \log \left(\sqrt{2} \sin (x + \frac{\pi}{4}) \right) \, dx \)

Putting \(x + \frac{\pi}{4} = \theta \), \(dx = d\theta \)

\[
I = \int_{\pi/4}^{3\pi/4} \log \left(\sqrt{2} \sin \theta \right) \, d\theta
\]

\[
= \frac{1}{2} \int_{\pi/4}^{3\pi/4} \log 2 \, d\theta + \int_{\pi/4}^{3\pi/4} \log \sin \theta \, d\theta
\]

\[
= \left(\frac{1}{4} \pi \log 2 \right) - \frac{1}{2} \pi \log 2
\]

\[
= -\frac{1}{4} \pi \log 2
\]

Example 8.33 Evaluate \(\int_0^{\pi/2} x \cot x \, dx \).

Sol. Integrating by parts, taking \(\cot x \) as second function, given becomes

\[
I = [x \log \sin x]_0^{\pi/2} - \int_0^{\pi/2} \log \sin x \, dx
\]

\[
= 0 - \lim_{x \to 0} (x \log \sin x) - \int_0^{\pi/2} \log \sin x \, dx = -\frac{1}{2} \pi \log 2
\]

as \(\lim_{x \to 0} x \log \sin x = \lim_{x \to 0} \left(\frac{\log \sin x}{1/x} \right) \)

\[
= \lim_{x \to 0} \left(\frac{\cot x}{-1/x^2} \right)
\]

\[
= \lim_{x \to 0} \left(-x \frac{\tan x}{\tan x} \right) = 0 \times 1 = 0
\]

Example 8.34 Evaluate \(\int_0^\pi \log(x+1/x) \int_{1+x^2} dx \).

Sol. Putting \(x = \tan \theta \), \(dx = \sec^2 \theta \, d\theta \), given integral

\[
I = \int_0^{\pi/2} \log(\tan \theta + \cot \theta) \sec^2 \theta \, d\theta
\]

\[
= \int_0^{\pi/2} \log(\sin \theta \cos \theta + \cos \theta \sin \theta) \, d\theta
\]

\[
= \int_0^{\pi/2} \log \left\{ 1/\sin \theta \cos \theta \right\} \, d\theta
\]

\[
= -\int_0^{\pi/2} \log \sin \theta \cos \theta \, d\theta - \int_0^{\pi/2} \log \cos \theta \, d\theta
\]

\[
= -2 \left(-\frac{1}{2} \pi \log 2 \right) = \pi \log 2
\]

Property VI

\[
\int_0^{2a} f(x) \, dx = \int_a^{2a} f(x) \, dx
\]

Proof: R.H.S. = \(\int_0^{2a} f(x) \, dx = \int_0^a f(a-x) \, dx + \int_a^{2a} f(a+x) \, dx \)

\[
= \int_0^a f(a-x) \, dx + \int_0^a f(a+x) \, dx
\]

\[
= \int_0^a f(a-x) \, dx + \int_0^a f(x) \, dx \quad \text{[in second integral replace } x \text{ by } x]\)
\]

\[
= \int_0^a f(x) \, dx + \int_0^a f(x) \, dx
\]

\[
= 2a f(x) \, dx = \text{L.H.S.}
\]

Property VII

\[
\int_0^b f(x) \, dx = \int_0^b f((b-a)x + a) \, dx
\]

Proof:

R.H.S. = \((b-a) \int_0^1 f((b-a)x + a) \, dx \)

Let \((b-a)x + a = t \Rightarrow dx = \frac{dt}{b-a} \). Also when \(x = 0 \), then \(t = a \) and when \(x = 1 \) then \(t = b \)

Therefore, R.H.S. = \((b-a) \int_a^b f(t) \frac{dt}{b-a} = \int_a^b f(t) \, dt \)

Concept Application: Exercise 8.3

1. If \(f(a+b-x) = f(x) \), then prove that

\[
\int_a^b x \, f(x) \, dx = \frac{a+b}{2} \int_a^b f(x) \, dx.
\]

2. Find the value of the integral \(\int_0^6 \sqrt{9 - x + \sqrt{x}} \, dx \).

3. Find the value of \(\int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sin x + \sqrt{\cos x}} \, dx \).
4. Find the value of \(\int_{0}^{1} \frac{1}{\sqrt{2x^2 - 3x^2 - x + 1}} \, dx. \)

5. Find the value of \(\int_{0}^{1} x(1-x)^n \, dx. \)

6. If a continuous function \(f \) on \([0, a]\) satisfies \(f(a-x) = 1, a > 0 \), then find the value of \(\int_{0}^{a} \frac{dx}{1 + f(x)}. \)

7. Find the value of \(\int_{0}^{\pi/2} \sin 2x \log \tan x \, dx. \)

8. Find the value of \(\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^2} \, dx, a > 0. \)

9. Find the value of \(\int_{0}^{\pi} x \sin x \, dx \).

10. If \(I_1 = \int_{0}^{\pi} xf(\sin^2 x + \cos^2 x) \, dx \) and \(I_2 = \int_{0}^{\pi/2} f(\sin^2 x + \cos^2 x) \, dx \), then relate \(I_1 \) and \(I_2. \)

11. Find the value of the integral \(\int_{0}^{\pi} \log(1 + \cos x) \, dx. \)

12. Find the value of \(\int_{0}^{1} (\sin^{-1} x)/x \, dx. \)

Graphical Method

![Graphical Method](attachment:image.png)

DEFINITE INTEGRATION OF ODD AND EVEN FUNCTIONS

Property I

\[
\int_{-a}^{a} f(x) \, dx = \begin{cases}
0 & \text{if } f(x) \text{ is odd, i.e., } f(-x) = -f(x) \\
2 \int_{0}^{a} f(x) \, dx & \text{if } f(x) \text{ is even, i.e., } f(-x) = f(x)
\end{cases}
\]

Proof: Analytical Method

\[
\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx \\
\text{Put } x = -t \text{ in 1st term on R.H.S. Therefore, } dx = -dt \text{ when } x = -a \Rightarrow t = a, x = 0 \Rightarrow t = 0 \\
\Rightarrow \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(-t)(-dt) + \int_{0}^{a} f(x) \, dx \\
= \int_{0}^{a} f(-t) dt + \int_{0}^{a} f(x) \, dx \\
= \int_{0}^{a} f(-x) \, dx + \int_{0}^{a} f(x) \, dx \\
= \begin{cases}
-\int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx & \text{if } f(x) \text{ is odd} \\
\int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx & \text{if } f(x) \text{ is even} \\
0 & \text{if } f(x) \text{ is odd} \\
2 \int_{0}^{a} f(x) \, dx & \text{if } f(x) \text{ is even}
\end{cases}
\]

Property II

If \(f(t) \) is an odd function, then \(\phi(x) = \int_{a}^{x} f(t) \, dt \) is an even function.

Proof:

Since \(\phi(x) = \int_{a}^{x} f(t) \, dt \Rightarrow \phi(-x) = \int_{a}^{-x} f(t) \, dt \)

Let \(t = -y \)

Then \(\phi(-x) = \int_{0}^{x} f(-y)(-dy) \)

\[= \int_{0}^{a} f(y) \, dy \] [as given \(f \) is an odd function]

\[= \int_{0}^{a} f(y) \, dy + \int_{a}^{0} f(y) \, dy \]

\[= \int_{0}^{a} f(y) \, dy - \int_{a}^{0} f(y) \, dy \]

\[= \int_{0}^{a} f(y) \, dy \] [as \(f \) is an odd function]
\[0 + \int_{-\pi/2}^{\pi/2} f(\theta) d\theta = \phi(x) \]

Hence, \(\phi(x) \) is an even function.

Example 8.35 Evaluate \(\int_{-\pi/2}^{\pi/2} \log\left(\frac{a - \sin \theta}{a + \sin \theta}\right) d\theta, a > 0. \)

Sol.
\[
f(\theta) = \log\left(\frac{a - \sin \theta}{a + \sin \theta}\right)
\]
\[\Rightarrow f(-\theta) = \log\left(\frac{a + \sin \theta}{a - \sin \theta}\right) = -\log\left(\frac{a - \sin \theta}{a + \sin \theta}\right)
\]
\[= -f(\theta)\]
Hence, the integrand is an odd function.
So, the given integral is zero.

Example 8.36 Evaluate
\[
\int_{-\pi/2}^{\pi/2} \log\left(\frac{ax^2 + bx + c}{ax^2 - bx + c}\right) (a + b) |\sin x| dx.
\]

Sol.
\[
I = \int_{-\pi/2}^{\pi/2} \log\left(\frac{ax^2 + bx + c}{ax^2 - bx + c}\right) (a + b) |\sin x| dx
\]
\[= \int_{-\pi/2}^{\pi/2} \log\left(\frac{ax^2 + bx + c}{ax^2 - bx + c}\right) dx + \int_{-\pi/2}^{\pi/2} \log (a + b) dx
\]
\[+ \int_{-\pi/2}^{\pi/2} \log |\sin x| dx
\]
\[= I_1 + I_2 + I_3
\]
(1)

Now let, \(f(x) = \log\left(\frac{ax^2 + bx + c}{ax^2 - bx + c}\right) \)
\[\Rightarrow f(-x) = \log\left(\frac{b^2 - x^2}{b^2 + x^2}\right) = -f(x)
\]
\[\therefore I_1 = \int_{-\pi/2}^{\pi/2} f(x) dx = 0
\]
\[I_2 = (a + b) \int_{-\pi/2}^{\pi/2} \log (a + b) dx = \pi (a + b)
\]
\[I_3 = \int_{-\pi/2}^{\pi/2} \log |\sin x| dx
\]
\[= 2 \int_0^{\pi/2} \log |\sin x| dx
\]
\[= 2 \int_0^{\pi/2} \log \sin x dx
\]
\[= 2 \left(-\frac{1}{2} \pi \log 2\right)
\]
Hence, from equation (1), we have
\[I = 0 + \pi \log (a + b) - \pi \log 2
\]
\[= \pi \log \frac{(a + b)}{2}
\]

Example 8.37 Evaluate \(\int_{-\pi/4}^{\pi/4} \frac{x^9 - 3x^5 + 7x^3 - x + 1}{\cos^2 x} dx. \)

Sol.
\[f(x) = \frac{x^9 - 3x^5 + 7x^3 - x + 1}{\cos^2 x}
\]
\[= \sec^2 x (x^9 - 3x^5 + 7x^3 - x) + \sec^2 x
\]
\[\Rightarrow \int_{-\pi/4}^{\pi/4} f(x) dx = \int_{-\pi/4}^{\pi/4} \sec^2 x dx
\]
\[\left[\because \text{sec}^2 x (x^9 - 3x^5 + 7x^3 - x) \text{ is an odd function}\right]
\]
\[= 2 \int_0^{\pi/4} \sec^2 x dx
\]
\[= 2 \tan x |_{0}^{\pi/4} = 2
\]

Example 8.38 If \(f \) is an odd function, then evaluate
\[I = \int_{-a}^{a} f(\sin x) + f(\cos x) dx.
\]

Sol.
\[\phi(x) = \frac{f(\sin x)}{f(\cos x) + f(\sin^2 x)}
\]
\[\phi(-x) = \frac{f(\sin(-x))}{f(\cos(-x)) + f(\sin^2(-x))}
\]
\[= \frac{f(-\sin x)}{f(\cos x) + f(\sin^2 x)} = \frac{-f(\sin x)}{f(\cos x) + f(\sin^2 x)} - \phi(x)
\]
\[\Rightarrow I = \int_{-a}^{a} \frac{f(\sin x)}{f(\cos x) + f(\sin^2 x)} dx = 0
\]

Example 8.39 Evaluate \(\int_{-1/2}^{1/2} \left[\left(\frac{x+1}{x-1}\right) + \left(\frac{1-x}{x+1}\right) - 2\right]^{1/2} dx. \)

Sol.
Given integral
\[= \int_{-1/2}^{1/2} \left[\left(\frac{x+1}{x-1}\right)^2 - \frac{x-1}{x+1}\right]^{1/2} dx
\]
\[= \int_{-1/2}^{1/2} \left[\frac{x+1}{x-1}\right]^{1/2} \left[\frac{x-1}{x+1}\right]^{1/2} dx
\]
\[= \int_{-1/2}^{1/2} \frac{4x}{x^2 - 1} dx
\]
\[= 2 \int_0^{1/2} \frac{4x}{x^2 - 1} dx
\]
\[= 4 \int_0^{1/2} \frac{x}{x^2 - 1} dx
\]
\[= 4 \left[\ln (1 - x^2)\right]_0^{1/2}
\]
\[= -4 \ln \left(\frac{1}{2}\right) = 4 \ln (4/3)
\]
Evaluate the following:

1. \[\int_{\pi/2}^{\pi} \sin^2 x \cos^2 x (\sin x + \cos x) \, dx \]

2. \[\int_{-\pi}^{\pi} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} \, dx \]

3. \[\int_{-\pi}^{\pi} \sin x \cos^2 x \, dx \]

4. \[\int_{-\pi}^{\pi} \frac{x - x^2}{3 - |x|} \, dx \]

5. \[\int_{-\pi}^{\pi} \sqrt{\cos^2 x - \cos^2 x} \, dx \]

6. \[\int_{-\pi/2}^{\pi/2} \cos x \log \frac{1 - x}{1 + x} \, dx \]

7. \[\int_{-\pi}^{\pi} [(x + \pi)^3 + \cos^2 (x + 3\pi)] \, dx \]

DEFINITE INTEGRATION OF PERIODIC FUNCTIONS

Property I

\[\int_{0}^{nT} f(x) \, dx = n \int_{0}^{T} f(x) \, dx \]

where \(T \) is the period of the function and \(n \in \mathbb{Z} \) (i.e., \(f(x + T) = f(x) \)).

Proof: Analytical Method

\[\int_{0}^{nT} f(x) \, dx = \int_{0}^{T} f(x) \, dx + \int_{T}^{2T} f(x) \, dx + \ldots + \int_{(n-1)T}^{nT} f(x) \, dx \]

\[= \int_{0}^{T} f(x) \, dx + \int_{T}^{2T} f(x + T) \, dx + \int_{2T}^{3T} f(x + 2T) \, dx + \ldots + \int_{(n-1)T}^{nT} f(x + (n-1)T) \, dx \]

\[= \int_{0}^{T} f(x) \, dx + \int_{0}^{T} f(x) \, dx + \ldots + \int_{0}^{T} f(x) \, dx \]

\[\text{n times} \]

\[\therefore f(x + T) = f(x + 2T) = \ldots = f(x + (n-1)T) \]

\[= n \int_{0}^{T} f(x) \, dx \]

Hence, \[\int_{0}^{nT} f(x) \, dx = n \int_{0}^{T} f(x) \, dx \]

Graphical Method

![Fig. 8.10](image)

Property II

\[\int_{a}^{a+nT} f(x) \, dx = n \int_{0}^{T} f(x) \, dx \]

Proof:

\[I = \int_{a}^{a+nT} f(x) \, dx = \int_{0}^{T} f(x) \, dx + \int_{0}^{T} f(x + T) \, dx + \int_{0}^{T} f(x + 2T) \, dx + \ldots + \int_{0}^{T} f(x + (n-1)T) \, dx \]

In the last integral, put \(x = y + nT \)

\[\Rightarrow \int_{0}^{a+nT} f(x) \, dx = \int_{0}^{a} f(y + nT) \, dy = \int_{0}^{a} f(y) \, dy \]

\[\Rightarrow I = \int_{a}^{0} f(x) \, dx + \int_{0}^{T} f(x) \, dx + \int_{0}^{a} f(y) \, dy \]

\[= n \int_{0}^{T} f(x) \, dx \]

Property III

\[\int_{m}^{n} f(x) \, dx = (n - m) \int_{0}^{T} f(x) \, dx \]

where \(T \) is the period of the function and \(m, n \in \mathbb{Z} \).

Proof:

\[\text{L.H.S.} = \int_{mT}^{nT} f(x) \, dx \]

\[= \int_{0}^{(n-m)T} f(x + mT) \, dx \]

\[= \int_{0}^{(n-m)T} f(x) \, dx \]

\[= (n-m) \int_{0}^{T} f(x) \, dx \]

\[\therefore f(x) \text{ is periodic} \]

Property IV

\[\int_{a + nT}^{b + nT} f(x) \, dx = \int_{a}^{b} f(x) \, dx \]

where \(T \) is the period of the function and \(n \in \mathbb{Z} \).

Proof:

\[\text{L.H.S.} = \int_{a + nT}^{b + nT} f(x) \, dx \]

\[= \int_{a}^{b} f(x + nT) \, dx \]

\[= \int_{a}^{b} f(x) \, dx \]

\[\therefore f(x + nT) = f(x) \]

Example 8.40

Evaluate \[\int_{0}^{\pi/3} |\sin x| \, dx \]

Sol.

\[\int_{0}^{\pi/3} |\sin x| \, dx = \int_{0}^{\pi/3} |\sin x| \, dx + \int_{\pi/3}^{\pi} |\sin x| \, dx \]

\[= \frac{\pi}{3} \int_{0}^{\pi/3} |\sin x| \, dx + \int_{\pi/3}^{\pi} |\sin x| \, dx \]

\[\therefore |\sin x| \text{ is periodic with period } \pi \]
Example 8.41 Evaluate \(\int_{0}^{100} (x-[x])dx \) (where \([\cdot]\) represents the greatest integer function).

Sol. \(x-[x] = \{x\} \) has period 1

\[
\Rightarrow \int_{0}^{100} (x-[x])dx = 100 \int_{0}^{1} \{x\}dx
\]
\[
= 100 \int_{0}^{1} xdx
\]
\[
= \frac{100}{2} [x^2]_{0}^{1} = 50
\]

Example 8.42 Evaluate \(\int_{0}^{n} [x]dx \) (where \([x]\) and \(\{x\}\) are integral and fractional parts of \(x\) and \(n \in \mathbb{N}\)).

Sol. \(I = \int_{0}^{n} [x]dx \)

\[
= \int_{0}^{n} (x-[x])dx
\]
\[
= \int_{0}^{n} xdx - \int_{0}^{n} \{x\}dx
\]
\[
= \left[\frac{x^2}{2}\right]_{0}^{n} - 1
\]
\[
= \frac{n^2}{2} - 1 = \frac{n^2}{2} - 1 = n-1
\]

Example 8.43 Evaluate \(\int_{-\pi/4}^{\pi-\pi/4} |\sin x + \cos x| \, dx \).

Sol.

\[
I = \int_{-\pi/4}^{\pi-\pi/4} |\sin x + \cos x| \, dx
\]
\[
= \int_{-\pi/4}^{\pi/4} \sqrt{2} |\sin(x+\pi/4)| \, dx \quad \text{(multiplying and dividing by } \sqrt{2})
\]
\[
= n \int_{-\pi/4}^{\pi/4} \sqrt{2} |\sin(x+\pi/4)| \, dx \quad \text{(as } |\sin(x+\pi/4)| \text{ is periodic with period } \pi)
\]
\[
= \sqrt{2}n \int_{0}^{\pi/4} |\sin(x+\pi/4)| \, dx
\]
\[
= \sqrt{2}n \left[\int_{0}^{\pi/4} \sin(x+\pi/4) \, dx + \int_{3\pi/4}^{\pi} -\sin(x+\pi/4) \, dx \right]
\]
\[
= 2\sqrt{2}n \left[\sin \left(x + \frac{\pi}{4} \right) > 0 \text{ for } x \in \left(0, \frac{3\pi}{4} \right) \right]
\]

Example 8.44 Let \(f \) be a real, valued function satisfying \(f(x) + f(x+4) = f(x+2) + f(x+6) \).

Prove that \(\int_{x}^{x+8} f(t)dt \) is a constant function.

Sol. Given that \(f(x) + f(x+4) = f(x+2) + f(x+6) \) \hspace{1cm} (1)

Replacing \(x \) by \(x+2 \), we get \(f(x+2) + f(x+6) = f(x+4) + f(x+8) \) \hspace{1cm} (2)

From equations (1) and (2), we get \(f(x) = f(x+8) \) \hspace{1cm} (3)

\[
\Rightarrow \int_{x}^{x+8} f(t)dt = \int_{0}^{8} f(t)dt \Rightarrow g \text{ is a constant function.}
\]

Example 8.45 A periodic function with period \(1\) is integrable over any finite interval. Also for two real numbers \(a, b\) and for two unequal non-zero positive integers \(m\) and \(n\), \(\int_{a}^{a+m} f(x) \, dx = \int_{b}^{b+m} f(x) \, dx \).

Calculate the value of \(\int_{m}^{n} f(x) \, dx \).

Sol. Given \(f(1+x) = f(x) \)

\[
\Rightarrow \int_{a}^{a+m} f(x) \, dx = n \int_{0}^{1} f(x) \, dx \quad (\because f(x) \text{ is periodic})
\]

Similarly, \(\int_{b}^{b+m} f(x) \, dx = m \int_{0}^{1} f(x) \, dx \)

Given \(\int_{a}^{a+n} f(x) \, dx = \int_{b}^{b+n} f(x) \, dx \)

\[
\Rightarrow \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx = 0 \quad \text{(1) (} \because n \neq m \text{)}
\]

\[
\Rightarrow \int_{m}^{n} f(x) \, dx = \int_{0}^{n-m} f(x+m) \, dx = \int_{0}^{n-m} f(x) \, dx \quad (\because f(x) \text{ is periodic})
\]

\[
= (n-m) \int_{0}^{1} f(x) \, dx \quad \text{(Assume } n > m \text{)}
\]

\[
= 0 \quad \text{[from equation (1)]}
\]

Concept Application Exercise 8.5

1. Evaluate \(\int_{0}^{10\pi} (1-\cos 2x) \, dx \).
2. If \(\int_{0}^{\pi} f(\cos^2 x) \, dx = k \int_{0}^{\pi} f(\cos x) \, dx \), then find the value \(k \).
3. Evaluate \(\int_{0}^{\pi/2} (\cos x + | \sin x |) \, dx \), where \(t \in [0, \pi/2] \).
4. Find the value of \(\int_{0}^{10} e^{2x-2x} d(x-[x]) \) (where \([\cdot]\) denotes the greatest integer function).
5. If \(f(x) \) is a function satisfying \(f(x+a) + f(x) = 0 \) for all \(x \in R \) and positive constant \(a \) such that \(\int_{c}^{c+b} f(x) \, dx \) is independent of \(b \), then find the least positive value of \(c \).
LEIBNITZ’S RULE

If \(f \) is a continuous function on \([a, b]\), and \(u(x) \) and \(v(x) \) are differentiable functions of \(x \) whose values lie in \([a, b]\), then

\[
\frac{d}{dx} \left[\int_{u(x)}^{v(x)} f(t) \, dt \right] = f(v(x)) \frac{dv(x)}{dx} - f(u(x)) \frac{du(x)}{dx}.
\]

Proof:

Let \(\frac{d}{dx} F(x) = f(x) \)

\[\Rightarrow \int_{u(x)}^{v(x)} f(t) \, dt = F(v(x)) - F(u(x))\]

\[\Rightarrow \frac{d}{dx} \left[\int_{u(x)}^{v(x)} f(t) \, dt \right] = \frac{d}{dx} \left(F(v(x)) - F(u(x)) \right)\]

\[\Rightarrow \frac{d}{dx} \left[\int_{u(x)}^{v(x)} f(t) \, dt \right] = f'(v(x)) \frac{dv(x)}{dx} - f'(u(x)) \frac{du(x)}{dx}\]

\[\Rightarrow \frac{d}{dx} \left[\int_{u(x)}^{v(x)} f(t) \, dt \right] = f(v(x)) \frac{dv(x)}{dx} - f(u(x)) \frac{du(x)}{dx}\]

Example 8.46 If \(y = \int_{x}^{1} \frac{1}{\log t} \, dt \) (where \(x > 0 \)), then find \(\frac{dy}{dx} \).

Sol.

\[y = \int_{x}^{1} \frac{1}{\log t} \, dt\]

\[\Rightarrow \frac{dy}{dx} = \frac{d}{dx} \left(\frac{x^3}{\log x} \right) - \frac{d}{dx} \left(\frac{x^2}{2 \log x} \right)\]

\[= \frac{3x^2}{\log x} - 2x \frac{1}{2 \log x} = \frac{x(x-1) \log x^{-1}}{\log x} - 2x \log x\]

Example 8.47 If \(\int_{\sin x}^{1} t^2 f(t) \, dt = 1 - \sin x \), where \(x \in \left(0, \frac{\pi}{2} \right) \), then find the value of \(f \left(\frac{1}{\sqrt{3}} \right) \).

Sol.

\[\int_{\sin x}^{1} t^2 f(t) \, dt = 1 - \sin x\]

Differentiating both sides, we get

\[1^2 \cdot f(1) - \sin^2 x \cdot f(\sin x) \cdot \cos x = - \cos x\]

\[\Rightarrow f(\sin x) = \csc^2 x = \frac{1}{\sin^2 x}\]

\[\Rightarrow f(x) = \frac{1}{x^2}, \quad f \left(\frac{1}{\sqrt{3}} \right) = 3\]

Example 8.48 Let \(f: \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function having \(f(2) = 6, f'(2) = \frac{1}{48} \). Then evaluate

\[\lim_{x \to 2} \int_{6}^{x} \frac{4t^3}{x - 2} \, dt.\]

Sol.

\[\lim_{x \to 2} \int_{6}^{x} \frac{4t^3}{x - 2} \, dt = \lim_{a \to 2} \int_{6}^{a} \frac{4t^3}{x - 2} \, dt\]

\[= \lim_{a \to 2} \left[\frac{4t^4}{48} \right]_{6}^{a} \]

\[= \lim_{a \to 2} \left(\frac{a^4}{12} - \frac{6^4}{12} \right) = \frac{4}{12} \]

Example 8.49 Evaluate \(\lim_{x \to \infty} \int_{0}^{x} e^{x^2} \, dx \).

Sol. Since \(e^{x^2} > 0 \), \(e^{x^2} > 0 \) in \([0, x]\), where \(x > 0 \), \[\int_{0}^{x} e^{x^2} \, dx \text{ and } \int_{0}^{x} e^{x^2} \, dx \to \infty \text{ as } x \to \infty.\]

\[L = \lim_{x \to \infty} \frac{\left(\int_{0}^{x} e^{x^2} \, dx \right)^2}{\int_{0}^{x} e^{x^2} \, dx} \]

\[L = \lim_{x \to \infty} \frac{\int_{0}^{x} e^{x^2} \, dx}{e^{x^2}} \]

\[= \lim_{x \to \infty} \frac{e^{x^2}}{2xe^{x}} \]

\[= \lim_{x \to \infty} \frac{1}{2x} = 0\]

Example 8.50 If \(\int_{0}^{x} \cos^2 t \, dt = \int_{0}^{x} \sin t \, dt \), then prove that \(\frac{dy}{dx} = \frac{2 \sin x^2}{x \cos y^2}. \)

Sol.

Given that \(\int_{0}^{x} \cos^2 t \, dt = \int_{0}^{x} \sin t \, dt \)

Differentiating w.r.t. \(x \), we get

\[\cos x^2 \frac{dy}{dx} = \frac{\sin x^2}{x^2} \]

\[\Rightarrow \frac{dy}{dx} = \frac{2 \sin x^2}{x \cos y^2}\]

Example 8.51 If \(x = \int_{0}^{y} \frac{dt}{\sqrt{1+9t^2}} \) and \(\frac{d^2y}{dx^2} = ay \), then find \(a \).

Sol.

\[x = \int_{0}^{y} \frac{dt}{\sqrt{1+9t^2}}\]

\[a = \frac{d^2y}{dx^2} = \frac{d^2}{dx^2} \left(\int_{0}^{y} \frac{dt}{\sqrt{1+9t^2}} \right)\]

\[= \frac{d}{dx} \left(\int_{0}^{y} \frac{dt}{\sqrt{1+9t^2}} \right) = \frac{1}{\sqrt{1+9y^2}} \cdot 9y = \frac{9y}{\sqrt{1+9y^2}}\]
Differentiate \(\frac{dx}{dy} \), we get

\[\frac{dx}{dy} = \frac{1}{\sqrt{1+9y^2}} \]

\[\frac{dy}{dx} = \sqrt{1+9y^2} \]

\[\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\sqrt{1+9y^2} \right) = \frac{dy}{dx} \cdot \frac{18y}{2\sqrt{1+9y^2}} = 9y \]

\[\Rightarrow a = 9 \]

Example 8.52 Prove that \(y = \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \sin^{-1} \sqrt{t} \ dt \)

\[+ \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \cos^{-1} \sqrt{t} \ dt, \quad \text{where } 0 \leq t \leq \frac{\pi}{2}, \]

is the equation of a straight line parallel to the x-axis. Find its equation.

Sol. Here, we have to prove that \(y = \) constant or derivative of \(y \) w.r.t. \(x \) is zero.

\[y = \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \sin^{-1} \sqrt{t} \ dt + \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \cos^{-1} \sqrt{t} \ dt \]

\[\frac{dy}{dx} = \sin^{-1} \sqrt{2} \sin x + \cos^{-1} \sqrt{2} \cos x \]

\[= 2x \sin x \cos x - 2x \sin x \cos x \]

\[= 0 \text{ for all } x \]

Therefore, the curve in equation (1) is a straight line parallel to the x-axis.

Now, since \(y \) is constant, it is independent of \(x \). So let's select \(x = \frac{\pi}{4} \).

\[\Rightarrow y = \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \sin^{-1} \sqrt{t} \ dt + \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \cos^{-1} \sqrt{t} \ dt \]

\[= \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \left(\sin^{-1} \sqrt{t} + \cos^{-1} \sqrt{t} \right) \ dt \]

\[= \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \sqrt{2} \ dt \]

\[= \frac{\pi}{2} \left[1 - \frac{1}{2} \right] = \frac{3\pi}{16} \]

Therefore, equation of the line is \(y = \frac{3\pi}{16} \).

Example 8.53 Let \(f : (0, \infty) \rightarrow (0, \infty) \) be a differentiable function satisfying, \(\int_0^x (1-t)f(t)dt = \frac{x}{2} f'(t)dt \forall x \in \mathbb{R}^+ \) and \(f(1) = 1 \). Determine \(f(x) \).

Sol. We have \(\int_0^x (1-t)f(t)dt = \frac{x}{2} f'(t)dt \)

Differentiating both sides w.r.t. \(x \), we get

\[\Rightarrow \int_0^x (1-t)f(t)dt + \frac{x}{2} f'(t)dt = \left(\frac{x}{2} + \frac{x}{2} \right) f'(t)dt \]

\[= x(1-x)f(x) + \frac{x}{2} f(t)dt = xf(x) \]

\[\Rightarrow x^2 f(x) = \frac{x}{2} f(t)dt \]

Differentiating both sides w.r.t. \(x \), again, we get

\[x^2 f'(x) + 2xf(x) = (1-x)f(x) \]

\[\Rightarrow \frac{f'(x)}{f(x)} = \frac{1-3x}{x^2} \]

\[\Rightarrow \int \frac{f'(x)}{f(x)} dx = \int \frac{1-3x}{x^2} dx \]

\[\Rightarrow \log f(x) = -\frac{1}{x} - 3 \log x + \log c \]

\[\Rightarrow \log \left(\frac{f(x)}{c} \right) = -\frac{1}{x} - 3 \log x \]

Given \(f(1) = 1 \) \(\Rightarrow \log \left(\frac{1}{c} \right) = -1 \Rightarrow c = e \)

\[\Rightarrow \log \left(\frac{f(x)}{e} \right) = -\frac{1}{x} \]

\[\Rightarrow f(x) = e^{-x^2} \]

Example 8.54 If \(y = \int_0^x f(t) \sin \{k(x-t)\} \ dt \), then prove that

\[\frac{d^2 y}{dx^2} = k^2 y = k f(x) \]

Sol. Since \(y = \int_0^x f(t) \sin \{k(x-t)\} \ dt \)

\[= \int_0^x f(t) \sin kx \cos kt - \sin kt \cos kx \ dt \]

\[= \sin kx \int_0^x f(t) \cos kt \ dt - \cos kx \int_0^x f(t) \sin kt \ dt \]

\[\Rightarrow \frac{dy}{dx} = k \cos kx \int_0^x f(t) \cos kt \ dt + \sin kx \int_0^x f(t) \sin kt \ dt \]

\[+ k \sin kx \int_0^x f(t) \cos kt \ dt - \cos kx \int_0^x f(t) \sin kt \ dt \]

\[= k \cos kx \int_0^x f(t) \cos kt \ dt + k \sin kx \int_0^x f(t) \sin kt \ dt \]

Again differentiating equation (2) w.r.t. \(x \), we get

\[\Rightarrow \frac{d^2 y}{dx^2} = -k^2 \sin kx \int_0^x f(t) \cos kt \ dt + k \cos kx f(x) \]

\[\cos kx \int_0^x f(t) \sin kt \ dt + k^2 \cos kx \int_0^x f(t) \sin kt \ dt \]

\[= -k^2 y + k f(x) \]

\[\Rightarrow \frac{d^2 y}{dx^2} + k^2 y = k f(x) \]
Example 8.55 Prove that $0 < \int_0^1 \frac{x^7}{\sqrt{1 + x^5}} \, dx < \frac{1}{8}$

Sol. Since $0 < \frac{x^7}{\sqrt{1 + x^5}} < x^7$ for $0 < x < 1$,

\[
\int_0^1 \frac{x^7}{\sqrt{1 + x^5}} \, dx < \int_0^1 x^7 \, dx < \int_0^1 x^7 \, dx
\]

Hence, $0 < \int_0^1 \frac{x^7}{\sqrt{1 + x^5}} \, dx < \frac{1}{8}$

Example 8.56 Prove that $\frac{1}{2} \leq \int_0^{1/2} \frac{dx}{\sqrt{1-x^{2n}}} \leq \frac{\pi}{6}$ for $n \geq 1$.

Sol. For $n \geq 1$ and $-1 \leq x \leq 1$, we have

\[
1 \geq \sqrt{1-x^{2n}} \geq 1-x^2
\]

\[
\Rightarrow \int_0^{1/2} \frac{dx}{\sqrt{1-x^{2n}}} \leq \int_0^{1/2} \frac{dx}{\sqrt{1-x^2}} = [\sin^{-1} x]_0^{1/2}
\]

\[
\Rightarrow \frac{1}{2} \leq \int_0^{1/2} \frac{dx}{\sqrt{1-x^{2n}}} \leq \int_0^{1/2} \frac{dx}{\sqrt{1-x^2}} = \frac{\pi}{6}
\]

Property II

If m is the least value (global minimum) and M is the greatest value (global maximum) of the function $f(x)$ on the interval $[a, b]$, then the estimation of an integral, then

\[
m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a)
\]

Proof: Analytical Method

It is given that $m \leq f(x) \leq M$, then

\[
\int_a^b m \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b M \, dx
\]

\[
\Rightarrow m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a)
\]

Graphical Method

It is clear from the Fig. 8.11,

Area of curvilinear trapezoid $aAFb \leq$ Area of curvilinear trapezoid $aBEb \leq$ Area of curvilinear trapezoid $aCDb$

i.e., $\int_a^b g(x) \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b h(x) \, dx$.

![Fig. 8.11](image)

It is clear from the Fig. 8.12,

Area of $ABB'A' \leq \int_a^b f(x) \, dx \leq$ Area of $ABB''A''$

i.e., $m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a)$

![Fig. 8.12](image)
Example 8.57: Prove that \(1 < \int_0^2 \left(\frac{5 - x}{9 - x^2} \right) dx < \frac{6}{5}\).

Sol. Let \(f(x) = \frac{5 - x}{9 - x^2}\).

\[f'(x) = -\frac{(x - 9)(x - 1)}{(9 - x^2)^2}\]

For \(f'(x) = 0\), we have \(x = 1\) as \(x \in [0, 2]\).

Now \(f(0) = \frac{5}{9}\), \(f(1) = \frac{4}{9}\), \(f(2) = \frac{3}{5}\).

Therefore, the greatest and the least values of the integrand in the interval \([0, 2]\) are, respectively, equal to \(f(2) = \frac{3}{5}\) and \(f(1) = \frac{4}{9}\).

Hence, \(\int_0^2 \left(\frac{5 - x}{9 - x^2} \right) dx < (2 - 0) \cdot \frac{3}{5}\), or \(1 < \int_0^2 \left(\frac{5 - x}{9 - x^2} \right) dx < \frac{6}{5}\).

Property III

\[\int_a^b f(x) \, dx \leq \int_a^b |f(x)| \, dx\]

Proof:

Obviously, \(-|f(x)| \leq f(x) \leq |f(x)|, \forall x \in [a, b]\)

\[\Rightarrow \int_a^b -|f(x)| \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b |f(x)| \, dx\]

or \(-\int_a^b |f(x)| \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b |f(x)| \, dx\]

or \(\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx\)

Example 8.59: Prove that \(\int_0^1 \sqrt{1 + x}(1 + x^3) \, dx\) cannot exceed \(\frac{\sqrt{15}}{8}\).

Sol.

\[\int_0^1 \sqrt{1 + x}(1 + x^3) \, dx \leq \sqrt{\left(\int_0^1 (1 + x) \, dx \right) \left(\int_0^1 (1 + x^3) \, dx \right)}\]

\[= \sqrt{\left(1 + \frac{x^2}{2} \right) \left(1 + \frac{x^4}{4} \right)}\]

\[= \sqrt{\frac{3}{2} \cdot \frac{5}{4}}\]

\[= \frac{\sqrt{15}}{8}\]

Example 8.60: Estimate the absolute value of the integral

\[\int_{10}^{19} \sin x \quad dx \frac{x}{1 + x^8} \]

Sol. Since \(|\sin x| \leq 1\) for \(x \geq 10\), then \(\left| \frac{\sin x}{1 + x^8} \right| \leq \frac{1}{|1 + x^8|} (1)\)

But \(10 \leq x \leq 19 \Rightarrow 1 + x^8 > x^8 \geq 10^8\)

\[\Rightarrow \frac{1}{1 + x^8} < \frac{1}{x^8} \leq \frac{1}{10^8}\]

\[\Rightarrow \frac{1}{|1 + x^8|} \leq \frac{1}{10^8}\] (2)

From equations (1) and (2), we get \(\left| \frac{\sin x}{1 + x^8} \right| \leq 10^{-8}\)

Then \(\int_{10}^{19} \sin x \frac{x}{1 + x^8} \, dx \leq (19 - 10) \times 10^{-8}\)

\[= 9 \times 10^{-8} = (10 - 1) \times 10^{-8}\]

\[= 10^{-7} - 10^{-8} < 10^{-7}\]

Hence, \(\left| \int_{10}^{19} \sin x \frac{x}{1 + x^8} \, dx \right| < 10^{-7}\)

Therefore, the approximate value of the integral = \(10^{-8}\).
MISCELLANEOUS SOLVED PROBLEMS

1. Evaluate \(\int_0^{10} \tan^{-1} x \, dx \), where \([x]\) represents greatest integer function.

\[\text{Sol.} \quad \text{Here } y = \tan^{-1} x \text{ is a monotonic function, so the analytical method is advisable.} \]

We have

\[
\begin{align*}
0 < \tan^{-1} x &< 1; & \text{when } 0 < x < \tan 1 \\
1 < \tan^{-1} x &< \frac{\pi}{2}; & \text{when } \tan 1 < x < 10\pi
\end{align*}
\]

\[\therefore I = \int_0^{10} \tan^{-1} x \, dx = \int_0^{\tan^{-1} 1} 0 \, dx + \int_{\tan^{-1} 1}^{10\pi} 1 \, dx \\
= 10\pi - \tan^{-1} 1 \]

2. Evaluate \(\int_0^\infty [2e^{-x}] \, dx \), where \([x]\) represents greatest integer function.

\[\text{Sol.} \quad f(x) = 2e^{-x} \text{ is decreasing for } x \in [0, \infty). \]

Also, when \(x = 0, 2e^{-x} = 2, \)
and when \(x \to \infty, 2e^{-x} \to 0. \)
Thus, \([2e^{-x}]\) is discontinuous when \(2e^{-x} = 1 \text{ or } x = \log 2.\)
Also, for \(x > \ln 2, [2e^{-x}] = 0\)
and for \(0 < x < \log 2, \) we have \(0 < x < 1.\)

\[\Rightarrow \int_0^\infty [2e^{-x}] \, dx = \int_0^{\ln 2} [2e^{-x}] \, dx + \int_{\ln 2}^\infty [2e^{-x}] \, dx \\
= \int_0^{\ln 2} 1 \, dx + \int_{\ln 2}^0 0 \, dx = (x)_{x=\ln 2} = \ln 2 \]

\[\Rightarrow \int_0^\infty [2e^{-x}] \, dx = \ln 2 \]

3. Evaluate \(\int_0^{5\pi/12} \tan x \, dx \), where \([x]\) denotes the greatest integer function.

\[\text{Sol.} \quad \text{Let } I = \int_0^{5\pi/12} \tan x \, dx. \]

Here, \(y = \tan x \) is a monotonically increasing function.

Also, when \(x = 0, \tan x = 0 \) and when \(x = \frac{5\pi}{12}, \tan x = 2 + \sqrt{3}. \)
Hence, \([\tan x]\) is discontinuous when \(\tan x = 1, \tan x = 2, \tan x = 3. \)
\[\Rightarrow x = \tan^{-1} 1, x = \tan^{-1} 2, x = \tan^{-1} 3 \]

\[\therefore I = \int_0^{\tan^{-1} 1} \tan x \, dx + \int_{\tan^{-1} 1}^{\tan^{-1} 2} \tan x \, dx + \int_{\tan^{-1} 2}^{\tan^{-1} 3} \tan x \, dx \\
= \int_0^{\tan^{-1} 1} 1 \, dx + \int_{\tan^{-1} 1}^{\tan^{-1} 2} 1 \, dx + \int_{\tan^{-1} 2}^{\tan^{-1} 3} 1 \, dx \\
= \tan^{-1} 1 \cdot 1 + \tan^{-1} 2 \cdot 1 + \tan^{-1} 3 \cdot 1 \\
= \frac{5\pi}{12} \]

4. Evaluate \(\int_0^\infty \left[x^2 - x + 1 \right] \, dx \), where \([\cdot]\) denotes the greatest integer function.

\[\text{Sol.} \quad \text{Here } f(x) = x^2 - x + 1 \text{ is a non-monotonic function.} \]

Such problems should be solved by graphical method.
Now, \(g(x) = (x^2 - x + 1), \forall x \in [0, 2] \) could be plotted as shown in Fig 8.13.

![Fig. 8.13](image)

\[\therefore I = \int_0^2 \left[x^2 - x + 1 \right] \, dx \\
= \int_0^1 0 \, dx + \int_{1+\sqrt{5}/2}^{1+\sqrt{5}/2} 1 \, dx + \int_{1+\sqrt{5}/2}^2 2 \, dx \\
= \left(1 + \frac{\sqrt{5}}{2} - 1 \right) + 2 \left(2 - \frac{1 + \sqrt{5}}{2} \right) \\
= \frac{5 - \sqrt{5}}{2} \]

5. Evaluate \(\int_0^{2\pi} \sin x \, dx \), where \([\cdot]\) denotes the greatest integer function.

\[\text{Sol.} \quad y = \sin x \text{ is a non-monotonic function in } [0, 2\pi]. \]

Hence, draw the graph of \(f(x) = [\sin x] \).

![Fig. 8.14](image)
From the graph given in Fig. 8.14,
\[\int_0^{2\pi} [\sin x] \, dx = \text{Algebraic area of the shaded region} \]
\[= \pi (\pi - 1) \]
\[= -\pi \]

Note:
Students are advised to remember this value. Also, we can prove that
\[\int_0^{\pi} [\cos x] \, dx = -\pi \]

6. Evaluate \[\int_0^x [\cos t] \, dt \], where \(n \in \left(2\pi, (4n + 1) \frac{\pi}{2} \right) \),
\(n \in \mathbb{N} \) and \([.]\) denotes the greatest integer function.

Sol. Let
\[I = \int_0^x [\cos t] \, dt \]
\[= \int_0^{2\pi} [\cos t] \, dt + \int_{2\pi}^x [\cos t] \, dt \]
\[= n\int_0^{2\pi} [\cos t] \, dt + \int_{2\pi}^x [\cos t] \, dt \]
\[= -n\pi + \int_{2\pi}^x 0 \, dt \]
\[= -n\pi \]

7. If \[\int_0^1 e^{-x^2} \, dx = a \], then find the value of \[\int_0^1 x^2 e^{-x^2} \, dx \] in terms of \(a \).

Sol. \[I = \int_0^1 x^2 e^{-x^2} \, dx = \frac{1}{2} \int_0^1 x(-2x)e^{-x^2} \, dx \]
\[= \frac{1}{2} \left(x e^{-x^2} \right)_{x=0}^{x=1} - \int_0^1 e^{-x^2} \, dx \] (Integrating by parts)
\[= -\frac{1}{2} \left(e^{-1} - 1 \right) \]

8. If \[\int_0^1 \frac{e^t}{1+t} \, dt = a \], then find the value of \[\int_0^1 \frac{e^t}{(1+t)^2} \, dt \] in terms of \(a \).

Sol. \[a = \int_0^1 \frac{e^t}{1+t} \, dt = \left(\frac{1}{1+t} e^t \right)_{t=0}^1 + \int_0^1 \frac{e^t}{(1+t)^2} \, dt \] (Integrating by parts)
\[\Rightarrow a = e - 1 + \int_0^1 \frac{e^t}{(1+t)^2} \, dt \]
\[\Rightarrow \int_0^1 \frac{e^t}{(1+t)^2} \, dt = a + 1 - \frac{e}{2} \]

9. If \(I_n = \int_0^\pi x^n \sin x \, dx \), then find the value of \(I_5 + 20I_5 \).

Sol. \(I_n = \int_0^\pi x^n \sin x \, dx \)
\[= \int_0^\pi x^n \sin x \, dx \]
\[= \int_0^\pi x^{n-1} \cos x \, dx \]
\[= \pi^{n+1} x^n \sin x \left[\frac{\pi}{2} \right] - n(n-1) \int_0^\pi x^{n-2} \sin x \, dx \]
\[\Rightarrow I_n = \pi^{n+1} + n \left(\int_0^\pi x^n \sin x \, dx \right) \]

10. If \(I_n = \int_0^\pi x^n (\tan^{-1} x) \, dx \), then prove that
\[(n+1)I_n + (n-1)I_{n-2} = \frac{1}{n} + \frac{\pi}{2} \]

Sol. \[I_n = \int_0^\pi x^n (\tan^{-1} x) \, dx = \int_0^\pi x^n (x \tan^{-1} x) \, dx \]
\[\Rightarrow I_n = \int_0^\pi x^{n-1} \left(\frac{x^2}{2} \tan^{-1} x - \frac{x}{2} \right) \, dx \]
\[\Rightarrow I_n = \frac{\pi}{4} - \frac{1}{2} \left(\frac{n-1}{2} \right) I_n + \frac{1}{2} \left(\frac{n-1}{2} \right) I_{n-2} \]
\[\Rightarrow \frac{(n+1)}{2} I_n = \frac{\pi}{4} - \frac{1}{2} \left(\frac{n-1}{2} \right) \frac{1}{2} \left(\frac{n-1}{2} \right) I_{n-2} \]
\[\Rightarrow (n+1)I_n + (n-1)I_{n-2} = \frac{1}{n} + \frac{\pi}{2} \]

11. If \(I_n = \int_0^\frac{\pi}{2} \sin^n x \, dx \), then show that
\[I_n = \left(\frac{n-1}{n} \right) I_{n-2} \]

Hence, prove that
\[I_n = \begin{cases} \left(\frac{n-1}{n} \right) \left(\frac{n-3}{n-2} \right) \left(\frac{n-5}{n-4} \right) \cdots \left(\frac{1}{2} \right) \frac{\pi}{2} & \text{if } n \text{ is even} \\ \left(\frac{n-1}{n} \right) \left(\frac{n-3}{n-2} \right) \left(\frac{n-5}{n-4} \right) \cdots \left(\frac{1}{3} \right) \frac{\pi}{2} & \text{if } n \text{ is odd} \end{cases} \]

Sol. \[I_n = \int_0^\frac{\pi}{2} \sin^n x \, dx \]
\[= \int_0^\frac{\pi}{2} \sin^{n-2} x \sin x \, dx \]
\[
\int_{0}^{\pi/2} \sin^{-1}(\sqrt{1-x^2})dx
\]
\[
= \left[-\sin^{-1}x \cos x \right]_{0}^{\pi/2} + \int_{0}^{\pi/2} (n-1)\sin^{n-2}x \cos^2x \, dx
\]
\[
= (n-1) \int_{0}^{\pi/2} \sin^{n-2}x (1-\sin^2x) \, dx
\]
\[
= (n-1) \int_{0}^{\pi/2} \sin^{n-2}x \, dx - (n-1) \int_{0}^{\pi/2} \sin^n x \, dx
\]
\[
= I_n + (n-1)I_{n-2}
\]
\[
\Rightarrow I_n = \left(\frac{n-1}{n} \right) I_{n-2}
\]
\[
\Rightarrow I_n = \left(\frac{n-1}{n} \right) \left(\frac{n-3}{n-2} \right) \left(\frac{n-5}{n-4} \right) \cdots I_0 \text{ or } I_1
\]

Accordingly, if \(n \) is even or odd,
\[
I_0 = \frac{\pi}{2}, \quad I_1 = 1
\]

Hence,
\[
I_n = \left(\frac{n-1}{n} \right) \left(\frac{n-3}{n-2} \right) \left(\frac{n-5}{n-4} \right) \cdots \left(\frac{1}{2} \right) \text{ if } n \text{ is even}
\]
\[
I_n = \left(\frac{n-1}{n} \right) \left(\frac{n-3}{n-2} \right) \left(\frac{n-5}{n-4} \right) \cdots \left(\frac{2}{3} \right) \text{ if } n \text{ is odd}
\]

From the graph, \(I = \frac{1}{2} \) (area of triangle)
\[
= \frac{1}{2} \times \frac{1}{2} \pi = \frac{\pi^2}{8}
\]

13. Prove that \(\int_{0}^{x} e^{x^2} e^{-x^2} \, dt = e^{x^2/4} \int_{0}^{x} e^{-t^2/4} \, dt \)

Sol. Let \(I = \int_{0}^{x} e^{x^2} e^{-t^2} \, dt \)
\[
= e^{x^2/4} \int_{0}^{x} e^{-t^2/4} e^{-t^2} \, dt
\]
\[
= e^{x^2/4} \int_{0}^{x} e^{-(t^2/4-\alpha^2)} \, dt
\]
\[
= e^{x^2/4} \int_{0}^{x} e^{-(x^2-t^2)} \, dt
\]

The result clearly suggests that we have to substitute \(y/2 \) for \(x^2 - t \).
Then \(dt = -dy/2 \), also when \(t = 0 \), \(y = x \) and when \(t = x, y = -x \).
\[
\Rightarrow I = e^{x^2/4} \int_{x}^{0} e^{-y^2/4} \, (-dy/2)
\]
\[
= e^{x^2/4} \int_{x}^{0} e^{-y^2/4} \, dy
\]
\[
= e^{x^2/4} - 2 \int_{0}^{x} e^{-y^2/4} \, dy \quad [e^{-y^2/4} \text{ is an even function}]
\]
\[
= e^{x^2/4} \int_{0}^{x} e^{-t^2/4} \, dt
\]

12. Evaluate \(\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} \sin^{-1}(2x\sqrt{1-x^2}) \, dx \)

Sol. \(I = \int_{0}^{1} \frac{1}{\sqrt{1-x^2}} \sin^{-1}(2x\sqrt{1-x^2}) \, dx \)

Putting \(x = \sin \theta \), we get
\[
\Rightarrow I = \int_{0}^{\pi/2} \frac{1}{\sqrt{1-x^2}} \sin^{-1}(2\sin \theta \cos \theta) \cos \theta \, d\theta
\]
\[
= \int_{0}^{\pi/2} \sin^{-1}(\sin 2\theta) \, d\theta
\]

Put \(2\theta = t \)
\[
\Rightarrow I = \frac{1}{2} \int_{0}^{\pi} \sin^{-1}(\sin t) \, dt
\]

14. Evaluate \(\int_{-1}^{0} e^{x^2+y^2} \, dx + 3 \int_{1/3}^{2/3} e^{(x^2+y^2)/3} \, dx \)

Sol. \(I = \int_{-1}^{0} e^{x^2+y^2} \, dx + 3 \int_{1/3}^{2/3} e^{(x^2+y^2)/3} \, dx \)
\[
= \int_{-1}^{0} e^{x^2} \, dx + 3 \int_{1/3}^{2/3} e^{(x^2-y^2)/3} \, dx
\]
\[
= I_1 + I_2
\]

Note that in both \(I_1 \) and \(I_2 \) function has same format, i.e., \(e^x \).

Also, \(e^x \) is non-integrable.

Now, in \(I_1 \), let \(x + 5 = y \) and in \(I_2 \), \(3x - 2 = -t \)
\[
\Rightarrow I = \int_{1}^{0} e^{x^2} \, dy + \int_{0}^{1} e^{(-t^2)} \, dt = 0
\]

15. Compute the following integrals.

a. \(\int_{0}^{\pi} f(x^2 + x^2) \log x \frac{dx}{x} \)

b. \(\int_{0}^{\pi} f(x^2 + x^2) \log x \frac{dx}{1+x^2} \)

c. \(\int_{1/e}^{e} \frac{1}{x} \sin \frac{x-1}{x} \, dx \)

16. Compute the following integrals.

a. \(\int_{0}^{\pi} f(x^2 + x^2) \log x \frac{dx}{x} \)

b. \(\int_{0}^{\pi} f(x^2 + x^2) \log x \frac{dx}{1+x^2} \)

c. \(\int_{1/e}^{e} \frac{1}{x} \sin \frac{x-1}{x} \, dx \)
Sol. Here limits (reciprocal) and type of functions (reciprocal terms are present, i.e., x and $1/x$) suggest that we must substitute $1/t$ for x.

a. Let $t = 1/x \Rightarrow x = 1/t \Rightarrow dx = -rac{1}{t^2} \, dt$.

Also, when $x \to 0$, $t \to \infty$; $x \to \infty$, $t \to 0$

$$\Rightarrow I = \int_{0}^{\infty} f \left(x^n + x^{-n} \right) \ln x \frac{dx}{x}$$

$$= \int_{0}^{\infty} f \left(t^{-n} + t^n \right) \ln \left(\frac{1}{t} \right) \frac{dt}{t}$$

$$= -\int_{0}^{\infty} f \left(t^n + t^{-n} \right) \ln (t) \frac{dt}{t}$$

$$= -I \Rightarrow 2I = 0 \Rightarrow I = 0$$

b. Let $I = \int_{0}^{\infty} f \left(x^n + x^{-n} \right) \ln x \frac{dx}{1 + x^2}$

Let $t = 1/x \Rightarrow x = 1/t \Rightarrow dx = -rac{1}{t^2} \, dt$.

Also, when $x \to 0$, $t \to \infty$; $x \to \infty$, $t \to 0$

$$\Rightarrow I = \int_{0}^{\infty} f \left(t^n + t^{-n} \right) \ln \left(\frac{1}{t} \right) \frac{dt}{1 + t^2}$$

$$= \int_{0}^{\infty} f \left(t^n + t^{-n} \right) \ln \left(\frac{1}{t} \right) \frac{dt}{1 + t^2}$$

$$= -\int_{0}^{\infty} f \left(t^n + t^{-n} \right) \ln (t) \frac{dt}{1 + t^2}$$

$$= -I \Rightarrow 2I = 0 \Rightarrow I = 0$$

c. $I = \int_{1/e}^{e} \frac{1}{x} \sin \left(x - \frac{1}{x} \right) \frac{dx}{x}$.

put $x = \frac{1}{t}$; $dx = -rac{1}{t^2} \, dt$

$$\Rightarrow I = \int_{1/e}^{e} t \sin \left(\frac{1}{t} - t \right) \left(-rac{1}{t^2} \right) \, dt$$

$$= \int_{1/e}^{e} \frac{1}{t} \sin \left(t - \frac{1}{t} \right) \, dt$$

$$= -\int_{1/e}^{e} \frac{1}{t} \sin \left(t - \frac{1}{t} \right) \, dt$$

$I = -I \Rightarrow 2I = 0 \Rightarrow I = 0$

Concept Application Exercise 8.8

1. Find the value of $\int_{-\infty}^{\infty} \left[x^2 + \{x\} \right] dx$, where $[.]$ and $\{\}$ denote the greatest function and fractional parts of x.

2. Prove that $\int_{0}^{\infty} \frac{t}{t^2} dt = \frac{1}{2} [x] [x - [x]]$, where $[.]$ denotes the greatest integer function.

3. Prove that $\int_{0}^{\infty} \left[ne^{-x} \right] dx = \ln \left(\frac{n^n}{n!} \right)$, where n is a natural number greater than 1 and $[.]$ denotes the greatest integer function.

4. Evaluate $\int_{0}^{\pi/2} \cot^{-1} x \, dx$, where $[.]$ denotes the greatest integer function.

5. If $\int_{0}^{1} e^x \, dx = a$, then evaluate $\int_{b}^{b+1} e^{-x \, dx}$.

6. If $f(x) = \frac{1}{1 + x^2 + t^2}$, $\forall x \geq 1$, then prove that $f(x) = f\left(\frac{1}{x} \right)$.

7. If $f(x)$ is a function satisfying $f\left(\frac{1}{x} \right) + x^2 f(x) = 0$ for all non-zero x, then evaluate $\int_{0}^{\infty} \frac{x^2 + 2x - 1}{x} dx + \int_{0}^{\pi} x^2 \cos^2 x \, dx$.

8. Evaluate $\int_{0}^{\infty} \frac{x^2 + 2x - 1}{x+1} dx + \int_{0}^{\pi} x \log x e^{x/2} \, dx$.

9. Prove that $I_{n} = \int_{0}^{\infty} x^{2n+1} e^{-x^2} \, dx = \frac{n!}{2} \, n \in N$.

10. If $I_{m,n} = \int_{0}^{\infty} \sin^m x \cos^n x \, dx$, then show that

$$I_{m,n} = \frac{m-1}{m+n} \sin^{m-2} x \, dx$$

Hence, prove that

$$I_{m,n} = \begin{cases} \frac{(n-1)(n-3)(n-5)...(n-2m+1)}{(m+n)(m+n-2)(m+n-4)...} & \text{when both } m \text{ and } n \text{ are even} \\ \frac{\pi}{4} & \text{otherwise} \end{cases}$$

For $m \neq n$, where m and n are even.
EXERCISES

Subjective Type

1. It is known that \(f(x) \) is an odd function in the interval \([-p/2, p/2]\) and has a period \(p \). Prove that \(\int_{-p/2}^{p/2} f(t)dt \) is also a periodic function with the same period.

2. If \(\int_{0}^{\pi/2} \log \sin \theta d\theta = k \), then find the value of
\[\int_{0}^{\pi/2} (\theta / \sin \theta)^2 d\theta \] in terms of \(k \).

3. Let \(f(n) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \), then show that
\[f(n) = \int_{0}^{\pi/2} \cot \left(\frac{\theta}{2} \right) (1 - \cos \theta) d\theta. \]

4. Evaluate \(\int_{0}^{\pi/4} \left(\tan^{-1} \left(\frac{2 \cos^2 \theta}{2 - \sin 2\theta} \right) \right) \sec^2 \theta d\theta. \)

5. Evaluate \(\int_{0}^{\pi/3} \frac{\sin^{-1} \left(\frac{2x}{1+x^2} \right)}{1+x^2} dx. \)

6. If \(f(x) = \begin{cases} 1 & |x| \\ 0 & |x| > 1 \end{cases}, \) and \(g(x) = f(x-1) + f(x+1), \) find the value of \(\int_{-3}^{5} g(x) dx. \)

7. \(f, g, h \) are continuous in \([0, a], f(a-x) = f(x), g(a-x) = g(x), h(x) + h(a-x) = 5, \) then prove that
\[\int_{0}^{a} f(x) g(x) h(x) dx = 0. \]

8. Determine a positive integer \(n \) such that
\[\int_{0}^{\pi/2} x^n \sin x dx = \frac{3}{4}(\pi^2 - 8). \]

9. If \(f(x) = \frac{\sin x}{x}, \forall x \in (0, \pi], \) prove that
\[\frac{\pi}{2} \int_{0}^{\pi/2} f(x) f \left(\frac{\pi}{2} - x \right) dx = \int_{0}^{\pi} f(x) dx. \]

10. Let \(f(x) \) be a continuous function, \(\forall x \in R, \) except at \(x = 0, \)
such that \(\int_{0}^{a} f(x) dx, a \in R^+, \) exists. If \(g(x) = \int_{0}^{t} f(t) dt, \)
prove that \(\int_{0}^{a} f(x) dx = \int_{0}^{a} g(x) dx. \)

11. Let \(F(x) \) be independent of \(x \) and \(F_1 = \int_{0}^{P} f(t) dt, \)
\[F_2 = \int_{0}^{P} f(x) dx \quad \text{for some } F, \quad \text{where } F_1 \in N. \] Then evaluate \(\frac{F_2}{F_1}. \)

12. If \(f(x) = f(y), \forall x, y \in R \) and \(f(0) = 1, \) then prove that
\[\int_{0}^{2} f(2-x) dx = \int_{0}^{1} f(x) dx. \]

13. Suppose \(f(x) \) is a real-valued differentiable function defined on \([1, \infty) \) with \(f(1) = 1. \) Moreover, suppose that \(f \) satisfies
\[f''(x) = \frac{1}{x^2 + f'(x)^2}, \] Show that \(f(x) < 1 + \frac{\pi}{4} \) \(\forall x \geq 1. \)

14. If \(x \int_{0}^{x} \sin(f(t)) dt = (x + 2) \int_{0}^{x} \sin(f(t)) dt, \) where \(x > 0, \)
then show that \(f''(x) \cot f(x) + \frac{3}{1+x} = 0. \)

15. Evaluate \(\int_{0}^{2} \frac{dx}{(17 + 8x - 4x^2)/(e^{(1-x)} + 1}). \)

16. If \(\int_{0}^{x} [x] dx = \int_{0}^{x} x dx, \) then prove that either \(x \) is purely fractional or \(x \) is such that \(\{x\} = \frac{1}{2} \) (where \([\cdot]\) and \(\{\cdot\}\)
denote the greatest integer and fractional part, respectively).

17. Let \(f \) be a continuous function on \([a, b]. \)
If \(F(x) = \int_{a}^{x} f(t) dt - \int_{x}^{b} f(t) dt \left(2x - (a + b)\right), \) then prove that there exist some \(c \in (a, b) \) such that \(\int_{a}^{c} f(t) dt - \int_{c}^{b} f(t) dt \)
\(= f(c)(a + b - 2c). \)

18. If \(\int_{a}^{b} |x| dx = 8 \) and \(\int_{a}^{b} |\cos x| dx = 9, \) then find the value of \(\int_{a}^{b} x \sin x dx. \)

19. \(f(x) \) is a continuous and bijective function on \(R. \) If \(\forall t \in R \)
area bounded by \(y = f(x), x = a - t, x = a \) and \(x \)-axis is equal to area bounded by \(y = f(x), x = a + t, x = a \) and \(x \)-axis, then
prove that \(\int_{-\lambda}^{\lambda} f^{-1}(x) dx = 2a \lambda \) (given that \(f(a) = 0. \))
8.26 Calculus

Objective Type

Each question has four choices a, b, c and d, out of which only one is correct.

1. If \(S_n = \frac{1}{1 + \sqrt{n}} + \frac{1}{2 + \sqrt{2n}} + \cdots + \frac{1}{n + \sqrt{n}} \), then \(\lim_{n \to \infty} S_n \) is
 a. \(\log 2 \)
 b. \(\log 4 \)
 c. \(\log 8 \)
 d. None of these

2. The value of \(\lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n} + 3\sqrt{n} + 4\sqrt{n}} \) is equal to
 a. \(\frac{1}{35} \)
 b. \(\frac{1}{14} \)
 c. \(\frac{1}{10} \)
 d. \(\frac{1}{5} \)

3. Which of the following is incorrect?
 a. \(\int_{a+c}^{b+c} f(x) \, dx = \int_{a}^{b} f(x+c) \, dx \)
 b. \(\int_{a}^{b+c} f(x) \, dx = c \int_{a}^{b} f(cx) \, dx \)
 c. \(\int_{a}^{b} f(x) \, dx = \frac{1}{2} \int_{a}^{c} f(x) \, dx + f(-x) \, dx \)
 d. None of these

4. The solution for \(x \) of the equation \(\int_{\sqrt{2}}^{x} \frac{dt}{\sqrt{t^2 - 1}} = \frac{\pi}{2} \) is
 a. \(\pi \)
 b. \(\frac{\sqrt{3}}{2} \)
 c. \(2\sqrt{2} \)
 d. None of these

5. \(\int_{-\infty}^{\infty} e^x \left(2 - x^2 \right) \, dx \) is equal to
 a. \(\frac{\sqrt{e}}{2} \left(\sqrt{3} + 1 \right) \)
 b. \(\frac{\sqrt{3e}}{2} \)
 c. \(\sqrt{3e} \)
 d. None of these

6. The value of the integral \(\int_{-\pi}^{\pi} \sin m \pi \sin nx \, dx \) for \(m \neq n \) is
 a. 0
 b. \(\pi \)
 c. \(\pi/2 \)
 d. 2\pi

7. The value of the integral \(\int_{0}^{\infty} \frac{x \log x}{(1 + x^2)^2} \, dx \) is
 a. 0
 b. \(\log 7 \)
 c. \(5 \log 1 \)
 d. None of these

8. \(\int_{0}^{\infty} \frac{dx}{x + \sqrt{a^2 - x^2}} \) is
 a. \(\frac{a^2}{4} \)
 b. \(\frac{\pi}{2} \)
 c. \(\frac{\pi}{4} \)
 d. \(\pi \)

9. \(\int_{0}^{\pi/2} \sin x \, dx \) is equal to
 a. 0
 b. \(2(\sqrt{2} - 1) \)
 c. \(\sqrt{2} - 1 \)
 d. \(2(\sqrt{2} + 1) \)

10. \(\int_{0}^{\pi} \frac{x \tan x}{\sec x + \cos x} \, dx \) is
 a. \(\frac{\pi^2}{4} \)
 b. \(\frac{\pi^2}{2} \)
 c. \(\frac{3\pi^2}{4} \)
 d. \(\frac{\pi^2}{3} \)

11. If \(\int_{0}^{4} f(x) \, dx = 4 \) and \(\int_{0}^{4} (3 - f(x)) \, dx = 7 \), then the value of \(\int_{0}^{1} f(x) \, dx \) is
 a. 2
 b. 3
 c. -5
 d. None of these

12. If \(\int_{0}^{\infty} e^{\pi x} (\pi - x) \, dx = 0 \), then
 a. \(1 < \alpha < 2 \)
 b. \(\alpha < 0 \)
 c. \(0 < \alpha < 1 \)
 d. \(\alpha = 0 \)

13. \(\int_{0}^{\infty} \left(x^2 + a^2 \right) \left(x^2 + b^2 \right) \left(x^2 + c^2 \right) \left(x^2 + d^2 \right) \, dx \) is
 a. \(\frac{\pi}{2} \left(a + b \right) \left(b + c \right) \left(c + a \right) \)
 b. \(\frac{\pi}{2} \left(a + b \right) \left(b + c \right) \left(c + a \right) \)
 c. \(\frac{\pi}{2} \left(a + b \right) \left(b + c \right) \left(c + a \right) \)
 d. None of these

14. The value of the integral \(\int_{0}^{\infty} \frac{dx}{x^2 + 2x \cos \alpha + 1} \) is
 a. \(\sin \alpha \)
 b. \(\alpha \sin \alpha \)
 c. \(\frac{\alpha}{2 \sin \alpha} \)
 d. \(\frac{\alpha}{2 \sin \alpha} \)

15. The value of \(\int_{1}^{2} \frac{1 + x^2 \ln x}{x + x^2 \ln x} \, dx \) is
 a. \(e \)
 b. \(\ln (1 + e) \)
 c. \(e + \ln (1 + e) \)
 d. \(e - \ln (1 + e) \)

16. The value of the integral \(\int_{0}^{1/\sqrt{3}} \frac{dx}{(1 + x^2)^{1/2} \sqrt{1 - x^2}} \) must be
 a. \(\frac{\pi}{2\sqrt{2}} \)
 b. \(\frac{\pi}{4\sqrt{2}} \)
 c. \(\frac{\pi}{8\sqrt{2}} \)
 d. None of these
17. The value of the integral \(\int_0^\infty e^{x^2} \sqrt{e^x - 1} \, dx \) is
 a. \(3 + 2\pi \)
 b. \(4 - \pi \)
 c. \(2 + \pi \)
 d. None of these

18. \(\int_0^\infty \frac{xdx}{(1+x)(1+x^2)} \) is equal to
 a. \(\frac{\pi}{4} \)
 b. \(\frac{\pi}{2} \)
 c. \(\frac{\pi}{2} \)
 d. None of these

19. \(\int_0^\infty \frac{dx}{[x+\sqrt{x^2+1}]^3} \) is equal to
 a. \(\frac{3}{8} \)
 b. \(\frac{1}{8} \)
 c. \(\frac{3}{8} \)
 d. None of these

20. Given \(\int_0^{\pi/2} \frac{dx}{1+\sin x + \cos x} = \log 2 \), then the value of the definite integral \(\int_0^{\pi/2} \frac{\sin x}{1+\sin x + \cos x} \, dx \) is equal to
 a. \(\frac{1}{2} \log 2 \)
 b. \(\frac{\pi}{2} - \log 2 \)
 c. \(\frac{\pi}{4} - \frac{1}{2} \log 2 \)
 d. \(\frac{\pi}{2} + \log 2 \)

21. If \(I_1 = \int_{-100}^{100} \frac{dx}{5 + 2x - x^2 + x^2} \left(1 + e^{-4x} \right) \) and \(I_2 = \int_{-100}^{100} \frac{dx}{5 + 2x - x^2} \), then \(\frac{I_1}{I_2} \) is
 a. 2
 b. \(\frac{1}{2} \)
 c. 1
 d. \(-\frac{1}{2} \)

22. If \(f(x) = \frac{e^x}{1 + e^x} \), \(I_1 = \int_{-1}^{1} f(a) \, dx \), and \(I_2 = \int_{-1}^{1} g \left(x(1-x) \right) \, dx \), then the value of \(\frac{I_2}{I_1} \) is
 a. \(-1 \)
 b. \(-2 \)
 c. 2
 d. 1

23. If \(f(y) = e^y \), \(g(y) = y \), \(y > 0 \) and \(F(t) = \int_0^t f(t-y)g(y) \, dy \), then
 a. \(F(t) = e^t - (1+t) \)
 b. \(F(t) = te^t \)
 c. \(F(t) = te^{-t} \)
 d. \(F(t) = 1 - e^t(1+t) \)

24. The value of the definite integral \(\int_0^\infty \cos(e^x)^2 \, dx \) is
 a. 1
 b. 1 + (\sin 1)
 c. 1 - (\sin 1)
 d. (\sin 1) - 1

25. The value of \(\int_1^2 \frac{x^2 + 1}{x^4 - x^2 + 1} \log\left(1 + x^2 - \frac{1}{x} \right) \, dx \) is
 a. \(\frac{\pi}{8} \log 2 \)
 b. \(\frac{\pi}{2} \log 2 \)
 c. \(-\frac{\pi}{8} \log 2 \)
 d. None of these

26. If \(f(x) \) satisfies the condition of Rolle's theorem in [1, 2], then \(\int_1^2 f'(x) \, dx \) is equal to
 a. 1
 b. 3
 c. 0
 d. None of these

27. The value of the integral \(\int_{-1}^1 \left(\tan^{-1} \frac{x}{x^2+1} + \tan^{-1} \frac{1}{x} \right) \, dx \) is equal to
 a. \(\pi \)
 b. 2\(\pi \)
 c. 4\(\pi \)
 d. None of these

28. If \(P(x) \) is a polynomial of the least degree that has a maximum equal to 6 at \(x = 1 \), and a minimum equal to 2 at \(x = 3 \), then \(\int_0^1 P(x) \, dx \) equals
 a. \(\frac{17}{4} \)
 b. \(\frac{13}{4} \)
 c. \(\frac{19}{4} \)
 d. \(\frac{5}{4} \)

29. The numbers of possible continuous \(f(x) \) defined in [0, 1] for which \(I_1 = \int_0^1 f(x) \, dx = 1 \), \(I_2 = \int_x f(x) \, dx = a \), \(I_3 = \int_0^1 x^2 f(x) \, dx = a^2 \) is/are
 a. 1
 b. \(\infty \)
 c. 2
 d. 0

30. The value of the definite integral \(\int_0^{\pi/2} \sqrt{\tan x} \, dx \) is
 a. \(\sqrt{2} \pi \)
 b. \(\frac{\pi}{\sqrt{2}} \)
 c. \(2\sqrt{2} \pi \)
 d. \(\frac{\pi}{2\sqrt{2}} \)

31. Suppose that \(F(x) \) is an anti-derivative of \(f(x) = \frac{\sin x}{x} \), where \(x > 0 \), then \(\int_1^3 \frac{\sin 2x}{x} \, dx \) can be expressed as
 a. \(F(6) - F(2) \)
 b. \(\frac{1}{2} (F(6) - F(2)) \)
 c. \(\frac{1}{2} (F(3) - F(1)) \)
 d. \(2(F(6) - F(2)) \)

32. If \(\int_0^1 \cot^{-1}(1 + x^2) \, dx = \lambda \int_0^1 \tan^{-1} x \, dx \), then \(\lambda \) is equal to
 a. 1
 b. 2
 c. 3
 d. 4
33. The value of the integral \[\int_{-3\pi/4}^{5\pi/4} \frac{(\sin x + \cos x)}{e^{x-\pi} + 1} \, dx \] is
a. 0
 b. 1
 c. 2
 d. None of these

34. \(\int_{2-a}^{2+a} f(x) \, dx \) is equal to (where \(f(2 - \alpha) = f(2 + \alpha) \) \(\forall \alpha \in R \))
\[a. \int_{2-a}^{2+a} f(x) \, dx \]
\[b. \int_{0}^{a} f(x) \, dx \]
\[c. \int_{0}^{a} f(x) \, dx \]
\[d. None of these \]

35. The value of the integral \(\int_{0}^{1} e^{x^2} \, dx \) lies in the interval
a. \((0, 1)\)
 b. \((-1, 0)\)
 c. \((1, e)\)
 d. None of these

36. \(I_1 = \int_{0}^{\pi} \ln (\sin x) \, dx, \quad I_2 = \int_{-\pi/4}^{\pi/4} \ln (\sin x + \cos x) \, dx, \) then
a. \(I_1 = 2I_2 \)
 b. \(I_1 = 2I_1 \)
 c. \(I_1 = 4I_2 \)
 d. None of these

37. If \(I_1 = \int_{0}^{\pi/2} \frac{\cos x}{1 + \cos x} \, dx, \quad I_2 = \int_{0}^{\pi/2} \frac{\sin x}{1 + \sin x} \, dx, \)
\(I_3 = \int_{0}^{\pi/2} \frac{1 + 2\cos^2 x}{1 + \cos x} \, dx, \)
then
a. \(I_1 = I_2 > I_3 \)
 b. \(I_1 = I_1 = I_2 \)
 c. \(I_1 > I_2 > I_3 \)
 d. None of these

38. If \(f(x) \) is continuous for all real values of \(x \), then
\[\sum_{r=1}^{n} \int_{0}^{1} f(r - 1 + x) \, dx \] is equal to
a. \(\int_{0}^{1} f(x) \, dx \)
 b. \(\int_{0}^{1} f(x) \, dx \)
 c. \(n \int_{0}^{1} f(x) \, dx \)
 d. \((n - 1) \int_{0}^{1} f(x) \, dx \)

39. \(I_1 = \int_{0}^{\pi} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx, \quad I_2 = \int_{0}^{2\pi} \cos^6 x \, dx, \)
\(I_3 = \int_{0}^{\pi} \frac{\sin^3 x}{1 + \sin x} \, dx, \quad I_4 = \int_{0}^{1} \ln \left(\frac{1}{x - 1} \right) \, dx, \)
then
a. \(I_2 = I_3 = 0, I_4 \neq 0 \)
 b. \(I_2 = I_3 = 0, I_4 \neq 0 \)
 c. \(I_1 = I_3 = 0, I_2 \neq 0 \)
 d. \(I_1 = I_3 = 0, I_2 \neq 0 \)

40. If \(f(x) \) and \(g(x) \) are continuous functions, the
\[\int_{\ln 1/\lambda}^{\ln \lambda} \frac{f(x^2/4) - f(-x^2/4)}{g(x^2/4) - g(-x^2/4)} \, dx \] is
a. dependent on \(\lambda \)
 b. a non-zero constant
 c. zero
 d. None of these

41. \(\int_{-\pi}^{\pi} \frac{2x(1 + \sin x)}{1 + \cos^2 x} \, dx \) is equal to
a. \(\pi \)
 b. \(\pi^2 \)
 c. 0
 d. None of these

42. \(f(x) > 0 \quad \forall \ x \in R \) and is bounded. If \(\lim_{n \to \infty} \int_{0}^{a} \frac{f(x) \, dx}{f(x)+f(a-x)} \)
\[+ a \int_{0}^{a} \frac{f(x) \, dx}{f(x)+f(3a-x)} + a^2 \int_{0}^{a} \frac{f(x) \, dx}{f(x)+f(5a-x)} + \ldots + \]
\[a^{n-1} \int_{0}^{a} \frac{f(x) \, dx}{f(x)+f((2n-1)a-x)} = \frac{7}{5} \]
(where \(a < 1 \), then \(a \) is equal to
a. \(\frac{2}{7} \)
 b. \(\frac{1}{7} \)
 c. \(\frac{14}{19} \)
 d. \(\frac{9}{14} \)

43. If \(f(x) = \int_{0}^{x} \frac{t \sin t \, dt}{\sqrt{1 + \tan^2 t} \sin^2 t} \) for \(0 < x < \frac{\pi}{2} \), then
a. \(f(0^+) = -\pi \)
 b. \(f\left(\frac{\pi}{4}\right) = \frac{\pi^2}{8} \)
 c. \(f \) is continuous and differentiable in \(\left(0, \frac{\pi}{2}\right) \)
 d. \(f \) is continuous but not differentiable in \(\left(0, \frac{\pi}{2}\right) \)

44. If \(\int_{-\pi/4}^{3\pi/4} \frac{e^{x^2/4} \, dx}{\sin x + \cos x} = k \int_{-\pi/2}^{\pi/2} \sec x \, dx \), then the value of \(k \) is
a. \(\frac{1}{2} \)
 b. \(\frac{1}{\sqrt{2}} \)
 c. \(\frac{1}{2\sqrt{2}} \)
 d. \(-\frac{1}{\sqrt{2}} \)

45. \(\int_{-\pi/3}^{0} \cot^{-1}\left(\frac{2}{\cos x - 1}\right) + \cot^{-1}\left(\cos x - \frac{1}{2}\right) \, dx \) is equal to
a. \(\frac{\pi^2}{6} \)
 b. \(\frac{\pi^2}{3} \)
 c. \(\frac{\pi^2}{8} \)
 d. \(\frac{3\pi^2}{8} \)

46. \(\int_{0}^{\pi} \left(\frac{\pi}{1 + \pi^2 x^2} - \frac{1}{1 + x^2} \right) \log x \, dx \) is equal to
a. \(-\frac{\pi}{2} \ln \pi \)
 b. 0
 c. \(\frac{\pi}{2} \ln 2 \)
 d. None of these

47. If \(f(x) = \cos (\tan^{-1} x) \), then the value of the integral
\[\int_{0}^{1} f(x) \, dx \] is
a. \(\frac{3 - \sqrt{2}}{2} \)
 b. \(\frac{3 + \sqrt{2}}{2} \)
 c. 1
 d. \(1 - \frac{3}{2\sqrt{2}} \)
48. The equation of the curve is \(y = f(x) \). The tangents at \([1, f(1)], [2, f(2)]\) and \([3, f(3)]\) make angle \(\frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{4}\) respectively, with the positive direction of \(x\)-axis, then the value of \(\int_1^3 f''(x) f'''(x) \, dx + \int_1^3 f''(x) \, dx\) is equal to
 a. \(-1/\sqrt{3}\)
 b. \(1/\sqrt{3}\)
 c. 0
 d. None of these

49. The value of \(\int_1^{\tan^{-1} x} \left(\frac{\tan x}{x} + log x + \frac{x^{\tan^{-1} x}}{1+x^2}\right) \, dx\) is
 a. \(\tan e\)
 b. \(e^{\tan^{-1} x}\)
 c. \(\tan^{-1} (1/e)\)
 d. None of these

50. If \(f(\pi) = 2\) and \(\int_0^\pi (f(x) + f''(x)) \sin x \, dx = 5\), then \(f(0)\) is equal to (it is given that \(f(x)\) is continuous in \([0, \pi]\))
 a. 7
 b. 3
 c. 5
 d. 1

51. If \(\int_1^2 e^{-x^2} \, dx = a\), then \(\int_1^e \sqrt{\ln x} \, dx\) is equal to
 a. \(2e^x - 2e - a\)
 b. \(2e^x - e - a\)
 c. \(e^x - e - a\)
 d. None of these

52. \(\int_{-\pi/2}^{\pi/2} \frac{e^{\sin x} \cos x}{1 + e^{\sin x}} \, dx\) is equal to
 a. \(e + 1\)
 b. \(1 - e\)
 c. \(e - 1\)
 d. None of these

53. The value of the expression \(\frac{\int_0^a x^4 \sqrt{a^2 - x^2} \, dx}{\int_0^a x^2 \sqrt{a^2 - x^2} \, dx}\) is equal to
 a. \(\frac{a^2}{6}\)
 b. \(\frac{3a^2}{2}\)
 c. \(\frac{3a^2}{4}\)
 d. \(\frac{a^2}{2}\)

54. If \(A = \int_0^\pi \frac{\cos x}{(x+2)^2} \, dx\), then \(\int_{\pi/2}^{\pi} \frac{\sin 2x}{x+1} \, dx\) is equal to
 a. \(\frac{1}{2} + \frac{1}{\pi + 2}\)
 b. \(\frac{1}{\pi + 2}\)
 c. \(1 + \frac{1}{\pi + 2}\)
 d. \(A - \frac{1}{2} - \frac{1}{\pi + 2}\)

55. \(\int_0^{\pi/2} \frac{(y^2 - 4y + 5) \sin(y - \frac{\pi}{2}) \, dy}{[2y^2 - 8y + 11]}\) is equal to
 a. 0
 b. 2
 c. \(-2\)
 d. None of these

56. \(\int_{\sin \theta}^{\cos \theta} f(x \tan \theta) \, dx\) (where \(\theta \neq \frac{n\pi}{2}, n \in I\)) is equal to
 a. \(-\cos \theta \int_{\sin \theta}^{\cos \theta} f(x \sin \theta) \, dx\)
 b. \(-\tan \theta \int_{\sin \theta}^{\cos \theta} f(x) \, dx\)

57. Let \(I_1 = \int_0^1 e^x x^2 \, dx\) and \(I_2 = \int_0^1 e^{x^2} (2 - x^2) \, dx\), then \(\frac{I_1}{I_2}\) is equal to
 a. \(\frac{3e}{e^2}\)
 b. \(e^3\)
 c. \(3e\)
 d. \(\frac{1}{3e}\)

58. If \(\int_0^1 \sin t \, dt\) is equal to \(\alpha\), then the value of the integral \(\int_0^{2\pi} \frac{\sin t}{4\pi - 2 - t} \, dt\) is
 a. \(2\alpha\)
 b. \(-2\alpha\)
 c. \(\alpha\)
 d. \(-\alpha\)

59. \(\int_0^1 \frac{\tan^{-1} x}{x} \, dx\) is equal to
 a. \(\int_0^\pi \frac{\sin x}{x} \, dx\)
 b. \(\int_0^{\pi/2} \frac{x}{\sin x} \, dx\)
 c. \(\frac{\pi}{2} \int_0^\pi \frac{\sin x}{x} \, dx\)
 d. \(\frac{\pi}{2} \int_0^{\pi/2} \frac{x}{\sin x} \, dx\)

60. If \(I_k = \int_1^e (\ln x)^k \, dx\) then \(I_k\) equals
 a. \(9e - 24\)
 b. 12
 c. \(24 - 9e\)
 d. 6e - 12

61. If \(I(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \, dx\), then \(I(m, n)\) equals
 a. \(m(n-1)\)
 b. \(\int_1^m x^{m-1} \, dx\)
 c. \(\int_0^1 x^{m-1} \, dx\)
 d. \(\int_1^m x^{m-1} \, dx\)

62. The value of \(\int_0^{\pi/2} \frac{\sin x}{\tan x} \, dx\) is, \(n \in I, n \geq 0\)
 a. \(\frac{\pi}{2}\)
 b. 0
 c. \(\pi\)
 d. \(2\pi\)

63. The value of the definite integral \(\int_0^{\pi/2} \frac{\sin 5x}{\sin x} \, dx\) is
 a. 0
 b. \(\frac{\pi}{2}\)
 c. \(\pi\)
 d. \(2\pi\)
64. If \(I_1 = \int_0^x e^x (\sin x)^m \, dx \), then \(\frac{I_1}{I_1} \) is equal to
 a. 3/5 b. 1/5 c. 1 d. 2/5

65. Given \(I_m = \int \log x \, dx \). If \(\frac{I_m}{K} + \frac{I_{m+2}}{L} = e \), then the values of \(K \) and \(L \) are
 a. \(\frac{1}{1-m} \), \(\frac{1}{m} \) b. \((1-m) \), \(\frac{1}{m} \) c. \(\frac{1}{1-m} \), \(\frac{m(m-2)}{m-1} \) d. \(\frac{m}{m-1} \), \(m-2 \)

66. Let \(f(x) = \min \{ \{x\}, \{x\} \} \) \(\forall \ x \in \mathbb{R} \), where \(\{x\} \) denotes the fractional part of \(x \), then \(\int_{-100}^{100} f(x) \, dx \) is equal to
 a. 50 b. 100 c. 200 d. None of these

67. \(\int_{-100}^{0} (x-0.4) \, dx \) equals (where \(\{x\} \) is a fractional part of \(x \))
 a. 13 b. 63 c. 1.5 d. 7.5

68. The value of \(\int_0^a [f(x)] \, dx \), where \(a > 1 \), where \([x]\) denotes the greatest integer not exceeding \(x \) is
 a. \(a(f(a) - \{f(1)+f(2)+\cdots+f(a)\}) \) b. \([a f(a)] - \{f(1)+f(2)+\cdots+f(a)\} \) c. \([a f(a)] - \{f(1)+f(2)+\cdots+f(a)\} \) d. \(a f(a) - \{f(1)+f(2)+\cdots+f(a)\} \)

69. The value of \(\int_0^x [\cos t] \, dt \), \(x \in \left[\left(4n+1\right)\frac{\pi}{2}, \left(4n+3\right)\frac{\pi}{2}\right] \) and \(n \in \mathbb{N} \) is equal to (where \([x]\) represents greatest integer function
 a. \(\frac{\pi}{2} (2n-1) - 2x \) b. \(\frac{\pi}{2} (2n-1) + x \) c. \(\frac{\pi}{2} (2n+1) - x \) d. \(\frac{\pi}{2} (2n+1) + x \)

70. If \(f(x) = \int_0^1 \frac{dt}{1+|x-t|} \), then \(f' \left(\frac{1}{2} \right) \) is equal to
 a. 0 b. \(\frac{1}{2} \) c. 1 d. None of these

71. Let \(f(x) = \int_2^{x} \frac{dt}{\sqrt{1+t^4}} \) and \(g \) be the inverse of \(f \). Then the value of \(g'(0) \) is
 a. 1 b. 17 c. \(\sqrt{17} \) d. None of these

72. The value of the definite integral \(\int_{0}^{4} (x(3-x)(4+x)(6-x) \sqrt{10x} + \sin x) \, dx \) equals
 a. \(\cos 2 + \cos 4 \) b. \(\cos 2 - \cos 4 \) c. \(\sin 2 + \sin 4 \) d. \(\sin 2 - \sin 4 \)

73. If \(x = \int_{0}^{\sin t} \sin^{-1} z \, dz \), then \(y = \int_{t}^{\sin x} \frac{\sin^2 z}{z} \, dz \), then \(\frac{dy}{dx} \) is equal to
 a. \(\tan t \) b. \(\tan t \) c. \(\tan t \) d. \(\tan^2 t \)

74. If \(f(x) = \cos x - \int_{0}^{x} (x-t) f(t) \, dt \), then \(f''(x) + f(x) \) is equal to
 a. \(-\cos x \) b. \(-\sin x \) c. \(\int_{0}^{x} (x-t) f(t) \, dt \) d. 0

75. A function \(f \) is continuous for all \(x \) (and not every where zero) such that \(f^2(x) = \int_{0}^{x} f(t) \cos t \, dt \), then \(f(x) \) is
 a. \(\frac{1}{2} \ln \left(\frac{x+\cos x}{2} \right) ; x \neq 0 \) b. \(\frac{1}{2} \ln \left(\frac{3}{2+\cos x} \right) ; x \neq 0 \) c. \(\frac{1}{2} \ln \left(\frac{2+\sin x}{2} \right) ; x \neq n\pi, n \in \mathbb{I} \) d. \(\frac{\cos x + \sin x}{2+\sin x} ; x \neq n\pi + \frac{3\pi}{4}, n \in \mathbb{I} \)

76. \(\lim_{x \to 0^+} \int_{x}^{a} e^{-x^2} \, dt = \int_{x}^{a} e^{-x^2} \, dt \) is equal to
 a. \(e^{-x^2} \) b. \(\sin 2y e^{x^2} \) c. 0 d. None of these

77. \(f(x) = \int_{1}^{x} e^x \, dt \), where \(x \in \mathbb{R}^+ \). Then the complete set of values of \(x \) for which \(f(x) \leq \ln x \) is
 a. \((0, 1) \) b. \((1, \infty) \) c. \((0, \infty) \) d. None of these

78. If \(\int_{0}^{x} f(t) \, dt = x + \int_{0}^{x} f'(t) \, dt \), then the value of \(f(1) \) is
 a. 1/2 b. 0 c. 1 d. -1/2

79. If \(\int_{0}^{\pi} \cos x \, dx = 1 - \cos x \) \(\forall \ x \in \left(0, \frac{\pi}{2}\right) \), then the value of \(\left[f \left(\frac{\sqrt{3}}{4} \right) \right] \) is (\([x]\) denotes the greatest integer function)
 a. 4 b. 5 c. 6 d. -7

80. If \(\int_{0}^{t^2} x \, dx = \cos \pi x \), then \(f'(9) \) is
 a. \(\frac{1}{9} \) b. \(\frac{1}{3} \) c. 1 d. non-existent
81. If \(f(x) = 1 + \frac{1}{x} \int_{1}^{x} f(t) \, dt \), then the value of \(f(e) \) is
\begin{align*}
a. \quad 1 & \quad b. \quad 0 \\
c. \quad -1 & \quad d. \quad \text{None of these}
\end{align*}

82. If \(A = \int_{0}^{1} x^{250} (2-x)^{250} \, dx \) and \(B = \int_{0}^{1} x^{250} (1-x)^{250} \, dx \), which of the following is true?
\begin{align*}
a. \quad A = 2^{250} B & \quad b. \quad A = 2^{-250} B \\
c. \quad A = 2^{100} B & \quad d. \quad A = 2^{-100} B
\end{align*}

83. The value of \(\int_{0}^{n} \left(\sum_{r=1}^{n} \frac{1}{x+r} \right) \, dx \) equals
\begin{align*}
a. \quad n & \quad b. \quad n! \\
c. \quad (n+1)! & \quad d. \quad n \cdot n!
\end{align*}

84. If \(I = \int_{-\pi}^{\pi} |\sin x| \cdot |\sin x| \, dx \), then the value of \(I \) is
\begin{align*}
a. \quad -40 & \quad b. \quad 40 \\
c. \quad 20 & \quad d. \quad -20
\end{align*}

85. Given that \(f \) satisfies \(|f(u) - f(v)| \leq |u - v| \) for \(u \) and \(v \) in \([a, b] \), then
\[\left| \int_{a}^{b} f(x) \, dx - (b-a) f(a) \right| \leq \left(\frac{b-a}{2} \right)^{2} \]
\begin{align*}
a. \quad \frac{(b-a)}{2} & \quad b. \quad (b-a)^{2} \\
c. \quad \frac{(b-a)^{2}}{2} & \quad d. \quad \text{None of these}
\end{align*}

86. \[\int_{0}^{\pi} \frac{\sin^{2} x}{x^{2}} \, dx \] must be same as
\begin{align*}
a. \quad \int_{0}^{\pi} \frac{\sin x}{x} \, dx & \quad b. \quad \left(\int_{0}^{\pi} \frac{\sin x}{x} \, dx \right)^{2} \\
c. \quad \int_{0}^{\pi} \cos^{2} x \, dx & \quad d. \quad \text{None of these}
\end{align*}

87. If \[\int_{0}^{\pi} \frac{\sin x}{x} \, dx = \frac{\pi}{2} \] then \[\int_{0}^{\pi} \frac{\sin^{3} x}{x} \, dx \] is equal to
\begin{align*}
a. \quad \frac{\pi}{2} & \quad b. \quad \frac{\pi}{4} \\
c. \quad \frac{\pi}{6} & \quad d. \quad 3\pi/2
\end{align*}

88. \[\int_{0}^{x} (\sin t) \, dt \], where \(x \in (2n\pi, (2n+1)\pi), n \in N \) and \([.]\) denotes the greatest integer function, is equal to
\begin{align*}
a. \quad -n\pi & \quad b. \quad -(n+1)\pi \\
c. \quad -2n\pi & \quad d. \quad -(2n+1)\pi
\end{align*}

89. \(f(x) \) is a continuous function for all real values of \(x \) and satisfies \[\int_{0}^{x} f(t) \, dt = \int_{1}^{x} t^{2} f(t) \, dt + \frac{x^{16}}{8} + \frac{x^{6}}{3} + a \], then the value of \(a \) is equal to
\begin{align*}
a. \quad \frac{1}{24} & \quad b. \quad \frac{17}{168} \\
c. \quad \frac{1}{7} & \quad d. \quad -\frac{167}{840}
\end{align*}

90. \[\int_{0}^{\pi} \frac{2^{1-3\sin t}}{2^{\sin t}} \, dt \], where \([.]\) denotes the greatest integer function, and \(x \in R^{+} \), is equal to
\begin{align*}
a. \quad \frac{1}{\ln 2} ((x) + 2^{(x)} - 1) & \quad b. \quad \frac{1}{\ln 2} ((x) + 2^{(x)}) \\
c. \quad \frac{1}{\ln 2} ((x) - 2^{(x)}) & \quad d. \quad \frac{1}{\ln 2} ((x) + 2^{(x)} + 1)
\end{align*}

91. If \(f(x) \) is a continuous function for all real values of \(x \) and satisfies \[\int_{n}^{n+1} f(x) \, dx = \frac{n^{2}}{2} \forall n \in I, \] then \[\int_{3}^{5} f(|x|) \, dx \] is equal to
\begin{align*}
a. \quad \frac{19}{2} & \quad b. \quad \frac{35}{2} \\
c. \quad 17/2 & \quad d. \quad \text{None of these}
\end{align*}

92. The value of \[\int_{0}^{\pi/2} \frac{t \, dt}{1+t^{2}} + \int_{0}^{\pi/2} \frac{\cos x \, dt}{t(1+t^{2})} \], where \(x \in (\pi/6, \pi/3) \), is equal to
\begin{align*}
a. \quad 0 & \quad b. \quad 2 \\
c. \quad 1 & \quad d. \quad \text{None of these}
\end{align*}

93. Let \(I_{1} = \int_{-2}^{2} x^{6} + 3x^{5} + 7x^{4} \, dx \) and
\[I_{2} = \int_{-3}^{1} \frac{2(x+1)^{2} + 11(x+1) + 14}{(x+1)^{4} + 2} \, dx \], then the value of \(I_{1} + I_{2} \) is
\begin{align*}
a. \quad 8 & \quad b. \quad 200/3 \\
c. \quad 100/3 & \quad d. \quad \text{None of these}
\end{align*}

94. For \(x \in R \) and a continuous function \(f \),
\[I_{1} = I_{1}^{1+\cos x} \int_{0}^{x} x \cdot f(x) \cdot dx \] and
\[I_{2} = I_{1}^{1+\sin x} \int_{0}^{x} f(x) \cdot (x + 2) \cdot dx \]. Then \(\frac{I_{1}}{I_{2}} \) is
\begin{align*}
a. \quad -1 & \quad b. \quad 1 \\
c. \quad 2 & \quad d. \quad 3
\end{align*}

95. Given a function \(f: [0, 4] \rightarrow R \) is differentiable, then for some \(a, \beta \in (0, 2) \), \(\int_{0}^{4} f(t) \, dt \) equals to
\begin{align*}
a. \quad f(a^{2}) + f(\beta^{2}) & \quad b. \quad 2a^{2}f(a^{2}) + 2\beta^{2}f(\beta^{2}) \\
c. \quad f(\alpha^{2})f(\beta^{2}) & \quad d. \quad f(\alpha^{2})f(\beta^{2})(f(a^{2}) + f(\beta^{2}))
\end{align*}

96. \[\int_{3}^{6} x^{8} \{x^{11}\} \, dx \] is equal to (where \([.]\) is the fractional part of \(x \))
\begin{align*}
a. \quad 3^{8} & \quad b. \quad 3^{7} \\
c. \quad 3^{9} & \quad d. \quad \text{None of these}
\end{align*}

97. If \(S = \left(\frac{1}{2} \right)^{2} + \left(\frac{1}{3} \right)^{2} + \left(\frac{1}{4} \right)^{2} + \ldots \), then
\begin{align*}
a. \quad S = \ln 8 - 2 & \quad b. \quad S = \ln \frac{4}{e} \\
c. \quad S = \ln 4 + 1 & \quad d. \quad \text{None of these}
\end{align*}
98. Let \(f: R \to R \) be a continuous function and \(f(x) = f(2x) \) is true \(\forall x \in R \). If \(f(1) = 3 \), then the value of \(\int_{-1}^{1} f(x) \, dx \) is equal to
\[
\begin{array}{llll}
a. \ 6 & b. \ 0 & c. \ 3f(3) & d. \ 2f(0)
\end{array}
\]

99. \(\int_{-1}^{1} \left[\frac{[x]}{1 + x^2} \right] \, dx \), where \([\cdot]\) denotes the greatest integer function, is equal to
\[
\begin{array}{llll}
a. \ -2 & b. \ -1 & c. \ 0 & d. \ None \ of \ these
\end{array}
\]

100. \(f \) is an odd function. It is also known that \(f(x) \) is continuous for all values of \(x \) and is periodic with period 2.

If \(g(x) = \int_{0}^{x} f(t) \, dt \), then
\[
\begin{array}{llll}
a. \ g(x) \ is \ odd & b. \ g(n) = 0, \ n \in N & c. \ g(2n) = 0, \ n \in N & d. \ g(x) \ is \ non-periodic
\end{array}
\]

101. \(\int_{0}^{x} |\sin t| \, dt \), where \(x \in (2n\pi, (2n + 1)\pi) \), where \(n \in N \) is equal to
\[
\begin{array}{llll}
a. \ 4n - \cos x & b. \ 4n - \sin x & c. \ 4n + 1 - \cos x & d. \ 4n - 1 - \cos x
\end{array}
\]

102. If \(f(x) = \int_{x}^{0} |t| \, dt \), then for any \(x \geq 0 \), \(f(x) \) equals
\[
\begin{array}{llll}
a. \ \frac{1}{2} (1 - x^2) & b. \ \frac{1}{2} x^2 & c. \ \frac{1}{2} (1 + x^2) & d. \ None \ of \ these
\end{array}
\]

103. If \(g(x) = \int_{0}^{x} (|\sin t| + |\cos t|) \, dt \), then \(g \left(x + \frac{\pi n}{2} \right) \) is equal to, where \(n \in N \)
\[
\begin{array}{llll}
a. \ g(x) + g(\pi) & b. \ g(x) + g \left(\frac{\pi n}{2} \right) & c. \ g(x) + g \left(\frac{\pi}{2} \right) & d. \ None \ of \ these
\end{array}
\]

104. The value of \(\int_{-\pi}^{\pi} \left[x \left[1 + \cos \left(\frac{\pi x}{2} \right) \right] + 1 \right] \, dx \), where \([\cdot]\) denotes the greatest integer function, is
\[
\begin{array}{llll}
a. \ 1 & b. \ \frac{1}{2} & c. \ 2 & d. \ None \ of \ these
\end{array}
\]

105. If \(a > 0 \) and \(A = \int_{0}^{a} \cos^{-1} x \, dx \), then \(\int_{0}^{a} (\cos^{-1} x - \sin^{-1} \sqrt{1-x^2}) \, dx = \pi a - \lambda A \), then \(\lambda \) is
\[
\begin{array}{llll}
a. \ 0 & b. \ 2 & c. \ 3 & d. \ None \ of \ these
\end{array}
\]

106. The value of \(\int_{a}^{b} (x-a)^3(b-x)^4 \, dx \) is
\[
\begin{array}{llll}
a. \ \frac{(b-a)^4}{6^6} & b. \ \frac{(b-a)^3}{280} & c. \ \frac{(b-a)^3}{7^3} & d. \ None \ of \ these
\end{array}
\]

107. If \(\int_{0}^{t} \frac{b x \cos 4x - a \sin 4x}{x^2} \, dx = \frac{a \sin 4t}{t} - 1 \), where \(0 < t < \frac{\pi}{4} \), then the values of \(a, b \) are equal to
\[
\begin{array}{llll}
a. \ \frac{1}{4}, 1 & b. \ -1, 4 & c. \ 2, 2 & d. \ 2, 4
\end{array}
\]

108. If \(\lambda = \frac{e^t}{1 + t} \), then \(\int_{0}^{t} e^{\lambda} \log_e (1 + t) \, dt \) is equal to
\[
\begin{array}{llll}
a. \ 2\lambda & b. \ e \log_2 - \lambda & c. \ \lambda & d. \ e \log_2 + \lambda
\end{array}
\]

109. Let \(f \) be integrable over \([0, a]\) for any real value of \(a \). If \(I_1 = \int_{0}^{\pi/2} \cos \theta f \left(\sin \theta + \cos^2 \theta \right) \, d\theta \) and \(I_2 = \int_{0}^{\pi/2} \sin 2\theta f \left(\sin \theta + \cos^2 \theta \right) \, d\theta \), then
\[
\begin{array}{llll}
a. \ I_1 = -2I_2 & b. \ I_1 = I_2 & c. \ 2I_1 = I_2 & d. \ I_1 = -I_2
\end{array}
\]

110. The range of the function \(f(x) = \int_{-1}^{1} \frac{\sin x \, dt}{(1 - 2t \cos x + t^2)} \) is
\[
\begin{array}{llll}
a. \ \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] & b. \ \left[0, \pi \right] & c. \ \left(0, \pi \right) & d. \ \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)
\end{array}
\]

111. The value of \(\lim_{n \to \infty} \left[\tan \frac{\pi}{2n} \tan \frac{2\pi}{2n} \cdots \tan \frac{n\pi}{2n} \right] \) is
\[
\begin{array}{llll}
a. \ e & b. \ e^2 & c. \ 1 & d. \ e^3
\end{array}
\]

112. If \(f'(x) = f(x) + 1 \), given \(f(0) = 1 \), then the value of \(f(\log_2 2) \) is
\[
\begin{array}{llll}
a. \ \frac{1}{3} \log_2 e & b. \ \frac{2}{e} \log_2 e & c. \ \frac{2}{3} & d. \ None \ of \ these
\end{array}
\]

113. If \(f(x) \) is monotonic differentiable function on \([a, b]\), then
\[
\int_{a}^{b} f(x) \, dx + \int_{f(a)}^{f(b)} f^{-1}(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{f(a)}^{f(b)} f^{-1}(x) \, dx
\]
\[
\begin{array}{llll}
a. \ bf'(a) - af'(b) & b. \ bf'(b) - af'(a) & c. \ f'(a) + f'(b) & d. \ cannot \ be \ found
\end{array}
\]

114. If \(a, b (b > a) \) are the roots of \(g(x) = ax^2 + bx + c = 0 \) and \(f(x) \) is an even function, then \(\beta \int_{a}^{b} \frac{f(g(x))}{e} \left(x - a \right) \, dx = \frac{e^{-f(g(x))}}{e} \left(x - \beta \right) \) is equal to
\[
\begin{array}{llll}
a. \ \frac{b}{2a} & b. \ \frac{\sqrt{b^2 - 4ac}}{|2a|} & c. \ \frac{b}{a} & d. \ None \ of \ these
\end{array}
\]
115. If \(y' = \frac{n!^{n-r}C_{r-1}}{r^n} \), where \(n = kr \) (\(k \) is constant), then

\[
\lim_{r \to \infty} y = \begin{aligned}
a. (k-1) \log(1+k)^{-k} & \quad b. (k+1) \log(k-1)+k \\
(1+k) \log(k-1)-k & \quad d. (k-1) \log(k-1)+k
\end{aligned}
\]

116. \(\int_{1}^{10} \lfloor \log[x] \rfloor \, dx \) is equal to (where \(\lfloor \cdot \rfloor \) represents the greatest integer function)

\[
a. 9 \\ b. 16 \epsilon \\ c. 10 \\ d. 10 \epsilon
\]

117. If the function \(f: [0, 8] \to R \) is differentiable, then for \(a, b \in (0, 2) \),

\[
s^8 f(t) \, dt \text{ is equal to} \begin{aligned}
a. 3[\alpha^3 f(\alpha^2) + \beta^2 f(\beta^2)] & \quad b. 3[\alpha^2 f(\alpha) + \beta^2 f(\beta)] \\
\alpha^2 f(\alpha^2) + \beta^2 f(\beta^2) & \quad c. 3[\alpha^2 f(\alpha^2) + \beta^2 f(\beta)]
\end{aligned}
\]

118. The function \(f \) and \(g \) are positive and continuous. If \(f \) is increasing and \(g \) is decreasing, then

\[
\int_{0}^{1} f(x) [g(x) - g(1-x)] \, dx
\]

\[
a. \text{is always non-positive} \\ b. \text{is always non-negative} \\ c. \text{can take positive and negative values} \\ d. \text{None of these}
\]

Multiple Correct Answers Type

Each question has four choices a, b, c and d, out of which one or more answers are correct.

1. A function \(f(x) \) which satisfies the relation

\[
f(x) = e^x + \int_{0}^{x} e^t f(t) \, dt,
\]

then

\[
a. f(0) < 0 \\ b. f(x) \text{ is a decreasing function} \\ c. f(x) \text{ is an increasing function}
\]

\[
d. \int_{0}^{1} f(x) \, dx > 0
\]

2. Let \(f(x) = \int_{0}^{x} \frac{3^t}{1+t^2} \, dt \), where \(x > 0 \), then

\[
a. \text{for } 0 < \alpha < \beta, f(\alpha) < f(\beta) \\ b. \text{for } 0 < \alpha < \beta, f(\alpha) > f(\beta) \\
c. f(x) + \pi/4 < \tan^{-1}x, \forall x \geq 1 \\ d. f(x) + \pi/4 > \tan^{-1}x, \forall x \geq 1
\]

3. The values of \(a \) for which the integral \(\int_{0}^{a} x^2 - 4x \, dx \geq 1 \) is satisfied are

\[
a. [2, \infty) \\ b. (-\infty, 0] \\
c. (0, 2) \\ d. \text{None of these}
\]

4. If \(\int_{a}^{b} x \, dx = 8 \) and \(\int_{0}^{a} \sin x \, dx = 9 \), then

\[
a. a + b = \frac{9\pi}{2} \\ b. |a - b| = 4\pi \\
c. a = 15 \\ d. \int_{0}^{b} \sec^2 x \, dx = 0
\]

5. Let \(I = \int_{a}^{b} \sqrt{3 + x} \, dx \), then the values of \(I \) will lie in the interval

\[
a. [4, 6] \\ b. [1, 3] \\
c. [4, 2\sqrt{10}] \\ d. [\sqrt{15}, \sqrt{30}]
\]

6. If \(g(x) = \int_{x}^{0} t \, dt \), then

\[
a. g(x) = x|x| \\ b. g(x) \text{ is monotonic} \\
c. g(x) \text{ is differentiable at } x = 0 \\ d. g'(x) \text{ is differentiable at } x = 0
\]

7. Let \(f: [1, \infty) \to R \) and \(f(x) = x f \left(\frac{2x}{x-1} \right) - e^{-x} \), then

\[
a. f(x) \text{ is an increasing function} \\ b. \lim_{x \to \infty} f(x) = \infty \\
c. f'(x) \text{ has a maxima at } x = e \\ d. f(x) \text{ is a decreasing function}
\]

8. The value of \(\int_{0}^{\infty} \frac{2x^2 + 3x + 3}{(x+1)(x^2 + 2x + 2)} \, dx \) is

\[
a. \frac{\pi}{4} + 2 \log 2 - \tan^{-1} \frac{1}{3} \\ b. \frac{\pi}{4} + 2 \log 2 - \tan^{-1} \frac{1}{3} \\
c. 2 \log 2 - \cot^{-1} 3 \\ d. - \frac{\pi}{4} + \log 4 + \cot^{-1} 2
\]

9. If \(A_n = \int_{0}^{\pi/2} \frac{\sin(2n-1)x}{\sin x} \, dx \), then \(B_n = \int_{0}^{\pi/2} \left(\frac{\sin nx}{\sin x} \right)^2 \, dx \), for \(n \in N \), then

\[
a. A_{n+1} = A_n \\ b. B_{n+1} = B_n \\
c. A_{n+1} \neq A_n \\ d. B_{n+1} = B_n
\]

10. If \(f(x) = \int_{a}^{b} (f(x))^{-1} \, dx \) and \(\int_{a}^{b} (f(x))^{-1} \, dx = \sqrt{2} \), then

\[
a. f(2) = 2 \\ b. f'(2) = 1/2 \\
c. f'(2) = 2 \\ d. \int_{a}^{b} f(x) \, dx = \sqrt{2}
\]

11. The value of \(\int_{0}^{\infty} \frac{dx}{1 + x^4} \) is

\[
a. \text{as same as that of } \int_{0}^{\infty} \frac{x^2 + 1}{1 + x^4} \, dx \\ b. \pi \frac{\pi}{2\sqrt{2}}
\]
18. If \(I_0 = \int_0^a f(t) \, dt \) is equal to
 \[\int_0^x f(t) \, dt \]
 Then
 a. \(\int_0^x (x-u)f(u) \, du \)
 b. \(\int_0^x uf(x-u) \, du \)
 c. \(x \int_0^x f(u) \, du \)
 d. \(x \int_0^x uf(u) \, du \)

19. Which of the following statement(s) is/are true?
 a. If \(f(x) = \int_0^x f(t) \, dt \), where 0 \(\leq x \leq 2 \), then
 a. range of \(f(x) \) is \([0, 1]\)
 b. \(f(x) \) is differentiable at \(x = 1 \)
 c. \(f(x) = \cos^{-1} x \) has two real roots
 d. \(f'(1/2) = 1/2 \)
 \[\pi/4 \]

20. The value of \(\int_0^1 e^{2x-x^2} \, dx \) is
 a. \(< 1 \)
 b. \(> 1 \)
 c. \(> e^{-1/4} \)
 d. \(< e^{-1/4} \)

21. If \(f(x) = \int_0^x (\cos(x) + \sin(x)) \, dx \), then \(f(x + \pi) \) is
 a. \(f(x) + f(\pi) \)
 b. \(f(x) + 2f(\pi) \)
 c. \(f(x) + f\left(\frac{\pi}{2}\right) \)
 d. \(f(x) + 2f\left(\frac{\pi}{2}\right) \)

Reasoning Type: Solutions on page 8.66

Each question has four choices a, b, c, and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2.

a. if both the statements are TRUE and STATEMENT 2
 is the correct explanation of STATEMENT 1
b. if both the statements are TRUE but STATEMENT 2 is
 NOT the correct explanation of STATEMENT 1
c. if STATEMENT 1 is TRUE and STATEMENT 2 is
 FALSE
d. if STATEMENT 1 is FALSE and STATEMENT 2 is
 TRUE

1. Let \(f(x) \) is continuous and positive for \(x \in [a, b] \), \(g(x) \) is continuous for \(x \in [a, b] \) and

\[\int_a^b g(x) \, dx > \int_a^b g(x) \, dx \]

then

Statement 1: The value of \(\int_a^b f(x)g(x) \, dx \) can be zero.
Statement 2: Equation $g(x) = 0$ has at least one root for $x \in (a, b)$.

2. Statement 1: The value of $\int_{-a}^{a} \sin(x^2 - 3)dx + \int_{-a}^{a} \sin(x^2 + 12x + 33)$ is zero.

Statement 2: $\int_{a}^{b} f(x)dx = 0$ if $f(x)$ is an odd function.

3. Statement 1: The value of $\int_{0}^{1} \tan^{-1} \frac{2x - 1}{(1 + x - x^2)}dx = 0$.

Statement 2: $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a + b - x)dx$.

4. Statement 1: On the interval $\left[\frac{5\pi}{4}, \frac{4\pi}{3}\right]$, the least value of the function $f(x) = \int_{-\pi/4}^{x} (3\sin t + 4\cos t)dt$ is 0.

Statement 2: If $f(x)$ is a decreasing function on the interval $[a, b]$, then the least value of $f(x)$ is $f(b)$.

5. Consider the function $f(x)$ satisfying the relation $f(x + 1) + f(x + 7) = 0, \forall x \in R$.

Statement 1: The possible least value of t for which $\int_{a}^{a+t} f(x)dx$ is independent of a is 12.

Statement 2: $f(x)$ is a periodic function.

6. Consider $I_1 = \int_{0}^{\pi/4} e^x dx, I_2 = \int_{0}^{\pi/4} e^x dx$.

$I_3 = \int_{0}^{\pi/4} e^x \cos x dx, I_4 = \int_{0}^{\pi/4} e^x \sin x dx$.

Statement 1: $I_2 > I_1 > I_3 > I_4$.

Statement 2: for $x \in (0, 1), x > x^2$ and $\sin x > \cos x$.

7. Statement 1: Let m be any integer. Then the value of $\int_{0}^{\pi} \sin 2mx \sin x dx = 0$.

Statement 2: $\int_{0}^{\pi} \sin x dx = 0$.

8. Statement 1: $\int_{0}^{\pi/2} \sqrt{1 - \sin^2 x} dx = 0$.

Statement 2: $\int_{0}^{\pi/2} \cos x dx = 0$.

9. Statement 1: The value of $\int_{0}^{2\pi} \cos 99 x dx$ is 0.

Statement 2: $\int_{0}^{2\pi} f(x)dx = 2\int_{0}^{\pi} f(x)dx$, if $f(2\pi - x) = f(x)$.

10. Statement 1: $\int_{a}^{x} f(t)dt$ is an even function if $f(x)$ is an odd function.

Statement 2: $\int_{a}^{x} f(t)dt$ is an odd function if $f(x)$ is an even function.

11. Statement 1: $f(x)$ is symmetrical about $x = 2$, then $\int_{2-a}^{2+a} f(x)dx = 2 \int_{0}^{2} f(x)dx$.

Statement 2: If $f(x)$ is symmetrical about $x = b$, then $f(b - a) = f(b + a) \forall (a \in R)$.

12. Statement 1: The value of $\int_{0}^{\pi/4} \log(1 + \tan \theta) d\theta = \frac{\pi}{8} \log 2$.

Statement 2: The value of $\int_{0}^{\pi/2} \log \sin \theta d\theta = -\pi \log 2$.

13. Statement 1: The value of $\int_{0}^{\pi} \sin 100 x \cos 99 x dx$ is zero.

Statement 2: $\int_{a}^{b} f(x)dx = \int_{a}^{b+c} f(x - c)dx$ and for odd function $\int_{-a}^{a} f(x)dx = 0$.

14. Statement 1: $\int_{0}^{\pi/2} x \sin x \cos^2 x dx = \frac{\pi}{2} \int_{0}^{\pi/2} \sin x \cos^2 x dx$.

Statement 2: $\int_{a}^{b} x f(x)dx = \frac{a + b}{2} \int_{a}^{b} f(x)dx$.

15. Let f be a polynomial function of degree n.

Statement 1: There exist a number $x \in [a, b]$ such that $\int_{a}^{b} f(t)dt = \int_{a}^{b} f(t)dt$.

Statement 2: $f(x)$ is a continuous function.

16. Statement 1: $\int_{0}^{1} \sin x dx = 0$ for $x \in [0, 2\pi]$ is a non-differentiable function.

Statement 2: $|\sin x|$ is non-differentiable at $x = \pi$.

17. Statement 1: If $f(x)$ is continuous on $[a, b]$, then there exists a point $c \in (a, b)$ such that $\int_{a}^{b} f(x)dx = f(c)(b - a)$.

Statement 2: For $a < b$, if m and M are, respectively, the smallest and greatest values of $f(x)$ on $[a, b]$, then $m(b - a) \leq \int_{a}^{b} f(x)dx \leq (b - a)M$.

Based upon each paragraph, three multiple choice questions have to be answered. Each question has four choices a, b, c and d, out of which only one is correct.

For Problems 1–3

$y = f(x)$ satisfies the relation $\int_{a}^{x} f(t)dt = \frac{x^2}{2} + \frac{2}{x} \int_{a}^{x} f(t)dt$.

1. The range of $y = f(x)$ is
 a. $[0, \infty)$
 b. R
 c. $(-\infty, 0]$
 d. $[\frac{1}{2}, \frac{1}{2}]$
11. If \(f(x) \) is an even function, then
 a. \(\phi(x) \) is also an even function
 b. \(\phi(x) \) is an odd function
 c. If \(f(a-x) = -f(x) \), then \(\phi(x) \) is an even function
 d. If \(f(a-x) = f(x) \), then \(\phi(x) \) is an odd function
12. Least positive value of \(c \) if \(c, k, b \) are in A.P. is
 a. 0 b. 1 c. \(\alpha \) d. 2\alpha
13. If \(m, n \) are even integers and \(p, q \in R \), then \(\int_{p}^{q+ma} g(t)dt \) is equal to
 a. \(\int_{p}^{q} g(x)dx \) b. \((n-m) \int_{p}^{q} g(x)dx \)
 c. \(\int_{0}^{a} g(x)dx + (n-m) \int_{0}^{a} g(2x)dx \)
 d. \(\int_{p}^{q} g(x)dx + (n-m) \int_{p}^{a} g(x)dx \)

For Problems 14–17

Evaluating Integrals Dependent on a Parameter

Differentiate \(J \) with respect to the parameter within the sign of integrals taking variable of the integrand as constant. Now, evaluate the integral so obtained as a function of the parameter and then integrate the result to get \(I \). Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of \(I \).

14. The value of \(\int_{0}^{1} \frac{x^2 - 1}{\log x} dx \) is
 a. \(\log(a-1) \) b. \(\log(a+1) \)
 c. \(a \log(a+1) \) d. None of these
15. The value of \(\int_{0}^{\pi/2} \log(\sin^2 \theta + k^2 \cos^2 \theta) d\theta \), where \(k \geq 0 \), is
 a. \(\pi \log(1+k) + \pi \log 2 \) b. \(\pi \log(1+k) \)
 c. \(\pi \log(1+k) - \pi \log 2 \) d. \(\log(1+k) - \log 2 \)
16. The value of \(\frac{df}{da} \) where \(I = \int_{0}^{1/2} \frac{1 + \sin x}{1 - \cos x} \), then the value of \(\frac{df}{da} \) is
 a. \(\frac{\pi}{\sqrt{1 - a^2}} \) b. \(-\pi \sqrt{1 - a^2} \)
 c. \(\sqrt{1 - a^2} \) d. \(\frac{\sqrt{1 - a^2}}{\pi} \)
17. If \(\int_{0}^{\pi} \frac{dx}{(a - \cos x)} = \frac{\pi}{\sqrt{a^2 - 1}} \), then the value of \(\int_{0}^{\pi} \frac{dx}{(\sqrt{10} - \cos x)^3} \) is
 a. \(\frac{\pi}{81} \) b. \(\frac{7\pi}{162} \)
 c. \(\frac{7\pi}{81} \) d. None of these
18. The range of \(f(x) \) is

| a. \(\left[\frac{-\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right] \) | b. \(\left[-\frac{\sqrt{5}}{3}, \frac{\sqrt{5}}{3} \right] \) | c. \(\left[-\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2} \right] \) | d. None of these |

19. \(f(x) \) is not invertible for

| a. \(x \in \left[-\frac{\pi}{2} - \tan^{-1} \frac{1}{2}, \frac{\pi}{2} - \tan^{-1} \frac{1}{2} \right] \) | b. \(x \in \left[\tan^{-1} \frac{1}{2}, \pi + \tan^{-1} \frac{1}{2} \right] \) | c. \(x \in \left[\pi + \cot^{-1} 2, 2\pi + \cot^{-1} 2 \right] \) | d. None of these |

20. The value of \(\int_0^{\pi/2} f(x) \, dx \) is

| a. 1 | b. -2 | c. -1 | d. 2 |

Matrix-Match Type

Each question contains statements given in two columns which have to be matched. Statements a, b, c, d in column 1 have to be matched with statements p, q, r, s in column 2. If the correct match is a-p, a-s, b-r, c-p, and d-s, then the correctly bubbled 4x4 matrix should be as follows:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1. If \([\cdot]\) denotes the greatest integer function, then match the following columns:

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\int_{-1}^{1} [x + [x + [x]]] , dx)</td>
<td>p. 3</td>
</tr>
<tr>
<td>b. (\int_{0}^{1} ([x] + [-x]) , dx)</td>
<td>q. 5</td>
</tr>
<tr>
<td>c. (\int_{-\pi}^{\pi} \sin(x - [x]) , dx)</td>
<td>r. 4</td>
</tr>
<tr>
<td>d. (25 \int_{0}^{\pi/4} (\tan^6(x - [x]) + \tan^6(x - [x])) , dx)</td>
<td>s. -3</td>
</tr>
</tbody>
</table>

2. | Column 1 | Column 2 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\lim_{n \to \infty} \left[\frac{\frac{1}{n+1}}{\frac{1}{n+1}} \right])</td>
<td>p. (e - \frac{1}{2} e^2 - \frac{3}{2})</td>
</tr>
<tr>
<td>b. (f'(x) = f(x)) with (f(0) = 1) and (g) be the function satisfying (f(x) + g(x) = x^2), then the value of the integral (\int_0^1 f(x)g(x) , dx) is</td>
<td>q. (e^2)</td>
</tr>
<tr>
<td>c. (\int_0^\infty (1 + xe^x) , dx) is equal to</td>
<td>r. (e^2 - 1)</td>
</tr>
<tr>
<td>d. (\lim_{k \to 0} \frac{1}{k} \int_0^1 (1 + \sin 2x)^2 , dx) is equal to</td>
<td>s. (e^3)</td>
</tr>
</tbody>
</table>

3. | Column 1 | Column 2 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(x)) is an integrable function for (x \in \left[\frac{\pi}{6}, \frac{\pi}{3} \right]) and (I_1 = \int \sec^2 \theta f(2\sin 2\theta) , d\theta) and (I_2 = \int \csc^2 \theta f(2\sin 2\theta) , d\theta), then (I_1/I_2)</td>
<td>q. 1</td>
</tr>
<tr>
<td>b. (f(x+1) = f(3+x)) for (\forall , x), and the value of (\int_a^b f(x) , dx) is independent of (a) then the value of (b) can be</td>
<td>r. 2</td>
</tr>
<tr>
<td>c. The value of (\int_a^b \frac{\tan^{-1}[x^2]}{\tan^{-1}[x^2] + \tan^{-1}[25 + x^2 - 10x]}) (where ([\cdot]) denotes the greatest integer function) is</td>
<td></td>
</tr>
<tr>
<td>d. (I = \int_0^\infty \sqrt{x + \sqrt{x + \sqrt{x + \cdots}}} , dx) (where (x > 0), then ([I]) is equal to (where ([\cdot]) denotes the greatest integer function)</td>
<td></td>
</tr>
</tbody>
</table>
Solutions on page 8.72

1. Consider the polynomial \(f(x) = ax^2 + bx + c \). If \(f(0) = 0 \), \(f(2) = 2 \), then the minimum value of \(\int_0^2 |f'(x)| \, dx \) is

2. Consider a real valued continuous function \(f \) such that

\[
f(x) = \sin x + \int_{-\pi/2}^{x/2} (\sin x + \int f(t) \, dt) \, dt.
\]

If \(M \) and \(m \) are maximum and minimum value of the function \(f \), then the value of \(M/m \) is

3. A continuous real function \(f \) satisfies \(f(2x) = 3f(x) \) \(\forall x \in \mathbb{R} \). If \(\int_0^1 f(x) \, dx = 1 \), then the value of definite integral \(\int_0^2 f(x) \, dx \) is

4. Let \(f(x) = x^3 - \frac{3x^2}{2} + x + \frac{1}{4} \).

Then the value of \(\left(\int_{-\sqrt{3}}^{\sqrt{3}} f(f(x)) \, dx \right)^{-1} \) is

5. \(\lim_{n \to \infty} \frac{n^2}{2} x^n \) equals

6. Let \(f: [0, \infty) \to \mathbb{R} \) be a continuous strictly increasing function, such that \(f^9(x) = \int_0^x f^2(t) \, dt \) for every \(x \geq 0 \), then value of \(f(6) \) is

7. If the value of the definite integral \(\int_0^{2\pi} C_5 x^{200} (1-x)^7 \, dx \) is equal to \(\frac{1}{k} \) where \(k \in \mathbb{N} \), then the value of \(k/26 \) is

8. If \(I = \int_0^{3\pi/5} (1+x)^{\sin x + (1-x)(\cos x)} \, dx \), then the value of \((\sqrt{2} - 1) I \) is

9. If the value of \(\lim_{n \to \infty} \sum_{j=1}^{6n} \sqrt{j} \) is equal to \(\sqrt{N} \), then the value of \(N/12 \) is

10. If \(f \) is continuous function and

\[
F(x) = \int_0^x \left(2t + 3 \right) \int_0^t f(u) \, du \, dt,
\]

then \(|F''(2)/f'(2)| \) is equal to

11. If the value of the definite integral \(\int_0^{1/\sqrt{x}} \sin^{-1} \sqrt{x} \, dx = \frac{\pi^2}{\sqrt{n}} \)

\((\text{where } n \in \mathbb{N}) \), then the value of \(n/27 \) is

12. Let \(f(x) = \int_0^x \frac{dt}{\sqrt{1+t^2}} \) and \(g(x) \) be the inverse of \(f(x) \), then the value of \(4 - g^{-1}(x) \)

\((g(x))^2 \) is

13. If \(U_n = \int_0^x x^n (2-x)^n \, dx \) and \(V_n = \int_0^1 x^n (1-x)^n \, dx \) \(n \in \mathbb{N} \),

and if \(V_n = 1024 \), then the value of \(n \) is

14. If \(\int_0^m x^{2n+1} \cdot e^{-x^2} \, dx = 360 \), then the value of \(n \) is

15. Let \(f(x) \) is a derivable function satisfying

\[
f'(x) = \int_0^x \sin (x-t) \, dt \text{ and } g(x) = f''(x) - f(x),
\]

then the possible integers in the range of \(g(x) \) is

16. If \(F(x) = \int_0^1 x^4 (4t^2 - 2F'(t)) \, dt \), then \((9F'(4))/4 \) is

17. If \(\int_0^1 f(x) \, dx = 7 \), then \(\sum_{r=1}^{100} \int_0^1 f(r-1 + x) \, dx = \)

18. The value of \(\int_0^{2\pi} \frac{\left| \tan^{-1} \tan x \right| - \left| \sin^{-1} \sin x \right|}{\left| \tan^{-1} \tan x \right| + \left| \sin^{-1} \sin x \right|} \, dx \) is equal to

19. If \(I_n = \int_0^1 (1-x^5)^n \, dx \), then \(\frac{55}{7} \frac{I_{19}}{I_{11}} \) is equal to

20. The value of \(\int_0^{2010} x^{1004} (1-x)^{1004} \, dx \)

\(\int_0^{2010} x^{1004} (1-x^{2010})^{1004} \, dx \)
21. If \(f(x) = x + \int_0^t (x+t) f(t) \, dt \), then the value of \(\frac{23}{2} f(0) \) is equal to

22. The value of the definite integral \(\int_{-1}^2 \frac{x^4 + x + 2}{(x^2 + 1)^2} \, dx \) equals

23. Let \(J = \int_{-5}^{-4} (3x^2 - 2x) \tan(3x^2 - 2x) \, dx \) and \(K = \int_{-5}^{-4} (6x + x^2) \tan(6x - x^2 - 6) \, dx \), then \(J + K \) equals

24. Let \(g(x) \) be differentiable on \(R \) and \(\int_{\sin t} x^2 g(x) \, dx = (1 - \sin t) \), where \(t \in \left(0, \frac{\pi}{2} \right) \). Then the value of \(g \left(\frac{1}{\sqrt{2}} \right) \) is

Archives

Solutions on page 8.75

Subjective

1. Show that \(\lim_{n \to \infty} \left(\frac{1}{n + 1} + \frac{1}{n + 2} + \cdots + \frac{1}{6n} \right) = \log 6 \). (IIT-JEE, 1981)

2. Evaluate \(\int_0^1 (x + 1 - x)^n \, dx \), where \(n \) is a positive integer and \(t \) is a parameter independent of \(x \). Hence, show that \(\int_0^1 x^k (1 - x)^{n-k} \, dx = \binom{n}{k} \). (IIT-JEE, 1981)

3. Show that \(\int_0^\pi x f(\sin x) \, dx = \frac{\pi}{2} \int_0^\pi f(\sin x) \, dx \). (IIT-JEE, 1982)

4. Find the value of \(\int_{-1}^{3/2} |x \sin \pi x| \, dx \). (IIT-JEE, 1982)

5. Evaluate \(\int_0^{\pi/4} \sin x + \cos x \, dx \). (IIT-JEE, 1983)

6. Evaluate the following \(\int_0^{1/2} \frac{x^{1/2} \sin^{-1} x}{\sqrt{1 - x^2}} \, dx \). (IIT-JEE, 1984)

7. Given a function \(f(x) \) such that

 a. it is integrable over every interval on the real line, and
 b. \(f(t + x) = f(x) \), for every \(x \) and a real \(t \), then show that the integral \(\int_a^{a+t} f(x) \, dx \) is independent of \(a \).

8. Evaluate \(\int_0^{\pi/2} \frac{x \sin x \cos x}{\cos^2 x + \sin^2 x} \, dx \). (IIT-JEE, 1985)

9. Evaluate \(\int_0^\pi \frac{x \, dx}{1 + \cos x \sin x} \), where \(0 < x < \pi \). (IIT-JEE, 1986)

10. If \(f \) and \(g \) are continuous functions on \([0, a] \) satisfying \(f(x) = (a - x) \) and \(g(x) + g(a - x) = 2 \), then show that \(\int_0^a f(x) g(x) \, dx = \int_0^a f(x) \, dx \). (IIT-JEE, 1989)

11. Show that \(\int_0^\pi \frac{\sin 2x}{\sin x} \, dx = \sqrt{2} \int_0^\pi \frac{\cos 2x}{\cos x} \, dx \). (IIT-JEE, 1990)

12. Prove that for any positive integer \(k \), \(\frac{\sin 2kx}{\sin x} = 2 \cos x + \cos 3x + \cdots + \cos (2k - 1)x \). Hence, prove that \(\int_0^{\pi/2} \sin 2kx \cot x \, dx = \frac{\pi}{2} \). (IIT-JEE, 1990)

13. If \(f \) is a continuous function with \(\int_0^x f(t) \, dt \to \infty \) as \(|x| \to \infty \), then show that every line \(y = mx \) intersects the curve \(y^2 + \int_0^x f(t) \, dt = 2 \). (IIT-JEE, 1993)

14. Evaluate \(\int_0^\pi \frac{x \sin 2x \sin \left(\frac{\pi}{2} \cos x \right)}{2x - \pi} \, dx \). (IIT-JEE, 1991)

15. Determine a positive integer \(n \leq 5 \) such that \(\int_0^\pi e^x (x - 1)^n = 16 - 6e \). (IIT-JEE, 1992)

16. Evaluate \(\int_2^3 \frac{2x^3 + x^2 - 2x^2 + 2x + 1}{(x^2 + 1)(x^4 + 1)} \, dx \). (IIT-JEE, 1993)

17. Show that \(\int_0^{\pi + \nu} \sin x \, dx = 2n + 1 - \cos \nu \), where \(n \) is a positive integer and \(0 \leq \nu < \pi \). (IIT-JEE, 1994)

18. If \(U_n = \int_0^\pi \frac{1 - \cos nx}{1 - \cos x} \, dx \), where \(n \) is positive integer or zero, then show that \(U_{n+2} + 2U_n = 2U_{n+1} \). Hence, deduce that \(\int_0^\pi \frac{\sin^2 n \theta}{\sin^2 \theta} = \frac{1}{2} \). (IIT-JEE, 1995)

19. Evaluate the definite integral \(\int_{-1/\sqrt{5}}^{1/\sqrt{5}} \left(\frac{x^4}{1 - x^4} \right) \cos^{-1} \left(\frac{2x}{1 + x^2} \right) \, dx \). (IIT-JEE, 1995)
20. Evaluate \(\int_0^{\pi/4} \ln(1 + \tan x)\,dx \).

21. Let \(a + b = 4 \), where \(a < 2 \), and let \(g(x) \) be a differentiable function. If \(\frac{dg}{dx} > 0 \) for all \(x \), prove that \(\int_0^a g(x)\,dx + \int_0^b g(x)\,dx \) increases as \((b - a) \) increases.

22. Determine the value of \(\int_{-\pi}^\pi \frac{2x(1 + \sin x)}{1 + \cos^2 x}\,dx \).

23. Prove that \(\int_0^1 \tan^{-1} \left(\frac{1}{1-x+x^2} \right)\,dx = 2\int_0^1 \tan^{-1} x\,dx \).

Hence or otherwise, evaluate the integral \(\int_0^1 \tan^{-1}(1-x+x^2)\,dx \).

24. For \(x > 0 \), let \(f(x) = \int_0^x \log(1+t)\,dt \). Find the function \(f(x) + f \left(\frac{1}{x} \right) \) and find the value of \(f(e) + f \left(\frac{1}{e} \right) \).

25. If \(y(x) = \int_0^x \frac{\cos x}{\cos \sqrt{\theta}} \,d\theta \), then find \(\frac{dy}{dx} \) at \(x = \pi \).

26. Find the value of \(\int_{-\pi/3}^{\pi/3} \frac{\pi + 4x^3}{2 - \cos \left(|x| + \frac{\pi}{3} \right)}\,dx \).

27. Evaluate \(\int_0^\infty e^{\cos x} \left(2 \sin \frac{1}{2} \cos x \right) + 3 \cos \frac{1}{2} \cos x \sin x\,dx \).

28. Evaluate \(\frac{5050}{\int_0^1 \sqrt{1-x^{100}}\,dx} \).

Objective

Fill in the blanks

1. \(f(x) = \begin{vmatrix} \sec x & \cos x & \sec^2 x + \cot x \cosec x \\ \cos^2 x & \cos^x & \cosec^2 x \\ 1 & \cos^2 x & \cos^2 x \end{vmatrix} \)

Then \(\int_0^{\pi/2} f(x)\,dx = \quad \) (IIT-JEE, 1987)

2. The integral \(\int_0^{1.5} [x^2] \,dx \), where \([.]\) denotes the greatest integer function, equals \(\quad \) (IIT-JEE, 1988)

3. The value of \(\int_{-\frac{1}{2}}^{1} (1 - x^2) \,dx \) is \(\quad \) (IIT-JEE, 1989)

4. The value of \(\int_{\pi/4}^{3\pi/4} \frac{\phi}{1 + \sin \phi}\,d\phi \) is \(\quad \) (IIT-JEE, 1993)

5. The value of \(\int_2^\infty \frac{\sqrt{x}}{\sqrt{5} - x + \sqrt{x}}\,dx \) is \(\quad \) (IIT-JEE, 1994)

6. If for non-zero \(x, ax + b \left(\frac{1}{x} \right) = \frac{1}{x} - 5 \), where \(a \neq b \), then \(\int_2^1 f(x)\,dx = \quad \) (IIT-JEE, 1996)

7. For \(n > 0 \), \(\int_0^{2\pi} \frac{x \sin^n x}{\sin^n x + \cos^{2n} x}\,dx = \quad \) (IIT-JEE, 1996)

8. The value of \(\int_1^e \pi \sin \left(\pi \ln x \right) \,dx \) is \(\quad \) (IIT-JEE, 1997)

9. Let \(\frac{d}{dx} F(x) = \frac{e^{\sin x}}{x} \), \(x > 0 \). If \(\int_1^3 \frac{2e^{\sin x}}{x} \,dx = F(k) - F(1) \), then one of the possible value of \(k \) is \(\quad \) (IIT-JEE, 1997)

10. Let \(f : R \to R \) be a continuous function which satisfies \(f(x) = \int_0^x f(t)\,dt \). Then the value of \(f(5) \) is \(\quad \) (IIT-JEE, 2009)

11. The value of \(\int_0^{\pi/2} \frac{\pi^2}{\ln 3} \frac{1}{\sec(\pi x)}\,dx \) is \(\quad \) (IIT-JEE, 2011)

12. If \(\int_a^b \frac{1}{f(x) - 3x} \,dx = a^2 - b^2 \), then the value of \(f \left(\frac{\pi}{6} \right) \) is \(\quad \) (IIT-JEE, 2011)

True or false

1. The value of the integral \(\int_0^1 \left(\frac{1}{1 + e^{-x^2}} \right)\,dx \) is equal to \(a \).

Multiple choice questions with one correct answer

1. The value of the definite integral \(\int_0^1 \left(1 + e^{-x^2} \right)\,dx \) is
 a. \(-1 \) b. \(2 \) c. \(1 + e^{-1} \) d. None of these

2. Let \(a, b, c \) be non-zero real numbers such that
 \(\int_0^1 (1 + \cos^8 x) \left(ax^2 + bx + c \right)\,dx = \int_0^1 (1 + \cos^8 x) \left(ax^2 + bx + c \right)\,dx \).

Then, the quadratic equation \(ax^2 + bx + c = 0 \) has
3. The value of the integral \(\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\cot x + \sqrt{\tan x}}} \, dx \) is equal to
 a. \(\pi /4 \)
 b. \(\pi /2 \)
 c. \(\pi \)
 d. None of these (IT-JEE, 1981)

4. For any integer \(n \), the integral \(\int_{0}^{\pi} e^{n^2 x} \cos^3 (2n+1)x \, dx \) has the value
 a. \(\pi \)
 b. 0
 c. 1
 d. None of these (IT-JEE, 1985)

5. Let \(f: R \to R \) and \(g: R \to R \) be continuous functions. Then the value of the integral
 \(\int_{-\pi/2}^{\pi/2} [f(x) + f(-x)] \, [g(x) - g(-x)] \, dx \) is
 a. \(\pi \)
 b. 1
 c. -1
 d. 0 (IT-JEE, 1990)

6. The value of \(\int_{0}^{\pi/2} \frac{dx}{1 + \tan^3 x} \) is
 a. 0
 b. 1
 c. \(\pi /2 \)
 d. \(\pi /4 \) (IT-JEE, 1993)

7. If \(f(x) = A \sin \left(\frac{\pi x}{2} \right) + B \), \(f' \left(\frac{1}{2} \right) = \sqrt{2} \) and
 \(\int_{0}^{1} f(x) \, dx = \frac{2A}{\pi} \), then constants \(A \) and \(B \) are
 a. \(\frac{\pi}{2} \) and \(\frac{\pi}{2} \)
 b. \(\frac{2}{\pi} \) and \(\frac{3}{\pi} \)
 c. 0 and \(\frac{4}{\pi} \)
 d. \(\frac{4}{\pi} \) and 0 (IT-JEE, 1995)

8. The value of \(\int_{0}^{2\pi} [2 \sin x] \, dx \), where \([.]\) represents the greatest integral function, is
 a. \(-\frac{5\pi}{3} \)
 b. \(-\pi \)
 c. \(\frac{5\pi}{3} \)
 d. -2\pi (IT-JEE, 1995)

9. Let \(f \) be a positive function. Let \(I_1 = \int_{1-k}^{k} x f(x(1-x)) \, dx \),
 \(I_2 = \int_{1-k}^{k} f(x(1-x)) \, dx \), where \(2k-1 > 0 \). Then \(\frac{I_1}{I_2} \) is
 a. \(\frac{1}{2} \)
 b. \(k \)
 c. \(\frac{1}{2} \)
 d. 1 (IT-JEE, 1997)

10. If \(g(x) = \int_{0}^{x} \cos^4 t \, dt \), then \(g(x + \pi) \) equals
 a. \(g(x) + g(\pi) \)
 b. \(g(x) - g(\pi) \)
 c. \(g(x) g(\pi) \)
 d. \(\frac{g(x)}{g(\pi)} \) (IT-JEE, 1997)

11. \(\int_{\pi/4}^{3\pi/4} \frac{dx}{1 + \cos x} \) is equal to
 a. \(2 \)
 b. \(-2 \)
 c. 1/2
 d. -1/2 (IT-JEE, 1999)

12. If for a real number \(y \), \([y]\) is the greatest integral function less than or equal to \(y \), then the value of the integral
 \(\int_{\pi/2}^{3\pi/2} [2 \sin x] \, dx \) is
 a. \(-\pi \)
 b. 0
 c. \(-\pi/2 \)
 d. \(\pi/2 \) (IT-JEE, 1999)

13. Let \(g(x) = \int_{0}^{x} f(t) \, dt \), where \(f \) is such that \(\frac{1}{2} \leq f(t) \leq 1 \), for \(t \in [0, 1] \) and \(0 \leq f(t) \leq \frac{1}{2} \), for \(t \in [1, 2] \). Then \(g(2) \) satisfies the inequality
 a. \(-\frac{3}{2} \leq g(2) < \frac{1}{2} \)
 b. \(\frac{1}{2} \leq g(2) \leq \frac{3}{2} \)
 c. \(\frac{3}{2} < g(2) \leq \frac{5}{2} \)
 d. 2 < g(2) < 4 (IT-JEE, 2000)

14. If \(f(x) = \begin{cases} e^{n^2 x} \sin x, & \text{for } |x| \leq 2, \\ 0, & \text{otherwise} \end{cases} \), then \(\int_{-3}^{3} f(x) \, dx \) is equal to
 a. 0
 b. 1
 c. 2
 d. 3 (IT-JEE, 2000)

15. The value of the integral \(\int_{e^{2}}^{3} \left| \log_{2} x \right| \, dx \) is
 a. 3/2
 b. 5/2
 c. 3
 d. 5 (IT-JEE, 2000)

16. The value of \(\int_{-\pi}^{\pi} \cos^{2} x \, dx \), where \(\alpha > 0 \), is
 a. \(\pi \)
 b. \(\frac{\alpha}{\pi} \)
 c. \(\pi/2 \)
 d. 2\pi (IT-JEE, 2001)

17. Let \(f(x) = \int_{1}^{x} \sqrt{2 - t^2} \, dt \). Then the real roots of the equation \(x^2 - f'(x) = 0 \) are
 a. \(\pm 1 \)
 b. \(\frac{1}{\sqrt{2}} \)
 c. \pm \frac{1}{2}
 d. 0 and 1 (IT-JEE, 2002)

18. Let \(T > 0 \) be a fixed real number. Suppose \(f \) is continuous function such that for all \(x \in R, f(x + T) = f(x) \). If \(I = \int_{0}^{T} f(x) \, dx \), then the value of \(\int_{0}^{3T} f(2x) \, dx \) is
 a. \(3I \)
 b. 2I
 c. 3I
 d. 6I (IT-JEE, 2002)
19. The integral \(\int_{-\pi/2}^{\pi/2} \left(x + \ln \left(\frac{1+x}{1-x} \right) \right) dx \) is equal to (where \(\lfloor \cdot \rfloor \) represents the greatest integer function)

a. \(-\frac{1}{2}\)

b. 0

c. 1

d. 2\ln \left(\frac{1}{2} \right) \) (IIT-JEE, 2002)

20. If \(L(m, n) = \int_0^1 (1 + t)^n \, dt \), then the expression for \(L(m, n) \) in terms of \(m+1, n-1 \) is \(m, n \in N \)

a. \(\frac{2^n}{m+1} - \frac{n}{m+1} \)

b. \(\frac{n}{m+1} L(m+1, n-1) \)

c. \(\frac{2^n}{m+1} + \frac{n}{m+1} L(m+1, n-1) \)

d. \(\frac{m}{n+1} L(m+1, n-1) \) \) (IIT-JEE, 2003)

21. If \(f(x) = \int_x^{x^2+1} e^{-t^2} \, dt \), then \(f(x) \) increases in

a. \((0, 2)\)

b. no value of \(x \)

c. \((0, \infty)\)

d. \((-\infty, 0)\) \) (IIT-JEE, 2003)

22. If \(f(x) \) is differentiable and \(\int_0^x x f(x) \, dx = \frac{2}{5} t^5 \), then \(f \left(\frac{4}{25} \right) \) equals

a. \(2/5 \)

b. \(-5/2 \)

c. 1

d. \(5/2 \) \) (IIT-JEE, 2004)

23. The value of the integral \(\int_0^1 \frac{1-x}{1+x} \, dx \) is

a. \(\pi/2 + 1 \)

b. \(\pi/2 - 1 \)

c. \(-1 \)

d. \(1 \) \) (IIT-JEE, 2004)

24. \(\int_0^1 \{2x^3 + 3x^2 + 3x + 3(x+1)\cos(x+1)\} \, dx \) is equal to

a. \(-4 \)

b. 0

c. 4

d. \(6 \) \) (IIT-JEE, 2005)

25. Let \(f \) be a non-negative function defined on the interval \([0, 1] \). If \(\int_0^1 \left(f'(t) \right)^2 \, dt = \int_0^x f(t) \, dt \), \(0 \leq x \leq 1 \), and \(f(0) = 0 \), then

a. \(f \left(\frac{1}{2} \right) < \frac{1}{2} \) and \(f \left(\frac{1}{3} \right) > \frac{1}{3} \)

b. \(f \left(\frac{1}{2} \right) > \frac{1}{2} \) and \(f \left(\frac{1}{3} \right) > \frac{1}{3} \)

c. \(f \left(\frac{1}{2} \right) < \frac{1}{2} \) and \(f \left(\frac{1}{3} \right) < \frac{1}{3} \)

d. \(f \left(\frac{1}{2} \right) > \frac{1}{2} \) and \(f \left(\frac{1}{3} \right) < \frac{1}{3} \) \) (IIT-JEE, 2009)

26. The value of \(\int_0^1 \frac{x^4(1-x)^4}{1+x^2} \, dx \) is

a. \(\frac{22}{7} \pi \)

b. \(\frac{2}{105} \)

c. 0

d. \(\frac{71}{15} - \frac{3\pi}{2} \) \) (IIT-JEE, 2010)

27. Let \(f \) be a real-valued function defined on the interval \((-1, 1) \) such that \(e^x f(x) = 2 + \int_0^x \sqrt{x^2+1} \, dt \), for all \(x \in \) \((-1, 1) \) and let \(f^{-1} \) be the inverse function of \(f \). Then \(f^{-1}(2) \) is equal to

a. 1

b. \(1/3 \)

c. \(1/2 \)

d. \(1/\pi \) \) (IIT-JEE, 2010)

28. The value of \(\int \frac{\sqrt{x^3}}{\sqrt{x^2+\sin(6-x^2)}} \, dx \) is

a. \(\frac{1}{4} \ln \frac{3}{2} \)

b. \(\frac{1}{2} \ln \frac{3}{2} \)

c. \(\frac{3}{2} \)

d. \(\frac{1}{2} \ln \frac{3}{2} \) \) (IIT-JEE, 2011)

29. Let \(f \) : \([-1, 2] \rightarrow [0, \infty) \) be a continuous function such that \(f(x) = f(1-x) \) for all \(x \in [-1, 2] \). Let \(R_1 = \frac{1}{2} \int_{-1}^1 f(x) \, dx \), and \(R_2 = \int_{-1}^1 f(x) \, dx \).

a. \(R_1 = R_2 \)

b. \(R_1 = 3R_2 \)

c. \(2R_1 = R_2 \)

d. \(3R_1 = R_2 \)

Multiple choice questions with one or more than one correct answer

1. If \(\int_0^x f(t) \, dt = x + \int_x^1 f(t) \, dt \), then the value of \(f(1) \) is

a. \(1/2 \)

b. 0

c. \(-1/2 \) \) (IIT-JEE, 1998)

2. Let \(f(x) = x - [x] \), for every real number \(x \), where \([x] \) is the integral part of \(x \). Then \(\int_{-1}^1 f(x) \, dx \) is

a. \(1 \)

b. 2

c. 0

d. \(1/2 \) \) (IIT-JEE, 1998)

3. Let \(S_n = \sum_{k=0}^n \frac{n}{k^2 + kn + k^2} \) and \(T_n = \sum_{k=0}^{n-1} \frac{n}{k^2 + kn + k^2} \) for \(n = 1, 2, 3, \ldots \), then

a. \(S_n < \frac{\pi}{3\sqrt{3}} \)

b. \(S_n > \frac{\pi}{3\sqrt{3}} \)

c. \(T_n < \frac{\pi}{3\sqrt{3}} \)

d. \(T_n > \frac{\pi}{3\sqrt{3}} \) \) (IIT-JEE, 2008)

4. Let \(f(x) \) be a non-constant twice differentiable function defined on \((-\infty, \infty) \) such that \(f(x) = f(1-x) \) and \(f' \left(\frac{1}{4} \right) = 0 \), then

a. \(f(x) \) vanishes at least twice on \([0, 1] \)

b. \(f' \left(\frac{1}{2} \right) = 0 \)
c. \(\frac{1}{\sqrt{2}} \int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} f(x) \sin x \, dx = 0\).

d. \(\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} f(t) e^{\sin \pi t} \, dt = \int_{\frac{1}{2}}^{1} f(1-t) e^{\sin \pi t} \, dt\) (ITJEE, 2008)

5. If \(I_n = \int_{-\pi}^{\pi} \frac{\sin n \pi}{1 + \pi^2} \sin x \, dx, n = 0, 1, 2, ...,\) then

a. \(I_n = I_{n+2}\)

b. \(\sum_{m=1}^{10} I_{2m+1} = 10 \pi\)

c. \(\sum_{m=1}^{10} I_{2m} = 0\)

d. \(I_n = I_{n+1}\)

(ITJEE, 2009)

6. Let \(f\) be a real-values function defined on the interval \((0, \infty)\) by \(f(x) = \ln x + \int_{0}^{x} \frac{\sqrt{1+\tan t}}{\sqrt{1+\sin t}} \, dt\). Then which of the following statement(s) is (are) true?

a. \(f''(x)\) exists for all \(x \in (0, \infty)\)

b. \(f'(x)\) exists for all \(x \in (0, \infty)\) and \(f\) is continuous on \((0, \infty)\) but not differentiable on \((0, \infty)\)

c. there exists \(x_0 > 1\) such that \(|f'(x)| \leq |f(x)|\) for all \(x \in (x_0, \infty)\)

d. there exists \(\beta > 0\) such that \(|f(x)| + |f'(x)| \leq \beta\) for all \(x \in (0, \infty)\)

(ITJEE 2010)

Match the column type

1. Column I Column II

a. \(\int_{-1}^{1} \frac{dx}{1+x^2}\)

p. \(\frac{1}{2} \log \left(\frac{2}{3}\right)\)

b. \(\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}\)

q. \(2 \log \left(\frac{2}{3}\right)\)

c. \(\int_{2}^{3} \frac{dx}{1-x^2}\)

r. \(\frac{\pi}{3}\)

d. \(\int_{1}^{2} \frac{dx}{x\sqrt{x^2-1}}\)

s. \(\frac{\pi}{2}\)

(ITJEE, 2006)

Linked comprehension type

Let the definite integral be defined by the formula \(\int_{a}^{b} f(x) \, dx = \frac{b-a}{2} (f(a) + f(b))\). For more accurate result for \(c \in (a, b)\), we can use \(\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx = F(c)\) so that for \(c = \frac{a+b}{2}\), we get \(\int_{a}^{b} f(x) \, dx = \frac{b-a}{2} (f(a) + f(b) + 2f(c))\).

1. \(\int_{0}^{\pi/2} \sin x \, dx\) is equal to

a. \(\frac{\pi}{8} (1+\sqrt{2})\)

b. \(\frac{\pi}{4} (1+\sqrt{2})\)

c. \(\frac{\pi}{8\sqrt{2}}\)

d. \(\frac{\pi}{4\sqrt{2}}\)

2. If \(\lim_{x \to \infty} \frac{\int_{a}^{x} f(x) \, dx - \left(\frac{x-a}{2}\right)(f(x) + f(a))}{(x-a)^3} = 0\), then \(f(x)\) is of maximum degree

a. 4

b. 3

c. 2

d. 1

3. If \(f''(x) < 0\) \(\forall x \in (a, b)\) and \(c\) is a point such that \(a < c < b\), and \((c, f(c))\) is the point lying on the curve for which \(F(c)\) is maximum, then \(f'(c)\) is equal to

a. \(\frac{f(b) - f(a)}{b-a}\)

b. \(\frac{2(f(b) - f(a))}{b-a}\)

c. \(\frac{2f(b) - f(a)}{2b-a}\)

d. 0

(ITJEE, 2008)

Integer type

1. For any real number \(x\), let \([x]\) denote the largest integer less than or equal to \(x\). Let \(f\) be a real valued function defined on the interval \([-10, 10]\) by

\[f(x) = \begin{cases} x-[x] & \text{if } [x] \text{ is odd} \\ \frac{x-[x]}{1+[x]}-x & \text{if } [x] \text{ is even} \end{cases}\]

Then the value of \(\frac{\pi^2}{10} \int_{-10}^{10} f(x) \cos \pi x \, dx\) is

(ITJEE 2010)

2. Let \(y'(x) + y(x)g'(x) = g(x)g'(x), y(0) = 0, x \in R\), where \(f'(x)\) denotes \(\frac{df(x)}{dx}\) and \(g(x)\) is a given non-constant differentiable function on \(R\) with \(g(0) = g(2) = 0\), then the value of \(y(2)\) is
1. Let \(F(x) = \int_a^x f(t) \, dt \)

\[\therefore F(x + p) = \int_a^{x + p} f(t) \, dt = \int_a^x f(t) + \int_x^{x + p} f(t) \, dt \]

\[= F(x) + \int_x^{x + p} f(t) \, dt \]

Therefore, \(F(x + p) = F(x) \)

Observe, now we have to prove that \(\int_x^{x + p} f(t) \, dt \) is zero.

Given that \(f(x) \) has period \(p \), then \(\int_x^{x + p} f(t) \, dt = 0 \)

as given \(f(x) \) is an odd function.

Thus, \(F(x) \) is periodic with period \(P \).

2. \[I = \int_0^{\pi/2} \left(\frac{\theta}{\sin \theta} \right)^2 \, d\theta \]

\[= \int_0^{\pi/2} \theta^2 \csc^2 \theta \, d\theta \]

\[= \left[\theta^2 \cdot \cot \theta \right]_0^{\pi/2} - \int_0^{\pi/2} 2\theta \cdot (-\cot \theta) \, d\theta \]

(Integrating by parts)

\[= \left[\lim_{\theta \to 0} \theta^2 \cdot \cot \theta \right] + 2 \int_0^{\pi/2} \theta \cot \theta \, d\theta \]

\[= 0 + 2 \left[\left[\theta \ln \sin \theta \right]_0^{\pi/2} - \int_0^{\pi/2} \ln \sin \theta \, d\theta \right] \]

(Integrating by parts)

\[= 2 \left[-\lim_{\theta \to 0} \theta \ln \sin \theta - k \right] \]

\[= -2k \]

3. Let \(g(x) = 1 + x + x^2 + \cdots + x^{n-1} = \frac{x^n - 1}{x - 1} \)

\[\therefore f(n) = \int_0^1 g(x) \, dx = \frac{1}{0} \frac{x^n - 1}{x - 1} \, dx \]

Put \(x = \cos \theta \Rightarrow dx = -\sin \theta \, d\theta \)

\[\therefore f(n) = \int_0^{\pi/2} \frac{\cos^n \theta - 1}{\cos \theta - 1} \, d\theta \]

4. Given integral is \[\int_0^{\pi/4} \tan^{-1} \left(\frac{2 \cos^2 \theta}{2 - \sin 2\theta} \right) \sec^2 \theta \, d\theta \]

\[= \int_0^{\pi/4} \tan^{-1} \left(\frac{1}{\sec^2 \theta - \tan \theta} \right) \sec^2 \theta \, d\theta \]

Put \(\tan \theta = t \), then \(\sec^2 \theta \, d\theta = dt \)

The given integral reduces to

\[\int_0^{\pi/4} \tan^{-1} \left(\frac{1}{(1 + \tan^2 \theta) - \tan \theta} \right) \sec^2 \theta \, d\theta \]

\[= \int_0^{\pi/4} \tan^{-1} \left(\frac{1}{1 + t^2 - t} \right) \, dt \]

\[= \int_0^{\pi/4} \tan^{-1} \left(\frac{1}{t^2 - t} \right) \, dt \]

\[= \int_0^{\pi/4} \tan^{-1} \left(\frac{1}{(1 - t)(1 + t)} \right) \, dt \]

\[= \frac{1}{2} \int_0^{\pi/4} \tan^{-1} \left(\frac{1}{1 - t} \right) \, dt \]

5. For \(x \leq 1 \), \[\sin^{-1} \left(\frac{2x}{1 + x^2} \right) = 2 \tan^{-1} x \]

For \(x \geq 1 \), \[\sin^{-1} \left(\frac{2x}{1 + x^2} \right) = \sin^{-1} \left(\frac{2}{1 + \frac{1}{x^2}} \right) \]

\[= 2 \tan^{-1} (1/x) = 2 \cot^{-1} x \]
Hence, the given integral

\[
\int_0^\frac{\pi}{2} \frac{\sin^{-1} \left(\frac{2x}{1+x^2} \right)}{(1+x^2)} \, dx = \left. \frac{2}{1+x^2} \tan^{-1} x \right|_0^1 + \int_0^1 \frac{\sqrt{2}}{1+x^2} \, dx
\]

\[
= \left[(\tan^{-1} x)^2 \right|_0^1 - \left[(\cot^{-1} x)^2 \right|_0^1 = \frac{\pi^2}{16} - \left(\frac{\pi^2}{36} - \frac{\pi^2}{16} \right)
\]

\[
= \frac{\pi^2}{8} - \frac{\pi^2}{36} = \frac{7\pi^2}{72}
\]

6.

(a)

Graph of \(y = f(x) \)

(b)

Graph of \(y = f(x+1) \)

(c)

Graph of \(y = f(x-1) \)

Fig. 8.16

\[
\int_{-3}^{5} g(x) \, dx = \int_{-3}^{5} f(x-1) \, dx + \int_{-3}^{5} f(x-1) \, dx
\]

\[
= \text{Area of triangle in the graph } y = f(x-1) + \text{Area of triangle in the graph } y = f(x+1)
\]

\[
= 2 \frac{1}{2} (2)(1) = 2
\]

7. \(I = \int_0^a f(x) g(x) h(x) \, dx \)

8. Let \(I_n = \int_0^{\pi/2} x^n \sin x \, dx \)

Integrate by parts and choose \(\sin x \) as the second function.

Therefore, \(I_n = \left[x^n (-\cos x) \right]_0^{\pi/2} - \int_0^{\pi/2} n x^{n-1} (-\cos x) \, dx \)

\[
= 0 + n \int_0^{\pi/2} x^{n-1} \cos x \, dx
\]

Again integrating by parts, we get

\[
I_n = n \left[x^{n-1} \sin x \right]_0^{\pi/2} - n (n-1) \int_0^{\pi/2} x^{n-2} \sin x \, dx
\]

\[
\Rightarrow I_n = n \left(\frac{\pi}{2} \right)^{n-1} - n (n-1) I_{n-2}
\]

R.H.S. contains \(\pi^2 \). Therefore, put \(n = 3 \)

\[
I_3 = 3 \left(\frac{\pi}{2} \right)^2 - 3.2 I_1 = \frac{3\pi^2}{4} - 6 \left(\frac{\pi}{2} \right)^{\pi/2} \sin x \, dx
\]

\[
= \frac{3\pi^2}{4} - 6 \left[x (-\cos x) + \sin x \right]_0^{\pi/2}
\]

\[
= \frac{3\pi^2}{4} - 6 \{1\}
\]

\[
= \frac{3}{4} (\pi^2 - 8) \text{ which is true.}
\]

Hence, \(n = 3 \).

9. \(\int_0^{\pi/2} f(x) \, dx = \int_0^{\pi/2} \frac{\sin x}{x} \, dx \)

Let \(I = \left[f(x) \left(\frac{\pi}{2} - x \right) \right]_0^{\pi/2} \)

\[
I = \int_0^{\pi/2} f(x) \left(\frac{\pi}{2} - x \right) \, dx
\]
12. It is given that \(f(x+f(y)) = f(x+y) \)
Putting \(y = 0 \), we get \(f(x+f(0)) = f(x) + 0 \)
\(\Rightarrow f(x+1) = f(x) \)

Now, using the property,
\[
\int_0^a f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(2a-x) \, dx, \text{ we get}
\]
\[
\int_0^a f(2-x) \, dx = \int_0^a f(2-x) \, dx + \int_0^a f((2-2-x)) \, dx
\]
\[
= \int_0^a f(2-(1-x)) \, dx + \int_0^a f(x) \, dx
\]
\[
= \int_0^a f(1+x) \, dx + \int_0^a f(x) \, dx = 2 \int_0^a f(x) \, dx
\]

Alternative method
It is given that \(f(x+f(y)) = f(x+y) \)
Putting \(y = 0 \), we get \(f(x+f(0)) = f(x) + 0 \)
\(\Rightarrow f(x+1) = f(x) \)
\(\Rightarrow f(x) \) is periodic with period 1.

Now, \(I = \int_0^2 f(2-x) \, dx \)

Putting \(2-x = t \), we get
\[
\Rightarrow I = \int_0^2 f(t) \, dt = 2 \int_0^1 f(t) \, dt = 2 \int_0^1 f(x) \, dx
\]

13. Here, \(f'(x) = \frac{1}{x^2 + (f(x))^2} > 0 \forall x \geq 1 \)
\(\Rightarrow f(x) \) is an increasing function \(\forall x \geq 1 \)

Given \(f(1) = 1 \Rightarrow f(x) \geq 1 \forall x \geq 1 \)

Hence, \(f''(x) \leq \frac{1}{1 + x^2} \forall x \geq 1 \)

\[
\Rightarrow \int_1^x f''(x) \, dx \leq \int_1^x \frac{1}{1 + x^2} \, dx
\]
\[
\Rightarrow f(x) - f(1) \leq \tan^{-1} x -
\]
\[
\Rightarrow f(x) \leq \tan^{-1} x + 1 - \frac{\pi}{4}
\]
\[
\Rightarrow f(x) < \frac{\pi}{2} + 1 - \frac{\pi}{4} \text{ (as } \tan^{-1} x < \frac{\pi}{2} \forall x \geq 1 \text{)}
\]

i.e., \(f(x) < 1 + \frac{\pi}{4} \forall x \geq 1 \)

14. Given expression is
\[
x \int_0^x (1-t) \sin(f(t)) \, dt = 2 \int_0^x t \sin(f(t)) \, dt
\]

Differentiating w.r.t. x, we get
\[
\int_0^x (1-t) \sin(f(t)) \, dt + x(1-x) \sin(f(x)) = 2x \sin(f(x))
\]
\[\int (1-t) \sin[f(t)] dt = x^2 \sin[f(x)] + x \sin[f(x)] \]

Again differentiating w.r.t. \(x \), we get

\[(1-x) \sin[f(x)] = 2x \sin[f(x)] + x^2 \cos[f(x)] f'(x) \]

\[+ \sin[f(x)] + x \cos[f(x)] f'(x) \]

\[\Rightarrow -3x \sin[f(x)] = (x^2 - 2x) \cos[f(x)] f'(x) \]

\[\Rightarrow -3x = \cot[f(x)] f'(x) \]

\[\Rightarrow f'(x) \cot[f(x)] + \frac{3}{1+x} = 0 \]

15. Let \(I = \int \frac{dx}{(17+8x-4x^2)(e^{6(1-x)} + 1)} \) (Property IV)

Replace \(x \) with \(2-x \)

\[\Rightarrow I = \int \frac{dx}{(17+8(2-x)-4(2-x)^2)(e^{6(1-(2-x))} + 1)} \]

\[= \int \frac{dx}{2\left(17+8x-4x^2\right)} \left(e^{6(1-x)} + 1 \right) \]

Adding equations (1) and (2), we get

\[2I = \int \frac{dx}{2\left(17+8x-4x^2\right)(e^{6(1-x)} + 1)} \]

\[= \int \frac{dx}{17+8x-4x^2} \]

\[\Rightarrow I = \frac{1}{8} \left[\log \left(\frac{x-1+\sqrt{21}}{x-1-\sqrt{21}} \right) \right] \]

16. Let \(x = 1 + f \Rightarrow [x] = I \)

Now, \(I = \int_0^x x \ dx = \frac{t^2}{2} \), and

\[\int_0^x x \ dx = \int_0^x x \ dx = \int_0^x x \ dx = \frac{1}{2}x^2 + \frac{1}{2}x^2 + \cdots + \frac{1}{2}(x-1)^2 + \cdots + \frac{1}{2} \]

\[\Rightarrow \frac{I}{2} = \frac{1}{2}x^2 + \frac{1}{2}x^2 + \cdots + \frac{1}{2}(x-1)^2 + \cdots + \frac{1}{2} \]

\[\Rightarrow \int f(t) dt = \frac{I}{2} + I(f) \]

17. Given \(F(x) = \int \frac{x f(t) \ dt - \int \frac{f(t) \ dt}{x}}{2(2-x)} \) (1)

As \(f \) is continuous, hence \(F(x) \) is also continuous. Also, put \(x = a \).

\[F(a) = \left(\int \frac{b}{a} f(t) \ dt \right) \left(a - b \right) = b - a \int \frac{f(t) \ dt}{a} \]

and put \(x = b \)

\[F(b) = \int \frac{b}{a} f(t) \ dt \left(b - a \right) \]

Hence, Rolle's Theorem is applicable to \(F(x) \).

\[\exists \ some \ c \in (a, b) \ such \ that \ F'(c) = 0 \]

Now, \(F'(c) = 0 \)

\[F'(c) = \frac{f(c) \left(c + a \right)}{2} \cdot \left(a + b \right) - 2c \]

18. Here \(\int \sin x \ dx \) is the area under the curve from \(x = a \) to \(x = b \).

Also, the area from \(x = a \) to \(x = a + \pi \) is 2 square units. Hence \(b - a = 4\pi \).

Similarly, \(a + b = 9\pi \), i.e., \(a + b = \frac{9\pi}{2} \).

\[\Rightarrow a = \frac{\pi}{4}, \quad b = \frac{17\pi}{4} \]

Hence, \(\int_a^b \sin x \ dx = -\cos x \left|_{a}^{a=\frac{17\pi}{4}} \right. + \int_{\frac{17\pi}{4}}^{\frac{17\pi}{4}} \sin x \ dx \)

\[= \frac{-17\pi}{4} \cos \left(\frac{17\pi}{4} \right) + \frac{\pi}{4} \cos \left(\frac{\pi}{4} \right) - \frac{4\pi}{\sqrt{2}} - 2\sqrt{2}\pi \]

19. Given \(\int_a^b f(x) dx = \int_a^{a+t} f(x) dx \forall t \in R \)

\[\Rightarrow \int_a^b f(x) dx = \int_a^{a+t} f(x) dx \quad (\text{since } f(a) = 0 \text{ and } f(x) \text{ is monotonic}) \]
\[f(a - t) = f(a + t) \]
\[f(a - t) + f(a + t) = 0 \]
\[f(a + t) - f(a - t) = x \quad \text{(say)} \]
\[t = f^{-1}(x) - a \]
\[\text{and } t = a - f^{-1}(-x) \quad \text{(3)} \]

From equations (3) and (2), \((a - f^{-1}(x)) + (a - f^{-1}(-x)) = 0\)

\[\Rightarrow \int_{-\lambda}^{\lambda} f^{-1}(x) \, dx = \int_{-\lambda}^{\lambda} (f^{-1}(x) + f^{-1}(-x)) \, dx = 2a\lambda \]

Objective Type

1.b. \(\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left[\frac{1}{1 + \sqrt{n}} + \frac{1}{2 + \sqrt{2n}} + \cdots + \frac{1}{n + \sqrt{n^2}} \right] \)

\[= \lim_{n \to \infty} \frac{1}{n} \int_0^1 \frac{dx}{\sqrt{x + 1}} \]

Put \(\sqrt{x} = z \), \(z = 2\sqrt{x} \, dx = dz \)

\[\Rightarrow \lim_{n \to \infty} S_n = \int_0^1 \frac{2\,dz}{z + 1} = 2 \log(z + 1) \bigg|_0^1 \]
\[= 2(\log 2 - \log 1) = 2 \log 2 = \log 4 \]

2.c. \(\lim_{n \to \infty} \sum_{r=1}^{4n} \frac{\sqrt{n}}{\sqrt{r} \left(3\sqrt{r} + 4\sqrt{n} \right)^2} \)

\[T_r = \frac{1}{\sqrt{n} \left(3\sqrt{r} + 4\sqrt{n} \right)^2} \]

\(\Rightarrow S = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{4n} \frac{1}{\left(3\sqrt{r} + 4\sqrt{n} \right)^2} \sqrt{r} \)

\[= \frac{1}{3} \int_0^1 \frac{dx}{\sqrt{x(3\sqrt{x} + 4)^2}} \]

Put \(3\sqrt{x} + 4 = t \)

\[\Rightarrow \frac{3}{2} \frac{1}{\sqrt{x}} \, dx = dt \]

\[\Rightarrow \int_0^4 \frac{dt}{3t^2} = \int_0^1 \frac{1}{3} \frac{1}{\sqrt{t}} \bigg|_0^4 = \frac{1}{10} \]

3.d. \(I = \int_{a+c}^{b+c} f(x) \, dx \), putting \(x = t + c \)

\[\Rightarrow dx = dt, \text{ we get } I = \int_a^b f(t + c) \, dt = \int_a^b f(x + c) \, dx \]

\[I = \int_{ac}^{bc} f(x) \, dx \]

Putting \(x = tc \Rightarrow dx = c \, dt \)

we get \(I = c \int_a^b f(tc) \, dt = c \int_a^b f(cx) \, dx \)

\[f(x) = \frac{1}{2} (f(x) + f(-x) + f(x) - f(-x)) \]

\[\Rightarrow \int_a^b f(x) \, dx \]

\[= \frac{1}{2} \int_a^b (f(x) + f(-x)) \, dx + \frac{1}{2} \int_a^b (f(x) - f(-x)) \, dx \]

\[= \frac{1}{2} \int_a^b f(x) + f(-x) \, dx \]

as \(f(x) + f(-x) \) is even and \(f(x) - f(-x) \) is odd.

4.d. \(\int_0^1 \frac{dx}{\sqrt{t^2 - 1}} = \frac{\pi}{2} \)

\[\Rightarrow [\sec^{-1}] \frac{1}{\sqrt{2}} = \frac{\pi}{2} \]

\[\Rightarrow \sec^{-1} x - \sec^{-1} \sqrt{2} = \frac{\pi}{2} \]

\[\Rightarrow \sec^{-1} x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{4} \Rightarrow x = -\sqrt{2} \]

5.c. \(\int_{-\sqrt{2}}^{\sqrt{2}} e^x \left(2 - x^2 \right) \, dx \)

\[= \int_{-\sqrt{2}}^{0} e^x \left(1 - x^2 \right) + e^x \left(1 - x^2 \right) \, dx \]

\[= \int_{-\sqrt{2}}^{0} e^x \left(1 + \frac{1}{1 - x^2} \right) \, dx \]

\[= e^x \left(1 + \frac{1}{1 - x^2} \right) \bigg|_{-\sqrt{2}}^{0} \]

\[= \sqrt{3}e \]

6.a. \(\int_{-\pi}^\pi \sin nx \, \sin m x \, dx \)

\[= \int_0^\pi 2 \sin mx \, \sin nx \, dx \]

\[= \int_0^\pi \left(\cos (m - n)x - \cos (m + n)x \right) \, dx \]

\[= \frac{\sin (m - n)x}{m - n} - \frac{\sin (m + n)x}{m + n} \bigg|_{0}^{\pi} = 0 \]

7.a. \(\int_{0}^{\pi} x \log x \, dx \)

\[Let \, x = \frac{1}{t} \]
\[I = \int_{-\infty}^{\infty} \frac{\log(1/t)}{(1 + 1/t^2)^2} \, dt \]

\[= -\int_0^\infty \frac{t \log t}{(1 + t^2)^2} \, dt = -I \]

\[\Rightarrow I = 0 \]

8.c. Put \(x = a \sin \theta \), \(dx = a \cos \theta \, d\theta \)

When \(x = 0 \), \(\theta = 0 \); \(x = a, \theta = \frac{\pi}{2} \)

\[\therefore \text{given integral } I = \int_0^{\pi/2} a \cos \theta \, d\theta \]

\[= \int_0^{\pi/2} \cos \theta \, d\theta = \pi \]

Also, \[I = \int_0^{\pi/2} \cos \left(\frac{\pi}{2} - \theta \right) \, d\theta = \int_0^{\pi/2} \sin \theta \, d\theta = \frac{\pi}{2} \]

\[\therefore I = \frac{\pi}{4} \]

9.b. \(\int_0^{\pi/2} \sin x \cos x \, dx \)

\[= \int_0^{\pi/4} \sin x \cos x \, dx + \int_{\pi/4}^{\pi/2} \sin x \cos x \, dx \]

\[= \left[\sin^2 x \right]_0^{\pi/4} + \left[-\cos x \sin x \right]_0^{\pi/4} \]

\[= \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1 - 0 \right) - \left(-0 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) \]

\[= \frac{4}{\sqrt{2}} - 2 = 2\sqrt{2} - 2 = 2(\sqrt{2} - 1) \]

10.a. Let \(I = \int_0^{\pi} \frac{x \tan x}{\sec x + \cos x} \, dx \)

\[= \int_0^\pi \frac{(\pi - x) \tan (\pi - x)}{\sec (\pi - x) + \cos (\pi - x)} \, dx \]

\[= \int_0^\pi \frac{(\pi - x) \tan x}{\sec x + \cos x} \, dx \]

Adding equations (1) and (2) gives

\[2I = \pi \int_0^\pi \frac{\tan x}{\sec x + \cos x} \, dx \]

\[= \frac{\pi}{\cos x} \int_0^\pi \sin x \, dx = \pi \int_0^\pi \frac{\sin x}{1 + \cos^2 x} \, dx \]

Put \(\cos x = z \), therefore \(-\sin x \, dx = dz \).

When \(x = 0 \), \(z = 1 \); \(x = \pi, z = -1 \)

\[\therefore 2I = \pi \int_{-1}^1 \frac{dz}{1 + z^2} = \pi \int_{-1}^1 \frac{dz}{1 + z^2} \]

\[= \pi \left| \tan^{-1} z \right|_{-1}^1 = \pi [\tan^{-1} 1 - \tan^{-1} (-1)] \]

\[= \pi \left(\frac{\pi}{4} + \frac{\pi}{4} \right) = \frac{\pi^2}{4} \]

\[\therefore I = \frac{\pi^2}{4} \]

11.c. We have \(\int_0^4 (3 - f(x)) \, dx = 7 \)

\[\Rightarrow 6 - \frac{4}{2} \int_0^2 f(x) \, dx = 7 \Rightarrow 4 \int_0^2 f(x) \, dx = -1 \]

Now,

\[\int_{-1}^{-1} f(x) \, dx = \left[\int_{-1}^{4} f(x) \, dx + \int_{-1}^{-1} f(x) \, dx \right] \]

\[= -[4 + 1] = -5 \]

12.c. We have \(\int_0^1 e^{x^2} (x - \alpha) \, dx = 0 \)

\[\Rightarrow \int_0^1 e^{x^2} x \, dx = \int_0^1 e^{x^2} \alpha \, dx \]

\[\Rightarrow \int_0^1 e^{t^2} \, dt = \alpha \int_0^1 e^{x^2} \, dx \], where \(t = x^2 \)

\[\Rightarrow \frac{1}{2} (e - 1) = \alpha \int_0^1 e^{x^2} \, dx \] \hspace{1cm} (1)

Since, \(e^{x^2} \) is an increasing function for \(0 \leq x \leq 1 \), therefore,

\[1 \leq e^{x^2} \leq e \] when \(0 \leq x \leq 1 \).

\[\Rightarrow 1(1 - 0) \leq \int_0^1 e^{x^2} \, dx \leq e(1 - 0) \]

\[\Rightarrow 1 \leq \int_0^1 e^{x^2} \, dx \leq e \] \hspace{1cm} (2)

From equations (1) and (2), we find that L.H.S. of equation (1) is positive and \(\int_0^1 e^{x^2} \, dx \) lies between 1 and \(e \). Therefore, \(\alpha \) is a positive real number.

Now, from equation (1), \(\alpha = \frac{1}{2} \frac{(e - 1)}{\int_0^1 e^{x^2} \, dx} \) \hspace{1cm} (3)

The denominator of equation (3) is greater than unity and the numerator lies between 0 and 1. Therefore, \(0 < \alpha < 1 \).

13.a. Putting \(a = 2, b = 3, c = 0 \), we get

\[\int_0^\infty \frac{dx}{(x^2 + 4)(x^2 + 9)} = \frac{\pi}{2(2 + 3)(3 + 0)(0 + 2)} = \frac{\pi}{60} \]

14.c. Given integral
\[I = \int_0^{\pi/2} \frac{dx}{x + \cos \alpha} \]

\[= \int_0^{\pi/2} \frac{\sec^2 \theta d\theta}{\cos \theta + \sin \theta} = \frac{\pi}{4} \]

19.a. Putting \(x = \tan \theta \), we get

\[\int_0^{\pi/2} \frac{dx}{x + \sqrt{x^2 + 1}} = \int_0^{\pi/2} \frac{\sec^2 \theta d\theta}{(1 + \sin \theta)^3} d\theta \]

\[= \frac{\pi}{4} \frac{\cos \theta}{(1 + \sin \theta)^3} d\theta \]

\[= \left[\frac{1}{2(1 + \sin \theta)^2} \right]_0^{\pi/2} = \frac{3}{8} \]

20.c. I = \int_0^{\pi/2} \frac{\sin x dx}{1 + \sin x + \cos x} = \int_0^{\pi/2} \frac{\cos x dx}{1 + \sin x + \cos x}

\[\Rightarrow 2I = \int_0^{\pi/2} \frac{\sin x + \cos x + 1}{\sin x + \cos x + 1} dx \]

\[\Rightarrow 2I = \frac{\pi}{2} - \log 2 \]

\[\Rightarrow I = \frac{\pi}{4} - \frac{1}{2} \log 2 \]

21.b. \(I_1 = \int_{-100}^{101} \frac{dx}{(5 + 2x - 2x^2)(1 + e^{2x})} \)

\[= \int_{-100}^{101} \frac{dx}{5 + 2(1 - x) - 2(1 - x)^2(1 + e^{2(1 - x)})} \]

\[\Rightarrow 2I_1 = \int_{-100}^{101} \frac{dx}{5 + 2x - 2x^2} = I_2 \]

\[\Rightarrow \frac{I_1}{I_2} = \frac{1}{2} \]

22.c. \(f(x) = \frac{e^x}{1 + e^x} \)

\[\because f(a) = \frac{e^a}{1 + e^a} \text{ and } f(-a) = \frac{e^{-a}}{1 + e^{-a}} \]

\[= \frac{1}{1 + e^a} = \frac{1}{1 + e^{-a}} \]

\[\Rightarrow f(a) + f(-a) = \frac{e^a + 1}{1 + e^a} = 1 \]

Let \(f(-a) = \alpha \).

Now, \(I_1 = \int_a^{1-a} \frac{x g(x(1-x)) dx}{\alpha} \)

\[= \int_0^{1-a} \frac{(1-x)g((1-x)(1-(1-x))) dx}{\alpha} \]

\[= \int_0^{1-a} \frac{(1-x)g(x(1-x)) dx}{\alpha} \]
\[2l = \int_1^\alpha g(x)(1-x)\,dx = I_2 \quad \Rightarrow I_2 = 2\]

3.a. We have \(f(y) = e^y, g(y) = y; y > 0\)

\[F(t) = \int_0^t f(t-y)g(y)\,dy = \int_0^t e^{t-y}y\,dy = \int_0^t e^{t-y}y\,dy = e^t \left[\frac{-y e^{-y}}{0} + \int_0^t e^{-y}\,dy \right] = e^t \left[-t e^{-y} - e^{-y} \right]_0 = e^t (-t - e^{-t} + 1) = e^t(1 + t)\]

\[\int_0^{\pi/2} \cos(x^2)\,2xe^x\,dx\]

Put \(e^x = t \Rightarrow e^x\,2x\,dx = dt\)

\[\Rightarrow I = \int_1^{e^{\pi/2}} \sin t\,dt = \left[\sin t \right]_1^{\pi/2} = 1 - (\sin 1)\]

5.a. \[\int_1^{1+\sqrt{2}} \frac{1 + \frac{1}{x^2} - \log(1 + x - \frac{1}{x})}{x^2 - 1} dx\]

\[= \int_1^{1+\sqrt{2}} \frac{1 + \frac{1}{x^2} - \log\left(1 + x - \frac{1}{x}\right)}{x^2 - 1 + 1} dx\]

Put \(x - \frac{1}{x} = t \quad \Rightarrow \left(1 + \frac{1}{x^2}\right)\,dx = dt\)

If \(x = 1, t = 0\), and \(x = \sqrt{5} + 1, t = 1\)

\[\Rightarrow I = \int_0^{1+\sqrt{2}} \frac{\ln(1 + t)}{1 + t^2} dt \quad \Rightarrow t = \tan \theta \quad \Rightarrow dt = \sec^2 \theta d\theta\]

\[I = \int_0^{\pi/4} \ln(1 + \tan \theta)\,d\theta = \frac{\pi}{8} \log_2 e\]

5.c. As \(f(x)\) satisfies the conditions of Rolle's theorem in \([1, 2]\), \(f(x)\) is continuous in the interval and \(f(1) = f(2)\).

Therefore, \(\int_1^2 f'(x)\,dx = \int_1^2 f(x)\,dx = f(2) - f(1) = 0\)

\[\int_1^2 \left(\tan^{-1} \frac{x}{\sqrt{x^2 + 1}} + \tan^{-1} \frac{x^2 + 1}{x} \right) dx\]

\[= \int_0^1 \left(\tan^{-1} \frac{x}{\sqrt{x^2 + 1}} + \tan^{-1} \frac{x^2 + 1}{x} \right) dx\]

\[= \int_0^1 \left(\tan^{-1} \frac{x}{\sqrt{x^2 + 1}} + \tan^{-1} \frac{x^2 + 1}{x} \right) dx + \int_0^3 \left(\tan^{-1} \frac{x}{\sqrt{x^2 + 1}} + \tan^{-1} \frac{x^2 + 1}{x} \right) dx\]

\[= \int_0^1 \frac{\pi}{2} dx + \int_0^3 \frac{\pi}{2} dx\]

\[= \left[-\frac{\pi}{2} x \right]_0^1 + \left[\frac{\pi}{2} x \right]_0^3\]

\[= \pi\]

28.c. The polynomial function is differentiable everywhere. Therefore, the points of extremum can only be the roots of the derivative. Further, the derivative of a polynomial is a polynomial. The polynomial of the least degree with roots \(x = 1\) and \(x = 3\) has the form \(a(x - 1)(x - 3)\).

Hence, \(P'(x) = a(x - 1)(x - 3)\).

Since at \(x = 1\), we must have \(P(1) = 6\), we have

\[P(x) = \int_1^x P'(x)\,dx + 6 = a \int_1^x (x^2 - 4x + 3)\,dx + 6\]

\[= a \left[\frac{x^3}{3} - 2x^2 + 3x \right]_1^3 + 6\]

\[= a \left[\frac{1}{3} - 2 + 3 - 1 + 6 \right] + 6\]

\[= a \left[\frac{1}{3} - 2 + 3 - 1 \right] + 6\]

\[= a \left[\frac{1}{3} - 2 + 3 - 1 \right] + 6\]

\[= a \left[\frac{1}{3} - 2 + 3 - 1 \right] + 6\]

\[= a \left[\frac{1}{3} - 2 + 3 - 1 \right] + 6\]

Also, \(P(3) = 2\) so \(a = 3\). Hence, \(P(x) = x^3 - 6x^2 + 9x + 2\).

Thus, \(\int_0^x P(x)\,dx = \frac{1}{4} - 2 + \frac{9}{2} + 2 = \frac{19}{4}\)

29.d. Since \(a^2 l_1 - 2al_2 + l_3 = 0\)

\[\Rightarrow \int_0^1 (a - x)^2 f(x)\,dx = 0\]

Hence, no such positive function \(f(x)\).

30.b. \[I = \int_0^\infty \sqrt{\tan x}\,dx\]

\[= \pi/2 \sqrt{\cot x}\,dx\]

Adding equations (1) and (2), we get

\[2I = \int_0^\infty \left(\sqrt{\tan x} + \sqrt{\cot x} \right)\,dx\]

\[= \sqrt{2} \int_0^\infty \sqrt{\sin x + \cos x - dx}\]

\[= \sqrt{2} \int_0^\infty \frac{\sin x + \cos x}{\sqrt{1 - (\sin x - \cos x)^2}}\,dx\]

\[= \sqrt{2} \int_{1-\sqrt{1-t^2}}^1 \frac{dt}{\sqrt{1-t^2}}\]

\[= 2\sqrt{2} \int_0^1 \frac{dt}{\sqrt{1-t^2}} = \sqrt{2} \pi\]

\[\Rightarrow I = \frac{\pi}{\sqrt{2}}\]

31.a. Let \(I = \int_1^3 \sin 2x\,dx\)

Put \(2x = t, \quad \Rightarrow dx = \frac{dt}{2}\)
8.52 Calculus

$$I = \frac{2}{\pi} \int_{0}^{\pi/2} \frac{\sin t}{t} \, dt = \frac{6}{\pi} \sin \frac{t}{2} \, dt$$

But given \(\int \frac{\sin x}{x} \, dx = F(x) \)

$$\Rightarrow \int_{0}^{\pi/2} \frac{\sin t}{t} \, dt = F(6) - F(2)$$

32.b. \[\int_{0}^{1} \cot^{-1}(1-x+x^2) \, dx \]

$$= \int_{0}^{1} \tan^{-1}(1-x-x^2) \, dx$$

$$= \int_{0}^{1} \tan^{-1}(x+1-x-x^2) \, dx$$

$$= \int_{0}^{1} \tan^{-1}(1-x-x^2) \, dx$$

$$= \int_{0}^{1} \tan^{-1}(1-x) \, dx + \int_{0}^{1} \tan^{-1}(1-x) \, dx$$

$$= 2 \int_{0}^{1} \tan^{-1}(x) \, dx = \lambda = 2$$

33.a. Let \(I = \int_{-\pi/4}^{\pi/4} \frac{\sin x + \cos x}{e^{x/4} + 1} \, dx \)

$$\Rightarrow I = \int_{-\pi/4}^{\pi/4} \frac{\sqrt{2} \cos \left(\frac{x}{4} - \frac{\pi}{4} \right)}{e^{x/4} + 1} \, dx$$

Putting \(x - \frac{\pi}{4} = t \) \(\Rightarrow dx = dt \)

$$\Rightarrow I = \int_{-\pi/4}^{\pi/4} \frac{\sqrt{2} \cos t}{e^{\pi/4} + 1} \, dt \quad (1)$$

Replacing \(t \) by \(\pi + (-\pi) - t \) or \(-t\), we get

$$I = \int_{-\pi/4}^{\pi/4} \frac{\sqrt{2} \cos(-t)}{e^{\pi/4} + 1} \, dt$$

$$= \int_{-\pi/4}^{\pi/4} \frac{\sqrt{2} \cos t}{e^{\pi/4} + 1} \, dt \quad (2)$$

Adding equations (1) and (2), we get

$$2I = \sqrt{2} \left(\int_{-\pi/4}^{\pi/4} \cos t \, dt \right) \Rightarrow I = 0$$

34.a. \(f(2-\alpha) = f(2+\alpha) \)

$$\Rightarrow \text{function is symmetric about the line } x = 2.$$

$$\int_{-\alpha}^{\alpha} f(x) \, dx = 2 \int_{0}^{\alpha} f(x) \, dx$$

35.c. Since \(e^x \) is an increasing function on \((0, 1) \), therefore \(m = e^0 = 1, M = e^1 = e(m \text{ and } M \text{ are minimum and maximum values of } f(x) = e^x \text{ in the interval } (0, 1)) \)

$$\Rightarrow 1 < e^x < e, \text{ for all } x \in (0, 1)$$

$$\Rightarrow 1(1-0) < \int_{0}^{1} e^x \, dx < e(1-0)$$

$$\Rightarrow 1 < \int_{0}^{1} e^x \, dx < e$$

36.a. \(I_2 = \int_{-\pi/4}^{\pi/4} \ln(\sin x + \cos x) \, dx \)

$$= \int_{0}^{\pi/2} \ln(\sin x + \cos x) \, dx + \int_{0}^{\pi/2} \ln(\sin x - \cos x) \, dx$$

$$= \int_{0}^{\pi/4} \ln(\sin x + \cos x) \, dx + \int_{0}^{\pi/4} \ln(\sin x - \cos x) \, dx$$

$$= \int_{0}^{\pi/4} \ln(\cos^2 x - \sin^2 x) \, dx$$

$$= \int_{0}^{\pi/4} \ln(\cos x) \, dx$$

Putting \(2x = t \), i.e., \(\frac{dt}{2} = dx \), we get

$$I_2 = \frac{1}{2} \int_{0}^{\pi/2} \ln(\cos t) \, dt = \frac{1}{2} \int_{0}^{\pi/2} \ln(\cos \left(\frac{\pi}{2} - t \right)) \, dt$$

$$= \frac{1}{2} \int_{0}^{\pi/2} \ln(\sin t) \, dt$$

37.c. \(I_1 = \int_{0}^{\pi/2} \frac{\cos^2 x}{1 + \cos^2 x} \, dx \)

$$= \int_{0}^{\pi/2} \frac{\cos^2 (\pi/2 - x)}{1 + \cos^2 (\pi/2 - x)} \, dx$$

$$= \int_{0}^{\pi/2} \frac{\sin^2 x}{1 + \cos^2 x} \, dx$$

Also \(I_1 + I_2 = \int_{0}^{\pi/2} \left(\frac{\sin^2 x}{1 + \sin^2 x} + \frac{\cos^2 x}{1 + \cos^2 x} \right) \, dx \)

$$= \int_{0}^{\pi/2} \frac{\sin^2 x + \cos^2 x}{1 + \sin^2 x + \cos^2 x} \, dx$$

$$= \int_{0}^{\pi/2} \frac{1}{1 + \sin^2 x + \cos^2 x} \, dx$$

$$= \int_{0}^{\pi/2} \frac{1}{2 + \sin^2 x + \cos^2 x} \, dx = 2I_3$$

$$2I_1 = 2I_3 \Rightarrow I_1 = I_3 \Rightarrow I_1 = I_2 = I_3$$

38.a. \(\sum_{r=1}^{n} \int_{0}^{1} f(r+1+x) \, dx \)

$$= \int_{0}^{1} f(x) \, dx + \int_{0}^{1} f(1+x) \, dx + \int_{0}^{1} f(2+x) \, dx + \cdots + \int_{0}^{1} f(n-1+x) \, dx$$

$$= \int_{0}^{1} f(x) \, dx + \int_{0}^{1} f(x) \, dx + \int_{0}^{1} f(x) \, dx + \cdots + \int_{0}^{1} f(x) \, dx$$

$$= \int_{0}^{1} f(x) \, dx$$

39.e. \(I_1 = \int_{0}^{\pi/2} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx \)

$$= \int_{0}^{\pi/2} \frac{\sin \left(\frac{\pi}{2} - x \right) - \cos \left(\frac{\pi}{2} - x \right)}{1 + \sin \left(\frac{\pi}{2} - x \right) \cos \left(\frac{\pi}{2} - x \right)} \, dx$$
\[I_1 = 0 \]

\[I_2 = 2 \int_0^\pi \cos^6 x \, dx = 2 \int_0^\pi \cos^6 x \, dx \neq 0 \]

40.c. \[I = \int \frac{f(x)}{g(x)} \, dx = \int \frac{f(x) - f(-x)}{g(x) + g(-x)} \, dx \]

\[= \int \frac{- \frac{f(x)}{g(x)} \, dx}{g(x) + g(-x)} = 0 \]

(as function inside the integration is odd)

41.b. \[I = 2 \int_0^\pi \sin x \, dx = 4 \int_0^\pi \frac{\sin x}{1 + \cos^2 x} \, dx = 4 \frac{\pi^2}{4} = \pi^2 \]

42.c. \[\int_0^a \frac{f(x)}{g(x)} \, dx = 0 \]

\[\Rightarrow \lim_{n \to \infty} \left[n^5 \right] = \frac{7}{5} \]

\[\Rightarrow \frac{a}{1 - a} = \frac{14}{5} \]

\[\Rightarrow 5a = 14 - 14a \]

\[\Rightarrow a = \frac{14}{19} \]

43.c. \[f(x) = \int_0^{\pi/2} \frac{t \sin t}{\sqrt{1 + \tan^2 t} \sin^2 t} \, dt \]

Replacing \(t \) by \(\pi - t \) and then adding \(f(x) \) with equation (1).

\[f(x) = \frac{\pi}{2} \int_0^{\pi/2} \frac{\sin t}{\sqrt{1 + \tan^2 t} \sin^2 t} \, dt \]

\[= \pi \int_0^{\pi/2} \frac{\sin t}{\sqrt{1 + \tan^2 t} x(1 - \cos^2 t)} \, dt \]

\[= \pi \int_0^{\pi/2} \frac{\sin t}{\sqrt{\sec^2 x - \tan^2 x} \cos^2 t} \, dt \]

Let \(y = \cos t \)

\[\Rightarrow dy = -\sin t \, dt \]

\[\Rightarrow f(x) = \pi \int_0^{\pi/2} \frac{dy}{\sqrt{\sec^2 x - (\tan^2 x) y^2}} \]

44.c. \[I = \int_{-\pi/4}^{\pi/4} \frac{dx}{\sqrt{2(e^{x} - \pi/4) + 1} \cos(x - \pi/4)} \]

Putting \(x = \frac{\pi}{4} - t \), we get

\[\Rightarrow I = \frac{1}{\sqrt{2}} \int_{-\pi/2}^{\pi/2} e^{2t} \, dt \]

\[= \frac{1}{\sqrt{2}} \int_{-\pi/2}^{\pi/2} e^{2t} \, dt \]

Adding, we get \(2I = \frac{1}{\sqrt{2}} \int_{-\pi/2}^{\pi/2} \sec t \, dt \)

\[\Rightarrow I = \frac{1}{2\sqrt{2}} \int_{-\pi/2}^{\pi/2} \sec t \, dt \]

45.a. \[\text{For } x \in \left(-\frac{\pi}{3}, 0\right), 2 \cos x - 1 > 0 \]

\[\Rightarrow I = \int_0^{\pi/2} \frac{dx}{1 + \cos^2 x} = \frac{\pi^2}{6} \]

46.a. \[\int_0^{\pi/2} \left(\frac{\sin x}{x} \right) \, dx \]

\[= \int_0^{\pi/2} \frac{\sin x}{x} \, dx \]

\[= \int_0^{\pi/2} \frac{\sin x}{1 + x^2} \, dx \]

\[= \int_0^{\pi/2} \frac{\sin x}{1 + y^2} \, dy \]

47.d. \[f(x) = \cos (\tan^{-1} x) \]

\[\Rightarrow f'(x) = -\frac{\sin (\tan^{-1} x)}{1 + x^2} \]

\[\Rightarrow I = \int_0^x f'(x) \, dx \]

\[= \frac{1}{2\sqrt{2}} \int_0^x f(x) \, dx \]

Now \(f(0) = 1 \); \(f'(1) = -\frac{1}{2\sqrt{2}} \); \(f(1) = \frac{1}{\sqrt{2}} \)

\[\Rightarrow I = \frac{3}{2\sqrt{2}} \]
48.a. Given \(f'(1) = \tan \pi/6, \quad f'(2) = \tan \pi/3, \quad f'(3) = \tan \pi/4 \)

Now, \[\int \frac{f'(x)}{x} dx = \frac{1}{2} \left(\frac{f'(x)}{x} \right)^2 - \frac{f'(x)}{x} \int f'(x) dx \]

\[= \frac{(f'(x))^2}{2} - \frac{f'(x)}{2} + \frac{f'(x)}{x} \int f'(x) dx \]

\[= \frac{(f'(3))^2 - (f'(2))^2}{2} + \frac{f'(3) - f'(1)}{2} \]

\[= \frac{1}{2} \left(\frac{1}{2} - \frac{3}{2} \right) + \frac{1}{1 - \sqrt{3}} - \frac{1}{\sqrt{3}} \]

\[= \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \]

49.b. \[\int_0^1 \left(\frac{\tan^{-1} x}{x} + \log x \right) dx \]

\[= \int_0^1 \frac{\tan^{-1} x}{x} dx + \int_0^1 \log x dx \]

\[= \int_0^1 \tan^{-1} x \cos x dx + \int_0^1 \log x dx \]

\[= \left[-\tan^{-1} x \right]_0^1 + \left[x \log x - x \right]_0^1 \]

\[= \left(-\frac{\pi}{4} \right) + \left(0 \right) - \left(0 \right) = -\frac{\pi}{4} \]

50.b. \[\int_0^\pi (f(x) + f''(x)) \sin x dx \]

\[= \int_0^\pi f(x) \sin x dx + \int_0^\pi f''(x) \sin x dx \]

\[= \left(\int_0^\pi \cos x dx \right) + \int_0^\pi f''(x) \cos x dx \]

\[= f(\pi) + f(0) = 5 \quad \text{(given)} \]

\[\Rightarrow f(0) = 5 - f(\pi) = 5 - 2 = 3 \]

51.b. \[I_1 = \int_0^\pi \sqrt{x} dx \]

putting \(t = \sqrt{x} \), i.e., \(dt = \frac{dx}{2\sqrt{x}} \)

\[\Rightarrow dt = 2t e^t \]

\[\Rightarrow \int e^t \sqrt{x} dx \]

\[= \int_0^\pi 2t e^t dt \]

\[= 2 \left[e^t \right]_0^\pi = 2e^\pi - 2e - 2 \]

52.c. \[\int_0^\pi \frac{e^{\sin x}}{2(1 + e^{\tan x})} \cos x dx \]

\[= \left[\frac{e^{\sin x}}{2(1 + e^{\tan x})} \cos x + \frac{e^{\sin x}}{2(1 + e^{\tan x})} \right]_0^\pi \]

\[= \frac{\pi}{2} e^{\sin x} \cos x \]

53.d. \[\int_0^\pi \frac{x^4}{\sqrt{a^2 - x^2}} dx \]

\[= \frac{\pi}{4} \left(\frac{3a^2 - x^2}{a^2 - x^2} \right) \]

\[= \frac{3}{2} \left(\frac{\pi}{4} \right) \left(\frac{3a^2 - x^2}{a^2 - x^2} \right) \]

\[= \frac{3}{2} \left(\frac{\pi}{4} \right) \left(\frac{3a^2 - x^2}{a^2 - x^2} \right) \]

\[= \frac{3}{2} \left(\frac{\pi}{4} \right) \left(\frac{3a^2 - x^2}{a^2 - x^2} \right) \]

\[= \frac{a^2}{2} \int_0^\pi \frac{x^2}{\sqrt{a^2 - x^2}} dx \]

\[= \frac{a^2}{2} \int_0^\pi \cos x dx \]

\[= \frac{a^2}{2} \left[\cos x \right]_0^\pi \]

\[= \frac{a^2}{2} \left(\cos \pi - \cos 0 \right) \]

\[= \frac{a^2}{2} \left(-1 - 1 \right) \]

\[= \frac{a^2}{2} \left(-2 \right) \]

\[= \frac{a^2}{2} \]

54.a. \[I = \int_0^\pi \frac{\sin x}{x} dx \]

Put \(x = y/2 \)

\[\Rightarrow I = \int_0^{\pi/2} \frac{\sin y}{y+2} dy \]

\[= -\left(\cos y \right)_{y=0}^{y=\pi/2} \int_0^{\pi/2} \frac{\cos y}{y+2} dy \]

\[= -\left(\cos y \right)_{y=0}^{y=\pi/2} \int_0^{\pi/2} \cos y \frac{1}{y+2} dy \]

\[= \left(\frac{\pi}{2} \right) \]

55.a. \[I = \int_0^\pi (y^2 - 4y + 5) \sin(y-2) dy \]

\[= \left(\frac{\pi}{2} \right) \]

56.a. Putting \(x \tan \theta = z \sin \theta \) \(\Rightarrow dx = \cos \theta dz \)

\[\Rightarrow I = \cos \theta \int_0^\pi f(x \sin \theta) dx \]

\[= \int_0^\pi f(x \sin \theta) dx \]

57.c. \[I_2 = \int \frac{x^2}{1+x} dx \]

\[= \left(\frac{3}{2} \right) \left(\frac{x^3}{x^3} \right) \]

\[= \left(\frac{3}{2} \right) \left(\frac{x^3}{x^3} \right) \]

\[= \left(\frac{3}{2} \right) \left(\frac{x^3}{x^3} \right) \]

\[= \left(\frac{3}{2} \right) \left(\frac{x^3}{x^3} \right) \]

\[= \left(\frac{3}{2} \right) \left(\frac{x^3}{x^3} \right) \]

\[= \left(\frac{3}{2} \right) \left(\frac{x^3}{x^3} \right) \]

\[= \left(\frac{3}{2} \right) \left(\frac{x^3}{x^3} \right) \]
Put \(2\pi - \frac{t}{2} = z\)

\[\therefore -\frac{1}{2} dt = dz, \text{ i.e., } dt = -2 \, dx\]

When \(t = 4\pi - 2, z = 2\pi - 2\pi + 1 = 1\)

When \(t = 4\pi, z = 2\pi - 2\pi = 0\)

\[\Rightarrow I = \frac{1}{2} \int_0^{\pi/2} \frac{\sin (2\pi - z)}{1 + z} \, (-2 \, dx)\]

\[= \int_0^1 -\sin z \, dz = -\int_0^1 \frac{\sin t}{1 + t} \, dt = -\alpha\]

59.d. \(I = \int_0^{\tan^{-1} x} \frac{dx}{x}\)

Putting \(x = \tan \theta \Rightarrow dx = \sec^2 \theta \, d\theta\)

\[\Rightarrow I = \int_0^{\pi/4} \frac{\theta}{\tan \theta} \sec^2 \theta \, d\theta\]

\[= \int_0^{\pi/4} \frac{2\theta}{\sin 2\theta} \, d\theta\]

Putting \(2\theta = t, \text{ i.e., } 2\, d\theta = dt, \)

we get

\[I = \frac{1}{2} \int_0^{\pi/2} \frac{t}{\sin^2 t} \, dt\]

\[= \frac{1}{2} \int_0^{\pi/2} \frac{x}{\sin x} \, dx\]

60.a. \(I_k = \int_1^e (\ln x)^k \, dx = \left| x(\ln x)^k \right|_1^e - k \left(\int_1^e (\ln x)^{k-1} \, dx \right)\)

\[\Rightarrow I_1 = e - k I_{k-1}\]

\[= e - 4(e - 4I_0)\]

\[= 9e - 24\]

\(\therefore I_1 = 1\)

61.c. Putting \(x = \frac{1}{1+y}, \Rightarrow dx = -\frac{1}{(1+y)^2} \, dy\)

we get

\[l(m, n) = \int_0^1 x^{m-1}(1-x)^{n-1} \, dx\]

\[= \int_0^1 \frac{1}{(1+y)^{m-1}} \left(1 - \frac{1}{1+y}\right)^{n-1} \, dy\]

\[= \int_0^1 \frac{y^{n-1}}{(1+y)^{m+n}} \, dy = \int_0^1 \frac{x^{n-1}}{(1+x)^{m+n}} \, dx\]

Since, \(l(m, n) = l(n, m)\)

Therefore, \(l(m, n) = \int_0^1 \frac{x^{m-1}}{(1+x)^{m+n}} \, dx = \int_0^1 \frac{x^{n-1}}{(1+x)^{m+n}} \, dx\)

62.c. We have \(I_{n+1} = I_n = 2\int_0^\pi \cos(n+1)x \, dx = 0\)

\[\therefore I_{n+1} = I_n = I_{n+1} = \ldots = I_0 = I_n = \pi \text{ for all } n \geq 0\]

63.b. \(\sin nx - \sin(n - 2)x = 2 \cos(n - 1)x \sin x\)

\[\Rightarrow \int_0^{\pi/2} \frac{\sin nx}{\sin x} \, dx = \int_0^\pi 2 \cos(n - 1)x \, dx + \int_0^{\pi/2} \frac{\sin(n - 2)x}{\sin x} \, dx\]

\[\therefore \frac{\pi/2}{\sin x} \, dx = \int_0^\pi 2 \cos 4x \, dx + \int_0^{\pi/2} \frac{\sin 3x}{\sin x} \, dx\]

64.a. \(I_3 = \int_0^\pi e^x (\sin x)^3 \, dx\)

\[= e^x (\sin x)^3 \bigg|_0^\pi - 3 \int_0^\pi (\sin x)^2 \cos x \, e^x \, dx\]

\[= 0 - 3(\sin x)^2 \cos x \, e^x \bigg|_0^\pi + 3 \int_0^\pi 2 \sin x \cos x \, \cos x \cdot e^x \, dx\]

\[= 0 + 3 \int_0^\pi \sin x \cos^2 x \, e^x \, dx - 3 \int_0^\pi \sin^3 x \, e^x \, dx\]

\[= 6 \int_0^\pi \sin x(1 - \sin^2 x) \, e^x \, dx - 3 \int_0^\pi \sin^3 x \, e^x \, dx\]

\[= 6 \int_0^\pi \sin x(e^x - e^x) \, dx - 3 \int_0^\pi \sin^3 x \, e^x \, dx\]

\[= 6 \int_0^\pi \sin x \, e^x \, dx - 9 \int_0^\pi \sin^2 x \, e^x \, dx\]

\[= 6I_1 - 9I_3\]

\[\Rightarrow 10I_3 = 6I_1\]

\[\Rightarrow I_3 = \frac{3}{5}\]

65.b. \(I_m = \int_1^e \left(\log x \right)^m \, dx\)

\[= \left[x \left(\log x \right)^{m-1} \right]_1^e - \int_1^e \frac{m \left(\log x \right)^{m-1}}{x} \, dx\]

(integrating by parts)

\[= e - e \left[x \left(\log x \right)^{m-1} \right]_1^e - \int_1^e \frac{m \left(\log x \right)^{m-1}}{x} \, dx\]

\[= e - e \left[x \left(\log x \right)^{m-1} \right]_1^e - m \int_1^e \frac{\left(\log x \right)^{m-1}}{x} \, dx\]

Replacing \(m\) by \(m-1\)

\[I_{m-1} = e - (m-1)I_{m-2}\]

From equations (1) and (2), we have

\[I_m - mI_{m-1} = e(1-m)\]

\[\Rightarrow \frac{I_m}{1-m} + mI_{m-2} = e\]

\[\Rightarrow K = 1 - m \text{ and } L = \frac{1}{m}\]

66.a. The graph with solid line is the graph of \(f(x) = x\) and the graph with dotted lines is the graph of \(f(x) = -x\). Now
the graph of \(\min(\{x\}, \{-x\}) \) is the graph with dark solid lines.

\[
\int_{-100}^{100} f(x) \, dx = \text{area of 200 triangles shown as solid dark lines in the diagram} = 200 \cdot \frac{1}{2} \cdot (1) = 100.
\]

67.c. Put \(x - 0.4 = t \), then
\[
\int_{0.6}^{3.6} |t| \, dt = \int_{0.6}^{3.6} t \, dt = \left[\frac{t^2}{2} \right]_{0.6}^{3.6} = \frac{3}{2} = 1.5
\]

68.b. Let \(I = \int_{a}^{b} f(x) \, dx \), \(a > 0 \)

Let \(a = k + h \), where \([a] = k \), and \(0 \leq h < 1 \)

\[
\int_{a}^{b} f(x) \, dx = \int_{1}^{2} f'(x) \, dx + \int_{2}^{3} f'(x) \, dx + \cdots + \int_{k+1}^{k+h} f'(x) \, dx + \int_{k+h}^{\infty} f'(x) \, dx
\]

\[
= f(1) - f(2) - f(3) - \cdots - f(k) + k f(k+h)
\]

\[
= [a]/(a) - f(1) + f(2) + \cdots + f([a])
\]

69.c. \(I = \int_{[0,2\pi]}^{\pi} [\cos(t)] \, dt = \int_{0}^{2\pi} [\cos(t)] \, dt + \int_{0}^{\pi} [\cos(t)] \, dt
\]

\[
= n \pi + 0 + (x - 2\pi + \pi/2) (-1) = n \pi + 2\pi + \pi/2 - x
\]

\[
= (2n+1)\pi/2 - x
\]

![Fig. 8.18](image)

70.a. \(f(x) = \int_{0}^{1} \frac{dt}{1 + |x - t|} = \int_{0}^{1} \frac{dt}{1 + x - t} + \int_{x}^{1} \frac{dt}{1 - x + t}
\]

\[
\Rightarrow f'(x) = \frac{1}{1 + x - t} - \frac{1}{1 - x + t} = 0
\]

71.c. \(f(x) = \int_{2}^{1} \frac{dt}{\sqrt{1 + t^4}}
\]

\[
\Rightarrow f'(x) = \frac{1}{\sqrt{1 + x^4}} = \frac{dy}{dx}
\]

Now \(g'(x) = \frac{dx}{dy} = \frac{1}{\sqrt{1 + x^4}} \)

when \(y = 0 \), i.e., \(x = 2 \)

Hence, \(g'(0) = \sqrt{1 + 16} = \sqrt{17} \)

72.b. \(I = \int_{0}^{\pi/2} (x(3-x)(4+x)(x-6)(10-x)+\sin(x) \, dx)
\]

\[
= \int_{0}^{\pi/2} ((6-x)(3-(6-x))(4+(6-x))(6-(6-x)) \, dx)
\]

\[
= \int_{0}^{\pi/2} ((6-x)(x-3)(10-x)x(4+x)\sin(6-x)) \, dx
\]

Adding equations (1) and (2), we get

\[
2I = \int_{0}^{\pi/2} (\sin x + \sin(6-x)) \, dx
\]

\[
= \cos x + \cos(6-x)
\]

\[
= \cos 4 + \cos 2 - \cos 4
\]

\[
= 2\cos 2 - 4\cos 4
\]

\[
\Rightarrow I = \cos 2 - 4\cos 4
\]

73.c. \(\frac{dx}{dt} = -\sin t \cos t = t \cos t
\]

\[
\text{and } \frac{dy}{dt} = \frac{\sin t}{\sqrt{1 - \cos^2 t}} = \frac{\sin t}{\sin t} = \frac{\sin t}{\sqrt{t}} = \frac{\sin t}{\sqrt{2t^2}}
\]

74.a. \(f(x) = \cos x - \int_{0}^{x} f(t) \, dt
\]

\[
\Rightarrow f(x) = \cos x - x\int_{0}^{x} f(t) \, dt + \int_{0}^{x} f'(t) \, dt
\]

\[
\Rightarrow f'(x) = -\sin x - xf(x) - \int_{0}^{x} f(t) \, dt + xf(x)
\]

\[
\Rightarrow f''(x) = -\sin x - f(x)
\]

\[
\Rightarrow f'''(x) = -\cos x - f(x)
\]

\[
\Rightarrow f^{(n)}(x) = -\cos x - f(x)
\]

75.c. \(f^2(x) = \int_{0}^{\pi/2} f(t) \frac{\cos t}{2 + \sin t} \, dt
\]

\[
\Rightarrow 2f(x)f'(x) = \frac{\cos x}{2 + \sin x}
\]

\[
\text{(differentiating w.r.t. } x \text{ using Leibnitz rule)}
\]

\[
\Rightarrow 2f'(x) = \frac{-\sin x}{2 + \sin x} [\text{as } f(x) \text{ is not zero everywhere}]
\]

\[
\Rightarrow 2\int f'(x) \, dx = \int \frac{-\sin x}{2 + \sin x} \, dx
\]

\[
\Rightarrow 2f(x) = \log(2 + \sin x) + \log C.
\]

Put \(x = 0 \) we have \(2f(0) = \log 2 + \log C \), or \(\log C = -\log 2 \)

\[
\Rightarrow f(x) = \frac{1}{2} \left(\frac{2 + \sin x}{2} \right); x \neq n \pi, n \in I
\]

76.a. \(\lim_{x \to 0} \frac{\int_{x}^{y} e^{x \sin t} \, dt + \int_{x}^{y} x \sin x \, dx}{0} = \lim_{x \to 0} \frac{1}{x} \int_{x}^{y} e^{x \sin t} \, dt
\]

\[
\text{(0 form)}
\]
Apply l'Hospital Rule
\[e^{\sin^2(x+y)} \left(1 + \frac{dy}{dx}\right) - e^{\sin^2 y} \frac{dy}{dx} = \lim_{x \to 0} \frac{e^{\sin^2 y} \left[1 + \frac{dy}{dx} - \frac{dy}{dx}\right]}{1} = e^{\sin^2 y} \left[1 + \frac{dy}{dx} - \frac{dy}{dx}\right] = e^{\sin^2 y} \]

77.a. \(f(x) = \int_0^x e^t \, dt \Rightarrow f(1) = 0 \) and \(f'(x) = \frac{e^x}{x} \)
Let \(g(x) = f(x) - \ln(x), x \in \mathbb{R}^+ \)
\[g'(x) = f'(x) - \frac{1}{x} = \frac{e^x - 1}{x} > 0 \quad \forall x \in \mathbb{R}^+ \]
\[g(x) \text{ is increasing for } x \in \mathbb{R}^+, \]
g(1) = f(1) - \ln 1 = 1 - 0 = 0
\[g(x) > 0 \quad \forall x > 1 \text{ and } g(x) \leq 0 \quad \forall x \in (0, 1] \]
\[\ln x \leq f(x) \quad \forall x \in (0, 1] \]

78.a. \[\int_0^x f(t) \, dt = x + \frac{1}{x} \int_0^x f(t) \, dt \]
\[\Rightarrow \frac{d}{dx} \left(\int_0^x f(t) \, dt \right) = \frac{d}{dx} \left(x + \frac{1}{x} \int_0^x f(t) \, dt \right) \]
\[\Rightarrow f(x) = 1 + 0 - xf(x) \quad \text{[using Leibnitz's Rule]} \]
\[\Rightarrow f(x) = 1 - xf(x) \]
\[\Rightarrow f(x) = \frac{1}{x + 1} \Rightarrow f(1) = \frac{1}{2} \]

79.b. \[\int_{\cos x}^1 t^2 f(t) \, dt = 1 - \cos x \]
Differentiating both sides w.r.t. x
\[\frac{d}{dx} \int_{\cos x}^1 t^2 f(t) \, dt = \frac{d}{dx} (1 - \cos x) \]
\[\Rightarrow \cos^2 x f(\cos x) (\sin x) = 1 - \sin x \]
\[\Rightarrow \cos^2 x f(\cos x) \sin x = \sin x \]
\[\Rightarrow f(\cos x) = \frac{1}{\cos^2 x}. \]
Now, \(f \left(\frac{\sqrt{3}}{4} \right) \) is attained when \(\cos x = \frac{\sqrt{3}}{4} \)
\[f \left(\frac{\sqrt{3}}{4} \right) = \frac{16}{3} = 5.33 \]
\[\left[f \left(\frac{\sqrt{3}}{4} \right) \right] = 5 \]

80.a. \[\int_0^1 t^2 \, dt = x \cos \pi x \]
\[\Rightarrow \frac{1}{3} \left[f(x) \right] = x \cos \pi x \]
\[\Rightarrow \left[f(x) \right]^3 = 3x \cos \pi x \]
\[\Rightarrow [f(9)]^3 = -27 \]
\[\Rightarrow f(9) = -3 \]

Also, differentiating equation (1) w.r.t. x, we get
\[[f(x)]^3 f'(x) = \cos \pi x - x \pi \sin \pi x \]
\[\Rightarrow [f(9)]^3 f'(9) = -1 \]
\[\Rightarrow f'(9) = -\frac{1}{(f(9))^3} = \frac{1}{9} \]

81.b. Given \(x f(x) = x + \int_0^x f(t) \, dt \)
\[f(x) + xf'(x) = 1 + f(x) \]
\[\Rightarrow f'(x) = \log|x| + c \]
\[f(1) = 1 \Rightarrow f(x) = \log|x| + 1 \]
\[\Rightarrow f(e^3) = 0 \]

82.c. Given \(A = \int_0^1 x^{50} (2-x)^{50} \, dx = \int_0^1 x^{50} (1-x)^{50} \, dx \)
In A, put \(x = 2t \Rightarrow dx = 2dt \)
\[\Rightarrow A = 2 \int_0^{1/2} 2^{50} t^{50} 2^{50} (1-t)^{50} \, dt \quad (1) \]

Now, \(B = \int_0^{1/2} x^{50} (1-x)^{50} \, dx \quad (2) \)
\[\left[\text{using } \int_0^a f(x) \, dx = 2 \int_0^a f(x) \, dx \text{ if } f(2a-x) = f(x) \right] \]
From equations (1) and (2), we get
\[A = 2^{100} B \]

83.d. The given integrand is a perfect differential coeff. of
\[\prod_{r=1}^n (x+r) \]
\[\Rightarrow I = \left[\prod_{r=1}^n (x+r) \right]_0^n = (n+1)! - n! = n \cdot n! \]

84.a. \[\int_{-20\pi}^{20\pi} |\sin x| \, [\sin x] \, dx \]
\[= \int_{-20\pi}^{20\pi} |\sin x| ([\sin x] + [-\sin x]) \, dx \]
\[= -20 \int_0^{\pi} (\sin x) \, dx = -20 (-\cos x)_0^\pi = 20 (-2) = -40 \]

85.b. \[\left| \int_a^b \frac{f(x)}{x} \, dx - (b-a) f(a) \right| \]
\[= \left| \int_a^b f(x) \, dx - \int_a^b f(a) \, dx \right| \]
\[= \left| \int_a^b (f(x) - f(a)) \, dx \right| \]
8.56 Calculus

\[b \leq \int_{a}^{b} |f(x) - f(a)| \, dx \leq \int_{a}^{b} (x-a)^2 \, dx = \frac{(b-a)^2}{2} \]

86.a. On integrating by parts taking \(\sin^2 x \) as first function and \(\frac{1}{x} \) as second function, we get

\[\int_{0}^{\infty} \frac{\sin^2 x}{x} \, dx = \left[\sin x \left(-\frac{1}{x} \right) \right]_{0}^{\infty} - \int_{0}^{\infty} 2 \sin x \cos x \left(-\frac{1}{x} \right) \, dx \]

Now, \(\lim_{x \to 0} \sin x \left(-\frac{1}{x} \right) = 0 \), and

\[\lim_{x \to \infty} \sin x \left(-\frac{1}{x} \right) = 0 \]

Thus, \(\int_{0}^{\infty} \frac{\sin^2 x}{x} \, dx = 0 + \int_{0}^{\infty} \frac{\sin 2x}{x} \, dx \)

Now, put \(2x = t \), then \(dx = dt/2 \)

\[\int_{0}^{\infty} \frac{\sin 2x}{x} \, dx = \int_{0}^{\infty} \frac{\sin t / 2}{t/2} \, dt = \int_{0}^{\infty} \frac{\sin x}{x} \, dx \]

87.b. \(\sin^3 x = \frac{3}{4} \sin x - \frac{1}{4} \sin 3x \)

\[\Rightarrow \int_{0}^{\infty} \frac{\sin^3 x}{x} \, dx = \frac{3}{4} \int_{0}^{\infty} \frac{\sin x}{x} \, dx - \frac{1}{4} \int_{0}^{\infty} \frac{\sin 3x}{x} \, dx \]

\[= \frac{3}{4} \int_{0}^{\infty} \frac{\sin x}{x} \, dx - \frac{1}{4} \int_{0}^{\infty} \frac{\sin u}{u} \, du = \frac{3\pi}{4} \]

88.a. \(I = \int_{0}^{\pi} [\sin t] \, dt = \int_{0}^{2\pi} [\sin t] \, dt + \int_{0}^{\pi} [\sin t] \, dt \)

\[= n \int_{0}^{\pi} [\sin t] \, dt + \int_{0}^{\pi} [\sin t] \, dt \) (as \([\sin x]\) is periodic with period \(2\pi\))

\[= -n\pi + 0 = -n\pi \]

89.d. \(\int_{0}^{x} f(t) \, dt = \int_{x}^{1} f(t) \, dt + \int_{x}^{5} f(t) \, dt + \int_{x}^{1} f(t) \, dt + a \) \(= \frac{1}{3} x + \frac{1}{3} x \)

For \(x = 1 \), \(\int_{0}^{1} f(t) \, dt = 0 + \frac{1}{3} + a = \frac{11}{24} + a \)

Differentiating both sides of equation (1) w.r.t. \(x \) we get, \(f(x) = 0 - x^2 f(x) + 2x^5 + 2x^3 \)

\[\Rightarrow f(x) = \frac{2(1 + x^2)}{1 + x^2} \]

\[\Rightarrow 2 \int_{0}^{1} x + 1 + x^2 \, dx = \frac{11}{24} + a \]

\[\Rightarrow 2 \int_{0}^{1} (x^3 - x^1 + x^9 - x^7 + x^5) \, dx = \frac{11}{24} + a \]

\[\Rightarrow 2 \left(\frac{1}{14} - \frac{1}{12} + \frac{1}{10} - \frac{1}{8} + \frac{1}{6} \right) = \frac{11}{24} + a \]

\[\Rightarrow a = -\frac{167}{840} \]

90.a. Let \(n \leq x < n + 1 \) where \(n \in I \)

\[I = \int_{0}^{x} g(t) \, dt = \int_{0}^{n} g(t) \, dt + \int_{n}^{x} g(t) \, dt \]

\[= n \int_{0}^{x} g(t) \, dt + \int_{n}^{x} g(t) \, dt \]

\[= n \int_{0}^{x} g(t) \, dt + \int_{0}^{x} g(t) \, dt \]

\[= n \int_{0}^{x} g(t) \, dt + \int_{0}^{x} g(t) \, dt \]

\[= [x] + 2^n - 1 \]

91.b. \(\int_{0}^{x} f(x) \, dx = \int_{0}^{x} f(x) \, dx \) \(\int_{0}^{x} f(x) \, dx \)

\[= \frac{1}{3} \int_{0}^{x} f(x) \, dx + \frac{1}{3} \int_{0}^{x} f(x) \, dx \]

\[= \frac{1}{3} \int_{0}^{x} f(x) \, dx + \frac{1}{3} \int_{0}^{x} f(x) \, dx \]

\[= \frac{1}{3} \int_{0}^{x} f(x) \, dx + \frac{1}{3} \int_{0}^{x} f(x) \, dx \]

\[= \frac{1}{3} \int_{0}^{x} f(x) \, dx + \frac{1}{3} \int_{0}^{x} f(x) \, dx \]

\[= 2 \left(\frac{1}{1 + x} + \frac{1}{1 + x} \right) \]

\[= \frac{2}{1 + x} \]

\[= \frac{2}{1 + x} \]

92.c. \(f(x) = \int_{0}^{\frac{x}{e}} \frac{dt}{1 + t^2} + \int_{0}^{\frac{x}{e}} \frac{dt}{1 + t^2} \)

\[\Rightarrow f'(x) = \frac{\tan x}{1 + \tan^2 x} + \frac{\tan x}{1 + \tan^2 x} \]

\[= \tan x - \tan x = 0 \]

\[\Rightarrow f(x) = \text{a constant function.} \]

\[f\left(\frac{x}{4} \right) = \int_{0}^{\frac{x}{e}} \frac{dt}{1 + t^2} + \int_{0}^{\frac{x}{e}} \frac{dt}{1 + t^2} \]

\[= \int_{0}^{\frac{x}{e}} \frac{dt}{1 + t^2} = 1 \]

93.c. In \(I_1 \), put \(x = 1 \), then

\[I_1 = \int_{0}^{x} \frac{2x^2 + 11t + 14}{t^4 + 2} \, dt = \int_{0}^{x} \frac{2x^2 + 11t + 14}{t^4 + 2} \, dt \]

\[\int_{0}^{x} \left(x^3 + x^2 + x^3 \right) \, dx = \frac{11}{24} + a \]
89.a. \(f(2x) = f(x) = f\left(\frac{x}{2}\right) = f\left(\frac{x}{2^2}\right) = \ldots = f\left(\frac{x}{2^n}\right) \)

\[
\text{So, when } n \to \infty \Rightarrow f(2x) = f(0) \quad (f(x) \text{ is continuous), i.e., } f(x) \text{ is a constant function.}
\]

\[
\Rightarrow f(x) = f(1) = 3, \quad \int f(f(x))dx = 1 \quad \Rightarrow \quad 3dx = 6.
\]

99.b. \([x] = 0, \forall x \in [0, 1)\)

\[
\text{For } x \in [1, 2], [x] = 1
\]

\[
\Rightarrow \quad \frac{[x]}{1 + x^2} = \frac{1}{1 + x^2} < 1, \forall x \in [1, 2] \Rightarrow \quad \frac{[x]}{1 + x^2} = 0
\]

\[
\text{For } x \in [-1, 0], [x] = -1 \Rightarrow \quad \frac{[x]}{1 + x^2} = -\frac{1}{1 + x^2}
\]

\[
\text{Clearly, } 2 \geq 1 + x^2 > 1, \forall x \in [-1, 0)
\]

\[
\Rightarrow \quad \frac{1}{2} \leq \frac{1}{1 + x^2} < 1 \Rightarrow \quad -\frac{1}{2} \geq \frac{1}{1 + x^2} > -1
\]

\[
\Rightarrow \quad \frac{[x]}{1 + x^2} = -1 \quad \forall x \in [-1, 0)
\]

\[
\text{Thus, the given integral } = -\int dx = -1.
\]

100.c. \(g(x) = \int x f(t)dt \)

\[
g(-x) = \int_{0}^{x} f(t)dt = -\int_{0}^{x} f(-t)dt = \int_{0}^{x} f(t)dt \text{ as } f(-t) = -f(t)
\]

\[
\Rightarrow g(-x) = g(x), \text{ thus } g(x) \text{ is even.}
\]

Also, \(g(x + 2) = \int_{0}^{x+2} f(t)dt \)

\[
= \int_{0}^{x} f(t)dt + \int_{x}^{x+2} f(t)dt
\]

\[
= g(2) + \int_{x}^{x+2} f(t)dt
\]

\[
= g(2) + g(x)
\]

Now, \(g(2) = \int_{0}^{2} f(t)dt = \int_{0}^{1} f(t)dt + \int_{1}^{2} f(t)dt \)

\[
= \int_{0}^{1} f(t)dt + \int_{1}^{2} f(t)dt
\]

\[
= \int_{0}^{1} f(t)dt + f(t)dt
\]

\[
= \int_{0}^{1} f(t)dt + f(t)dt
\]

\[
= \int_{0}^{1} f(t)dt = 0 \quad \text{as } f(t) \text{ is odd}
\]

\[
\Rightarrow g(2) = 0 \Rightarrow g(x + 2) = g(x) \Rightarrow g(x) \text{ is periodic with period 2.}
\]

\[
\Rightarrow g(4) = 0 \Rightarrow f(0) = 0, g(2n) = 0, n \in N.
\]

101.c. \(\int_{0}^{x} \sin t \, dt = \int_{0}^{x} \sin t \, dt + \int_{0}^{x} \sin t \, dt \)

\[
= \frac{x}{2} - \frac{x}{2} = x
\]
106.b. Put \(x = a \cos^2 \theta + b \sin^2 \theta \), \(\Rightarrow dx = 2(b-a) \sin \theta \cos \theta d\theta
\],
\[\int_a^b \frac{(x-a)^3}{(b-x)^4} dx
= 2(b-a) \int_0^{\pi/2} (a \cos^2 \theta + b \sin^2 \theta - a^2)(b-a \cos^2 \theta

- b \sin^2 \theta d\theta
= 2(b-a)^8 \int_0^{\pi/2} \sin^7 \theta \cos^9 \theta d\theta

= 2(b-a)^8 \int_0^{\pi/2} \sin^7 \theta (1- \sin^2 \theta)^4 \cos \theta d\theta

= 2(b-a)^8 \int_0^{\pi/2} x^7 (1-x^2)^4 dx

= 2(b-a)^8 \int_0^{\pi/2} \frac{1}{16} \left[\frac{4}{10} + \frac{12}{14} + \frac{1}{16} \right] = \frac{(b-a)^8}{280}

107.a. \(I = \int_0^t \frac{1}{x^2} \cos 4x \, dx - a \int_0^t \frac{1}{x^2} \sin 4x \, dx

= b_1 - a_2.

\[I_2 = \int_0^t \frac{1}{x^2} \sin 4x \, dx

= \left\{ \frac{-4t}{x} \sin 4x \right\}_0^t + 4 \int_0^t \frac{\cos 4x}{x} dx

= \left\{ \frac{-4t}{x} \sin 4x \right\}_0^t + 4 \int_0^t \frac{\cos 4x}{x} dx

\[I = b_1 - a \left\{ \frac{-4t}{x} \sin 4x \right\}_0^t + 4 + 4I_1

= (b - 4a) \int_0^t \frac{1}{x} \cos 4x \, dx + \frac{a \sin 4t}{t} - 4a

= \frac{a \sin 4t}{t} - 1

\]

Therefore, \((b - 4a) \int_0^t \frac{1}{x} \cos 4x \, dx = 4a - 1 \)

L.H.S. is a function of \(t \), whereas R.H.S. is a constant. Hence, we must have \(b - 4a = 0 \) and \(4a - 1 = 0 \).

\[a = \frac{1}{4}, \quad b = 1 \]

108.b. Given \(\lambda = \int_0^t e^t dt \)
\[\int_0^t e^t \log_e(1+t) dt = \left[\log_e(1+t)e^t \right]_0^t - \int_0^t e^t dt = e \log_e 2 - \lambda \]

109.b. \(I_1 - I_2 = \int_0^{\pi/2} (\cos \theta - \sin 2\theta) f(\sin \theta + \cos^2 \theta) \, d\theta \)

Put \(t = \sin \theta + \cos^2 \theta \), \(\Rightarrow dt = (\cos \theta - \sin 2\theta) \, d\theta \)

\[I_1 - I_2 = \int_0^1 f(t) \, dt = 0 \]
110.d. We have \(f(x) = \int_{-1}^{1} \frac{\sin x \, dt}{\sin^2 x + (t - \cos x)^2} \)

\[
= \frac{\sin x}{\sin x} \tan^{-1} \left(\frac{t - \cos x}{\sin x} \right)_{-1}^{1} \\
= \tan^{-1} \left(\frac{1 - \cos x}{\sin x} \right) - \tan^{-1} \left(\frac{-1 - \cos x}{\sin x} \right) \\
= \tan^{-1} (\tan x/2) + \tan^{-1} (\cot x/2)
\]

Now, we know that \(\tan^{-1} x + \tan^{-1} y = \frac{\pi}{2} \) for \(x > 0 \)
and \(\frac{-\pi}{2} \) for \(x < 0 \).

\[
\Rightarrow \tan^{-1} \left(\frac{x}{2} \right) + \tan^{-1} \left(\frac{1}{x} \right) = \begin{cases}
\frac{\pi}{2}, & x > 0 \\
-\frac{\pi}{2}, & x < 0
\end{cases}
\]

Hence, range of \(f(x) \) is \(\left\{ \frac{\pi}{2}, \frac{3\pi}{2} \right\} \).

111.c. Let \(A = \lim \frac{\pi}{2n} \tan \frac{\pi}{2n} \cdots \tan \frac{\pi}{2n} \).

\[
\Rightarrow \log A = \lim \frac{1}{n} \left[\log \tan \frac{\pi}{2n} + \log \tan \frac{\pi}{2n} + \cdots + \log \tan \frac{n\pi}{2n} \right]
\]

\[
= \lim \frac{1}{n} \left[\sum_{r=1}^{n} \log \tan \frac{\pi r}{2n} \right] = \int_{0}^{\pi/2} \log \tan y \, dy
\]

[Putting \(\frac{1}{2} \pi x = y \), \(\Rightarrow dx = \frac{dy}{\pi/2} \)]

Now let \(I = \int_{0}^{\pi/2} \log \tan y \, dy \)

\[
I = \int_{0}^{\pi/2} \log \left(\frac{\pi/2 - y}{y} \right) \, dy \quad \text{(by Property IV)}
\]

\[
= \left[\frac{\pi}{2} \log \cot y \right]_{0}^{\pi/2} - \left[\frac{\pi}{2} \log \tan y \right]_{0}^{\pi/2} = -I
\]

or \(I + I = 0 \) or \(2I = 0 \) or \(I = 0 \).

\[
\Rightarrow \text{from equation (1),} \log A = 0 \Rightarrow A = e^{0} = 1
\]

112.b. Differentiating, we get \(f''(x) = f'(x) \)

\[
\Rightarrow \int f''(x) \, dx = \int f'(x) \, dx \Rightarrow \ln f'(x) = x + c \Rightarrow f'(x) = Ae^{x}
\]

\[
\Rightarrow \int f''(x) \, dx = \int Ae^{x} \, dx \Rightarrow f(x) = Ae^{x} + B
\]

Now, \(f(0) = 1 \Rightarrow A + B = 1 \)

\[
\Rightarrow f'(x) = f(x) + \int_{0}^{1} (Ae^{x} + 1 - A) \, dx
\]

\[
Ae^{x} = (Ae^{x} + 1 - A) + (Ae^{x} + (1 - A)x)_{0}^{1}
\]

\[
\Rightarrow 1 - A + (Ae^{x} + 1 - A) = 0 \Rightarrow A(e - 3) = -2
\]

\[
\Rightarrow A = \frac{2}{e - 3} \quad \text{and} \quad B = 1 - \frac{2}{e - 3} = \frac{1}{e - 3}
\]

\[
\Rightarrow f(x) = \frac{2}{e - 3} x + 1 - \frac{2}{e - 3} x = \frac{5 - x}{3 - e}
\]

\[
\Rightarrow f(\log_{e} 2) = -\frac{4}{3} + \frac{1 - e}{3 - e} = 5 - e
\]

113.b. \(\int_{a}^{b} f(x) \, dx = [f(b) - a f(a)] - \int_{f(a)}^{f(b)} f'(t) \, dt \)

Now, put \(f(x) = t \cdot x = f'(t) \)
and \(f'(t) \, dt = dx \) and adjust the limits

Therefore, \(\int_{a}^{b} f(x) \, dx = [f(b) - a f(a)] - \int_{f(a)}^{f(b)} f'(t) \, dt \)

by (1)

\[
\Rightarrow \int_{a}^{b} f(x) + \int_{f(a)}^{f(b)} f'(t) \, dt \, dx = bf(b) - af(a)
\]

114.b. \(2I = \frac{\beta}{e} \int_{a}^{b} \left(\frac{g(x)}{x - a} \right) \, dx + \frac{\beta}{e} \int_{a}^{b} \left(\frac{g(x) - g(a)}{(x - a) \beta} \right) \, dx - \frac{\beta}{e} \int_{a}^{b} \left(\frac{g(x - a)}{(x - a) \beta} \right) \, dx + \frac{\beta}{e} \int_{a}^{b} \left(\frac{g(x - a)}{x - a \beta} \right) \, dx
\]

\[
\Rightarrow I = \frac{1}{2} (\beta - \alpha) = \frac{a^{2} - 4ac}{2a}
\]

\[
\Rightarrow f(x) \text{ is even function } \Rightarrow \alpha + \beta = 0
\]

115.a. \(y' = \left(1 + \frac{1}{r} \right) \left(1 + \frac{2}{r} \right) \left(1 + \frac{3}{r} \right) \cdots \left(1 + \frac{n - 1}{r} \right)
\]

\[
\Rightarrow \log y = \frac{1}{r} \sum_{p=1}^{n} \log \left(1 + \frac{p}{r} \right)
\]

\[
\Rightarrow \lim y = \lim \log y = \int_{0}^{k} \log(1 + x) \, dx = (k - 1) \log_{e} (1 + k) - k
\]

116.a. When \(e^{x} \leq x \leq e^{x} \) \(1 < \log_{e} [x] < 2 \)
when \(e^{x} \leq x \leq e^{x} \) \(2 < \log_{e} [x] < 3 \)

\[
\Rightarrow 1 \int_{x}^{2} \frac{dx}{x} = 9
\]

\[
\Rightarrow 3 - \frac{8}{x^{2}} = 9
\]

117.c. Let \(g(x) = \int f(t) \, dt \)

Now \(\int_{0}^{8} f(t) \, dt = g(2) - g(1) - g(1) - g(0) \)

\[
= g'(0) + g'(1)
\]

\[
= 2 \left[f(1 - x) [g(x) - g(1 - x)] \right] \, dx
\]

\[
\Rightarrow 2I = \int_{0}^{1} f(x) - f(1 - x) [g(x) - g(1 - x)] \, dx \leq 0
\]
Multiple Correct Answers Type

\[f(x) = e^x + \int_0^x e^t \cdot f(t) \, dt = e^x + \frac{1}{k} \int_0^x e^t \, dt \]

\[k = \int_0^x (e^t + ke^t) \, dt = e^x - e^t - k \]

\[k = \frac{e^x - 1}{2-e}, \text{ thus } f(x) = e^x \left(1 + \frac{e^x - 1}{2-e} \right) = \frac{e^x}{2-e} \]

Obviously, \(f(0) = \frac{1}{2-e} < 0 \)

Also, \(f'(x) = \frac{e^x}{2-e} < 0 \) for \(\forall x \in R \).

Hence, \(f(x) \) is a decreasing function.

Also, \(\int_0^1 f(x) \, dx \)

\[= \int_0^1 \frac{e^x}{2-e} \, dx \]

\[= \left[\frac{e^x}{2-e} \right]_0^1 \]

\[= \frac{e^1 - 1}{2-e} < 0 \]

\[a, b. \]

\[f(x) = \frac{e^x}{1+x^2}, \text{ if } x > 0 \Rightarrow f(x) = \frac{e^x}{1+x^2} > \frac{1}{1+x^2}, \forall x \geq 1 \]

\[\Rightarrow \int_1^x f'(x) \, dx > \frac{1}{1+x^2} \, dx \]

\[\Rightarrow f(x) > \frac{\tan^{-1}x - \tan^{-1}1}{x} \Rightarrow f(x) > \frac{\pi}{4} \tan^{-1}x \]

\[a, b, c. \]

For \(a \leq 0, \)

given equation becomes

\[\int_0^2 (x-a) \, dx \geq 1 \Rightarrow a \leq \frac{1}{2} \Rightarrow a \leq 0 \]

For \(0 < a < 2, \)

\[\int_0^a (x-a) \, dx \geq 1 \Rightarrow \int_0^a (a-x) \, dx \geq 1 \]

\[\Rightarrow a^2 + 2a + \frac{a^2}{2} \geq 2a + 1 \Rightarrow (a-1)^2 \geq 0 \]

For \(a \geq 2, \)

\[\int_0^a (x-a) \, dx \geq 1 \Rightarrow \int_0^a (a-x) \, dx \geq 1 \Rightarrow 2a - 2 \geq 1 \Rightarrow a \geq \frac{3}{2} \]

\[\Rightarrow a \geq 2 \]

\[a, b, c. \]

We know \(\int_a^b \sin x \, dx \) represents the area under the curve from \(x = a \) to \(x = b \). We also know that area from \(x = a \) to \(x = a + \pi \) is 2.

\[\int_a^b \sin x \, dx = 8 \Rightarrow b - a = \frac{8\pi}{2} \]

(1)

Similarly, \(\int_0^{a+b} \cos x \, dx = 9 \Rightarrow a + b = \frac{9\pi}{2} \)

(2)

From (1) and (2), \(a = \frac{\pi}{4} \) and \(b = \frac{17\pi}{4} \)

\[\Rightarrow a + b = \frac{9\pi}{2}, |a - b| = 4\pi, \frac{a}{b} = 17 \text{ and } \]

Obviously \(\int_a^b \sec^2 x \, dx \neq 0 \)

5. c. Let \(f(x) = \sqrt{3+x^3} \)

Clearly, \(f(x) \) is increasing in \([1, 3]\)

\[\Rightarrow \text{ The least value of the function, } m = f(1) = \sqrt{3+1^3} = 2 \]

and the greatest value of the function, \(M = f(3) = \sqrt{3+3^3} = \sqrt{30} \)

Therefore, \((3 - 1) 2 \leq \int_1^3 \sqrt{3+x^3} \, dx \leq (3 - 1) \sqrt{30} \)

Here, \(4 \leq \int_1^3 \sqrt{3+x^3} \, dx \leq 2\sqrt{30} \)

6. a, b, c.

\[g(x) = \int_0^x |t| \, dt \]

\[= \int_0^x t \, dt \]

\[= \left[\frac{t^2}{2} \right]_0^x \]

\[= \frac{x^2}{2}, x \geq 0 \]

\[= \frac{-x^2}{2}, x < 0 \]

Clearly, continuous and differentiable at \(x = 0 \)

Also, \(g(x) = \begin{cases} -2x, & x < 0 \\ 2x, & x > 0 \end{cases} \) which is non-differentiable at \(x = 0 \).

7. a, b.

\[f(x) = \int_0^x e^t \, dt - e^x \]

\[\Rightarrow f'(x) = \int_0^x e^t \, dt - e^x \]

\[= \int_0^x e^t \, dt - e^x \]

\[= \int_0^x e^t \, dt - e^x \]
\[f(x) = \int_1^x \frac{e^t}{t} \, dt > 0 \quad \Rightarrow \quad x \in [1, \infty) \]
\[\Rightarrow f(x) \text{ is an increasing function.} \]

8.a, c, d.
\[
I = \int_0^1 \frac{2x^2 + 3x + 3}{(x+1)(x^2 + 2x + 2)} \, dx
\]
\[= \int_0^1 \frac{2(x^2 + 2x + 2) - (x+1)}{(x+1)(x^2 + 2x + 2)} \, dx
\]
\[= \left[2\log(x+1) - \tan^{-1}(x+1) \right]_0^1
\]
\[= 2\log 2 - \tan^{-1} 2 + \tan^{-1} 1
\]
\[= 2 \log 2 - \tan^{-1} 1 + \pi/4
\]
\[= \pi/4 + \log 4 + \cot^2 1
\]

From equation (1), \[I = 2\log 2 - \tan^{-1} \left(\frac{2-1}{1+2 \times 1} \right) \]
\[= 2 \log 2 - \tan^{-1} \frac{1}{3}
\]
\[= 2 \log 2 - \cot^{-1} 3
\]

9.a, d.
\[A_{n+1} - A_n
\]
\[= \int_0^{\pi/2} \frac{\sin(2n+1)x - \sin(2n-1)x}{\sin x} \, dx
\]
\[= \int_0^{\pi/2} 2\cos 2nx \, dx = 0
\]
\[\Rightarrow A_{n+1} = A_n
\]

B_n+1 - B_n
\[= \int_0^{\pi/2} \frac{\sin^2 (n+1)x - \sin^2 nx}{\sin^2 x} \, dx
\]
\[= \int_0^{\pi/2} \frac{\sin (2n+1)x}{\sin x} \, dx
\]
\[= A_{n+1}
\]

10.a, b, c.
\[f(x) = \int_0^x \frac{1}{f(x)} \, dt \Rightarrow f'(x) = \frac{1}{f(x)} \cdot f(x) = 1
\]
\[\Rightarrow \int f(x) f'(x) \, dx = \int 1 \, dx
\]
\[\Rightarrow \frac{1}{2} [f(x)]^2 = x + c \quad \text{(1)}
\]

Now given that \[\int_0^1 [f(x)]^{-1} \, dx = \sqrt{2} \Rightarrow f(1) = \sqrt{2}
\]
\[\Rightarrow \text{From (1), } \frac{1}{2}[f(1)]^2 = 1 + c \Rightarrow c = 0
\]
\[\Rightarrow f(x) = \pm \sqrt{2}x
\]
But \[f(1) = \sqrt{2} \Rightarrow f(x) = \sqrt{2x} \Rightarrow f'(2) = 2
\]
Also, \[f'(x) = \frac{1}{\sqrt{2x}} \Rightarrow f'(2) = 1/2
\]
\[\int_0^1 f(x) \, dx = \int_0^{\sqrt{2x}} \left(\frac{(2x)^{1/2}}{3} \right) \, dx = (2)^{3/2}/3
\]
Also, \[f^{-1}(x) = \frac{x^2}{2} \Rightarrow f^{-1}(2) = 2
\]

11.b, c.
\[I = \int_0^\infty \frac{dx}{1+x^4}
\]
\[= \int_0^\infty \frac{x^2 + 1 - x^2}{1+x^4} \, dx
\]
\[= \int_0^\infty \frac{x^2}{1+x^4} \, dx + \int_0^\infty \frac{1-x^2}{1+x^4} \, dx = I_1 + I_2
\]
\[I_2 = \int_0^{1/\sqrt{2}} \frac{1}{x^2 + x^4} \, dx
\]
Put \[x + \frac{1}{x} = y
\]
\[\Rightarrow I_2 = \int_0^{\infty} \frac{dy}{y^2 - 2}
\]
\[= \int_0^\infty \frac{dx}{1+x^4} = \int_0^\infty \frac{x^2 \, dx}{1+x^4}
\]
Adding equations (1) and (2), we get
\[\Rightarrow 2I = \int_0^\infty \frac{x \, dx}{1+x^4} = \int_0^\infty \frac{x^2 + 1}{1+x^4} \, dx, \text{ put } x - \frac{1}{x} = y
\]
\[\Rightarrow 2I = \int_0^\infty \frac{dy}{y^2 + 2} = \int_0^\infty \frac{\tan^{-1} \frac{y}{\sqrt{2}}}{\sqrt{2}} \, dy = \frac{\pi}{\sqrt{2}}
\]
\[\Rightarrow I = \frac{\pi}{2\sqrt{2}}
\]

12.a, b, d.
Given that \[f(x) = \int_0^x \frac{1}{t-1} \, dt
\]
\[\Rightarrow f(x) = \int_0^x (1-t) \, dt, \ 0 \leq x \leq 1
\]
\[= x - \frac{x^2}{2}
\]
Also \[f(x) = \int_0^1 (1-t) \, dt + \int_1^x (t-1) \, dt, \text{ where } 1 \leq x \leq 2
\]
Thus, \(f(x) = \begin{cases} \frac{x^2}{2}, & 0 \leq x < 1 \\ \frac{x^2}{2} - x + 1, & 1 < x \leq 2 \end{cases} \)

\[f'(x) = \begin{cases} 1-x, & 0 \leq x < 1 \\ x-1, & 1 < x \leq 2 \end{cases} \]

Thus, \(f(x) \) is continuous as well as differentiable at \(x = 1 \). Also, \(f(x) = \cos^{-1}x \) has one real root, draw the graph and verify.

For range of \(f(x) \):

\[f(x) = \int_0^1 |t-1| \, dt \] is the value of area bounded by the curve \(y = |t-1| \) and \(x \)-axis between the limits \(t = 0 \) and \(t = x \).

Obviously, minimum area is obtained when \(t = 0 \) and \(t = x \) coincide or \(x = 0 \).

Maximum value of area occurs when \(t = 2 \), hence \(f(2) = \) area of shaded region = 1.

\[\text{Fig. 8.21} \]

\[I_n = \int_0^{\pi/4} \tan^n x \, dx \]

\[= \int_0^{\pi/4} \tan^{n-2} x \cdot \tan^2 x \, dx \]

\[= \int_0^{\pi/4} \sec^2 x \cdot \tan^{n-2} x \, dx - \int_0^{\pi/4} \tan^{n-2} x \, dx \]

\[= \int_0^{\pi/4} t^{n-2} \, dt - I_{n-2} \quad \text{where} \quad t = \tan x \]

\[I_n + I_{n-2} = \left(\frac{n-1}{n-1} \right) I_{n-2} \]

\[= I_n + I_{n-2} = \frac{1}{n-1} \]

\[\Rightarrow I_2 + I_4 + I_6 + \cdots \text{are in H.P.} \]

For \(0 < x < \pi/4 \), we have \(0 < \tan x < \tan^2 x \)

So that \(0 < I_0 < I_{n-2} \Rightarrow I_n + I_{n+2} < 2I_n < I_n + I_{n-2} \)

\[\Rightarrow \frac{1}{n+1} < 2I_n < \frac{1}{n-1} \Rightarrow \frac{1}{2(n+1)} < I_n < \frac{1}{2(n-1)} \]

\[\text{4.a, b, c.} \]

\[I = \int_a^b \frac{f(x)}{f(x) + f(a + b - x)} \, dx \]

\[= \int_a^b \frac{f(a + b - x)}{f(a + b - x) + f(x)} \, dx \quad (1) \]

Adding equations (1) and (2), we get

\[2I = \int_a^b 1 \, dx = b - a \]

\[\Rightarrow I = \left(\frac{b-a}{2} \right) = 10 \quad \text{given} \]

\[I_n = \int_0^1 \frac{dx}{(1 + x^2)^n} = \int_0^1 (1 + x^2)^{-n} \, dx \]

\[= \frac{x}{(1 + x^2)^n} \bigg|_0^1 - \int_0^1 (-n)(1 + x^2)^{-n-1} 2x \times x \, dx \]

\[= \frac{1}{2^n} + 2n \int_0^1 \frac{x^2 \, dx}{(1 + x^2)^n} \]

\[= \frac{1}{2^n} + 2n \int_0^1 \frac{1 + x^2 - 1}{(1 + x^2)^{n+1}} \, dx \]

\[= \frac{1}{2^n} + 2n I_{n+1} - 2n I_{n+1} \]

\[\Rightarrow 2n I_{n+1} = 2^{-n} \times (2n - 1) I_n \]

\[\Rightarrow 2I_2 = \frac{1}{2} + I_1 = \frac{1}{2} + \tan^{-1} x \bigg|_0^1 \]

\[\Rightarrow I_2 = \frac{1 + \pi}{4} + \frac{\pi}{8} \]

Also \(4I_3 = 2^2 + 3I_2 \)

\[= \frac{1}{4} + 3 \left(\frac{1 + \pi}{4} + \frac{\pi}{8} \right) = \frac{1 + 3\pi}{32} \]

\[16. \text{b, c.} \]

\[\lim_{n \to \infty} \frac{1}{n} \sum_{n=1}^{2n} f \left(\frac{r}{n} \right) = \int_0^1 f(x) \, dx \]

\[\lim_{n \to \infty} \frac{1}{n} \sum_{n=1}^{2n} f \left(\frac{r+n}{n} \right) = \int_0^1 f(1 + x) \, dx \]

\[= \int_0^1 f(t) \, dt = \frac{1}{2} f(x) \, dx \]

\[\lim_{n \to \infty} \frac{1}{n} \sum_{n=1}^{2n} f \left(\frac{r}{n} \right) = \int_0^1 f(x) \, dx \]

\[\lim_{n \to \infty} \frac{1}{n} \sum_{n=1}^{2n} f \left(\frac{r}{n} \right) = \int_0^1 f(x) \, dx \]

\[= \frac{1}{2} f(x) \, dx \]

\[17. \text{a, b, d.} \]

\[f(2-x) = f(2+x), f(4-x) = f(4+x) \]

\[\Rightarrow f(4+x) = f(4-x) = f(2+2-x) = f(2-(2-x)) = f(x) \]

\[\Rightarrow 4 \text{ is a period of} \ f(x) \]

\[\int_0^{50} f(x) \, dx = \int_0^{48} f(x) \, dx + \int_0^{50} f(x) \, dx \]

\[= \int_0^{48} f(x) \, dx + \int_0^{48} f(x) \, dx \]
19. a, c, d.

The expression \(f(x)f(c) \forall x \in (c-h, c+h) \) where \(h \to 0^+ \) is equivalent to \(\lim_{x \to 0^+} f(x)f(c) \) which equals to \((f(c))^2\) because

\(f(x) \) is continuous.
Therefore, \(f(x)f(c) > 0 \forall x \in (c-h, c+h) \) where \(h \to 0^+ \).

a. We have \(f = \lim_{n \to \infty} \frac{1}{n} \ln \left[\left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right) \cdots \left(1 + \frac{n}{n}\right) \right] \)

\[= \lim_{n \to \infty} \frac{1}{n} \prod_{k=1}^{n} \left(1 + \frac{k}{n}\right) \]

\[= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(1 + \frac{k}{n}\right) \]

\[= \frac{1}{2} \ln x + \left(x\ln x - 1\right) \]

\[= -1 + 2 \ln 2 \]

b. Given \(f(x) \geq 0 \Rightarrow \int f(x)dx \geq 0 \).

But given \(\int f(x)dx = 0 \), so this can be true only when \(f(x) = 0 \).

c. \(\int f(x)dx = 0 \Rightarrow y = f(x) \) cuts x-axis at least once.

So, there exists at least one \(c \in (a, b) \) for which \(f(c) = 0 \).

20. a, c.

\[\int e^{x^2 - x} \, dx \]

For \(x \in (0, 1), x^2 - x \in (-1/4, 0) \)

\[\Rightarrow e^{-1/4} < e^{x^2 - x} < e^0 \]

\[\Rightarrow 1 < \int_0^1 e^{x^2 - x} \, dx < 1 \]

21. a, d.

\[f(x + \pi) = \int_0^{\pi} (\cos(x^2 + \pi) + \cos(x^2)) \, dt \]

\[= \int_0^{\pi} (\cos(x^2 + \pi) + \cos(x^2)) \, dt \]

\[= f(\pi) + \int_0^{\pi} (\cos(x^2) + \cos(x^2)) \, dt \]

(\(\therefore \) for \(g(x) = \cos(x^2) + \cos(x^2) \), \(f(x + \pi) = f(x) \))

\[= f(\pi) + 2f \left(\frac{\pi}{2} \right) \]

(\(\because \) \(g(x) \) has period \(\pi/2 \))
1.66 Calculus

Reasoning Type

1.a. Given that \(\int_a^b g(x) \, dx > \int_a^b h(x) \, dx \), then \(y = g(x) \) cuts the graph at least once, then \(y = f(x) \), \(g(x) \) changes sign at least once in \((a, b)\), hence \(\int_a^b f(x)g(x) \, dx \) can be zero.

2.b. \(I = \int_{-4}^{-3} \sin(x^2 - 3) \, dx + \int_2^5 \sin(x^2 + 12x + 33) \, dx = I_1 + I_2 \)

\(I_2 = \int_2^5 \sin(x^2 + 12x + 33) \, dx = \int_2^5 \sin((x + 6)^2 - 3) \, dx \),

put \(x + 6 = y \)

\(\Rightarrow I_2 = -\int_4^{-3} \sin(y^2 - 3) \, dy = -I_1 \)

\[I = I_1 + I_2 = 0 \Rightarrow I = 0 \]

3.a. \(I = \int_0^1 \tan^2 \frac{2(1-x)}{1 + (1-x) - (1-x)^2} \, dx \)

\[= \int_0^1 \frac{1 - 2x}{1 + x - x^2} \, dx \]

\[= -I \]

\[\Rightarrow I = 0 \]

4.d. \(f(x) = \int_{\pi/4}^{\pi} (3\sin t + 4\cos t) \, dt \)

\[\Rightarrow f'(x) = 3\sin x + 4\cos x, x \in \left[\frac{5\pi}{4}, \frac{4\pi}{3} \right] \]

These values of \(x \) are in third quadrant where both \(\sin x \) and \(\cos x \) are negative.

Then \(f'(x) < 0 \) for \(x \in \left[\frac{5\pi}{4}, \frac{4\pi}{3} \right] \).

Hence, \(f(x) \) is decreasing for these values of \(x \).

Then, the least value of function occurs at \(x = \frac{4\pi}{3} \).

\[\Rightarrow f_{\text{min}} = \int_{\pi/4}^{4\pi/3} (3\sin t + 4\cos t) \, dt = \frac{3}{2} + \frac{1}{\sqrt{2}} - 2\sqrt{3} \]

5.a. Given \(f(x + 1) + f(x + 7) = 0, \forall \, x \in \mathbb{R} \)

Replace \(x \) by \(x - 1 \), we have \(f(x) + f(x + 6) = 0 \) \hspace{1cm} (1)

Now, replace \(x \) by \(x + 6 \), we have \(f(x + 6) + f(x + 12) = 0 \) \hspace{1cm} (2)

From equations (1) and (2), we have \(f(x) = f(x + 12) \) \hspace{1cm} (3)

Hence, \(f(x) \) is periodic with period 12.

\(\Rightarrow \int_a^{a+12} f(x) \, dx \) is independent of \(a \) if \(t \) is positive integral multiple of 12 then possible value of \(t \) is 12.

6.c. \(x > x^2, \forall \, x \in \left(0, \frac{\pi}{4}\right) \Rightarrow e^x > e^{x^2} \forall \, x \in \left(0, \frac{\pi}{4}\right) \)

\[\Rightarrow e^x \cos x > e^{x^2} \sin x \]

7.a. Let \(I_m = \int_0^\pi \frac{2\sin 2mx}{\sin x} \, dx \). Then,

\[I_m - I_{m-1} = \int_0^\pi \frac{2\sin 2mx - \sin 2(m-1)x}{\sin x} \, dx \]

\[= \int_0^\pi \frac{2\cos(2m-1)x}{\sin x} \, dx \]

\[= \frac{2}{2m-1} \left[\sin(2m-1)x \right]_0^\pi = 0 \]

\[I_m = I_{m-1} \text{ for all } m \in \mathbb{N} \]

\(\Rightarrow I_m = I_{m-1} = I_{m-2} = \ldots = I_1 \)

But, \(I_1 = \int_0^\pi \frac{2\sin 2x}{\sin x} \, dx = 2\int_0^\pi \cos x \, dx = 0 \).

\(\therefore I_m = 0 \) for all \(m \in \mathbb{N} \).

8.d. \(\int_0^\pi \sqrt{1 - \sin^2 x} \, dx \)

\[= \int_0^\pi \cos x \, dx \]

\[= \int_0^{\pi/2} \cos x \, dx + \int_{\pi/2}^\pi \cos x \, dx \]

\[= 1 + 1 = 2 \]

Hence, statement 1 is false.

However, statement 2 is true.

9.b. Let \(I = \int_0^{2\pi} \cos^{99} x \, dx \).

Then,

\[I = 2 \int_0^\pi \cos^{99} x \, dx \]

\[\left[\text{since } \cos^{99} (2\pi - x) = \cos^{99} x \right] \]

Now, \(\int_0^\pi \cos^{99} x \, dx = 0 \)

\[\left[\text{since } \cos^{99} (\pi - x) = -\cos^{99} x \right] \]

\(\Rightarrow I = 2 \times 0 = 0 \)

10.c. Statement 1 is true as it is a fundamental property.

(See integration of odd and even function.)

Let \(g(x) = \int_a^x f(t) \, dt \)

If \(f(x) \) is an even function

Then \(g(-x) = -\int_a^{-x} f(t) \, dt \)

\[= -\int_a^x f(-t) \, dt \]

\[= -\int_a^x f(y) \, dy \]

\[= -\int_{-a}^x f(y) \, dy - \int_{-a}^0 f(y) \, dy \]

\[= -g(x) \]

Hence, statement 2 is false.
11.a. Statement 2 is a fundamental concept, also we have \(f(2 - a) = f(2 + a) \)
\[
\frac{\int_a^b f(x) \, dx}{\int_a^{2 + a} f(x) \, dx} = 2 \frac{\int_a^b f(x) \, dx}{\int_{2 - a}^{2 + a} f(x) \, dx}
\]
12.c. Both the statements are true independently, but statement 2 is not a correct explanation of statement 1.

13.a. To prove \(\int_a^b f(x) \, dx = \int_a^{b + c} f(x - c) \, dx \)

Put \(z = x - c \), then \(dx = dz \)
When \(x = a + c, z = a \) and when \(x = b + c, z = b \)
\[
\therefore \int_a^{b + c} f(x) \, dx = \int_a^b f(z) \, dz = \int_a^b f(x) \, dx
\]
Thus, statement 2 is true
\[
\int_a^b f(x) \, dx = \int_a^{b + c} f(x - c) \, dx
\]
Putting \(f(x) = \sin \pi x \cos \pi x, a = 0, b = \pi, \) and \(c = -\frac{\pi}{2} \), we get
\[
\int_0^\pi \sin^9 \pi x \cos^9 \pi x \, dx
\]
\[
= \int_{-\pi/2}^{\pi/2} \sin^9 \left(x + \frac{\pi}{2} \right) \cos^9 \left(x + \frac{\pi}{2} \right) \, dx
\]
\[
= -\int_{-\pi/2}^{\pi/2} \cos^9 \pi x \sin^9 \pi x \, dx
\]
\[
= 0 \quad [\because \cos^9 \pi x \sin^9 \pi x \text{ is an odd function}]
\]

14.c. \(\int_a^b x f(x) \, dx = \int_a^b (a + b - x) f(a + b - x) \, dx \)
\[
= (a + b) \int_a^b f(a + b - x) \, dx - \int_a^b x f(a + b - x) \, dx
\]
Therefore, statement 2 is true only when \(f(a + b - x) = f(x) \) which holds in statement 1.

Therefore, statement 2 is false and statement 1 is true.

15.a. Let \(g(x) = \int_x^2 f(t) \, dt - \int_x^b f(t) \, dt \), where \(x \in [a, b] \)

We have \(g(a) = \int_a^b f(t) \, dt \) and \(g(b) = \int_a^b f(t) \, dt \)
\[
g(a)g(b) = \left(\int_a^b f(t) \, dt \right)^2 \leq 0
\]
Clearly, \(g(x) \) is continuous in \([a, b]\) and \(g(a)g(b) \leq 0 \)

It implies that \(g(x) \) will becomes zero at least once in \([a, b]\). Hence, \(\int_a^b f(t) \, dt = \int_x^2 f(t) \, dt \) for at least one value of \(x \in [a, b] \).

Hence, both the statements are true and statement 2 is a correct explanation of statement 1.

16.d. Obviously, \(|\sin t| \) is non-differentiable at \(x = \pi \).

But \(\int_0^\pi |\sin t| \, dt = \int_0^\pi \sin t \, dt + \int_0^\pi -\sin t \, dt, \quad \pi \leq x \leq 2\pi \)
\[
= \cos x + 1, \quad 0 \leq x < \pi
\]
\[
= 3\cos x, \quad \pi \leq x \leq 2\pi
\]

which is continuous as well as differentiable at \(x = \pi \).

Hence, statement 1 is false.

17.a. For \(a < b \). If \(m \) and \(M \) are the smallest and greatest values of \(f(x) \) on \([a, b]\)
then \(m(b - a) \leq \int_a^b f(x) \, dx \leq M(b - a) \)
\[
or \quad m \leq \frac{1}{b - a} \int_a^b f(x) \, dx \leq M
\]
Since \(f(x) \) is continuous on \([a, b]\), it takes on all intermediate values between \(m \) and \(M \).

Therefore, some values \(f(c) (a \leq f(c) \leq b) \), we will have
\[
\frac{1}{b - a} \int_a^b f(x) \, dx = f(c)
\]
or \(\int_a^b f(x) \, dx = f(c)(b - a) \).

Hence, both the statements are true and statement 2 is a correct explanation of statement 1.
For Problems 4–6
4.b., 5.b., 6.c.
Sol.
\[f(x) = x^2 + \int_0^x e^{-t} f(x-t) \, dt \]
\[= x^2 + \int_0^x e^{-x-t} f(x-t) \, dt \]
[Using \(\int_a^b f(x) \, dx = \int_a^b f(a+b-x) \, dx \)]
\[= x^2 + e^{-x} \int_0^x e^t f(t) \, dt \]
(2)
Differentiating w.r.t. \(x \), we get
\[f'(x) = 2x - e^{-x} \int_0^x e^t f(t) \, dt + e^{-x} e^x f(x) \]
\[= 2x - e^{-x} \int_0^x e^t f(t) \, dt + f(x) \]
\[\Rightarrow f''(x) = 2x + x^2 \]
[using equation (2)]
\[\Rightarrow f(x) = \frac{x^3}{3} + x^2 + c \]
Also \(f(0) = 0 \)
[from equation (1)]
\[\Rightarrow f(x) = \frac{x^3}{3} + x^2 \]
\[\Rightarrow f'(x) = x^2 + 2x \]
\[\Rightarrow f''(x) = 0 \] has real roots, hence \(f(x) \) is non-monotonic.
Hence, \(f(x) \) is many-one, but range is \(R \), hence surjective.
\[\int_0^{\pi/2} f(x) \, dx = \int_0^{\pi/2} \left(\frac{x^3}{3} + x^2 \right) \, dx \]
\[= \left[\frac{x^4}{12} + \frac{x^3}{3} \right]_0^{\pi/2} \]
\[= \frac{1}{12} \left(\frac{\pi^4}{2} + \frac{\pi^3}{3} \right) = \frac{5}{12} \]
For Problems 7–9
Sol.
\[f(x) - \lambda \int_0^{\pi/2} \sin x \cos t \, dt = \sin x \]
\[\Rightarrow f(x) - \lambda \sin x \int_0^{\pi/2} \cos t \, dt = \sin x \]
\[\Rightarrow f(x) - \lambda \sin x = \sin x \] or
\[f(x) = (A+1) \sin x, \text{ where } A = \lambda \int_0^{\pi/2} \cos t \, dt \]
\[\Rightarrow A = \lambda \int_0^{\pi/2} \cos t \, dt \]
\[= \frac{\lambda(A+1)}{2} \int_0^{\pi/2} \sin 2t \, dt \]
\[= \frac{\lambda(A+1)}{2} \left[-\cos 2t \right]_0^{\pi/2} \]
For Problems 10–13
Sol.
10.b. \(f(x) \) is an odd function \(\Rightarrow f(x) = -f(-x) \)
\[\phi(-x) = \int_a^x f(t) \, dt \text{, put } t = -y \]
\[\Rightarrow \phi(-x) = \int_a^x f(-t) \, dt = \int_a^x f(t) \, dt = \int_a^x f(t) \, dt \]
\[+ \int_a^x f(t) \, dt = 0 + \int_a^x f(t) \, dt = \phi(x). \]
11.d. If \(f(x) \) is an even function, then
\[\phi(-x) = -\int_a^x f(t) \, dt \]
\[= -\int_a^x f(t) \, dt - \int_a^x f(t) \, dt \]
\[= -2 \int_a^x f(t) \, dt \text{ (as } f(x) \text{ is an even function)} \]
Now, \(\int_a^x f(t) \, dt = \int_a^0 f(a-t) \, dt \)
\[= \int_0^a f(t) \, dt \text{ [using } f(a-x) = -f(x) \text{]} \]
\[F'(k) = \pi^2 \int_0^k \frac{1}{\sin^2 \theta + k^2 \cos^2 \theta} \, 2k \cos^2 \theta \, d\theta \\
= 2k \pi^2 \int_0^k \frac{\cos^2 \theta}{\sin^2 \theta + k^2 \cos^2 \theta} \, d\theta \\
= 2k \pi^2 \int_0^k \frac{d\theta}{\tan^2 \theta + k^2} \\
= 2k \pi^2 \int_0^k \frac{\sec^2 \theta - \tan^2 \theta}{\tan^2 \theta + k^2} \, d\theta \\
= 2k \pi^2 \int_0^k \frac{dt}{t^2 + k^2} - 2k \pi^2 k \int_0^k \frac{dt}{t^2 + k^2} \\
+ 2k \pi^2 \int_0^k \frac{d\theta}{\tan^2 \theta + k^2} \quad \text{(Putting } t = \tan \theta) \\
= 2k \frac{1}{k} \tan^{-1} \left(\frac{1}{k} \right) - 2k \frac{\pi}{2} + k^2 F'(k) \\
\Rightarrow (1 - k^2) F'(k) = \pi - k\pi = \pi(1 - k) \\
\Rightarrow F'(k) = \frac{\pi}{1 + k} \\
\Rightarrow F(k) = \pi \log (1 + k) + c \\
\text{For } k = 1, F(1) = 0 \Rightarrow c = -\pi \log 2 \\
\Rightarrow F(k) = \pi \log (1 + k) - \pi \log 2 \\
\]

16.a. Let \(I(a) = \int_0^1 \frac{x^a - 1}{\log x} \, dx \)

\[\frac{dI}{da} = \int_0^1 \frac{d}{da} \left(\frac{x^a - 1}{\log x} \right) \, dx \\
= \int_0^1 \frac{x^a \log x}{\log x} \, dx \\
= \int_0^1 x^a \, dx \\
= \left. \frac{x^{a+1}}{a+1} \right|_0^1 \\
= \frac{1}{a+1} \\
\int I(a) = \pi \sin^{-1} a \quad \text{[as } I(0) = 0] \\
\]

17.c. \[\int_0^\pi \frac{dx}{(a - \cos x)^2} = \frac{\pi}{\sqrt{a^2 - 1}} \]

Differentiating both sides with respect to a, we get
\[-\frac{\pi}{\sqrt{(a - \cos x)^2}} \, dx = -\pi a \]

Again differentiating with respect to a, we get
\[\frac{\pi}{2} \int_{0}^{\pi} \frac{dx}{(a - \cos x)^3} = \frac{\pi(1 + 2a^2)}{(a^2 - 1)^{3/2}} \]

Put \(a = \sqrt{10} \), we get \(\int_{0}^{\pi} \frac{dx}{(\sqrt{10} - \cos x)^3} = \frac{7\pi}{81} \)

For Problems 18 - 20

Sol.

\[f(x) = \sin x + \sin x \int_{-\pi/2}^{\pi/2} f(t) dt + \cos x \int_{-\pi/2}^{\pi/2} \frac{f(t) dt}{\pi/2} \]

\[= \sin x \left(1 + \int_{-\pi/2}^{\pi/2} f(t) dt \right) + \cos x \int_{-\pi/2}^{\pi/2} f(t) dt \]

\[= A \sin x + B \cos x \]

Thus, \(A = 1 + \int_{-\pi/2}^{\pi/2} f(t) dt \)

\[B = \int_{-\pi/2}^{\pi/2} f(t) dt \]

\[\Rightarrow A = 1 + 2B. \]

\[B = \int_{-\pi/2}^{\pi/2} f(t) dt \]

\[= \int_{-\pi/2}^{\pi/2} t \cos t dt \]

\[= 2A \left[-t \cos t + \sin t \right]_{0}^{\pi/2} \]

\[\Rightarrow B = 2A \]

From equations (1) and (2), we get

\[A = -1/3, B = -2/3 \]

\[\Rightarrow f(x) = -\frac{1}{3} (\sin x + 2 \cos x) \]

Thus, the range of \(f(x) \) is \([-\sqrt{5}/3, \sqrt{5}/3]\)

\[f(x) = -\frac{1}{3} (\sin x + 2 \cos x) \]

\[= -\frac{\sqrt{5}}{3} \sin \left(x + \tan^{-1} \frac{1}{2} \right) \]

\[= -\frac{\sqrt{5}}{3} \cos \left(x - \tan^{-1} \frac{1}{2} \right) \]

\(f(x) \) is invertible if \(-\pi/2 \leq x + \tan^{-1} \frac{1}{2} \leq \pi/2\)

\[\Rightarrow -\frac{\pi}{2} \leq \tan^{-1} \frac{1}{2} \leq \frac{\pi}{2} \]

or \(0 \leq x - \tan^{-1} \frac{1}{2} \leq \pi \)

\[\Rightarrow \tan^{-1} \frac{1}{2} \leq x \leq \pi + \tan^{-1} \frac{1}{2} \]

or \(\pi - x \leq \tan^{-1} \frac{1}{2} \leq 2\pi \)

\[\Rightarrow x \in \left[\pi + \cot^{-1} 2, 2\pi + \cot^{-1} 2 \right] \]

\[= -\frac{1}{3} \left[\cos x + 2 \sin x \right]_{0}^{\pi/2} \]

\[= -1 \]

Matrix-Match Type

1. a → s. b → s. c → r.d → q.

a. \(\int_{0}^{1} [x + [x]] dx \)

(b) \(\int_{0}^{1} [x + [-x]] dx \) (use property \([x + n] = [x] + n \) if \(n \) is integer)

\[= \int_{0}^{1} [x] dx = 3 \int_{0}^{-1} [x] dx = 3 \int_{0}^{-1} [x] dx \]

\[= -3 \text{ (as } [x] + [-x] = -1) \]

b. \(\int_{0}^{1} (x + [-x]) dx \)

\[= \int_{0}^{1} x dx + \int_{0}^{1} [-x] dx \]

\[= -1 \]

(c) \(\text{sgn}(x - [x]) = \left\{ \begin{array}{ll} 1, & \text{if } x \text{ is not an integer} \\ 0, & \text{if } x \text{ is an integer} \end{array} \right. \)

Hence, \(\int_{-1}^{3} \text{sgn}(x - [x]) dx = 4(1 - 0) = 4 \)

d. Let \(I = 25 \int_{0}^{\pi/4} \tan^6 (x - [x]) + \tan^4 (x - [x]) dx \)

\[\therefore 0 < x \leq \frac{\pi}{4} \Rightarrow [x] = 0 \]

\[I = 25 \int_{0}^{\pi/4} (\tan^6 x + \tan^4 x) dx \]

\[= 25 \int_{0}^{\pi/4} \tan^4 x (\tan^2 x + 1) dx \]

\[= 25 \int_{0}^{\pi/4} \tan^4 x \tan^2 x dx \]

\[= 25 \left(\tan^5 x \right)^{\pi/4} \]

\[= 25 \cdot 5 = 5 \]

2. a → r. b → p. c → s. d → q.

a. \(\lim_{n \to \infty} \left[\frac{2}{\int_{0}^{1} \left(\frac{1 + l}{n + l} \right)^n \; dt} \right] \)

\(\int_{0}^{1} \frac{2}{n + 1} \)
\[I_1 = \int_{\pi/6}^{\pi/3} \sec^2 \theta f(2 \sin 2\theta) d\theta = I_2. \]

b. \(f(x + 1) = f(x + 3) \Rightarrow f(x) = f(x + 2) \Rightarrow f(x) \) is periodic with period 2.

Then \[\int_a^{a+b} f(x) \, dx \] is independent of \(a \), for which \(b \) is multiple of 2.

\[\Rightarrow b = 2, 4, 6 \ldots \]

c. Let \(I = \int_1^b \frac{\tan^{-1} [x^2]}{\tan^{-1} [x^2] + \tan^{-1} [25 + x^2 - 10x]} \, dx \)

Applying \[\int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx, \] we get

\[I = \int_1^4 \frac{\tan [(5 - x)^2]}{\tan^{-1} [(5 - x)^2] + \tan^{-1} [x^2]} \, dx \]

Adding equations (1) and (2), we get

\[2I = \int_1^4 dx \Rightarrow 2I = 3 \Rightarrow I = 3/2 \]

d. Let \(y = \sqrt{x + \sqrt{x + \sqrt{x + \cdots}}} = \sqrt{x + y} \)

\[\Rightarrow y^2 - y - x = 0 \]

\[\Rightarrow y = \frac{1 + \sqrt{1 + 4x}}{2} \]

\[\Rightarrow y = \frac{1 + \sqrt{1 + 4x}}{2} \quad (\because y > 1) \]

\[\Rightarrow I = \int_0^{2 + \sqrt{1 + 4x}} \frac{x}{2} + \frac{(1 + 4x)^{3/2}}{3} \, dx \]

\[= \left[\frac{1}{2} \left(x + \frac{(1 + 4x)^{3/2}}{3} \right) \right]_0^2 \]

\[\Rightarrow [I] = 3 \]

4. a \(\rightarrow \) p, q, b \(\rightarrow \) p, q, r, c \(\rightarrow \) q, s, d \(\rightarrow \) s.

a. \[I_a = \int_{\pi/6}^{\pi/3} \sec^2 \theta f(2 \sin 2\theta) d\theta \]

Applying property \(b \int_a^{b-a} f(a + b - x) \, dx = \int_a^b f(x) \, dx \)

\[I_a = \int_{\pi/6}^{\pi/3} \sec^2 \left(\frac{\pi}{2} - \theta \right) f \left(2 \sin \left(\frac{\pi}{2} - \theta \right) \right) d\theta \]

\[= \frac{1}{2} \left[\left(\cos (\alpha - \beta)x - \cos (\alpha + \beta)x \right) dx \right] \]

\[= \frac{1}{2} \left[\sin (\alpha - \beta)x \cdot \frac{\sin (\alpha + \beta)x}{\alpha - \beta} \right]_0^1 \]
Therefore, \(f_{\text{max}} = 3(\pi + 1) = M \)
and \(f_{\text{min}} = (\pi + 1) = m \).
\[
\Rightarrow \frac{M}{m} = 3
\]

3. (5) We have \(f(2x) = 3f(x) \)

From equations (1) and (2), \(\int_{0}^{1} f(2x) \, dx = 1 \)

Put \(2x = t \), \(\int_{0}^{2} f(t) \, dt = 1 \)
\[
\Rightarrow 2 \int_{0}^{1} f(t) \, dt = 6
\]
\[
\Rightarrow \left(\int_{0}^{1} f(t) \, dt \right) + \int_{1}^{2} f(t) \, dt = 6
\]
Hence, \(\int_{0}^{2} f(t) \, dt = 6 - \int_{0}^{1} f(t) \, dt = 6 - 1 = 5 \).

4. (4) Given \(f(x) = x^2 - \frac{3x^2}{2} + x + \frac{1}{4} = \frac{1}{4} (4x^3 - 6x^2 + 4x + 1) \)
\[
= \frac{1}{4} \left(4x^3 - 6x^2 + 4x + 1 \right)
\]
\[
= \frac{1}{4} \left(x^4 - (1 - x)^4 \right) + \frac{2}{4}
\]
\[
\therefore \quad f(1-x) = \frac{1}{4} \left([1-x]^4 - x^4 \right) + \frac{2}{4}
\]
\[
\therefore \quad f(x) + f(1-x) = \frac{2}{4} + \frac{2}{4} = 1
\]
Replacing \(x \) by \(f(x) \) we have
\[
f(f(x)) + f(1-f(x)) = 1
\]
Now \(I = \int_{1/4}^{3/4} f(f(x)) \, dx \)
Also, \(I = \int_{1/4}^{3/4} f(f(1-x)) \, dx = \int_{1/4}^{3/4} f(1-f(x)) \, dx \) (using (1))

Adding (3) and (4),
\[
2I = \int_{1/4}^{3/4} [f(f(x)) + f(1-f(x))] \, dx = \int_{1/4}^{3/4} dx
\]
\[
\Rightarrow 2I = \frac{1}{2} \quad \Rightarrow \quad I = \frac{1}{4}
\]
\[I = \frac{1}{4} \]
\[\therefore \Gamma^{-1} = 4 \]

(2) \[
\lim_{n \to \infty} \frac{n^{n+1}}{2^n (n+1)} \left[\frac{x^{n+1}}{n+1} \right]_0^2
= \lim_{n \to \infty} \frac{2n^{n+1}}{2^n (n+1)}
= \lim_{n \to \infty} \frac{2}{1 + (1/n)} = 2
\]

(6) Given \(f^3(x) = \int_0^x t \cdot f^2(t) \, dt \)

Differentiating, \(3 f^3(x) f'(x) = x f^2(x)\)

\(f(x) \neq 0 \implies f'(x) = \frac{x}{3} \cdot f(x) = \frac{x^2}{6} + C\)

but \(f(0) = 0 \implies C = 0\)

\(f(6) = 6\)

(8) Let \(I = \int_0^{207} C_{77} \left[\frac{1}{200} \right] \left(1 - x^7\right) dx \)

\[I = 207 C_7 \left[\left(1 - x^7\right) \frac{201}{200} \right]_{201}^0 + \frac{7}{201} \left(1 - x^6\right) \cdot x^{201} \]

\[= 207 C_7 \left(\frac{7}{201} \int_0^1 (1 - x)^6 \cdot x^{201} \, dx \right) \]

Integrating by parts again 6 more times

\[= \frac{207 C_7}{201.202.203.204.205.206.207} \frac{1}{207} \int_0^1 x^{207} \, dx \]

\[= \frac{(207)!}{7!} \cdot \frac{1}{201.202.203.204.205.206.207} = \frac{1}{207} \]

Hence, \(I = \frac{\pi}{2} \left(\frac{3}{2} \right)^{\frac{1}{3}} \left[\tan^{-1} \left(\frac{2x-1}{\sqrt{3}} \right) \right]_0^1 = \frac{\pi^2}{3\sqrt{3}} \)

(10.7) \(F'(x) = (2x + 3) \int f(u) \, du \)

\[\therefore F'(x) = (2x + 3)\left[\int f(u) \, du \right] \cdot 2 \cdot f(2) \]

On adding equations (1) and (2), we get

\[2I = \int_0^1 \left[\sin^{-1}\sqrt{x} + \cos^{-1}\sqrt{x} \right] \]
13. (5) Given \(U_n = \frac{1}{0} x^n \cdot (2 - x)^n \ dx \); \(V_n = \frac{1}{0} x^n \cdot (1 - x)^n \ dx \)

In \(U_n \) put \(x = 2t \) \(\Rightarrow \) \(dx = 2dt \)

\[
\therefore U_n = 2 \int_0^{1/2} 2^n \cdot t^n \cdot 2^n \cdot (1 - t)^n \ dt
\]

Now \(V_n = 2 \int_0^{1/2} x^n \cdot (1 - x)^n \ dx \)

From equations (1) and (2) we get \(U_n = 2^{2n}. V_n \).

14. (6) \(I = \int_0^\infty (x^2)^n \cdot x \cdot e^{-x^2} \ dx \)

Put \(x^2 = t \) \(\Rightarrow \) \(x \ dx = dt/2 \)

\(\Rightarrow \ I = \frac{1}{2} \int_0^\infty t^n \cdot e^{-t} \ dt \)

\(= \frac{1}{2} \left[-t^n \cdot e^{-t} \right]_0^\infty + n \int_0^\infty t^{n-1} \cdot e^{-t} \ dt \)

\(= \frac{1}{2} \left[0 + n \int_0^\infty t^{n-1} \cdot e^{-t} \ dt \right] \)

\(\Rightarrow I = \frac{n!}{2} = 360 \)

\(\Rightarrow n = 6 \)

15. (3) \(f(x) = \int_0^x e^t \cdot \sin \left(x - t \right) dt \)

\(= \int_0^x e^t \cdot \sin (x - t) dt \)

\(= e^x \int_0^x e^{-t} \ sin t \ dt \)

\(\Rightarrow f'(x) = e^x \cdot e^{-x} \ sin x + e^x \int_0^x e^{-t} \sin t \ dt \)

\(= \sin x + e^x \int_0^x e^{-t} \sin t \ dt \)

\(\Rightarrow f''(x) = \cos x + e^x \cdot e^{-x} \sin x + e^x \int_0^x e^{-t} \sin t \ dt \)

\(= \cos x + \sin x + f(x) \)

\(\Rightarrow f''(x) - f(x) = \cos x + \sin x \)

Range of \(g(x) = f''(x) - f(x) \) is \([-\sqrt{2}, \sqrt{2}]\).

Number of integers in the range is 3.

16. (8) \(\frac{d}{dx} \int_4^x [4r^2 - 2F(t)] \ dt = [4x^2 - 2F(x)] \cdot 1 - 0 \)

\(\Rightarrow F'(x) = \frac{1}{x^2} [4x^2 - 2F(x)] + \frac{2}{x^2} \int_4^x [4r^2 - 2F(t)] \ dt \)

\(\Rightarrow F'(4) = \frac{1}{16} [64 - 2F(4)] - \frac{1}{32} \int_4^4 g(x) \ dx \)

\(\Rightarrow \left(1 + \frac{1}{8} \right) F'(4) = 4 \)

\(\Rightarrow F'(4) = \frac{32}{9} \)

17. (7) \(\sum_{r=1}^{100} \left(\int_0^r f(r-1 + x) \ dx \right) \)

\(= \int_0^1 f(x) \ dx + \int_0^1 f(1 + x) \ dx + \int_0^1 f(2 + x) \ dx + \cdots + \int_0^1 f(99 + x) \ dx \)

\(= \int_0^1 f(x) \ dx + \int_1^2 f(x) \ dx + \int_2^3 f(x) \ dx + \cdots + \int_99^{100} f(x) \ dx \)

\(= \int_0^{100} f(x) \ dx = 7 \)

18. (0) \(\therefore \) Integrant is discontinuous at \(\frac{\pi}{2} \), then \(\int_0^{\pi/2} 0 \cdot dx + \int_{\pi/2}^{3\pi/2} 0 \cdot dx = 0 \)

\(\therefore 0 < x < \frac{\pi}{2} \), \([\tan^{-1} \tan x] = [\sin^{-1} \sin x] \) and \(\frac{\pi}{2} < x < \frac{3\pi}{2} \), \([\tan^{-1} \tan x] = [\sin^{-1} \sin x] \)

19. (8) \(I_{11} = \int_0^{1/2} (x^5)^{11} \cdot \frac{1}{x} \ dx \)

\(= (1-x^5)^{11} \cdot x^1 \)

\(= -11 \int_0^1 (1-x^5)^{10} 5x^4 \cdot x \ dx \)

\(= -55 \int_0^1 (1-x^5)^{10} (1-x^5 - 1) \ dx \)

\(= -55 \int_0^1 (1-x^5)^{11} \ dx + 55I_{10} \)

\(\Rightarrow 56I_{11} = 55I_{10} \)

\(\Rightarrow I_{10} = \frac{56}{55} I_{11} \)

20. (4) \(I_1 = \int_0^{1004} (1-x)^{1004} \ dx \)

\(= 2 \int_0^{1004} (1-x)^{1004} \ dx \)

\(= 2 I_2 \)

And \(I_2 = \int_0^{1004} (1-x^{2010})^{1004} \ dx \)

Put \(x^{1005} = t \) \(\Rightarrow \) \(1005 x^{1004} \ dx = dt \)

\(\Rightarrow I_2 = \int_0^{1004} (1-t^2)^{1004} \ dt \)

\(= \int_0^{1005} \int_0^{1004} (2t)^{1004} \ dt \)

\(= \int_0^{1005} \int_0^{1004} (2-t)^{1004} \ dt \)

Now put \(t = 2y \) \(\Rightarrow \) \(dt = 2dy \)
\[I_2 = \frac{1}{1005} \int_0^{1/2} \left(2y \right)^{1004} \left(2 - 2y \right)^{1004} dy \]
\[= \frac{1}{1005} \cdot 2^{1004} \cdot 2^{1004} \int_0^{1/2} y^{1004} (1 - y)^{1004} dy \]
\[= \frac{1}{1005} \cdot 2^{2008} \int_0^{1/2} y^{1004} (1 - y)^{1004} dy \]
\[= \frac{1}{1005} I_1 \]
\[\Rightarrow \frac{I_1}{I_2} = \frac{2^{2008}}{1005} \]
\[\Rightarrow \frac{2^{2010}}{1005} I_1 = 4 \]

21. (9) \[f(x) = x + x \int_0^1 t f(t) dt + \int_0^1 t^2 f(t) dt \]
\[\therefore f(x) = x(1 + A) + B; \text{ where } A = \int_0^1 t f(t) dt \text{ and } B = \int_0^1 t^2 f(t) dt \]
\[\text{Now, } A = \left[t f(t) \right]_0^1 + B = \frac{t^3}{3} (1 + A) \]
\[\Rightarrow A = 1 + A + \frac{B}{3} \]
\[\Rightarrow 4A - 3B = 2 \]
Again \[B = \int_0^1 t^2 [t(1 + A) + B] dt = \frac{t^4}{4} (1 + A) + \frac{Bt^3}{3} \]
\[\Rightarrow B = \frac{1 + A}{3} + \frac{B}{4} \]
\[\Rightarrow 8B - 3A = 3 \]
Solving equations (1) and (2) we have \[B = \frac{18}{23} f(0) \]

22. (2) \[I = \int_{\sqrt{2} - 1}^{\sqrt{2} + 1} \left(\frac{x^2 + 1}{x^2 + 2} \right) dx \]
\[= \int_{\sqrt{2} - 1}^{\sqrt{2} + 1} \left(1 - \frac{x^2 - 1}{x^2 + 2} \right) dx \]
\[= 2 - \int_{\sqrt{2} - 1}^{\sqrt{2} + 1} \frac{x^2 - 1}{x^2 + 2} dx \]
\[I_1 = \int_0^a \frac{x^2 - 1}{x^2 + 2} dx \text{ where } (a = \sqrt{2} + 1) \]
\[\text{put } x = \frac{1}{t} \Rightarrow dx = -\frac{1}{t^2} dt \]
\[\Rightarrow \int_a^{\sqrt{2} - 1} \frac{t^2 - 1}{t^2 + 1} \left(\frac{x}{x^2 + 1} \right) dx \]
\[= -\int_a^{\sqrt{2} - 1} \frac{(t^2 - 1)^2}{t^2 + 1} dt \]
\[= -\int_a^{\sqrt{2} - 1} \frac{(t^2 - 1)^2}{t^2 + 1} dt \]

23. (0) We have \[J = \int_{-5}^{-4} (3 - x^2) \tan(3 - x^2) dx \]
Put \(x + 5 = t \), we get
\[J = \int_0^1 \left(3 - (t - 5)^2 \right) \tan (3 - (t - 5)^2) dt \]
\[= \int_0^1 (-22 + 10t - t^2) \tan (-22 + 10t - t^2) dt \]
Now, \[K = \int_{-2}^{-1} (6 - 6x + x^2) \tan(6x - x^2 - 6) dx \]
Put \(x + 2 = z \), we get
\[K = \int_0^1 (6 - 6z - 2 + 2z - 2)^2 \tan(6z - 2 - (z - 2)^2 - 6) dz \]
\[= \int_0^1 (22 - 10z + z^2) \tan(-22 + 10z - z^2) dz \]
Hence, \(J + K = 0 \).

24. (2) We have \[\int_0^{\sin t} x^2 g(x) dx = (1 - \sin t) \]
Differentiating both the sides of (1) with respect to \('t' \), we get
\[0 - (\sin^2 t) g(\sin t) \cos t = -\cos t \]
\[\Rightarrow g(\sin t) = \frac{1}{\sin^2 t} \]
Putting \(t = \frac{\pi}{4} \) in (2), we get
\[g \left(\frac{1}{\sqrt{2}} \right) = 2. \]

Archives

Subjective

1. \[L = \lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{6n} \right) \]
\[= \lim_{n \to \infty} \sum_{r=1}^{5n} \frac{1}{n+r} = \lim_{n \to \infty} \sum_{r=1}^{5n} \frac{1/n}{1+r/n} \]
Now, Lower limit = \(\lim_{n \to \infty} (r/n) |_{r=1} = \lim (1/n) = 0 \)
Upper limit = \(\lim_{n \to \infty} (r/n) |_{r=5n} = \lim (5n/n) = 5 \)
Then \(L = \int_0^\infty \frac{dx}{1 + x^2} = \log(1 + x^2) \bigg|_0^\infty = \log 6 \)

2. \[\int_0^1 (tx + 1 - x)^n \, dx \]

\[= \int_0^1 [(t - 1)x + 1]^{n-1} \, dx \]

\[= \left[\frac{1}{t-1} \right] \left[\frac{t^{n+1} - 1}{n+1} \right] \]

\[\Rightarrow \int_0^1 (tx + 1 - x)^n \, dx = \frac{t^{n+1} - 1}{(t-1)(n+1)} \]

For \(\int_0^1 (1-x)^n \, dx = \left[\frac{n}{n} \right] \]

\[k = 0, 1, 2, \ldots, n \]

Now \([tx + (1-x)]^n \)

\[= \sum_{k=0}^n \binom{n}{k} t^k (1-x)^{n-k} \quad \text{[Using binomial theorem]} \]

\[= \sum_{k=0}^n \binom{n}{k} \left[\int_0^1 t^k (1-x)^{n-k} \, dx \right] \]

Integrating both sides from 0 to 1 w.r.t. \(x \), we get

\[\Rightarrow \int_0^1 (tx + (1-x))^n \, dx = \sum_{k=0}^n \binom{n}{k} C_k \left[\int_0^1 t^k (1-x)^{n-k} \, dx \right] \]

\[= \frac{t^{n+1} - 1}{(t-1)(n+1)} \]

\[\Rightarrow \int_0^1 t^k (1-x)^{n-k} \, dx = \frac{1}{n+1} \sum_{k=0}^n \binom{n}{k} t^k \]

\[= \frac{1}{n+1} \left[1 + t + t^2 + \ldots + t^n \right] \quad \text{[Using sum of G.P.]} \]

Equating the coefficients of \(t \) on both the sides, we get

\[a C_k \int_0^1 t^k (1-x)^{n-k} \, dx = \frac{1}{n+1} \]

\[\Rightarrow \int_0^1 t^k (1-x)^{n-k} \, dx = \frac{1}{a C_k (n+1)} \]

3. Let \(I = \int_0^\pi f(x) \sin x \, dx \)

Now using property IV, we get

\[I = \int_0^\pi (\pi - x) f(\sin(\pi - x)) \, dx \text{, or} \]

\[I = \int_0^\pi (\pi - x) f(\sin x) \, dx \quad (2) \]

Adding equations (1) and (2), we get

\[2I = \pi \int_0^\pi f(\sin x) \, dx \]

\[\text{or} \quad I = \frac{\pi}{2} \int_0^\pi f(\sin x) \, dx. \]

4. \[\sin \theta \text{ is} \quad \text{ve if} -\pi \leq \theta \leq 0 \]

\[\text{is} \quad \text{ve if} 0 < \theta < \pi \]

\[\text{is} \quad \text{ve if} \pi < \theta \leq 3\pi/2 \]

\[\Rightarrow \left\{ x \sin \pi x \right\} = \begin{cases} \frac{1}{x} (x \sin \pi x) & \text{if} -\pi \leq x < 0 \\
\sin \pi x & \text{if} 0 < x \leq 1 \\
-x \sin \pi x & \text{if} 1 < x \leq 3/2 \\
\end{cases} \]

\[\Rightarrow \int_{-\pi}^{3/2} x \sin \pi x \, dx \]

\[= \int_0^1 x \sin \pi x \, dx + \int_{1}^{3/2} x \sin \pi x \, dx + \int_{3/2}^1 (-x \sin \pi x) \, dx \]

\[= \int_0^1 x \sin \pi x \, dx - \int_{1}^{3/2} x \sin \pi x \, dx + \frac{1}{4} \left[\frac{1}{3/2} x \sin \pi x \right]_1^{3/2} - \left[\frac{1}{4} x \left(\frac{x}{\pi} \right) \cos \pi x \right]_0^{3/2} \]

\[= \frac{2}{\pi} + \frac{2}{\pi^2} \left[\sin \pi x \right]_0^{3/2} + \int_{3/2}^{1} \frac{3}{2} \left(\frac{1}{\pi} \right) \cos \pi x \, dx \]

\[= (2/\pi) + 0 + 0 + (1/\pi) + (1/\pi^2) \]

\[= 3(\pi + 1)/\pi^2 \]

5. \(I = \int_0^{\pi/4} \frac{\sin x + \cos x}{9 + 16 \sin 2x} \, dx \)

we know that \((\sin x - \cos x)^2 = 1 - \sin 2x \)

\[\Rightarrow I = \int_0^{\pi/4} \frac{\sin x + \cos x}{9 + 16(1 - \sin x \cos x)^2} \, dx \]

\[\Rightarrow I = \int_0^{\pi/4} \frac{\sin x + \cos x}{25 - 16 \sin x \cos x} \, dx \]

Let \(\sin x \cos x = t \)

\[\Rightarrow \int_0^{\pi/4} \frac{\sin x + \cos x}{25 - 16 t^2} \, dx \]

\[\Rightarrow \int_0^{\pi/4} \frac{1}{16} \frac{dt}{\left(\frac{5}{4} \right)^2 - t^2} \]

\[\Rightarrow \frac{1}{16} \left[\log \left(\frac{5 + t}{5 - t} \right) \right]_0^{\pi/4} \]

\[= \frac{1}{40} \left[\log \frac{5}{4} - \log \frac{5}{4} \right] \]

\[= \log \frac{1}{20} \log 3 \]
6. Let \(I = \int_{0}^{\pi/2} \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx \)

Put \(x = \sin \theta \Rightarrow dx = \cos \theta \, d\theta \)
Also when \(x = 0, \theta = 0 \) and when \(x = 1/2, \theta = \pi/6 \)
Thus, \(I = \int_{0}^{\pi/6} \sin \theta \sin^{-1} \left(\sin \frac{\theta}{2} \right) \cos \theta \, d\theta \)
\[
\Rightarrow I = \int_{0}^{\pi/6} \sin \theta \sin \frac{\theta}{2} \cos \theta \, d\theta
\]
Integrating by parts, we get
\[
I = \left[\frac{\theta}{2} \cos \frac{\theta}{2} \right]_{0}^{\pi/6} + \int_{0}^{\pi/6} \cos \frac{\theta}{2} \cos \theta \, d\theta
\]
\[
= -\frac{\pi}{2} \sqrt{3} \cdot \frac{1}{2} + \frac{6 - \pi\sqrt{3}}{12}
\]
\[
= \frac{\pi}{6} \sqrt{3} + \frac{1}{2} \cdot \frac{6 - \pi\sqrt{3}}{12}
\]

7. Given that \(f(x) \) is integrable over any interval on the real line and \(f(t+x) = f(x) \)
for all real \(x \) and a real \(t \)

Now, \(\int_{a}^{a+t} f(x) \, dx \)
\[
= \int_{a}^{t} f(x) \, dx + \int_{t}^{a} f(x) \, dx + \int_{t}^{a+t} f(x) \, dx
\]
In the last integral, put \(x = t + y \) so that \(dx = dy \)
Then \(\int_{t}^{a+t} f(x) \, dx \)
\[
= \int_{a}^{t} f(t+y) \, dy = \int_{a}^{t} f(y) \, dy \] \hspace{1cm} [Using equation (1)]
\[
= \int_{a}^{t} f(x) \, dx.
\]
Hence, \(\int_{a}^{a+t} f(x) \, dx \)
\[
= -\int_{a}^{t} f(x) \, dx + \int_{t}^{a} f(x) \, dx + \int_{t}^{a+t} f(x) \, dx
\]
\[
= \int_{a}^{t} f(x) \, dx \] \hspace{1cm} \text{which is independent of} \ a.

8. Let \(I = \int_{0}^{\pi/2} \frac{x \sin x \cos x}{\cos^4 x + \sin^4 x} \, dx \)
\[
\Rightarrow I = \int_{0}^{\pi/2} \frac{(\pi/2 - x) \sin (\pi/2 - x) \cos (\pi/2 - x)}{\cos^4 (\pi/2 - x) + \sin^4 (\pi/2 - x)} \, dx
\]
[Using \(\int_{0}^{\pi/2} f(x) \, dx = \int_{0}^{\pi/2} f(a - x) \, dx \)]
\[
\Rightarrow I = \int_{0}^{\pi/2} \frac{(\pi/2 - x) \sin \cos x}{\sin^4 x + \cos^4 x} \, dx
\]
Adding equations (1) and (2), we get
\[
2I = \frac{\pi}{2} \int_{0}^{\pi/2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx
\]
\[
\Rightarrow I = \frac{\pi}{4} \int_{0}^{\pi/2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx
\]
\[
= \frac{\pi}{4} \int_{0}^{\pi/2} \frac{\sec^2 x \tan x}{\tan^4 x + 1} \, dx \] \hspace{1cm} [Dividing numerator and denominator by \(\cos^4 x \)]
\[
= \frac{\pi}{2} \int_{0}^{\pi/2} \frac{\tan x \sec^2 x}{\tan^4 x + 1} \, dx
\]
\[
= \frac{\pi}{2} \int_{0}^{\pi/2} \frac{2 \tan x \sec^2 x \, dx}{1 + (\tan^2 x)^2}
\]
Put \(\tan^2 x = t \Rightarrow 2 \tan x \sec^2 x \, dx = dt \)
Also, as \(x \to 0, t \to 0 \); as \(x \to \pi/2, t \to \infty \)
\[
\Rightarrow I = \frac{\pi}{8} \int_{0}^{\infty} \frac{dt}{1 + t^2}
\]
\[
= \frac{\pi}{8} \tan^{-1} t \bigg|_{0}^{\pi/2} = \frac{\pi}{8} \left[\tan^{-1} \frac{\pi}{2} - \tan^{-1} 0 \right] = \pi^2/16.
\]

9. Let \(I = \int_{0}^{\pi} \frac{x \, dx}{1 + \cos \alpha \sin x} \)
\[
I = \int_{0}^{\pi} \frac{\pi - x \, dx}{1 + \cos \alpha \sin x}
\]
[using \(\int_{0}^{\pi} f(x) \, dx = \int_{0}^{\pi} f(a - x) \, dx \)]
\[
\Rightarrow I = \int_{0}^{\pi} \frac{\pi - x \, dx}{1 + \cos \alpha \sin x}
\]
Adding equations (1) and (2), we get
\[
2I = \int_{0}^{\pi} \frac{x + \pi - x \, dx}{1 + \cos \alpha \sin x}
\]
\[
= \int_{0}^{\pi} \frac{\pi \, dx}{1 + \cos \alpha \sin x}
\]
\[
\Rightarrow I = \frac{\pi}{2} \int_{0}^{\pi} \frac{1}{1 + \cos \alpha \sin x} \, dx
\]
\[
= \frac{\pi}{2} \times 2 \int_{0}^{\pi/2} \frac{\sec^2 x}{1 + \cos \alpha \sin x} \, dx
\]
\[
= \pi \int_{0}^{\pi/2} \frac{1}{1 + \cos \alpha \times \frac{2 \tan x/2}{1 + \tan^2 x/2}} \, dx
\]
\[
= \pi \int_{0}^{\pi/2} \frac{\sec^2 x/2}{1 + \tan^2 x/2 + 2 \cos \alpha \tan x/2} \, dx
\]
Put \(\tan x/2 = t \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2} \, dx = dt \)
Also when \(x \to 0, t \to 0 \)
as \(x \to \pi/2, t \to 1 \)
\[
\Rightarrow I = \pi \int_{0}^{1} \frac{2 \, dt}{t^2 + (2 \cos \alpha) t + 1}
\]
\[
= 2\pi \int_{0}^{1} \frac{dt}{(t + \cos \alpha)^2 + 1 - \cos^2 \alpha}
\]
\[
= 2\pi \int_{0}^{1} \frac{dt}{(t + \cos \alpha)^2 + \sin^2 \alpha}
\]
\[
= 2\pi \left[\frac{1}{\sin \alpha} \tan^{-1} \left(\frac{t + \cos \alpha}{\sin \alpha} \right) \right]_{0}^{1}
\]
\[
= \frac{2\pi}{\sin \alpha} \left[\tan^{-1} \left(\frac{1 + \cos \alpha}{\sin \alpha} \right) - \tan^{-1} \left(\cos \alpha \right) \right]
\[= \frac{2\pi}{\sin \alpha} \left[\tan^{-1} \left(\frac{1 + \cos \alpha}{\sin \alpha} \right) \right] \]
\[= \frac{2\pi}{\sin \alpha} \left[\tan^{-1} \left(\frac{\sin \alpha}{1 + \cos \alpha} \right) \right] \]
\[= \frac{2\pi}{\sin \alpha} \left[\tan^{-1} \left(\frac{\tan \alpha}{2} \right) \right] \]
\[= \frac{\pi}{\sin \alpha} \]

10. \[\int_{0}^{a} f(x)g(x) \, dx \]
\[= \int_{0}^{a} f(a-x)g(a-x) \, dx \]
\[= \int_{0}^{a} f(x) \cdot [2 - g(x)] \, dx \]
\[= 2 \int_{0}^{a} f(x) \, dx - \int_{0}^{a} f(x)g(x) \, dx \]
\[\Rightarrow 2 \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(x)g(x) \, dx \]
\[\Rightarrow \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(x)g(x) \, dx \]

11. Let \(I = \int_{0}^{\pi/2} f(\sin 2x) \sin x \, dx \) \hspace{1cm} (1)
\[= \int_{0}^{\pi/2} f(\sin 2(\frac{1}{2}x)) \sin (\frac{1}{2}x) \, dx \]
\[= \int_{0}^{\pi/2} f(2x) \cos x \, dx \] \hspace{1cm} (2)

Then adding equations (1) and (2), we have
\[2I = \int_{0}^{\pi/2} f(2x)(\sin x + \cos x) \, dx \]
\[= \sqrt{2} \int_{0}^{\pi/2} f(2x) \sin \left(x + \frac{\pi}{4} \right) \, dx \]

Now, from the result which we have to prove, it is clear that we have to substitute \(\frac{\pi}{2} - 2\theta = 2x \).
\[\Rightarrow dx = -d\theta \text{ and also when} \]
\[x = 0, \theta = \frac{\pi}{4} \text{ and when} x = \frac{\pi}{2}, \theta = -\frac{\pi}{4} \]
\[\Rightarrow 2I = \sqrt{2} \int_{\pi/4}^{\pi/2} f(\cos 2\theta) \cos \theta \, d\theta \]
\[= 2\sqrt{2} \int_{0}^{\pi/4} f(\cos 2\theta) \cos \theta \, d\theta \]
\[\text{[as} g(\theta) = f(\cos 2\theta) \cos \theta \text{is an even function]} \]
\[\therefore I = \sqrt{2} \int_{\pi/4}^{\pi/2} f(\cos 2x) \cos x \, dx \] \hspace{1cm} (3)

Equations (1), (2), (3) give the required result.

12. \[2 \sin x \cos x + 2 \sin x \cos 3x + \ldots + 2 \sin x \cos (2x-1)x \]
\[= \sin 2x + (\sin 4x - \sin 2x) + (\sin 6x - \sin 4x) + \ldots + (\sin 2kx - \sin (2k-2)x) \]
\[= \sin 2kx = R.H.S. \]
\[\Rightarrow \sin 2kx \cot x = \frac{\sin 2kx \cos x}{\sin x} = \cos x \cdot 2[\cos x + \cos 3x + \ldots + \cos (2k-1)x] \]

\[\therefore \] 1 + \cos 2x + \cos 4x + \cos 2x + \cos 6x + \cos 4x + \ldots + \cos 2kx + \cos (2k-2)x \]
\[\Rightarrow \int_{0}^{\pi/2} \sin 2kx \cdot \cot x \, dx \]
\[= \int_{0}^{\pi/2} \frac{\pi/2}{2} \, dx + \int_{0}^{\pi/2} (2 \cos 2x + 2 \cos 4x + \ldots + 2 \cos (2k-2)x) \, dx \]
\[+ \int_{0}^{\pi/2} \cos 2kx = \frac{\pi}{2} \]

(as integrals other than 1st one are zero)

13. We are given that \(f \) is a continuous function and
\[\int_{0}^{\pi} f(t) \, dt \rightarrow \infty \text{ as} |x| \rightarrow \infty \]
To show that every line \(y = mx \) intersects the curve
\[y^2 + \int_{0}^{\pi} f(t) \, dt = 2 \]
If possible, let \(y = mx \) intersects the given curve then substituting \(y = mx \) in the curves, we get
\[m^2x^2 + \int_{0}^{\pi} f(t) \, dt = 2 \] \hspace{1cm} (1)

Consider \(F(x) = m^2x^2 + \int_{0}^{\pi} f(t) \, dt - 2 \)
Then \(F(x) \) is a continuous function as \(f(x) \) is given to be continuous.
Also \(F(x) \rightarrow \infty \) as \(|x| \rightarrow \infty \).
But \(F(0) = -2 \)
Thus, \(F(0) = -ve \) and \(F(b) = +ve \) where \(b \) is some value of \(x \), and \(F(x) \) is continuous.
Therefore, \(F(x) = 0 \) for some value of \(x \in (0, b) \) or equation (1) is solvable for \(x \).
Hence \(y = mx \) intersects the given curves.

14. Let \(I = \int_{0}^{x} \frac{x \sin 2x \sin \left(\frac{\pi}{2} \cos x \right)}{2x - \pi} \, dx \) \hspace{1cm} (1)
Then
\[I = \int_{0}^{\pi} \frac{(\pi - x) \sin (2\pi - 2x) \sin \left(\frac{\pi}{2} \cos (\pi - x) \right)}{2(\pi - x) - \pi} \, dx , \text{or} \]
\[I = \int_{0}^{\pi} \frac{(\pi - x) \sin 2x \sin \left(\frac{\pi}{2} \cos x \right)}{\pi - 2x} \, dx , \text{or} \]
\[I = \int_{0}^{\pi} \frac{(x - \pi) \sin 2x \sin \left(\frac{\pi}{2} \cos x \right)}{2x - \pi} \, dx \] \hspace{1cm} (2)

Adding equations (1) and (2), we get
\[2I = \int_{0}^{\pi} \frac{(2x - \pi) \sin 2x \sin \left(\frac{\pi}{2} \cos x \right)}{2x - \pi} \, dx \]
\[= \int_{0}^{\pi} \sin 2x \sin \left(\frac{\pi}{2} \cos x \right) \, dx \]
\[= \int_{0}^{\pi} 2 \sin x \cos x \sin \left(\frac{\pi}{2} \cos x \right) \, dx \]
\[I = \int_0^\pi \sin x \cos x \sin \left(\frac{\pi}{2} \cos x \right) dx \]

Put \(z = \frac{\pi}{2} \cos x \), then \(dz = -\frac{\pi}{2} \sin x \, dx \)

When \(x = 0, z = \frac{\pi}{2} \) and when \(x = -\pi, z = -\frac{\pi}{2} \)

\[I = -\frac{2}{\pi} \int_{-\pi/2}^{\pi/2} 2\pi \sin z \, dz = \frac{4}{\pi^2} \int_{-\pi/2}^{\pi/2} z \sin z \, dz = \frac{8}{\pi^2} \]

15. Given \(\int_0^\pi e^x (x-1)^n \, dx = 16 - 6e \)

where \(n \in \mathbb{N} \) and \(n \leq 5 \).

To find the value of \(n \).

Let \(I_n = \int_0^\pi e^x (x-1)^n \, dx \)

\[= \left[(x-1)^n e^x \right]_0^\pi - \int_0^\pi n(x-1)^{n-1} e^x \, dx \]

\[= (-1)^n - \int_0^\pi n(x-1)^{n-1} e^x \, dx \]

\[\Rightarrow I_n = (-1)^n - nI_{n-1}. \quad (1) \]

Also \(I_1 = \int_0^\pi e^x (x-1) \, dx \)

\[= \left[e^x (x-1) \right]_0^\pi - \int_0^\pi e^x \, dx \]

\[= 1 - (e-1) = 2 - e \]

Using equation (1), we get

\(I_2 = (-1)^3 - 2I_1 = -1 - 2(2-e) = 2e - 5 \)

Similarly, \(I_3 = (-1)^4 - 3I_2 = 1 - 3(2e - 5) \)

\[= 16 - 6e \]

\(n = 3 \)

\[\Rightarrow \int_0^\pi \frac{2x^2 + x^4 - 2x^3 + 2x^2 + 1}{(x^2 + 1)(x^4 - 1)} \, dx \]

\[= \int_0^\pi \frac{2x^3}{(x^2 + 1)^2} \, dx \]

\[= \int_0^\pi \frac{1}{x^2 - 1} \, dx \]

\[= \int_0^\pi \frac{x^2 2x dx}{(x^2 + 1)^2} + \left[\frac{1}{2} \log \frac{x - 1}{x + 1} \right]_0^\pi \]

\[= \int_0^\pi \frac{10 - 1}{t^2} \, dt + \left[\frac{1}{2} \left(\frac{2}{3} - \log \frac{1}{3} \right) \right] \]

Put \(x^2 + 1 = t \Rightarrow 2x \, dx = dt \) when \(x \to 2, t \to 5 \) and \(x \to 3, t \to 10 \)

\[= \int_5^0 \left(\frac{1}{t^2} \right) \, dt + \frac{1}{2} \log 2 \]

\[= \left(\log |t| + \frac{1}{t} \right)_5^0 + \frac{1}{2} \log 2 \]

\[= \log 10 - \log 5 + \frac{1}{10} - \frac{1}{5} + \frac{1}{2} \log 2 \]

\[= \log 2 \left(-\frac{1}{10} + \frac{1}{2} \right) \log 2 \]

\[= \frac{3}{2} \log 2 - \frac{1}{10} \]

17. Let \(I = \int_0^\pi \sin x \, dx \)

\[= \int_0^\pi \sin x \, dx + \int_0^\pi n \sin x \, dx \]

\[= \int_0^\pi \sin x \, dx + n \int_0^\pi \sin x \, dx \]

\[= \sin x \mid_0^\pi + n \sin x \mid_0^\pi \]

\[= (-\cos x)_0^\pi + n (-\cos x)_0^\pi \]

\[= 2n + 1 - \cos x = R.H.S. \]

18. \(U_{n+2} - U_{n+1} = \int_0^\pi \left(-\cos(n+1)x \right) - (1 - \cos(n+1)x) \, dx \)

\[= \int_0^\pi \frac{\cos(n+1) x - \cos(n+2) x}{1 - \cos x} \, dx \]

\[= \int_0^\pi \sin x \, dx + 2 \sin \left(\frac{3}{2} \right) \sin x \, dx \]

\[\Rightarrow U_{n+2} - U_{n+1} = \int_0^\pi \frac{\sin \left(\frac{n+3}{2} \right) x}{\sin x} \, dx \]

\[\Rightarrow U_{n+1} - U_n = \int_0^\pi \frac{\sin \left(\frac{n+1}{2} \right) x}{\sin x} \, dx \]

From equations (1) and (2), we get

\((U_{n+2} - U_{n+1}) - (U_{n+1} - U_n) \)

\[= \int_0^\pi \frac{\sin \left(\frac{n+3}{2} \right) x - \sin \left(\frac{n+1}{2} \right) x}{\sin x} \, dx \]

\[\Rightarrow U_{n+2} + U_n - 2U_{n+1} = \int_0^\pi 2 \cos(n+1) x \sin \frac{x}{2} \, dx \]

\[= 2 \int_0^\pi \cos(n+1) x \, dx = 2 \left(\frac{\sin(n+1) x}{n+1} \right)_0^\pi = 0 \]

\[\Rightarrow U_{n+2} + U_n = 2U_{n+1} \]

\(U_0 = \int_0^\pi \frac{1 - 1}{1 - \cos x} \, dx = 0, \quad U_1 = \int_0^\pi \frac{1 - \cos x}{1 - \cos x} \, dx = \pi \)

\[U_1 - U_0 = \pi \] (common difference)

\[\Rightarrow U_n = U_0 + n\pi = n\pi \]

\[\Rightarrow U_n = n\pi \]

Now, \(I_n = \int_0^\pi \frac{\sin^2 n\theta}{\sin^2 \theta} \, d\theta \)

\[= \int_0^\pi \frac{\sin^2 n\theta}{1 - \cos 2\theta} d\theta \]
19. Let \(I = \int_{-\sqrt{3}}^{1/\sqrt{3}} \frac{\cos^{-1}(\frac{2y}{1+y^2})}{1-y^4} \) \(dy \)

Put \(x = -y \), so that \(dx = -dy \)

and \(I = \int_{-\sqrt{3}}^{1/\sqrt{3}} \frac{\cos^{-1}(\frac{2y}{1+y^2})}{1-y^4} \) \(dy \)

But \(\cos^{-1}(-x) = \pi - \cos^{-1}x \) for \(-1 \leq x \leq 1\),

\[\Rightarrow I = \int_{-\sqrt{3}}^{-1/\sqrt{3}} \frac{\pi - \cos^{-1}(\frac{2y}{1+y^2})}{1-y^4} \]

\[= \pi \int_{-\sqrt{3}}^{-1/\sqrt{3}} \frac{1}{1-y^4} dx - \int_{-\sqrt{3}}^{-1/\sqrt{3}} \frac{\cos^{-1}(\frac{2y}{1+y^2})}{1-y^4} dx \]

\[\Rightarrow I = \pi \int_{-\sqrt{3}}^{1/\sqrt{3}} \frac{x^4}{1-x^4} dx \]

\[= \pi \int_{-\sqrt{3}}^{1/\sqrt{3}} \left[\frac{1}{1+x^2} + \frac{1}{1-x^2} \right] dx \]

\[= \pi \int_{1/\sqrt{3}}^{1} \frac{1}{1-x^2} dx + \pi \int_{-\sqrt{3}}^{-1/\sqrt{3}} \frac{1}{1-x^2} dx \]

\[= \pi \left[\tan^{-1}x \right]_{1/\sqrt{3}}^{1} - \pi \left[\tan^{-1}x \right]_{-\sqrt{3}}^{-1/\sqrt{3}} \]

\[= \pi \left(\tan^{-1}1 - \tan^{-1}\left(\frac{1}{\sqrt{3}} \right) \right) \]

\[= \pi \left(\frac{\pi}{4} - \frac{\pi}{6} \right) \]

\[= \frac{\pi^2}{8} \]

20. Let \(I = \int_{0}^{\pi/4} \ln(1+\tan x) dx \)

\[= \int_{0}^{\pi/4} \ln(1+\tan(\pi/4-x)) dx \]

Adding equations (1) and (2), we get

\[2I = \frac{\pi}{8} \ln 2 \]

\[\Rightarrow I = \frac{\pi}{8} \ln 2 \]

21. \(a + b = 4 \Rightarrow b = 4 - a \)

Let \(f(a) = \int_{0}^{a} g(x) dx + \int_{a}^{b} g(x) dx \)

\[= \int_{0}^{a} g(x) dx + \int_{a}^{b} g(x) dx \]

\[= \int_{0}^{a} g(x) dx + \int_{a}^{b} g(x) dx \]

\[\Rightarrow \frac{df(a)}{da} = g(a) - g(4-a) \]

\[\Rightarrow \frac{df(a)}{d(b-a)} = \frac{df(a)}{d(4-2a)} = \frac{df(a)}{-2da} \]

Now given \(a < 2 \)

\[\Rightarrow 2a < 4 \]

\[\Rightarrow 4 - a > a \]

\[\Rightarrow g(4-a) > g(a) \quad (\because g(x) \text{ is an increasing function}) \]

\[\Rightarrow \frac{df(a)}{d(b-a)} > 0 \]

\[\Rightarrow f(a) = \int_{0}^{a} g(x) dx + \int_{a}^{b} g(x) dx \text{ increases as } (b-a) \text{ increases.} \]

22. \(I = \int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx \)

\[= \int_{-\pi}^{\pi} \frac{2x}{1+\cos^2 x} dx + 2 \int_{-\pi}^{\pi} \frac{x\sin x}{1+\cos^2 x} dx \]

\[= 0 + 4 \int_{0}^{\pi} \frac{x\sin x}{1+\cos^2 x} dx \]

\[= 4 \int_{0}^{\pi} \frac{(x-x)\sin(x-x)}{1+\cos^2(x-x)} dx \]

\[= 4 \int_{0}^{\pi} \frac{x\sin x}{1+\cos^2 x} dx \]

\[= 4 \int_{0}^{\pi} \frac{x}{1+\cos^2 x} dx \]

\[= 4 \left[\frac{x}{1+\cos^2 x} \right]_{0}^{\pi} \]

\[= 4 \left[\frac{\pi}{1+\cos^2 \pi} \right] - 4 \left[\frac{\pi}{1+\cos^2 \pi} \right] \]

\[\Rightarrow 2I = 4 \pi \left[\frac{\sin x}{1+\cos^2 x} \right]_{0}^{\pi} \]

\[\Rightarrow I = 2 \pi \left[\frac{\sin x}{1+\cos^2 x} \right]_{0}^{\pi} \]

Put \(x = t \) so that \(\sin x dx = dt \)

When \(x = 0, t = 1 \); when \(x = \pi, t = -1 \)

\[\Rightarrow I = 2 \pi \int_{1}^{-1} \frac{dt}{1+t^2} \]

\[= 4 \pi \left[\tan^{-1}t \right]_{0}^{\pi} \]

\[= 4 \pi \frac{\pi}{4} = \pi^2 \]

23. \(\int_{0}^{\tan^{-1} x} \frac{1}{1-x^2} dx \)

\[= \left[\tan^{-1} x + \tan^{-1}(1-x) \right]_{0}^{\tan^{-1} x} \]

\[= \int_{0}^{\tan^{-1} x} \tan^{-1} x dx + \int_{0}^{\tan^{-1} x} \tan^{-1}(1-x) dx \]
\[I = \int_0^1 \tan^{-1} x \, dx + \int_0^1 \tan^{-1} [1 - (1 - x)] \, dx \]

\[= 2 \int_0^1 \tan^{-1} x \, dx \]

Now

\[I = \int_0^1 \tan^{-1} (1 - x + x^2) \, dx \]

\[= \int_0^1 \cot^{-1} \left(\frac{1}{1 - x + x^2} \right) \, dx \]

\[= \int_0^1 \left[\frac{\pi}{2} - \tan^{-1} \left(\frac{1}{1 - x + x^2} \right) \right] \, dx \]

\[= \frac{\pi}{2} - 2 \int_0^1 \tan^{-1} x \, dx \quad \text{[from equation (1)]} \]

\[= \frac{\pi}{2} - 2 \left\{ x \tan^{-1} x - \frac{1}{2} \log (1 + x^2) \right\} \bigg|_0^1 \]

\[= \log 2 \]

24. Let \(F(x) = f(x) + \int f \left(\frac{1}{x} \right) \, dx \)

\[= \int_1^x \frac{\log t}{1 + t} \, dt + \int_1^x \frac{- \log t}{1 + t} \, dt \]

In 2nd integral, let \(t = 1/y \Rightarrow dt = - \frac{1}{y^2} \, dy \)

\[\Rightarrow F(x) = \int_1^x \frac{\log t}{1 + t} \, dt + \int_1^x \frac{- \log t}{1 + t} \, dt \]

\[= \int_1^x \frac{\log t}{1 + t} \, dt + \int_1^x \frac{\log t}{1 + t} \, dt \]

\[= \int_1^x \frac{\log t}{1 + t} \, dt = \frac{1}{2} \left(\log x \right)^2 \]

\[\therefore F(e) = \frac{1}{2} \]

25. We have \(y(x) = \int_{x^2/16}^{\cos x} \frac{\cos \sqrt{\theta}}{1 + \sin^2 \sqrt{\theta}} \, d\theta \)

\[= \cos x \int_{x^2/16}^{\cos \sqrt{\theta}} \frac{\cos \sqrt{\theta}}{1 + \sin^2 \sqrt{\theta}} \, d\theta \]

\[\Rightarrow \frac{dy}{dx} = - \sin x \int_{x^2/16}^{\cos \sqrt{\theta}} \frac{\cos \sqrt{\theta}}{1 + \sin^2 \sqrt{\theta}} \, d\theta \]

\[+ \cos x \frac{d}{dx} \left[\int_{x^2/16}^{\cos \sqrt{\theta}} \frac{\cos \sqrt{\theta}}{1 + \sin^2 \sqrt{\theta}} \, d\theta \right] \]

\[= - \sin x \int_{x^2/16}^{\cos \sqrt{\theta}} \frac{\cos \sqrt{\theta}}{1 + \sin^2 \sqrt{\theta}} \, d\theta \]

\[+ \cos x \left[\frac{\cos x}{1 + \sin^2 x} - 2x - 0 \right] \]

26. Let \(I = \int_{-\pi/3}^{\pi/3} \frac{\pi + 4x^3}{2 - \cos \left(\frac{x}{3} \right)} \, dx \)

\[= \int_{-\pi/3}^{\pi/3} \frac{\pi}{2 - \cos \left(\frac{x}{3} \right)} \, dx \]

\[+ \int_{-\pi/3}^{\pi/3} \frac{4x^3}{2 - \cos \left(\frac{x}{3} \right)} \, dx \]

The second integral becomes zero as integrand being an odd function of \(x \).

\[\Rightarrow I = 2 \pi \int_0^{\pi/3} \frac{dx}{2 - \cos \left(\frac{x}{3} \right)} \]

Let \(x + \pi/3 = y \Rightarrow dx = dy \)

Also, as \(x \to 0, y \to \pi/3 \) as \(x \to \pi/3, y \to 2\pi/3 \)

\[\Rightarrow I = 2 \pi \int_{\pi/3}^{2\pi/3} \frac{dy}{2 - \cos y} \]

\[= 2 \pi \int_{\pi/3}^{2\pi/3} \frac{dy}{2 - 1 - \tan^2 y/2} \]

\[= 2 \pi \int_{\pi/3}^{2\pi/3} \frac{\sec^2 y/2}{1 + \tan^2 y/2} \, dy \]

\[= 2 \pi \int_{\pi/3}^{2\pi/3} \frac{1}{2} \sec^2 y/2 \, dy \]

\[= \frac{4\pi}{3} \int_{\pi/3}^{2\pi/3} \frac{1}{2} \sec^2 y/2 \, dy \]

\[= \frac{4\sqrt{3}}{3} \left[\tan^{-1} \left(\sqrt{3} \tan y/2 \right) \right]_{\pi/3}^{\pi/3} \]

\[= \frac{4\pi}{3} \left[\tan^{-1} 3 - \tan^{-1} 1 \right] \]

\[= \frac{4\pi}{3} \left[\tan^{-1} 3 - \pi/4 \right] \]

27. \(I = \int_0^\pi e^{\cos x} \left(2 \sin \left(\frac{1}{2} \cos x \right) + 3 \cos \left(\frac{1}{2} \cos x \right) \right) \sin x \, dx \)

\[= \int_0^\pi e^{\cos x} \sin x \, dx \]

\[+ \int_0^\pi e^{\cos x} 3 \cos \left(\frac{1}{2} \cos x \right) \sin x \, dx \]

\[= I_1 + I_2 \]

Now using the property that

\[\int_0^a f(x) \, dx = \begin{cases} 0 & \text{if } f(2a - x) = -f(x) \\ 2 \int_0^a f(x) \, dx & \text{if } f(2a - x) = f(x) \end{cases} \]
we get \(I_1 = 0 \) and
\[
I_2 = 2 \int_0^{\pi/2} e^{\cos x} \frac{3\cos \left(\frac{1}{2} \cos x \right)}{\cos x} \sin x \, dx
\]
\[
= 6 \int_0^{\pi/2} e^{\cos x} \cos \left(\frac{1}{2} \cos x \right) \sin x \, dx
\]
Put \(\cos x = t \Rightarrow -\sin x \, dx = dt \\
\Rightarrow I_2 = 6 \left[\frac{e^{t/2} (1 - \frac{1}{2} \sin t + \frac{1}{2} \cos t)}{1 + \frac{1}{4}} \right]_0^1
\]
\[
= 6 \left[\frac{e^{x^{1/2}} \cos bx dx}{a^2 + b^2} \right]_0^1
\]
\[
= \frac{24}{5} \left(e \cos \left(\frac{1}{2} \right) + \frac{1}{2} e \sin \left(\frac{1}{2} \right) - 1 \right)
\]
\[
5050 \int_0^{1-x-50} \frac{1}{dx} = 5050 \int_0^{100} \frac{I_{100}}{I_{101}}
\]
28. \[
\int_0^{1-x-50} \frac{1}{dx} = \frac{5050 I_{100}}{I_{101}}
\]
\[
I_{101} = \int_0^{1-x-50} \frac{1}{dx} (1-x-50)^{100} \, dx
\]
\[
= I_{100} - \int_0^{1-x-50} \frac{1}{dx} (1-x-50)^{100} \, dx
\]
\[
= I_{100} - \left[-\frac{x (1-x-50)^{101}}{101} \right]_0^{101} \int_0^{1-x-50} \frac{1}{dx}
\]
\[
\Rightarrow I_{101} = I_{100} - \frac{I_{101}}{5050} \Rightarrow 5050 \frac{I_{100}}{I_{101}} = 5051
\]

Objective

fill in the blanks

1. Given that
\[
f(x) = \left| \begin{array}{ccc}
\sec x & \cos x & \sec^2 x + \cot x \csc x \\
\cos^2 x & \cos^2 x & \csc^2 x \\
1 & \cos x & \csc x
\end{array} \right|
\]
Operating \(R_1 \rightarrow R_1 - \sec x \cdot R_3 \), we get
\[
\left| \begin{array}{ccc}
0 & 0 & \sec^2 x + \cot x \csc x - \cos x \\
\cos^2 x & \cos^2 x & \csc^2 x \\
1 & \cos x & \csc x
\end{array} \right|
\]
Expanding along \(R_1 \), we get
\[
= (\sec^2 x + \cot x \csc x - \cos x) (\cos^4 x - \cos^2 x)
\]
\[
+ \frac{1}{\cos^2 x} - \frac{\cos x}{\sin^2 x} \right) \cos^2 x (\cos^2 x - 1)
\]
\[
= \left[\frac{\sin^2 x + \cos^3 x - \cos^3 x \sin^2 x}{\cos^2 x \sin^2 x} \right] \cos^2 x \sin^2 x
\]
\[
= -\sin^2 x - \cos^3 x (1 - \sin^2 x)
\]
\[
= -\sin^2 x - \cos^3 x
\]
\[
= \int_0^{\pi/2} f(x) \, dx = -\int_0^{\pi/2} \left(\sin^2 x + \cos^3 x \right) \, dx
\]
\[
= -\int_0^{\pi/2} \left(\frac{1 - \cos 2x}{2} + \cos x (1 - \sin^2 x)^2 \right) \, dx
\]
\[
= -\left[\frac{x + \sin x}{2} \right]_0^\frac{\pi}{2} \left(t - \frac{2t^3}{3} + \frac{t^5}{5} \right) \frac{\pi}{2} - \frac{t}{4} \left(\frac{2}{3} + \frac{1}{5} \right)
\]
\[
= \left(\frac{15\pi - 32}{60} \right)
\]
\[
\text{2. When } x = 0, x^2 = 0 \text{ and } x = 1, x^2 = 2.25
\]
\[
\Rightarrow [x^2] \text{ is discontinuous when } x^2 = 1 \text{ and } x^2 = 2 \text{ or } x = 1 \text{ and } x = \sqrt{2}
\]
\[
\Rightarrow \int_0^{1} \left[x^2 \right] \, dx = \int_0^{1} \left[x^2 \right] \, dx + \int_1^{\sqrt{2}} \left[x^2 \right] \, dx + \int_{\sqrt{2}}^{1} \left[x^2 \right] \, dx
\]
\[
= 0 + \int_1^{\sqrt{2}} \frac{1}{2} \, dx + \int_{\sqrt{2}}^1 2 \, dx
\]
\[
= 1 (\sqrt{2} - 1) + 2 (1.5 - \sqrt{2}) = (2 - \sqrt{2})
\]
\[
\text{3. Let } I = \int_{-\sqrt{2}}^{\sqrt{2}} |x^2 - 1| \, dx = 2 \int_0^{\sqrt{2}} |x^2 - 1| \, dx
\]
\[
= 2 \int_0^{1} (1 - x^2) \, dx + 2 \int_1^{\sqrt{2}} (x^2 - 1) \, dx
\]
\[
= 2 \left[x - \frac{x^3}{3} \right]_0^1 + 2 \left[\frac{x^3}{3} - x \right]_1^\sqrt{2}
\]
\[
= 2 \left[\frac{1}{3} - \frac{1}{3} \right] + 2 \left[\frac{8}{3} - 2 - \frac{1}{3} + 1 \right]
\]
\[
= 4 + \frac{8}{3} = 4
\]
\[
4. I = \int_{\pi/4}^{3\pi/4} \frac{\phi}{1 + \sin \phi} \, d\phi \\
\Rightarrow I = \int_{\pi/4}^{3\pi/4} \frac{\pi - \phi}{1 + \sin (\pi - \phi)} \, d\phi \\
\quad \left[\text{Using } \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \right]
\]
\[
\Rightarrow I = \int_{\pi/4}^{3\pi/4} \frac{\pi - \phi}{1 + \sin \phi} \, d\phi = \left(\frac{3\pi}{4} \right) + \frac{\pi}{4} = \frac{3\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{4}
\]
Adding equations (1) and (2), we get
\[
2I = \int_{\pi/4}^{3\pi/4} \frac{\pi}{1 + \sin \phi} \, d\phi
Adding equations (1) and (2), we get
\[2I = \int_0^{2\pi} \frac{2\pi \cos^2 x}{\cos^2 x + \sin^2 x} \, dx = 4\pi \int_0^{\pi/2} \frac{\cos^2 2x}{\cos^2 x + \sin^2 x} \, dx
\]
\[= 8\pi \int_0^{\pi/2} \frac{\cos^2 x}{\cos^2 x + \sin^2 x} \, dx \]
\[= 8\pi \int_0^{\pi/2} \frac{\cos^2 x}{\cos^2 x + \sin^2 x} \, dx \]
\[= 8\pi \int_0^{\pi/2} \frac{\cos^2 x}{\cos^2 x + \sin^2 x} \, dx \]

Adding equations (3) and (4), we have
\[\frac{\pi^2}{2} = \int_0^{\pi/2} \frac{\sin^2 x}{\sin^2 x + \cos^2 x} \, dx \]
\[\Rightarrow I = \pi^2 \]

8. Let \(I = \int_1^e \frac{x \sin (\pi \ln x)}{x} \, dx \)

Let \(\pi \ln x = t \)
\[\Rightarrow I = \int_0^{\pi/2} \sin t \, dt = [\cos t]_0^{\pi/2} = -\cos \frac{\pi}{2} + \cos 0 = 2 \]

9. \[\int_0^1 2e^{x^2} \, dx = F(1) - F(0) \]

Put \(x = 2t \), \(2x \, dt = dt \)
\[\therefore I = \int_0^1 e^{4t^2} \, dt = F(1)^{16} \]
\[\therefore I = F(1) - F(0) \]

10. \(f(x) = \int_0^x \sin t \, dt \Rightarrow f(0) = 0 \)

also, \(f'(x) = f(x), x > 0 \)
\[\Rightarrow f(x) = ke^x, x > 0 \]
\[\therefore f(0) = 0 \text{ and } f(x) \text{ is continuous} \Rightarrow f(x) = 0 \text{ } \forall x > 0 \]
\[\therefore f(\ln 5) = 0 \]

11. \[\frac{\pi^2}{2} \ln 3 \left(\frac{1}{\ln (|\sec \pi x + \tan \pi x|)} \right)_{1/6}^{5/6} \]
\[= \frac{\pi}{2} \ln 3 \left(\frac{1}{\ln (|\sec \frac{5\pi}{6} + \tan \frac{5\pi}{6}| - \ln (|\sec \frac{7\pi}{6} + \tan \frac{7\pi}{6}|)} \right) \]
\[= \pi \]
12. \[\int_{a}^{b} (f(x) - 3x) \, dx = a^2 - b^2 \]

\[\Rightarrow \int_{a}^{b} f(x) \, dx = \frac{3}{2} (b^2 - a^2) + a^2 - b^2 = \frac{b^2 - a^2}{2} \]

\[\Rightarrow f(x) = x \]

\[\Rightarrow f\left(\frac{\pi}{6}\right) = \frac{\pi}{6} \]

True or false

1. Let \[I = \int_{0}^{2a} \frac{f(x)}{f(x) + f(2a-x)} \, dx \]

[Using \[\int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a-x) \, dx \]]

Adding equations (1) and (2), we get

\[2I = \int_{0}^{2a} \frac{f(x)}{f(x) + f(2a-x)} \, dx \]

\[\Rightarrow 2I = \int_{0}^{2a} 1 \, dx \]

\[\Rightarrow 2I = 2a \Rightarrow I = a \]

Therefore, the given statement is true.

Multiple choice questions with one correct answer

a. \[\int_{0}^{1} \left(1 + e^{-x^2}\right) \, dx \]

\[= \int_{0}^{1} \left(1 + \frac{x^2}{1!} + \frac{x^4}{2!} + \frac{x^6}{3!} + \cdots \right) \, dx \]

\[= \left[x + \frac{x^3}{3} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots \right]_{0}^{1} \]

\[= 2 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots \]

Clearly 'd' is the correct alternative.

b. Let \(f(x) = \int (1 + \cos^8 x)(ax^2 + bx + c) \, dx \)

\[\Rightarrow f'(x) = (1 + \cos^8 x)(ax^2 + bx + c) \]

From the given conditions

\[f'(1) = f'(0) = 0 \]

\[f'(2) = f'(0) = 0 \]

From equations (2) and (3), we get \(f'(0) = f'(1) = f'(2) \)

By Rolle's theorem for \(f(x) \) in [0, 1]: \(f'(\alpha) = 0 \), at least one \(\alpha \) such that \(0 < \alpha < 1 \).

By Rolle's theorem for \(f(x) \) in [1, 2]: \(f'(\beta) = 0 \), at least one \(\beta \) such that \(1 < \beta < 2 \).

Now, from equation (1), \(f'(\alpha) = 0 \)

\[(1 + \cos^8 \alpha)(ax^2 + bx + c) = 0 \quad (** \, 1 + \cos^8 \alpha \neq 0) \]

\[\Rightarrow a^2 + b\alpha + c = 0 \]

i.e., \(\alpha \) is a root of the equation \(a^2 + bx + c = 0 \).

Similarly, \(\beta \) is a root of the equation \(a^2 + bx + c = 0 \).

But equation \(a^2 + bx + c = 0 \) being a quadratic equation cannot have more than two roots.

Hence, equation \(a^2 + bx + c = 0 \) has one root \(\alpha \) between 0 and 1, and other root \(\beta \) between 1 and 2.

3a. \[I = \int_{0}^{\pi/2} \sqrt{\cot x} \, dx \]

\[\Rightarrow I = \int_{0}^{\pi/2} \sqrt{\tan x} \, dx \]

[Using \[\int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a-x) \, dx \]]

Adding equations (1) and (2), we get \(2I = \int_{0}^{\pi/2} 1 \, dx \)

\[\Rightarrow I = \pi/4 \]

c. \[I = \int_{0}^{\pi} e^{-\cos^2 x} \, (2n+1) \, dx, n \in \mathbb{Z} \]

\[= \int_{0}^{\pi} e^{-\cos^2 x} \, \cos^3 [(2n+1) \, x] \, dx \]

[Using \[\int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a-x) \, dx \]]

\[= \int_{0}^{\pi} e^{-\cos^2 x} \, \cos^3 [(2n+1) \, x] \, dx \]

\[= -\pi \]

5d. Since \(h(x) = (f(x) + f(-x)) (g(x) - g(-x)) \)

\[h(-x) = (f(-x) + f(x)) (g(-x) - g(x)) \]

\[h(-x) = -h(x) \]

\[\therefore \, h(x) \text{ is odd function,} \]

\[\Rightarrow \int_{-\pi/2}^{\pi/2} (f(x) + f(-x))(g(x) - g(-x)) \, dx = 0 \]

d. Let \[I = \int_{0}^{\pi/2} \frac{dx}{1 + \tan^3 x} \]

\[= \int_{0}^{\pi/2} \frac{\cos^3 x}{\sin^3 x + \cos^3 x} \, dx \]

\[= \int_{0}^{\pi/2} \frac{\cos^3 \left(\frac{\pi}{2} - x\right)}{\sin^3 \left(\frac{\pi}{2} - x\right) + \cos^3 \left(\frac{\pi}{2} - x\right)} \, dx \]

\[= \int_{0}^{\pi/2} \frac{\sin^3 x}{\cos^3 x + \sin^3 x} \, dx \]

Adding equations (1) and (2), we get

\[2I = \int_{0}^{\pi/2} 1 \, dx \]

\[\Rightarrow I = \frac{\pi}{4} \]
Adding equations (1) and (2), we get

\[2I_1 = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x(1-x))dx \]
\[I_2 = \int_{0}^{1} f(x)dx \]
\[\Rightarrow \frac{I_1}{I_2} = \frac{1}{2} \]

10.a. \(g(x) = \int_{0}^{x} \cos^4 tdt \)
\[\Rightarrow g(x+\pi) = \int_{0}^{x+\pi} \cos^4 tdt \]
\[= \int_{0}^{\pi} \cos^4 tdt + \int_{x}^{x+\pi} \cos^4 tdt \]
\[= g(x) + \int_{0}^{\pi} \cos^4 tdt \quad [\because \text{period of } \cos^4 t \text{ is } \pi] \]
\[= g(x) + g(\pi) \]

11.a. \(I = \int_{\pi/4}^{3\pi/4} \frac{dx}{1 + \cos x} \)
\[= \int_{\pi/4}^{3\pi/4} \frac{dx}{1 + \cos (\pi - x)} \]
\[= \int_{0}^{\pi/4} \frac{dx}{1 - \cos x} \]

Adding (1) and (2), we get
\[2I = \int_{\pi/4}^{3\pi/4} \left(\frac{1}{1 + \cos x} + \frac{1}{1 - \cos x} \right) dx \]
\[= \int_{\pi/4}^{3\pi/4} 2 \csc^2 x dx \]
\[= 2 \left(-\cot x \right) \bigg|_{\pi/4}^{3\pi/4} \]
\[= -2 \left(\cot 3\pi/4 - \cot \pi/4 \right) \]
\[= -2 (-1-1) = 4 \]
\[\Rightarrow I = 2 \]

12.c. Refer to the graph of the question 8 (Fig. 8.23), we have
\[\int_{\pi/2}^{3\pi/2} [2 \sin x] dx \]
\[= \int_{\pi/2}^{5\pi/6} \sin x dx + \int_{\pi}^{\pi/6} -\sin x dx + \int_{7\pi/6}^{11\pi/6} 2 \sin x dx \]
\[= \left(\frac{5\pi}{6} - \frac{\pi}{6} \right) + \left(-\frac{7\pi}{6} + \pi \right) + 2 \left(-\frac{11\pi}{6} + \frac{7\pi}{6} \right) \]
\[= \frac{2\pi}{3} - \frac{8\pi}{6} + \frac{\pi}{6} = -\pi \]

9.c. Given \(f \) is a positive function, and
\[I_1 = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x(1-x))dx \]
\[I_2 = \int_{0}^{1} f(x)dx \]

Now, \(I_1 = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x(1-x))dx \)
\[= \int_{-\frac{1}{2}}^{\frac{1}{2}} (1-x)f[1-(1-x)]dx \]
\[\left[\text{Using the property } \int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx \right] \]
Adding equations (3) and (4), we get

\[4I = 4 \int_0^{\pi/2} 1 \, dx \]

\[\Rightarrow I = \frac{\pi}{2} \]

17.a. Here \(f(x) = \int_1^2 \sqrt{2-x^2} \, dx \)

\[\Rightarrow f'(x) = \sqrt{2-x^2} \]

Now the given equation \(x^2 - f'(x) = 0 \) becomes

\[x^2 - \sqrt{2-x^2} = 0 \]

\[\Rightarrow x = \sqrt{2} \]

18.c. Let \(I_1 = \int_3^{3+\gamma} f(2x) \, dx \).

Put \(2x = y \), so that \(I_1 = \frac{1}{2} \int_6^{6+2\gamma} f(y) \, dy \)

\[= \frac{1}{2} \int_6^8 f(y) \, dy \quad \text{\(\because \) } f(x) \text{ has period 7} \]

\[= 3I \]

19.a. \(I = \int_{-1/2}^{1/2} \left[x \ln \frac{1+x}{1-x} \right] \, dx \)

\[= \int_{-1/2}^{1/2} \left[x \ln \frac{1+x}{1-x} \right] \, dx \]

\[= \int_{-1/2}^{1/2} \left[x \ln \frac{1+x}{1-x} \right] \, dx \]

\[\Rightarrow I = \int_{-1/2}^{1/2} \left[x \ln \frac{1+x}{1-x} \right] \, dx \]

Adding equations (1) and (2), we get

\[2I = \int_{-\pi}^{\pi} \cos^2 x \, dx \]

\[= 2 \int_0^{\pi} \cos^2 x \, dx \]

\[= 4 \int_0^{\pi/2} \cos^2 x \, dx \]

\[\therefore \int_0^{\pi/2} f(x) \, dx = 2 \int_0^{\pi/2} f(x) \, dx \]

\[\Rightarrow I = \frac{\pi}{2} \]

20.a. Given \(L(m, n) = \int_0^1 t^m (1+t)^n \, dt \)

Integrating by parts considering \((1+t)^n\) as first function, we get

\[L(m, n) = \left[\frac{t^{m+1}}{m+1} (1+t)^n \right]_0^1 - \frac{n}{m+1} \int_0^1 t^{m+1} (1+t)^{n-1} \, dt \]

\[\Rightarrow L(m, n) = \frac{2^n}{m+1} - \frac{n}{m+1} L(m+1, n-1) \]

21.d. We have \(f(x) = \int_{-\pi/2}^{\pi/2} e^{-x^2} \, dx \)

\[\Rightarrow f'(x) = e^{-(x^2+1)} \cdot 2x - e^{-x^2} \cdot 2x \]

\[= 2x \left[e^{-(x^2+1)} - e^{-x^2} \right] \]

\[\therefore (x^2 + 1)^2 > x^4 \]

\[f'(x) = e^{-(x^2+1)} \cdot 2x - e^{-x^2} \cdot 2x \]

\[e^{-(x^2+1)} > e^{-x^2} \Rightarrow e^{-(x^2+1)} < e^{-x^2} \]

\[e^{-(x^2+1)} - e^{-x^2} < 0 \]
\[f'(x) \geq 0, \forall x \leq 0 \]
Therefore, \(f(x) \) increases when \(x \leq 0 \).

1.a. \(\int_0^1 xf(x) \, dx = \frac{2}{5} t^5 \) (Here, \(t > 0 \))

Differentiating both sides w.r.t. \(t \), we get

\[\Rightarrow t^5 f(t^5) \times 2t = \frac{2}{5} \times 5t^4 \]

\[\Rightarrow f(t^5) = t \]

Put \(t = \frac{2}{5} \) \(\Rightarrow f \left(\frac{4}{25} \right) = \frac{2}{5} \)

1.b. \(I = \int_0^1 \frac{1 - x}{\sqrt{1 + x^2}} \, dx \)

\[= \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}} \, dx \]

\[= \sin^{-1} x \bigg|_0^1 - \int_0^1 \frac{x}{\sqrt{1 - x^2}} \, dx \]

\[= \frac{\pi}{2} + \left[\sqrt{1 - x^2} \right]_0^1 \]

\[= \frac{\pi}{2} + (0 - 1) = \frac{\pi}{2} - 1 \]

4.c. \(I = \int \left[x^3 + 3x^2 + 3x + 3 + (x + 1) \cos(x + 1) \right] \, dx \)

\[= \int \left[x^3 + 3x^2 + 3x + 3 + (x + 1) \cos(x + 1) \right] \, dx \]

\[= \frac{\ln^3}{2} \sin t \]

\[\Rightarrow I = \frac{\ln^3}{2} \sin (\ln 6 - t) \]

\[\Rightarrow I = \frac{\ln^3}{2} \sin (\ln 6 - t) + \sin t \]

\[\Rightarrow 2I = \frac{\ln^3}{2} \sin 1 \Rightarrow I = \frac{\ln^3}{2} \sin 1 \]

29.c \(R_1 = \int_0^1 \int x \, dx = \int_0^1 \int (2 - 1 - x) f(2 - 1 - x) \, dx \)

\[= \int_0^1 (1 - x) f(1 - x) \, dx = \int_0^1 (1 - x) f(x) \, dx \]

Hence \(2R_1 = \int_0^1 f(x) \, dx = R_2 \).

Multiple choice questions with one or more than one correct answer

1.a. \(\int_0^x f(t) \, dt = x + \int_0^1 t \, f(t) \, dt \)

Differentiating both sides w.r.t. \(x \), we get

\[f(x) = 1 + 0 - xf(x) \]

\[\Rightarrow (x + 1)f(x) = 1 \]

\[\Rightarrow f(x) = \frac{1}{x + 1} \]

\[\Rightarrow f(1) = \frac{1}{2} \]

2.a. \(\int_{-1}^1 f(x) \, dx = \int_{-1}^1 (x - [x]) \, dx \)

\[= \int_{-1}^1 x \, dx - \int_{-1}^1 [x] \, dx \]

\[= 0 - \int_{-1}^1 [x] \, dx \quad (1) \]

\[\therefore x \text{ is an odd function} \]

\[\text{Definite integration} \quad 0.01 \]
3. a, d.

\[S_n < \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{1+k/n+(k/n)^2} \]

\[= \int_0^1 \frac{dx}{1+x+x^2} \]

\[= \int_0^1 \frac{dx}{\left(\frac{x+1/2}{\sqrt{3}}\right)^2 + \frac{3}{4}} \]

\[= \left[\frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{x+1/2}{\sqrt{3}}\right) \right]_0^1 = \frac{\pi}{3\sqrt{3}} \]

Now, \(T_n > \frac{\pi}{3\sqrt{3}} \) as

\[h \sum_{k=0}^{n-1} f(k/n) > \int_0^n f(x) \, dx > h \sum_{k=0}^n f(k/n) \]

4. a, b, c, d.

\(f(x) = f(1-x) \)

Replace \(x \) by \(\frac{1}{2} + x \), we get

\[\Rightarrow f(\frac{1}{2} + x) = f\left(\frac{1}{2} - x\right) \quad (1) \]

![Fig. 8.24](downloaded from jeemain.guru)

Hence, \(f(x + 1/2) \) is an even function or \(f(x + 1/2) \) is an odd function.

Also, \(f'(x) = -f'(1-x) \)

and for \(x = 1/2 \), we have \(f'(1/2) = 0 \).

Also \(\int_{1/2}^1 f(1-t)e^{\sin \pi t} \, dt = \int_{1/2}^0 f(y)e^{\sin \pi y} \, dy \)

(by putting, \(1-t = y \))

Since, \(f'(1/4) = 0 \Rightarrow f'(3/4) = 0 \) [from equation (2)]

Also, \(f'(1/2) = 0 \) [from equation (2)]

\(\Rightarrow f'(x) = 0 \) at least twice in \([0, 1]\) (Rolle's Theorem).
\[\int_{a}^{a+h} f(x) \, dx = \frac{1}{2} \left[f(a) + f(a+h) \right] - \frac{h}{2} f'(a+h) \]

\[\Rightarrow f(a+h) - \frac{1}{2} \left[f(a) + f(a+h) \right] - \frac{h}{2} f'(a+h) = 0 \]

\[\Rightarrow \frac{1}{2} f'(a+h) = \frac{1}{2} \frac{f(a+h) - f(a)}{h} \]

\[\Rightarrow \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) \]

\[\Rightarrow f'(a) = \frac{f(b) - f(a)}{b-a} \]

\[f'(c) = \frac{1}{2} \frac{f(b) - f(a)}{b-a} \]

\[\Rightarrow \frac{f(b) - f(a)}{b-a} = \frac{1}{2} f'(c) \]

Therefore, \(f(c) \) is maximum at the point \((c, f(c)) \) where

\[f'(c) = 0 \Rightarrow f'(c) = 2 \left(\frac{f(b) - f(a)}{b-a} \right) \]

\[\int_{a}^{b} f(x) \, dx = \left[\sec^{-1} x \right]_{a}^{b} = \sec^{-1} 2 - \sec^{-1} 1 = \frac{\pi}{3} \]

Integer type

1. (4) \(f(x) = \begin{cases} x - 1, & 1 \leq x < 2 \\ 1 - x, & 0 \leq x < 1 \end{cases} \)
Area

Different Cases of Bounded Area
DIFFERENT CASES OF BOUNDED AREA

a. The area bounded by the continuous curve \(y = f(x) \), the axis of \(x \) and the ordinates \(x = a \) and \(x = b \) (where \(b > a \)) is given by

\[
A = \int_a^b f(x) \, dx = \int_a^b y \, dx
\]

![Fig. 9.1](image)

b. The area bounded by the straight lines \(x = a, \ x = b (a < b) \) and the curves \(y = f(x) \) and \(y = g(x) \), provided \(f(x) \leq g(x) \) (where \(a \leq x \leq b \)), is given by

\[
A = \int_a^b [g(x) - f(x)] \, dx
\]

![Fig. 9.2](image)

c. When two curves \(y = f(x) \) and \(y = g(x) \) intersect, the bounded area is

\[
A = \int_a^b [g(x) - f(x)] \, dx, \text{ where } a \text{ and } b \text{ are the roots of the equation } f(x) = g(x).
\]

![Fig. 9.3](image)

d. If the curve crosses the \(x \)-axis at \(c \), then the area bounded by the curve \(y = f(x) \) and the ordinates \(x = a \) and \(x = b \) (where \(b > a \)) is given by

\[
A = \left| \int_a^c f(x) \, dx \right| + \left| \int_c^b f(x) \, dx \right|
\]

\[
= \int_a^c f(x) \, dx - \int_c^b f(x) \, dx
\]

\((\because \int_a^c f(x) \, dx > 0 \text{ and } \int_c^b f(x) \, dx < 0) \)

![Fig. 9.4](image)

e. The area bounded by \(y = f(x) \) and \(y = g(x) \) (where \(a \leq x \leq b \)), when they intersect at \(x = c \in (a, b) \) is given by

\[
A = \int_a^c |f(x) - g(x)| \, dx
\]

or

\[
\int_a^c (f(x) - g(x)) \, dx + \int_c^b (g(x) - f(x)) \, dx
\]

![Fig. 9.5](image)
Curve Tracing

To find the approximate shape of a curve, the following procedure is adopted in order:

a. Symmetry
 • Symmetry about the x-axis
 If all the powers of 'y' in the equation are even, then the curve is symmetrical about the x-axis.
 e.g., \(y^2 = 4ax \).
 • Symmetry about the y-axis
 If all the powers of 'x' in the equation are even, then the curve is symmetrical about the y-axis.
 e.g., \(x^2 = 4ay \).
 • Symmetry about both axes
 If all the powers of 'x' and 'y' in the equation are even, the curve is symmetrical about the axis of 'x' as well as of 'y'.
 e.g., \(x^2 + y^2 = a^2 \).
 • Symmetry about the line \(y = x \)
 If the equation of the curve remains unchanged on interchanging 'x' and 'y', then the curve is symmetrical about the line \(y = x \).
 e.g., \(x^3 + y^3 = 3xy \).

b. Find the points where the curve crosses the x-axis and the y-axis.

c. Find \(\frac{dy}{dx} \) and examine, if possible, the intervals when \(f(x) \) is increasing or decreasing and also its stationary points.

d. Examine \(y \) when \(x \to \infty \) or \(x \to -\infty \).

Example 9.1 Find the area bounded by the parabola \(y = x^2 + 1 \) and the straight line \(x + y = 3 \).

Sol.

The two curves meet at points where \(3 - x = x^2 + 1 \), i.e., \(x^2 + x - 2 = 0 \)
\(\Rightarrow (x + 2)(x - 1) = 0 \) \(\Rightarrow x = -2, 1 \)

\[\therefore \text{required area} = \int_{-2}^{1} [3 - x - (x^2 + 1)] \, dx \]

\[= \int_{-2}^{1} (2 - x - x^2) \, dx \]

\[= \left[2x - \frac{x^2}{2} - \frac{x^3}{3} \right]_{-2}^{1} \]

\[= \left(2 - \frac{1}{2} - \frac{1}{3} \right) - \left(-4 - \frac{4}{2} + \frac{8}{3} \right) \]

\[= \frac{9}{2} \text{ sq. units} \]

Example 9.2 Find the smaller area enclosed by the circle \(x^2 + y^2 = 9 \) and the line \(x = 1 \).

Sol.

Fig. 9.7

Required area = \(2 \times \text{area } MAPM \)

\[= 2 \int_{1}^{3} \sqrt{9-x^2} \, dx \]

\[= 2 \left[\frac{x}{2} \sqrt{9-x^2} + \frac{9}{2} \sin^{-1} \frac{x}{3} \right]_{1}^{3} \]

\[= 2 \left[\frac{9}{2} \sin^{-1} 1 - \frac{2\sqrt{2}}{2} - \frac{9}{2} \sin^{-1} \frac{1}{3} \right] \]

\[= 9 \times \frac{\pi}{2} - 2\sqrt{2} - 9 \sin^{-1} \frac{1}{3} \]

\[= 9 \left[\frac{\pi}{2} - \frac{1}{3} \right] - 2\sqrt{2} \]

\[= 9 \cos^{-1} \frac{1}{3} - 2\sqrt{2} = 9 \sec^{-1} 3 - \sqrt{8} \text{ sq. units} \]

Example 9.3 Find the area of the closed figure bounded by the curves \(y = \sqrt{x}, y = \sqrt{4-3x} \) and \(y = 0 \).
Example 9.4 Find the area, lying above the x-axis and included between the circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$.

Sol. Solving the curves, we get $x^2 + 4x = 8x \Rightarrow x = 0, 4$

![Diagram of circle and parabola]

Required area

$$A = \int_0^4 y_{\text{parabola}} \, dx + \int_4^8 y_{\text{circle}} \, dx$$

Circle is $(x-4)^2 + y^2 = 4^2$,

Area of circle in 1st quadrant $= \frac{1}{4} \pi 4^2 = 4\pi$

$$A = \int_0^4 2\sqrt{x} \, dx + 4\pi$$

$$= \frac{4}{3} [x^{3/2}]_0^4 + 4\pi$$

$= \frac{4}{3} \times 4\sqrt{4} + 4\pi$ sq. units

Example 9.5 Find the area bounded by the curve $y = (x-1)(x-2)(x-3)$ lying between the ordinates $x = 0$ and $x = 3$.

Sol. $y = (x-1)(x-2)(x-3)$

The curves will intersect the x-axis, when $y = 0$

$\Rightarrow (x-1)(x-2)(x-3) = 0$

$\Rightarrow x = 1, 2, 3$

And the curve intersects the y-axis, when $x = 0 \Rightarrow y = -6$

Thus, the graph of the given function for $0 \leq x \leq 3$ is as shown in Fig. 9.10.

![Graph of function]

Hence, the required area $A = \text{shaded area}$

$$A = \left| \int_0^1 y \, dx + \int_1^2 y \, dx + \int_2^3 y \, dx \right|$$

(1)

Since

$$\int y \, dx = \int (x-1)(x-2)(x-3) \, dx$$

$$= \int (x^3 - 6x^2 + 11x - 6) \, dx$$

$$= \frac{x^4}{4} - 2x^3 + \frac{11x^2}{2} - 6x$$

\therefore from (1)

$$A = \left[\frac{x^4}{4} - 2x^3 + \frac{11x^2}{2} - 6x \right]_0^1 + \left[\frac{x^4}{4} - 2x^3 + \frac{11x^2}{2} - 6x \right]_1^2 + \left[\frac{x^4}{4} - 2x^3 + \frac{11x^2}{2} - 6x \right]_2^3$$

$$= |\frac{9}{4}| + (1) + |\frac{1}{4}|$$

$$= 11/4 \text{ sq. units}$$

Example 9.6 Consider the region formed by the lines $x = 0$, $y = 0$, $x = 2$, $y = 2$. If the area enclosed by the curves $y = e^{x}$ and $y = \ln x$, within this region, is being removed, then find the area of the remaining region.
Sol. Required area = shaded region

\[\int \ln 2 \left(2 - e^x\right) \, dx \]
\[= 2x - e^x \ln 2 \]
\[= 2(2\ln 2 - 1) \text{ sq. units} \]

Example 9.7 Find the area bounded by the curves \(y = \sin x \) and \(y = \cos x \) between two consecutive points of the intersection.

Sol.

\[y = \sin x \quad y = \cos x \]
\[x = \frac{\pi}{4}, \frac{5\pi}{4} \]
\[\text{Area} = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) \, dx \]
\[= -\cos x - \sin x \bigg|_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \]
\[= 2\sqrt{2} \text{ sq. units} \]

Some Standard Areas

1. Area bounded by \(y = \sin x \), where \(0 \leq x \leq \pi \), and the x-axis is 2 sq. units. In fact, area of one loop of \(y = \sin x \) and \(y = \cos x \) is 2 sq. units.

2. Area bounded by \(y = \log x \), \(y = 0 \), and \(x = 0 \) is 1 sq. units.

3. Area of ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) is \(\pi ab \) sq. units.

4. Area bounded by \(y = 4x \) and \(x^2 = 4y \), where \(a > 0, b > 0 \)

Example 9.9 Find the ratio in which the area bounded by the curves \(y^2 = 12x \) and \(x^2 = 12y \) is divided by the line \(x = 3 \).

Sol.

\[A_1 = \text{area bounded by } y^2 = 12x, x^2 = 12y \text{ and line } x = 3 \]
\[= 3 \sqrt{12} \int_0^3 12 \, dx = 3 \bigg(\frac{x^3}{3} \bigg) \bigg|_0^3 = 45 \text{ sq. units} \]

\[A_2 = \text{area bounded by } y^2 = 12x \text{ and } x^2 = 12y \]
\[= \frac{16(3)(3)}{3} = 48 \text{ sq. units} \]
\[\therefore \text{required ratio} = \frac{45}{48} = \frac{45}{147} \]
Example 9.10 Find the area bounded by
a. \(y = \log e|x| \) and \(y = 0 \)
b. \(y = |\log e|x| \) and \(y = 0 \)

\[
\begin{align*}
\text{Sol. a. } & y = \log e|x| \text{ and } y = 0 \\
\text{Fig. 9.15} & \\
\text{From the figure, required area = area of the shaded region = } 1 + 1 = 2 \text{ sq. units (as we know that area bounded by } y = \log e|x|, x = 0 \text{ and } y = 0, \text{ is } 1 \text{ sq. units)} \\
\text{b. } & y = |\log e|x| \text{ and } y = 0 \\
\text{Fig. 9.16} & \\
\text{From the figure, required area = area of the shaded region = } 1 + 1 = 2 \text{ sq. units.}
\end{align*}
\]

Area Bounded by Curves While Integrating Along y-axis
Sometimes integration w.r.t. \(y \) is very useful, i.e., along the horizontal strip. Area bounded by the curve, \(y \)-axis and the two abscissas at \(y = a \) and \(y = b \) is written as \(A = \int_a^b x \, dy \).

\[
\begin{align*}
\text{Fig. 9.17} & \\
y = a \\
\text{dy} &
\end{align*}
\]

Example 9.11 Find the area bounded by \(x = 2y - y^2 \) and the \(y \)-axis.

\[
\begin{align*}
\text{Sol.} & \\
\text{Fig. 9.18} & \\
A = \int_0^2 x \, dy = \frac{1}{2} \int_0^2 (2y - y^2) \, dy &= \left[y^2 - \frac{y^3}{3} \right]_0^2 = 4 - \frac{8}{3} = \frac{4}{3}
\end{align*}
\]

Example 9.12 Find the area bounded by \(y = \sin^{-1}x, y = \cos^{-1}x \) and the \(x \)-axis.

\[
\begin{align*}
\text{Sol.} & \\
\text{Fig. 9.19} & \\
y = \sin^{-1}x, y = \cos^{-1}x \text{ and the } x \text{-axis if vertical strip is used, we get} \\
A &= \int_0^{\pi/4} \sin^{-1}x \, dx + \int_{\pi/4}^{\pi/2} \cos^{-1}x \, dx \\
&= \left[x \sin^{-1}x + \sqrt{1 - x^2} \right]_{\pi/4}^{\pi/2} \\
&= \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1 \right] \\
&= \sqrt{2} - 1
\end{align*}
\]
Example 9.13
Find the area of the figure bounded by the parabolas \(x = -2y^2 \), \(x = 1 - 3y^2 \).

Solve.

![Graph of parabolas](image)

Fig. 9.20

Solving the equation \(x = -2y^2, x = 1 - 3y^2 \), we find that the ordinates of the point of intersection of the two curves are \(y_1 = -1, y_2 = 1 \). The points are \((-2, -1)\) and \((-2, 1)\).

The required area is given by

\[
A = 2 \int_{-2}^{2} (x_1 - x_2) dy = 2 \int_{-2}^{2} \left[(1 - 3y^2) - (-2y^2) \right] dy
\]

\[
= 2 \int_{-2}^{2} (1 - y^2) dy = 2 \left[y - \frac{y^3}{3} \right]_{0}^{1} = \frac{4}{3}
\]

EXERCISES

Subjective Type
Solutions on page 9.15

1. Draw a rough sketch of the curve \(y = \frac{x^2 + 3x + 2}{x^2 - 3x + 2} \) and find the area of the bounded region between the curve and the x-axis.

2. \(f(x) \) is a continuous and bijective function on \(R \). If \(\forall \alpha \in R \), then the area bounded by \(y = f(x), x = a - \alpha, x = a \) and \(\alpha \)-axis is equal to the area bounded by \(y = f(x), x = a + \alpha, x = a \) and \(x = a \) and \(\alpha \)-axis. Then prove that \(\int f^{-1} (x) dx = 2a \alpha \) (given that \(f(a) = 0 \)).

3. Find a continuous function \(f \), where \((x^4 - 4x^2) \leq f(x) \leq (2x^2 - x^4) \) such that the area bounded by \(y = f(x), y = x^4 - 4x^2, y = x^4 + 4x - 3 \), \(y \)-axis, and the line \(x = t \), where \(0 \leq t \leq 2 \) is \(k \) times the area bounded by \(y = f(x), y = 2x^2 - x^4, y \)-axis, and line \(x = t \) where \(0 \leq t \leq 2 \).

4. Find the area bounded by the curves \(y = -x^2 + 6x - 5, y = -x^2 + 4x - 3 \) and the straight line \(y = 3x - 15 \) and lying right to \(x = 1 \).

5. The value of \(a \) where \(a > 2 \) for which the reciprocal of the area enclosed between \(\frac{1}{x^2}; y = \frac{1}{4(x-1)} \);

Objective Type
Solutions on page 9.17

Each question has four choices a, b, c, and d, out of which only one is correct.

1. Area enclosed by the curve \(y = f(x) \) defined parametrically as \(x = \frac{1-t^2}{1+t^2}, y = \frac{2t}{1+t^2} \) is equal to
 - a. \(\pi \) sq. units
 - b. \(\pi/2 \) sq. units
 - c. \(\frac{3\pi}{4} \) sq. units
 - d. \(\frac{3\pi}{2} \) sq. units
2. The area inside the parabola $5x^2 - y = 0$ but outside the parabola $2x^2 - y + 9 = 0$ is
 a. $12 \sqrt{3}$ sq. units
 b. $6 \sqrt{3}$ sq. units
 c. $8 \sqrt{3}$ sq. units
 d. $4 \sqrt{3}$ sq. units

3. Let $f(x) = \min (x+1, \sqrt{1-x})$ for all $x \leq 1$. Then the area bounded by $y = f(x)$ and the x-axis is
 a. $\frac{7}{3}$ sq. units
 b. $\frac{1}{6}$ sq. units
 c. $\frac{11}{6}$ sq. units
 d. $\frac{7}{6}$ sq. units

4. Area enclosed between the curves $|y| = 1 - x^2$ and $x^2 + y^2 = 1$ is
 a. $\frac{3\pi - 8}{3}$ sq. units
 b. $\frac{\pi - 8}{3}$ sq. units
 c. $\frac{2\pi - 8}{3}$ sq. units
 d. None of these

5. The area of the region enclosed by the curves $y = x \log x$ and $y = 2x - 2x^2$ is
 a. $\frac{7}{12}$ sq. units
 b. $\frac{1}{2}$ sq. units
 c. $\frac{5}{12}$ sq. units
 d. None of these

6. The area enclosed between the curves $y = \log_e (x + e)$, $x = \log_e \left(\frac{1}{y} \right)$ and the x-axis is
 a. 2 sq. units
 b. 1 sq. units
 c. 4 sq. units
 d. None of these

7. Area bounded by $y = \frac{1}{x^2 - 2x + 2}$ and x-axis is
 a. 2π sq. units
 b. $\frac{\pi}{2}$ sq. units
 c. 2 sq. units
 d. π sq. units

8. Area bounded by the curve $xy^2 = a^2 (x - a)$ and the y-axis is
 a. $\pi a^2/2$ sq. units
 b. πa^2 sq. units
 c. $3\pi a^2$ sq. units
 d. None of these

9. The area of the closed figure bounded by $x = -1$, $y = 0$, $y = x^2 + x + 1$ and the tangent to the curve $y = x^2 + x + 1$ at $A(1, 3)$ is
 a. $4/3$ sq. units
 b. $7/3$ sq. units
 c. $7/6$ sq. units
 d. None of these

10. The area bounded by $y = \sec^{-1} x, y = \cosec^{-1} x$ and line $x - 1 = 0$ is
 a. $\log(3 + 2\sqrt{2}) - \frac{\pi}{2}$ sq. units
 b. $\frac{\pi}{2} - \log(3 + 2\sqrt{2})$ sq. units
 c. $\pi - \log 3$ sq. units
 d. None of these

11. The area of the region whose boundaries are defined by the curves $y = 2\cos x, y = 3\tan x$ and the x-axis is
 a. $1 + 3\ln \left(\frac{2}{\sqrt{3}} \right)$ sq. units
 b. $1 + 3\ln 3 - 3\ln 2$ sq. units
 c. $1 + 3\ln 3 - \ln 2$ sq. units
 d. $\ln 3 - \ln 2$ sq. units

12. The area between the curve $y = 2x^2 - x^3$, the x-axis and the ordinates of the two minima of the curve is
 a. $11/60$ sq. units
 b. $7/120$ sq. units
 c. $1/30$ sq. units
 d. $7/90$ sq. units

13. The area bounded by the curve $a'y = x^2(x + a)$ and the x-axis is
 a. $a'/3$ sq. units
 b. $a'/4$ sq. units
 c. $3a'/4$ sq. units
 d. $a'/12$ sq. units

14. The area of the region in 1st quadrant bounded by the y-axis, $y = \frac{x}{4}, y = 1 + \sqrt{x}$ and $y = \frac{2}{\sqrt{x}}$ is
 a. $2/3$ sq. units
 b. $8/3$ sq. units
 c. $11/3$ sq. units
 d. $13/6$ sq. units

15. The area of the closed figure bounded by $y = \frac{x^2}{2} - 2x + 2$ and the tangents to it at $(1, 1/2)$ and $(4, 2)$ is
 a. $9/8$ sq. units
 b. $3/8$ sq. units
 c. $3/2$ sq. units
 d. $9/4$ sq. units

16. The area of the closed figure bounded by $x = -1, x = 2$ and $y = \begin{cases} -x^2 + 2, & x \leq 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is
 a. $16/3$ sq. units
 b. $10/3$ sq. units
 c. $13/3$ sq. units
 d. $7/3$ sq. units

17. The area of the region bounded by $x^2 + y^2 - 2x - 3 = 0$ and $y = |x| + 1$ is
 a. $\pi - 1$ sq. units
 b. 2π sq. units
 c. 4π sq. units
 d. $\pi/2$ sq. units

18. The value of the parameter a such that the area bounded by $y = a^2x^2 + ax + 1$, coordinate axes and the line $x = 1$ attains its least value, is equal to
 a. $-\frac{1}{4}$ sq. units
 b. $-\frac{1}{2}$ sq. units
 c. $-\frac{3}{4}$ sq. units
 d. -1 sq. units

19. The area enclosed by the curve $y = \sqrt{4 - x^2}, y \geq \sqrt{2}\sin \left(\frac{\tan x}{2\sqrt{2}} \right)$ and the x-axis is divided by the y-axis in the ratio
 a. $\frac{\pi^2 - 8}{\pi^2 + 8}$
 b. $\frac{\pi^2 - 4}{\pi^2 + 4}$
 c. $\frac{\pi - 4}{\pi - 4}$
 d. $\frac{2\pi^2}{2\pi + \pi^2 - 8}$
11. The area of the region bounded by \(x = 0, y = 0, x = 2, \) and \(x = 1, y = 2x \) is
a. 6 sq. units
b. 36 sq. units
c. 12 sq. units
d. None of these

12. The area of the region enclosed between the curves \(x = y^2 - 1 \) and \(x = \sqrt{1 - y^2} \) is
a. 1 sq. units
b. 2 sq. units
c. 3 sq. units
d. None of these

13. The area of the region bounded by the curves \(y = x^2, y = x^3 \) and the line \(x = 1 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

14. The area of the region bounded by the curves \(y = x^2 - 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

15. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

16. The area of the region bounded by the curves \(y = x^2, y = x^3 \) and the line \(x = 1 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

17. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

18. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

19. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

20. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

21. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

22. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

23. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

24. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

25. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

26. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

27. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

28. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

29. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

30. The area of the region bounded by the curves \(y = x^2 + x + 1 \) and \(x = 2 \) is
a. \(\frac{2}{3} \) sq. units
b. \(\frac{1}{2} \) sq. units
c. \(\frac{1}{3} \) sq. units
d. None of these

31. The area bounded by the curves \(y = \log(x) + 1 \) and \(y = (x^2 - 1) \) is
a. \(2\pi \) sq. units
b. \(3\pi \) sq. units
c. \(4\pi \) sq. units
d. \(5\pi \) sq. units

32. The area of the region bounded by the curves \(y = \log(x) + 1 \) and \(y = (x^2 - 1) \) is
a. \(2\pi \) sq. units
b. \(3\pi \) sq. units
c. \(4\pi \) sq. units
d. \(5\pi \) sq. units

33. The area of the region bounded by the curves \(y = \log(x) + 1 \) and \(y = (x^2 - 1) \) is
a. \(2\pi \) sq. units
b. \(3\pi \) sq. units
c. \(4\pi \) sq. units
d. \(5\pi \) sq. units

34. The area of the region bounded by the curves \(y = \log(x) + 1 \) and \(y = (x^2 - 1) \) is
a. \(2\pi \) sq. units
b. \(3\pi \) sq. units
c. \(4\pi \) sq. units
d. \(5\pi \) sq. units

35. The area of the region bounded by the curves \(y = \log(x) + 1 \) and \(y = (x^2 - 1) \) is
a. \(2\pi \) sq. units
b. \(3\pi \) sq. units
c. \(4\pi \) sq. units
d. \(5\pi \) sq. units

36. The area of the region bounded by the curves \(y = \log(x) + 1 \) and \(y = (x^2 - 1) \) is
a. \(2\pi \) sq. units
b. \(3\pi \) sq. units
c. \(4\pi \) sq. units
d. \(5\pi \) sq. units

37. The area of the region bounded by the curves \(y = \log(x) + 1 \) and \(y = (x^2 - 1) \) is
a. \(2\pi \) sq. units
b. \(3\pi \) sq. units
c. \(4\pi \) sq. units
d. \(5\pi \) sq. units

38. The area of the region bounded by the curves \(y = \log(x) + 1 \) and \(y = (x^2 - 1) \) is
a. \(2\pi \) sq. units
b. \(3\pi \) sq. units
c. \(4\pi \) sq. units
d. \(5\pi \) sq. units

39. The area of the region bounded by the curves \(y = \log(x) + 1 \) and \(y = (x^2 - 1) \) is
a. \(2\pi \) sq. units
b. \(3\pi \) sq. units
c. \(4\pi \) sq. units
d. \(5\pi \) sq. units

40. The area of the region bounded by the curves \(y = \log(x) + 1 \) and \(y = (x^2 - 1) \) is
a. \(2\pi \) sq. units
b. \(3\pi \) sq. units
c. \(4\pi \) sq. units
d. \(5\pi \) sq. units
40. The area bounded by the curve \(y^2 = 1 - x \) and the lines
\[y = \frac{|x|}{x}, \quad x = -1 \text{ and } x = \frac{1}{2} \] is
a. \(\frac{3}{\sqrt{2}} - \frac{11}{6} \) sq. units
b. \(3\sqrt{2} - \frac{11}{4} \) sq. units
c. \(\frac{6}{\sqrt{2}} - \frac{11}{5} \) sq. units
d. None of these

Multiple Correct Answers Type

Each question has four choices a, b, c, and d, out of which one or more answers are correct.

1. Let \(A(k) \) be the area bounded by the curves \(y = x^2 - 3 \) and \(y = kx + 2 \).

a. The range of \(A(k) \) is \(\left[\frac{10\sqrt{5}}{3}, \infty \right) \)
b. The range of \(A(k) \) is \(\left[\frac{20\sqrt{5}}{3}, \infty \right) \)
c. If function \(k \rightarrow A(k) \) is defined for \(k \in [-2, \infty) \), then \(A(k) \) is many-one function

d. The value of \(k \) for which area is minimum is 1

2. The parabolas \(y^2 = 4x \) and \(x^2 = 4y \) divide the square region bounded by the lines \(x = 4, y = 4 \) and the co-ordinate axes. If \(S_1, S_2, S_3 \) are the areas of these parts numbered from top to bottom, respectively, then
a. \(S_1 : S_2 = 1 : 1 \)
b. \(S_2 : S_3 = 1 : 2 \)
c. \(S_1 : S_3 = 1 : 1 \)
d. \(S_1 : (S_2 + S_3) = 1 : 2 \)

3. Which of the following have the same bounded area
a. \(f(x) = \sin(x), g(x) = \sin^2(x) \) where \(0 \leq x \leq 10\pi \)
b. \(f(x) = \sin(x), g(x) = |\sin(x)| \) where \(0 \leq x \leq 20\pi \)
c. \(f(x) = |\sin(x)|, g(x) = \sin^2(x) \) where \(0 \leq x \leq 10\pi \)
d. \(f(x) = \sin(x), g(x) = \sin(x) \) where \(0 \leq x \leq 10\pi \)

4. If the curve \(y = ax^2 + bx \) passes through the point \((1, 2)\) and lies above the x-axis for \(0 \leq x \leq 9 \) and the area enclosed by the curve, the x-axis and the line \(x = 4 \) is 8 sq. units. Then
a. \(a = 1 \)
b. \(b = 1 \)
c. \(a = 3 \)
d. \(b = -1 \)

5. The area enclosed by the curves \(x = a\sin^2 t \) and \(y = a\cos^2 t \) is equal to
a. \(12a^2 \int_0^{\pi/2} \cos^4 t \sin^2 t \, dt \)
b. \(12a^2 \int_0^{\pi/2} \cos^2 t \sin^4 t \, dt \)
c. \(2 \int_{-a}^{a} (a^{2/3} - x^{2/3})^{3/2} \, dx \)
d. \(4 \int_0^{a} (a^{2/3} - x^{2/3})^{3/2} \, dx \)

6. If \(A_i \) is the area bounded by \(|x - a_j| + |y| = b_i \), \(i \in N_i \), where
\[
a_{i+1} = a_i + \frac{3}{2}b_i \quad \text{and} \quad b_{i+1} = \frac{b_i}{2}, \quad a_i = 0, \quad b_1 = 32,
\]
a. \(A_5 = 128 \)
b. \(A_7 = 256 \)
c. \(\lim_{n \to \infty} \sum_{i=1}^{n} A_i = \frac{8}{3} (32)^2 \)
d. \(\lim_{n \to \infty} \sum_{i=1}^{n} A_i = \frac{4}{3} (16)^2 \)

Reaching Reason Type Solutions on page 9.28

Each question has four choices a, b, c, and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2.

a. if both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT 1
b. if both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1
c. if STATEMENT 1 is TRUE and STATEMENT 2 is FALSE.
d. if STATEMENT 1 is FALSE and STATEMENT 2 is TRUE.

1. Statement 1: Area bounded by \(y = e^x, y = 0 \) and \(x = 0 \) is 1 sq. units.

Statement 2: Area bounded by \(y = \log x, x = 0 \) and \(y = 0 \) is 1 sq. units.

2. \(f(x) \) is a polynomial of degree 3 passing through origin having local extrema at \(x = \pm 2 \).

Statement 1: Ratio of areas in which \(f(x) \) cuts the circle \(x^2 + y^2 = 36 \) is 1:1.

Statement 2: Both \(y = f(x) \) and the circle are symmetric about the origin.

3. Statement 1: The area bounded by parabola \(y = x^2 - 4x \) and \(y = 0 \) is 4 sq. units.

Statement 2: The area bounded by curve \(y = f(x) \geq 0 \) and \(y = 0 \) between ordinates \(x = a \) and \(x = b \) (where \(b > a \)) is

\[
\int_a^b f(x) \, dx
\]

4. Statement 1: The area enclosed between the parabolas \(y^2 - 2y + 4x + 5 = 0 \) and \(x^2 + 2x - y + 2 = 0 \) is same as that of bounded by curves \(y^2 = -4x \) and \(x^2 = y \).

Statement 2: Shifting of origin to point \((h, k)\) does not change the bounded area.

5. Statement 1: The area of the region bounded by the curve \(2y = \log x, x = e^{2x} \) and the pair of lines \((x + y - 1) \times (x + y - 3) = 0\) is 2 sq. units.

Statement 2: The area of the region bounded by the curves \(y = e^{2x}, y = x \) and the pair of lines \(x^2 + y^2 + 2xy - 4x - 4y + 3 = 0 \) is \(k \) units.

6. Consider two regions

\(R_1: \) Point \(P \) is nearer to \((1, 0)\) than to \(x = -1 \).

\(R_2: \) Point \(P \) is nearer to \((0, 0)\) than to \((8, 0)\).

Statement 1: Area of the region common to \(R_1 \) and \(R_2 \) is \(\frac{128}{3} \) sq. units.

Statement 2: Area bounded by \(x = 4\sqrt{y} \) and \(y = 4 \) is \(\frac{32}{3} \) sq. units.

7. Statement 1: Area bounded by \(2 \geq \max \{|x - y|, |x + y|\} \) is 8 sq. units.

Statement 2: Area of the square of side length 4 is 16 sq. units.
Based upon each paragraph, three multiple choice questions have to be answered. Each question has four choices a, b, c, and d, out of which only one is correct.

For Problems 1–2

Let \(A_r \) be the area of the region bounded between the curves \(y^2 = e^{4k}x \) (where \(k > 0, r \in \mathbb{N} \)) and the line \(y = mx \) (where \(m \neq 0 \), \(k \) and \(m \) are some constants).

1. \(A_1, A_2, A_3, \ldots \) are in G.P. with common ratio
 a. \(e^{2k} \)
 b. \(e^{-2k} \)
 c. \(e^{-4k} \)
 d. None of these

2. \(\lim_{n \to \infty} \sum_{i=1}^{n} A_i = \frac{1}{48(e^{2k} - 1)} \), then the value of \(m \) is
 a. 3
 b. 1
 c. 2
 d. 4

For Problems 3–5

If \(y = f(x) \) is a monotonic function in \((a, b)\), then the area bounded by the ordinates at \(x = a, x = b, y = f(x) \) and \(y = f(c) \) (where \(c \in (a, b) \)) is minimum when \(c = \frac{a + b}{2} \).

Proof: \(A = \int_a^c (f(c) - f(x)) \, dx + \int_c^b (f(x) - f(c)) \, dx \)

\[= f(c)(c-a) - \int_a^c (f(x)) \, dx + \int_c^b (f(x)) \, dx - f(c)(b-c) \]

\[\Rightarrow A = \frac{2c - (a+b)}{2} f(c) + \int_a^c (f(x)) \, dx - \int_a^c (f(x)) \, dx \]

Fig. 9.21

For Problems 6–8

Consider the areas \(S_0, S_1, S_2, \ldots \) bounded by the \(x \)-axis and half-waves of the curve \(y = e^{-x} \sin x \), where \(x \geq 0 \).

6. The value of \(S_0 \) is
 a. \(\frac{1}{2}(1+e^x) \) sq. units
 b. \(\frac{1}{2}(1+e^{-x}) \) sq. units
 c. \(\frac{1}{2}(e^{-x} - 1) \) sq. units
 d. None of these

7. The sequence \(S_0, S_1, S_2, \ldots \), forms a G.P. with common ratio
 a. \(e^x \)
 b. \(e^{-x} \)
 c. \(e^x \)
 d. \(\frac{e^x}{2} \)

8. \(\sum_{n=0}^{\infty} S_n \) is equal to
 a. \(\frac{1+e^x}{1-e^{-x}} \)
 b. \(\frac{1}{2}(1+e^x) \)
 c. \(\frac{1}{2(1-e^{-x})} \)
 d. None of these

For Problems 9–11

Two curves \(C_1 = [f(2x)]^{1/3} + [f(x)]^{1/3} = 0 \) and \(C_2 = [f(y)]^{1/3} + [f(y)]^{1/3} = 12 \), satisfying the relation \((x-y)f(x+y) - (x+y)f(x-y) = 4xy(x^2 - y^2)\).

9. The area bounded by \(C_1 \) and \(C_2 \) is
 a. \(2\pi - \sqrt{3} \) sq. units
 b. \(2\pi + \sqrt{3} \) sq. units
 c. \(\pi + \sqrt{6} \) sq. units
 d. \(2\sqrt{3} - \pi \) sq. units

10. The area bounded by the curve \(C_2 \) and \(|x| + |y| = \sqrt{12} \) is
 a. \(12\pi - 24 \) sq. units
 b. \(6 - \sqrt{12} \) sq. units
 c. \(2\sqrt{12} - 6 \) sq. units
 d. None of these

}\[\text{only Q9}\]
11. The area bounded by C_1 and $x + y + 2 = 0$ is
 a. 5/2 sq. units b. 7/2 sq. units c. 9/2 sq. units d. None of these

For Problems 12–13

Consider the two curves $C_1: y = 1 + \cos x$ and $C_2: y = 1 + \cos (x - \alpha)$ for $\alpha \in \left(0, \frac{\pi}{2}\right)$, where $x \in [0, \pi]$. Also, the area of the figure bounded by the curves C_1, C_2, and $x = 0$ is same as that of the figure bounded by C_2, $y = 1$ and $x = \pi$.

12. The value of α is
 a. $\frac{\pi}{4}$ b. $\frac{\pi}{3}$ c. $\frac{\pi}{6}$ d. $\frac{\pi}{8}$

13. For the values of α, area bounded by C_1, C_2, $x = 0$ and $x = \pi$ is
 a. 1 sq. units b. 2 sq. units c. $2 + \sqrt{3}$ sq. units d. None of these

For Problems 14–16

Consider the function defined implicitly by the equation $y^2 - 2 ye^{\sin^{-1}x} + x^2 - 1 + [x] + e^{2\sin^{-1}x} = 0$ (where $[x]$ denotes the greatest integer function).

14. The area of the region bounded by the curve and the line $x = -1$ is
 a. $\pi + 1$ sq. units b. $\pi - 1$ sq. units c. $\pi + 1$ sq. units d. $\pi - 1$ sq. units

15. Line $x = 0$ divides the region mentioned above in two parts. The ratio of area of left-hand side of line to that of right-hand side of line is
 a. $1 + \pi : \pi$ b. $2 - \pi : \pi$ c. 1:1 d. $\pi + 2 : \pi$

16. The area of the region of curve and line $x = 0$ and $x = \frac{1}{2}$ is
 a. $\frac{\sqrt{3}}{4} + \frac{\pi}{6}$ sq. units b. $\frac{\sqrt{3}}{2} + \frac{\pi}{6}$ sq. units c. $\frac{\sqrt{3}}{4} - \frac{\pi}{6}$ sq. units d. $\frac{\sqrt{3}}{2} - \frac{\pi}{6}$ sq. units

For Problems 17–19

Computing area with parametrically represented boundaries:

If the boundary of a figure is represented by parametric equation, i.e., $x = x(t), y = y(t)$, then the area of the figure is evaluated by one of the three formulas

\[
S = \frac{1}{2} \int_{\alpha}^{\beta} (xy' - yx')dt,
\]

where α and β are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t.

17. The area of the region bounded by an arc of the cycloid $x = a(t - \sin t), y = a(1 - \cos t)$ and the x-axis is
 a. $6\pi a^2$ sq. units b. $3\pi a^2$ sq. units c. $4\pi a^2$ sq. units d. None of these

18. The area of the loop described as $x = \frac{t}{3} (6 - t), y = \frac{t^2}{8} (6 - t)$ is
 a. $\frac{27}{5}$ sq. units b. $\frac{24}{5}$ sq. units c. $\frac{27}{6}$ sq. units d. $\frac{21}{5}$ sq. units

19. If the curve given by parametric equation $x = t - t^2, y = 1 - t^4$ forms a loop for all values of $t \in [-1, 1]$, then the area of the loop is
 a. $\frac{1}{7}$ sq. units b. $\frac{3}{5}$ sq. units c. $\frac{16}{35}$ sq. units d. $\frac{8}{35}$ sq. units

Matrix-Match Type

Solutions on page 9.34

Each question contains statements given in two columns which have to be matched. Statements a, b, c, d in column I have to be matched with statements p, q, r, s in column II. If the correct match are a-p, a-s, b-r, c-p, c-q and d-s, then the correctly bubbled 4 x 4 matrix should be as follows:

\[
\begin{array}{cccc}
\text{a} & \text{b} & \text{c} & \text{d} \\
\text{p} & \text{q} & \text{r} & \text{s} \\
\end{array}
\]

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. The area bounded by the curve $y = x^2$, axis and the ordinates $x = 1, x = -1$</td>
<td>p. 10/3 sq. units</td>
</tr>
<tr>
<td>b. The area of the region lying between the lines $x - y + 2 = 0, x = 0$ and the curve $x = \sqrt{y}$</td>
<td>q. 6/3 sq. units</td>
</tr>
<tr>
<td>c. The area enclosed between the curves $y^2 = x$ and $y = -1$</td>
<td>r. 2/3 sq. units</td>
</tr>
<tr>
<td>d. The area bounded by parabola $y^2 = 4x$ and straight line $y = 4$ and y-axis</td>
<td>s. 1/6 sq. units</td>
</tr>
</tbody>
</table>
3. \[\text{Column 1: [\cdot]} \text{ represents greatest integer function.} \]

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Area enclosed by ([x]^2 = [y]^2) for (1 \leq x \leq 4)</td>
<td>p. 8 sq. units</td>
</tr>
<tr>
<td>b. Area enclosed by ([</td>
<td>x</td>
</tr>
<tr>
<td>c. Area enclosed by ([</td>
<td>x</td>
</tr>
<tr>
<td>d. Area enclosed by ([</td>
<td>x</td>
</tr>
</tbody>
</table>

Integer Type

1. The area enclosed by the curve \(C: y = x \sqrt{9 - x^2} \quad (x \geq 0)\)
 and the \(x\)-axis is

 \[2. \text{ Let } S \text{ be the area bounded by the curve } y = \sin x, \quad (0 \leq x \leq \pi) \quad \text{and the } x\text{-axis and } T \text{ be the area bounded by the curves } y = \sin x \left(0 \leq x \leq \frac{\pi}{2}\right), \quad y = a \cos x \left(0 \leq x \leq \frac{\pi}{2}\right) \quad \text{and the } x\text{-axis (where } a \in R^\ast). \]

 The value of \((3a)\) such that \(S: T = 1: \frac{1}{3}\) is \(1)\)

3. Let \(C \text{ be a curve passing through } M(2, 2) \text{ such that the slope of the tangent at any point to the curve is reciprocal of the ordinate of the point. If the area bounded by curve C and line } x = 2 \text{ is } A, \text{ then the value of } \frac{3A}{2} \text{ is}\)

4. The area enclosed by \(f(x) = 12 + ax + \frac{x^2}{2}\) and the ordinates at \(x = 3\) \((3 > 0)\) is 45 square units. If \(m \text{ and } n\) are the \(x\)-axis intercepts of the graph of \(y = f(x)\) then the value of \((m + n + a)\) is

5. If the area bounded by the curve \(f(x) = x^{1/3} \quad (x - 1)\) and \(x\)-axis is \(A, \text{ then the value of } 28A \text{ is}\)

6. If the area bounded by the curve \(y = x^2 + 1\) and the tangents to it drawn from the origin is \(A, \text{ then the value of } 3A \text{ is}\)

7. If the area enclosed by the curve \(y = \sqrt{x} \quad \text{and } x = -\sqrt{x}, \quad \text{the circle } x^2 + y^2 = 2 \text{ above the } x\text{-axis, is } A \text{ then the value of } 16A \text{ is}\)

8. The value of \(a^2 (a > 0)\) for which the area bounded by the curves \(y = x^2 + 1\) and \(x = -\sqrt{y}\) is \(A \text{ then the value of } 3A \text{ is}\)

9. Area bounded by the relation \([2x] + [y] = 5, \quad x, y > 0\) is \((\text{where } [\cdot] \text{ represents greatest integer function})\)

10. The area bounded by the curves \(y = x (x - 3)^2\) and \(y = x\) is \((\text{in sq. units})\)

11. If the area of the region \(\{x, y\}: 0 \leq y \leq x^2 + 1, \quad 0 \leq x \leq 1, \quad \text{is } A, \text{ then the value of } 3A - 17 \text{ is}\)

12. If \(S\) is the sum of possible values of \(x\) for which the area of the figure bounded by the curves \(y = sin 2x, \quad \text{the straight lines } x = \pi/6, \quad x = c\) and the abscissa axis is equal to \(1/2\), then the value of \(\pi S\) is

13. If \(A\) is the area bounded by the curves \(y = \sqrt{1 - x^2}\) and \(y = x^3 - x, \text{ then the value of } \pi A\)

14. Consider two curves \(C_1: y = \frac{1}{x} \quad \text{and } C_2: y = \ln x \text{ on the } xy\) plane. Let \(D_1\) denotes the region surrounded by \(C_1, \quad C_2\) and the line \(x = 1 \quad \text{and } D_2\) denotes the region surrounded by \(C_1, \quad C_2\) and the line \(x = a\). If \(D_1 = D_2\), then the sum of logarithm of possible values of \(a\) is

15. If \(a^2 (a > 0)\) is the value of parameter for each of which the area of the figure bounded by the straight line \(y = \frac{a^2 - ax}{1 + a^4}\) and the parabola \(y = \frac{x^2 + 2ax + 3a^2}{1 + a^4}\) is the greatest, then the value of \(a^2\) is

16. If \(S\) is the sum of cubes of possible value of \(c\) for which the area of the figure bounded by the curve \(y = 8x^2 - x^2\), then straight lines \(x = 1\) and \(x = c\) and the abscissa axis is equal to \(16/3\), then the value of \([S]\), where \([\cdot]\) denotes the greatest integer function, is

Archives

1. Find the area bounded by the curve \(x^2 = 4y\) and the straight line \(x = 4y - 2\).

2. For any real \(t, x = \frac{1}{2} (e^t + e^{-t}), \quad y = \frac{1}{2} (e^t - e^{-t})\) is a point on the hyperbola \(x^2 - y^2 = 1\). Show that the area bounded by the hyperbola and the lines joining its centre to the points corresponding to \(t_1\) and \(-t_1\) is \(t_1\).

3. Find the area bounded by the \(x\)-axis, part of the curve \(y = \left(1 + \frac{8}{x^2}\right)\) and the ordinates at \(x = 2\) and \(x = 4\). If the ordinate at \(x = a\) divides the area into two equal parts, then find \(a\).
4. Find the area of the region bounded by the x-axis and the curves defined by \(y = \tan x \) where \(-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}\) and \(y = \cot x \) where \(\frac{\pi}{6} \leq x \leq \frac{3\pi}{2}\). \(\text{[IIT-JEE, 1984]}\)

5. Sketch the region bounded by the curves \(y = \sqrt{5 - x^2} \) and \(y = |x - 1|\) and find its area. \(\text{[IIT-JEE, 1985]}\)

6. Find the area bounded by the curves \(x^2 + y^2 = 4, x^2 = -\sqrt{2}y \) and \(x = y \). \(\text{[IIT-JEE, 1986]}\)

7. Find the area bounded by the curves \(x^2 + y^2 = 25, 4y = |4 - x^2| \) and \(x = 0 \) above the x-axis. \(\text{[IIT-JEE, 1987]}\)

8. Find the area of the region bounded by the curve \(C: y = \tan x \), tangent drawn to \(C \) at \(x = \frac{\pi}{4} \) and the x-axis.

9. Compute the area of the region bounded by the curves \(y = ex \log e x \) and \(y = \frac{\log x}{8} \). \(\text{[IIT-JEE, 1990]}\)

10. Sketch the curves and identify the region bounded by \(x = \frac{1}{2}, x = 2, y = \ln x \) and \(y = \sqrt{2} \). Find the area of this region. \(\text{[IIT-JEE, 1991]}\)

11. Sketch the region bounded by the curves \(y = x^2 \) and \(y = \frac{2}{1 + x^2} \). Find the area. \(\text{[IIT-JEE, 1992]}\)

12. In what ratio does the x-axis divide the area of the region bounded by the parabolas \(y = 4x - x^2 \) and \(y = x^2 - x^2 \)? \(\text{[IIT-JEE, 1995]}\)

13. Consider a square with vertices at \((1, 1), (-1, 1), (-1, -1)\) and \((1, -1)\). Let \(S \) be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region \(S \) and find its area.

14. Let \(A_n \) be the area bounded by the curve \(y = (\tan x)^n \) and the lines \(x = 0, y = 0 \) and \(x = \frac{\pi}{2} \). Prove that for \(n > 2, A_n + A_{n-2} = \frac{1}{n-1} \) and deduce \(\frac{1}{2n+2} < A_n < \frac{1}{2n-2} \).

15. Find all the possible values of \(b > 0 \), so that the area of the bounded region enclosed between the parabolas \(y = x - bx^2 \) and \(y = \frac{x^2}{b} \) is maximum.

16. Let \(O (0, 0), A (2, 0) \) and \(B \left(\frac{1}{\sqrt{3}}, 1 \right) \) be the vertices of a triangle. Let \(R \) be the region consisting of all those points \(P \) inside \(\triangle OAB \) which satisfy \(d(P, OA) \leq \min (d(P, OB), d(P, AB)) \), where \(d \) denotes the distance from the point to the corresponding line. Sketch the region \(R \) and find its area.

17. Let \(f(x) = \max \{ x^2, (1 - x)^2 \}, 2(x(1 - x)) \) where \(0 \leq x \leq 1 \). Determine the area of the region bounded by the curves \(y = f(x), x \)-axis, \(x = 0 \) and \(x = 1 \).

18. Let \(C_1 \) and \(C_2 \) be the graphs of the functions \(y = x^2 \) and \(y = 2x \), respectively, where \(0 \leq x \leq 1 \). Let \(C_3 \) be the graph of a function \(y = f(x) \), where \(0 \leq x \leq 1 \) and \(f(0) = 0 \). For a point \(P \) on \(C_1 \), let the lines through \(P \), parallel to the axis, meet \(C_2 \) and \(C_3 \) at \(Q \) and \(R \), respectively (see Fig. 9.22). If for every position of \(P \) (on \(C_1 \)), the areas of the shaded regions \(OQP \) and \(ORP \) are equal, determine the function \(f(x) \).

Fig. 9.22

19. Let \(f(x) \) be a continuous function given by \(f(x) = \begin{cases} 2x, & |x| \leq 1 \\ x^2 + ax + b, & |x| > 1 \end{cases} \). Find the area of the region in the third quadrant bounded by the curves \(x^2 = 2y^2 \) and \(y = f(x) \) lying on the left of the line \(8x + 1 = 0 \).

20. Find the area of the region bounded by the curves \(y = x^2 \), \(y = |2 - x^2| \) and \(y = 2 \), which lies to the right of the line \(x = 1 \).

21. Find the area bounded by the curve \(x^2 = y, x^2 = -y \) and \(y = 4x - 3 \).

22. If \(f(x) \) is a differentiable function such that \(f''(x) = g(x), g''(x) \) exists, \(|f(x)| < 1 \) and \((f(0))^2 + (g(0))^2 = 9 \). Prove that there is a point \(c \) where \(c \in (-3, 3) \) such that \(g(c)g''(c) < 0 \). \(\text{[IIT-JEE, 2005]}\)

23. If \(f(x) \) is a quadratic polynomial and \(a, b, c \) are three real and distinct numbers satisfying \(\begin{bmatrix} 4a^2 & 4a & 1 \\ 4b^2 & 4b & 1 \\ 4c^2 & 4c & 1 \end{bmatrix} \begin{bmatrix} f(-1) \\ f(1) \\ f(2) \end{bmatrix} = \begin{bmatrix} 3a^2 + 3a \\ 3b^2 + 3b \\ 3c^2 + 3c \end{bmatrix} \). Given \(f(x) \) cuts the x-axis at \(A \) and \(V \) is the point of maxima. If \(AB \) is any chord which subtends a right angle at \(V \), find curve \(f(x) \) and area bounded by the chord \(AB \) and curve \(f(x) \).

\(\text{[IIT-JEE, 2005]}\)

Objective

Multiple choice questions with one correct answer

1. The area bounded by the curves \(y = f(x) \), the x-axis and the ordinates \(x = 1 \) and \(x = b \) is \((b - 1) \sin (3b + 4) \). Then \(f(x) \) is
 a. \((x - 1) \cos (3x + 4) \)
 b. \(\sin (3x + 4) \)
 c. \(x + 3 \cos (3x + 4) \)
 d. None of these
 \(\text{[IIT-JEE, 1982]}\)

2. The area bounded by the curves \(y = |x| - 1 \) and \(y = -|x| + 1 \) is
 a. 1 sq. units
 b. 2 sq. units
 c. \(2\sqrt{2} \) sq. units
 d. 4 sq. units
 \(\text{[IIT-JEE, 2002]}\)
3. The area bounded by the curves \(y = \sqrt{x} \), \(2y + 3 = x \) and \(x\)-axis in the 1st quadrant is
 a. 9 sq. units
 b. 27/4 sq. units
 c. 36 sq. units
 d. 9 sq. units
 (ITJEE, 2002)

4. The area bounded by the parabolas \(y = (x + 1)^2 \) and \(y = (x - 1)^2 \) and the line \(y = 1/4 \) is
 a. 4 sq. units
 b. 1/6 sq. units
 c. 4/3 sq. units
 d. 1/3 sq. units
 (ITJEE, 2005)

5. The area enclosed between the curves \(y = ax^2 \) and \(x = ay^2 \) (where \(a > 0 \)) is 1 sq. unit, then the value of \(a \) is
 a. \(1/\sqrt{3} \)
 b. 1/2
 c. 1
 d. 1/3
 (ITJEE, 2004)

6. Let the straight line \(x = b \) divide the area enclosed by \(y = (1-x)^2, y=0 \) and \(x=0 \) into two parts \(R_1 \) (\(0 \leq x \leq b \)) and \(R_2 \) (\(b \leq x \leq 1 \)) such that \(R_1 - R_2 = \frac{1}{4} \). Then \(b \) equals
 a. 3/4
 b. 1/2
 c. 1/3
 d. 1/4
 (ITJEE, 2011)

Multiple choice questions with one or more than one correct answer

1. For which of the following values of \(m \) is the area of the region bounded by the curve \(y = x-x^2 \) and the line \(y = mx \) equal 9/22:
 a. -4
 b. -2
 c. 2
 d. 4
 (ITJEE, 1999)

2. Area of the region bounded by the curve \(y = e^x \) and lines \(x = 0 \) and \(y = e \) is
 a. \(e - 1 \)
 b. \(e \int (e + 1 - y) \, dy \)
 c. \(e \int e^x \, dx \)
 d. \(e \int e^y \, dy \)
 (ITJEE, 2009)

ANSWERS AND SOLUTIONS

Subjective Type

1. \(f(x) = \frac{(x+1)(x+2)}{(x-1)(x-2)} \)

 Graph will cut \(x \)-axis at \(x = -1 \) and \(x = 2 \).

 It is discontinuous at \(x = 1 \) and \(x = 2 \).

 \[\lim_{x \to -\infty} f(x) = 1, \quad \lim_{x \to \infty} f(x) = +\infty \]

 \[\lim_{x \to -1^+} f(x) = \infty \]

 \[\lim_{x \to 2^-} f(x) = -\infty \]

 \[\lim_{x \to 2^+} f(x) = +\infty \]

 \[f(0) = 1 \]

 \(\text{Fig. 9.23} \)

 Now we have to find the area of the shaded region. The required area

 \[= \int_{-2}^{2} f(x) \, dx = \text{\int}_{2}^{x^2} + 3x + 2 \left| \text{\int}_{2}^{x^2} - 3x + 2 \right| \]

 \[= 1 + \frac{6x}{x-1}(x-2) \]

 \[= \left[x^2 + 6 \left(\frac{2}{x-2} - \frac{1}{x-1} \right) \right] \]

 \[= \left[1 + 6(2\ln|x-2| - \ln|x-1|) \right] \]

 \[= \left[1 + 6(2(\ln3 - 0) - (\ln2 - \ln3)) \right] \]

 \[= 6(\ln32 - 27) \]

 \[\text{1 sq. units.} \]

2. Given \(\int_{a-t}^{t} f(x) \, dx \) \(\forall t \in R \)

 \[\Rightarrow \int_{a-t}^{t} f(x) \, dx = \int_{a} f(x) \, dx \]

 \[[\because f(a) = 0 \text{ and } f(x) \text{ is monotonic}] \]

 \[\Rightarrow f(a-t) = -f(a+t) \]

 \[\Rightarrow (a-t) + f(a+t) = 0 \] \hspace{1cm} (1)

 \[f(a+t) = f(a-t) \text{ (say)} \]

 \[t = f^{-1}(x) - a \] \hspace{1cm} (2)

 \[t = a - f^{-1}(x) \] \hspace{1cm} (3)

 From equations (2) and (3), \((a-f^{-1}(x)) + (a-f^{-1}(-x)) = 0 \)

 \[\Rightarrow \int_{-\lambda}^{\lambda} f^{-1}(x) \, dx = \frac{1}{2} \int_{a}^{a} (f^{-1}(x) + f^{-1}(-x)) \, dx = 2a\lambda. \]

3. According to the given conditions

 \[\int_{0}^{t} [f(x) - (x^4 - 4x^2)] \, dx = k \int_{0}^{2} (2x^2 - x^3 - f(x)) \, dx \]

 Differentiate both sides w.r.t. \(t \), we get

 \[f(t) - (t^4 - 4t^2) = k(2t^3 - t^2 - f(t)) \text{ or } (1+k)f(t) = k2t^2 - kt^3 + t^4 - 4t^2 \]
9.16 Calculus

\[f(t) = \frac{1}{k+1} \left[t^4 - kt^3 + (2k-4)t^2 \right] \]

Hence, required \(f \) is given by

\[f(x) = \frac{1}{k+1} \left(x^4 - kx^3 + 2(k-2)x^2 \right) . \]

4. The given curves are

\[y = -x^2 + 6x - 5 \text{ or } (x - 3)^2 = -(y - 4) \] \hspace{1cm} (1)

which is a parabola with vertex at \(A_1(3, 4) \) and axis parallel to the \(y \)-axis. It intersects the \(x \)-axis at the points \(P(1, 0) \) and \(Q(5, 0) \).

\[y = -x^2 + 4x - 3 \text{ or } (x - 2)^2 = -(y - 1) \] \hspace{1cm} (2)

which is a parabola with vertex at \(A_2(2, 1) \) and axis parallel to the \(y \)-axis. It intersects the \(x \)-axis at the points \(P(1, 0) \) and \(R(3, 0) \).

5. Solving the given curves \(y = \frac{1}{x^2} \); \(y = \frac{1}{4(x - 1)} \)

\[x^2 = 4(x - 1) \Rightarrow (x - 2)^2 = 0 \]

\[\Rightarrow \text{curves touch other} \]
\[\begin{align*}
&= \frac{(k^2 - 2)^2 + 16}{6} \left[\frac{1}{6} (k^2 - 2)^2 + \frac{8}{3} \right] \\
&= \left(\frac{(k^2 - 2)^2 + 16}{6} \right)^{3/2} \\
&\text{which is least when } k = 2 \text{ and } A_{\text{least}} = \frac{32}{3} \text{ sq. units.}
\end{align*}\]

7. Equation of curve can be re-written as
\[2y^2 + 6(1 + x)y + 5x^2 + 7x + 6 = 0\]
\[\Rightarrow y_1 = \frac{-3(1 + x) - \sqrt{(3-x)(x-1)}}{2}, \quad y_2 = \frac{-3(1 + x) + \sqrt{(3-x)(x-1)}}{2}\]
Therefore, the curves \((y_1 \text{ and } y_2)\) are defined for values of \(x\) for which \((3-x)(x-1) \geq 0\), i.e., \(1 \leq x \leq 3\).
(Actually the given equation denotes an ellipse, because \(\Delta \neq 0\) and \(h^2 < ab\).)
Required area will be given by

![Fig. 9.26](image)

\[A = \frac{3}{1}(y_1 - y_2) \ dx \Rightarrow A = \frac{3}{1} \sqrt{(3-x)(x-1)} \ dx\]
Put \(x = 3 \cos^2 \theta + \sin^2 \theta\), i.e., \(dx = -2 \sin 2 \theta \ d \theta\)
\[A = 2 \int_0^{\pi/2} \sin^2 2 \theta \ d \theta = \frac{\pi}{2} \text{ sq. units.}\]

8.a. \(\sqrt{x} + \sqrt{y} = \sqrt{a}\)
\(x = 0 \Rightarrow y = \pm a\)
\(y = 0 \Rightarrow x = \pm a\)
(a) Required area

![Fig. 9.27](image)

\[\Delta = 4 \int_0^a \sqrt{a^2 - x^2} \ dx - 4 \int_0^a (\sqrt{a} - \sqrt{x})^2 \ dx\]

b. Area included between curves and circle in 1st quadrant
\[\frac{1}{4} \pi a^2 - \frac{1}{2} a \times a = \frac{(\pi - 2)a^2}{4}\]
Area included between \(|x| + |y| = a\) and curve \(\sqrt{x} + \sqrt{y} = \sqrt{a}\) in 1st quadrant
\[\frac{1}{4} \left(\pi - 2\right) a^2 - \frac{\pi}{4} \left(\frac{1}{2} a^2\right) = \frac{a^2}{3}\]
Area ratio = \(\frac{4}{3(\pi - 2)}\)

Objective Type

1.a. Clearly \(t\) can be any real number

Let \(t = \tan \theta \Rightarrow x = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}\)
\[\Rightarrow x = \cos 2 \theta, \text{ and}\]
\[y = \frac{2 \tan \theta}{1 + \tan^2 \theta} = \sin 2 \theta\]
\[\Rightarrow x^2 + y^2 = 1\]
Thus, required area = \(\pi\) sq. units.

2.a. Given \(5x^2 - y = 0\), and

![Fig. 9.28](image)
2x^2 - y + 9 = 0
Eliminating y, we get
5x^2 - (2x^2 + 9) = 0
⇒ 3x^2 = 9 ⇒ x = ± \sqrt{3}, \sqrt{3}

:. required area

\[= 2 \int_{0}^{\sqrt{3}} \left((2x^2 + 9) - 3x^2 \right) \, dx \]
\[= 2 \int_{0}^{\sqrt{3}} (9 - 3x^2) \, dx \]
\[= 2 \left[9x - x^3 \right]_{0}^{\sqrt{3}} \]
\[= 2 \left[9\sqrt{3} - 3\sqrt{3} \right] \]
\[= 12\sqrt{3} \text{ sq. units} \]

5. a. Curve tracing: \(y = x \log_e x \)
Clearly, \(x > 0 \),
For \(0 < x < 1, x \log_e x < 0 \), and for \(x > 1, x \log_e x > 0 \)
Also \(x \log_e x = 0 \Rightarrow x = 1 \).
Further, \(\frac{dy}{dx} = 0 \Rightarrow 1 + \log_e x = 0 \Rightarrow x = 1/e \), which is a point of minima.

\[y = x \log x \]
\[y = 2x - x^2 \]

Required area

\[= \int_{0}^{1} (2x - 3x^2) \, dx - \int_{0}^{1} x \log x \, dx \]
\[= \left[x^2 - x^3 \right]_{0}^{1} - \left[\frac{x^2}{2} \log x - \frac{x^2}{4} \right]_{0}^{1} \]
\[= \left[1 - \frac{2}{3} \right] - \left[\frac{1}{4} - \lim_{x \to 0} \frac{x^2 \log x}{2x} \right] \]
\[= \frac{1}{3} + \frac{1}{4} = \frac{7}{12} \]

6. a. \(y = \log_e (x + e), x = \log_e \left(\frac{1}{y} \right) \Rightarrow y = e^x \).
for \(y = \log_e (x + e) \) shift the graph of \(y = \log_e x \), \(e \) units left hand side.

\[x^2 + y^2 = 1 \]
\(x = \sqrt{3}, \sqrt{3} \)
Required area = \(\int_{0}^{\infty} \log_e (x+e) \, dx + \int_{0}^{\infty} e^{-x} \, dx \)
\[= \left| x \log_e (x+e) \right|_{1-e}^{0} - \int_{0}^{\infty} \frac{x}{x+e} \, dx - \left| e^{-x} \right|_{0}^{\infty} \]
\[= 1-e - \left(1 - \frac{e}{x+e} \right) \left|_{0}^{\infty} \right. \]
\[= 1 - e - \frac{1-e}{1} - 0 + 1 \]
\[= 1 - e + e + 1 = 2 \text{ sq. units.} \]

7. d \(y = \frac{1}{(x-1)^2 + 1} \)

\(y \) is maximum when \((x-1)^2 = 0\). Also, graph is symmetrical about line \(x = 1 \).

Fig. 9.33

Area = \(2 \int_{1}^{\infty} \frac{1}{(x-1)^2 + 1} \, dx = 2(\tan^{-1} (x-1)) \big|_{1}^{\infty} = \pi \) sq. units.

8. b \(xy^2 = a^2 (a-x) \)
\[\Rightarrow x = \frac{a^3}{y^2 + a^2} \]

The given curve is symmetrical about the \(x \)-axis, and meets it at \((a, 0)\).

The line \(x = 0 \), i.e., \(y \)-axis is an asymptote (tangent at infinity).

Area = \(\int_{0}^{\infty} x \, dy = 2 \int_{0}^{\infty} \frac{a^3}{y^2 + a^2} \, dy \)
\[= 2a^3 \left[\tan^{-1} \frac{y}{a} \right]_{0}^{\infty} = \frac{\pi a^2}{2} \text{ sq. units.} \]

9. c. Given \(y = x^2 + x + 1 = \left(x + \frac{1}{2} \right)^2 + \frac{3}{4} \Rightarrow y - \frac{3}{4} = \left(x + \frac{1}{2} \right)^2 \).

This is a parabola with vertex at \(\left(-\frac{1}{2}, -\frac{3}{4} \right) \) and the curve is concave upwards.

\(y = x^2 + x + 1 \Rightarrow \frac{dy}{dx} = 2x + 1 \Rightarrow \left. \left(\frac{dy}{dx} \right) \right|_{(1,3)} = 3 \)

Equation of the tangent at \(A (1, 3) \) is \(y = 3x \).

Fig. 9.35

Required (shaded area) = area \(ABDMN \) – area \(ONA \)

Now, area \(ABDMN = \int_{-1}^{1} (x^2 + x + 1) \, dx \)
\[= \int_{0}^{1} (x^2 + 1) \, dx = \frac{8}{3} \]

Area of \(ONA = \frac{1}{2} \times 1 \times 3 = \frac{3}{2} \).

\[\therefore \text{ required area } = \frac{8}{3} - \frac{3}{2} = \frac{16 - 9}{6} = \frac{7}{6} \text{ sq. units.} \]

10. a.
Integrating along x-axis, we get

$$A = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} (\text{cosec}^{-1} x - \text{sec}^{-1} x) \, dx$$

Integrating along y-axis, we get

$$A = 2 \int_{0}^{\frac{\pi}{6}} (\sec y - 1) \, dy$$

$$= 2 \left[\ln|\sec y + \tan y| - y \right]_0^{\frac{\pi}{6}}$$

$$= 2 \left[\ln(\sqrt{2} + 1) - \frac{\pi}{4} \right] = \log\left(3 + 2\sqrt{2}\right) - \frac{\pi}{2} \text{ sq. units.}$$

1. b. Solving $2 \cos x = 3 \tan x$, we get

$$2 - 2 \sin^2 x = 3 \sin x \Rightarrow \sin x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6}.$$

13. d. The curve is $y = \frac{x^2(x+a)}{a^2}$, which is a cubic polynomial.

Since $\frac{x^2(x+a)}{a^2} = 0$ has repeated root $x = 0$, it touches x-axis at $(0, 0)$ and intersects at $(-a, 0)$.

14. c.

Required area $= \int_{-\infty}^{\infty} y \, dx = \int_{-\infty}^{\infty} \frac{x^2(x+a)}{a^2} \, dx = a^2/12 \text{ sq. units.}$
\[A_1 = \frac{1}{2} \left(1 + \sqrt{x} - \frac{x}{4}\right) dx \]

\[= \left[x + \frac{2x^{3/2}}{3} - \frac{x^2}{8} \right]_0^1 = 1 + \frac{2}{3} - \frac{1}{8} = \frac{37}{24} \]

\[A_2 = \int \frac{2}{\sqrt{x} - \frac{x}{4}} dx \]

\[= \left[4\sqrt{x} - \frac{x^2}{8} \right]_0^1 = 8 - 2 - 4 + \frac{1}{8} = \frac{17}{8} \]

\[\implies A = A_1 + A_2 = \frac{88}{24} = \frac{11}{3} \text{ sq. units} \]

5. a. \[y = \frac{x^2}{2} - 2x + 2 = \frac{(x-2)^2}{2}, \]

\[\frac{dy}{dx} = x - 2, \quad \left(\frac{dy}{dx}\right)_{x=1} = -1, \quad \left(\frac{dy}{dx}\right)_{x=4} = 2 \]

\[\implies \text{Tangent at } (1, 1/2) \text{ is } y - 1/2 = -1(x - 1) \text{ or } 2x + 2y - 3 = 0 \]

\[\text{Tangent at } (4, 2) \text{ is } y - 2 = 2(x - 4) \text{ or } 2x - y - 6 = 0 \]

17. a. \[A = \int_{-1}^{2} (-x^2 + 2x) dx + \int_{1}^{2} (2x - 1) dx \]

\[= \left(-\frac{x^3}{3} + 2x \right)_{-1}^{2} + (x^2 - x)_1^2 \]

\[= \frac{16}{3} \text{ sq. units} \]
\[x^2 + y^2 - 2x - 3 = 0 \]
\[\Rightarrow (x-1)^2 + y^2 = 4 \]
\[A = \int_0^1 \left(\sqrt{4-(x-1)^2} - (-x+1) \right) \, dx \]
\[\text{Area to the left of } y \text{-axis is } \pi \]
\[\text{Area to the right of } y \text{-axis is} \]
\[= \int_0^{\sqrt{2}} \left(\sqrt{4-x^2} - \sqrt{2} \sin \frac{x\pi}{2\sqrt{2}} \right) \, dx \]
\[= \left[x \sqrt{4-x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} - \frac{x^3}{2} - x \right]_0^{\sqrt{2}} \]
\[= \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} - \frac{3-2\sqrt{2}}{2} + 1 + \sqrt{2} \right) \]
\[= \frac{\sqrt{2}}{2} - \frac{3}{2} + \frac{\sqrt{2}}{2} - 1 + \sqrt{2} \]
\[= \left(\frac{1}{2} - 1 \right) - \left(\frac{\sqrt{3}}{2} - \frac{\pi}{3} \right) \]
\[= -\left(-\frac{\pi}{2} + \frac{3}{2} \sqrt{2} - 1 + \sqrt{2} \right) - \frac{3}{2} = \frac{\pi}{2} - 1 \text{ sq. units.} \]
\[\text{... ratio } = \frac{2\pi^2}{2\pi + \pi^2 - 8}. \]

18. c. \(a^2 x^2 + ax + 1 \) is clearly positive for all real values of \(x \). Area under consideration
\[A = \int_0^1 \left(a^2 x^2 + ax + 1 \right) \, dx \]
\[= \frac{a^2}{3} + \frac{a}{2} + 1 \]
\[= \frac{1}{6} \left(2a^2 + 3a + 6 \right) \]
\[= \frac{1}{6} \left(2 \left(a^2 + \frac{3}{2} a + \frac{9}{16} \right) + 6 - \frac{18}{16} \right) \]
\[= \frac{1}{6} \left(2 \left(a + \frac{3}{4} \right)^2 + \frac{39}{8} \right), \text{ which is clearly minimum} \]
\[\text{for } a = -\frac{3}{4}. \]

19. d. \(y = \sqrt{4-x^2}, y = \sqrt{2} \sin \left(\frac{x\pi}{2\sqrt{2}} \right) \)

intersects at \(x = \sqrt{2} \)

![Fig. 9.44](image)

\[y = 2 - \sin x \]
\[y = 2 + \sin x \]

![Fig. 9.45](image)
Area = \int \frac{\pi}{2} \sin x \sin dx + \int \frac{\pi}{2} (2 - \sin x) dx
+ \int \frac{3\pi}{2} (2 + \sin x) dx = 1 + 2 \times 2 - 1 = 2\pi \text{ sq. units.}

21. a.

\[A = \frac{1}{2} \int \ln x \, dx \]
\[= \left[x \ln x - x \right] \]
\[= 2 \ln 2 - 1 \]
\[\Rightarrow \text{Required area} = 4 - 2(2 \ln 2 - 1) = 6 - 4 \ln 2 \text{ sq. units.} \]

22. b. \(ay^2 = x^2 (a - x) \) \Rightarrow \(y = \pm x \sqrt{\frac{a-x}{a}} \)

Curve tracing: \(y = x \sqrt{\frac{a-x}{a}} \)
We must have \(x \leq a \)
For \(0 < x \leq a, y > 0 \) and for \(x < 0, y < 0 \)
Also \(y = 0 \Rightarrow x = 0, a \)
Curve is symmetrical about x-axis.
When \(x \to -\infty, y \to -\infty \)
Also, it can be verified that \(y \) has only one point of maxima for \(0 < x < a \).

\[A = 2 \int_0^1 \frac{\sqrt{1-y^2}}{y} (y^2 - 1) \, dy \]
\[= 2 \text{ sq. units} \]

23. d.

\[A = \frac{1}{2} \left[x \sqrt{1-y^2} - (y^2 - 1) \right] \, dy \]
\[= 2 \text{ sq. units} \]

24. d. \(4y^2 = x^2 (4 - x^2) \)

\[\Rightarrow y = \pm \frac{1}{2} \sqrt{4 - x^2} \]
\[\Rightarrow y = \pm \frac{x}{2} \sqrt{4 - x^2} \]
\[y = \frac{x}{2} \sqrt{4 - x^2} \quad y = \frac{x}{2} \sqrt{6 - x^2} \]
9.24 Calculus

\[\text{Area} (A) = 4 \times \int_0^2 \frac{x}{2} \sqrt{4-x^2} \, dx \]

Let \(4-x^2 = t \Rightarrow -2x \, dx = dt \)

\[\Rightarrow A = \int_0^4 \sqrt{t} \, dt = \left[\frac{3}{3} \right]_0^4 = \frac{2}{3} \times \left[64 - 0 \right] \]

\[\Rightarrow A = \frac{16}{3} \text{ sq. units} \]

25. a. The two curves are

\[xy^2 = a^2(a-x) \Rightarrow x = \frac{a^3}{a^2+y^2} \quad (1) \]

and \((a-x)y^2 = a^2x \)

\[\Rightarrow x = \frac{a y^2}{a^2+y^2} = \frac{a^3-a^3}{a^2+y^2} = a - \frac{a^3}{a^2+y^2} \quad (2) \]

Curve (1) is symmetrical about the x-axis, and have y-axis as the asymptote.

Curve (2) is symmetrical about the X-axis, tangent at origin as y-axis and the asymptote x = a.

The two curves intersect at the point P(a/2, a) and Q(a/2, -a).

\[\text{Fig. 9.50} \]

Required area

\[= 2 \left[\int_0^a \left(-a + \frac{a^3}{a^2+y^2} + \frac{a^3}{a^2+y^2} \right) \, dy \right] \text{ (integrating along y-axis)} \]

\[= 2 \left[\int_0^a \left(-ay + 2a^2 \tan^{-1} \frac{y}{a} \right) \, dy \right] \]

\[= 2 \left[\int_0^a \left(-a^2 + 2a^2 \frac{\pi}{4} \right) \, dy \right] \]

\[= (\pi-2) a^2 \text{ sq. units.} \]

6. a. Curve tracing : \(y = xe^x \)

Let \(\frac{dy}{dx} = 0 \Rightarrow e^x + xe^x = 0 \Rightarrow x = -1. \)

Also, at \(x = -1, \frac{dy}{dx} \) changes sign from -ve to +ve, hence, \(x = -1 \) is a point of minima.

When \(x \to \infty, y \to \infty \)

\[\Rightarrow \lim_{x \to \infty} xe^x = \lim_{x \to \infty} \frac{x}{e^{-x}} = \lim_{x \to \infty} \frac{1}{e^{-x}} = 0 \]

With similar types of arguments, we can draw the graph of \(y = xe^{-x} \).

\[\text{Fig. 9.51} \]

Required area

\[= \int_0^1 xe^x \, dx - \int_0^1 xe^{-x} \, dx \]

\[= \left[xe^x \right]_0^1 - \left[e^{-x} \right]_0^1 + \int_0^1 e^{-x} \, dx \]

\[= e-(e-1)-(e^{-1}-(e^{-1}+1)) = \frac{2}{e} \text{ sq. units.} \]

27. c. Given parabola is \((y-2)^2 = x-1 \)

\[\Rightarrow \frac{dy}{dx} = \frac{1}{2(y-2)} \]

When \(y = 3, x = 2 \)

\[\Rightarrow \frac{dy}{dx} = \frac{1}{2(3-2)} = \frac{1}{2} \]

Tangent at (2, 3) is \(y-3 = \frac{1}{2} (x-2) \Rightarrow x-2y+4 = 0 \)

\[\text{Fig. 9.52} \]

.: required area

\[= \int_0^3 (y-2)^2 + 1 \, dy - \int_0^3 (2y-4) \, dy \]

\[= \left[\frac{(y-2)^3}{3} + y \right]_0^3 - \left[y^2 - 4y \right]_0^3 \]

\[= \frac{1}{3} + \frac{8}{3} - (9 - 12) = 9 \text{ sq. units.} \]
28. c. \[(y-x)^2 = x^3, \text{ where } x \geq 0 \Rightarrow y-x = \pm x^{3/2} \]
\[y = x + x^{3/2} \quad \text{(1)} \]
\[y = x - x^{3/2} \quad \text{(2)} \]
Function (1) is an increasing function.
Function (2) meets x-axis, when \(x - x^{3/2} = 0 \) or \(x = 0, 1 \).
Also, for \(0 < x < 1, x - x^{3/2} > 0 \) and for \(x > 1, x - x^{3/2} < 0 \).
When \(x \to \infty, x - x^{3/2} \to -\infty \).
From these information, we can plot the graph as below:

![Graph](image)

30. b. Given curves are \(y - \log_e x \) and \(y = (\log_e x)^2 \)
Solving \(\log_e x = (\log_e x)^2 \Rightarrow \log_e x = 0, 1 \Rightarrow x = 1 \) and \(x = e \)
Also, for \(1 < x < e, 0 < \log_e x < 1 \Rightarrow \log_e x > (\log_e x)^2 \)
For \(x > e, \log_e x < (\log_e x)^2 \)
\(y = (\log_e x)^2 > 0 \) for all \(x > 0 \)
annd when \(x \to 0, (\log_e x)^2 \to \infty \).
From these information, we can plot the graph of the functions.

![Graph](image)

Then the required area = \(\int_1^e (\log x - (\log_e x)^2) dx \)
34. d. Curve tracing: \(y = x + \sin x \)

\[
\frac{dy}{dx} = 1 + \cos x \geq 0 \quad \forall x
\]

Also \(\frac{d^2y}{dx^2} = -\sin x = 0 \) when \(x = n\pi, n \in \mathbb{Z} \)

Hence, \(x = n\pi \) are points of inflection, where curve changes its concavity.

Also for \(x \in (0, \pi) \), \(\sin x > 0 \Rightarrow x + \sin x > x \).

And for \(x \in (\pi, 2\pi) \), \(\sin x < 0 \Rightarrow x + \sin x < x \).

From these information, we can plot the graph of \(y = f(x) \) and its inverse.

![Graph of y = f(x) and y = f^(-1)(x)](image)

35. d. Area = \(\int_{1}^{b} f(x) \, dx = \sqrt{b^2 + 1} - \sqrt{1 + 1} \)

\[= \sqrt{b^2 + 1} - \sqrt{2 + 1} \]

\[= \sqrt{b^2 + 1} - 1 \]

\[= \left[\sqrt{x^2 + 1} \right]_{1}^{b} \]

\[= \frac{d}{dx} \left(\sqrt{x^2 + 1} \right) = \frac{1}{2} \cdot \frac{2x}{\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}} \]

36. c. \(\int_{\pi/4}^{\beta} f(x) \, dx = \beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2} \)

Differentiating both sides w.r.t. \(\beta \), we get

\[f'(\beta) = \beta \cos \beta + \sin \beta - \frac{\pi}{4} \sin \beta + \sqrt{2} \]

\[\Rightarrow f'(\beta) = -\beta \sin \beta + \cos \beta + \cos \beta - \frac{\pi}{4} \cos \beta \]

\[\Rightarrow f'(\frac{\pi}{2}) = -\frac{\pi}{2} \]
37. \(y = \sin^{-1} |\sin x| = \begin{cases}
\pi - x, & 0 \leq x < \frac{\pi}{2} \\
\pi - x, & \frac{\pi}{2} \leq x < \pi \\
x - \pi, & \pi \leq x < \frac{3\pi}{2} \\
2\pi - x, & \frac{3\pi}{2} \leq x < 2\pi
\end{cases} \)

\(y = (\sin^{-1} |\sin x|)^2 = \begin{cases}
x^2, & 0 \leq x < \frac{\pi}{2} \\
(\pi - x)^2, & \frac{\pi}{2} \leq x < \pi \\
(x - \pi)^2, & \pi \leq x < \frac{3\pi}{2} \\
(2\pi - x)^2, & \frac{3\pi}{2} \leq x < 2\pi
\end{cases} \)

The required area \(A \) is shown shaded in Fig. 9.60.

\[
A = \int_0^\frac{\pi}{2} (x - x^2) \, dx + \int_{\frac{\pi}{2}}^\pi (x^2 - x) \, dx
\]

\[
= \frac{4}{3} + \pi^2 \left[\frac{\pi - 3}{6} \right] \text{ sq. units.}
\]

38. \(y^2 = 4 \sqrt{y} \) \(x \)

For \(y \in [1, 4] \), \(\sqrt{y} = 1 \Rightarrow y^2 = 4x. \)

Similarly, for \(x \in [1, 4] \), \(\sqrt{x} = 1 \) and

\(x^2 = 4 \sqrt{x} \) would transform into \(x^2 = 4y. \)

39. b. The required area \(A = \int_0^{2a} \sqrt{\frac{a^3}{x^2}} \, dx \)

\[
\text{Put } x = 2a \sin^2 \theta \\
\Rightarrow dx = 2a \cdot 2 \sin \theta \cos \theta \, d\theta
\]

\[
A = 8a^2 \int_0^\pi \left(\frac{1 - \cos 2\theta}{2} \right)^2 \, d\theta
\]

\[
= 2a^2 \int_0^\pi \left(1 - 2 \cos 2\theta + \cos^2 2\theta \right) \, d\theta
\]

\[
= 2a^2 \int_0^\pi \left(1 - 2 \cos 2\theta + \frac{1 + \cos 4\theta}{2} \right) \, d\theta
\]

\[
= \frac{3 \pi a^2}{2}
\]

40. a. \(y^2 = 1 - x \)

\[
A = \int_{-1}^{1} \left(1 - (\sqrt{1-x}) \right) \, dx + \int_{0}^{1} (1 - \sqrt{1-x}) \, dx
\]

\[
= \left[-x - \left(\frac{(1-x)^{3/2}}{3/2} \right) \right]_{-1}^{1} + \left[x + \left(\frac{(1-x)^{3/2}}{3/2} \right) \right]_{0}^{1}
\]
\[\frac{2}{3} \left(1 - \frac{2 \times 2^{3/2}}{3}\right) + \frac{1}{2} \left(\frac{2}{3 \times 2^{3/2}} \cdot \frac{2}{3}\right)\]

\[= \frac{2}{3 \times 2^{3/2}} + \frac{2}{3} \cdot \frac{1}{2} = \frac{3}{\sqrt{2}} \cdot \frac{4}{3} = \frac{11}{6}\text{ sq. units}\]

Multiple Correct Answers Type

1. b, c.

Fig. 9.64

Line \(y = kx + 2\) passes through fixed point \((0, 2)\) for different value of \(k\).
Also, it is obvious that minimum \(A(k)\) occurs when \(k = 0\), as when line is rotated from this position about point \((0, 2)\) the increased part of area is more than the decreased part of area.

Fig. 9.65

Now \(S_1 = \int_0^4 \frac{x^2}{4} dx = \int_0^4 \frac{x^3}{3} dx = \frac{1}{12} [\frac{x^4}{4}]_0 = \frac{16}{3}\).

\[S_2 = \int_0^4 2 \sqrt{x} dx = 2 \left[\frac{x^{3/2}}{3/2}\right]_0 = \frac{16}{3}\]

\[= \frac{4}{3} \left[8 - 0\right] = \frac{16}{3}\]

And \(S_3 = 4 \times 4 - (S_1 + S_2) = 16 - \left(\frac{16}{3} + \frac{16}{3}\right) = \frac{16}{3}\).

Hence, \(S_1 : S_2 : S_3 = 1:1:1\)

3. a, c, d.

Fig. 9.66

We know that area bounded by \(y = \sin x\) and \(x\)-axis for \(x \in [0, \pi]\) is 2 sq. units.
Then area bounded by \(y = \sin x\) and \(y = \sin^2 x\) is 4 sq. units for \(x \in [0, 2\pi]\).
Then for \(x \in [0, 10\pi]\) the area bounded is 20 sq. units.

Fig. 9.67

The area bounded by \(y = \sin x\) and \(y = |\sin x|\) for \(x \in [0, 2\pi]\) is 4 sq. units.
Then for \(x \in [0, 20\pi]\) the area bounded is 40 sq. units.

Fig. 9.68

The area bounded by \(y = \sin x\) and \(y = \sin^3 x\) for \(x \in [0, 2\pi]\) is 4 sq. units.

2. a, c, d.

\(y^2 = 4x\) and \(x^2 = 4y\) meet at \(O(0, 0)\) and \(A(4, 4)\).
Then for $x \in [0, 10\pi]$, the area bounded is 20 sq. units.
Similarly, the area bounded by $y = \sin x$ and $y = \sin^4 x$
for $x \in [0, 10\pi]$ is 20 sq. units.

4. c, d.
Since the curve $y = ax^{1/2} + bx$ passes through the point (1, 2)
\[2 = a + b \] (1)
By observation the curve also passes through (0, 0).
Therefore, the area enclosed by the curve, x-axis and
$x = 4$ is given by
\[A = 4 \int_0^4 (ax^{1/2} + bx) \, dx = 8 \Rightarrow \frac{2a}{3} \times 8 + \frac{b}{2} \times 16 = 8 \]
\[\Rightarrow \frac{2a}{3} + b = 1. \] (2)
Solving (1) and (2), we get $a = 3, b = -1$.

5. a, c, d.
Eliminating t, we have $\frac{2}{x^3} + \frac{2}{y^3} = a^3 \Rightarrow y = \left(a^{2/3} - x^{2/3}\right)^{3/2}$.

From diagram,
\[A = 2 \int_{-a}^{a} \left(a^{2/3} - x^{2/3}\right)^{3/2} \, dx = 4 \int_{0}^{a} \left(a^{2/3} - x^{2/3}\right)^{3/2} \, dx
A = 4 \int_{0}^{a} y \, dx
= \frac{\pi}{2} \, 4a^2 \int_{0}^{\pi/2} 3 \cos^3 t \sin^2 t \cos t \, dt.
\]
6. a, c,
\[a_1 = 0, b_1 = 32, a_2 = a_1 + \frac{3}{2} b_1 = 48, b_2 = \frac{b_1}{2} = 16
A_3 = 48 \times \frac{3}{2} \times 16 = 72, b_3 = \frac{16}{2} = 8
\]

So the three loops from $i = 1$ to $i = 3$ are alike.
Now area of i^{th} loop (square) = $\frac{1}{2}$ (diagonal)2
\[A_i = \frac{1}{2} (2b_i)^2 = 2(b_i)^2 \]

So, \[\frac{A_{i+1}}{A_i} = \frac{2(b_{i+1})^2}{2(b_i)^2} = \frac{1}{4} \]
So the areas form a G.P. series
So, the sum of the G.P. up to infinite terms
\[= A_1 \left(1 - \frac{1}{1 - r}\right) = 2(32)^2 \times \frac{1}{1 - \frac{1}{4}} \]
\[= 2 \times (32)^2 \times \frac{4}{3} \]
\[= \frac{8}{3} (32)^2 \text{ square units.} \]

Reasoning Type

1. a. Since $y = e^x$ and $y = \log_e x$ are inverse to each other.

2. a. Statement 2 is correct as $y = f(x)$ is odd and hence statement 1 is correct.
3. b. Area $= \int_{1}^{3} (x^2 - 4x + 3) \, dx = \left[\frac{x^3}{3} - \frac{4x^2}{2} + 3x \right]_{1}^{3}$

$= \frac{4}{3}$ sq. units.

:. Statement 1 is true.

Obviously, statement 2 is true, but does not explain statement 1.

4. a. Given curves are $y^2 - 2y + 4x + 5 = 0$ and $x^2 + 2x - y + 2 = 0$ or $(y - 1)^2 = -4(x + 1)$ and $(x + 1)^2 = y - 1$.

Shifting origin to $(-1, 1)$, equation of given curves changes to $y^2 = -4X$ and $X^2 = Y$.

Hence, statement 1 is true and statement 2 is correct explanation of statement 1.

5. a.

Fig. 9.73

$y = e^{2x}$ and $2y = \log_{e} x$ are inverse of each other.
The shaded area is given as k sq. units.

\Rightarrow The required area is $2k$ sq. units.

6. d. R_1 : points (x, y) is nearer to $(1, 0)$ than to $x = -1$

$\Rightarrow \sqrt{(x-1)^2 + y^2} < |x + 1|

$\Rightarrow y^2 < 4x$

\Rightarrow Point P lies inside parabola $y^2 = 4x$.

R_2 : Point $P(x, y)$ is nearer to $(0, 0)$ than to $(8, 0)$

$\Rightarrow |x| < |x - 8|

$\Rightarrow x^2 < x^2 - 16x + 64$

$\Rightarrow x < 4$

\Rightarrow Point P is towards left side of line $x = 4$.

The area of common region of R_1 and R_2 is the area bounded by $x = 4$ and $y^2 = 4x$.

7. b. $2 \geq \max\{|x - y|, |x + y|\}$

$\Rightarrow |x - y| \leq 2$ and $|x + y| \leq 2$, which forms a square of diagonal length 4 units.

\Rightarrow The area of the region is $\frac{1}{2} \times 4 \times 4 = 8$ sq. units.

This is equal to the area of the square of side length $2\sqrt{2}$.

Linked Comprehension

Type

For Problems 1–2

1b, 2c

Sol.

Solving the two equations,

$m^2 x^2 = (e^{-k}) x$

$x_1 = 0, x = \frac{e^{-k} r}{m}$.
\[
\begin{align*}
\text{Fig. 9.76} & \\
& \\
\text{So, } A_t &= \int_{0}^{t} \left(e^{-\frac{k}{2}x} - mx \right) dx \\
&= \frac{2}{3} e^{-kr/2} \left(\frac{3}{2}x - m x^2 / 2 \right) \\
&= \frac{2}{3} e^{-kr/2} \left(e^{-3kr/2} - m e^{-2kr} / 2 \right) \\
&= \frac{2}{3} \frac{e^{-kr/2}}{m^{3/2}} \frac{e^{-3kr/2}}{2} m^{2/2} e^{-2kr} \\
&= \frac{e^{-2kr}}{6m^3}.
\end{align*}
\]

Now, \(A_{r+1} / A_r = e^{-2kr} / e^{-2kr} = e^{-2k} = \text{constant} \).

So, the sequence \(A_1, A_2, A_3, \ldots \) is in G.P.

Sum of \(n \) terms = \(\frac{e^{-2k} - e^{-2nk}}{6m^3} \frac{1 - e^{-2k}}{1 - e^{-2k}} \)

Sum to infinite terms = \(\frac{1}{1 - e^{-2k}} \) = \(\frac{e^{-2k}}{6m^3} \frac{e^{2k}}{e^{2k} - 1} \frac{1}{6m^3(e^{2k} - 1)} \).

For Problems 3–5

3. a. \(f(x) = x^3 - x^2 + a \)

\(f'(x) = x^2 - 2x = x(x-2) < 0 \) (note that \(f(x) \) is monotonic in \((0, 2)\))

Hence for the minimum and \(f(x) \) must cross the x-axis at

\(\frac{0 + 2}{2} = 1. \)

Hence, \(f(1) = \frac{2}{3} - 1 + a = 0 \)

\(\Rightarrow a = \frac{2}{3}. \)

4. c. \(f(x) = x^3 + 3x^2 + x + a \)

\(f'(x) = 3x^2 + 6x + 1 = 0 \)

\(\Rightarrow x = -1 \pm \frac{\sqrt{6}}{3}. \)

Hence, \(f(x) \) cuts the x-axis at

\(\frac{1}{2} \left[\left(-1 + \frac{\sqrt{6}}{3}\right) + \left(-1 - \frac{\sqrt{6}}{3}\right) \right] = -1. \)

5. a. \(f(x) = \sin x + \cos x \)

\(\Rightarrow \frac{df}{dx} = \cos x - \sin x \)

If \(\frac{df}{dx} = 0 \), then \(\cos x = \sin x \Rightarrow x = \frac{\pi}{4} \) and \(x = \frac{5\pi}{4} \)

(considering any two of consecutive points of extremum).

For minimum area bounded by \(y = f(x) \) and \(y = a \), between \(x = \frac{\pi}{4} \) and \(x = \frac{5\pi}{4} \), graphs of \(g(x) \) must cut \(y = a \) at \(c \)

\(\frac{\pi}{4} + \frac{5\pi}{4} = \frac{3\pi}{2} \)

\(\Rightarrow a = \sin \left(\frac{3\pi}{4} \right) + \cos \left(\frac{3\pi}{4} \right) = 0. \)

For Problems 6–8

6. a. 7. c, 8. b

Sol. Since \(-1 \leq \sin x \leq 1\), the curve \(y = e^{-x} \) \(\sin x \) is bounded by the curves \(y = e^{-x} \) and \(y = e^x \).

Also, the curve \(y = e^{-x} \) \(\sin x \) intersects the positive semi-axis \(OX \) at the points where \(\sin x = 0 \), where \(x_n = n\pi, n \in Z \).

Also \(|y| = |y\text{ coordinate in the half-wave}| S_n \)

\(= (-1)^n e^{-x} \sin x \), and

in \(S_n, n\pi \leq x \leq (n+1)\pi \)

\(\therefore S_n = (-1)^n \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \, dx \)

\(= \frac{(-1)^{n+1}}{2} \left[e^{-x} (-\sin x + \cos x) \right]_{n\pi}^{(n+1)\pi} \)

\(= \frac{(-1)^{n+1}}{2} \left[e^{-(n+1)\pi} (-1)^{n+1} - e^{-n\pi} (-1)^n \right] \)
9.32 Calculus

\[= \frac{e^{-\pi x}}{2}(1 + e^x) \]

\[\Rightarrow \frac{S_{n+1}}{S_n} = e^{-\pi} \quad \text{and} \quad S_0 = \frac{1}{2}(1 + e^x). \]

\[\therefore \text{the sequence } S_0, S_1, S_2, \ldots \text{ forms an infinite G.P. with common ratio } e^{-\pi}. \]

\[\sum_{n=0}^{\infty} \frac{1}{2}(1 + e^x) \]

For Problems 9–11

9.b, 10. a, 11. c

Sol.

9.b. Given

\[(x-y)(x+y)-(x+y)(x-y) = 4xy(x^2-y^2)\]

\[= (x^2-y^2)[(x+y)^2-(x-y)^2] \]

\[= (x-y)(x+y)^3-(x+y)(x-y)^3 \]

\[\Rightarrow f(x+y) = (x+y)^3 \Rightarrow f(x) = x^3, f(y) = y^3 \]

Now equations of given curves are

\[y^2 + x = 0 \quad \text{(1)}\]

\[x^2 + y^2 = 12 \quad \text{(2)}\]

Fig. 9.78

Solving equations (1) and (2), we get \(x = -3, y = \pm \sqrt{3}\)

The area bounded by curves

\[A = 2 \left[\int_{-3}^{3} \sqrt{12-x^2} \, dx + \int_{-3}^{0} \sqrt{-x} \, dx \right] \]

\[I_1 = 2 \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{12-x^2} \, dx = 2 \int_{-\pi/3}^{\pi/3} 12 \cos^2 \theta \, d\theta \]

\[= 12 \left[\int_{-\pi/2}^{\pi/2} (1 + \cos 2\theta) \, d\theta \right] \]

\[= 12 \left[\frac{\pi}{2} + \frac{\sqrt{3}}{2} \right] = 12 \left[\frac{\pi}{2} + 2 \sqrt{3} \right] \]

10. a. The required area is \(\text{area of circle} - \text{area of square} = 12\pi - 24 \text{ sq. units}.\)

11. c. The required area

\[= \int_{-1}^{2} (-y^2 - (-y-2)) \, dy \]

\[= \left[\frac{y^4}{2} + 2y - \frac{y^3}{3} \right]_{-1}^{1} \]

\[= \left[\frac{4}{2} + 4 - \frac{8}{3} \right] \left(\frac{1}{2} - 2 + \frac{1}{3} \right) \]

\[= 9/2 \text{ sq. units}. \]
For Problems 12–13

12. c., 13. b.
Sol.
12. c.

\[
y = 1 + \cos x \pm \sqrt{2 - x^2}
\]
\[
A = \int_{-1}^{0} \left[(1 + \cos x) - \left(1 + \cos \left(\frac{x}{2}\right)\right) \right] dx
\]
\[
= 2 \int_{-1}^{0} \sqrt{2 - x^2} dx
\]
\[
= \left[\frac{1}{2} x \sqrt{2 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{\sqrt{2}} \right]_{-1}^{0}
\]
\[
= \left[1 + 2 \left(0 - \left(-\frac{\pi}{4} \right) \right) \right]
\]
\[
= \frac{\pi}{2} + 1 \text{ sq. units.}
\]

For \(0 \leq x < 1, y = \sin^{-1} x \pm \sqrt{1 - x^2}\)
\[
A = 2 \int_{0}^{1} \sqrt{1 - x^2} dx
\]
\[
= \left[\frac{x}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{1} \right]_{0}^{1}
\]
\[
= 0 + \sin^{-1} (1) = \frac{\pi}{2} \text{ sq. units.}
\]

Total area = \(\frac{\pi}{2} + 1\) + \(\frac{\pi}{2}\) = \(\pi + 1\).

15. d. Ratio = \(\frac{\pi + 1}{\frac{\pi}{2}} = \frac{\pi + 2}{\pi}\).

16. a. \(A = 2 \int_{0}^{\sqrt{2}} \sqrt{1 - x^2} dx\)
\[
= \left[\frac{x}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1} \frac{1}{x} \right]_{0}^{1}
\]
\[
= \frac{\sqrt{3}}{4} + \frac{\pi}{6} \text{ sq. unit.}
\]

For Problems 17–19

17. b., 18. a., 19. c.
Sol.

17. b. \(S = \int_{0}^{2\pi} a(1 - \cos t) \alpha(1 - \cos t) dt\)
\[
= a^2 \int_{0}^{2\pi} (1 - 2 \cos t + \cos^2 t) dt
\]
\[
= a^2 \int_{0}^{2\pi} \left(1 - 2 \cos t + \left(1 + \cos 2t\right)/2\right) dt
\]
\[
= \frac{a^2}{2} \int_{0}^{2\pi} (3 - 4 \cos t + \cos 2t) dt
\]

18. a. \(A = 2 \int_{0}^{\pi/6} \left(1 + \cos \left(\frac{x}{3}\right) \right) dx\)
\[
= \left[\sin x \sin \left(\frac{x}{3}\right) \right]_{0}^{\pi/6} + \left[\sin x \sin \left(\frac{x}{3}\right) - \sin x \int_{\pi/6}^{\pi/3} \right]
\]
\[
= \left[\frac{1}{2} \sin \frac{\pi}{3} - \frac{\sqrt{3}}{2} \right] + \left[\frac{\sqrt{3}}{2} - \frac{1}{2} \left(\frac{1}{2} \right) \right]
\]
\[
= 2 \text{ sq. units.}
\]

For Problems 14–16

Sol.

14. a. For \(-1 \leq x < 0\)
\[
(y - e^{\sin^{-1} x})^2 = 2 - x^2
\]
18. a. \[
\int_0^6 \left(\frac{3}{2} t^2 - \frac{1}{2} t^3 + \frac{1}{24} t^4 \right) dt
\]
\[
= \left. \frac{3}{2} \cdot \frac{t^3}{3} - \frac{1}{2} \cdot \frac{t^4}{4} + \frac{1}{24} \cdot \frac{t^5}{5} \right|_0^6
\]
\[
= \frac{3}{2} \cdot \frac{6^3}{3} - \frac{1}{2} \cdot \frac{6^4}{4} + \frac{1}{24} \cdot \frac{6^5}{5}
\]
\[
= \frac{3}{2} \cdot \frac{216}{3} - \frac{1}{2} \cdot \frac{1296}{4} + \frac{1}{24} \cdot \frac{7776}{5}
\]
\[
= 6^3 \left(\frac{1}{2} - \frac{1}{8} \right) + \frac{1}{24} \cdot \frac{7776}{5}
\]
\[
= \frac{54}{5}
\]
\[
\frac{1}{2} \int_0^6 (xy' - yx') dx = \frac{1}{2} \times \frac{54}{5} = \frac{27}{5}
\]

\[
\therefore \frac{1}{2} \int_0^6 (xy' - yx') dx = \frac{27}{5}
\]

19. c. \[
\frac{dx}{dt} = 1 - 3r^2 \] and \[
\frac{dy}{dt} = 1 - 4t^3
\]

So, \[
x \frac{dy}{dt} - y \frac{dx}{dt}
\]
\[
= (t - t^3)(1 - 4t^3) - (1 - t^4)(1 - 3t^2)
\]
\[
= t^6 - 3t^4 - t^3 + 3t^2 + t - 1
\]

\[
\therefore \text{required area} = \frac{1}{2} \int_{-1}^1 (t^6 - 3t^4 - t^3 + 3t^2 + t - 1) dt
\]
\[
= \frac{16}{35}
\]

Matrix-Match Type

1. a. \(r\); b. \(p\); c. \(s\); d. \(q\)

Sol.

a.

\[
\text{Required area} = 2 \int_0^1 x |x| dx
\]
\[
= 2 \left(\frac{x^3}{3} \right)_0^1 = \frac{2}{3}
\]
2. a. \(\rightarrow q \); b. \(\rightarrow p \); c. \(\rightarrow s \); d. \(\rightarrow r \)

Sol.

a. Area \(= 2 \left(\frac{1}{2}1.1 \right) = 1 \) sq. units.

b. \(y^2 = x^3 \) and \(|y| = 2x \), both the curve are symmetric about \(y \)-axis

The curve is symmetrical about \(x \)-axis

\[
\sqrt{|y|} = 1 - \sqrt{x} \quad \text{and} \quad \sqrt{x} = 1 - \sqrt{|y|}
\]

\(\Rightarrow \) for \(x > 0, y > 0 \)

\[
\frac{1}{2\sqrt{y}} \frac{dy}{dx} = \frac{1}{2\sqrt{x}}
\]

\[
\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}
\]

\(\frac{dy}{dx} < 0 \), function is decreasing, the required area

\[
= 2 \int_0^1 \left((1-x) - (1-2\sqrt{x} + x) \right) dx
\]

\[
= 4 \int_0^{\sqrt{x}} (\sqrt{x} - x) dx
\]

\[
= 4 \left[\frac{x^{3/2}}{3/2} - \frac{x^2}{2} \right]_0
\]

\[
= 4 \left[\frac{2}{3} \right]
\]

\(= \frac{2}{3} \) sq. units.

d. If \(-8 < x < 8 \), then \(y = 2 \).

If \(x \in (-8\sqrt{2}, -8] \cup [8, 8\sqrt{2}) \), then \(y = 3 \), and so on.

Intersection of \(y = x - 1 \) and \(y = 2 \). We get \(x = 3 \in (-8, 8) \).

Intersection of \(y = x - 1 \) and \(y = 3 \),

we get \(x = 4 \in (-8\sqrt{2}, -8] \cup [8, 8\sqrt{2}) \).

Similarly, \(y = x - 1 \) will not intersect \(y = \left[\frac{x^2}{64} + 2 \right] \) at any other integral, except in the interval \(x \in (-8, 8) \).

The required area (shaded region) \(= 2 \times 3 - \frac{1}{2} \times 2 \times 2 \)

\(= 4 \) sq. units.
3. a. \(\rightarrow q \); b. \(\rightarrow s \); c. \(\rightarrow p \); d. \(\rightarrow p \)

Sol.

a. \([x]^2 = [y]^2 \), where \(1 \leq x \leq 4 \)
\[\Rightarrow [x] = \pm [y] \]

\[\text{Fig. 9.90} \]

b. \([x] + [y] = 2 \)

The graph is symmetrical about both \(x \)-axis and \(y \)-axis.

For \(x, y > 0 \), \([x] + [y] = 2 \).
\[\Rightarrow [x] = 0 \text{ and } [y] = 2, \quad [x] = 1 \text{ and } [y] = 1 \text{ or } [x] = 2 \text{ and } [y] = 0. \]

\[\text{Fig. 9.91} \]

d. \(\frac{[x]}{[y]} = 2 \), where \(-5 \leq x \leq 5 \).

The graph is symmetrical about both the axes.

For \(x, y > 0 \), \([x] = 2[y], \quad [y] \neq 0 \).
\[\Rightarrow [x] = 2 \text{ and } [y] = 1 \text{ or } [x] = 4 \text{ and } [y] = 2. \]

\[\text{Fig. 9.92} \]

\[\text{Fig. 9.93} \]

Integer Type

1. (9) Required area
\[A = \int_0^3 x \sqrt{9 - x^2} \, dx; \quad \text{Put } 9 - x^2 = t^2 \Rightarrow -2x \, dx = 2t \, dt \]
\[\therefore A = \int_0^3 t^2 dt = 9 \]

2. (4) We have \[S = \int_0^\pi \sin x \, dx = 2, \quad \text{so } T = \frac{2}{3}, \quad \text{where } a > 0 \]

\[\text{Fig. 9.94} \]
Now \[T = \int_0^{\tan^{-1}a} \sin x \, dx + \int_{\tan^{-1}a}^{\pi/2} a \cos x \, dx = \frac{2}{3} \]

\[\text{Fig. 9.94} \]

\[y = a \cos x \]
\[y = \sin x \]
\[x = \tan^{-1}a \]
\[\frac{\pi}{2} \]

i.e. \(-\cos(\tan^{-1} a) + 1 + a(1 - \sin(\tan^{-1} a))] = \frac{2}{3},\]

i.e. \(-\frac{1}{\sqrt{1+a^2}} + 1 + a - \frac{a^2}{\sqrt{1+a^2}} = \frac{2}{3} \]

\[\Rightarrow (a+1) - \sqrt{a^2 + 1} = \frac{2}{3} \Rightarrow a + \frac{1}{3} = \sqrt{a^2 + 1} \Rightarrow a = \frac{4}{3} \]

Hence \(3a = 4\)

\[\text{3.(8)} \]

\[\text{Fig. 9.95} \]

Let \(P(x, y)\) be any point on the curve \(C\).

Now, \(\frac{dy}{dx} = \frac{1}{y}\)

\[\Rightarrow y \, dy = dx \Rightarrow \frac{y^2}{2} = x + k \]

Since the curve passes through \(M(2,2)\), so \(k = 0\)

\[\Rightarrow y^2 = 2x \]

Hence required area = \(2 \int_0^2 \sqrt{2x} \, dx\)

\[= 2\sqrt{2} \times \frac{2}{3} \left(\frac{3}{2}\right)^2 \]

\[= \frac{4}{3} \sqrt{2} \times 2\sqrt{2} \]

\[= \frac{16}{3} \text{ (square unit)} \]

\[\text{Fig. 9.96} \]

\[A = \int_0^1 (x^{4/3} - x^{1/3}) \, dx = \frac{3}{7} x^{7/3} - \frac{3}{4} x^{4/3} \bigg|_0^1 \]

\[= \frac{3}{7} - \frac{3}{4} = \frac{4}{28} - \frac{9}{28} \]

\[\Rightarrow 28A = 9 \]

\[\text{6.(2)} \]

Let the point of the curve is \((x, x^2 + 1)\).

Now, the slope of tangent at this point is \(2x\), which is equal to the slope of the line joining \((x, x^2 + 1)\) and \((0,0)\).

Hence \(2x = (x^2 + 1)x \Rightarrow 2x^2 = x^3 + 1 \)

\[\Rightarrow x^2 = 1 \Rightarrow x = \pm 1 \]

\[\text{Fig. 9.97} \]

Hence equation of tangent is \(y = \pm 2x\)

Now area \(2 \int_0^1 (x^2 + 1 - 2x) \, dx\)

\[= 2 \int_0^1 (x - 1)^2 \, dx \]

\[= 2 \left[\frac{(x-1)^3}{3} \right]_0^1 = \frac{2}{3} \]
7. (8) Required area = area of one quadrant of the circle = \(\pi/2 \)

Fig. 9.98

8. (1) \(f(a) = \int_a^{2a} \left(\frac{x}{6} + \frac{1}{x^2} \right) dx = \left(\frac{x^2}{12} - \frac{1}{x} \right)_a^{2a} \)

\[= \left(\frac{4a^2}{12} - \frac{1}{2a} - \frac{a^2}{12} + \frac{1}{a} \right) = \frac{a^2}{4} + \frac{1}{2a} \]

Let \(f'(a) = \frac{2a}{4} - \frac{1}{2a^2} = 0 \)
\[\Rightarrow a = 1 \text{ which is point of minima.} \]

9. (3) \[[2x] = 0 \Rightarrow 2x \in [0, 1) \Rightarrow x \in [0, 1/2) \Rightarrow [y] = 5 \Rightarrow y \in [5, 6) \]
Similarly we can consider \[[2x] = 1, 2, 3, 4 \]

Fig. 9.99

From the graph, area is 3 sq. units

10. (8) Required area = \(2 \int_0^1 (x(x-3)^2 - x) \) \(dx \) = 8 sq. units

Fig. 9.100

11. (6) Draw the given region point of intersection of \(y = x^2 + 1 \)
\[y = x + 1 \]
\[x + 1 = x^2 + 1 \]
\[x = 0, 1 \]

Fig. 9.101

Required area \(OABCDE = \int_0^1 (x^2 + 1) dx + \int_1^2 (x+1) dx \)

\[= \left(\frac{x^3}{3} + x \right)_0^1 + \left(\frac{x^2}{2} + x \right)_1^2 = \frac{23}{6} \text{ sq. units} \]

12. (6)

Area \(OABC = \int_0^{\pi/2} \sin 2x \ dx = 1 \)

Area \(OAD = \int_0^{\pi/6} \sin 2x \ dx = \frac{1}{4} \)

\[\because \sin 2x \text{ is symmetric about origin} \]

so \(c = -\frac{\pi}{6} \), because area \(OAD = \text{area } OEF \)

\[\int_{\pi/6}^{\pi} \sin 2x \ dx = \frac{1}{2} \]

\[\cos 2c = -\frac{1}{2} \cos 2c = \frac{3}{2} \text{ (not possible)} \]

\[c = \frac{\pi}{3} \]

so \(c = -\frac{\pi}{6}, \frac{\pi}{3} \)
\[y = \sqrt{1-x^2} \]
\[y = x^3 - x \]
\[y = 0 \text{ in (2)} \quad x = 0, 1, -1 \]

\[y = \frac{x^2 + 2ax + 3a^2}{1 + a^4} \]

Point of intersection of (1) and (2)
\[\frac{a^2 - ax}{1+a^4} = \frac{x^2 + 2ax + 3a^2}{1+a^4} \]
\[(x + a)(x + 2a) = 0 \]
\[x = -a, -2a \]

Req. area
\[\int_{-a}^{a} \left[\left(\frac{a^2 - ax}{1+a^4} \right) - \left(\frac{x^2 + 2ax + 3a^2}{1+a^4} \right) \right] dx \]

\[\therefore f(a) = \frac{a^3}{6(1+a^4)} \]

f(a) is max is
then \[f'(a) = 0 \]
\[3 + 3a^4 - 4a^4 = 0 \]
\[a^4 = 3 \]

16 (2)

\[\int_{1}^{c} ydx = \frac{16}{3} \]

\[\Rightarrow \int_{0}^{c} (8x^3 - x^5) dx = \frac{16}{3} \]

\[c = (8 - \sqrt{17})^{1/3} \quad (c > 0) \]

Area \[OFE = \int_{0}^{c} (8x^2 - x^5) dx = \frac{8}{3} \quad (c > 0) \]

so \[c = -1 \]

Hence \[c = -1 \] and \((8 - \sqrt{17})^{1/3} \)
Subjective

1. Given curves $x^2 = 4y$ and $x = 4y - 2$ intersect, when

$$x^2 = x + 2$$
$$\Rightarrow x^2 - x - 2 = 0$$
$$\Rightarrow x = 2, -1$$
$$\Rightarrow y = 1, 1/4$$

⇒ Points of intersection are $A(-1, 1/4), B(2, 1)$

![Fig. 9.106]

Required area
= shaded region in the figure

$$= \int_{-1}^{2} \left(x + 2 - \frac{x^2}{4} \right) dx$$

$$= \frac{1}{4} \left[\frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{-1}^{2}$$

$$= \frac{1}{4} \left[\left(2 + 4 - \frac{8}{3} \right) - \left(\frac{1}{2} - 2 + \frac{1}{3} \right) \right]$$

$$= \frac{1}{4} \left[\frac{10}{3} - \frac{-7}{6} \right]$$

$$= \frac{1}{4} \left[\frac{27}{6} \right] = \frac{9}{8} \text{ sq. units.}$$

2. Given $y = 1 + \frac{8}{x^2}$

Here y is always positive, hence curve is lying above the x-axis.

⇒ Req. area = $\int_{2}^{4} y \, dx = \int_{2}^{4} \left(1 + \frac{8}{x^2} \right) dx$

$$= \left[x - \frac{8}{x} \right]_{2}^{4} = 4.$$

If $x = a$ bisects the area, then we have

$$\int_{2}^{a} \left(1 + \frac{8}{x^2} \right) dx = \left[x - \frac{8}{x} \right]_{2}^{a} = \left[a - \frac{8}{a} - 2 + 4 \right] = \frac{4}{2}.$$

⇒ $a - \frac{8}{a} = 0$

⇒ $a^2 = 8$

⇒ $a = \pm 2\sqrt{2}$

Since $a > 2$, $a = 2\sqrt{2}$.

Graph of these curves is as shown in the figure with point of intersection of
\[y = \sqrt{5 - x^2} \text{ and } y = -x + 1 \text{ as } A(-1, 2) \]
and of \[y = \sqrt{5 - x^2} \text{ and } y = x - 1 \text{ as } C(2, 1) \]
Thus the required area
\[= \text{Shaded area} \]
\[= \int_{-1}^{1} (\sqrt{5 - x^2}) \, dx - \int_{-1}^{1} |x - 1| \, dx \]
\[= \left[\frac{x}{2} \sqrt{5 - x^2} + \frac{5}{2} \sin^{-1} \left(\frac{x}{\sqrt{5}} \right) \right]_{-1}^{1} - \int_{-1}^{1} (x - 1) \, dx \]
\[= \frac{2}{2} \sqrt{5 - 4} + \frac{5}{2} \sin^{-1} \left(\frac{1}{2} \right) - \frac{1}{2} \sqrt{5 - 1} \]
\[+ \frac{5}{2} \sin^{-1} \left(-\frac{1}{2} \right) - \frac{x^2}{2} + x \bigg|_{-1}^{1} - \left(\frac{x^2}{2} - x \right) \]
\[= 1 + \frac{5}{2} \sin^{-1} \frac{1}{2} - 1 + \frac{5}{2} \sin^{-1} \left(\frac{1}{\sqrt{5}} \right) \]
\[- \left[\left(-\frac{1}{2} - 1 \right) - \left(-\frac{1}{2} - 1 \right) \right] - \left[\left(2 - 2 \right) - \frac{1}{2} \right] \]
\[= 2 + \frac{5}{2} \sin^{-1} \frac{2}{\sqrt{5}} + \sin^{-1} \left(\frac{1}{\sqrt{5}} \right) - 2 - \frac{1}{2} \]
\[= \frac{5}{2} \left[\sin^{-1} \frac{2}{\sqrt{5}} + \cos^{-1} \frac{2}{\sqrt{5}} \right] - 1 = \frac{5\pi}{2} - \frac{1}{2} \]
\[= \frac{5\pi - 2}{4} \text{ sq. units.} \]

6. The given curves are
\[x^2 + y^2 = 4 \text{ (circle)} \]
\[x^2 = -\sqrt{2}y \text{ (parabola, concave downward)} \]
\[x = y \text{ (straight line through origin)} \]
Solving equations (1) and (2), we get
\[y^2 - \sqrt{2}y - 4 = 0 \]
\[\Rightarrow y = \frac{4\sqrt{2}}{2} \text{ or } \frac{-2\sqrt{2}}{2} \]
\[\Rightarrow y = 2\sqrt{2} \text{ or } -\sqrt{2} \]
\[\Rightarrow x^2 = 2 \text{ (rejecting } y = 2\sqrt{2} \text{ as } x^2 \text{ is positive)} \]
\[\Rightarrow x = \pm \sqrt{2} \text{.} \]

\[\therefore \text{ Points of intersection of (1) and (2) are } B \left(\sqrt{2}, -\sqrt{2} \right), \]
\[A \left(-\sqrt{2}, -\sqrt{2} \right) . \]
Solving (1) and (3), we get
\[2x^2 = 4 \Rightarrow x^2 = 2 \Rightarrow x = \pm \sqrt{2} \Rightarrow y = \pm \sqrt{2} \text{.} \]
\[\therefore \text{ Points of intersection are } (-\sqrt{2}, -\sqrt{2}), (\sqrt{2}, \sqrt{2}). \]
Thus, all the three curves pass through the same point \(A(-\sqrt{2}, -\sqrt{2}) \).

Fig. 9.110

Now the required area = the shaded area

\[
= \int_{-\sqrt{2}}^{0} \left(x - \left(-\sqrt{4 - x^2} \right) \right) \, dx + \int_{0}^{\sqrt{2}} \left(\frac{x^2}{\sqrt{2}} - \left(-\sqrt{4 - x^2} \right) \right) \, dx
\]

\[
= 2 \int_{0}^{\sqrt{2}} \sqrt{4 - x^2} \, dx + \int_{-\sqrt{2}}^{0} x \, dx - \int_{0}^{\sqrt{2}} \frac{x^2}{\sqrt{2}} \, dx
\]

\[
= 2 \left(\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right)_{0}^{\sqrt{2}} - \left[\frac{x^3}{3\sqrt{2}} \right]_{0}^{\sqrt{2}}
\]

\[
= 2 \left(\frac{\sqrt{2}}{2} \sqrt{4 - 2} + 2 \sin^{-1} \frac{\sqrt{2}}{2} \right) - \left[\frac{2 \sqrt{2}}{3\sqrt{2}} \right]
\]

\[
= 2 \left[1 + \frac{\pi}{4} \right] - 1 = \pi + \frac{1}{3} \text{ sq. units.}
\]

7. Given curves are

\[x^2 + y^2 = 25 \] \hspace{1cm} (1)

\[4y = |4 - x^2| \] \hspace{1cm} (2)

\[x = 0 \] \hspace{1cm} (3)

and above x-axis

Solving (1) and (2), we get

\[4y + 4 + y^2 = 25 \]

\[\Rightarrow (y + 2)^2 = 5 \]

\[\Rightarrow y = 3, -7 \]

\[y = -7 \] is rejected, \(y = 3 \) gives the points above x-axis.

Hence, the points of intersection are \(P(4, 3) \) and \(Q(-4, 3) \).

The required area is

\[
= 2 \int_{0}^{\pi/4} \sqrt{25 - x^2} \, dx + \frac{1}{4} \int_{0}^{\pi/4} (4 - x^2) \, dx - \frac{1}{4} \int_{0}^{\pi/4} (x^2 - 4) \, dx
\]

\[
= 2 \left[\left(\frac{x}{2} \sqrt{25 - x^2} + \frac{25}{2} \sin^{-1} \frac{x}{5} \right)_{0}^{\pi/4} - \frac{1}{4} \left(4x - \frac{x^3}{3} \right)_{0}^{\pi/4} \right]
\]

\[
- \frac{1}{4} \left(\frac{x^3}{3} - 4x \right)_{\pi/4}^{\pi/4}
\]

\[
= 2 \left[6 + \frac{25}{2} \sin^{-1} \frac{4}{5} \right] - \frac{1}{4} \left[8 - \frac{8}{3} \right]
\]

\[
- \frac{1}{4} \left[\left(\frac{64}{3} - 16 \right) - \left(\frac{8}{3} - \frac{8}{8} \right) \right]
\]

\[
= 4 + 25 \sin^{-1} \frac{4}{5} \text{ sq. units.}
\]

8. The given curve is \(y = \tan x \)

When \(x = \pi/4, y = 1 \)

i.e., co-ordinates of \(P \) are \((\pi/4, 1)\)

\[\therefore \text{equation of tangent at} \ P \ y = 1 = \left(\sec^2 \frac{\pi}{4} \right)(x - \pi/4) \]

or \(y = 2x + 1 - \pi/2 \)

The graphs of (1) and (2) are as shown in Fig. 9.112.

Fig. 9.111

Fig. 9.112

Tangent (2) meets x-axis at \(L \left(\frac{\pi}{4} - \frac{2}{4}, 0 \right) \)

Now the required area = the shaded area

\[= \text{Area} \, OPMO - \text{Area} \, \Delta PLM \]

\[= \int_{0}^{\pi/4} \tan x \, dx - \frac{1}{2} \left(OM - OL \right) PM \]

\[= \left[\log \sec x \right]_{0}^{\pi/4} - \frac{1}{2} \left(\frac{\pi}{4} - \frac{\pi}{4} - \frac{2}{4} \right) \]

\[= \frac{1}{2} \left[\log 2 - \frac{1}{2} \right] \text{ sq. units.} \]

9. The given curves are

\[y = ex \log_e x \]

(1)
\[y = \frac{\log x}{e^x} \]

The two curves intersect where \(e^x \log x = \frac{\log x}{e^x} \)

\[\Rightarrow \left(e^x - \frac{1}{x} \right) \log x = 0 \]

\[\Rightarrow x = \frac{1}{e} \text{ or } x = 1 \]

At \(x = 1/e, y = -1 \) (from (1))
At \(x = 1, y = 0 \) (from (1))

So points of intersection are \(\left(\frac{1}{e}, -1 \right) \) and (1, 0).

Curve Tracing

<table>
<thead>
<tr>
<th>Curve 1</th>
<th>Curve 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>For (0 < x < 1, y < 0)</td>
<td>For (0 < x < 1, y < 0)</td>
</tr>
<tr>
<td>For (x = 1, y = 0)</td>
<td>For (x > 1, y > 0)</td>
</tr>
<tr>
<td>When (x \to 0, y \to -\infty)</td>
<td>When (x \to 0, y \to -\infty)</td>
</tr>
<tr>
<td>When (x \to \infty, y \to 0)</td>
<td>When (x \to \infty, y \to 0)</td>
</tr>
<tr>
<td>(\frac{dy}{dx} = e(\log x + 1))</td>
<td>(\frac{dy}{dx} = (1+\log x))</td>
</tr>
<tr>
<td>(x = \frac{1}{e}) is a point of min.</td>
<td>(x = e) is a point of max.</td>
</tr>
</tbody>
</table>

From the above information, the rough sketch of two curves is as shown in Fig. 9.113 and shaded area is the required area.

\[y = \frac{\text{ex log } x}{e^x} \]

\[y = 2^x \]

\[C(2, 4) \]

\[D \left(\frac{1}{2}, \sqrt{2} \right) \]

\[B(2, \log 2) \]

\[A \left(\frac{1}{2}, -\log 2 \right) \]

\[\text{Required area} = ABCDA \]

\[= \int_{1/e}^{1} \left(x^2 - \log x \right) dx \]

\[= \left[\frac{2^x}{\log 2} - \left(x \log x - x \right) \right]_{1/e}^{1} \]

\[= \left(\frac{4}{\log 2} - 2 \log 2 + 2 \right) - \left(\frac{\sqrt{2}}{\log 2} - \frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \right) \]

\[= \left(\frac{4 - \sqrt{2}}{\log 2} - \frac{5}{2} \log 2 + \frac{3}{2} \right) \text{ sq. units.} \]

11. The given curves are \(y = x^2 \)

\[y = \frac{2}{1 + x^2} \]

\[\Rightarrow x^2 + x^2 - 2 = 0 \]

\[\Rightarrow (x^2 - 1)(x^2 + 2) = 0 \]

\[\Rightarrow x = \pm 1 \]
Also, \(y = \frac{2}{1 + x^2} \) is an even function.

Hence, its graph is symmetrical about the y-axis.

At \(x = 0 \), \(y = 2 \), by increasing the values of \(x \), \(y \) decreases and when \(x \to \infty \), \(y \to 0 \).

\(\therefore \) \(y = 0 \) is an asymptote of the given curve.

Thus, the graph of the two curves is as follows.

\[y = x^2 \]
\[y = \frac{2}{1 + x^2}\]

\[\text{Fig. 9.115} \]

\(\therefore \) The required area

\[= 2 \int_0^{1/2} \left(\frac{2}{1 + x^2} - x^2 \right) \, dx \]
\[= \left(4 \tan^{-1} x - \frac{2x^3}{3} \right)_0 \]
\[= \pi - \frac{2}{3} \text{ sq. units.} \]

12. Both the given curves are parabola.
\[y = 4x - x^2 \] (1)
\[y = x^2 - x \] (2)

Solving (1) and (2), we get
\[4x - x^2 = x^2 - x \]
\[\Rightarrow x = 0, x = \frac{5}{2} \]

\(\Rightarrow \) Two curves intersect at \(O(0, 0) \) and \(A(\frac{5}{2}, \frac{15}{4}) \)

\[\text{Fig. 9.116} \]

Here the area below the x-axis

\[A_1 = \int_0^1 (x - x^2) \, dx \]

\[= \left(\frac{x^2}{2} - \frac{x^3}{3} \right)_1^{1/2} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \text{ sq. units} \]

Area above x-axis,

\[A_2 = \int_0^{1/2} (4x - x^2) \, dx - \int_1^{5/2} (x^2 - x) \, dx \]
\[= \left(2x^2 - \frac{x^3}{3} \right)_0^{1/2} - \left(\frac{x^3}{3} - \frac{x^2}{2} \right)_1^{5/2} \]
\[= \left(\frac{25}{2} - \frac{125}{24} \right) - \left(\frac{125}{24} - \frac{25}{8} - \frac{1}{3} \right) \]
\[= \frac{25}{2} - \frac{125}{24} + \frac{25}{8} - \frac{1}{3} \cdot \frac{24}{121} \]
\[= \frac{121}{24} \text{ sq. units.} \]

\(\therefore \) ratio of area above x-axis to area below x-axis

\[A_2 : A_1 = \frac{121}{24} : \frac{1}{6} = \frac{121}{4} = 121 : 4. \]

13. Let us consider any point \((x, y)\) inside the square such that its distance from origin \(\leq \) its distance from any of the edges, say \(AD \).

\(\therefore OP < PM \)

\[\Rightarrow \sqrt{x^2 + y^2} < 1 - x \Rightarrow \quad y^2 \leq -2 \left(x - \frac{1}{2} \right) \] (1)

Above represents all points within the parabola \(P_1 \).

If we consider the edge \(BC \), then \(OP < PN \) will imply

\[y^2 < 2 \left(x + \frac{1}{2} \right) \] (2)

Similarly, if we consider the edges \(AB \) and \(CD \), we will have

\[x^2 < -2 \left(y - \frac{1}{2} \right) \] (3)
\[x^2 < 2 \left(y + \frac{1}{2} \right) \] (4)

Hence, \(S \) consists of the region bounded by four parabolas meeting the axes at \(\pm \frac{1}{2}, 0 \) and \(0, \pm \frac{1}{2} \).

The point \(L \) is intersection of \(P_1 \) and \(P_3 \) given by (1) and (3).
Fig. 9.117(b)

\[y^2 - x^2 = -2(x - y) = 2(y - x) \]
\[\Rightarrow y - x = 0 \]
\[\Rightarrow y = x \]
\[\Rightarrow x^2 + 2x - 1 = 0 \]
\[\Rightarrow (x + 1)^2 = 2 \]
\[\Rightarrow x = \sqrt{2} - 1 \text{ as } x \text{ is } +\text{ve} \]
\[\therefore \text{L is } (\sqrt{2} - 1, \sqrt{2} - 1). \]

The total area = \[4 \left[\text{square of side } (\sqrt{2} - 1) + 2 \int_{\sqrt{2} - 1}^{\sqrt{2}} \sqrt{1 - 2x} \, dx \right] \]

\[= 4 \left[(\sqrt{2} - 1)^2 + 2 \int_{\sqrt{2} - 1}^{\sqrt{2}} \sqrt{1 - 2x} \, dx \right] \]
\[= 4 \left[3 - 2\sqrt{2} - \frac{2}{3} \left(1 - 2x\right)^{3/2} \right]_{\sqrt{2} - 1}^{\sqrt{2}} \]
\[= 4 \left[3 - 2\sqrt{2} - \frac{2}{3} \left(0 - (1 - 2\sqrt{2} + 2)^{3/2} \right) \right] \]
\[= 4 \left[3 - 2\sqrt{2} + \frac{2}{3} (3 - 2\sqrt{2})^{3/2} \right] \]
\[= 4 \left[3 - 2\sqrt{2} \right] \left[\frac{1}{3} + \frac{2}{3} \sqrt{3 - 2\sqrt{2}} \right] \]
\[= 4 \left[3 - 2\sqrt{2} \right] \left[\frac{1}{3} + \frac{2}{3} (\sqrt{2} - 1) \right] \]
\[= \frac{4}{3} (3 - 2\sqrt{2}) (1 + 2\sqrt{2}) = \frac{4}{3} \left[(4\sqrt{2} - 5) \right] \]
\[= \frac{16\sqrt{2} - 20}{3} \text{ sq. units.} \]

14. We have \(A_n = \int_0^{\pi/4} (\tan x)^n \, dx \)

Since \(0 < \tan x < 1 \), when \(0 < x < \pi/4 \), we have \(0 < (\tan x)^{n+1} < (\tan x)^n \) for each \(n \in N \)
\[\Rightarrow \int_0^{\pi/4} (\tan x)^{n+1} \, dx < \int_0^{\pi/4} (\tan x)^n \, dx \]
\[\Rightarrow A_{n+1} < A_n \]

Now, for \(n > 2 \),
\[A_n + A_{n+2} = \int_0^{\pi/4} (\tan x)^n + (\tan x)^{n+2} \, dx \]
\[= \int_0^{\pi/4} (\tan x)^n (1 + \tan^2 x) \, dx \]
\[= \int_0^{\pi/4} (\tan x)^n (\sec^2 x) \, dx \]
\[= \left[\frac{1}{n+1} (\tan x)^{n+1} \right]_0^{\pi/4} \]
\[= \left[\frac{1}{n+1} \right] \left(\frac{\sin x}{\cos x} \right)^{n+1} \]

:. \(\int [f'(x)]^n f''(x) \, dx = \left[\frac{f'(x)}{n+1} \right]^{n+1} \]

\[= \frac{1}{(n+1)} \left(1 - 0 \right) \]

Since \(A_{n+2} < A_{n+1} < A_n \) we get
\[A_n + A_{n+2} < 2A_n \]
\[\Rightarrow \frac{1}{n+1} < 2A_n \Rightarrow \frac{1}{2n+2} < A_n \] \hspace{1cm} (1)

Also for \(n > 2 \), \(A_n + A_{n+2} < A_n + A_{n-2} = \frac{1}{n-1} \)
\[\Rightarrow 2A_n < \frac{1}{n-1} \]
\[\Rightarrow A_n < \frac{1}{2n-2} \] \hspace{1cm} (2)

Combining (1) and (2), we get \(\frac{1}{2n+2} < A_n < \frac{1}{2n-2} \).

15. The given curves are \(y = x - bx^2 \) \hspace{1cm} (1)
and \(y = x^2/b \) \hspace{1cm} (2)
\[\Rightarrow \left(y - \frac{1}{4b} \right) = b \left(x - \frac{1}{2b} \right)^2 \text{ and } x^2 = by \]
Here, clearly the first curve is a downward parabola which meets x-axis at (0, 0) and (1/b, 0), while the second is an upward parabola with vertex at (0, 0).
Solving (1) and (2), we get the intersection points of two curves at (0, 0) and \(\left(\frac{b}{1 + b^2}, \frac{b}{1 + b^2} \right) \).
Hence, the graph of given curves is as below

![Graph of curves](image)

Fig. 9.119

Shaded portion represents the required area
\[
A = \int_0^1 \left(x - bx^2 - \frac{x^3}{b} \right) dx
\]
\[
= \left(\frac{x^2}{2} - \frac{bx^3}{3} - \frac{x^3}{3b} \right) \bigg|_0^b
\]
\[
= \frac{b^2}{2(1 + b)^2} - \frac{b^4}{3(1 + b^3)^3} - \frac{b^2}{3(1 + b^3)^3}
\]
\[
= \frac{b^4 + b^2}{6(1 + b^3)^3} = \frac{b^2}{6(1 + b^2)^2}
\]
\[
= \frac{1}{6 \left(\frac{1}{b} + b \right)^2} \text{ sq. units.}
\]
Now, \(\frac{1}{b} + b \geq 2 \) or \(\leq -2 \) \(\Rightarrow \left(\frac{1}{b} + b \right)^2 \geq 4. \)
Hence, area is max. when \(\left(\frac{1}{b} + b \right)^2 = 4 \), for which \(b = \pm 1 \)
but given that \(b > 0 \)
\(\therefore b = 1. \)

16. \(f(x) = \text{Maximum} \left(x^2, (1-x)^2, 2x(1-x) \right) \)
We draw the graphs of
\(y = x^2 \) \hspace{1cm} (1)
\(y = (1-x)^2 \) \hspace{1cm} (2)
\(y = 2x(1-x) \) \hspace{1cm} (3)
Solving (1) and (3), we get \(x^2 = 2x(1-x) \)
\(\Rightarrow 3x^2 = 2x \Rightarrow x = 0 \text{ or } x = \frac{2}{3} \).
Solving (2) and (3) we get \((1-x)^2 = 2x(1-x) \)
\(\Rightarrow x = 1/3 \text{ and } x = 1. \)

![Graph of f(x)](image)

Fig. 9.121

From Fig. 9.121, it is clear that
\(f(x) = \begin{cases}
(1-x)^2 \text{ for } 0 \leq x \leq 1/3 \\
2x(1-x) \text{ for } 1/3 \leq x \leq 2/3 \\
x^2 \text{ for } 2/3 < x \leq 1
\end{cases} \)
The required area \(A \) is given by
\[
A = \int_0^{1/3}(1-x)^2 \ dx + \int_{1/3}^{2/3} 2x(1-x) \ dx + \int_{2/3}^1 x^2 \ dx
\]
\[
= \int_0^{1/3}(1-x)^2 \ dx + \int_{1/3}^{2/3} 2x(1-x) \ dx + \int_{2/3}^1 x^2 \ dx
\]
\[
= \left[-\frac{1}{3} (1-x)^3 \right]_0^{1/3} + \int_{1/3}^{2/3} x^2 - \frac{2x^3}{3} \ dx + \left[\frac{x^3}{3} \right]_{2/3}^1
\]
\[
= -\frac{1}{3} \left(\frac{2}{3} \right)^3 + \frac{1}{3} \left(\frac{2}{3} \right)^2 - \frac{2}{3} \left(\frac{2}{3} \right)^3 - \left(\frac{1}{3} \right)^2 + \frac{2}{3} \left(\frac{1}{3} \right)^3
\]
\[
+ \frac{1}{3} - \frac{1}{3} \left(\frac{2}{3} \right)^3
\]
\[\frac{17}{27} \text{ sq. units.} \]

8. Let \(P \) be on \(C_1, y = x^2 \) be \((t, t^2)\)
\[\therefore y \text{-coordinate of } Q \text{ is also } t^2 \]
Now, \(Q \) on \(y = 2x, y = t^2 \)
\[x = \frac{t^2}{2} \]
\[\therefore Q \left(\frac{t^2}{2}, t^2 \right) \]
For point \(R, x = t \) and it is on \(y = f(x) \)
\[\therefore R \left(t, f(t) \right) \]
Given that,
\[\text{Area } OPQ = \text{Area } OPR \]
\[\Rightarrow \int_{0}^{2} \left(\sqrt{y} - \frac{y}{2} \right) \, dy = \int_{0}^{1} \left(x^2 - f(x) \right) \, dx \]
Diff. both sides w.r.t. \(t \), we get
\[\left(\sqrt{t^2} - \frac{t^2}{2} \right)(2t) = t^2 - f(t) \]
\[\Rightarrow f(t) = t^2 - \frac{t^2}{2} \Rightarrow f(x) = x^3 - x^2 \]
\[x^3 + ax^2 + bx + c, \, x > 1 \]
\[\therefore f(x) \text{ is continuous at } x = -1 \text{ and } x = 1 \]
\[(-1)^2 + a(-1) + b = -2 \Rightarrow b - a = -3 \quad (1) \]
\[2 = (1)^2 + a(1) + b \Rightarrow a + b = 1 \quad (2) \]
On solving, we get \(a = 2, b = -1 \)
\[\therefore f(x) = \begin{cases} x^2 + 2x - 1; & x < -1 \\ 2x; & -1 \leq x \leq 1 \\ x^2 + 2x - 1; & x > 1 \end{cases} \]
\[\therefore f(x) = \begin{cases} x^2 + 2x - 1; & x < -1 \\ 2x; & -1 \leq x \leq 1 \\ x^2 + 2x - 1; & x > 1 \end{cases} \]
\[\text{Given curves are } y = f(x), x = -2y^2 \text{ and } 8x + 1 = 0 \]
Solving \(x = -2y^2, y = x^2 + 2x - 1 \) (where \(x < -1 \)), we get \(x = -2 \).
Also, \(y = 2x, x = -2y^2 \) meet at \((0, 0)\).
\[y = 2x \text{ and } x = -1/8 \text{ meet at } \left(\frac{1}{8}, -\frac{1}{4} \right) \]
The required area is the shaded region in Fig. 9.122

\[\therefore \text{required area} \]
\[= \int_{-1}^{2} \left[\sqrt{y} - \frac{x^2}{2} - \left(x^2 + 2x - 1 \right) \right] \, dx \]
\[+ \int_{-1}^{1} \left[\sqrt{y} - x^2 - 2x \right] \, dx \]
\[= \left[\frac{1}{\sqrt{2}} \frac{2(-x)^{3/2}}{3} - \frac{x^3}{3} - x^2 + x \right]_{-1}^{1} \]
\[+ \left[\frac{1}{\sqrt{2}} \frac{2(-x)^{3/2}}{3} - x^2 \right]_{-1}^{1/8} \]
\[= \left(\frac{\sqrt{2}}{3} \frac{1}{3} - 1 - \frac{1}{2} - \frac{4}{3} + \frac{8}{3} - 4 - 2 \right) \]
\[+ \left(\frac{\sqrt{2}}{3} \frac{1}{16/2} - \frac{1}{64} \right) - \left(\frac{\sqrt{2}}{3} - 1 \right) \]
\[= \left(\frac{\sqrt{2}}{3} - \frac{4 + 8 - 18}{3} \right) + \left(\frac{4 - 3}{3} \right) - \left(\frac{\sqrt{2}}{3} - 1 \right) \]
\[= \frac{257}{192} \text{ sq. units.} \]

20. The given curves are
\[y = x^2 \quad (1) \]
\[y = |2 - x^2| \quad (2) \]
The graph of these curves is as follows:

\[\text{Fig. 9.123} \]

\[\therefore \text{Required area} = \text{BCDEB} \]
\[= \int_{1}^{\sqrt{2}} \left[x^2 - (2 - x^2) \right] \, dx + \int_{\sqrt{2}}^{2} \left(2 - (x^2 - 2) \right) \, dx \]
\[= \int_{1}^{\sqrt{2}} (2x^2 - 2) \, dx + \int_{\sqrt{2}}^{2} (4 - x^2) \, dx \]
\[= \left[\frac{2x^3}{3} - 2x \right]_{1}^{\sqrt{2}} + \left[4x - \frac{x^3}{3} \right]_{\sqrt{2}}^{2} \]
\[= \left(\frac{4\sqrt{2}}{3} - 2\sqrt{2} - \frac{2}{3} + 2 \right) + \left(\frac{9}{3} - \frac{8}{3} - 4\sqrt{2} + \frac{2\sqrt{2}}{3} \right) \]
9.48 Calculus

21. The given curves are,
\[x^2 = y \quad (1) \]
\[x^2 = -y \quad (2) \]
\[y^2 = 4x - 3 \quad (3) \]
Clearly (1) and (2) meet at \((0, 0)\).
Solving (1) and (3), we get \(x^4 - 4x + 3 = 0\)
\[\Rightarrow (x - 1)(x^3 + x^2 + x - 3) = 0 \]
\[\Rightarrow (x - 1)^2 (x^2 + 2x + 3) = 0 \]
\[\Rightarrow x = 1 \Rightarrow y = 1 \]
\[\Rightarrow \text{Point of intersection is (1, 1).} \]
Similarly, point of intersection of (2) and (3) is \((-1, -1)\).
The graph of three curves is as follow:

![Fig. 9.124](image)

We also observe that at \(x = 1\) and \(y = 1\), \(\frac{dy}{dx}\) for (1) and (3) is same and hence the two curves touch each other at \((1, 1)\).
Same is the case with (2) and (3) at \((1, -1)\).
Required area = shaded region in the figure
\[= 2 \left(\text{Ar } OPA \right) \]
\[= 2 \left[\int_0^1 x^2 \, dx - \int_{1/4}^1 \sqrt{4x - 3} \, dx \right] \]
\[= 2 \left[\left(\frac{x^3}{3} \right)_0^1 - \left(\frac{2(4x - 3)^{3/2}}{4 \times 3} \right)_{1/4}^1 \right] \]
\[= 2 \left[\frac{1}{3} - \frac{1}{6} \right] \]
\[= \frac{1}{3} \text{ sq. units.} \]

22. \(f'(x) = g(x) \)
\[\int_0^3 g(x) \, dx = \int_0^3 f'(x) \, dx = \left[f(x) \right]_0^3 = \left[f(3) - f(0) \right] \in (-2, 2) \]
\[\int_{-3}^0 g(x) \, dx = \int_{-3}^0 f'(x) \, dx = \left[f(x) \right]_{-3}^0 \]
\[= \left[f(0) - f(-3) \right] \in (-2, 2) \]
\[(f(0))^2 + (g(0))^2 = 9 \]

\(\Rightarrow |g(0)| > 2\sqrt{2} \quad (\because |f(0)| < 1) \)

Case I
\(g(0) > 2\sqrt{2} \)
Let \(g''(x) \geq 0 \) in \((-3, 3)\)
One of the two situations is possible.

![Fig. 9.125](image)

\[\int_0^3 g(x) \, dx > 6\sqrt{2} > 2 \]
So contradiction arises

So \(g''(x) \) has to be negative somewhere somewhere in \((-3, 0)\) while
in \((0, 3)\) while \(g(x) > 0\), \(g(x) > 0\) in \((-3, 0)\)
So at least somewhere \(g''(x) < 0\), while \(g(x) > 0\) in \((-3, 3)\).

Case II
\(g(0) < -2\sqrt{2} \)
Let \(g''(x) \leq 0 \) in \((-3, 3)\)
One of the two situations is possible.

![Fig. 9.126](image)

\[\int_0^3 g(x) \, dx < -6\sqrt{2} < -2 \]
So contradiction arises

So \(g''(x) \) has to be positive somewhere somewhere in \((-3, 0)\) while
in \((0, 3)\) while \(g(x) < 0\), \(g(x) < 0\) in \((-3, 0)\)
So at least one point in \((-3, 3)\).

23. \(4a^2 f(-1) + 4af(1) + f(2) = 3a^2 + 3a \)
\(4b^2 f(-1) + 4bf(1) + f(2) = 3b^2 + 3b \)
\(4c^2 f(-1) + 4cf(1) + f(2) = 3c^2 + 3c \)
Comparing coefficient of a^2, a and constant term on both sides, we get

\[f(-1) = \frac{3}{4} = f(1) \text{ and } f(2) = 0 \] \hspace{1cm} (1)

Let \(f(x) = Ax^2 + Bx + C \) \hspace{1cm} (2)

From (1) and (2), \(A = -\frac{1}{4}, B = 0, C = 1. \)

\[f(x) = -\frac{1}{4}x^2 + 1 \]

Let \(B(t, \frac{t^2}{4}) \) be any point on the parabola

\[f(x) = y = -\frac{x^2}{4} + 1 \]

As \(AB \) chord subtends right angle at \(V \)

\[\Rightarrow -\frac{1}{2} \times \left(\frac{t^2}{4} \right) = -1 \Rightarrow t = -8 \]

\(\Rightarrow B = (-8, -15) \)

\(\Rightarrow \) Area \((BCVAB) \)

\[= 2 \times \int_{0}^{2} \left[-\frac{x^2}{4} + 1 \right] dx + \frac{1}{2} \times 10 \times 15 \]

\[= \frac{125}{3} \text{ sq. units.} \]

Objective

Multiple choice questions with one correct answer

1. c. Given \(\int_{1}^{b} f(x) \, dx = (b - 1) \sin (3b + 4) \)

Differentiating both sides w.r.t. \(b \), we get

\(\Rightarrow f(b) = 3(b - 1) \cos (3b + 4) + \sin (3b + 4) \)

\(\Rightarrow f(x) = \sin (3x + 4) + 3(x - 1) \cos (3x + 4). \)

2. b.

\[y = \pm x + 1 \]

\[y = \pm |x| - 1 \]

Required area = \(4 \times \) (shaded area shown in Fig. 9.128)

\[= 4 \times \frac{1}{2} \]

\[= 2. \]

3. d. To find the area between the curves \(y = \sqrt{x} \) and \(2y + 3 = x \) and \(x \)-axis in the 1st quadrant.

\[y = \sqrt{x} \]

\[x = 2y + 3 \]

Given curves intersect when \(y^2 = 2y + 3 \)

\(\Rightarrow y^2 - 2y - 3 = 0 \Rightarrow (y - 3)(y + 1) = 0 \Rightarrow y = 3, -1 \)

when \(y = 3, x = 9 \) \hspace{1cm} (1st quadrant)

\[\text{Required area} = \int_{0}^{3} \sqrt{x} \, dx - \int_{3}^{9} \left(\frac{x - 3}{2} \right) \, dx \]

\[= \left. \frac{x^{3/2}}{3/2} \right|_{0}^{3} - \left. \frac{x^2}{2} - 3x \right|_{3}^{9} \]

\[= \frac{2}{3} \left(27 - \frac{1}{2} \left(\frac{81}{2} - 27 \right) - \left(\frac{9}{2} - 9 \right) \right) \]

\[= 9 \text{ sq. units.} \]

4. d. The given curves are \(y = (x + 1)^2 \) and \(y = (x - 1)^2 \) and \(y = 1/4 \)

The graph is as shown
The required area is the shaded portion, given by \(A_r(BPCQB) = 2A_r(PQCP) \) (by symmetry)

\[
\begin{align*}
&= 2 \left[\int_0^{1/2} (x - 1)^3 - \frac{1}{4} \right] dx \\
&= 2 \left[\left(-\frac{1}{24} - \frac{1}{8} \right) - \left(-\frac{1}{3} \right) \right] \\
&= \frac{1}{3} \text{ sq. units.}
\end{align*}
\]

5. a. The area bounded by \(y^2 = 4ax \) and \(x^2 = 4by \) is \(\frac{16ab}{3} \).

Then the area bounded by \(y^2 = x/a \) and \(x^2 = y/b \) is \(\frac{1}{3a^2} \).

Given \(\frac{1}{3a^2} = 1 \Rightarrow a = \pm \frac{1}{\sqrt{3}} \).

6. b. \(\int_0^b (1-x)^2 \, dx - \int_0^1 (1-x)^2 \, dx = \frac{1}{4} \)

\[
\Rightarrow \frac{(b-1)^3}{3} + \frac{1}{3} \left(0 - \frac{(b-1)^3}{3} \right) = \frac{1}{4}
\]

\[
\Rightarrow \frac{2(b-1)^3}{3} = -\frac{1}{12} \Rightarrow (b-1)^3 = -\frac{1}{8} \Rightarrow b = \frac{1}{2}
\]

Multiple choice questions with one or more than one correct answer

1. b, d. The two curves meet at \(mx = x - x^2 \) or \(x^2 = x(1-m) \).

\[
\Rightarrow x = 0, 1-m
\]

\[
A = \int_0^{1-m} (x - x^2 - mx) \, dx
\]

\[
\Rightarrow (1-m)^3 \left[\frac{1}{2} - \frac{1}{3} \right] = \frac{9}{2} \text{ if } m < 1
\]

\[
\Rightarrow (1-m)^3 = 27
\]

\[
\Rightarrow m = -2.
\]

But if \(m > 1 \) and \(1-m \) is -ve, then

\[
\Rightarrow -(1-m)^3 \left[\frac{1}{2} - \frac{1}{3} \right] = \frac{9}{2}
\]

\[
\Rightarrow -(1-m)^3 = -27.
\]

\[
\Rightarrow m = 4.
\]

2. b, c, d.

Required Area = \(\int_c^b \ln y \, dy \)

\[
= (y \ln y - y)|_1^{e-1} = (e-e) - (e-1) = 1
\]

Also, \(\int_1^e \ln y \, dy \int_1^{e+1-y} dy \)

Further the required area = \(e \times 1 - \int_0^1 e^x \, dx \)
CHAPTER 10

Differential Equations

- Differential Equations of First Order and First Degree
- Formation of Differential Equations
- Solution of a Differential Equation
- Method of Variable Separation
- Homogeneous Equations
- Linear Differential Equations
- General Form of Variable Separation
- Geometrical Applications of Differential Equation
- Statistical Applications of Differential Equation
- Physical Applications of Differential Equation
DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE

1. An equation that involves independent and dependent variables and the derivatives of the dependent variable w.r.t. independent variable is called a differential equation.

 e.g. \(\frac{dy}{dx} = x^2 \log x, \) \(dy = \sin x \, dx, \) \(y = x \, \frac{dy}{dx} + a \)

2. A differential equation is said to be ordinary, if the differential coefficients have reference to only a single independent variable and it is said to be partial if there are two or more independent variables. We are concerned with ordinary differential equations only.

\[
\frac{d^2 y}{dx^2} + 3 \frac{dy}{dx} + 2y = 0
\]

The above equation is an ordinary differential equation:

\[
\frac{dy}{dx} + 2 \frac{dy}{dx} + \frac{dy}{dx} = 0; \quad \frac{d^2 z}{dz^2} + \frac{dy}{dz} = x^2 + y
\]

The above equations are partial differential equations.

Order and Degree of Differential Equation

The *order* of a differential equation is the order of the highest differential coefficient occurring in it.

The *degree* of a differential equation which is expressed or may be expressed as a polynomial in the derivatives is the degree of the highest order derivative occurring in it after it has been expressed in a form free from radicals and fractions as far as derivatives are concerned. Thus the differential equation:

\[
f(x, y) \left[\frac{d^m y}{dx^m} \right]^p + \phi(x, y) \left[\frac{d^{m-1} (y)}{dx^{m-1}} \right]^q + \ldots = 0
\]

is of order \(m \) and degree \(p \).

Example 10.1

Find the order and degree of the following differential equations:

(i) \(\frac{d^2 y}{dx^2} = \left[y + \left(\frac{dy}{dx} \right)^6 \right]^{1/4} \)

(ii) \(\frac{dy}{dx} + y = \frac{1}{\frac{dy}{dx}} \Rightarrow \left(\frac{dy}{dx} \right)^2 + y \left(\frac{dy}{dx} \right) = 1 \)

Hence order is 1 and degree is 2.

(iii) \(e^x - x \frac{d^2 y}{dx^2} + y = 0 \)

Clearly order is 3, but degree is not defined as it cannot be written as a polynomial equation in derivatives, and hence it cannot be expressed as a polynomial of derivatives.

(iv) \(\sin^{-1} \left(\frac{dy}{dx} \right) = x + y \Rightarrow \frac{dy}{dx} = \sin(x + y) \)

Hence order is 1 and degree is 1.

(v) \(\ln \left(\frac{dy}{dx} \right) = ax + by \Rightarrow \frac{dy}{dx} = e^{ax + by} \)

Hence order is one and degree is also 1.

Formation of Differential Equations

Consider a family of curves

\[
f(x, y, \alpha_1, \alpha_2, \ldots, \alpha_n) = 0 \quad (1)
\]

E.g. \(ax + cy \)

The Co as 1

Differential Equations

clec6

E

S

Ex
where \(\alpha_1, \alpha_2, \ldots, \alpha_n \) are \(n \) independent parameters.

Equation (1) is known as an \(n \) parameter family of curves \(y = mx \) is a one-parameter family of straight lines and \(x^2 + y^2 + \alpha y = 0 \) is a two parameters family of circles.

If we differentiate equation (1) \(n \) times w.r.t. \(x \), we will get \(n \) more relations between \(x, y, \alpha_1, \alpha_2, \ldots, \alpha_n \) and derivates of \(y \) with respect to \(x \). By eliminating \(\alpha_1, \alpha_2, \ldots, \alpha_n \) from these \(n \) relations and equation (1), we get a differential equation.

Clearly order of this differential equation will be \(n \), i.e., equal to the number of independent parameters in the family of curves.

Consider the family of parabolas with vertex at the origin and axis the \(x \)-axis.

\[
y^2 = 4ax. \tag{1}
\]

Differentiating w.r.t. \(x \), we get \(2y \frac{dy}{dx} = 4a = \frac{y^2}{x} \) [from equation (1)]

or, \(2x \frac{dy}{dx} - y = 0 \), which is the differential equation of (1) and is of the order 1.

Example 10.2 Form the differential equation of family of lines concurrent at the origin.

Sol. Such lines are given by \(y = mx \) \(\tag{1} \)

\[
\Rightarrow \quad \frac{dy}{dx} = m
\]

Putting the value of \(m \) in equation (1)

\[
\Rightarrow \quad y = \frac{dy}{dx} x
\]

\[
\Rightarrow \quad xdy - ydx = 0
\]

Note that the order is 1, same as the number of constants.

Example 10.3 Form the differential equation of all concentric circle at the origin.

Sol.

![Fig. 10.1](image)

Such circles are given by \(x^2 + y^2 = r^2 \).

Differentiating w.r.t. \(x \), \(2x + 2y \frac{dy}{dx} = 0 \)

\[
\Rightarrow \quad x + y \frac{dy}{dx} = 0
\]

Example 10.4 Form the differential equation of all circles touching the \(x \) axis at the origin and centre on the \(y \)-axis.

Sol.

Such family of circles is given by

\[
x^2 + (y-a)^2 = a^2
\]

\[
\Rightarrow \quad x^2 + y^2 - 2ay = 0
\]

\[
\tag{1}
\]

![Fig. 10.2](image)

Differentiating, \(2x + 2y \frac{dy}{dx} = 2a \frac{dy}{dx} \)

or \(x + y \frac{dy}{dx} = a \frac{dy}{dx} \)

substituting the value of \(a \) in equation (1)

\[
\Rightarrow \quad (x^2 - y^2) \frac{dy}{dx} = 2xy \quad \text{(order is one again and degree 1)}
\]

Example 10.5 Form the differential equation of the family of parabolas with focus at the origin and the axis of symmetry along the \(x \)-axis.

Sol.

![Fig. 10.3](image)

Equation of such parabolas is \(y^2 = 4A(A + x) \) \(\tag{1} \)

Differentiating w.r.t. \(x \), we get

\[
\Rightarrow \quad 2y \frac{dy}{dx} = 4A
\]

\[
\Rightarrow \quad y \frac{dy}{dx} = 2A \quad \text{(2)}
\]

Eliminating \(A \) from equations (2) and (1)

\[
y^2 = \left(y \frac{dy}{dx} \right)^2 + 2y \frac{dy}{dx} x
\]

or, \(y^2 = y^2 \left(\frac{dy}{dx} \right)^2 + 2xy \frac{dy}{dx} \)

which has order 1 and degree 2.

Example 10.6 Form the differential equation of family of lines situated at a constant distance \(p \) from the origin.
0.4 Calculus

Sol. All such lines are tangent to the circle of radius \(p \).

\[y = mx + p \sqrt{1 + m^2} \]

\[\Rightarrow \quad m = \frac{dy}{dx} \]

By eliminating \(m \), we get

\[y = \frac{dy}{dx} x + p \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \]

\[\Rightarrow \quad \left(y - \frac{dy}{dx} x \right)^2 = p^2 \left(1 + \left(\frac{dy}{dx} \right)^2 \right) \]

which has order 1 and degree 2.

Example 10.7 Find the differential equation of all parabolas whose axis are parallel to the \(x \)-axis and have latus rectum \(a \).

Sol. Equation of parabola whose axis is parallel to the \(x \)-axis and have latus rectum \('a' \) is \((y - \beta)^2 = a(x - \alpha)\).

Here we have two effective constants \(\alpha \) and \(\beta \).

So it is required to differentiate twice.

Differentiating both sides, we get

\[2(y - \beta) \frac{dy}{dx} = a \] \hspace{1cm} (1)

Differentiating equation (1) w.r.t. \(x \), we get

\[\Rightarrow \quad 2(y - \beta) \frac{d^2y}{dx^2} + 2 \left(\frac{dy}{dx} \right)^2 = 0 \] \hspace{1cm} (2)

Eliminating \(\beta \) from equations (1) and (2),

\[\Rightarrow \quad a \frac{d^2y}{dx^2} + 2 \left(\frac{dy}{dx} \right)^3 = 0 \]

which is the required differential equation.

Example 10.8 Form the differential equation having \(y = (\sin^{-1}x)^2 + A \cos^{-1}x + B \), where \(A \) and \(B \) are arbitrary constants, as its general solution.

Sol. \(y = (\sin^{-1}x)^2 + A \cos^{-1}x + B \)

\[\Rightarrow \quad (\sin^{-1}x)^2 + A

Differentiating w.r.t. \(x \), we have

\[\frac{dy}{dx} = 2 \sin^{-1}x - \frac{A}{\sqrt{1-x^2}} \]

\[\Rightarrow \quad (1-x^2) \left(\frac{dy}{dx} \right)^2 = 4 \left(\sin^{-1}x \right)^2 - 4A \sin^{-1}x + A^2 \]

\[= 4y - 4B + A^2 - 2A \]

Differentiating again w.r.t. \(x \), we have

\[2(1-x^2) \left(\frac{dy}{dx} \right) \left(\frac{d^2y}{dx^2} \right) - 2x \left(\frac{dy}{dx} \right)^2 = 4 \frac{dy}{dx} \]

\[\Rightarrow \quad (1-x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = 2 \]

which is the required differential equation.

Concept Application Exercise 10.2

1. Find the differential equation of all the parabolas having axis parallel to the \(x \)-axis.
2. Find the differential equation of the family of curves \(y = Ae^{2x} + Be^{-2x} \), where \(A \) and \(B \) are arbitrary constants.
3. Find the differential equation of all non-vertical lines in a plane.
4. Find the differential equation of all the ellipses whose center is at origin and axis are co-ordinate axis.
5. Consider the equation \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = \lambda \) where \(a \) and \(b \) are specified constants and \(\lambda \) is an arbitrary parameter.

Find a differential equation satisfied by it.

6. Find the degree of the differential equation satisfying the relation

\[\sqrt{1+x^2} + \sqrt{1+y^2} = \lambda \left(x\sqrt{1+y^2} - y\sqrt{1+x^2} \right) \]

SOLUTION OF A DIFFERENTIAL EQUATION

A solution of a differential equation is an equation which contains arbitrary constants as many as the order of the differential equation and is called the general solution. Other solutions, obtained by giving particular values to the arbitrary constants in the general solution, are called particular solutions.

Also, we know that the general integral of a function contains an arbitrary constant. Therefore, the solution of a differential equation, resulting as it does from the operations of integration, must contain arbitrary constants, equal in number to the number of times the integration is involved in obtaining the solution, and this latter is equal to the order of the differential equation.

Thus we see that the general solution of a differential equation of the \(n \)th order must contain \(n \) and only \(n \) independent arbitrary constants.

METHOD OF VARIABLE SEPARATION

If the coefficient of \(dx \) is only a function of \(x \) and \(dy \) is only a function of \(y \) in the given differential equation, then the equation can be solved using variable separation method.
Thus the general form of such an equation is

\[f(x) \, dx + g(y) \, dy = 0 \quad (1) \]

Integrating we get, \(\int f(x) \, dx + \int g(y) \, dy = c \); where \(c \) is the constant.

This is a general solution of equation (1).

If \(b = 0 \) (this is directly variable separable), substitute \(ax + by + c \). Then the equation reduces to separable type in the form \(t \) and \(x \) which can be easily solved.

Example 10.9 Solve \(\log \frac{dy}{dx} = 4x - 2y - 2 \), given that \(y = 1 \) when \(x = 1 \).

Sol: Given \(\frac{dy}{dx} = 4x - 2y - 2 \)

\[\Rightarrow \quad \frac{dy}{dx} = e^{4x - 2y - 2} \]

\[\Rightarrow \quad \int e^{2y+2} \, dy = \int e^{4x} \, dx \]

\[\Rightarrow \quad \frac{e^{2y+2}}{2} = \frac{e^{4x}}{4} + c \]

\[x = 1, y = 1 \Rightarrow \quad \frac{e^4}{2} = \frac{e^4}{4} + c \quad \text{or} \quad c = e^4/4 \]

Example 10.10 Solve \(e^{dx} = x + 1 \), given that when \(x = 0, y = 3 \).

Sol: \(e^{dx} = x + 1 \) \(\Rightarrow \frac{dy}{dx} = \log(x + 1) \)

\[\Rightarrow \quad \int dy = \int \log(x + 1) \, dx \]

\[\Rightarrow \quad y = (x + 1) \log(x + 1) - x + c \]

When \(x = 0, y = 3 \) gives \(c = 3 \)

Hence the solution is \(y = (x + 1) \log(x + 1) - x + 3 \).

Example 10.11 Solve the differential equation

\[\frac{dy}{dx} = \frac{1 + y^2}{1 + x^2} \left(1 + x^2 \right) \]

Sol: Differential equation can be rewritten as

\[xy \frac{dy}{dx} = \frac{1 + y^2}{1 + x^2} \left(1 + x^2 \right) \]

\[\Rightarrow \quad \frac{y}{1 + y^2} \frac{dy}{dx} = \frac{1}{x} \left(1 + \frac{x}{1 + x^2} \right) \]

Integrating, we get

\[\frac{1}{2} \ln \left(1 + y^2 \right) = \ln x + \tan^{-1} x + \ln c \]

\[\Rightarrow \quad \sqrt{1 + y^2} = c xe^{\tan^{-1} x} \]

Differential Equations Reducible to the Variable Separation Type

Sometimes differential equation of the first order cannot be solved directly by variable separation. By some substitution we can reduce it to a differential equation of variable separable type.

A differential equation of the form \(\frac{dy}{dx} = f(ax + by + c) \) is solved by putting \(ax + by + c = t \).

Example 10.12 Solve \(\frac{dy}{dx} = (x + y)^2 \).

Sol: \(\frac{dy}{dx} = (x + y)^2 \) \(\quad (1) \)

Here the variables are not separable but by putting \(x + y = v \), we have

\[1 + \frac{dy}{dx} = \frac{dy}{dx} \]

\[\Rightarrow \quad \text{Equation (1) reduces to} \]

\[\frac{dv}{dx} = v^2 + 1 \]

\[\int \frac{dv}{v^2 + 1} = \int dx \]

in which variables are separated.

Hence from equation (2),

\[\tan^{-1} v = x + c \]

\[x + y = \tan^{-1} \left(x + c \right) \]

which is a required solution.

Example 10.13 Solve \(\frac{dy}{dx} \sqrt{1 + x + y} = x + y - 1 \).

Sol: Putting \(\sqrt{1 + x + y} = v \), we have

\[x + y - 1 = v^2 - 2 \]

\[\Rightarrow \quad 1 + \frac{dy}{dx} = 2v \frac{dv}{dx} \]

Then the given equation transforms to

\[\left(\frac{2v}{dx} - 1 \right) v = v^2 - 2 \]

\[\Rightarrow \quad \frac{dv}{dx} = \frac{v^2 + v - 2}{2v^2} \]

\[\Rightarrow \quad \int \frac{2v^2}{v^2 + v - 2} \, dv = \int dx \]

\[\Rightarrow \quad 2 \left[\frac{1}{3(v-1)} - \frac{4}{3(v+2)} \right] dv = \int dx \]

\[\Rightarrow \quad 2 \left[v + \frac{1}{3} \log |v-1| - \frac{4}{3} \log |v+2| \right] = x + c \]

where \(v = \sqrt{1 + x + y} \)}
Concept Application Exercise 10.3

Solve the following equations:

1. \(\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0 \)

2. \(y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right) \)

3. \(\frac{dy}{dx} = \frac{x + y + 1}{x + y - 1} \)

4. \(\frac{dy}{dx} + y f'(x) = f(x) f''(x) \), where \(f(x) \) is a given integrable function of \(x \).

5. \(\frac{dy}{dx} = \cos (x + y) - \sin (x + y) \)

HOMOGENEOUS EQUATIONS

The function \(f(x, y) \) is said to be a homogeneous function of degree \(n \) if for any real number \(t (\neq 0) \), we have

\(f(tx, ty) = t^n f(x, y) \).

For example, \(f(x, y) = ax^{2/3} + bx^{1/3}y + y^{2/3} \) is a homogeneous function of degree \(2/3 \).

A differential equation of the form \(\frac{dy}{dx} = \frac{f(x, y)}{\phi (x, y)} \), where \(f(x, y) \) and \(\phi(x, y) \) are homogeneous functions of \(x \) and \(y \), and of the same degree, is called homogeneous. This equation may also be reduced to the form \(\frac{dy}{dx} = g \left(\frac{x}{y} \right) \) and is solved by putting \(y = vx \) so that the dependent variable \(y \) is changed to another variable \(v \), where \(v \) is some unknown function, the differential equation is transformed to an equation with variables separable.

Consider \(\frac{dy}{dx} + \frac{y(x + y)}{x^2} = 0 \).

Example 10.14

Solve \(x^2 \, dy + y(x + y) \, dx = 0 \).

Sol. The given differential equation can be re-written as

\[\frac{dy}{dx} = - \frac{y(x + y)}{x^2} \]

Putting \(y = vx \)

\[\frac{dy}{dx} = v + x \frac{dv}{dx} \]

Given equation transforms to

\[v + x \frac{dv}{dx} = -v - v^2 \]

\[\frac{1}{2} \int \frac{1}{v^2 + 2v} \, dv = -\int \frac{dx}{x} \]

\[\log |v| - \log |v + 2| = -2 \log |x| + \log c \]

\(c > 0 \)

Example 10.15

Solve \(x \sin \frac{y}{x} \, dy = \left(y \sin \frac{y}{x} - x \right) \, dx \).

Sol. \(\sin \frac{y}{x} \frac{dy}{dx} = \left(y \sin \frac{y}{x} - 1 \right) \, dx \)

Put \(y = vx \)

\[\sin v \left(v + x \frac{dv}{dx} \right) = (v \sin v - 1) \]

\[\sin v \frac{xdv}{dx} = -1 \]

\[\int \sin v \, dv = -\int \frac{dx}{x} \]

\[\cos v = \ln |x| + c \]

\[\cos \frac{y}{x} = \ln |x| + c \]

Example 10.16

Solve \(x \, dy = \left(y + x \frac{f(y/x)}{f'(y/x)} \right) \, dx \).

Sol. \(x \, dy = \left(y + x \frac{f(y/x)}{f'(y/x)} \right) \, dx \)

\[\frac{dy}{dx} = \frac{y + f(y/x)}{x + f'(y/x)} \]

Putting \(y/x = v \), \(\frac{dv}{dx} = v + x \frac{dv}{dx} \)

The given equation transforms to

\[v + x \frac{dv}{dx} = v + \frac{f(v)}{f'(v)} \]

\[\int \frac{f'(v)}{f(v)} \, dv = \int \frac{dx}{x} \]

\[\log |f(v)| = \log |x| + \log c \]

\[|f(v)| = c |x| (c > 0) \]

Equations Reducible to the Homogenous Form

Equations of the form \(\frac{dy}{dx} = \frac{ax + by + c}{Ax + By + C} \) can be reduced to a homogeneous form by changing the variable \(x, y \) to \(X, Y \) by writing \(x = X + h \) and \(y = Y + k \), where \(h, k \) are constants to be chosen so as to make the given equation homogeneous. We have

\[\frac{dy}{dx} = \frac{d(Y + k)}{d(X + h)} \]

Hence the given equation becomes,

\[\frac{dY}{dX} = \frac{aX + bY + (ah + bk + c)}{AX + BY + (Ah + Bk + C)} \]

Let \(h \) and \(k \) be chosen to satisfy the relation \(ah + bk + c = 0 \) and \(Ah + Bk + C = 0 \).
\[h = \frac{bC - Bc}{AB - Ab} \quad \text{and} \quad k = \frac{Ac - aC}{Ab - Ab} \]

which are meaningful when \(aB \neq AB \).

\[\frac{dY}{dX} = \frac{aX + bY}{AX + BY} \]

can now be solved by substituting \(Y = VX \). In case \(AB = Ab \), we write \(ax + by = t \). This reduces the differential equation to the separable variable type.

1. Solve \(x \frac{dy}{dx} = y + 2 \sqrt{y^2 - x^2} \).
2. Solve \(x(\frac{dy}{dx}) = y(\log y - \log x + 1) \).
3. Solve \((x + y \sin (yx))dx = z \sin (y/x) \) dy.
4. Show that the differential equation \(y^3 dy + (x+y^2) dx = 0 \) can be reduced to a homogeneous equation.
5. Solve \(\frac{dy}{dx} = \frac{2x - y + 1}{x + 2y - 3} \).

Linear Differential Equations

Equation of the form \(\frac{dy}{dx} + Py = Q \), where \(P \) and \(Q \) are functions of \(x \) alone, is called linear differential equation.

For solving such equation we multiply both sides by integrating factor \(= I.F. = \int Pe^x \)

Multiplying given equations by I.F., we get

\[e^{\int Pe^x \left(\frac{dy}{dx} + Py \right) = Qe^{\int Pe^x} \]

\[\Rightarrow \frac{dy}{dx} + Py = Qe^{\int Pe^x} \]

\[\Rightarrow \int \frac{d}{dx} \left(ye^{\int Pe^x} \right) dx = \int Qe^{\int Pe^x} dx \]

\[\Rightarrow ye^{\int Pe^x} = \int Qe^{\int Pe^x} dx + C \]

which is the required solution of the given differential equation.

In some cases a linear differential equation may be of the form \(\frac{dx}{dy} + R_1 x = Q_1 \), where \(R_1 \) and \(Q_1 \) are functions of \(y \) alone or constants. In such a case the integrating factor is \(e^{\int R_1 dy} \), and solutions is given by

\[xe^{\int P dy} = \int Qe^{\int P dy} dy + C \]

Example 10.19

Solve \(x^2(dy/dx) + y = 1 \).

Sol. The given differential equation can be written as

\[\frac{dy}{dx} + \frac{1}{x^2} y = \frac{1}{x^2} \], which is linear

Here \(P = 1/x^2 \) and \(Q = 1/x^2 \)

\[I.F. = e^{\int (1/x^2) dx} = e^{-1/x} \]
Therefore the solution is
\[y e^{-1/t} = \int e^{1/t} \left(1/x^2\right) dx + c \]
\[= e^{-1/t} + c \]
\[\Rightarrow \quad y = 1 + ce^{1/t} \]

Example 10.20 Solve \((x + 2y^2) \frac{dy}{dx} = y\).

Sol. This equation can be re-written in the form
\[\frac{dx}{dy} = \frac{1}{y} x + 2y^2 \]
\[\Rightarrow \quad \frac{dx}{dy} = \frac{1}{y} \quad x = 2y^2 \]
This is linear regarding \(y\) as independent variable.

Here, I.F. = \(e^{-\int \frac{1}{y} dy} = e^{-\log y} = \frac{1}{y} \)

\[\therefore \quad \text{solution is } x \frac{1}{y} = \int \frac{1}{y} 2y^2 dy + C \]
\[\Rightarrow \quad \frac{x}{y} = y^2 + C \]
\[\Rightarrow \quad x = y^3 + cy \]

Example 10.21 Solve \(y \frac{dx}{dx} - x \frac{dy}{dx} + \log x \frac{dx}{dx} = 0\).

Sol. The given equation can be written as
\[\frac{dy}{dx} - \frac{1}{x} y = \frac{1}{x} \log x \]
\[\text{I.F.} = e^{-\int \frac{1}{x} dx} = e^{-\log x} = \frac{1}{x} \]
Therefore, the solution is
\[\frac{y}{x} = \int \frac{1}{x^2} \log x dx + c \]
Putting \(\log x = t\), so that \(x = e^t\) and \((1/x) dx = dt\), we get
\[\frac{y}{x} = \int e^{-t} dt \]
\[= -e^{-t} - e^{-t} + c \]
\[= -(1/x) (1 + \log x) + c \]
Hence the required solution is \(y + 1 + \log x = cx\).

Example 10.22 Solve \((1 + y^2) + (x - \tan^{-1} y) \frac{dy}{dx} = 0\).

Sol. Differential equation can be rewritten as
\[(1 + y^2) \frac{dx}{dy} + x = e^{\tan^{-1} y} \]
\[\text{or, } \frac{dx}{dy} + \frac{1}{1 + y^2} x = \frac{e^{\tan^{-1} y}}{1 + y^2} \]
\[\text{I.F.} = e^{-\int \frac{1}{1 + y^2} dy} = e^{-\tan^{-1} y} \]
Hence, solution is
\[x \cdot e^{-\tan^{-1} y} = \int \frac{e^{\tan^{-1} y} \cdot e^{\tan^{-1} y}}{1 - y^2} dy + c \]
\[\Rightarrow \quad x \cdot e^{-\tan^{-1} y} = e^{2\tan^{-1} y} - c \]

Concept Application Exercise 10.5

Solve the following equations:
1. \(\frac{dy}{dx} + y \cot x = \sin x\)
2. \((x + y + 1) \left(\frac{dy}{dx}\right) = 1\)
3. \((1 - x^2) \left(\frac{dy}{dx}\right) + 2xy = x \sqrt{1 - x^2}\)
4. \(\frac{dy}{dx} = \frac{y}{2y \ln (y + y - x)}\)

Bernoulli’s Equation

\[\frac{dy}{dx} + Py = Qy^n \quad (1) \]

where \(P\) and \(Q\) are functions of \(x\) alone or are constants. Dividing each term of equation (1) by \(y^n\), we get
\[\frac{1}{y^{n-1}} \frac{dy}{dx} + \frac{P}{y^{n-1}} = Q \]

(2)

Let \(\frac{1}{y^{n-1}} = v\) so that \(\frac{1}{y^n} \frac{dy}{dx} = \frac{1}{1-n} \frac{dv}{dx}\)

Substituting in equation (2), we get
\[\frac{dv}{dx} + (1-n) v = Q(1-n) \]

Equation (3) is a linear differential equation.

Example 10.23 Solve \((x^2 - e^{2x^2}) \frac{dy}{dx} - x^2 y \frac{dy}{dx} = 0\).

Sol. Differential equation can be rewritten as
\[y \frac{dy}{dx} - \frac{y^2}{x^2} = e^{2x^2} \]

\[\frac{dy}{dx} - \frac{y^2}{x^2} e^{2x^2} = 0 \]
Example 10.25

Solve \(\frac{dy}{dx} = e^{x+y}(e^x - e^y) \).

Sol. Multiplying the given equation by \(e^y \), we get

\[
2 e^y \frac{dy}{dx} + e^x e^y = e^{2x}
\]

and equation (1) transform to

\[
\frac{dv}{dx} + e^x\nu = e^{2x}
\]

\[
\text{I.F.} = e^{\int e^x dx} = e^{e^x}
\]

Hence solution is

\[
\nu e^x = \int e^{2x} e^x dx + c
\]

Let \(e^x = t \Rightarrow e^x dx = dt \)

Hence solution is

\[
\nu e^x = \int t e^t dt + c
\]

\[
\Rightarrow e^x e^y = te^t - e^t + c
\]

\[
\Rightarrow e^{x+y} = e^{x+y} - e^y + c
\]

Example 10.26

Solve \((x-1)\frac{dy}{dx} + y\) \(dx = x(x-1)\) \(y^{1/3} \) \(dx \).

Sol. Dividing by \(dx\) \(y^{1/3}(x-1)\), the given equation reduces to

\[
y^{-1/3} \frac{dy}{dx} + \frac{1}{x-1} y^{2/3} = x.
\]

Put \(y^{2/3} = z \), so that \(\frac{2}{3} y^{-1/3} \frac{dy}{dx} = \frac{dz}{dx} \)

Then given equation reduces to

\[
\frac{dz}{dx} + \frac{2}{3(x-1)} z = \frac{2}{3} x
\]

\[
\text{I.F.} = e^\int \frac{1}{3(x-1)} dx = e^{\int \frac{2}{3} \log(x-1) dx} = (x-1)^{2/3}
\]

\[
\therefore \text{ solution is given by}
\]

\[
z(x-1)^{2/3} = \frac{2}{3} \int x(x-1)^{2/3} dx + c
\]

Putting \(x-1 = t^3 \) in the R.H.S., we get

\[
\int x(t^3)\frac{dt}{dx} dx = \int (t^3 + 1) t^2 dt
\]

\[
= \int (t^7 + t^4) \ dt
\]

\[
= 3 \left[\frac{1}{8} t^8 + \frac{1}{5} t^5 \right] = (3/8)(x-1)^9 + (3/5)(x-1)^{5/3}
\]

Hence, the solution is

\[
y^{2/3} = \frac{1}{4} (x-1)^9 + \frac{2}{5} (x-1) + c(x-1)^{-2/3}
\]
Concept Application Exercise 10.6

Solve the following equations

1. \[\frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x^2} \]
2. \[\frac{dy}{dx} + x \sin 2y = x^2 \cos^2 y \]
3. \[\frac{dy}{dx} + \frac{xy}{(1-x^2)} = x \sqrt{y} \]

GENERAL FORM OF VARIABLE SEPARATION

If we can write the differential equation in the form \(f(f_1(x, y)) df_1(x, y) + \phi(f_2(x, y)) df_2(x, y) + \ldots = 0 \), then each term can be easily integrated separately. For this the following results must be memorized.

(i) \(x dy + y dx = d(xy) \)
(ii) \(\frac{xdy - ydx}{x^2} = d\left(\frac{y}{x}\right) \)
(iii) \(\frac{ydx - xdy}{y^2} = d\left(\frac{x}{y}\right) \)
(iv) \(\frac{xdy + ydx}{xy} = d(\ln xy) \)
(v) \(\frac{xdy - ydx}{xy} = d\left(\ln \frac{y}{x}\right) \)
(vi) \(\frac{xdy - ydx}{x^2 + y^2} = d\left(\tan^{-1} \frac{y}{x}\right) \)
(vii) \(\frac{xdx + ydy}{\sqrt{x^2 + y^2}} = d\left[\sqrt{x^2 + y^2}\right] \)

Example 10.27 Solve \(x dx + ydy = \frac{x dx - y dy}{x^2 + y^2} \).

Sol. The D.E. can be written as
\[\frac{1}{2} dtan^{-1} (y/x) = dt \]
Integrating, we get
\[\frac{1}{2} \left(x^2 + y^2 \right) = tan^{-1} (y/x) + c \]

Example 10.28 Solve
\[\{ (x + 1)(y/x) + \sin y \} dx + (x + \log x + x \cos y) dy = 0. \]

Sol. We can re-write the differential equation as
\[(y dx + x dy) + \left(\frac{y}{x} dx + \log x dy \right) + (x \sin y dy) = 0 \]
\[\Rightarrow d(xy) + d(y \log x) + d(x \sin y) = 0 \]
Integrating both the sides we have
\[xy + y \log x + x \sin y = c \]

Example 10.29 Solve \(y^4 dx + 2xy^3 dy = \frac{y dx - x dy}{x^3 y^3} \).

Sol. The given differential equation can be written as
\[y^4 dx + 2xy^3 dy + \frac{1}{x^2 y^2} \left(x dy - y dx \right) = 0 \]
\[\Rightarrow xy^2 dx + 2x^2 y^3 dy + d(y/x) = 0 \]
\[\Rightarrow \frac{x}{y} y dx + x \cdot 2x^2 y^6 dy + \frac{x}{y} d \left(\frac{y}{x} \right) = 0 \]
\[\Rightarrow \frac{1}{3} (3x^2 y^6 dx + 6x^3 y^6 dy) + y d \left(\frac{y}{x} \right) = 0 \]
\[\Rightarrow \frac{1}{3} \left[\frac{y d(x^3 y^6)}{y/x} \right] + d \left(\log (y/x) \right) = 0 \]
\[\Rightarrow x y^6 + 3 \log (y/x) = \text{constant} \]

Example 10.30 Solve \(\frac{dy}{dx} = \frac{y f'(x) - y^2}{f(x)} \).

Sol. \(\frac{dy}{dx} = \frac{y f'(x) - y^2}{f(x)} \)
\[\Rightarrow y f'(x) dx - f(x) dy = y^2 dx \]
\[\Rightarrow y f'(x) dx - f(x) dy = dx \]
\[\Rightarrow d \left[\frac{f(x)}{y} \right] = d(x) \]
Integrating, we get
\[\frac{f(x)}{y} = x + c \text{ or } f(x) = y(x + c) \]

GEOMETRICAL APPLICATIONS OF DIFFERENTIAL EQUATION

We also use differential equations for finding the family of curves for which some conditions involving the derivatives are given. For this we proceed in the following way:
Equation of tangent at a point \((x, y)\) to the curve \(y = f(x)\) is given by \(Y - y = \frac{dy}{dx} (X - x)\).

At the \(X\)-axis, \(Y = 0\), and \(X = x - \frac{y}{\frac{dy}{dx}}\) (intercept on \(X\)-axis).

At the \(Y\)-axis, \(X = 0\) and \(Y = y - x \frac{dy}{dx}\) (intercept on \(Y\)-axis).

Similar information can be obtained for normals by writing the equation as \((Y - y) \frac{dy}{dx} + (X - x) = 0\).

Example 10.31 The slope of a curve, passing through \((3, 4)\) at any point is the reciprocal of twice the ordinate of that point. Show that it is a parabola.

Sol. It is given that \(\frac{dy}{dx} = \frac{1}{2y}\).

\(\Rightarrow 2y \frac{dy}{dx} = dx\)

Integrating, we get \(y^2 = x + c\).

Now when \(x = 3, y = 4\), which gives \(c = 13\).

Hence the equation of the required curve is \(y^2 = x + 13\), which is a parabola.

Example 10.32 Find the equation of the curve passing through \((2, 1)\) which has constant sub-tangent.

Sol. We are given that

\(\text{sub-tangent} = \frac{y}{\frac{dy}{dx}} = k\) (constant)

\(\Rightarrow k \frac{dy}{y} = dx\)

Integrating we get, \(k \log y = x + c\) \(\Rightarrow c = -2\).

Hence the equation of such curve is \(k \log y = x - 2\).

Example 10.33 Find the equation of the curve such that the square of the intercept cut off by any tangent from the \(y\)-axis is equal to the product of the coordinates of the point of tangency.

Sol. Equation of tangent at any point \((x, y)\) is \(Y - y = \frac{dy}{dx} (X - x)\).

On \(Y\)-axis, intercept is given by putting \(X = 0\).

\(\therefore Y\)-intercept = \(y - x \frac{dy}{dx}\)

According to the question,

\[(y - x \frac{dy}{dx})^2 = xy\]

\(\Rightarrow y - x \frac{dy}{dx} = \pm \sqrt{xy}\)

\(\Rightarrow \frac{dy}{dx} = \frac{y \pm \sqrt{xy}}{x}\) (Homogeneous)

Example 10.34 Find the curve such that the intercept on the \(x\)-axis cut off between the origin, and the tangent at a point is twice the abscissa and passes through the point \((1, 2)\).

Sol. The equation of the tangent at any point \(P(x, y)\) is \(Y - y = \frac{dy}{dx} (X - x)\) \(\ldots (1)\)

Given that intercept on \(X\)-axis (putting \(Y = 0\) = \(2 \times \text{(x-coordinates of } P)\))

\(\Rightarrow x - y \frac{dy}{dx} = 2x\)

\(\Rightarrow \frac{dy}{y} = \frac{dx}{x}\)

Integrating we get \(xy = c\)

Since the curve passes through \((1, 2)\), \(c = 2\).

Hence, the equation of the required curve is \(xy = 2\).

Example 10.35 Find the equation of the curve which is such that the area of the rectangle constructed on the abscissa of any point and the intercept of the tangent at this point on the \(y\)-axis is equal to 4.

Sol.

\[\text{Fig. 10.5}\]

Equation of tangent at \(P(x, y)\) is \(Y - y = \frac{dy}{dx} (X - x)\)

\(\therefore Y\)-intercept = \(y - x \frac{dy}{dx}\)
A curve making at each of its points a fixed angle α with the curve of the family passing through that point is called as isogonal trajectory of that family; if, in particular, $\alpha = \pi/2$, then it is called an orthogonal trajectory.

Finding Orthogonal Trajectories

We set up the differential equation of the given family of curves. Let it be of the form $F(x, y, y') = 0$.

The differential equation of the orthogonal trajectories is of the form $F\left(x, y, -\frac{1}{y'}\right) = 0$ and its solution $\phi_1(x, y, C) = 0$ gives the family of orthogonal trajectories.

Example 10.37 Find the orthogonal trajectory of $y^2 = 4ax$ (a being the parameter).

Sol.

1. $y^2 = 4ax$
2. $\frac{2y}{dx} = 4a$

Eliminating a from equation (1) and (2)

$$y^2 = 2y \frac{dy}{dx}$$

Replacing $\frac{dy}{dx}$ by $-\frac{dx}{dy}$, we get

$$y = 2\left(-\frac{dx}{dy}\right)$$

$$2x \frac{dx}{dy} + y \frac{dy}{dx} = 0$$

Integrating each term,

$$\frac{x^2 + y^2}{2} = c$$

$$2x^2 + y^2 = 2c$$

which is the required orthogonal trajectory.

Example 10.38 Find the orthogonal trajectories of $xy = c$.

Sol. $xy = c$

Differentiating w.r.t. x, we get $x \frac{dy}{dx} + y = 0$.

Replace $\frac{dy}{dx}$ by $-\frac{dx}{dy}$ to get $x \frac{dx}{dy} - y = 0$

Integrating $x \frac{dx}{dy} - y \frac{dy}{dx} = 0$

$$\Rightarrow x^2 - y^2 = c$$

This is the family of the required orthogonal trajectories.

Concept Application Exercise 10.8

1. Find the equation of the curve in which the subnormal varies as the square of the ordinate.
2. Find the curve for which the length of normal is equal to the radius vector.
3. Find the curve for which the perpendicular from the foot of the ordinate to the tangent is of constant length.

4. A curve $y = f(x)$ passes through the origin. Through any point (x, y) on the curve, lines are drawn parallel to the co-ordinate axes. If the curve divides the area formed by these lines and co-ordinates axes in the ratio $m:n$, find the curve.

5. Find the orthogonal trajectories of family of curves $x^2 + y^2 = cx$.

6. Find the orthogonal trajectory of $y^2 = 4ax$ (a being the parameter).

TATISTICAL APPLICATIONS OF DIFFERENTIAL EQUATION

Example 10.39

The population of a certain country is known to increase at a rate proportional to the number of people presently living in the country. If after two years the population has doubled, and after three years the population is 20,000, estimate the number of people initially living in the country.

Sol. Let N denote the number of people living in the country at any time t, and let N_0 denote the number of people initially living in the country.

Then, from \[
\frac{dN}{dt} \propto N, \quad \frac{dN}{dt} - kN = 0
\]

which has the solution $N = ce^{kt}$ \hspace{1cm} (1)

At $t = 0$, $N = N_0$; hence, equation (1) states that $N_0 = ce^{k(0)}$, or that $c = N_0$.

Thus, $N = N_0 e^{kt}$ \hspace{1cm} (2)

At $t = 2$, $N = 2N_0$.

Substituting these values into equation (2), we have

$2N_0 = N_0 e^{2k}$ from which $k = \frac{1}{2} \ln 2$

Substituting this value into equation (1) gives

$N = N_0 e^{\frac{1}{2} \ln 2}$ \hspace{1cm} (3)

At $t = 3$, $N = 20,000$.

Substituting these values into equation (3), we obtain

$20,000 = N_0 e^{(3/2) \ln 2} \Rightarrow N_0 = 20,000 / 2\sqrt{2} \approx 7071$.

Example 10.40

What constant interest rate is required if an initial deposit placed into an account accrues interest compounded continuously is to double its value in six years?

$(\ln 2 | 2 | = 0.6930$)

Sol. The balance $N(t)$ in the account at any time t,

\[\frac{dN}{dt} - kN = 0, \text{ its solution is } N(t) = ce^{kt} \]

Let initial deposit be N_0.

At $t = 0$, $N(0) = N_0$, which when substituted into equation (1) yields

$N_0 = ce^{k(0)} = c$

and equation (1) becomes $N(t) = N_0 e^{kt}$ \hspace{1cm} (2)

We seek the value of k for which $N = 2N_0$ when $t = 6$.

Substituting these values into (2) and solving for k we find

$2N_0 = N_0 e^{k(6)} \Rightarrow e^{6k} = 2 \Rightarrow k = \frac{1}{6} \ln |2| = 0.1155$

An interest rate of 11.55 percent is required.

PHYSICAL APPLICATIONS OF DIFFERENTIAL EQUATION

Example 10.41

Find the time required for a cylindrical tank of radius r and height H to empty through a round hole of area a at the bottom. The flow through the hole is according to the law $v(t) = k \sqrt{2g} h(t)$, where $v(t)$ and $h(t)$ are respectively, the velocity of flow through the hole and the height of the water level above the hole at time t and g is the acceleration due to gravity.

Sol.
Let at time t the depth of water is h and radius of water surface is r.
If in time dt the decrease of water level is dh, then

$$-\pi r^2 \, dh = ak \sqrt{2gh} \, dt$$

$$\Rightarrow \quad -\frac{\pi r^2}{ak \sqrt{2g}} \, dh = dt$$

$$\Rightarrow \quad \frac{\pi r^2}{ak \sqrt{2g}} \, dh = dt$$

Now when $t = 0$, $h = H$ and when $t = t$, $h = 0$

then $\quad \frac{-\pi r^2}{ak \sqrt{2g}} \int_0^t dh = \int_0^t dt$

$\Rightarrow \quad -\frac{\pi r^2}{ak \sqrt{2g}} \left(2\sqrt{h} \right)_0^t = t$

$\Rightarrow \quad t = \frac{\pi r^2}{ak \sqrt{2g}} \frac{2\sqrt{H}}{\pi r^2} = \frac{\pi r^2}{ak \sqrt{2g}} \left(\frac{2H}{g}\right)$

Example 10.42 Suppose that a mothball loses volume by evaporation at a rate proportional to its instantaneous area. If the diameter of the ball decreases from 2 cm to 1 cm in 3 months, how long will it take until the ball has practically gone?

Sol. Let at any instance (t), radius of moth ball be r and v be its volume

$\Rightarrow \quad v = \frac{4}{3} \pi r^3$

$\Rightarrow \quad \frac{dv}{dt} = 4\pi r^2 \frac{dr}{dt}$

Thus, as per the information

$4\pi r^2 \frac{dr}{dt} = -k4\pi r^2$, where $k \in R^+$

$\Rightarrow \quad \frac{dr}{dt} = -k$

or $r = -kt + c$

at $t = 0, r = 2$ cm; $t = 3$ month, $r = 1$ cm

$\Rightarrow \quad c = 2, k = \frac{1}{3}$

$\Rightarrow \quad r = \frac{-1}{3}t + 2$

now for $r \to 0, t \to 6$

Hence, it will take six months until the ball is practically gone.

Example 10.43 A body at a temperature of $50 \, ^{\circ}F$ is placed outdoors where the temperature is $100 \, ^{\circ}F$.
If the rate of change of the temperature of a body is proportional to the temperature difference between the body and its surrounding medium. If after 5 min the temperature of the body is $60 \, ^{\circ}F$, find (a) how long it will take the body to reach a temperature of $75 \, ^{\circ}F$ and (b) the temperature of the body after 20 min.

Sol. Let T be the temperature of the body at time t and $T_m = 100$ (the temperature of the surrounding medium). We have

$$\frac{dT}{dt} = -k(T - T_m) \quad \text{or} \quad \frac{dT}{dt} + kT = kT_m, \quad \text{where} \quad k \text{ is constant of proportionality}.$$

$\Rightarrow \quad \frac{dT}{dt} + kT = 100k$

This differential equation whose solution is

$$T = ce^{-kt} + 100$$

Since $T = 50$ when $t = 0$, then from equation (1), $50 = ce^{-kt} + 100$, or $c = -50$.

Substituting this value in equation (1), we obtain

$$T = -50e^{-kt} + 100$$

At $t = 5$, we are given that $T = 60$; hence, from equation (2), $60 = -50e^{-5k} + 100$.

Solving for k, we obtain $-50 = -50e^{-5k}$ or $k = \frac{1}{5} \ln 50$

Substituting this value in equation (2), we obtain the temperature of the body at any time t as

$$T = -50e^{\frac{1}{5} \ln 50}t + 100$$

(a) We require t when $T = 75$. Substituting $T = 75$ in equation (3), we have

$$75 = -50e^{\frac{1}{5} \ln 50}t + 100$$

from which we get t

(b) We require T when $t = 20$. Substituting $t = 20$ in equation (3) and then solving for T, we find

$$T = -50e^{\frac{1}{5} \ln 50}(20) + 100$$

Concept Application Exercise 10.10

1. Find the time required for a cylindrical tank of radius 2.5 m and height 3 m to empty through a round hole of 2.5 cm with a velocity $2.5 \sqrt{h}$ ms $^{-1}$, h being the depth of the water in the tank.

2. If the population of country doubles in 50 years, in how many years will it triple under the assumption that the rate of increase is proportional to the number of inhabitants.

3. The rate at which a substance cools in moving air is proportional to the difference between the temperatures of the substance and that of the air. If the temperature of the air is 290 K and the substance cools from 370 K to 330 K in 10 min., when will the temperature be 295 K.
EXERCISES

Subjective Type

Solutions on page 10.27

1. Solve \(\frac{x + y}{y - x} \frac{dy}{dx} = x^2 + 2y^2 + \frac{y^4}{x^2} \).

2. Solve \(\left(1 + e^y \right) dx + e^y \left(1 - \frac{x}{y} \right) dy = 0 \).

3. Solve \(\frac{dy}{dx} = \frac{(x + y)^2}{(x + 2)(y - 2)} \).

4. Solve \(y \left(\frac{dy}{dx} \right)^2 + 2x \frac{dy}{dx} - y = 0 \) given that \(y(0) = \sqrt{5} \).

5. If \(y + \frac{d}{dx} (xy) = x \ln x + \log x \), find \(y(x) \).

6. If \(\int_0^x t y(t) dt = x^2 + y(x) \), then find \(y(x) \).

\(\sum_7 \) Given a function \(g \) which has a derivative \(g'(x) \) for every real \(x \) and which satisfies \(g(0) = 2 \) and \(g(x + y) = e^y g(x) + e^x g(y) \) for all \(x \) and \(y \). Find \(g(x) \) and determine the range of the function.

\(\sum_8 \) Let the function \(\ln(f(x)) \) is defined where \(f(x) \) exists for \(x \geq 2 \) and \(k \) is fixed positive real number. Prove that if \(\frac{d}{dx} (x f(x)) \leq k f(x) \), then \(f(x) \leq A x^k \) where \(A \) is independent of \(x \).

9. If \(y_1 \) and \(y_2 \) are the solutions of the differential equation \(\frac{dy}{dx} + Py = Q \), where \(P \) and \(Q \) are functions of \(x \) alone and \(y_2 = y_1 e^z \), then prove that \(z = 1 + c e^{-\int \frac{Q}{P} dx} \), where \(c \) is an arbitrary constant.

10. If \(y_1 \) and \(y_2 \) are two solutions to the differential equation \(\frac{dy}{dx} + P(x) y = Q(x) \). Then prove that \(y = y_1 + c (y_1 - y_2) \) is the general solution to the equation where \(c \) is any constant.

\(\sum_11 \) Find a pair of curves such that
 a. the tangents drawn at points with equal abscissas intersect on the \(y \)-axis.
 b. the normal drawn at points with equal abscissas intersect on the \(x \)-axis.
 c. one curve passes through \((1, 1)\) and other passes through \((2, 3)\).

12. Given two curves: \(y = f(x) \) passing through the point \((0, 1)\) and \(g(x) = \int_0^x f(t) dt \) passing through the point \((0, \frac{1}{n})\). The tangents drawn to both the curves at the points with equal abscissas intersect on the \(x \)-axis. Find the curve \(y = f(x) \).

13. A cyclist moving on \(\varepsilon \) level road at 4 m/s stops pedalling and lets the wheels come to rest. The retardation of the cycle has two components: a constant 0.08 m/s\(^2\) due to friction in the working parts and a resistance of 0.02 \(\sqrt{v} \) m where \(v \) is speed in meters per second. What distance is traversed by the cycle before it comes to rest? (consider in \(5 = 1.61 \)).

14. The force of resistance encountered by water on a motor boat of mass \(m \) going in still water with velocity \(v \) is proportional to the velocity \(v \). At \(t = 0 \) when its velocity is \(v_0 \), the engine is shut off. Find an expression for the position of motor boat at time \(t \) and also the distance travelled by the boat before it comes to rest. Take the proportionality constant as \(k > 0 \).

Objective Type

Solutions on page 10.31

Each question has four choices a, b, c, and d, out of which only one is correct.

1. The degree of the differential equation satisfying \(\sqrt{1-x^2} + \sqrt{1-y^2} = a(x - y) \) is
 a. 1
 b. 2
 c. 3
 d. None of these

2. The differential equation whose solution is \(Ax^2 + By^2 = 1 \), where \(A \) and \(B \) are arbitrary constants, is of
 a. second order and second degree
 b. first order and second degree
 c. first order and first degree
 d. second order and first degree

3. The differential equation of the family of curves \(y = e^x (A \cos x + B \sin x) \), where \(A \) and \(B \) are arbitrary constants, is
 a. \(\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + 2y = 0 \)
 b. \(\frac{d^2 y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0 \)
 c. \(\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 + y = 0 \)
 d. \(\frac{d^2 y}{dx^2} - 7 \frac{dy}{dx} + 2y = 0 \)

4. Differential equation of the family of circles touching the line \(y = 2 \) at \((0, 2)\) is
 a. \(x^2 + (y - 2)^2 + \frac{dy}{dx} (y - 2) = 0 \)
 b. \(x^2 + (y - 2) \left(2 - 2x \frac{dx}{dy} - y \right) = 0 \)
5. The differential equation of all parabolas whose axis are parallel to the y-axis is
 a. \(\frac{d^3 y}{dx^3} = 0 \)
 b. \(\frac{d^2 x}{dy^2} = C \)
 c. \(\frac{d^3 y}{dx^3} + \frac{d^2 x}{dy^2} = 0 \)
 d. \(\frac{d^3 y}{dx^3} + 2 \frac{dy}{dx} = C \)

6. A differential equation associated to the primitive
 \(y = a + be^{5x} + ce^{-7x} \) is (where \(y_n \) is nth derivative w.r.t. \(x \))
 a. \(y_3 - 3y_2 - 3y_1 = 0 \)
 b. \(4y_3 + 2y_2 - 20y_1 = 0 \)
 c. \(3y_3 + 2y_2 - 35y_1 = 0 \)
 d. None of these

where \(y_n \) represents nth order derivative.

7. The differential equation of all circles which pass through
 the origin and whose centres lie on the y-axis is
 a. \((x^2 - y^2) \frac{dy}{dx} - 2xy = 0 \)
 b. \((x^2 - y^2) \frac{dy}{dx} + 2xy = 0 \)
 c. \((x^2 - y^2) \frac{dy}{dx} - xy = 0 \)
 d. \((x^2 - y^2) \frac{dy}{dx} + xy = 0 \)

8. The form of the differential equation of the central conics
 \(ax^2 + by^2 = 1 \) is
 a. \(x = y \frac{dy}{dx} \)
 b. \(x + y \frac{dy}{dx} = 0 \)
 c. \(x \left(\frac{dy}{dx} \right)^2 + xy \frac{d^2 y}{dx^2} = y \frac{dy}{dx} \)
 d. None of these

9. The differential equation for the family of curve \(x^2 + y^2 - 2ay = 0 \), where \(a \) is an arbitrary constant, is
 a. \(2(x^2 - y^2) y' = xy \)
 b. \(2(x^2 + y^2) y' = xy \)
 c. \((x^2 - y^2) y' = 2xy \)
 d. \((x^2 + y^2) y' = 2xy \)

10. If \((e^x - x)^{-1} \), where \(y(0) = 0 \), then \(y \) is expressed explicitly as
 a. \(\frac{1}{2} \ln (1 + x^2) \)
 b. \(\ln (1 + x^2) \)
 c. \(\ln \left(x + \sqrt{1 + x^2} \right) \)
 d. \(\ln \left(x + \sqrt{1 - x^2} \right) \)

11. If \(y = \frac{x}{\log |cx|} \) (where \(c \) is an arbitrary constant) is the
 general solution of the differential equation
 \(dy/dx = y/x + \phi(x/y) \) then the function \(\phi(x/y) \) is
 a. \(x^2/y^2 \)
 b. \(-x^2/y^2 \)
 c. \(y^2/x^2 \)
 d. \(-y^2/x^2 \)

12. The differential equation whose general solution is given by
 \(y' = (c_1 \cos(x + c_2) - (c_3 e^{x + c_4}) + (c_5 \sin x)) \), where \(c_1, c_2, c_3, c_4, c_5 \) are arbitrary constants, is
 a. \(\frac{d^3 y}{dx^3} - \frac{d^2 y}{dx^2} + y = 0 \)
 b. \(\frac{d^3 y}{dx^3} + \frac{d^2 y}{dx^2} + \frac{dy}{dx} + y = 0 \)
 c. \(\frac{d^3 y}{dx^3} = y = 0 \)
 d. \(\frac{d^3 y}{dx^3} - \frac{d^2 y}{dx^2} + \frac{dy}{dx} - y = 0 \)

13. The solution to the differential equation \(y \log y + xy' = 0 \),
 where \(y(1) = e \), is
 a. \(x (\log y) = 1 \)
 b. \(xy (\log y) = 1 \)
 c. \((\log y)^2 = 2 \)
 d. \(\log y + \left(\frac{x^2}{2} \right) = 1 \)

14. If \(y = y(x) \) and \(\frac{2 + \sin x}{y + 1} \frac{dy}{dx} = -\cos x \), \(y(0) = 1 \), then
 \(y(\pi/2) \) equals
 a. \(1/3 \)
 b. \(2/3 \)
 c. \(-1/3 \)
 d. \(1 \)

15. The equation of the curves through the point \((1, 0)\) and
 whose slope is \(\frac{y-1}{x^2 + x} \) is
 a. \((y-1) (x + 1) + 2x = 0 \)
 b. \(2y(x-1) + x + 1 = 0 \)
 c. \(x(y-1)(x+1) + 2 = 0 \)
 d. None of these

16. The solution of the equation \(\frac{dy}{dx} = \frac{x (2 \log x + 1)}{\sin y + y \cos y} \) is
 a. \(y \sin y = x^2 \log x + \frac{x^2}{2} + c \)
 b. \(y \cos y = x^2 \log x (x + 1) + c \)
 c. \(y \cos y = x^2 \log x + \frac{x^2}{2} + c \)
 d. \(y \sin y = x^2 \log x + c \)

17. The solution of the equation \(\log (dy/dx) = ax + by \) is:
 a. \(\frac{e^{by}}{b} = \frac{e^{ax}}{a} + c \)
 b. \(\frac{e^{-by}}{-b} = \frac{e^{ax}}{a} + c \)
 c. \(\frac{e^{-by}}{-b} = \frac{e^{ax}}{a} + c \)
 d. None of these

18. The solution of the equation
 \((x^2y + x^2)dy + y'(x-1)dy = 0\) is given by
26. The slope of the tangent at \((x, y)\) to a curve passing through \((1, \frac{\pi}{4})\) is given by \(\frac{dy}{dx} = -\cos^2\left(\frac{y}{x}\right)\), then the equation of the curve is
 a. \(y = \tan^{-1}\left(\frac{e}{x}\right)\)
 b. \(y = x \tan^{-1}\left(\frac{x}{e}\right)\)
 c. \(y = x \tan^{-1}\left(\frac{e}{x}\right)\)
 d. None of these

27. If \(x \frac{dy}{dx} = y (\log y - \log x + 1)\), then the solution of the equation is
 a. \(\log \frac{y}{x} = cy\)
 b. \(\log y = cy\)
 c. \(\log x = cy\)
 d. None of these

28. The solution of differential equation
 \[yy' = x \left(\frac{y^2}{x^2} + \frac{f(y^2/x^2)}{f'(y^2/x^2)}\right)\]
 a. \(f(y^2/x^2) = cx^2\)
 b. \(x^2 f(y^2/x^2) = cy^2\)
 c. \(x^2 f(y^2/x^2) = cx\)
 d. \(f(y^2/x^2) = cy/x\)

29. The solution of \((x^2 + y^2) dy = (x^2 + y^2) dx\) is
 a. \(\log x = \log (x - y) + \frac{y + c}{x}\)
 b. \(\log x = 2 \log (x - y) + \frac{y + c}{x}\)
 c. \(\log x = \log (x - y) + \frac{x + c}{y}\)
 d. None of these

30. The solution of \((y + x + 5) dy = (y + x + 1) dx\) is
 a. \(\log ((y + 3)^3 + (x + 2)^3) + \tan^{-1}\frac{y + 3}{y + 2} + C\)
 b. \(\log ((y + 3)^3 + (x - 2)^3) + \tan^{-1}\frac{y - 3}{x - 2} + C\)
 c. \(\log ((y + 3)^3 + (x + 2)^3) + 2 \tan^{-1}\frac{y + 3}{x + 2} + C\)
 d. \(\log ((y + 3)^3 + (x + 2)^3) - 2 \tan^{-1}\frac{y + 3}{x + 2} + C\)

31. The slope of the tangent at \((x, y)\) to a curve passing through a point \((2, 1)\) is \(\frac{x^2 + y^2}{2xy}\), then the equation of the curve is
 a. \(2(x^2 - y^2) = 3x\)
 b. \(2(x^2 - y^2) = 6y\)
 c. \(x(x^2 - y^2) = 6\)
 d. \(x(x^2 + y^2) = 10\)

24. The solutions of \((x + y + 1) dy = dx\) is
 a. \(x + y + 2 = Ce^y\)
 b. \(x + y + 4 = C \log y\)
 c. \(\log (x + y + 2) = Cy\)
 d. \(\log (x + y + 2) = C - y\)

25. The solution of \(x^2 \frac{dy}{dx} - xy = 1 + \cos \frac{y}{x}\) is
 a. \(\tan \left(\frac{y}{2x}\right) = c - \frac{1}{2x^2}\)
 b. \(\tan \frac{y}{x} = c + \frac{1}{x}\)
 c. \(\cos \left(\frac{y}{x}\right) = 1 + \frac{c}{x}\)
 d. \(x^2 = (c + x^2) \tan \frac{y}{x}\)

19. Solution of differential equation \(dy - \sin x \sin y dx = 0\) is
 a. \(e^{\cos x} \tan \frac{y}{2} = c\)
 b. \(e^{\cos x} \tan y = c\)
 c. \(\cos x \tan y = c\)
 d. \(\cos x \sin y = c\)

20. The solution of \(\frac{dv}{dt} + \frac{k}{m} v = -g\) is
 a. \(v = ce^{-\frac{kt}{m}} - \frac{mg}{k}\)
 b. \(v = c - \frac{mg}{k} e^{-\frac{kt}{m}}\)
 c. \(v = c - \frac{mg}{k} e^{-\frac{kt}{m}}\)
 d. None of these

21. The solution of the equation \(dy/dx = \cos(x - y)\) is
 a. \(y + \cot \left(\frac{x - y}{2}\right) = C\)
 b. \(y + \cot \left(\frac{x - y}{2}\right) = C\)
 c. \(x + \tan \left(\frac{x - y}{2}\right) = C\)
 d. None of these

22. Solution of \(\frac{dy}{dx} + 2xy = y\) is
 a. \(y = c e^{x^2}\)
 b. \(y = c e^{2x}\)
 c. \(y = c e^{x}\)
 d. None of these

23. The general solution of the differential equation \(\frac{dy}{dx} + \sin x \frac{x + y}{2} = \sin \frac{x - y}{2}\) is
 a. \(\log \tan \left(\frac{y}{2}\right) = c - 2 \sin x\)
 b. \(\log \tan \left(\frac{y}{4}\right) = c - 2 \sin \left(\frac{x}{2}\right)\)
 c. \(\log \tan \left(\frac{y + \pi}{4}\right) = c - 2 \sin \left(\frac{x}{2}\right)\)
 d. None of these
32. Solution of the differential equation \((y + x \sqrt{xy}(x + y)) \) \(dx + (y \sqrt{xy}(x + y) - xy) \) \(dy = 0 \) is
\[
\begin{align*}
a. & \quad \frac{x^2 + y^2}{2} + \tan^{-1} \frac{y}{x} = c \\
b. & \quad \frac{x^2 + y^2}{2} + 2 \tan^{-1} \frac{x}{y} = c \\
c. & \quad \frac{x^2 + y^2}{2} + 2 \cot^{-1} \frac{x}{y} = c \\
d. & \quad None of these
\end{align*}
\]

33. The general solution of the differential equation, \(y' + y\phi'(x) - \phi(x) \cdot \phi'(x) = 0 \), where \(\phi(x) \) is a known function, is
\[
\begin{align*}
a. & \quad y = ce^{-\phi(x)} + \phi(x) - 1 \\
b. & \quad y = ce^{-\phi(x)} + \phi(x) - 1 \\
c. & \quad y = ce^{-\phi(x)} - \phi(x) + 1 \\
d. & \quad y = ce^{-\phi(x)} + \phi(x) + 1
\end{align*}
\]
where \(c \) is an arbitrary constant.

34. The solution of \(\frac{dy}{dx} = \frac{x^2 + y^2 + 1}{2xy} \) satisfying \(y(1) = 1 \) is given by
\[
\begin{align*}
a. & \quad a system of parabolas \\
b. & \quad a system of circles \\
c. & \quad y^2 = x(1 + x) - 1 \\
d. & \quad (x - 2)^2 + (y - 3)^2 = 5
\end{align*}
\]

35. The integrating factor of the differential equation \(\frac{dy}{dx} (x \log_e x) + y = 2 \log_e x \) is given by
\[
\begin{align*}
a. & \quad x \\
b. & \quad e^x \\
c. & \quad \log x \\
d. & \quad (\log x)^2
\end{align*}
\]

36. The solution of the differential equation \(x(y^2 + 1) (dy/dx) = y(1 - x^2) + x^3 \log x \) is
\[
\begin{align*}
a. & \quad y(x^2 + 1)/x = \frac{1}{4} - \frac{1}{2} x^2 + c \\
b. & \quad y(x^2 - 1)/x = \frac{1}{2} x^2 - \frac{1}{4} x^2 + c \\
c. & \quad y(x^2 + 1)/x = \frac{1}{2} x^2 - \frac{1}{4} x^2 + c \\
d. & \quad None of these
\end{align*}
\]

37. Integrating factor of differential equation \(\cos x \frac{dy}{dx} + y \sin x = 1 \) is
\[
\begin{align*}
a. & \quad \cos x \\
b. & \quad \tan x \\
c. & \quad \sec x \\
d. & \quad \sin x
\end{align*}
\]

38. Solution of the equation \(\cos^2 x \frac{dy}{dx} - (\tan 2x) y = \cos^4 x, \)
\[
|x| < \frac{\pi}{4}, \text{ when } y \left(\frac{\pi}{6} \right) = \frac{3\sqrt{3}}{8} \] is
\[
\begin{align*}
a. & \quad y = \tan 2x \cos^2 x \\
b. & \quad y = \cot 2x \cos^2 x \\
c. & \quad y = \frac{1}{2} \tan 2x \cos^2 x \\
d. & \quad y = \frac{1}{2} \cot 2x \cos^2 x
\end{align*}
\]

39. If integrating factor of
\[
x(1 - x^2) \, dy + (2x^2 - y - ax^3) \, dx = 0 \] is \(e^{P dx} \), then \(P \) is equal to
\[
\begin{align*}
a. & \quad 2x^3 - ax^3 \\
b. & \quad 2x^3 - 1 \\
c. & \quad \frac{2x^3 - a}{ax^3} \\
d. & \quad \frac{2x^3 - 1}{x(1 - x^2)}
\end{align*}
\]

40. A function \(y = f(x) \) satisfies \((x + 1) f'(x) - 2(x^2 + x) f(x) = \frac{e^{x^2}}{(x+1)^2} \) \(\forall x > -1. \)
If \(f(0) = 5 \), then \(f(x) \) is
\[
\begin{align*}
a. & \quad \frac{(3x+5)e^x}{x+1} \\
b. & \quad \frac{(6x+5)e^x}{x+1} \\
c. & \quad \frac{(6x+5)}{(x+1)^2} e^x \\
d. & \quad \frac{(5-6x)e^x}{x+1}
\end{align*}
\]

41. The solution of the differential equation
\[
\frac{dy}{dx} = \frac{1}{xy[x^2 \sin y + 1]} \] is
\[
\begin{align*}
a. & \quad x^2 (\cos y^2 - \sin y^2 - 2Ce^{-y^2}) = 2 \\
b. & \quad y^2 (\cos x^2 - \sin x^2 - 2Ce^{-x^2}) = 2 \\
c. & \quad x^2 (\cos y^2 - \sin y^2 - e^{-y^2}) = 4C \\
d. & \quad None of these
\end{align*}
\]

42. The general solution of the equation \(\frac{dy}{dx} = 1 + xy \) is
\[
\begin{align*}
a. & \quad y = ce^{-x^2/2} \\
b. & \quad y = ce^{x^2/2} \\
c. & \quad y = (x+c)e^{-x^2/2} \\
d. & \quad None of these
\end{align*}
\]

43. The solution of the differential equation \((x + 2y^3) \frac{dy}{dx} = y \) is
\[
\begin{align*}
a. & \quad \frac{x}{y^2} = y + c \\
b. & \quad \frac{x}{y} = y^2 + c \\
c. & \quad \frac{x^2}{y} = y^2 + c \\
d. & \quad \frac{y}{x} = x^2 + c
\end{align*}
\]

44. The solution of the differential equation
\[
\frac{dy}{dx} \cos x - y \sin x = -1, \text{ where } y \rightarrow -1 \text{ as } x \rightarrow \infty \] is
\[
\begin{align*}
a. & \quad y = \sin \frac{1}{x} - \cos \frac{1}{x} \\
b. & \quad y = \frac{x + 1}{x \sin \frac{1}{x}} \\
c. & \quad y = \cos \frac{1}{x} + \sin \frac{1}{x} \\
d. & \quad y = \frac{x + 1}{x \cos \frac{1}{x}}
\end{align*}
\]

45. The solution of the differential equation
\[
2x^2y \frac{dy}{dx} = \tan (x^2 y^2) - 2xy^2, \text{ given } y(1) = \frac{\pi}{x \sqrt{2}}, \text{ is}
\]
\[
\begin{align*}
a. & \quad \sin x^2 y^2 = e^{-2} \\
b. & \quad \sin (x^2 y^2) = x \\
c. & \quad \cos x^2 + x = 0 \\
d. & \quad \sin (x^2 y^2) = e^{x^2}
\end{align*}
\]

46. Solution of the differential equation
\[
\left[\frac{1}{x} - \frac{y^2}{(x-y)^2} \right] dx + \left[\frac{x^2}{(x-y)^2} - \frac{1}{y} \right] dy = 0 \] is
\[
\begin{align*}
a. & \quad \ln \left| \frac{x^2-xy}{y-x} \right| = c \\
b. & \quad \frac{xy}{x-y} = ce^{x/y} \\
c. & \quad \ln |xy| = c + \frac{xy}{x-y} \\
d. & \quad None of these
\end{align*}
\]
47. If \(y + x \frac{dy}{dx} = x \frac{\phi(xy)}{\phi(xy)} \), then \(\phi(xy) \) is equal to
 a. \(ke^{x^2/2} \)
 b. \(ke^{xy} \)
 c. \(ke^{xy} \)
 d. \(ke^{xy} \)

48. The solution of differential equation \((2y + x^2)dx + (x + x^3y^2)dy = 0\) is
 a. \(x^2y + \frac{x^3y^3}{3} = c \)
 b. \(xy^2 + x^2y^3 = c \)
 c. \(x^2y + \frac{x^4y^4}{4} = c \)
 d. None of these

49. The solution of \(ye^{-2xy}dx - (xe^{2xy})dy = 0 \) is
 a. \(e^{2xy} + y^2 = C \)
 b. \(xe^{2xy} + y = C \)
 c. \(2e^{2xy} + y^2 = C \)
 d. \(e^{2xy} + 2y^2 = C \)

50. The curve satisfying the equation \(\frac{dy}{dx} = \frac{y(x + y^3)}{x(y^3 - x)} \), passing through the point \((4, -2)\) is
 a. \(y^2 = -2x \)
 b. \(y = -2x \)
 c. \(y^3 = -2x \)
 d. None of these

51. The solution of differential equation
 \[\frac{x + y \frac{dy}{dx}}{y - x \frac{dy}{dx}} = \frac{x \cos^2(x^2 + y^2)}{y^3} \]
 is
 a. \(\tan(x^2 + y^2) = \frac{x^2 + c}{y^2} \)
 b. \(\cot(x^2 + y^2) = \frac{x^2 + c}{y^2} \)
 c. \(\tan(x^2 + y^2) = \frac{y^2 + c}{x^2} \)
 d. \(\cot(x^2 + y^2) = \frac{y^2 + c}{x^2} \)

52. The solution of the differential equation
 \[\frac{dy}{dx} = \frac{3x^2 - 2x^3 + 2xy}{x^2 - y^3} \]
 is
 a. \(\frac{y^2}{x} - x^3y^2 = c \)
 b. \(\frac{x^2 + x^3y^2}{y} = c \)
 c. \(\frac{x^2}{y} + x^3y^2 = c \)
 d. \(\frac{x^2}{y} - 2x^3y^2 = c \)

53. The solution of the differential equation
 \[\int(1 + x \sqrt{(x^2 + y^2)}) \, dx + \int(\sqrt{(x^2 + y^2)} - 1) \, dy = 0 \]
 is equal to
 a. \(x^2 + \frac{y^2}{2} + \frac{1}{3} (x^2 + y^2)^{3/2} = c \)
 b. \(x - \frac{y^3}{3} + \frac{1}{2} (x^2 + y^2)^{1/2} = c \)

54. Which of the following is not the differential equation of family of curves whose tangent form an angle of \(\pi/4 \) with the hyperbola \(xy = c^2 \)?
 a. \(\frac{dy}{dx} = \frac{x - y}{x + y} \)
 b. \(\frac{dy}{dx} = \frac{x}{x - y} \)
 c. \(\frac{dy}{dx} = \frac{x + y}{y - x} \)
 d. None of these

55. Tangent to a curve intercepts the \(y \)-axis at a point \(P \). A line perpendicular to this tangent through \(P \) passes through another point \((1, 0)\). The differential equation of the curve is
 a. \(y \frac{dy}{dx} - x \left(\frac{dy}{dx} \right)^2 = 1 \)
 b. \(x^2 \frac{dy}{dx} + \left(\frac{dy}{dx} \right)^2 = 0 \)
 c. \(\frac{y \, dx}{dy} + x = 1 \)
 d. None of these

56. The differential equation of the curve for which the initial ordinate of any tangent is equal to the corresponding subnormal
 a. is linear
 b. is homogeneous of second degree
 c. has separable variables
 d. is of second order

57. Orthogonal trajectories family of the curve \(x^{2/3} + y^{2/3} = a^{2/3} \), where \(a \) is any arbitrary constant, is
 a. \(x^{2/3} - y^{2/3} = c \)
 b. \(x^{4/3} - y^{4/3} = c \)
 c. \(x^{4/3} + y^{4/3} = c \)
 d. \(x^{1/3} - y^{1/3} = c \)

58. The differential equation of all non-horizontal lines in a plane is
 a. \(\frac{d^2y}{dx^2} = 0 \)
 b. \(\frac{dy}{dx} = 0 \)
 c. \(\frac{dy}{dx} = 0 \)
 d. \(\frac{dx}{dy} = 0 \)

59. The curve in first quadrant for which the normal at any point \((x, y)\) and the line joining the origin to that point form an isosceles triangle with the \(x \)-axis as base is
 a. an ellipse
 b. a rectangular hyperbola
 c. a circle
 d. None of these

60. The equation of the curve which is such that the portion of the axis of \(x \) cut off between the origin and tangent at any point is proportional to the ordinate of that point is
 a. \(x = y(a - b \log x) \)
 b. \(\log x = by^2 + a \)
 c. \(x^2 = y(a - b \log y) \)
 d. None of these
 (\(b \) is a constant of proportionality)

61. The family of curves represented by \(\frac{dy}{dx} = \frac{x^2 + x + 1}{y^2 + y + 1} \) and
 \(\frac{dy}{dx} = \frac{x^2 + y}{x^2 + x + 1} = 0 \)
10.20 Calculus

62. A normal at \(P(x, y) \) on a curve meets the \(x \)-axis at \(Q \) and \(N \) is the foot of the ordinate at \(P \). If \(NO = \frac{x(1 + y^2)}{1 + x^2} \), then the equation of curve given that it passes through the point \((3, 1)\) is
 a. \(x^2 - y^2 = 8 \)
 b. \(x^2 + 2y^2 = 11 \)
 c. \(x^4 - 5y^2 = 4 \)
 d. None of these

63. A curve is such that the mid-point of the portion of the tangent intercepted between the point where the tangent is drawn and the point where the tangent meets the \(y \)-axis lies on the line \(y = x \). If the curve passes through \((1, 0)\), then the curve is
 a. \(2y = x^2 - x \)
 b. \(y = x^2 - x \)
 c. \(y = x - x^2 \)
 d. None of these

64. The equation of a curve passing through \((2, 7/2)\) and having gradient \(1 - \frac{1}{x^2} \) at \((x, y)\) is
 a. \(y = x^2 + x + 1 \)
 b. \(xy = x^2 + x + 1 \)
 c. \(xy = x + 1 \)
 d. None of these

65. A normal at any point \((x, y)\) to the curve \(y = f(x) \) cuts a triangle of unit area with the axis, the differential equation of the curve is
 a. \(y^2 - x^2 \left(\frac{dy}{dx} \right)^2 = \frac{4dy}{dx} \)
 b. \(x^2 - y^2 \left(\frac{dy}{dx} \right)^2 = \frac{dy}{dx} \)
 c. \(x + y \frac{dy}{dx} = y \)
 d. None of these

66. The normal to a curve at \(P(x, y) \) meets the \(x \)-axis at \(G \). If the distance of \(G \) from the origin is twice the abscissa of \(P \), then the curve is a
 a. parabola
 b. circle
 c. hyperbola
 d. ellipse

67. The \(x \)-intercept of the tangent to a curve is equal to the ordinate of the point of contact. The equation of the curve through the point \((1, 1)\) is
 a. \(ye^{xy} = e \)
 b. \(xe^{xy} = e \)
 c. \(xe^{y/x} = e \)
 d. \(ye^{y/x} = e \)

68. The equation of a curve passing through \((1, 0)\) for which the product of the abscissa of a point \(P \) and the intercept made by a normal at \(P \) on the \(x \)-axis equals twice the square of the radius vector of the point \(P \), is
 a. \(x^2 + y^2 = x^4 \)
 b. \(x^2 + y^2 = 2x^4 \)
 c. \(x^2 + y^2 = 4x^4 \)
 d. None of these

69. The differential equation of all parabolas each of which has a latus rectum \(4a \) and whose axis is parallel to the \(x \)-axis is
 a. of order 1 and degree 2
 b. of order 2 and degree 3
 c. of order 2 and degree 1
 d. of order 2 and degree 2

70. The curve, with the property that the projection of the ordinate on the normal is constant and has a length equal to \(a \)
 a. \(a \ln \left(\sqrt{y^2 - a^2} + y \right) = x + c \)
 b. \(x + \sqrt{a^2 - y^2} = c \)
 c. \((y - a)^2 = cx \)
 d. \(ay = \tan^{-1} (x + c) \)

71. The solution of the differential equation \((2x^2 + y) \frac{dy}{dx} = (1 - 4xy^2)x^2 \) is given by
 a. \(3(x^2 y)^3 + y^3 - x^3 = c \)
 b. \(xy^2 + \frac{y^3}{3} - \frac{x^3}{3} + c = 0 \)
 c. \(\frac{2}{5} y x^2 + \frac{y^3}{3} = \frac{x^3}{3} - 4xy^3 + c \)
 d. None of these

72. The solution of the differential equation \((x \cot y + \log \cos x) \frac{dy}{dx} + \log \sin y - y \tan x \) is
 a. \(\frac{dr}{dt} + K = 0 \)
 b. \(\frac{dr}{dt} - K = 0 \)
 c. \(\frac{dr}{dt} = Kr \)
 d. None of these

73. Spherical rain drop evaporates at a rate proportional to its surface area. The differential equation corresponding to the rate of change of the radius of the rain drop if the constant of proportionality \(k > 0 \) is
 a. \(30 \text{ min} \)
 b. \(45 \text{ min} \)
 c. \(60 \text{ min} \)
 d. \(80 \text{ min} \)

74. Water is drained from a vertical cylindrical tank by opening a valve at the base of the tank. It is known that the rate at which the water level drops is proportional to the square root of water depth \(y \), where the constant of proportionality \(k > 0 \) depends on the acceleration due to gravity and the geometry of the hole. If \(t \) is measured in minutes and \(k = \frac{1}{15} \), then the time to drain the tank if the water is 4 m deep to start with is
 a. \(30 \text{ min} \)
 b. \(45 \text{ min} \)
 c. \(60 \text{ min} \)
 d. \(80 \text{ min} \)

75. The population of a country increases at a rate proportional to the number of inhabitants. \(f \) is the population which doubles in 30 years, then the population will triple in approximately
 a. \(30 \text{ years} \)
 b. \(45 \text{ years} \)
 c. \(48 \text{ years} \)
 d. \(54 \text{ years} \)

76. An object falling from rest in air is subject not only to the gravitational force but also to air resistance. Assume that the air resistance is proportional to the velocity with constant of proportionality as \(k > 0 \), and acts in a direction opposite to motion \((g = 9.8 \text{ m/s}^2) \). Then velocity cannot exceed
 a. \(9.8k \text{ m/s} \)
 b. \(98k \text{ m/s} \)
 c. \(k \text{ m/s} \)
 d. None of these
777. The solution of differential equation \(x^2 = 1 \)
\[
\begin{align*}
+ \left(\frac{x}{y} \right)^{-1} \frac{dy}{dx} + \left(\frac{x}{y} \right)^{-2} \left(\frac{dy}{dx} \right)^2 + \left(\frac{x}{y} \right)^{-3} \left(\frac{dy}{dx} \right)^3 + \ldots & = 0 \\
\end{align*}
\]
\[a. \ y^2 = x^2 (\ln x - 1) + c \quad b. \ y = x^2 (\ln x - 1) + c \]
\[c. \ y^2 = x (\ln x - 1) + c \quad d. \ y = x^2 e^{x^2} + c \]

78. The solution of the differential equation \(y''' - 3(y'')^2 \) is
\[a. \ x = A_1 y^2 + A_2 y + A_3 \quad b. \ x = A_1 y + A_2 \quad c. \ x = A_1 y^2 + A_2 y \quad d. \ None \ of \ these \]

79. Number of values of \(m \in N \) for which \(y = e^{mx} \) is a solution of the differential equation \(\frac{d^3 y}{dx^3} - 3 \frac{d^2 y}{dx^2} - 4 \frac{dy}{dx} + 12y = 0 \)
\[a. \ 0 \quad b. \ 1 \quad c. \ 2 \quad d. \ More \ than \ 2 \]

80. A curve passing through \((2, 3)\) and satisfying the differential equation \[
\int y(t) \, dt = x^2 y(x) , \ (x > 0) \]
\[a. \ x^2 + y^2 = 13 \quad b. \ y^2 = \frac{9}{2} \]
\[c. \ \frac{x^2 + y^2}{8} = 1 \quad d. \ xy = 6 \]

81. The solution of the differential equation \[
\frac{d^2 y}{dx^2} = \sin 3x + e^x + x^2 \]
when \(y(1) = 1 \) and \(y'(0) = 0 \) is
\[a. \ -\frac{\sin 3x}{9} + e^x + \frac{x^4}{12} + \frac{1}{3} x - 1 \]
\[b. \ -\frac{\sin 3x}{9} + e^x + \frac{x^4}{12} + \frac{1}{3} x \]
\[c. \ -\frac{\cos 3x}{3} + e^x + \frac{x^4}{12} + \frac{1}{3} x + 1 \]
\[d. \ None \ of \ these \]

82. The solution of the differential equation \[
\frac{x + \frac{x^2}{3!} + \frac{x^3}{5!} + \ldots}{dx - dy} = \frac{dx + dy}{1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots}
\]
\[a. \ 2y e^{x^2} = C e^{x^2} + 1 \quad b. \ 2y e^{x^2} = C e^{x^2} - 1 \quad c. \ y e^{x^2} = C e^{x^2} + 2 \quad d. \ None \ of \ these \]

83. The solution of the differential equation \[
x = x + \frac{x y dy}{dx} + \frac{x^2 y^2 (dy^2)}{2! (dx)^2} + \frac{x^3 y^3 (dy^3)}{3! (dx)^3} + \ldots \]
\[a. \ y = \ln (x) + c \quad b. \ y^2 = (\ln x)^2 + c \quad c. \ y = \log x + xy \quad d. \ xy = x^2 + c \]

84. The differential equation of the curve \[
\frac{y}{c-1} + \frac{x}{c+1} = 1 \]
given by
\[a. \ \frac{dy}{dx} + \frac{x + y}{c} = \frac{2}{c} \frac{dy}{dx} \]
\[b. \ \frac{dy}{dx} + \frac{x - y}{c} = \frac{2}{c} \frac{dy}{dx} \]
\[c. \ \frac{dy}{dx} + \frac{x + y}{c} = \frac{2}{c} \frac{dy}{dx} \]
\[d. \ None \ of \ these \]

85. The function \(f(\theta) = \frac{d}{d\theta} \tan \frac{\theta}{1 - \cos \theta \cos x} \) satisfies the differential equation
\[a. \ \frac{df}{d\theta} + 2f(\theta) \cot \theta = 0 \quad b. \ \frac{df}{d\theta} - 2f(\theta) \cot \theta = 0 \]
\[c. \ \frac{df}{d\theta} + 2f(\theta) = 0 \quad d. \ \frac{df}{d\theta} - 2f(\theta) = 0 \]

86. Differential equation of the family of curves \(v = A/r + B \), where \(A \) and \(B \) are arbitrary constants, is
\[a. \ \frac{d^2 v}{dr^2} + \frac{1}{r} \frac{dv}{dr} = 0 \quad b. \ \frac{d^2 v}{dr^2} - \frac{2}{r} \frac{dv}{dr} = 0 \]
\[c. \ \frac{d^2 v}{dr^2} + \frac{2}{r} \frac{dv}{dr} = 0 \quad d. \ None \ of \ these \]

87. The solution of the differential equation \(y'' - 8y'' = 0 \) where \(y(0) = \frac{1}{8} \), \(y'(0) = 0 \), \(y''(0) = 1 \) is
\[a. \ y = \frac{1}{8} \left(e^{8x} + x - \frac{7}{9} \right) \quad b. \ y = \frac{1}{8} \left(e^{8x} - x + \frac{7}{9} \right) \]
\[c. \ y = \frac{1}{8} \left(e^{8x} + x + \frac{7}{8} \right) \quad d. \ None \ of \ these \]

88. The solution of the differential equation
\[(e^{x^2} + e^{y^2}) \frac{dy}{dx} + e^{x^2} (xy^2 - x) = 0 \]
is
\[a. \ e^{x^2} (y^2 - 1) + e^{y^2} = C \quad b. \ e^{x^2} (y^2 - 1) + e^{y^2} = C \]
\[c. \ e^{x^2} (y^2 - 1) + e^{y^2} = C \quad d. \ e^{x^2} (y^2 - 1) + e^{y^2} = C \]

Multiple Correct Answers Type

Each question has four choices a, b, c, and d, out of which one or more answers are correct.

111. Which one of the following function(s) is/are homogeneous?
\[a. f(x,y) = \frac{x - y}{x^2 + y^2} \]
\[b. f(x,y) = \frac{1}{2} \frac{2}{x} \tan^{-1} \frac{x}{y} \]
\[c. f(x,y) = x (\ln \sqrt{x^2 + y^2} - \ln y) + ye^{xy} \]
\[d. f(x,y) = x \left[\ln \left(\frac{2x^2 + y^2 - \ln(x+y)}{x} \right) \right] + ye^{xy} - \frac{2x}{3x - y} \]

Solutions on page 10.44
2. For the differential equation whose solution is \((x - h)^2 + (y - k)^2 = a^2\) (a is a constant), its
a. order is 2
b. order is 3
c. degree is 2
d. degree is 3
3. The equation of the curve satisfying the differential equation \(y \left(\frac{dy}{dx} \right)^2 + (x - y) \frac{dy}{dx} - x = 0\) can be a
a. Circle
b. Straight line
c. Parabola
d. Ellipse
4. Which of the following equation(s) is/are linear?
\[\frac{dy}{dx} + \frac{y}{x} = \log x \]
\[y \left(\frac{dy}{dx} \right) + 4x = 0 \]
\[(2x + y^3) \left(\frac{dy}{dx} \right) = 3y \]
\[\text{None of these} \]
5. The solution of \(\frac{dy}{dx} = \frac{ax + h}{by + k} \) represents a parabola when
a. \(a = 0, b \neq 0 \)
b. \(a \neq 0, b = 0 \)
c. \(b = 0, a \neq 0 \)
d. \(a = 0, b \in R \)
6. The equation of the curve satisfying the differential equation \(y_2(x^2 + 1) = 2xy_1\) passing through the point \((0, 1)\) and having slope of tangent at \(x = 0\) as 3 (where \(y_2\) and \(y_1\) represents 2nd and 1st order derivative), then
a. \(y = f(x) \) is a strictly increasing function
b. \(y = f(x) \) is a non-monotonic function
c. \(y = f(x) \) has three distinct real roots
d. \(y = f(x) \) has only one negative root
7. Identify the statement(s) which is/are true.
\[f(x, y) = e^{ax} + \tan \frac{y}{x} \] is a homogeneous of degree zero.
\[x \sin \frac{y}{x} \text{ } \frac{dy}{dx} = 0 \] is a homogeneous differential equation.
\[f(x, y) = x^2 + \sin x \cos y \] is not homogeneous.
\[(x^2 + y^2) \frac{dx}{dy} - (xy^2 - y^3) \frac{dy}{dx} = 0 \] is a homogeneous differential equation.
8. The graph of the function \(y = f(x) \) passing through the point \((0, 1)\) and satisfying the differential equation \(\frac{dy}{dx} + y \cos x = \cos x \) is such that
a. It is a constant function
b. It is periodic
c. It is neither an even nor an odd function
d. It is continuous and differentiable for all \(x \)
9. If \(f(x), g(x) \) be twice differential functions on \([0, 2]\) satisfying \(f''(x) = g''(x), f'(1) = 2g'(1) = 4 \) and \(f(2) = 3g(2) = 9\), then
a. \(f(4) - g(4) = 10 \)
b. \(|f(x) - g(x)| < 2 \implies -2 < x < 0 \)
c. \(f(2) = g(2) \implies x = -1 \)
d. \(f(x) - g(x) = 2x \) has real root
10. The solution of the differential equation \((x^2y^2 - 1) \frac{dy}{dx} + 2xy^2 = 0\) is
a. \(1 + x^2y^2 = cy \)
b. \(1 + x^2y^2 = cy \)
c. \(y = 0 \)
d. \(y = -\frac{1}{x^2} \)
11. \(y = ae^{-bx} + b \) is a solution of \(\frac{dy}{dx} = \frac{y}{x^2} \), then
a. \(a \in R \)
b. \(b = 0 \)
c. \(b = 1 \)
d. \(a \) takes finite number of values
12. For equation of the curve whose subnormal is constant, then
a. Its eccentricity is 1
b. Its eccentricity is \(\sqrt{2} \)
c. Its axis is the x-axis
d. Its axis is the y-axis.
13. The solution of \(\frac{x \frac{dx}{dy} + y \frac{dy}{dx}}{x \frac{dy}{dx} - y \frac{dx}{dy}} = \frac{1 - x^2 - y^2}{x^2 + y^2} \) is
a. \(\sqrt{x^2 + y^2} = \sin (\tan^{-1}(y/x) + C) \)
b. \(\sqrt{x^2 + y^2} = \cos (\tan^{-1}(y/x) + C) \)
c. \(\sqrt{x^2 + y^2} = (\tan (\sin^{-1}(y/x)) + C) \)
d. \(y = x \tan \left(c + \sin^{-1} \left(\sqrt{x^2 + y^2} \right) \right) \)
14. The curves for which the length of the normal is equal to the length of the radius vector is/are
a. circles
b. rectangular hyperbola
c. ellipses
d. straight lines
15. In which of the following differential equation degree is not defined?
\[\frac{d^2 y}{dx^2} + 3 \left(\frac{dy}{dx} \right)^2 = x \log \left(\frac{d^2 y}{dx^2} \right) \]
\[\left(\frac{d^2 y}{dx^2} \right)^2 + \left(\frac{dy}{dx} \right)^2 = x \sin \left(\frac{d^2 y}{dx^2} \right) \]
\[x = \sin \left(\frac{dy}{dx} - 2y \right), \quad |y| < 1 \]
\[x - 2y = \log \left(\frac{dy}{dx} \right) \]
Statement 1: The differential equation of all circles in a plane must be of order 3.
Statement 2: There is only one circle passing through three non-collinear points.

Statement 1: The differential equation of the family of curves represented by \(y = Ae^x \) is given by \(\frac{dy}{dx} = y \).

Statement 2: \(\frac{dy}{dx} = y \) is valid for every member of the given family.

Statement 1: Degree of the differential equation \(2x - 3y + 2 = \log \left(\frac{dy}{dx} \right) \) is not defined.

Statement 2: In the given differential equation, the power of highest order derivative when expressed as the polynomials of derivatives is called degree.

Statement 1: Order of a differential equation represents number of arbitrary constants in the general solution.
Statement 2: Degree of a differential equation represents number of family of curves.

Statement 1: The order of the differential equation whose general solution is \(y = c_1 \cos 2x + c_2 \sin x + c_3 \cos^2 x + c_4 e^{2x} + c_5 e^{2x + c_6} \) is 3.

Statement 2: Total number of arbitrary parameters in the given general solution in the statement (1) is 3.

8. Which of the following is true about solutions of the differential equation \(y = x^2 + \frac{dy}{dx} \)?

a. The general solution of equation is family of parabolas
b. The general solution of equation is family of circles
c. The singular solution of equation is circle
d. The singular solution of equation is ellipse

6. The singular solution of the differential equation \(y = mx + m^3 \) where, \(m = \frac{dy}{dx} \) passes through the point

a. \((0, 0)\) b. \((0, 1)\) c. \((1, 0)\) d. \((-1, 0)\)

9. Global maximum value of \(y = f(x) \) for \(x \in [0, 2] \) is

a. 5 b. 7 c. 8 d. 9

10. The expression for the mass of the material remaining at any time \(t \) is

a. \(N = 50e^{-\frac{t}{(0.609)}} \) b. \(50e^{-\frac{t}{(0.609)}} \) c. \(N = 50e^{-\frac{t}{(0.609)}} \) d. None of these

where \(p = \frac{dy}{dx} \), is known as Clairaut's Equation. To solve equation (1), differentiate it with respect to \(x \), which gives either

\[
\frac{dp}{dx} = 0 \Rightarrow p = c
\]

or \(x + f'(p) = 0 \)

Note:

a. If \(p \) is eliminated between equations (1) and (2), the solution obtained is a general solution of equation (1).

b. If \(p \) is eliminated between equation (1) and (3), then solution obtained does contain any arbitrary constant and is not particular solution of equation (1).

This solution is called singular solution of equation (1).
11. The mass of the material after four hours
 a. \(50e^{-0.5\ln 9}\)
 b. \(50e^{-2n}\)
 c. \(50e^{-2n0.9}\)
 d. None of these

12. The time at which the material has decayed to one half of its initial mass
 a. \((\ln 1/2)/(1/2 \ln 9)\) hr
 b. \((\ln 2)/(-1/2 \ln 0.9)\) hr
 c. \((\ln 1/2)/(-1/2 \ln 0.9)\) hr
 d. None of these

For Problems 13 – 15

Consider a tank which initially holds \(V_0\) ltr. of brine that contains \(a\) lb of salt. Another brine solution, containing \(b\) lb of salt/ltr., is poured into the tank at the rate of \(e\) ltr/min while, simultaneously, the well-stirred solution leaves the tank at the rate of \(f\) ltr/min. The problem is to find the amount of salt in the tank at any time \(t\).

Let \(Q\) denote the amount of salt in the tank at any time. The rate of change of \(Q\), \(dQ/dt\), equals the rate at which salt enters the tank minus the rate at which salt leaves the tank. Salt enters the tank at the rate of \(be\) lb/min. To determine the rate at which salt leaves the tank, we first calculate the volume of brine in the tank at any time \(t\), which is the initial volume \(V_0\) plus the volume of brine added \(et\) minus the volume of brine removed \(ft\). Thus, the volume of brine at any time is \(V_0 + et - ft\) (a)

The concentration of salt in the tank at any time is \(Q/(V_0 + et - ft)\), from which it follows that salt leaves the tank at the rate of

\[f\left(\frac{Q}{V_0 + et - ft}\right)\text{ lb/min.}\]

Thus,

\[\frac{dQ}{dt} = be - f\left(\frac{Q}{V_0 + et - ft}\right)\]

or

\[\frac{dQ}{dt} = \frac{f}{V_0 + et - ft}Q = be\]

13. A tank initially holds 100 ltr. of a brine solution containing 20 lb of salt. At \(t = 0\), fresh water is poured into the tank at the rate of 5 ltr/min, while the well-stirred mixture leaves the tank at the same rate. Then the amount of salt in the tank after 20 min.
 a. \(20/e\)
 b. \(10/e\)
 c. \(40/e^2\)
 d. \(5/e\)

14. A 50 ltr. tank initially contains 10 ltr. of fresh water. At \(t = 0\), a brine solution containing 1 lb of salt per gallon is poured into the tank at the rate of 4 ltr/min, while the well-stirred mixture leaves the tank at the rate of 2 ltr/min. Then the amount of time required for overflow to occur is
 a. 30 min
 b. 20 min
 c. 10 min
 d. 40 min

15. In the above question, the amount of salt in the tank at the moment of overflow is
 a. 20 lb
 b. 50 lb
 c. 30 lb
 d. None of these

Matrix-Match Type

Solutions on page 10.48

Each question contains statements given in two columns which have to be matched.

Statements a, b, c, d in column I have to be matched with statements p, q, r, s in column II. If the correct matches are a-p, a-s, b-q, r, c-p, q and d-s, then the correctly bubbled \(4 \times 4\) matrix should be as follows:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II: Differential equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. order 1</td>
<td>p. of all parabolas whose axis is the x-axis</td>
</tr>
<tr>
<td>b. order 2</td>
<td>q. of family of curves (y = a(x+a)^2), where (a) is an arbitrary constant</td>
</tr>
<tr>
<td>c. degree 1</td>
<td>r. ((1 + 3\frac{dy}{dx})^{1/3} = 4\frac{d^3y}{dx^3})</td>
</tr>
<tr>
<td>d. degree 3</td>
<td>s. of family of curve (y^2 = 2c(x + \sqrt{c})), where (c > 0)</td>
</tr>
</tbody>
</table>

2. Column I | Column II

| a. If the function \(y = e^{x} + 2e^{-x}\) is a solution of the differential equation \(\frac{d^3y}{dx^3} - 12\frac{dy}{dx} = K\), then the value of \(K/3\) is |
| p. 3 | |

1.
b. Number of straight lines which satisfy the differential equation
\[\frac{dy}{dx} + x \left(\frac{dy}{dx} \right)^2 = y = 0 \] is

r. 2

c. If real value of \(m \) for which the substitution, \(y = u^m \) will transform the differential equation, \(2x^4 \frac{dy}{dx} + y^4 = 4x^6 \) into a homogeneous equation, then the value of \(2m \) is

s. 1

d. If the solution of differential equation \(x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} = 12y \) is
\[y = A x^m + B x^{-n}, \] then \(m + n \) is

Downloaded from jeemain.guru

Integer Type

1. If \(y = y(x) \) and it follows the relation \(4x^2 y' = y + 5 \sin x \), then \(y'(0) \) is equal to

2. If \(x^2 \frac{dy}{dx} = x^2 + y - 2, y(1) = 1 \), then \(y(2) \) equals

3. If the dependent variable \(y \) is changed to \(z \) by the substitution \(y = \tan z \) and the differential equation
\[\frac{d^2 y}{dx^2} = 1 + \frac{2(1+y)}{1+y^2} \left(\frac{dy}{dx} \right)^2 \] is changed to
\[\frac{d^2 z}{dx^2} = \cos^2 z + k \left(\frac{dz}{dx} \right)^2, \] then the value of \(k \) equals

4. Let \(y = y(t) \) be a solution to the differential equation \(y' + 2y = t^2 \), then \(16 \lim_{t \to \infty} y \) is

5. If the solution of the differential equation
\[\frac{dy}{dx} = \frac{1}{x \cos y + \sin 2y} \] is \(x = c e^{\sin y} - k(1 + \sin y) \), then the value of \(k \) is

6. If the independent variable \(x \) is changed to \(y \), then the differential equation \(x \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^3 - \frac{dy}{dx} = 0 \) is changed to
\[\frac{d^2 x}{dy^2} + \left(\frac{dx}{dy} \right)^2 = k \] where \(k \) equals

7. The curve passing through the point \((1, 1) \) satisfies the differential equation
\[\frac{dy}{dx} + \sqrt{(x^2 - 1)(y^2 - 1)} = 0. \] If the curve passes through the point \((\sqrt{2}, k) \) then the value of \(k \) is \([k]\) (where \([\cdot]\) represents greatest integer function)

8. A tangent is drawn at the point \((x_i, y_i) \) on the curve \(y = f(x) \), which intersects the \(x \)-axis at \((x_{i+1}, 0) \). Now, another tangent is drawn at \((x_i, y_i) \) on the curve which intersects the \(x \)-axis at \((x_{i+1}, 0) \) and the process is repeated \(n \) times, i.e., \(i = 1, 2, 3, ..., n \). If \(x_1, x_2, x_3, ..., x_n \) form an arithmetic progression with common difference equal to \(\log_e 3 \) and curve passes through \((0, 2) \). Now if curve passes through the point \((\sqrt{2}, k) \), then the value of \(k \) is

9. The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Also, curve passes through the point \((1, 1) \). Then the length of intercept of the curve on the \(x \)-axis is

Subjective

1. A normal is drawn at a point \(P(x, y) \) of a curve. It meets the \(x \)-axis at \(Q \). If \(PQ \) has constant length \(k \), then show that the differential equation describing such curves is
\[\frac{dy}{dx} = \pm \sqrt{k^2 - y^2}. \] Find the equation of such a curve passing through \((0, k)\).

(IIT-JEE, 1994)

2. Let \(y = f(x) \) be a curve passing through \((1, 1)\) such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Form the differential equation and determine all such possible curves.

(IIT-JEE, 1995)

3. Determine the equation of the curve passing through the origin, in the form \(y = f(x) \), which satisfies the differential equation
\[\frac{dy}{dx} = \sin(10x + 6y). \]

(IIT-JEE, 1996)

4. \(A \) and \(B \) are two separate reservoirs of water. Capacity of reservoir \(A \) is double the capacity of reservoir \(B \). Both the reservoirs are filled completely with water, their inlets are closed and then the water is released simultaneously from both the reservoirs. The rate of flow of water out of each reservoir at any instant of time is proportional to the quantity of water in the reservoir at the time. One hour after the water is released, the quantity of water is reservoir \(A \) is \(\frac{1}{2} \) times the quantity of water in reservoir \(B \). After how many hours do both the reservoirs have the same quantity of water?

(IIT-JEE, 1997)
5. Let \(u(x) \) and \(v(x) \) satisfy the differential equation \(\frac{du}{dx} + p(x)u = f(x) \) and \(\frac{dv}{dx} + p(x)v = g(x) \) are continuous functions. If \(u(x_1) \) for some \(x_1 \) and \(f(x) > g(x) \) for all \(x > x_1 \), prove that any point \((x, y)\) where \(x > x_1 \), does not satisfy the equations \(y = u(x) \) and \(y = v(x) \).

(IIT-JEE, 1997)

6. A curve \(C \) has the property that if the tangent drawn at any point \(P \) on \(C \) meets the co-ordinate axis at \(A \) and \(B \), then \(P \) is the mid-point of \(AB \). The curve passes through the point \((1, 1)\). Determine the equation of the curve.

(IIT-JEE, 1998)

7. A curve passing through the point \((1, 1)\) has the property that the perpendicular distance of the origin form the normal at any point \(P \) of the curve is equal to the distance of \(P \) from the \(x \)-axis. Determine the equation of the curve.

(IIT-JEE, 1999)

8. A country has a food deficit of 10%. Its population grows continuously at a rate of 3% per year. Its annual food production every year is 4% more than that of the last year. Assuming that the average food requirement per person remains constant, prove that the country will become self-sufficient in food after \(n \) years, where \(n \) is the smallest integer bigger than or equal to \(\ln 10 - \ln 9 \over \ln (1.04) - 0.03 \).

(IIT-JEE, 2000)

9. Let \(f(x), x \geq 0 \), be a non-negative continuous function, and let \(F(x) = \int_0^x f(t) \, dt, x \geq 0 \), if for some \(c > 0, f(x) \leq c \cdot F(x) \) for all \(x \geq 0 \), then show that \(f(x) = 0 \) for all \(x \geq 0 \).

(IIT-JEE, 2001)

10. A hemi-spherical tank of radius 2 m is initially full of water and has an outlet of 12 cm\(^2\) cross-sectional area at the bottom. The outlet is opened at some instant. The flow through the outlet is according to the law \(v(t) = 0.6 \sqrt{2gh(t)} \), where \(v(t) \) and \(h(t) \) are, respectively, the velocity of the flow through the outlet and the height of water level above the outlet at time \(t \), and \(g \) is the acceleration due to gravity. Find the time it takes to empty the tank. (Hint: Form a differential equation by relating the decrease of water level to the outflow).

(IIT-JEE, 2003)

11. A right circular cone with radius \(R \) and height \(H \) contains a liquid which evaporates at a rate proportional to its surface area in contact with air (proportionality constant \(= k > 0 \)). Find the time after which the cone is empty.

(IIT-JEE, 2004)

12. A curve \(C \) passes through \((2, 0)\) and the slope at \((x, y)\)

\[
\frac{(x + 1)^2 + (y - 3)}{x + 1}
\]

Find the equation of the curve.

(IIT-JEE, 2004)

13. If length of tangent at any point on the curve \(y = f(x) \) intercepted between the point and the \(x \)-axis is of length \(l \), Find the equation of the curve.

(IIT-JEE, 2005)

Objective

Fill in the blanks

1. A spherical rain drop evaporates at a rate proportional to its surface area at any instant \(t \). The differential equation giving the rate of change of the radius of the rain drop is

\[\frac{dr}{dt} = -kr^2 \]

(IIT-JEE, 1999)

Multiple choice questions with one correct answer

1. A curve \(y = f(x) \) passes through the point \((1, 1)\). The normal to the curve at \(P \) is \(y = -x + 1 \). If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the equation of the curve is

- a. \(y = e^{x-1} \)
- b. \(y = e^{2x} \)
- c. \(y = e^{x+2} \)
- d. None of these

(IIT-JEE, 1996)

2. The solution of the differential equation

\[\frac{dy}{dx} = x^2 + y^2 \]

is

- a. \(y = 2x \)
- b. \(y = 2x - 4 \)
- c. \(y = 2x + 4 \)
- d. \(y = 2x^2 - 4 \)

(IIT-JEE, 1999)

3. If \(y(x) \) is a solution of \((1 + t) \frac{dy}{dt} = y + 2x \), then \(y(x) \) is

- a. \(y = x + 1 \)
- b. \(y = 2x \)
- c. \(y = 2x - 4 \)
- d. \(y = 2x^2 - 4 \)

(IIT-JEE, 2003)

4. If \(y - y(x) = \frac{2 + \sin x}{y + 1} \), then \(y(x) \) is

- a. \(y = \frac{1}{3} \)
- b. \(y = 2 \)
- c. \(y = 1 \)
- d. \(y = 5 \)

(IIT-JEE, 2004)

5. The solution of the primitive integral equation \(\sqrt{x^2 + y^2} = x \), if \(y(1) = 1 \), then \(y(0) \) is

- a. \(\sqrt{2(e^2 - 1)} \)
- b. \(\sqrt{2(e^2 + 1)} \)
- c. \(\sqrt{3} e \)
- d. \(\frac{e^2 + 1}{2} \)

(IIT-JEE, 2005)

6. For the primitive integral equation \(ydx + y^2dy = x \), if \(y(0) = 1 \), then \(y(-3) \) is

- a. \(3 \)
- b. \(2 \)
- c. \(1 \)
- d. \(5 \)

(IIT-JEE, 2005)

7. The differential equation \(\frac{dy}{dx} = \frac{y}{\sqrt{1 - y^2}} \) determines a family of circles with

- a. Variable radii and a fixed centre at \((0, 1)\).
- b. Variable radii and a fixed centre at \((0, -1)\).
- c. Fixed radius 1 and variable centres along the \(x \)-axis.
- d. Fixed radius 1 and variable centres along the \(y \)-axis.

Multiple choice questions with one or more than one correct answers

1. The order of the differential equation whose general solution is given by \(y = (C_1 + C_2) \cos(x + C_3) - C_4e^{x + C_5} \), is

- a. 1
- b. 2
- c. 3
- d. 4
- e. 5

(IIT-JEE, 2005)
Integer type

1. Let \(f \) be a real-valued differentiable function on \(R \) (the set of all real numbers) such that \(f(1) = 1 \). If the \(y \)-intercept of the tangent at any point \(P(x, y) \) on the curve \(y = f(x) \) is equal to the cube of the abscissa of \(P \), then the value of \(f(-3) \) is equal to

\[(\text{IT-JEE, 2010}) \]

2. Let \(y'(x) + y(x)g(x) = g(x)g'(x), y(0) = 0, x \in R \), where \(f'(x) \) denotes \(\frac{df(x)}{dx} \), and \(g(x) \) is a given non-constant differentiable function on \(R \) with \(g(0) = g(2) = 0 \). Then the value of \(y(2) \) is

\[(\text{IT-JEE, 2011}) \]

3. Let \(f: [1, \infty) \) be a differentiable function such that \(f(1) = 2 \). If \(\int_1^x f(t)\,dt = 3xf(x) - x^3 \) for all \(x \geq 1 \), then the value of \(f(2) \) is

\[(\text{IT-JEE, 2011}) \]

ANSWERS AND SOLUTIONS

Subjective Type

1. \(\frac{x + y}{dx} \frac{dy}{dx} = x^2 + 2y^2 + \frac{y^4}{x^2} \)
\[\Rightarrow \frac{xdx + ydy}{(x^2 + y^2)^2} = \frac{ydx - xdy}{y^2} \frac{y^2}{x^2} \]
\[\Rightarrow \int \frac{d(x^2 + y^2)}{(x^2 + y^2)^2} = 2 \int \frac{1}{x^2 + y^2} d\left(\frac{x}{y}\right) \]
Integrating both sides, we get
\[\frac{2y}{x} = \frac{1}{(x^2 + y^2)^2} = c. \]

2. Given \((1 + e^{x/y}) dx + e^{x/y} \left(1 - \frac{x}{y}\right) dy = 0 \)
\[\Rightarrow \left(1 + e^{x/y}\right) \frac{dx}{dy} + e^{x/y} \left(1 - \frac{x}{y}\right) = 0 \]
Put \(x = vy \Rightarrow \frac{dx}{dy} = v + y \frac{dv}{dy} \)
\[\left(1 + e^v\right) \left(v + y \frac{dv}{dy}\right) + e^v(1 - v) = 0 \]
\[\Rightarrow \frac{dy}{y} = -\frac{(1 + e^v)}{(v + e^v)} \frac{dv}{dy} \]

Integrating, we get
\[\ln y = -\ln (v + e^v) + \ln c \]
\[\Rightarrow \ln \left[y \left(\frac{v}{y}\right)^{\frac{x}{y}}\right] = \ln c \]
\[\Rightarrow x + y e^{x/y} = c. \]

3. \(\frac{dy}{dx} = \frac{(x + y)^2}{(x + 2)(y - 2)} \)
\[\Rightarrow \frac{dy}{dx} = \frac{(x + 2 + y - 2)^2}{(x + 2)(y - 2)} \]
On putting \(X = x + 2 \) and \(Y = y - 2 \), the given differential equation reduces to
\[\frac{dY}{dX} = \frac{(X + Y)^2}{XY} \]
Put \(Y = VX \Rightarrow \frac{dY}{dX} = V + X \frac{dV}{dX} \)
\[\Rightarrow V + X \frac{dV}{dX} = \frac{(1 + V)^2}{V} \]
\[\Rightarrow \frac{V}{2V + 1} \frac{dV}{dX} = \frac{dX}{X} \]
\[\Rightarrow \int \left[1 - \frac{1}{1 + 2V}\right] dV = 2 \int \frac{dX}{X} \]
\[\Rightarrow V - \frac{1}{2} \ln (1 + 2V) = 2 \ln X + C \]
\[X^2 \left(1 + \frac{2Y}{X} \right) = Ce^{2Yx} \]

where \(X=x+2,\) and \(Y=y-2.\)

4. \(y \left(\frac{dy}{dx} \right)^2 + 2x \frac{dy}{dx} - y = 0 \)

Solving quadratic in \(\frac{dy}{dx},\) we get

\[\frac{dy}{dx} = -2x \pm \sqrt{4x^2 + 4y^2} \]

\[\frac{dy}{dx} = - \frac{x \pm \sqrt{x^2 + y^2}}{2y} \]

which is homogeneous.

Put \(y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \)

Then given equation transforms to

\[v + x \frac{dv}{dx} = -1 \pm \frac{1 + v^2}{v} \]

\[v^2 + xv \frac{dv}{dx} = -1 \pm \sqrt{1 + v^2} \]

\[(v^2 + 1) + \sqrt{1 + v^2} = xv \frac{dv}{dx} \]

\[\int \frac{vdv}{(1 + v^2) \pm \sqrt{v^2 + 1}} = \int \frac{dx}{x} \]

\[\int \frac{vdv}{\sqrt{v^2 + 1} \left(\frac{1}{1 + v^2} \pm 1 \right)} = \int \frac{dx}{x} \]

Put \(\sqrt{1 + v^2} = t \Rightarrow v \frac{dv}{\sqrt{1 + v^2}} = dt \)

Then equation (1) transforms to

\[\int \frac{dt}{t} = \int \frac{dx}{x} \]

\[\ln t = - \ln x + \ln c \]

\[tx = c \]

\[\left(\sqrt{1 + v^2} \pm 1 \right)x = c \]

\[\sqrt{x^2 + y^2} \pm x = c \]

Given when \(x = 0; y = \sqrt{5} \)

\[\sqrt{5} = c \Rightarrow c = \sqrt{5} \]

\[\therefore \sqrt{x^2 + y^2} = \sqrt{5} \pm x \]

\[\Rightarrow x^2 + y^2 = 5 + x^2 \pm 2\sqrt{5} x \]

\[\Rightarrow y^2 = 5 \pm 2\sqrt{5} x \]

5. The given differential equation is

\[y + \frac{d}{dx} (xy) = x (\sin x + \log x) \]

i.e., \(x \frac{dy}{dx} + 2y = x (\sin x + \log x) \)

or \(\frac{dy}{dx} + \frac{2}{x} y = \sin x + \log x \)

This is a linear differential equation

\[\text{I.F.} = e^{\int \frac{1}{x} \, dx} = e^{\log x} = x \]

\[yx^2 = \int x^2 (\sin x + \log x) \, dx + c \]

\[= -x^2 \cos x + 2x \sin x + \frac{x^3}{3} \log x - \frac{x^3}{9} + c \]

or \(y = -\cos x + \frac{2}{x} \sin x + \frac{2}{x^2} \cos x + \frac{x}{3} \log x - \frac{x}{3} \pm \frac{c}{x^2} \)

6. \(\int \frac{t}{y(t)} \, dt = -x^2 + y(x) \)

Differentiating both sides w.r.t. \(x, \) we get

\[xy(x) = 2x + y' \]

hence \(\frac{dy}{dx} - xy = -2x \) (linear)

\[\text{I.F.} = e^{\int -x \, dx} = e^{-x^2/2} \]

\[\Rightarrow \text{solution is} \ y e^{-x^2/2} = \int -2x e^{-x^2/2} \, dx \]

\[\Rightarrow y = 2 + ce^{-x^2/2} \]

if \(x = a \Rightarrow a^2 + y = 0 \Rightarrow y = -a^2 \)

hence \(-a^2 = 2 + ce^{-x^2/2} \)

\[\Rightarrow ce^{-x^2/2} = -(2 + a^2) \]

\[\Rightarrow c = -(2 + a^2) e^{x^2/2} \]

\[\Rightarrow y = 2 - (2 + a^2) e^{x^2/2} \]

7. Put \(x = 0; y = 0 \Rightarrow g(0) = 0 \)

and \(g'(0) = \lim_{h \to 0} \frac{g(h)}{h} = 2 \)
Now \(g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \)
\[= \lim_{h \to 0} \frac{e^h g(x) + e^h g(h) - g(x)}{h} \]
\[= g(x) \lim_{h \to 0} \left(\frac{e^h - 1}{h} \right) + e^x \lim_{h \to 0} \frac{g(h)}{h} \]
\[\Rightarrow g'(x) = g(x) + 2e^x \]

Let \(g(x) = y \) then \(\frac{dy}{dx} = y + 2e^x \)
\[\Rightarrow e^{-x} \frac{dy}{dx} - ye^{-x} = 2 \]
\[\Rightarrow \frac{d}{dx} \left(ye^{-x} \right) = 2 \]
\[\Rightarrow ye^{-x} = 2x + c \]

Given if \(x = 0, y = 0 \) \(\Rightarrow c = 0 \)
Then \(ye^{-x} = 2x \) \(\Rightarrow y = 2xe^x \)

Now \(\frac{dy}{dx} = 2 \left[e^x + x e^x \right] = 0 \) \(\Rightarrow x = -1 \)
\[\Rightarrow \text{minima at } x = -1 \]
\[\Rightarrow \text{range is } \left[-\frac{2}{e}, \infty \right) \]

8. \(\frac{d}{dx} (xf(x)) \leq -kf(x) \)
\[\Rightarrow xf'(x) + f(x) \leq -kf(x) \]
\[\Rightarrow xf'(x) + (k+1)f(x) \leq 0 \]
\[\Rightarrow x^{k+1}f'(x) + (k+1)x^k f(x) \leq 0 \]
\[\Rightarrow \frac{d}{dx} \left[x^{k+1}f(x) \right] \leq 0 \]

Let \(F(x) = x^{k+1}f(x) \)
\(F(x) \) is decreasing for \(x \geq 2 \)
\[\Rightarrow F(x) \leq F(2) \text{ for all } x \geq 2 \]
\[\Rightarrow F(x) \leq (A) \]
\[\Rightarrow x^{k+1}f(x) \leq A \]
\[\Rightarrow f(x) \leq A \]

9. Given \(\frac{dy_1}{dx} + Py_1 = Q \) \(\Rightarrow dy_1 + Pdy_1 = Q \) \(\Rightarrow dy_2 + Pdy_2 = Q \) \(\Rightarrow dy_2 + Pdy_2 = Q \)

Clearly, we have to eliminate \(P \) and \(y_2 \).
In equation (2), put \(y_2 = zy_1 \)
\[\Rightarrow \frac{d}(zy_1) + Pzy_1 = Q \]

10. \(y_1, y_2 \) are the solutions of the differential equation \(\frac{dy}{dx} + P(x)y = Q(x) \)

Then \(\frac{dy_1}{dx} + P(x)y_1 = Q(x) \)
and \(\frac{dy_2}{dx} + P(x)y_2 = Q(x) \)

From equations (1) and (2), we get
\[\frac{d}{dx} \left(y - y_1 \right) + P(x)(y - y_1) = 0 \]

And from equations (2) and (3), we get
\[\frac{d}{dx} \left(y_1 - y_2 \right) + P(x)(y_1 - y_2) = 0 \]

Also from equations (4) and (5), we get
\[\frac{d}{dx} \left(y - y_1 \right) = \frac{(y - y_1)}{(y_1 - y_2)} \]
\[\Rightarrow \int \frac{d}{dx} \left(y - y_1 \right) = \int \frac{d}{dx} \left(y_1 - y_2 \right) \]
\[\Rightarrow \ln(y - y_1) = \ln(y_1 - y_2) + \ln c \]
\[\Rightarrow y - y_1 = c(y_1 - y_2) \]
\[\Rightarrow y = y_1 + c(y_1 - y_2) \]

11. Let the curve be \(y = f_1(x) \) and \(y = f_2(x) \) equation of tangents with equal abscissa, \(x \) are
\(Y - f_1(x) = f'(x)(X - x) \) and \(Y - f_2(x) = f'(x)(X - x) \)
These tangent intersect at y-axis, so their Y-intercept are same.

\[\Rightarrow -x f'(x) + f_1(x) = -x f'(x) + f_2(x) \]
\[\Rightarrow f_1(x) - f_2(x) = x(f'(x) - f'(x)) \]

\[\Rightarrow \int \frac{f_1'(x) - f_2'(x)}{f_1'(x) - f_2'(x)} = \int \frac{dx}{x} \]
\[\Rightarrow \ln |f_1(x) - f_2(x)| = \ln |x| + \ln C_1 \]
\[\Rightarrow f_1(x) - f_2(x) = \pm C_1 x \]

Now equation of normal with equal abscissa x are

\[(Y - f_1(x)) = -\frac{1}{f_1'(x)} (X - x), \text{ and} \]
\[(Y - f_2(x)) = -\frac{1}{f_2'(x)} (X - x) \]

As these normal intersect on the x-axis

\[\Rightarrow x + f_1(x)f_1'(x) = x + f_2(x)f_2'(x) \]
\[\Rightarrow f_1(x)f_1'(x) - f_2(x)f_2'(x) = 0 \]

Integrating, we get \(f_1^2(x) - f_2^2(x) = C_2 \)

\[\Rightarrow f_1(x) + f_2(x) = \frac{C_2}{f_1(x) - f_2(x)} \]
\[= \pm \frac{C_2}{C_1 x} \]

From equations (1) and (2), we get \(2f_1(x) = \pm \left(\frac{\lambda_2}{x} + C_1 x \right) \).

\[2f_2(x) = \pm \left(\frac{\lambda_2}{x} - C_1 x \right) \]
we have \(f_1(1) = 1 \) and \(f(2) = 3 \)

\[\Rightarrow f_1(x) = \frac{2}{x} - x, f_2(x) = \frac{2}{+x} \]

12. Equation of tangent to the curve \(y = f(x) \) is \(Y - y = f'(x)(X - x) \)

Equation of tangents to the curve \(g(x) = y_1 = \int f(t) dt \)

is \(Y - y_1 = f(x)(X - x) \)

\[\frac{dy_1}{dx} = g'(x) = f(x) \]

Since the tangent with equal abscissas intersect on the x-axis

\[\Rightarrow x - \frac{y}{f'(x)} = x - \frac{y_1}{f(x)} \]

\[\Rightarrow \frac{f(x)}{f'(x)} = \frac{y_1}{f(x)} \]

\[\Rightarrow g'(x) = g''(x) \]
\[\Rightarrow g(x) = c g'(x) \]

\[\Rightarrow g'(x) = c \]
\[\Rightarrow g(x) = ke^{cx} \]
\[\Rightarrow f(x) = g(x) = ke^{cx} \]

The curve \(y = f(x) \) passes through \((0, 1) \) \(\Rightarrow kc = 1 \)

The curve \(y = g(x) \) passes through \(\left(0, \frac{1}{n} \right) \)

\[\Rightarrow k = \frac{1}{n} \Rightarrow c = n \Rightarrow f(x) = e^{ax} \]

13. Let the cyclist starting to move from the point \(O \) and moving along \(OX \), attain a velocity \(v \) at point \(P \) in time \(t \) such that \(OP = x \). Let the acceleration of the moving cycle at \(P \) be \(a \). Then we know that

\[v = \frac{dx}{dt} \text{ and } a = \frac{dv}{dt} = \frac{d^2 x}{dt^2} = \frac{dv}{dx} \]

(1)

By hypothesis, retardation = 0.08 + 0.02 \(v^2 = 0.02(4 + v^2) \)

\[\Rightarrow v \frac{dv}{dx} = -0.02(4 + v^2) \text{ or } \]

\[\frac{dx}{0.02} = -\frac{v dv}{4 + v^2} \]

(2)

Integrating equation (2) between the limits \(x = 0; v = 4 \text{ m/s} \)

\[x = 0.04 \left[\ln(4 + v^2) \right]^0 \]

or \(x' = -\frac{1}{0.04} \left[\ln(4 - \ln 20) \right] \]

\[x' = -\frac{1}{0.04} \left[\ln 5 \right. \]

\[\left. = \frac{1}{0.04} = 25 \right. \]

14. The resistance force opposing the motion \(= m \times \text{acceleration} = m \frac{dv}{dt} \)

Hence differential equation is \(m \frac{dv}{dt} = -kv \)

\[\Rightarrow \frac{dv}{v} = -\frac{k}{m} dt \]

Integrating, we get \(\ln v = -\frac{m}{k} t + c \)

at \(t = 0, v = v_0 \). Hence \(c = \ln v_0 \)

\[\Rightarrow \ln v - \frac{k}{v_0} \]

\[\Rightarrow \frac{k}{v_0} = -\frac{k}{m} t \Rightarrow v = v_0 e^{-\frac{k}{m} t} \]

(1)
where \(v \) is the velocity at time \(t \)

now \[
\frac{ds}{dt} = \frac{k}{m} v_0 e^{-\frac{k t}{m}}
\]

\[
\Rightarrow ds = \frac{v_0 k t}{m} \ dt
\]

Boat's position at time \(t \) is,

\[
s(t) = \frac{v_0 m}{k} e^{-\frac{k t}{m}} + c
\]

if \(t = 0, s = 0 \) \(\Rightarrow c = \frac{v_0 m}{k} \)

\[
\therefore s(t) = \frac{v_0 m}{k} \left[1 - e^{-\frac{k t}{m}} \right]
\]

To find how far the boat goes,

we have to find \(\lim_{{t \to \infty}} s(t) = \frac{mv_0}{k} \).

Objective Type

1. a. Putting \(x = \sin A \) and \(y = \sin B \) in the given relation, we get

\[
\cos A + \cos B = \alpha (\sin A - \sin B)
\]

\(\Rightarrow A - B = 2 \cot^2 \alpha \)

\(\Rightarrow \sin^{-1} x - \sin^{-1} y = 2 \cot^2 \alpha \)

Differentiating w.r.t. \(x \), we get

\[
\frac{1}{\sqrt{1-x^2}} \frac{dy}{dx} = \frac{1}{\sqrt{1-y^2}}
\]

Clearly, it is a differential equation of degree one.

2. d. \(Ax^2 + By^2 = 1 \)

Differentiating w.r.t. \(x \), we get

\[
2Ax + 2By \frac{dy}{dx} = 0 \Rightarrow Ax + By \frac{dy}{dx} = 0
\]

(2)

Again diff. \(A + By \frac{d^2 y}{dx^2} + B \left(\frac{dy}{dx} \right)^2 = 0 \)

(3)

From equations (2) and (3), we get

\[
x \left[-By \frac{d^2 y}{dx^2} + B \left(\frac{dy}{dx} \right)^2 \right] + By \frac{dy}{dx} = 0
\]

\(\Rightarrow xy \frac{d^2 y}{dx^2} + x \left(\frac{dy}{dx} \right)^2 - y \frac{dy}{dx} = 0 \)

\(\therefore \) order = 2 and degree = 1

3. a. \(y = e^{x(A \cos x + B \sin x)} \)

\[
\frac{dy}{dx} = e^x[A \sin x + B \cos x] + e^x[A \cos x + B \sin x]
\]

(1)

Again differentiating w.r.t. \(x \), we get

\[
\frac{d^2 y}{dx^2} = e^x[-A \sin x + B \cos x] + e^x[A \cos x - B \sin x] + \frac{dy}{dx}
\]

(2)

\[
\frac{d^2 y}{dx^2} = \left(\frac{dy}{dx} - y \right) - y + \frac{dy}{dx}
\]

(3)

Using (1),

\[
\frac{d^2 y}{dx^2} - \frac{dy}{dx} + 2y = 0
\]

4. d. Equation of circle will be \(x^2 + (y-2)^2 + \lambda (y-2) = 0 \)

Differentiating, we get \(2x + 2(y-2) \frac{dy}{dx} + \lambda \frac{dy}{dx} = 0 \)

\(\therefore \) the equation is \(x^2 + (y-2)^2 - (y-2) \left(2x \frac{dy}{dx} + 2y-4 \right) = 0 \)

5. a. The equation of a member of the family of parabolas having axis parallel to \(y \)-axis is

\[
y = Ax^2 + Bx + C
\]

where \(A, B, \) and \(C \) are arbitrary constants

Differentiating equation (1) w.r.t. \(x \), we get \(\frac{dy}{dx} = 2Ax + B \)

(2)

which on again differentiating w.r.t. \(x \) gives \(\frac{d^2 y}{dx^2} = 2A \)

(3)

Differentiating (3) w.r.t. \(x \), we get \(\frac{d^3 y}{dx^3} = 0 \)

6. c. Differentiating the given equation successively, we get

\[
y_1 = 5 \ b e^{5x} - 7c e^{-7x}
\]

\(y_2 = 25 \ b e^{5x} + 49 ce^{-7x} \)

\(y_3 = 125 \ be^{13x} - 343 ce^{-7x} \)

Multiplying equation (1) by 7 and then adding to equation (2),

we get \(y_1 + 7y_1 = 60 be^{13x} \)

(4)

Multiplying equation (1) by 5 and then subtracting it from equation (2),

we get \(y_3 - 5y_1 = 84 ce^{-7x} \)

(5)

Putting the values of \(b \) and \(c \), obtained from equation (4)

and (5), respectively, in equation (1), we get

\[
y_3 + 2y_2 - 35y_1 = 0
\]

7. a. If \((0, k)\) be the centre on \(y \)-axis then its radius will be \(k \) as it passes through origin. Hence its equation is

\[
x^2 + (y - k)^2 = k^2
\]

or \(x^2 + y^2 = 2ky \)

(1)
\[\frac{d^2 y}{dx^2} = \frac{e^y - 2xe^y}{y} \quad \text{[by (1)]} \]
\[\Rightarrow e^y - 2xe^y - 1 = 0 \]
\[\Rightarrow 2e^y = 2x \pm \sqrt{4x^2 + 4} \]
But \(e^y = x - \sqrt{x^2 + 1} \). (Rejected)

Hence \(y = \ln \left(x + \sqrt{x^2 + 1} \right) \)

11. d. \[\log c + \log |x| = \frac{x}{y} \]

Differentiating w.r.t. \(x \),
\[\frac{y^2}{x} = \frac{y - x \frac{dy}{dx}}{y^2} \]
\[\Rightarrow \]
\[\frac{dy}{dx} = \frac{y}{x} \]

12. b. \(y = c_1 \cos(x + c_2) - (c_3 e^{-x} + c_4) + (c_5 \sin x) \)
\[\Rightarrow y = c_1 \cos x \cos c_2 - \sin x \sin c_2 \]
\[- (c_3 e^{-x} + c_5 \sin x) \]
\[\Rightarrow y = (c_1 \cos c_2) \cos x - (c_3 e^{-x} + c_5 \sin x) \sin x \]
\[\Rightarrow y = l \cos x + m \sin x - n e^{-x} \quad \text{[using equation (1)]} \]
where \(l, m, n \) are arbitrary constant

\[\Rightarrow \frac{dy}{dx} = -l \sin x + m \cos x + n e^{-x} \quad \text{(2)} \]

\[\Rightarrow \frac{d^2 y}{dx^2} = -l \cos x - m \sin x - n e^{-x} \quad \text{(3)} \]

\[\Rightarrow \frac{d^3 y}{dx^3} = l \sin x - m \cos x + n e^{-x} \quad \text{(4)} \]

From equations (1) + (3), \[\frac{d^2 y}{dx^2} + y = -2ne^{-x} \quad \text{(5)} \]

From equations (2) + (4), \[\frac{d^3 y}{dx^3} + \frac{dy}{dx} + y = 2ne^{-x} \quad \text{(6)} \]

From equations (5) + (6), we get \[\frac{d^3 y}{dx^3} + \frac{d^2 y}{dx^2} + \frac{dy}{dx} + y = 0 \]

13. a. \(x \frac{dy}{dx} + y \log y = 0 \)
\[
\int \frac{dy}{y(\log y)} = c
\]

\[
\int \frac{dx}{x} + \int \frac{dy}{y(\log y)} = c
\]

\[
\log x + \log (\log y) = \log c
\]

\[
x \cdot \log y = c
\]

\[
y(1) = e \Rightarrow c = 1
\]

Hence, the equation of the curve is \(x \log y = 1\)

4.a. \(\frac{1}{y+1} dy = -\frac{\cos x}{2+ \sin x} dx\)

Integrating, we get

\[
\log(y+1) + \log k + \log(2+\sin x) = 0
\]

\[
\Rightarrow k(y+1)(2+\sin x) = 1 \text{ when } x = 0, y = 1 \text{ where } k \text{ is constant.}
\]

\[
\Rightarrow 4k = 1 \text{ or } k = 1/4
\]

\[
\Rightarrow (y+1)(2+\sin x) = 4
\]

Now put \(x = \pi/2 \Rightarrow (y+1)3 = 4\)

\[
\Rightarrow y = \frac{1}{3}
\]

4.b. Given \(\frac{dy}{dx} = \frac{y-1}{x^2 + x}\)

\[
\Rightarrow \int \frac{1}{y-1} dy = \int \left(\frac{1}{x} - \frac{1}{x+1}\right) dx + C
\]

\[
\Rightarrow \frac{(y-1)(x+1)}{x} = k
\]

Putting \(x = 1, y = 0\), we get \(k = -2\)

The equation is \((y-1)(x+1) + 2x = 0\)

16.d. \((y \cos y + \sin y) \ dy = (2x \log x + x) \ dx\)

\[y \sin y - \int \sin y \ dy + \int \sin y \ dx\]

\[= x^2 \log x - \int x^2 \frac{1}{x} \ dx + \int x \ dx + c\]

\[\Rightarrow y \sin y = x^2 \log x + c\]

17.b. \(\frac{dy}{dx} = e^{ax+by} = e^{ax} e^{by}\)

or \(e^{-by} dy = e^{ax} dx\).

\[
\Rightarrow -\frac{1}{b} e^{-by} = \frac{1}{a} e^{ax} + c
\]

18.a. \(x^2(y+1) \ dx + y^2(x-1) \ dy = 0\)

\[
\Rightarrow \frac{x^2 dx}{x-1} = -\frac{y^2 dy}{y+1}
\]

19.a. \(dy - \sin x \sin y \ dx = 0\)

\[
\Rightarrow dy = \sin x \sin y \ dx
\]

\[
\Rightarrow \int \cosec y \ dy = \int \sin x \ dx
\]

\[
\Rightarrow \log \frac{\tan y}{2} = -\cos x + \log c
\]

\[
\Rightarrow e^{\cos x} \tan \frac{y}{2} = c
\]

20.a. \(\frac{dv}{dt} + \frac{k}{m} v = -g\)

\[
\Rightarrow \frac{dv}{dt} = -\frac{k}{m} \left(\frac{v+mg}{k}\right)
\]

\[
\Rightarrow \frac{dv}{v+mg/k} = \frac{k}{m} \ dt
\]

\[
\Rightarrow \log \left(\frac{v+mg/k}{m}\right) = -\frac{k}{m} t + \log c
\]

\[
\Rightarrow v + \frac{mg}{k} = ce^{-kt/m}
\]

\[
\Rightarrow v = ce^{\frac{-kt}{m}} - \frac{mg}{k}
\]

21.b. Putting \(u = x - y\), we get \(du/dx = 1 - dy/dx\). The given equation can be written as \(1 - du/dx = \cos u\)

\[
\Rightarrow (1 - \cos u) = du/dx
\]

\[
\Rightarrow \int \frac{du}{1 - \cos u} = \int dx + C
\]

\[
\Rightarrow \frac{1}{2} \int \cosec^2 (u/2) \ du = \int dx + C
\]

\[
\Rightarrow x + \cot (u/2) = c
\]
\[x + \cot \frac{x + y}{2} = C \]

22. a. \[\frac{dy}{dx} + 2xy = y \]

\[\Rightarrow \frac{dy}{dx} = y(1 - 2x) \]

\[\Rightarrow \frac{dy}{y} = (1 - 2x) \, dx \]

\[\Rightarrow \log y = x - x^2 + c_1 \]

\[y = e^{x - x^2} \, e^{c_1} = e^{x - x^2} \text{ where } c = e^{c_1} \]

\[y = ce^{x - x^2} \text{ is the required solution.} \]

23. b. We have \[\frac{dy}{dx} = \sin \frac{x - y}{2} - \sin \frac{x + y}{2} \]

\[= -2 \cos \frac{x}{2} \sin \frac{y}{2} \]

\[\Rightarrow \log \tan \frac{y}{4} = -\frac{x}{2} + c \]

\[\Rightarrow \log \tan \left(\frac{y}{4} \right) = c - 2 \sin \frac{x}{2} \]

24. a. Putting \(x + y + 1 = u \), we have \(du = dx + dy \) and the given equations reduces to

\[u(du - dx) = dx \]

\[\Rightarrow \frac{u \, du}{u + 1} = dx \]

\[\Rightarrow u - \log(u + 1) = x + C \]

\[\Rightarrow \log(x + y + 2) = y + C \]

\[\Rightarrow x + y + 2 = Ce^y \]

25. a. \[\frac{x^2 \, dy}{dx} - xy = 1 + \cos \frac{y}{x} \]

\[\Rightarrow \frac{x(xdy - ydx)}{dx} = 1 + \cos \frac{y}{x} \]

\[\Rightarrow \frac{x^2}{1 + \cos \frac{y}{x}} \, dy = \frac{dx}{x^3} \]

\[\Rightarrow \int \frac{dy}{1 + \cos \frac{y}{x}} = \int \frac{dx}{x^3} \]

\[\Rightarrow \frac{1}{2} \int \frac{dy}{\cos^2 \frac{y}{2x}} = \int \frac{dx}{x^3} \]

\[\Rightarrow \frac{1}{2} \left[\sec^2 \frac{y}{2x} \, d\left(\frac{y}{2x} \right) \right] = \frac{dx}{x^3} \]

\[\Rightarrow \frac{1}{2} \tan \frac{y}{2x} - \frac{1}{2} = \frac{x^2 - c}{2} \]

\[\Rightarrow \tan \frac{y}{2x} = \frac{x^2}{2} + c \]

26. c. We have, \[\frac{dy}{dx} = \frac{y - \cos^2 \left(\frac{y}{x} \right)}{x} \]

Putting \(y = vx \), so that \[\frac{dy}{dx} = v + x \frac{dv}{dx} \), we get

\[v + x \frac{dv}{dx} = v - \cos^2 v \]

\[\Rightarrow \frac{dv}{v - \cos^2 v} = \frac{dx}{x} \]

\[\Rightarrow \sec^2 u \, du = -\frac{dx}{x} \]

On integration, we get

\[\tan u = -\log x + \log C \]

\[\Rightarrow \tan \left(\frac{y}{x} \right) = -\log x + \log C \]

This passes through (1, \(\pi/4 \)), therefore 1 = \log C.

So, \[\tan \left(\frac{y}{x} \right) = -\log x + 1 \]

\[\Rightarrow \tan \left(\frac{y}{x} \right) = \log x + \log e \]

\[\Rightarrow y = x \tan^{-1} \left(\log \frac{e}{x} \right) \]

27. d. \[\frac{dy}{dx} = \frac{y}{x} \left[\log \frac{y}{x} + 1 \right] \]

Put \(y = vx \)

\[v + x \frac{dy}{dx} = v \log v + v \]

\[\Rightarrow \frac{dv}{v \log v} = \frac{dx}{x} \]

\[\Rightarrow \log (\log v) = \log x + \log c = \log cx \]

\[\Rightarrow \log \frac{y}{x} = cx \]

28. a. The given equation can be written as

\[\frac{y}{x} \frac{dy}{dx} = \left\{ \frac{y^2}{x^2} + f \left(\frac{y^2}{x^2} \right) \right\} \]

\[x \frac{dy}{dx} = \left\{ \frac{y^2}{x^2} + f \left(\frac{y^2}{x^2} \right) \right\} \]

Above equation is a homogeneous equation.
Putting \(y = vx \), we get
\[
\nu \left[v + x \frac{dy}{dx} \right] = v^2 + \frac{f(v^2)}{f(v^2)}
\]
\[
\Rightarrow \nu \frac{dv}{dx} = \frac{f(v^2)}{f(v^2)} \text{ variable separable}
\]
\[
\Rightarrow 2\nu \frac{v}{f(v^2)} \frac{dv}{v^2 + 1} = 2 \frac{dv}{x}
\]
Now integrating both sides, we get
\[
\log f(v^2) = \log x^2 + \log c \quad [\log c = \text{constant}]
\]
or \(\log f(v^2) = \log c x^2 \)
or \(f(v^2) = c x^2 \)
or \(f(v^2 x^2) = c x^2 \)
\]
\[39. \text{b.} \quad (x^2 + xy) \frac{dy}{dx} = (x^2 + y^2) \Rightarrow \frac{dy}{dx} = \frac{x^2 + y^2}{2xy} \]
Let \(\frac{y}{x} = \nu \Rightarrow \frac{dy}{dx} = \nu + x \frac{d\nu}{dx}
\]
\[
\therefore \text{equation reduces to}
\]
\[
\frac{dv}{dx} = \frac{1 + \nu^2}{1 + \nu} - \nu
\]
\[
= \frac{1 + \nu^2 - \nu^2}{1 + \nu}
\]
\[
= \frac{1 - \nu}{1 + \nu}
\]
\[
\Rightarrow \int \frac{1 + \nu}{1 - \nu} d\nu = \int \frac{dx}{x}
\]
\[
\Rightarrow -\int \left(1 - \frac{2}{1 - \nu} \right) d\nu = \int \frac{dx}{x}
\]
\[
\Rightarrow -\nu - 2 \log (1 - \nu) = \log x + \log c
\]
\[
\Rightarrow -\frac{\nu}{x} - 2 \log \left(\frac{x - \nu}{x} \right) = \log x + \log c
\]
\[
\Rightarrow -\frac{\nu}{x} - 2 \log (x - \nu) + 2 \log x = \log x + \log c
\]
\[
\Rightarrow \log x = 2 \log (x - \nu) + \frac{\nu}{x} + k \quad \text{where} \quad k = \log c
\]
\[30. \text{c.} \quad \text{The intersection of} \quad y - x + 1 = 0 \quad \text{and} \quad y + x + 5 = 0 \quad \text{is} \quad (-2, -3). \text{Put} \quad x = X - 2, y = Y - 3.
\]
\[31. \text{a.} \quad \frac{dy}{dx} = \frac{x^2 + y^2}{2xy} \quad (1)
\]
Put \(y = vx \). \frac{dy}{dx} = v + x \frac{dv}{dx}
\]
\[
\therefore \text{equation (1) transforms to}
\]
\[
\frac{v + x}{2vx} \frac{dv}{dx} = \frac{1 + v^2}{2v}
\]
\[
\Rightarrow \frac{dx}{dx} = \frac{1 + v^2}{2v} - v = \frac{1 - v^2}{2v}
\]
\[
\Rightarrow 2vdv = \frac{dx}{1 - v^2}
\]
\[
\Rightarrow \log x + \log (1 - v^2) = \log C
\]
\[
\Rightarrow x(1 - v^2) = C
\]
\[
\Rightarrow x \left(1 - \frac{y^2}{x^2}\right) = C
\]
\[
\Rightarrow x^2 - y^2 = Cx
\]
It passes through \((2, 1)\).
\[4 - 1 = 2C \Rightarrow C = \frac{3}{2}
\]
\[
\therefore \quad x^2 - y^2 = \frac{3}{2} x \Rightarrow 2(x^2 - y^2) = 3x
\]
32. b. The given equation is written as
\[y \, dx - x \, dy + x \sqrt{xy} \]
\[(x + y) dx + y \sqrt{xy} (x + y) \, dy = 0 \]
\[\Rightarrow y dx - x dy + (x + y) \sqrt{xy} (x dx + y dy) = 0 \]
\[\Rightarrow \frac{y dx - x dy}{y^2} + \left(\frac{x}{y} + 1 \right) \int \frac{x}{\sqrt{y}} \left(\frac{x^2 + y^2}{2} \right) = 0 \]
\[\Rightarrow d \left(\frac{x^2 + y^2}{2} \right) + \frac{d \left(\frac{x}{y} + 1 \right)}{\sqrt{y}} \left(\frac{x}{y} \right) = 0 \]
\[\Rightarrow \frac{x^2 + y^2}{2} + 2 \tan^{-1} \left(\frac{x}{y} \right) = c \]

33. a. \[\frac{dy}{dx} + y \phi(x) = x \phi'(x) \]
I.F. = \(e^{\int \phi(x) \, dx} = e^{\phi(x)} \)
Hence, the solution is
\[ye^{\phi(x)} = \int e^{\phi(x)} \phi(x) \phi'(x) \, dx \]
\[= \int e^{\phi(x)} \, dt, \text{ where } \phi(x) = t \]
\[= te^{\phi(x)} - e^{\phi(x)} + c \]
\[= \phi(x) e^{\phi(x)} - e^{\phi(x)} + c \]
\[\therefore y = ce^{\phi(x)} + \phi(x) - 1 \]

34. c. Rewriting the given equation as
\[2xy \frac{dy}{dx} - y^2 = 1 + x^2 \]
\[\Rightarrow 2y \frac{dy}{dx} - \frac{1}{x} y^2 = \frac{1}{x} + x \]
Putting \(y^2 = u, \) we have
\[\frac{du}{dx} - \frac{1}{x} u = \frac{1}{x} + x \]
I.F. = \(e^{\int \frac{1}{x} \, dx} = \frac{1}{x} \)
\[\therefore \text{ solution is } u \frac{1}{x} = \int \frac{1}{x^2 + 1} \, dx = - \frac{1}{x} + x + C \]
\[\Rightarrow y^2 = (x^2 - 1) + Cx \]
Since \(y(1) = 1 \) so \(C = 1. \)
Hence \(y^2 = x(1 + x) - 1 \) which represents a system of hyperbola.

35. c. \[\frac{dy}{dx} + \frac{y}{x \log_x x} = \frac{2}{x} \]
\[\therefore \text{ I.F.} = e^{\int \frac{1}{x \log_x x} \, dx} = e^{\log x \log_x x} = \log x \]

36. c. The given equation can be rewritten as
\[\frac{dy}{dx} + \frac{x^2 - 1}{x(x^2 + 1)} y = \frac{y^2}{(x^2 + 1)} \] (1)
which is linear. Also
\[P = \frac{x^2 - 1}{x(x^2 + 1)} \text{ and } Q = \frac{x^2 \log x}{(x^2 + 1)} \]
\[\int P \, dx = \int \left[\frac{2x}{x^2 + 1} - \frac{1}{x} \right] \, dx \]
[resolving into partial fractions]
\[= \log (x^2 + 1) - \log x \]
\[\therefore \text{ I.F.} = e^{\log \left(\frac{x^2 + 1}{x} \right)} = \frac{x^2 + 1}{x} \]
Hence the required solution of equation (1) is
\[y(x^2 + 1) = \int \frac{(x^2 + 1)}{x} \frac{x^2 \log x}{(x^2 + 1)} \, dx + c \]
\[= \int x \log x \, dx + c \]
\[= \frac{1}{2} x^2 \log x - \int \frac{1}{x^2} \, dx + c \]
\[\therefore y(x^2 + 1) = \frac{1}{2} x^2 \log x - \frac{1}{4} x^2 + c \]

37. c. \[\cos x \frac{dy}{dx} + y \sin x = 1 \]
\[\Rightarrow \frac{dy}{dx} + \frac{y \sin x}{\cos x} = \sec x \]
\[\therefore \int P \, dx = \int \frac{\sin x}{\cos x} \, dx \]
\[= - \log \cos x \]
\[= \log \sec x \]
\[\therefore \text{ I.F.} = e^{\int P \, dx} = e^{\log \sec x} = \sec x \]

38. c. The given differential equation can be written as
\[\frac{dy}{dx} - \frac{2x}{\cos^2 x} y = \cos^2 x \]
which is linear differential equation of first order.
\[
\int P \, dx = \int \frac{-\sin 2x}{\cos 2x \cos^2 x} \, dx
\]
\[
= -\int \frac{2\sin 2x \, dx}{\cos 2x (1 + \cos 2x)}
\]
\[
= \int \frac{dt}{t(1 + t)}
\]
\[
= \log \left(\frac{t}{1 + t} \right) \quad \text{where} \ t = \cos 2x
\]
\[
= \log \frac{\cos 2x}{1 + \cos 2x} \quad \left[\because -\frac{\pi}{2} < 2x < \frac{\pi}{2} \right]
\]
\[
\therefore e^{\int P \, dx} = e^{\log \frac{\cos 2x}{1 + \cos 2x}}
\]
\[
= \frac{\cos 2x}{1 + \cos 2x} = \frac{\cos 2x}{2 \cos^2 x}
\]
\[
\therefore \text{the solution is,}
\]
\[
y \frac{\cos 2x}{2 \cos^2 x} = \int \frac{\cos^2 x \cdot \cos 2x}{2 \cos^2 x} \, dx + C
\]
\[
= \frac{1}{4} \sin 2x + C
\]
\[
\text{When } x = \frac{\pi}{6}, y = \frac{3\sqrt{3}}{8}
\]
\[
\therefore \frac{3\sqrt{3}}{8} \times \frac{4}{2 \times 2 \times 3} = \frac{\sqrt{3}}{4} \times \frac{2}{4} + C \Rightarrow C = 0
\]
\[
\therefore y = \frac{1}{2} \tan 2x \cos^2 x
\]

39. d. \(x(1 - x^2) \frac{dy}{dx} + (2x^2y - y - ax^3) \, dx = 0\)
\[
\Rightarrow x(1 - x^2) \frac{dy}{dx} + 2x^2y - y - ax^3 = 0
\]
\[
\Rightarrow x(1 - x^2) \frac{dy}{dx} + (2x^2 - 1) = ax^3
\]
\[
\Rightarrow \frac{dy}{dx} + \frac{2x^2 - 1}{x(1 - x^2)} y = \frac{ax^3}{x(1 - x^2)}
\]
\[
\text{which is of the form } \frac{dy}{dx} + Py = Q.
\]

Its integrating factor is \(e^{\int P \, dx}\).

Here \(P = \frac{2x^2 - 1}{x(1 - x^2)}\).

40. b. \(f'(x) - \frac{2x(x+1)}{x+1} f(x) = \frac{e^x}{(x+1)^2}\)
\[
I. F. = e^{\int -\frac{2x \, dx}{x+1}} = e^{-x^2}
\]
\[
\therefore \text{solution is } f(x) e^{-x^2} = \int \frac{dx}{(x+1)^2} + C
\]
\[
\Rightarrow f(x) e^{-x^2} = -\frac{x}{x+1} + C
\]
Given \(f(0) = 5 \Rightarrow C = 6\)
\[
\therefore f(x) = \left(\frac{6x+5}{x+1} \right) e^{x^2}
\]

41. a. \(\frac{dy}{dx} = \frac{1}{xy[x^2 \sin y^2 + 1]}\)
\[
\Rightarrow \frac{dx}{dy} = xy[x^2 \sin y^2 + 1]
\]
\[
\Rightarrow \frac{1}{x^2} \frac{dx}{dy} - \frac{1}{x^2} y = y \sin y^2
\]

Putting \(-1/x^2 = u\), the last equation can be written as
\[
\frac{du}{dy} + 2uy = 2y \sin y^2.
\]
\[
I. F. = e^{\int 2u \, du} = e^{\sin y^2}
\]
\[
\therefore \text{solution is } ue^{\sin y^2} = \int 2y \sin y^2 e^{\sin y^2} \, dy + C
\]
\[
= \int (\sin t) e^t \, dt + C
\]
\[
= \frac{1}{2} e^{x^2} (\sin y^2 - \cos y^2) + C
\]
\[
\Rightarrow 2u = (\sin y^2 - \cos y^2) + 2Ce^{-y^2}
\]
\[
\Rightarrow 2x^2 = [\cos y^2 - \sin y^2 - 2Ce^{-y^2}]
\]

42. d. \(\frac{dy}{dx} = 1 + xy\)
\[
\Rightarrow \frac{dy}{dx} - xy = 1
\]
\[
I. F. = e^{\int -xy \, dx} = e^{-x^2/2}
\]

Hence solution is \(y e^{-x^2/2} = \int e^{-x^2/2} \, dx + c\).
\[
\int e^{-x^2/2} \, dx \text{ is not further integrable.}
\]

43. b. \(\frac{dx}{dy} = \frac{x + 2y^3}{y}\)
\[\frac{dx}{dy} - \frac{1}{y} x = 2y^2 \] which is linear

\[I.F. = e^{-\int \frac{dy}{y}} = e^{-\log y} = \frac{1}{y} \]

\[\therefore \text{ solution is } \frac{1}{y} x = \int \frac{1}{y} 2y^2 \, dy = y^2 + c \]

\[\Rightarrow \frac{x}{y} = y^2 + c \]

44. a. \[x^2 \frac{dy}{dx} \cos \frac{1}{x} - y \sin \frac{1}{x} = -1 \]

\[\Rightarrow \frac{dy}{dx} - \frac{y}{x^2} \tan \frac{1}{x} = -\sec \frac{1}{x} \frac{x}{x^2} \text{ (linear)} \]

\[I.F. = e^{-\int \frac{1}{x} \tan \frac{1}{x} \, dx} = \sec \frac{1}{x} \]

\[\Rightarrow \text{ solution is } y \sec \frac{1}{x} = -\int \sec^2 \left(\frac{1}{x} \right) \frac{1}{x^2} \, dx = \tan \frac{1}{x} + c \]

Given \(y \to -1, x \to \infty \Rightarrow c = -1 \)

Hence equation of curve is \(y = \sin \frac{1}{x} - \cos \frac{1}{x} \).

45. d. \[2x^2 y \frac{dy}{dx} = \tan \left(x^2 y^2 \right) - 2xy^2 \]

\[\Rightarrow \frac{x^2 y}{dy/dx} + y^2 \, 2x = \tan \left(x^2 y^2 \right) \]

\[\Rightarrow \frac{d}{dx} \left(x^2 y^2 \right) = \tan(x^2 y^2) \]

\[= \int \cot(x^2 y^2) \, dx = \int \frac{1}{x^2 y^2} \, dx = \tan \frac{1}{x} + c \]

\[\text{when } x = 1, y = \sqrt{\frac{\pi}{2}} \Rightarrow c = -1 \]

\[\Rightarrow \text{ Equation of curve is } x = \log \sin \left(x^2 y^2 \right) + 1 \]

\[\Rightarrow \log \sin(x^2 y^2) = x + 1 \]

\[\Rightarrow \sin \left(x^2 y^2 \right) = e^{x+1} \]

16. a. \[\frac{1}{x} \left(\frac{y^2}{x-y} \right) \, dx + \left(\frac{x^2}{(x-y)^2} \right) \left(-\frac{1}{y} \right) \, dy = 0 \]

\[\Rightarrow \left(\frac{dx}{x-y} \right) + \left(\frac{x^2 \, dy - y^2 \, dx}{(x-y)^2} \right) = 0 \]

\[\Rightarrow \left(\frac{dx}{x-y} \right) + \left(\frac{dy/y^2 - dx/x^2}{(1/y-1/x)^2} \right) = 0 \]

Integrating, we get \(\ln |x| - \ln |y| - \frac{1}{(1/x-1/y)} = c \)

47. a. Put \(xy = v \) \(: \ y + x \frac{dy}{dx} = \frac{dv}{dx} \)

\[\Rightarrow \frac{dv}{dx} = \phi(v) \]

\[\Rightarrow \phi(v) \frac{dv}{dx} = x \phi(v) \]

\[\Rightarrow \phi(v) \frac{dv}{x} = x \, dx \text{. Integrating, we get} \]

\[\log \phi(v) = \frac{x^2}{2} + \log k \]

\[\Rightarrow \frac{\phi(v)}{k} = \frac{x^2}{2} \]

or \(\phi(v) = ke^{x^2/2} \Rightarrow \phi(xy) = ke^{x^2/2} \)

48. a. \((2y + xy^3) \, dx + (x + x^2 y^2) \, dy = 0 \)

\[\Rightarrow (2y \, dx + x \, dy) + (y^3 \, dx + x^2 y^2 \, dy) = 0 \]

Multiplying by \(x \), we get \((2xy \, dx + x^2 \, dy) + (x^2 y^3 \, dx + x^3 y^2 \, dy) = 0 \)

\[\Rightarrow d(x^2 y) + \frac{1}{3} d(x^3 y^3) = 0 \]

Integrating, we get \(x^2 y + \frac{x^3 y^3}{3} = c \)

49. c. \(ye^{-xy} \, dx - (xe^{-xy})^2 \, dy = 0 \)

\[\Rightarrow (y \, dx - x \, dy) e^{-xy} = -y^3 \, dy \]

\[\Rightarrow \frac{y \, dx - x \, dy}{y^2} e^{-xy} = y \, dy \]

\[\Rightarrow d(x/y) e^{-xy} = y \, dy \]

\[\Rightarrow -e^{-xy} = \frac{y^2}{2} + C \]

\[\Rightarrow 2e^{-xy} + y^2 = C \]

50. c. \((xy^3 - x^2) \, dx - (xy + y^3) \, dx = 0 \)

\[\Rightarrow y^3 (x \, dy - y \, dx) - x \left(x \, dy + y \, dx \right) = 0 \]

\[\Rightarrow x^2 y^3 \left(\frac{x \, dy - y \, dx}{x^2} \right) - x \left(x \, dy + y \, dx \right) = 0 \]

\[\Rightarrow x^2 y^3 \left(\frac{y}{x} \, d \left(\frac{y}{x} \right) \right) - x \, dx = 0 \]

Dividing by \(x^3 y^3 \), we get \(\frac{y}{x} \, d \left(\frac{y}{x} \right) - \frac{d \left(\frac{y}{x} \right)}{x^2 y^2} = 0 \)

Now integrating \(\frac{1}{x} \left(\frac{y}{x} \right)^2 + \frac{1}{xy} = c \)

It passes through the point \((4, -2) \).
\[\Rightarrow \frac{1}{8} - \frac{1}{8} = c \Rightarrow c = 0 \]
\[\therefore y^3 = -2x \]

51. a. The given equation can be written as
\[\frac{x \; dx + y \; dy}{(y \; dx - x \; dy)/y^2} = y^2 \; \frac{x}{y^2} \cos^2(x^2 + y^2) \]
\[\Rightarrow \frac{xdx + ydy}{\cos^2(x^2 + y^2)} = \frac{x}{y} \left(\frac{ydx - xdy}{y^2} \right) \]
\[\Rightarrow \frac{1}{2} \sec^2(x^2 + y^2) \; d(x^2 + y^2) = \frac{x}{y} \; d\left(\frac{x}{y} \right) \]
On integrating, we get
\[\frac{1}{2} \tan(x^2 + y^2) = \frac{1}{2} \left(\frac{x^2}{y} \right) + c \]

or \[\tan(x^2 + y^2) = \frac{x^2}{y} + c \]

52. c. Re-write the D.E. as
\[(2xy \; dx - x^2 \; dy) + y^2 (2x^2 y^2 \; dx + 2x^2 y \; dy) = 0 \]
Dividing by \(y^2 \), we get
\[\frac{y \; 2x \; dx - x \; dy}{y^2} + \frac{y^2 \; 2x^2 \; dy + x^2 y \; 2y \; dy}{y^2} = 0 \]

or \[d\left(\frac{x^2}{y} \right) + d\left(y^3 \right) = 0 \]

Integrating, we get the solution
\[\frac{x^2}{y} + y^3 = c \]

53. c. \[\left(1 + x \sqrt{\frac{x^2 + y^2}{y^2}} \right) \; dx + \left\{ \frac{x^2 + y^2}{y^2} - 1 \right\} \; y \; dy = 0 \]
\[\Rightarrow dx - y \; dy + \frac{x^2 + y^2}{y^2} (dx + y \; dy) = 0 \]
\[\Rightarrow dx - y \; dy + \frac{1}{2} \sqrt{\frac{x^2 + y^2}{y^2}} \; d(x^2 + y^2) = 0 \]
Integrating, we have
\[x - \frac{y^2}{2} + \frac{1}{2} \int \sqrt{t} \; dt = c, \quad \left[t = \sqrt{\frac{x^2 + y^2}{y^2}} \right] \]
or \[x - \frac{y^2}{2} + \frac{1}{3} \left(x^2 + y^2 \right)^{3/2} = c \]

54. b. \(xy = C \)
\[\Rightarrow x \; \frac{dy}{dx} + y = 0 \]
\[\Rightarrow \frac{dy}{dx} = \frac{-y}{x} = m_1 \]

55. a.

By condition,
\[\tan \frac{x}{4} = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \]
\[1 = \left| \frac{\frac{y}{x} - m_2}{1 - \frac{y}{x} m_2} \right| \]
\[\Rightarrow \frac{y + m_2}{x} = 1 - \frac{y}{x} m_2 \quad \text{or} \quad \frac{y}{x} - m_2 = 1 \]
\[\Rightarrow m_2 = \frac{x}{y} + 1 \quad \text{or} \quad m_2 = \frac{y}{x} - 1 \]
\[\Rightarrow \frac{dy}{dx} = \frac{x - y}{x + y} \quad \text{or} \quad \frac{dy}{dx} = \frac{x + y}{y - x} \]

56. a. If \(y = f(x) \) is the curve,
\[Y - y = \frac{dy}{dx} (x - x) \]
Putting \(X = 0 \), the initial ordinate of the tangent is therefore \(y - x f'(x) \).

The subnormal at this point is given by \(y \frac{dy}{dx} \), so we have
\[y \frac{dy}{dx} = y - x \frac{dy}{dx} = \frac{y}{x + y} \]

This is a homogeneous equation and, by rewriting it as
\[\frac{dx}{dy} = x + y = \frac{x}{y} + 1 \Rightarrow \frac{dx}{y} - \frac{x}{y} = 1 \]
we see that it is also a linear equation.

57. b. \[x^{2/3} + y^{2/3} = \alpha^{2/3} \]
\[\Rightarrow \frac{2}{3} x^{-1/3} + \frac{2}{3} y^{-1/3} \frac{dy}{dx} = 0 \]
10.40 Calculus

\[\Rightarrow \frac{dy}{dx} = -\frac{x^{-\frac{1}{3}}}{y^{\frac{1}{3}}} \]
(1)

Replacing \(\frac{dy}{dx} \) by \(-\frac{dx}{dy} \)

\[\Rightarrow \frac{dx}{dy} = \frac{x^{\frac{1}{3}}}{y^{-\frac{1}{3}}} \]

\[\Rightarrow \int x^{\frac{1}{3}} \, dx = \int y^{\frac{1}{3}} \, dy \]

\[\Rightarrow x^{\frac{4}{3}} - y^{\frac{4}{3}} = c \]

58. **b.** The general equation of all non-horizontal lines in \(xy \)-plane is \(ax + by = 1 \), where \(a \neq 0 \).

Now, \(ax + by = 1 \)

\[\Rightarrow a \frac{dx}{dy} + b = 0 \quad [\text{Diff. w.r.t.} \, y] \]

\[\Rightarrow a \frac{d^2x}{dy^2} = 0 \quad [\text{Diff. w.r.t.} \, y] \]

\[\Rightarrow \frac{d^2x}{dy^2} = 0 \quad [\therefore a \neq 0] \]

Hence, the required differential equation is \(\frac{d^2x}{dy^2} = 0 \)

59. **b.** It is given that the triangle \(OPG \) is an isosceles triangle.

Fig. 10.9

Therefore, \(OM = MG = \text{sub-normal} \)

\[\Rightarrow x = y \frac{dy}{dx} \Rightarrow x \, dx = y \, dy \]

On integration, we get \(x^2 - y^2 = C \), which is a rectangular hyperbola.

60. **a.** Let the equation of the curve be \(y = f(x) \).

Fig. 10.10

It is given that \(OT = y \)

\[\Rightarrow OT = by \]

\[\Rightarrow OM - TM = by \]

\[\Rightarrow x - \frac{y}{dy/dx} = by \quad [\therefore TM = \text{Length of the subtangent}] \]

\[\Rightarrow x - y \frac{dx}{dy} = by \]

\[\Rightarrow \frac{dx}{dy} \frac{x}{y} = -b \]

It is linear differential equation.

Its solution is \(\frac{x}{y} = -b \log y + a \).

\[\Rightarrow x = y(a - b \log y) \]

61. **b.** For the family of curves represented by the first differential equation the slope of the tangent at any point \((x, y)\) is given by

\[\frac{dy}{dx} = \frac{x^2 + x + 1}{y^2 + y + 1} \]

For the family of curves represented by the second differential the slope of the tangent at any point is given by

\[\frac{dy}{dx} = \frac{-y^2 + y + 1}{x^2 + x + 1} \]

Clearly, \(\left(\frac{dy}{dx} \right) \times \left(\frac{dy}{dx} \right) = -1 \)

Hence, the two curves are orthogonal.

62. **c.** Equation of normal at point \(P(x, y) \), \(y - y = -\frac{dx}{dy}(X - x) \)

Fig. 10.11

\[NQ = y \frac{dy}{dx} = \frac{x(1 + y^2)}{1 + x^2} \]

\[\Rightarrow \frac{xdx}{1 + x^2} = \frac{ydy}{1 + y^2} \]

\[\Rightarrow \ln(1 + x^2) = \ln(1 + y^2) + \ln c \]

\[\Rightarrow 1 + y^2 = \frac{1 + x^2}{c} \]
It passes through (3, 1) \(\Rightarrow 1 + 1 = \frac{1+(3)^2}{c} \Rightarrow c = 5\)
\(\Rightarrow\) curve is \(5 + 5y^2 = 1 + x^2\) or \(x^2 - 5y^2 = 4\)

63. c. The point on y-axis is \((0, y - \frac{dy}{dx})\).

According to given condition,
\[
\frac{x}{2} = y - \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = 2\frac{y}{x} - 1
\]
putting \(\frac{y}{x} = v,\) we get \(x \frac{dv}{dx} = v - 1\)
\(\Rightarrow \ln \left| \frac{y}{x} - 1 \right| = \ln |x| + c\)
\(\Rightarrow 1 - \frac{y}{x} = x \quad \text{[as } y(1) = 0]\)

64. b. We have, \(\frac{dy}{dx} = 1 - \frac{1}{x^2} \Rightarrow y = x + \frac{1}{x} + C\)

This passes through (2, 7/2).
Therefore, \(\frac{7}{2} = 2 + \frac{1}{2} + C \Rightarrow C = 1\)
Thus the equation of the curve is
\[y = x + \frac{1}{x} + 1 \Rightarrow xy = x^2 + x + 1\]

65. d. Equation of normal at point \(P\) is \(Y - y = -\frac{dx}{dy}(X - x)\)

\[
\begin{align*}
\text{Fig. 10.12} \\
\text{Area of } \triangle OAB \text{ is } 1 \Rightarrow \frac{1}{2} \left(y \frac{dy}{dx} + x \right) \left(x \frac{dy}{dx} + y \right) = 1 \\
\Rightarrow \left(y \frac{dy}{dx} + x \right) \left(x \frac{dy}{dx} + y \right) = 2\frac{dy}{dx} \\
\Rightarrow y^2 \left(\frac{dy}{dx} \right)^2 + 2(xy - 1)\frac{dy}{dx} + x^2 = 0
\end{align*}
\]

66. c. Slope of tangent = \(\frac{dy}{dx}\)
\(\therefore\) slope of normal = \(-\frac{dx}{dy}\)
\(\therefore\) the equation of normal is:

\[
Y - y = -\frac{dx}{dy}(X - x)
\]

This meets x-axis \((y = 0),\) where
\[-y = -\frac{dx}{dy}(X - x) \Rightarrow X = x + y \frac{dy}{dx}\]
\(\therefore\) \(G\) is \((x + y \frac{dy}{dx}, 0)\)
\(\therefore\) \(OG = 2x \Rightarrow x + y \frac{dy}{dx} = 2x\)
\(\Rightarrow y \frac{dy}{dx} = x \Rightarrow y dy = xdx\)
Integrating, we get \(\int \frac{y^2}{2} = \frac{x^2}{2} + \frac{C}{2}\)
\(\Rightarrow y^2 - x^2 = c,\) which is a hyperbola.

67. a. Equation of tangent is \(Y - y = \frac{dy}{dx}(X - x)\)

for X-intercept \(Y = 0 \Rightarrow X = x - y \frac{dx}{dy}\)

According to question \(x - y \frac{dx}{dy} = y\)
\(\Rightarrow\) \(\frac{dy}{dx} = \frac{y}{x - y}\)
putting \(y = vx,\) we get
\(\Rightarrow\) \(v + x \frac{dv}{dx} = \frac{v}{1 - v}\)
\(\Rightarrow\) \(x \frac{dv}{dx} = \frac{v}{1 - v} - v = \frac{v - v + v^2}{1 - v}\)
\(\Rightarrow\) \(\int \frac{1 - v}{v} dv = \int \frac{dx}{x}\)
\(\Rightarrow\) \(- \frac{1}{v} \log v = \log x + c\)
\(\Rightarrow\) \(- \frac{x}{y} \log \frac{y}{x} = \log x + c\)
\(\Rightarrow\) \(- \frac{x}{y} = \log y + c\)
Given when \(x = 1, y = 1 \Rightarrow c = -1\)
Hence equation of curve is \(1 - \frac{x}{y} = \log y\)
\(\Rightarrow\) \(y = e e^{-xy} \Rightarrow e^{xy} = \frac{e}{y}\)
\(\Rightarrow\) \(ye^{xy} = e\)
68. a. Tangent at point \(P\) is \(y - y = -\frac{1}{m} (X - x)\) where \(m = \frac{dy}{dx}\)

Let \(Y = 0 \Rightarrow X = my + x\)

\[y = mx + n \]

![Fig. 10.13](image)

According to question, \(x (my + x) = 2 (x^2 + y^2)\)

\[\Rightarrow \frac{dy}{dx} = \frac{x^2 + 2y^2}{xy} \] (homogeneous)

Putting \(y = vx\), we get

\[\Rightarrow y + x \frac{dy}{dx} = \frac{1 + 2v^2}{v} \]

\[\Rightarrow x \frac{dy}{dx} = \frac{1 + 2v^2}{v} - v = \frac{1 + v^2}{v} \]

\[\Rightarrow \int \frac{y + x}{1 + v^2} \frac{dy}{dx} = \int \frac{dx}{x} \]

\[\Rightarrow \frac{1}{2} \log(1 + v^2) = \log x + \log c, c > 0 \]

\[\Rightarrow x^2 + y^2 = cx^4 \]

Also it passes through \((1, 0)\) then \(c = 1\).

69. c. Equation to the family of parabolas is \((y - k)^2 = 4a(x - h)\).

\[2(y - k) \frac{dy}{dx} = 4a \text{ (diff. w.r.t. } x) \]

\[\Rightarrow (y - k) \frac{dy}{dx} = 2a \]

\[\Rightarrow (y - k) \frac{d^2y}{dx^2} + \left(\frac{dy}{dx} \right)^2 = 0 \text{ (diff. w.r.t. } x) \]

\[\Rightarrow 2a \frac{d^2y}{dx^2} + \left(\frac{dy}{dx} \right)^3 = 0 \] (substituting \(y - k\) from equation (1))

Hence the order is 2 and the degree is 1.

70. a.

\[y = \sqrt{\frac{y}{x}} \]

\[\Rightarrow 0 \frac{d^2y}{dx^2} = -k \int dt \]

\[\Rightarrow 2\sqrt{y} = -k t = -\frac{t}{15} \]

\[\Rightarrow 0 - 4 = -\frac{t}{15} \]

\[t = 60 \text{ min.} \]

71. a. \(y (2x^4 + y) \frac{dy}{dx} = (1 - 4xy^3)x^2 \)

\[\Rightarrow 2x^4 y dy + y^2 dy + 4x^3 y^3 dx - x^2 dx = 0 \]

\[\Rightarrow 2x^2 y (x^2 dy + 2xy dx) + y^2 dy - x^2 dx = 0 \]

\[\Rightarrow 2x^2 y dx^2 y + y^2 dy - x^2 dx = 0 \]

Integrating, we get \((x^2 y)^2 + \frac{y^3}{3} - \frac{x^3}{3} = c \) or \(3(x^2 y)^2 + y^3 - x^3 = c \)

72. b. \((x \cot y + \log \cos x) dy + (\log \sin y - y \tan x) dx = 0 \)

\[\Rightarrow (x \cot y dy + \log \sin y dx) + (\log \cos x dy - y \tan x dx) = 0 \]

\[\Rightarrow \int d(x \log \sin y) + \int d(y \log \cos x) = 0 \]

\[\Rightarrow x \log \sin y + y \log \cos x = \log c \]

\[\Rightarrow (\sin y)^x (\cos x)^y = c \]

73. a. \(\frac{dV}{dt} = -kA\pi^2 \)

but \(V = \frac{4}{3} \pi r^3 \)

\[\frac{dV}{dt} = 4\pi^2 \frac{dr}{dt} \] (2)

Hence, \(\frac{dr}{dt} = -K. \)

74. c. According to the question

\[\frac{dy}{dt} = -k \sqrt{y} \]

\[\Rightarrow 0 \frac{dy}{\sqrt{y}} = -k \int dt \]

\[\Rightarrow 2\sqrt{y}^0 = -kt = -\frac{t}{15} \]

\[\Rightarrow 0 - 4 = -\frac{t}{15} \]

\[t = 60 \text{ min.} \]
75. c. Let population = x, at time t years. Given \(\frac{dx}{dt} \propto x \)

\[\Rightarrow \frac{dx}{dt} = kx \text{ where } k \text{ is a constant of proportionality} \]

or \(\frac{dx}{x} = k dt \). Integrating, we get \(\ln x = kt + \ln c \)

\[\Rightarrow \frac{x}{c} = e^{kt} \text{ or } x = ce^{kt} \]

If initially, i.e., when time \(t = 0 \), \(x = x_0 \) then \(x_0 = ce^0 = c \).

\[\Rightarrow x = cx_0^{ekt} \]

Given \(x = 2x_0 \) when \(t = 0 \) then \(2x_0 = x_0 e^{30k} \Rightarrow 2 = e^{30k} \)

\[\Rightarrow \ln 2 = 30k \]

(1)

To find \(t \), when \(t \) triples, \(x = 3x_0 \). \(\therefore 3x_0 = x_0 e^{kt} \Rightarrow 3 = e^{kt} \)

\[\Rightarrow \ln 3 = kt \]

(2)

Dividing equation (2) by (1) then \(t = \frac{30\ln 3}{\ln 2} \) or \(t = 30 \times \frac{\ln 3}{\ln 2} = 30 \times 1.5849 = 48 \text{ years (approx.)} \)

76. a. Let \(V(t) \) be the velocity of the object at time \(t \).

Given \(\frac{dV}{dt} = 9.8 - kV \Rightarrow \frac{dV}{dt} = \frac{9.8}{9.8 - kV} = dt \).

Integrating, we get \(\log(9.8 - kV) = -kt + \log C \)

\[\Rightarrow 9.8 - kV = Ce^{-kt} \]

But \(V(0) = 0 \) \(\Rightarrow C = 9.8 \)

Thus, \(9.8 - kV = 9.8 e^{-kt} \)

\[\Rightarrow V(t) = 9.8 \left(1 - e^{-kt} \right) \]

\[\Rightarrow \frac{dy}{dx} = \frac{9.8}{k} \left(1 - e^{-kt} \right) < \frac{9.8}{k} \]

for all \(t \). Hence, \(V(t) \) cannot exceed \(\frac{9.8}{k} \) m/s.

77. a. \(x^2 = e^{(\frac{x}{y})(\frac{dy}{dx})} \)

\[\Rightarrow x^2 = e^{(\frac{y}{x})(\frac{dy}{dx})} \]

\[\Rightarrow \ln x^2 = \frac{y}{x} \frac{dy}{dx} \]

\[\Rightarrow \int x \ln x^2 dx = \int y \frac{dy}{dx} \]

Putting \(x^2 = t \), we get \(2x dx = dt \)

\[\Rightarrow \frac{1}{2} \int \ln t dt = \frac{y^2}{2} \]

\[\Rightarrow c + t \ln t - t = y^2 \]

\[\Rightarrow y^2 = x^2 \ln x^2 - x^2 + c \]

78. a. \(y''y''' = 3(y'')^2 \)

\[\Rightarrow \int \frac{y'''}{y''} dx = 3 \left(\int \frac{y''}{y'} \right) dx \]

\[\Rightarrow \ln y'' = 3 \ln y' + \ln c \]

79. c. \(y = e^{mx} \) satisfies \(\frac{d^2 y}{dx^2} - 3 \frac{dy}{dx} + 4y = 12y = 0 \)

Then \(e^{mx} (m^2 - 3m + 4m + 12) = 0 \)

\[\Rightarrow m^2 + 12 = 0 \]

\[\Rightarrow m = \pm 2, 3 \]

\(m \in N \) hence \(m \in \{2, 3\} \)

80. d. \(\int t \cdot y(t) dt = x^2y(x) \)

Differentiating w.r.t. \(x \), we get \(xy(x) = x^2y'(x) + 2xy(x) \)

\[\Rightarrow xy(x) = x^2y'(x) \]

81. a. Integrating the given differential equation, we have

\[\frac{dy}{dx} = -\cos 3x + e^x + \frac{x^3}{3} + C_1 \]

so \(y_1(0) = 1 \)

\[\Rightarrow 1 = -\left(-\frac{1}{3} \right) + 1 + C_1 \Rightarrow C_1 = 1/3 \]

Again integrating, we get

\[y = -\sin 3x + e^x + \frac{x^4}{12} + \frac{1}{3} x + C_2 \]

but \(y_1(0) = 0 \) so \(0 = 0 + 1 + C_2 \Rightarrow C_2 = -1 \)

Thus \(y = -\sin 3x + e^x + \frac{x^4}{12} + \frac{1}{3} x - 1 \)

82. b. Applying componendo and dividendo

we get \(\frac{dy}{dx} = -e^{-x} e^x = e^{-2x} \)

\[\Rightarrow 2y = -e^{-2x} + C \]

\[\Rightarrow 2ye^{2x} = Ce^{2x} - 1 \]

83. b. The given equation is reduced to \(x = e^{xy(\frac{dy}{dx})} \)

\[\Rightarrow \log x = xy \frac{dy}{dx} \]

\[\Rightarrow \int y dy = \int x \log x dx \]

\[\Rightarrow y^2 = \frac{(\log x)^2}{2} + C' \]
84. c. \[\frac{x}{c-1} + \frac{y}{c+1} = 1 \]
\[\Rightarrow \frac{1}{c-1} + \frac{y'}{c+1} = 0 \]
\[\Rightarrow \frac{y'}{c+1} = \frac{c}{1} \]
\[\Rightarrow y' - c = \frac{c}{1} \]
\[\Rightarrow y' + 1 = c \]
Put value of \(c \) in equation (1)
\[\Rightarrow \frac{x}{y' - 1 - 1} + \frac{y}{y' + 1} = 1 \]
\[\Rightarrow x(y' + 1) + y(y' + 1) = 1 \]
\[\Rightarrow (y' + 1)(y - x) = 1 \]
\[\Rightarrow \left(1 + \frac{dy}{dx}\right)(y - x) = \frac{2dy}{dx} \]

85. a. We have
\[f(\theta) = \frac{d}{d\theta} \int_0^\theta \frac{dx}{1 - \cos^2 \theta} = \frac{1}{1 - \cos^2 \theta} \]
\[\text{[using Leibnitz's Rule]} \]
\[\Rightarrow \frac{df(\theta)}{d\theta} = -2\csc^2 \theta \cot \theta \]
\[\Rightarrow \frac{df(\theta)}{d\theta} = -2f(\theta)\cot \theta = 0 \]
\[\because f(\theta) = \csc^2 \theta \]

86. c. \[v = \frac{A}{r} + B \]
\[\frac{dv}{dr} = -\frac{A}{r^2} \]
\[\frac{d^2v}{dr^2} = \frac{2A}{r^3} \]
Eliminating \(A \) between equations (2) and (3), we get
\[r \frac{d^2v}{dr^2} = \frac{2A}{r^2} = 2 \left(-\frac{dv}{dr} \right) \]
\[\therefore \frac{d^2v}{dr^2} + \frac{2dv}{dr} = 0 \]
\[\Rightarrow \text{homogeneous} \]

87. c. \[y'' = 8 \Rightarrow y'' = 8x + C \]
When \(x = 0, y'' = 1 \) and \(\log 1 = 0 \) \[\therefore C = 0 \]
\[\therefore y'' = e^{8x} \text{. Integrating again} \]
\[y' = \frac{e^{8x}}{8} + \lambda \text{ when } x = 0, y'(0) = 0 \]
\[\therefore \lambda = -1/8 \]
\[\therefore y' = \frac{e^{8x}}{8} - \frac{1}{8} \text{. Integrating again} \]
\[y = \frac{e^{8x}}{64} - \frac{x}{8} + k \]
Also when \(x = 0, y = \frac{1}{8} \therefore k = \frac{7}{64} \)
\[\therefore y = \frac{1}{8} \left(\frac{e^{8x}}{8} - x + \frac{7}{8} \right) \]

88. a. \(y^2 = t; \ 2y \frac{dy}{dx} = \frac{dt}{dx}; \) hence the differential equation becomes
\[(e^{t^2} + e^t) \frac{dt}{dx} + 2e^{t^2} (xt - x) = 0 \]
\[e^{t^2} + e^t + 2e^{t^2} x(t - 1) \frac{dt}{dx} = 0 \]
put \(e^{t^2} = z; \ e^{t^2} 2x \frac{dx}{dt} = \frac{dz}{dt} \)
\[\Rightarrow z + e^{t^2} \frac{dx}{dt} = 0 \]
\[\Rightarrow \frac{dz}{dt} + \frac{z}{(t - 1)} = \frac{e^t}{(t - 1)} \text{; I.F.} = e^{\int \frac{dt}{t-1}} = e^{\ln(t-1)} = t-1 \]
\[\Rightarrow z = \int (e^t) dt \]
\[\Rightarrow z = -e^t + C \]
\[\Rightarrow e^{t^2} (y^2 - 1) = -e^{t^2} + C \]
\[\Rightarrow e^{t^2} (y^2 - 1) + e^{t^2} = C \]

Multiple Correct Answers

<table>
<thead>
<tr>
<th>Type</th>
<th>1. a, b, c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. f(\lambda x, \lambda y) = \frac{\lambda(x - y)}{\lambda^2 (x^2 + y^2)} = \lambda^{-1} f(x, y)</td>
<td>homogeneous of degree (-1).</td>
</tr>
</tbody>
</table>
| b. f(\lambda x, \lambda y) = (\lambda x)^{1/3} (\lambda y)^{-2/3} \tan^{-1} \frac{x}{y} \]
\[= \lambda^{-1/3} x^{1/3} y^{-2/3} \tan^{-1} \frac{x}{y} \]
\[= \lambda^{-1/3} f(x, y) \]
\[\Rightarrow \text{homogeneous} \]
| c. f(\lambda x, \lambda y) = \lambda x \left(\ln \sqrt{\lambda^2 (x^2 + y^2)} - \ln \lambda y \right) + \lambda ye^{x/y} \]
\[= \lambda x \left[\ln \left(\frac{\lambda \sqrt{x^2 + y^2}}{\lambda y} \right) \right] + \lambda ye^{x/y} \]
\[= \lambda x \left[\ln \left(\frac{\sqrt{x^2 + y^2}}{y} \right) \right] + ye^{x/y} \]
\[= \lambda f(x, y) \]
\[\Rightarrow \text{homogeneous} \]
\[df(\lambda x, \lambda y) = \lambda x \left(\ln \frac{2\lambda^2 x^2 + 2\lambda^2 y^2}{\lambda x \lambda (x+y)} + \lambda^2 x^2 \tan \frac{x+2y}{3x-y} \right) \]

\[= \lambda x \left(\ln \frac{2x^2 + 2y^2}{x(x+y)} + \lambda^2 x^2 \tan \frac{x+2y}{3x-y} \right) \]

\Rightarrow \text{non homogeneous}

(1)

We have \((x-h)^2 + (y-k)^2 = a^2\)

Differentiating w.r.t. \(x\), we get

\[2(x-h) + 2(y-k) \frac{dy}{dx} = 0 \]

\Rightarrow \((x-h) + (y-k) \frac{dy}{dx} = 0 \) \hspace{1cm} (2)

Differentiating w.r.t. \(x\), we get

\[1 + \left(\frac{dy}{dx} \right)^2 + (y-k) \frac{d^2 y}{dx^2} = 0 \]

From equation (3), \(y-k = -\left(1 + p^2 \right) \frac{y}{q} \), where \(p = \frac{dy}{dx} \)

\[q = \frac{d^2 y}{dx^2} \]

Putting the value of \(y-k \) in equation (2), we get

\[x-h = \frac{(1+p^2)p}{q} \]

Substituting the values of \(x-h \) and \(y-k \) in equation (1), we get

\[\left(1 + p^2 \right)^2 \frac{1}{q} (1 + p^2) - a^2 = \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^3 = a^2 \left(\frac{d^2 y}{dx^2} \right)^2 \]

which is the required differential equation.

1. a, b. \(y \left(\frac{dy}{dx} \right)^2 + (x-y) \frac{dy}{dx} - x = 0 \)

\[\Rightarrow \frac{dy}{dx} = \frac{(y-x) \pm \sqrt{(x-y)^2 + 4xy}}{2y} \]

\[\Rightarrow \frac{dy}{dx} = 1 \text{ which gives straight line} \]

or \(\frac{dy}{dx} = -\frac{x}{y} \text{ which gives circle} \)

4. a, c.

Obviously (a) is linear D.E. with \(P = \frac{1}{x} \) and \(Q = \log x \)

\[y \left(\frac{dy}{dx} \right) + 4x = 0 \Rightarrow \frac{dy}{dx} + \frac{4x}{y} = 0 \text{. Hence not linear.} \]

\[(2x+y^3) \left(\frac{dy}{dx} \right) = 3y \]

\[\Rightarrow \frac{dx}{dy} = \frac{2x + y^2}{3y} \]

\[\Rightarrow \frac{dx}{dy} = \frac{2x}{3y} + \frac{y^2}{3} \text{ which is linear with } P = \frac{2}{3y} \text{ and } Q = \frac{y^2}{3} \]

\[5. \text{ a, c. } \frac{dy}{dx} = \frac{ax + h}{by + k} \Rightarrow (by + k) \frac{dy}{dx} = (ax + h) dx \]

\[\Rightarrow \frac{b^2 y^2 + ky}{c^2} + \frac{a^2 x^2 + h^2 x}{c^2} = \frac{a^2 x^2 + h^2 x + C}{c^2} \]

For this to represent a parabola, one of the two terms \(x^2 \text{ or } y^2 \) is zero.

Therefore, either \(a = 0, b \neq 0 \) or \(a \neq 0, b = 0 \)

6. a, d.

The given differential equation is

\[y^2 (x^2 + 1) = 2xyy_1 \Rightarrow \frac{y_2}{y_1} = \frac{2x}{x^2 + 1} \]

Integrating both sides, we get

\[\log y_1 = \log (x^2 + 1) + \log C \Rightarrow y_1 = C(x^2 + 1) \]

It is given that \(y_1 = 3 \text{ at } x = 0 \)

Putting \(x = 0, y_1 = 3 \) in equation (1), we get \(3 = C \)

Substituting the value of \(C \) in (1), we obtain

\[y_1 = 3 \left(x^2 + 1 \right) \]

Integrating both sides w.r.t. \(x \), we get

\[y = x^3 + 3x + C_2 \]

This passes through the point \((0, 1)\). Therefore, \(1 = C_2 \)

Hence, the required equation of the curve is \(y = x^3 + 3x + 1 \)

Obviously it is strictly increasing from equation (2)

Also \(f(0) = 1 > 0 \), then the only root is negative.

7. a, b, c.

\[\frac{dy}{dx} + y \cos x = \cos x \text{ (linear)} \]

I.F. = \[e^{\int \cos x \, dx} = e^{\sin x} \]

\[. \text{ solution is } y e^{\sin x} = \int e^{\sin x} \cos x \, dx = e^{\sin x} + c \]

when \(x = 0, y = 1 \) then \(c = 0 \)

\[\Rightarrow y = 1. \text{ Hence options (a), (b), (d) are true.} \]

9. a, b, c.

We have, \(f''(x) = g''(x) \). On integration, We get

\[f'(x) = g'(x) + C \]

Putting \(x = 1 \), we get

\[f'(1) = g'(1) + C \Rightarrow 4 + 2 + C = 2 \Rightarrow C = 2 \]

\[. \Rightarrow f'(x) = g'(x) + 2 \]

Integrating w.r.t. \(x \), we get \[f(x) = g(x) + 2x + c_1 \]

Putting \(x = 2 \), we get

\[f(2) = g(2) + 4 + c_1 \Rightarrow 9 + 3 + c_1 \Rightarrow c_1 = 2 \]

\[. \Rightarrow f(x) = g(x) + 2x + 2 \text{. Putting } x = 4, \text{ we get } f(4) - g(4) = 10 \]

\[|f(x)| - g(x) < 2 \Rightarrow |2x + 2| < 2 \Rightarrow |x + 2| < 1 \Rightarrow -2 < x < 0 \]

Also \(f(2) = g(2) \Rightarrow 8 = -1 \)

\[f(x) - g(x) = 2x \text{ has no solution.} \]

10. b.

\[(x^2 y^2 - 1) \, dy + 2xy^3 \, dx = 0 \]

\[\Rightarrow x^2 y^2 \, dy + 2xy^3 \, dx = dy \]
\[x^2 \frac{dy}{dx} + 2xy = \frac{dy}{y^2} \]

\[\int d\left(x^2 y\right) = \int \frac{dy}{y^2} + c \]

\[x^2 y = \frac{y^{-1}}{-1} + c \]

\[x^2 y^2 = 1 + cy \]

i.e., \[1 + x^2 y^2 = cy \]

11. a, b. \[
\frac{dy}{dx} = \frac{y}{x^2} \Rightarrow \frac{dy}{y} = \frac{dx}{x^2} \Rightarrow \ln y = -\frac{1}{x} + \ln c \Rightarrow y = ce^{-\frac{x}{x}} \]

\[y = ce^{\frac{1}{x}} \]

Comparing with \[y = a e^{bx} + b, a \in R, b = 0 \]

12. b. We have \[\frac{dy}{dx} = k \] (constant)

\[y \frac{dy}{dx} = k dx \Rightarrow y^2 = kx + C \Rightarrow y^2 = 2ax + 2C \]

\[y^2 = 2ax + b, \text{ where } a = k, b = 2C \]

13. a, d. The D.E. can be re-written as

\[\frac{x dx + y dy}{\sqrt{1 - (x^2 + y^2)}} = \frac{xy dy - y dx}{x^2 + y^2} \]

Since \(d \tan^{-1} (y/x) = \frac{x dy - y dx}{x^2 + y^2} \), and \(d(x^2 + y^2) = 2(x dx + y dy) \)

\[\therefore \text{ we have} \]

\[\frac{1}{2} \frac{d}{\sqrt{x^2 + y^2}} \frac{d}{\sqrt{1 - (x^2 + y^2)}} \]

Put \(x^2 + y^2 = r^2 \) in the L.H.S and get

\[\frac{dt}{t \sqrt{1 - t^2}} = d\{\tan^{-1} (y/x)\} \]

Integrating both sides, we get

\[\tan^{-1} (y/x) + c \]

i.e., \[\sqrt{x^2 + y^2} = \tan^{-1} (y/x) + c \]

14. a, b. We have length of the normal = radius vector

\[y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{x^2 + y^2} \]

\[y^2 \left(1 + \left(\frac{dy}{dx}\right)^2\right) = x^2 + y^2 \]

\[y^2 \left(\frac{dy}{dx}\right)^2 = x^2 \]

\[\Rightarrow x = \pm y \frac{dy}{dx} \]

\[\Rightarrow x = y \frac{dy}{dx} \text{ or } x = -y \frac{dy}{dx} \]

\[\Rightarrow x dx - y dy = 0 \text{ or } x dx + y dy = 0 \]

\[\Rightarrow x^2 - y^2 = c_1 \text{ or } x^2 + y^2 = c_2 \]

Clearly, \(x^2 - y^2 = c_1 \) represents a rectangular hyperbola and \(x^2 + y^2 = c_2 \) represents circles.

15. a, b. \[
\begin{align*}
\cos \theta &= 2y = \sin^{-1} (y/x) \\
\Rightarrow \frac{dy}{dx} &= -\sqrt{1 - \left(\frac{dy}{dx}\right)^2} \Rightarrow \frac{dy}{dx} = e^{x-2y} \\
\end{align*}
\]

Reasoning Type

1. a. The equation of circle contains. Three independent constants if it passes through three non-collinear points, therefore statement 1 is true and follows from statement 2.

2. a. \[y = Ae^x \]

On differentiation, we get \[\frac{dy}{dx} = Ae^x \]

3. d. Statement 2 is obviously true. But statement 1 is false as \[2x - 3y + 2 = \log \left(\frac{dy}{dx}\right) \]

\[\Rightarrow \left(\frac{dy}{dx}\right) = e^{2x-3y+2} \text{ which has degree 1.} \]

4. b. Statement 1 is obviously true.

Even statement 2 is also obviously true but it does not explain statement 1.

5. a. \[y = c_1 \cos 2x + c_2 \sin^2 x + c_3 \cos^2 x + c_4 e^{2x} + c_5 e^{2x+c_6} \]

\[= c_1 \cos 2x + c_2 \left(1 - \cos^2 2x\right) + c_3 \left(\cos 2x + 1\right) + c_4 e^{2x} + c_5 e^{2x+c_6} \]

\[+ c_6 e^{2x} \]

\[= \left(c_1 - \frac{c_2}{2} + c_3 \right) \cos 2x + \left(\frac{c_2}{2} + c_3 \right) + (c_4 + c_5 e^{c_6}) e^{2x} \]

\[= \lambda_1 \cos 2x + \lambda_2 e^{2x+c_6} \]

\[\Rightarrow \text{ Total number of independent parameters in the given general solution is 3.} \]

Hence statement 1 is true, also statement 2 is true which explains statement 1.

Linked Comprehension Type

For Problems 1–3
1. b. 2. c., 3. a.

Sol.
1. b. \(f(x) \leq 0 \) and \(F'(x) = f(x) \)
\[
\Rightarrow f(x) \geq cF(x) \\
\Rightarrow F'(x) - cF(x) \geq 0 \\
\Rightarrow e^{-cx}F'(x) - ce^{-cx}F(x) \geq 0 \\
\Rightarrow \frac{d}{dx}\left(e^{-cx}F(x)\right) \geq 0 \\
\Rightarrow e^{-cx}F(x) \text{ is an increasing function} \\
\Rightarrow e^{-cx}F(x) \geq e^{-c(0)}F(0) \\
\Rightarrow e^{-cx}F(x) \geq 0 \\
\Rightarrow F(x) \geq 0 \\
\Rightarrow f(x) \geq 0 \quad \text{(as } f(x) \geq cF(x) \text{ and } c \text{ is positive)} \\
\Rightarrow f(x) = 0
\]

Also \(\frac{d}{dx}g(x) < g(x) \forall x > 0 \)

\[
\Rightarrow e^{-x}\frac{d}{dx}(g(x)) - e^{-x}g(x) < 0
\]

\[
\Rightarrow \frac{d}{dx}(e^{-x}g(x)) < 0
\]

\[
\Rightarrow e^{-x}g'(x) < 0
\]

\[
\Rightarrow e^{-x}g(x) \text{ is a decreasing function} \\
\Rightarrow e^{-x}g(x) < e^{-0}g(0) \\
\Rightarrow g(x) < 0 \quad \text{(as } g(0) = 0) \\
\]

Thus \(f(x) = g(x) \) has one solution \(x = 0 \).

2. c. \(|x^2 + x - 6| = f(x) + g(x) \Rightarrow |x^2 + x - 6| = g(x) \)

\[
\Rightarrow \text{no solution}
\]

3. a. \(g(x)(\cos^{-1}x - \sin^{-1}x) \leq 0 \\
\Rightarrow (\cos^{-1}x - \sin^{-1}x) \geq 0 \Rightarrow x \in \left[-1, \frac{1}{\sqrt{2}}\right]
\]

For Problems 4 – 6

4. c. Given equation can be rewritten as

\[
y = xp + \sqrt{1 + p^2}, \quad p = \frac{dy}{dx}
\]

Differentiating w.r.t. \(x \), we get

\[
p = x + p \frac{dy}{dx} + \frac{1}{2\sqrt{1 + p^2}} 2p \frac{dp}{dx}
\]

\[
\Rightarrow \frac{dp}{dx} = 0 \quad \text{or} \quad \frac{p}{\sqrt{1 + p^2}} = -x
\]

\[
\Rightarrow p = c \quad \text{or} \quad p = \frac{x}{\sqrt{1 - x^2}}
\]

\[
y = cx + \sqrt{1 + c^2} \quad \text{gives the general solution and } x^2 + y^2 = 1
\]

as singular solution.

5. b. \(y = xp + p^2 \left(p = \frac{dy}{dx} \right) \)

Differentiating equation (1) w.r.t. \(x \), we get

\[
p = x + \frac{dp}{dx} + 2p \frac{dp}{dx}
\]

\[
\Rightarrow \frac{dp}{dx} \left(x + 2p \right) = 0
\]

\[
\Rightarrow \frac{dp}{dx} = 0 \quad \text{or} \quad p = -\frac{x}{2}
\]

Eliminating \(p \) from equation (1), we get

\[
y = -\frac{x^2}{2} + \frac{x^2}{4} = -\frac{x^2}{4}
\]

Clearly \(f(x) = -\frac{x^2}{4} = -1 \) has two solutions.

6. d. \(y = mx + m^3 \)

Differentiating w.r.t. \(x \), we get

\[
\frac{dy}{dx} = \frac{dm}{dx} x + \frac{dm}{dx} + 3m^2 \frac{dm}{dx}
\]

\[
m = mx + \frac{dm}{dx} x + 3m^2 \frac{dm}{dx}
\]

\[
\frac{dm}{dx} (x + 1 - 3m^2) = 0
\]

\[
\frac{dm}{dx} = 0 \Rightarrow m = c
\]

Or \(x + 1 - 3m^2 = 0 \Rightarrow m^2 = \frac{x + 1}{3} \) (3)

Eliminating \(m \) between equations (1) and (3), we get

\[
y = m(x + 1 - m^2)
\]

\[
\Rightarrow y = \left(\frac{x + 1}{3}\right)^{1/2} \left(x + 1 - \frac{x + 1}{3}\right)
\]

\[
\Rightarrow y = \left(\frac{x + 1}{3}\right)^{1/2} \frac{2}{3} (x + 1)
\]

\[
\Rightarrow y = 2 \left(\frac{x + 1}{3}\right)^{3/2}
\]

\[
\Rightarrow y^2 = \frac{4}{27} (x + 1)^3
\]

\[
\Rightarrow 27y^2 = 4(x + 1)^3
\]

For Problems 7 – 9

7. c. 8. a, 9. b.

Sol. Integrating \(\frac{d^2y}{dx^2} = 6x - 4 \), we get \(\frac{dy}{dx} = 3x^2 - 4x + A \)

When \(x = 1 \), \(\frac{dy}{dx} = 0 \) so that \(A = 1 \). Hence

\[
\frac{dy}{dx} = 3x^2 - 4x + 1
\]

Integrating, we get \(y = x^3 - 2x^2 + x + B \).

When \(x = 1, y = 5 \), so that \(B = 5 \).

Thus, we have \(y = x^3 - 2x^2 + x + 5 \)

From equation (1), we get the critical points \(x = 1/3, x = 1 \)

At the critical point \(x = 1/3, y \) has a local maximum.
At $x = 1, \frac{d^2 y}{dx^2}$ is +ve.

Therefore, at $x = 1$ y has a local minimum.

Also $f(1) = 5, f'(1) = \frac{139}{27}, f(0) = 5, f(2) = 7$

Hence the global maximum value = 7
and the global minimum value = 5

For Problems 10–12

0. a, 11. c, 12. c.

10. a. Let N denote the amount of material present at time t. Then,

$$\frac{dN}{dt} - kN = 0$$

This differential equation is separable and linear, its solution is $N = ce^{kt}$ (1)

At $t = 0$, we are given that $N = 50$. Therefore, from equation (1), $50 = ce^{k(0)}$, or $c = 50$.

Thus, $N = 50e^{kt}$ (2)

At $t = 2$, 10 percent of the original mass of 50 mg or 5 mg, has decayed.

Hence, at $t = 2$, $N = 50 - 5 = 45$.

Substituting these values into equation (2) and solving for k, we have $45 = 50e^{2k}$ or $k = \frac{1}{2}\log \frac{45}{50}$

Substituting this value into (2), we obtain the amount of mass present at any time t as

$$N = 50e^{(-1/2)(\log 0.9)t}$$ (3)

where t is measured in hours.

11. c. We require N at $t = 4$. Substituting $t = 4$ into (3) and then solving for N, we find

$$N = 50e^{-2\log 0.9}$$

12. c. We require t when $N = 50/2 = 25$. Substituting $N = 25$ into equation (3) and solving for t, we find

$$25 = 50e^{(-1/2)(\log 0.9)t} \text{ or } t = (ln 1/2)/(-1/2 \ln 0.9) \text{ hr.}$$

For Problems 13–15

13. a, 14. b, 15. d.

13. a. Here, $V_0 = 100$, $a = 20$, $b = 0$, and $e = f = 5$. Hence

$$\frac{dQ}{dt} + \frac{1}{20} Q = 0$$

The solution of this linear equation is $Q = ce^{-\frac{t}{20}}$ (1)

At $t = 0$, we are given that $Q = a = 20$.

Substituting these values into equation (1), we find that $c = 20$, so that equation (1) can be rewritten as $Q = 20e^{-\frac{t}{20}}$.

For $t = 20, Q = 20/e$.

14. b. Here $a = 0, b = 1, c = 4, f = 2$, and $V_0 = 10$. The volume of brine in the tank at any time t is given as $V_0 + et - ft = 10 + 2t$.

We require t when $10 + 2t = 50$, hence, $t = 20$ min.

15. d. For the equation $\frac{dQ}{dt} + \frac{2}{10 + 2t} Q = 4$

This is a linear equation; its solution is $Q = \frac{40t + 4t^2 + c}{10 + 2t}$ (1)

At $t = 0, Q = a = 0$. Substituting these values into equation (1), we find that $c = 0$. We require Q at the moment of overflow, which from part (a) is $t = 20$. Thus

$$Q = \frac{40(20) + 4(20)^2}{10 + 2(20)} = 40 \text{ lb}$$

Matrix-Match Type

1. a → q, s; b → p; c → p; d → q, r, s

 a. Equation of the required parabola is of the form $y^2 = 4a(x - h)$. Differentiating, we have

 $$2y \frac{dy}{dx} = 4a \Rightarrow y \frac{dy}{dx} = 2a \Rightarrow \left(\frac{dy}{dx}\right)^2 + y \frac{d^2 y}{dx^2} = 0$$

 The degree of this differential equation is 1 and the order is 2.

 b. We have $y = a(x + a)$

 $$\Rightarrow y = \frac{x + a}{2}$$

 Dividing equations (1) by (2), we get

 $$\frac{y}{y_1} = \frac{x + a}{2y_1}$$

 Substituting $a = \frac{2y}{y_1}$ in equation (1),

 we get $y = \left(\frac{2y}{y_1} - x\right) \left(\frac{2y}{y_1}\right)^2 \Rightarrow y_1^3 y = 4(2y - xy_1)y_1^2$

 Clearly, it is a differential equation of degree 3.

 c. The given equation is $\left(1 + 3\frac{dy}{dx}\right)^2 = 4\left(\frac{d^3 y}{dx^3}\right)^2$

 Cubing, we get

 $$\left(1 + 3\frac{dy}{dx}\right)^2 = 64\left(\frac{d^3 y}{dx^3}\right)^2$$

 Hence order = degree = 3

 d. We have $y^2 = 2c \left(x + \sqrt{c}\right)$ (1)

 Diff. w.r.t. x, we get $2y \frac{dy}{dx} = 2c$

 $$\Rightarrow c = y \frac{dy}{dx}$$

 Putting in equation (1), we get

 $$y^2 = 2y \left(\frac{dy}{dx}\right) x + 2 \left(\frac{dy}{dx}\right)^{3/2}$$

 $$\Rightarrow y^2 - 2xy \left(\frac{dy}{dx}\right)^2 = 4y^3 \left(\frac{dy}{dx}\right)^3$$

 Its order is 1 and degree is 3

2. a → q; b → r; c → p; d → s

 a. $y = e^{4x} + 2e^{-x}; y_1 = 4e^{4x} - 2e^{-x}; y_2 = 16e^{4x} + 2e^{-x};$

 $y_3 = 64e^{4x} - 2e^{-x}$

 Now, $y_1 - 13y_1 = (64e^{4x} - 2e^{-x}) - 13(4e^{4x} + 2e^{-x})$

 $= 12e^{4x} + 24e^{-x}$
\[y' - 13y = 12(e^{x^2} + 2e^{-x}) = 12y \]

\[\therefore K = 12 \text{ and } K/3 = 4 \]

b. Since equation is 2 degree, two linears are possible

c. \[y = u^m \Rightarrow \frac{dy}{dx} = mu^{m-1} \frac{du}{dx} \]

Substituting the value of \(y \) and \(\frac{dy}{dx} \) in \(2x^4 \frac{dy}{dx} + y^4 = 4x^6 \), we have

\[2x^4 \cdot u^m \cdot u^{m-1} \frac{du}{dx} + u^{4m} = 4x^6. \]

\[\Rightarrow \frac{du}{dx} = \frac{4x^6 - u^{4m}}{2m \cdot x^4 \cdot u^{2m-1}} \]

For homogeneous \(4m = 6 \Rightarrow m = \frac{3}{2} \)

and \(2m - 1 = 2 \Rightarrow m = \frac{3}{2} \)

\[y = Ax^m + Bx^n \]

\[\Rightarrow \frac{dy}{dx} = Amx^{m-1} - nBx^{n-1} \]

\[\Rightarrow \frac{d^2y}{dx^2} = Am(m-1)x^{m-2} + n(n-1)Bx^{n-2} \]

Putting these values in \(x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = 12y \), we have \(m(m-1)Ax^{n+1} + n(n-1)Bx^{n-1} = 12(Ax^m + Bx^n) \)

\[\Rightarrow m(m+1) = 12 \text{ or } n(n-1) = 12 \]

\[\Rightarrow m = 3, -4 \text{ or } n = 4, -3 \]

Integer Type

1.4. We have \(4xe^y = y + 5 \sin^2 x \)

Put \(x = 0 \), in equation (1), we get \(y = 0 \)

Therefore, \((0, 0) \) lies on the curve.

Now on differentiating equation (1) w.r.t. \(x \), we get

\[4e^y + 4xe^y \left(x \frac{dy}{dx} + y \right) = \frac{dy}{dx} + 10 \sin x \cos x \]

\[\Rightarrow y'(0) = 4 \]

2.2. Given \(\frac{dy}{dx} = \frac{1}{x} - y \left(x = \frac{2}{x} \right) \)

L.F. \(= e^{-\ln x} = \frac{1}{x} \)

Now general solution is given by \(y = \int \left(x + \frac{2}{x} \right) \cdot \frac{1}{x} \, dx \)

\[\Rightarrow y = x + \frac{2}{x} + C \]

As \(y(1) = 1 \Rightarrow C = -2 \)

\[\therefore \frac{y}{x} = x + \frac{2}{x} - 2 \Rightarrow y = x^2 - 2x + 2 \]

Hence \(y(2) = (2)^2 - 2(2) + 2 = 2 \)

3.2. Given \(y = \tan z \)

\[\frac{dy}{dx} = \sec^2 z \cdot \frac{dz}{dx} \]

Now \(\frac{d^2y}{dx^2} = \sec^2 z \cdot \frac{dz}{dx} + \frac{d^2z}{dx^2} \cdot \frac{dz}{dx} \cdot (\sec^2 z) \cdot \frac{dz}{dx} \)

\[= \sec^2 z \cdot \frac{dz}{dx} + \sec^2 z \cdot \left(\frac{dz}{dx} \right)^2 \]

\[= 1 + 2(1 + \tan z) \cdot \sec^2 z \cdot \left(\frac{dz}{dx} \right)^2 \]

\[= 1 + 2(1 + \tan z) \cdot \sec^2 z \cdot \left(\frac{dz}{dx} \right)^2 \]

\[\Rightarrow \frac{d^2z}{dx^2} = \cos^2 z + 2 \tan z \cdot \sec^2 z \cdot \left(\frac{dz}{dx} \right)^2 \]

\[\Rightarrow \frac{d^2z}{dx^2} = \cos^2 z + 2 \tan z \cdot \sec^2 z \cdot \left(\frac{dz}{dx} \right)^2 \]

\[\Rightarrow y = \tan z \]

4.8. \(\frac{dy}{dt} + 2ty = t^2 \)

L.F. \(= e^{t^2} \)

\[\therefore \text{ Solution is } \int y \cdot e^{t^2} \, dt = \frac{1}{2} \int t^2 \cdot (2te^{t^2}) \, dt \]

\[\therefore \int y \cdot e^{t^2} \, dt = \frac{t^2}{2} - \frac{1}{2} \int e^{t^2} \, dt + C \]

\[\therefore y = \frac{t^2}{2} - e^{-t^4} \cdot \left(\frac{e^{t^2}}{2} \right) + Ce^{-t^4} \]

\[\therefore \lim_{t \to \infty} \frac{y}{x} = \frac{1}{2} \lim_{t \to \infty} \frac{t^2}{te^{t^2}} + \frac{c}{t \cdot e^2} = \frac{1}{2} \]

5.2. \(\frac{dy}{dx} = x \cos y + 2 \sin y \cos y \)

\[\therefore \frac{dx}{dy} = x \cos y + 2 \sin y \cos y \]
\[\therefore \quad \text{L.F.} = e^{\int \cos y \, dx} = e^{-\sin y} \]

\[\therefore \quad \text{The solution is} \]

\[x \cdot e^{-\sin y} = 2 \int e^{-\sin y} \cdot \sin y \cos y \, dy \]

\[= -2 \sin y \left(e^{-\sin y} \right) \cos y \, dx \]

\[= -2 \sin y \left(e^{-\sin y} - 2 \right) \cos y \, dx \]

\[= -2 \sin y e^{-\sin y} - 2 e^{-\sin y} + c \]

i.e. \(x = -2 \sin y - 2 + c e^{\sin y} = ce^{\sin y} - 2 (1 + \sin y) \)

\[\therefore \quad k = 2 \]

6.(1)

\[\frac{dy}{dx} - \frac{1}{x} \frac{d^2 y}{dx^2} = \frac{d}{dy} \left(\frac{1}{dx/dy} \right) \frac{dy}{dx} = -\frac{1}{(dx/dy)^3} \frac{d^2 y}{dy^2} \]

\[\text{hence} \quad x \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^3 \frac{dy}{dx} = 0 \]

\[\text{becomes} \quad -x \frac{1}{(dx/dy)^3} \frac{d^2 x}{dy^2} + \frac{1}{(dx/dy)^3} \frac{dx}{dy} - \frac{1}{(dx/dy)^3} = 0 \]

\[\text{or} \quad \frac{d^2 x}{dy^2} - \left(\frac{dx}{dy} \right)^2 = 0 \quad \Rightarrow \quad x \frac{d^2 x}{dy^2} + \left(\frac{dx}{dy} \right)^2 = 1; \]

\[\therefore \quad k = 1 \]

7.(3)

\[\frac{dy}{dx} = \frac{\sqrt{x^2 - 1}(y^2 - 1)}{xy} \]

\[\int \frac{y}{\sqrt{y^2 - 1}} \, dy = -\int \frac{x^2 - 1}{x} \, dx \]

\[\text{let} \quad y^2 - 1 = t^2 \quad \Rightarrow \quad 2y \, dy = 2t \, dt \]

\[\therefore \quad \int \frac{dt}{t} = -\int \frac{x^2 - 1}{x \sqrt{x^2 - 1}} \, dx \]

\[\therefore \quad t = -\int \frac{x}{\sqrt{x^2 - 1}} \, dx + \int \frac{1}{\sqrt{x^2 - 1}} \, dx \]

\[\therefore \quad \sqrt{y^2 - 1} = -\sqrt{x^2 - 1} + \sec^{-1} x + c \]

\(\text{Curve passes through the point (1, 1), then the value of} \quad c = 0. \)

\(\therefore \quad \text{Hence the curve is} \quad \sqrt{y^2 - 1} = -\sqrt{x^2 - 1} + \sec^{-1} x \)

8.(8)

\[\text{Equation of tangent at} \ P(x_1, y_1) \text{ of} \ y = f(x) \]

\[y - y_1 = \frac{dy}{dx} (x - x_1) \]

\[\text{this tangent cuts the} \ x \text{-axis so} \]

\[x_2 = x_1 - \frac{y_1}{\frac{dy}{dx}} \]

\[\therefore \quad x_1, x_2, x_3 \ldots x_n \text{ are in AP} \]

\[x_2 - x_1 = -\frac{y_1}{\frac{dy}{dx}} = \log_e e \text{ given} \]

\[-y = \log_e \frac{dy}{dx} \]

\[\frac{dy}{y} \frac{\log_e e}{dx} = -dx \]

\[\int \frac{dy}{y} = -\int dx \]

\[\log_e y = -x \log_e e + c \]

\[y = ke^{-x \log_e 2} \]

\[\therefore \quad y = \frac{\gamma}{e^{-x} \log_e 2} \]

\[\therefore \quad y = 2^{-x} \]

9.(2)

\[\text{Equation of tangent is} \quad x \frac{dy}{dx} - y - y \frac{dy}{dx} + y = 0 \text{ perpendicular distance from origin is} \]

\[y - y = \frac{dy}{dx} (X - x) \]

\[\therefore \quad \perp \text{from} \ (0, 0) = x \]

\[\left| \begin{array}{c} 0 - 0 \frac{dy}{dx} + y \\ \sqrt{\left(\frac{dy}{dx} \right)^2 + 1} \end{array} \right| = x \]

\[\left| \begin{array}{c} x \frac{dy}{dx} - y \\ \sqrt{\left(\frac{dy}{dx} \right)^2 + 1} \end{array} \right| = x \Rightarrow \quad \left(x \frac{dy}{dx} - y \right)^2 = x^2 \left(1 + \left(\frac{dy}{dx} \right)^2 \right) \]

\[\Rightarrow \quad x^2 \left(\frac{dy}{dx} \right)^2 + y^2 - 2xy \frac{dy}{dx} = x^2 + x^2 \left(\frac{dy}{dx} \right)^2 \]

\[\Rightarrow \quad \frac{y^2 - x^2}{2xy} = \frac{dy}{dx} \]

\[\text{put} \ y = vx \text{ in (1)} \]

\[v + x \frac{dy}{dx} = \frac{y^2 - 1}{2v} \]
\[\int \frac{2v}{v^2 + 1} dv = -\int \frac{dx}{x} \]
\[\ln(v^2 + 1) = -\ln x + \ln c \]
\[v^2 + 1 = \frac{c}{x} \]
\[\frac{y^2 + x^2}{x^2} = c \]
\[y^2 + x^2 = cx \]

passes through \((1, 1)\), then \(c = 2\)
\[x^2 + y^2 - 2x = 0 \]
For intercept of curve on \(x\)-axis, put \(y = 0\)
We have \(x^2 - 2x = 0\) or \(x = 0, 2\).
Hence length of intercept is 2.

0.5

Fig. 10.16

\[\therefore OP = OM \]
\[y - x \frac{dy}{dx} = \sqrt{x^2 + y^2} \]
\[\frac{dy}{dx} = y - \sqrt{x^2 + y^2} \]
\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{1 + \left(\frac{y}{x}\right)^2} \]
\[\text{put } \frac{y}{x} = v \Rightarrow y = vx \frac{dy}{dx} = v + \frac{dv}{dx} \]
\[\therefore v + x \frac{dv}{dx} = v - \sqrt{1 + v^2} \]
\[\log(v + \sqrt{1 + v^2}) = \log c \frac{v}{x} \]
\[\therefore v + \sqrt{1 + v^2} = \frac{c}{x} \]
\[\frac{v}{x} + \sqrt{1 + \frac{v^2}{x^2}} = \frac{c}{x} \]
\[y + \sqrt{x^2 + y^2} = c \]
Hence curve is parabola, which has eccentricity 1.

1.1.4
\[\frac{dy}{dx} - y = 1 - e^{-x} \]
\[P = -1 \quad Q = 1 - e^{-x} \]

L.F. = \[e^{\int Pdx} = e^{-\int dx} = e^{-x} \]
\[\therefore y e^{-x} = \int e^{-x}(1 - e^{-x}) dx + C \]
\[y e^{-x} = -e^{-x} + \frac{1}{2} e^{-2x} + C \]
\[y = -1 + \frac{1}{2} e^{-x} + Ce^x \]
\[\therefore x = 0 \quad y = y_0 \]
So \(C = y_0 + \frac{1}{2}\)
\[y = -1 + \frac{1}{2} e^{-x} + (y_0 + 1/2)e^x \]
\(x \to \infty y \to \text{finite value so } y_0 + 1/2 = 0\)
\[y_0 = -1/2 \]

Archives

Subjective

1. The equation of normal to required curve at \(P(x, y)\) is given by,
\[Y - y = -\frac{1}{\left(\frac{dY}{dX} \right)_{(x, y)}} (X - x) \]
or \(X - x) + \frac{dy}{dx} (Y - y) = 0\)

For point \(Q\), where this normal meets \(X\)-axis, put \(Y = 0\), we get,
\[X = x + y \frac{dy}{dx} \]
\[\therefore Q \left(x + y \frac{dy}{dx}, 0 \right) \]

Fig. 10.17

According to question length of \(PQ = k\).
\[\Rightarrow \left(y \frac{dy}{dx} \right)^2 + y^2 = k^2 \]
\[\Rightarrow y \frac{dy}{dx} = \pm \sqrt{k^2 - y^2} \]
which is the required differential equation of given curve.
Solving this, we get
\[\int \frac{y dy}{\sqrt{k^2 - y^2}} = \int \pm dx \]

\[\Rightarrow - \frac{1}{2} \sqrt{k^2 - y^2} = \pm x + C \]

\[- \sqrt{k^2 - y^2} = \pm x + C \]

As it passes through \((0, k)\) we get \(c = 0\).

\[\therefore \text{ equation of curve is } - \sqrt{k^2 - y^2} = \pm x \]

or \(x^2 + y^2 = k^2\)

2. Equation of the tangent to the curve \(y = f(x)\) at point \((x, y)\) is
\(y - y = f'(x)(X - x)\).

The line (1) meets \(X\)-axis at \(P\left(x - \frac{y}{f'(x)}, 0 \right) \)

and \(Y\)-axis in \(Q [0, y - xf''(x)] \).

![Fig. 10.18]

Area of triangle \(OPQ\) is

\[\frac{1}{2} (OP)(OQ) \]

\[= \frac{1}{2} \left(x - \frac{y}{f'(x)} \right) (y - xf''(x)) \]

\[= - \frac{(y - xf'(x))^2}{2f'(x)} \]

Given that area of \(\triangle OPQ = 2\)

\[\Rightarrow - \frac{(y - xf'(x))^2}{2f'(x)} = 2 \]

\[\Rightarrow (y - xf'(x))^2 + 4f'(x) = 0 \]

\[\Rightarrow (y - px)^2 + 4p = 0 \]

where \(p = f'(x) = oy/\text{dx} \)

From the diagram \(y - xf'(x) > 0\) and \(p = f'(x) < 0\)

So we can write equation (2) as

\[y - px = 2 \sqrt{-p} \]

\[\Rightarrow y = px + 2 \sqrt{-p} \quad (3) \]

Differentiating equation (3) with respect to \(x\), we get

\[p = \frac{dy}{dx} = p + \frac{dp}{dx} x + 2 \left(\frac{1}{2} \right) (-p)^{-1/2} (-1) \frac{dp}{dx} \]

\[\Rightarrow \frac{dp}{dx} x (-p)^{-1/2} \frac{dp}{dx} = 0 \]

\[\Rightarrow \frac{dp}{dx} [x (-p)^{-1/2}] = 0 \]

\[\Rightarrow \frac{dp}{dx} = 0 \text{ or } x = (-p)^{-1/2} \]

If \(\frac{dp}{dx} = 0\), then \(p = c\) where \(c < 0\)

\[\therefore p < 0 \]

Putting the value in equation (3), we get

\[y = cx + 2 \sqrt{-c} \]

this curve will pass through \((1, 1)\) if

\[1 = c + 2 \sqrt{-c} \]

\[\Rightarrow c - 2 \sqrt{-c} + 1 = 0 \]

\[\Rightarrow (-\sqrt{-c} - 1)^2 = 0 \]

\[\Rightarrow \sqrt{-c} = 1 \Rightarrow c = 1 \text{ or } c = -1 \]

Putting the value of \(c\) in equation (4), we get \(y = -x + 2\)

Next, putting \(x = (-p)^{-1/2}\) or \(-p = x^2\) in equation (3), we get

\[y = \frac{-x}{x^2} + 2 \left(\frac{1}{x} \right) = \frac{1}{x} \]

\[\Rightarrow xy = 1 (x > 0, y > 0) \]

Thus, the two required curves are \(x + y = 2\) and \(xy = 1\), \((x > 0, y > 0)\).

3. \(\frac{dy}{dx} = \sin (10x + 6y)\)

Put \(10x + 6y = \nu \Rightarrow 10 + 6 \frac{dy}{dx} = \frac{dv}{dx}\)

Then equation (1) transforms to \(\frac{dv}{dx} - 10 = 6 \sin \nu \)

\[\Rightarrow \int \frac{dv}{6 \sin \nu + 10} = \int dx \]

\[\Rightarrow \int \frac{dv}{12 \sin \frac{\nu}{2} \cos \frac{\nu}{2} + 10} = \int dx \]

Divide above and below by \(\cos^2(\nu/2)\) and put \(\tan(\nu/2) = t\)

\[\Rightarrow \int \frac{2dt}{12t + 10 (t^2 + 1)} = \int dx \]

\[\Rightarrow \int \frac{dt}{5t^2 + 6t + 5} = \int dx \]

\[\Rightarrow \sqrt{\frac{dt}{\left(t + \frac{3}{2} \right) + \left(t + \frac{1}{2} \right)}} = 5 \int dx \]

\[\Rightarrow 5 \tan^{-1} \frac{5t + 3}{4} = 5x + 5c \]

\[\Rightarrow \tan^{-1} \frac{5t + 3}{4} = 4x + c \]

At origin \(x = 0, y = 0 \therefore v = 0 \therefore t = \tan \frac{v}{2} = 0 \)

\[\Rightarrow \tan^{-1} \frac{3}{4} = c \]
Then from equation (2) we get \(\tan^{-1} \left(\frac{5t + 3}{4} \right) - \tan^{-1} \left(\frac{3}{4} \right) = 4x \)

\[\Rightarrow \frac{5t + 3}{4} - \frac{3}{4} = \tan 4x \]

\[\Rightarrow \frac{20t}{25 + 15t} = \tan 4x \]

\[\Rightarrow 4t = (5 + 3t) \tan 4x \]

\[\Rightarrow t(4 - 3 \tan 4x) = 5 \tan 4x \]

\[\Rightarrow \tan \left(\frac{v}{2} \right) = \frac{5 \tan 4x}{4 - 3 \tan 4x} \]

\[\Rightarrow \tan (5x + 3y) = \frac{5 \tan 4x}{4 - 3 \tan 4x} \]

\[\Rightarrow 5x + 3y = \tan^{-1} \left(\frac{5 \tan 4x}{4 - 3 \tan 4x} \right) \]

\[\Rightarrow y = \frac{1}{3} \left[\tan^{-1} \left(\frac{5 \tan 4x}{4 - 3 \tan 4x} \right) - 5x \right] \]

4. Let at any instant \(t, x \) be the volume of water in the reservoir \(A \) and \(y \) of that in \(B \).

Then \(\frac{dx}{dt} \sim x \)

\[\Rightarrow \frac{dx}{dt} = k_1 x \]

\[\Rightarrow x = e^{k_1 t} C_1 \]

Similarly for \(B \), \(\frac{dy}{dt} \sim y \)

\[\Rightarrow \log y = k_2 t + C_2 \]

\[\Rightarrow y = e^{k_2 t} C_2 \]

Now at \(t = 0, x = 2y, \) i.e., \(\frac{x}{y} = 2 \)

\[\therefore \text{form equations (1) and (2) we get } \frac{e^{C_1}}{e^{C_2}} = 2 \]

Also at \(t = 1, x = \frac{3}{2} y, \) i.e., \(\frac{x}{y} = \frac{3}{2} \)

\[\Rightarrow \frac{e^{k_1}}{e^{k_2}} = \frac{3}{2} \]

\[\Rightarrow e^{k_1 - k_2} = \frac{3}{4} \]

Let at \(t = T, x = y, \) i.e., \(\frac{x}{y} = 1 \)

\[\therefore \text{then } e^{k_1 T} e^{C_1} = 1 \]

\[\Rightarrow (e^{k_1} - k_2)^T 2 = 1 \]

\[\Rightarrow \left(\frac{3}{4} \right)^T = \frac{1}{2} \]

Taking log on both sides, we get

\[T \log (3/4) = \log (1/2) \]

\[\Rightarrow T = \frac{- \log 2}{- \log 4/3} \]

\[\Rightarrow T = \left(\log \frac{2}{\log 4/3} \right) \]

5. a. \(y = u(x) \) and \(y = v(x) \) are solutions of given differential equations.

b. \(u(x_1) > v(x_1) \) for some \(x_1 \)

c. \(f(x) > g(x), \forall x > x_1 \)

\[\frac{du}{dx} + p(x) u = f(x) \text{ and } \frac{dv}{dx} + p(x) v = g(x) \]

\[\Rightarrow \frac{d(u-v)}{dx} + p(x)(u-v) = f(x) - g(x) \]

\[\Rightarrow e^{\int p dx} \frac{d(u-v)}{dx} + e^{\int p dx} p(x)(u-v) = e^{\int p dx} (f(x) - g(x)) \]

\[\Rightarrow \frac{d}{dx} \left[(u-v) e^{\int p dx} \right] = [f(x) - g(x)] e^{\int p dx} \]

Given \(f(x) > g(x), \forall x > x_1 \) and exponential function is always +ive, then R.H.S. is +ive.

\[\therefore \frac{d}{dx} \left[(u-v) e^{\int p dx} \right] > 0 \]

Hence the function \(F(x) = (u-v) e^{\int p dx} \) is an increasing function.

Again \(u(x_1) > v(x_1) \) for some \(x_1 \)

\[\therefore F = (u-v) e^{\int p dx} \text{ is +ive at } x = x_1 \]

\[\Rightarrow F = (u-v) e^{\int p dx} \text{ is +ive } \forall x > x_1 \text{ (F being increasing function)} \]

\[\therefore u(x) > u(x_1), \forall x > x_1 \]

\[\therefore \text{Hence there is no point } (x, y) \text{ such that } x > x_1 \text{ which can satisfy the equations.} \]

6. Equation of the tangent at point \((x, y) \) on the curve is

\[Y - y = \frac{dy}{dx} (X - x) \]

This meet axis in \(A \left(x - y \frac{dx}{dy}, 0 \right) \) and \(B \left(0, y - x \frac{dy}{dx} \right) \)

Mid-point of \(AB \) is \[\left[\frac{1}{2} \left(x - y \frac{dx}{dy} \right), \frac{1}{2} \left(y - x \frac{dy}{dx} \right) \right] \]

we are given \[\frac{1}{2} \left(x - y \frac{dx}{dy} \right) = x \text{ and } \frac{1}{2} \left(y - x \frac{dy}{dx} \right) = y \]
\[x \frac{dy}{dx} = -y \Rightarrow \frac{dy}{y} = -\frac{dx}{x} \]

Integrating both sides $\int \frac{dy}{y} = -\int \frac{dx}{x}$, we get

\[\log y = -\log x + c \]

Put $x = 1, y = 1$, $\Rightarrow \log 1 - \log 1 = c \Rightarrow c = 0$

\[\log y + \log x = 0 \Rightarrow \log xy = 0 \]

\[xy = 1 \text{ which is a rectangular hyperbola.} \]

7. Equation of normal is $\frac{dx}{dy} (X-x) + Y = 0$

Given that perpendicular distance of the origin form the normal at $P = \text{distance of } P \text{ form the } x\text{-axis}$

\[\left| \frac{x - \frac{dx}{dy} \cdot x + \frac{y}{dy}}{\sqrt{1 + \left(\frac{dx}{dy} \right)^2}} \right| = |y| \]

\[x^2 \left(\frac{dx}{dy} \right)^2 + y^2 + 2xy \frac{dx}{dy} - y^2 + y^2 \left(\frac{dx}{dy} \right)^2 \]

\[\frac{dx}{dy} = 0 \text{ or } \frac{dx}{dy} = \left(\frac{2xy}{y^2 - x^2} \right) \]

If $\frac{dx}{dy} = 0$, then $x = c$, when $x = 1, y = 1 \Rightarrow c = 1$

\[x = 1 \]

When $\frac{dx}{dy} = \frac{2xy}{y^2 - x^2}$ (homogeneous)

Putting, $x = vy \Rightarrow \frac{dx}{dy} = v + y \frac{dv}{dy}$

\[\therefore \text{equation (2) transforms to} \]

\[v + y \frac{dv}{dy} = \frac{2v}{1 - v^2} \]

\[\Rightarrow \frac{dy}{y} = \frac{2v - v^3}{1 - v^2} = \frac{v + v^3}{1 - v^2} \]

\[\Rightarrow \int \frac{(1 - v^2)dv}{v(1 + v^2)} = \int \frac{dy}{y} \]

\[\Rightarrow \int \left(\frac{1}{v} - \frac{2v}{1 + v^2} \right)dv = \int \frac{dy}{y} \]

\[\Rightarrow \log y = \log (1 + v^2) = \log y + C \]

\[\Rightarrow v = \frac{1 + v^2}{cy} \]

\[\Rightarrow \frac{x}{x^2 + y^2} = c \]

when $x = 1, y = 1 \Rightarrow \log 1 = 0 = c = 1/2$

\[\therefore \text{solution is } x^2 + y^2 - 2x = 0 \]

Hence the solution is $x^2 + y^2 - 2x - 0, x - 1 = 0$.

8. Let P_0 be the initial population of country and P be the population of country in year t then

\[\frac{dP}{dt} = \text{rate of change of population} = \frac{3}{100} P = 0.03 P \]

\[\therefore \text{population of } P \text{ at the end of } n \text{ years is given by} \]

\[\int_{P_0}^{P} \frac{dP}{P} = \int_0^n 0.03 \ dt \]

\[\Rightarrow \ln P - \ln P_0 = 0.03 n \]

\[\Rightarrow \ln P = \ln P_0 + 0.03 n \]

(1)

If F_0 be its initial food production and F be the food production in year n.

Then $F_0 = 0.9 P_0$ and $F = (1.04)^n F_0$

\[\Rightarrow \ln F = n \ln (1.04) + \ln F_0 \]

(2)

\[\therefore \text{the country will be self sufficient if } F \geq P \]

\[\Rightarrow \ln F \geq \ln P \]

\[\Rightarrow n \ln (1.04) + \ln F_0 \geq n \ln P_0 + (0.03) n \]

\[\Rightarrow n \ln (1.04) + \ln F_0 \geq \ln (1.04)^n \]

\[\Rightarrow n \ln (1.04) - (0.03) n \geq \ln 10 \ln (1.04) - 0.03 \]

Hence $n \geq \frac{\ln 10 - \ln 9}{\ln (1.04) - 0.03}$.

Thus, the least integral values of the year n, when the country becomes self-sufficient, is the smallest integer greater than or equal to $\frac{\ln 10 - \ln 9}{\ln (1.04) - 0.03}$.

9. Given that $\int_f^x f(t) \ dt$

\[\therefore F'(x) = f(x) \] [Using Leibnitz theorem]

Also given that $f(x) \leq c F(x), \forall x \geq 0$

\[\therefore \text{we get } f(0) \leq cF(0) = 0 \]

\[\therefore f(0) \leq 0 \]

But given that $f(x)$ is non-negative function on $[0, \infty)$

\[\therefore f(x) \geq 0 \]

\[\therefore f(0) = 0 \]

\[\therefore f(x) \geq 0 \] [Using equation (1)]

\[\Rightarrow e^{-a} f(x) \leq 0, \forall x \geq 0 \]

[Using equation (1)]

\[\Rightarrow e^{-a} f'(x) - c e^{-a} F(x) \leq 0 \]

\[\Rightarrow \frac{d}{dx} \left[e^{-a} F(X) \right] \leq 0 \]

\[\Rightarrow g(x) = e^{-a} F(x) \text{ is a decreasing function on } [0, \infty). \]

That is $g(x) \leq g(0)$ for all $x \geq 0$

But $g(0) = F(0) = 0$

\[\therefore g(x) \leq 0, \forall x \geq 0 \]

\[\Rightarrow e^{-a} f(x) \leq 0, \forall x \geq 0 \]

\[\Rightarrow F(x) \leq 0, \forall x \geq 0 \]

\[\Rightarrow f(x) \leq c F(x) \leq 0, \forall x \geq 0 \] [\because c > 0 and using $f(x)$ \leq cF(x)]

\[\Rightarrow f(x) \leq 0, \forall x \geq 0 \]

But given $f(x) \geq 0$.
10. Let the water level be at a height \(h \) after time \(t \), and water level falls by \(dh \) in time \(dt \) and the corresponding volume of water gone out be \(dV \).

\[
\Rightarrow \quad dV = -\pi r^2 \, dh
\]

\[
\frac{dV}{dt} = -\pi r^2 \frac{dh}{dt} \quad (\because \text{as } t \text{ increases, } h \text{ decreases})
\]

Now, velocity of water, \(v = \frac{3}{5} \sqrt{2gh} \)

Rate of flow of water = \(Av \) (\(A = 12 \text{ cm}^2 \))

\[
\Rightarrow \quad \frac{dV}{dt} = \left(\frac{3}{5} \sqrt{2gh} A \right) = -\pi r^2 \frac{dh}{dt}
\]

From the figure,

\[
R^2 = (R - h)^2 + r^2 \Rightarrow r^2 = 2hR - h^2
\]

So, \(\frac{3}{5} \sqrt{2g} \sqrt{h} A = -\pi (2hR - h^2) \times \frac{dh}{dt} \)

\[
\Rightarrow \quad \frac{2hR - h^2}{\sqrt{h}} \, dh = -\frac{3}{5\pi} \sqrt{2g} A \, dt
\]

Integrating, we get

\[
\int_0^h (2R\sqrt{h} - h^{3/2}) \, dh = \frac{3}{5\pi} \sqrt{2g} A \int_0^T dt
\]

\[
\Rightarrow \quad T = -\frac{5\pi}{3A\sqrt{2g}} \left(\frac{2R}{3} h^{3/2} - \frac{h^2}{5/2} \right)_R^0
\]

\[
\Rightarrow \quad T = -\frac{5\pi}{3A\sqrt{2g}} \left(\frac{4R}{3} R^{3/2} - \frac{2}{5} R^{5/2} \right)
\]

\[
\Rightarrow \quad T = -\frac{5\pi}{3A\sqrt{2g}} \frac{14}{15} R^{5/2}
\]

\[
\Rightarrow \quad T = \frac{56\pi}{9A\sqrt{g}} \text{ (} R = 200 \text{ cm)}
\]

\[
\Rightarrow \quad T = \frac{56\pi}{9 \times 12 \sqrt{g}}
\]

\[
\Rightarrow \quad T = \frac{14\pi}{27\sqrt{g}} \text{ (} 10^5 \text{ units)}
\]

11. Let at time \(t \), \(r \), and \(h \) be the radius and height of cone of water.

\[
\therefore \text{at time } t, \text{ surface area of liquid in contact with air } = \pi r^2
\]

Fig. 10.20

Now according to questions \(\frac{dV}{dt} \approx \pi r^2 \)

[\(\because \) 'r' sign shows that \(V \) decreases with time]

\[
\Rightarrow \quad \frac{1}{3} \pi \frac{dV}{dt} = -k\pi r^2
\]

But from the figure, we get \(\frac{h}{R} = \frac{r}{H} \) \[Similar \Delta's\]

\[
\Rightarrow \quad h = \frac{R}{r} \frac{rH}{H}
\]

\[
\Rightarrow \quad \frac{1}{3} \frac{d}{dt} \left(\frac{rH}{R} \right) = -k\frac{r^2}{R}
\]

\[
\Rightarrow \quad \frac{d}{dt} \left(\frac{r^2H}{R} \right) = -kr^2
\]

\[
\Rightarrow \quad \frac{dr}{dt} = \frac{kR}{H}
\]

\[
\Rightarrow \quad r = -\frac{kr^2}{H} + C
\]

Now at \(t = 0 \), \(r = R \)

\[
\Rightarrow \quad R = 0 + C \Rightarrow C = R
\]

\[
\Rightarrow \quad r = -\frac{kr^2}{H} + R
\]

Now let the time at which cone is empty be \(T \) then at \(T \), \(r = 0 \) (no liquid is left)

\[
\therefore \quad 0 = -\frac{kr^2}{H} + R \Rightarrow T = \frac{H}{k}
\]

12. According to the question, slope of curve \(C \) at \((x, y)\)

\[
= \frac{(x+1)^2 + (y-3)}{(x+1)}
\]

\[
\Rightarrow \quad \frac{dy}{dx} = (x+1) + \frac{y-3}{x+1}
\]

\[
\Rightarrow \quad \frac{dy}{dx} = \left(\frac{1}{x+1} \right) y = x+1 - \frac{3}{x+1}
\]

which is a linear differential equation.

I.F. = \(e^{-\log(x+1)} = e^{-\log(x+1)} = \frac{1}{x+1} \)

\[
\therefore \text{ solution is } y \frac{1}{x+1} = \int \left[1 - \frac{3}{(x+1)^2} \right] \, dx
\]
\[\frac{y}{x + 1} = x + \frac{3}{x + 1} + C \]
\[y = x(x + 1) + 3 + C(x + 1) \]
As the curve passes through \((2, 0)\),
\[\therefore 0 = 2 + 3 + C \cdot 3 \]
\[C = -3 \]
\[\therefore \text{equation (1) becomes} \]
\[y = x(x + 1) + 3 - 3x - 3 = x^2 - 2x \]
which is the required equation of curve.
This can be written as \((x - 1)^2 = (y + 1)\)
\[\text{[Upward parabola with vertex at (1, -1) meeting x-axis at (0, 0) and (2, 0)]} \]

Objective

Fill in the blanks

1. If \(S \) denotes the surface area and \(V \) the volume of the rain drop then according to the question
\[\frac{dV}{dt} \propto -S \]
\[\therefore \frac{dV}{dt} = -kS \text{ where } k > 0 \]
\[(-ve \text{ sign shows } V \text{ decreases with time}) \]
\[\frac{d}{dt} \left[\frac{4}{3} \pi r^3 \right] = -k(4 \pi r^2) \]
\[4 \pi r^2 \frac{dr}{dt} = -k(4 \pi r^2) \]
\[\frac{dr}{dt} = -k \]

Multiple choice questions with one correct answer

1. a. Slope of the normal at \((1, 1) = -\frac{1}{a}\)
Slope of tangent at \((1, 1) = a\)
\[\therefore \left(\frac{dy}{dx} \right)_{(1,1)} = a \]
Since \(\frac{dy}{dx} \) is proportional to \(y \),
\[\therefore \frac{dy}{dx} = Ky \]
\[\therefore \frac{dy}{y} = K \ dx \]
\[\therefore \log y = Kx + C \]
\[y = e^{Kx+C} = Ae^{Kx} \text{ where } A = e^C \]
It passes through \((1, 1)\)
\[\therefore 1 = Ae^K \therefore A = e^{-K} \]
\[\therefore y = e^{-K} e^{Kx} = e^{K(x-1)} \]

2. c. \(\left(\frac{dy}{dx} \right)^2 - x \frac{dy}{dx} + y = 0 \)
By verification we find that the choice (c), i.e., \(y = 2x - 4 \)
satisfies the given differential equations.
Alternate
\[\left(\frac{dy}{dx} \right)^2 - x \frac{dy}{dx} + y = 0 \]
\[\therefore \frac{dy}{dx} = \frac{x \pm \sqrt{x^2 - 4y}}{2} \]
Let \(x^2 - 4y = t^2 \)
\[\therefore 2x - 4 \frac{dy}{dx} = 2t \frac{dt}{dx} \]
\[x - 2 \frac{dy}{dx} = t \frac{dt}{dx} \]
Then equation (1) changes to \(x - \frac{t}{x} \frac{dt}{dx} = x \pm t \)

\[\Rightarrow \frac{dt}{dx} = \pm 1 \text{ or } t = 0 \]
\[\Rightarrow t = x + c \quad \text{or} \quad x^2 - 4y = x^2 + 2cx + c^2 \]
\[\Rightarrow -4y = \pm 2cx + c^2 \]
For \(c = 4 \)
\(4y = \pm 8x - 16 \) or \(y = 2x - 4 \)

3. a. The given differential equation is

\[\frac{dy}{dt} - \frac{t}{1 + t} y = \frac{1}{1 + t} \]

I.F. = \(e^{-\int \frac{t}{1+t} dt} \)
\[= e^{-\int \frac{1}{1+t} dt} \]
\[= e^{-(\int 1 - \log(1+t))} \]
\[= e^{-t - \log(1+t)} = (1+t)^{-1} \]
\[\therefore \text{ solution is} \]
\[ye^{-t}(1+t) = \int \frac{1}{(1+t)} e^{-t}(1+t) dt + c \]
\[\Rightarrow ye^{-t}(1+t) = -e^{-t} + c \]
Given that \(y(0) = -1 \)
\[\Rightarrow -1 = -1 + c \]
\[\Rightarrow C = 0 \]
\[\therefore y = -\frac{1}{1+t} \]
\[\therefore y(1) = -\frac{1}{1+1} = -\frac{1}{2} \]

4. a.

\[\frac{dy}{dx} \left(\frac{2 + \sin x}{1 + y} \right) = -\cos x, \quad y(0) = 1 \]

\[\Rightarrow \frac{dy}{1+y} = -\cos x \frac{dx}{2 + \sin x} \]

Integrating both sides, we get
\[\Rightarrow \ln(1+y) = -\ln(2 + \sin x) + \ln 2 + 2 \ln 4 = \ln 4/3 \]
\[\Rightarrow y = 1/3 \]

5. c. The given differential equation is \((x^2 + y^2) dy = xy \ dx \) such that \(y(1) = 1 \) and \(y(x_0) = e \)

The given equation can be written as
\[\frac{dy}{dx} = \frac{xy}{x^2 + y^2} \quad \text{(homogeneous equation)} \]

Put \(y = vx \) to get \(v + xv \frac{dv}{dx} = \frac{-v}{1 + v^2} \)
\[\Rightarrow x \frac{dv}{dx} = \frac{-v^3}{1 + v^2} \]

\[\Rightarrow \int \frac{1 + v^2}{v^2} dv + \int \frac{dx}{x} = 0 \]
\[\Rightarrow -\frac{1}{2v^2} + \log|1| + \log|x| = C \]
\[\Rightarrow \log y = C + \frac{x^2}{2y^2} \quad \text{(using} v = y/x) \]

Also \(y(1) = 1 \)
\[\Rightarrow \log 1 = C + \frac{1}{2} \Rightarrow C = -\frac{1}{2} \]
\[\therefore \log y = \frac{x^2 - y^2}{2y^2} \]

Given \(y(x_0) = e \)
\[\Rightarrow \log e = \frac{x_0^2 - e^2}{2e^2} \]
\[\Rightarrow x_0^2 = 3e^2 \Rightarrow x_0 = \sqrt{3}e \]

6. a. The given equation is
\[ydx + y^2 dy = x \ dy; \quad x \in R, \ y > 0, y(1) = 1 \]
\[\Rightarrow \frac{ydx - xdy}{y^2} + dy = 0 \]
\[\Rightarrow \frac{d}{dx} \left(\frac{x}{y} \right) + dy = 0 \]

On integrating, we get \(\frac{x}{y} = C \)
\[y(1) = 1 \Rightarrow 1 + 1 = C \Rightarrow C = 2 \]
\[\therefore \frac{x}{y} = 2 \]

Now to find \(y(-3) \), putting \(x = -3 \) in the above equation
we get, \(3 + y = 2 \)
\[\Rightarrow y^2 - 2y - 3 = 0 \Rightarrow y = 3, -1 \]
but given that \(y > 0 \) \(\therefore y = 3 \)

7. c. \[\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y} \]
\[\Rightarrow \frac{-2y}{\sqrt{1-y^2}} dy + 2dx = 0 \]
\[\Rightarrow 2\sqrt{1-y^2} - 2x = 2c \]
\[\Rightarrow \sqrt{1-y^2} + x = c \]
\[\Rightarrow (x-c)^2 + y^2 = 1 \]

which is a circle of fixed radius 1 and variable centre \((c, 0)\) lying on x-axis.

Multiple choice questions with one or more than one correct answers

1. c. \(y = (C_1 + C_2) \cos (x + C_3) - C_4 e^{x+C_5} \)
\[(C_1 + C_2) \cos (x + C_3) - C_4 e^{C_1 + C_2} \]

\[A \cos (x + C_3) - B e^{C_1} \quad \text{[Taking } C_1 + C_2 = A, C_4 e^{C_1} = B] \]

Thus, there are actually three arbitrary constants and hence this differential equation should be of order 3.

1. a, c. \(y^2 = 2c \left(x + \sqrt{c} \right) \)

Differentiating w.r.t. \(x \), we get

\[2yy' = 2c \Rightarrow c = y y' \]

Eliminating \(c \), we get

\[y^2 = 2yy_1 (x + \sqrt{y_1}) \quad \text{or} \quad (y^2 - 2x y_1)^2 = 4y^3 y_1^3 \]

It involves only first order derivative, its order is 1 but its degree is 3 as \(y_1^3 \) is there.

3. c, d. Tangent to the curve \(y = f(x) \) at \((x, y)\) is

\[\begin{align*}
Y - y &= \frac{dy}{dx} (X - x) \\
& \quad \text{or} \quad A \left(\frac{x \frac{dy}{dx} - y}{\frac{dy}{dx}} \right) = 0 \\
& \quad \text{or} \quad B \left(0, -x + \frac{dy}{dx} + y \right) \]

\[\therefore \quad BP : PA = 3 : 1 \]

\[\frac{3 \left(x \frac{dy}{dx} - y \right)}{\frac{dy}{dx}} + 1 \times 0 \]

\[\Rightarrow \quad x = \frac{\frac{dy}{dx}}{4} \]

\[\Rightarrow \quad x \frac{dy}{dx} + 3y = 0 \]

\[\Rightarrow \quad \int \frac{dy}{y} = \int \frac{3}{x} \frac{dx}{x} \]

\[\Rightarrow \quad \log y = -3 \log x + \log c \]

\[\Rightarrow \quad y = \frac{c}{x^3} \]

As curve passes through \((1, 1)\), \(c = 1 \)

\[\therefore \quad \text{curve is } x^3 y = 1 \text{ which also passes through } (2, 1/18). \]

Integer type

1. (9) Equation of tangent to \(y = f(x) \) at point \((x_1, y_1)\) is

\[y - y_1 = m (x - x_1) \]

Put \(x = 0 \), to get \(y \) intercept

\[y_1 - mx_1 = x_1^3 \quad \text{(given)} \]

\[y_1 - x_1 \frac{dy}{dx} = x_1^3 \]

\[\therefore \quad \frac{dy}{dx} - y = -x^3 \]

\[\therefore \quad \frac{dy}{dx} - \frac{y}{x} = -x^2 \]

\[\text{I.F.} = e^{-\ln x} = e^{-\ln x} = \frac{1}{x} \]

\[\therefore \quad \text{Solution is } y \times \frac{1}{x} = \int -x^2 \times \frac{1}{x} dx \]

\[\Rightarrow \quad \frac{v}{x} = -\frac{x^3}{2} + c \]

\[\Rightarrow \quad f(x) = -\frac{x^3}{2} + 3x \text{ (as } f(1) = 1) \]

\[\therefore \quad f(-3) = 9. \]

2. (0) \(y'(x) + y(x) g'(x) = g(x) g'(x) \)

\[\Rightarrow \quad e^{g(x)} y'(x) + e^{g(x)} g'(x) y(x) = e^{g(x)} g(x) g'(x) \]

\[\Rightarrow \quad \frac{d}{dx} (y(x) e^{g(x)}) = e^{g(x)} g(x) g'(x) \]

\[\therefore \quad y(x) e^{g(x)} = \int e^{g(x)} g(x) g'(x) dx \]

\[= \int e^t dt, \text{where } g(t) = t \]

\[= (t - 1) e^t + c \]

\[\therefore \quad y(x) e^{g(x)} = (g(x) - 1) e^{g(x)} + c \]

Put \(x = 0 \) \(\Rightarrow \quad 0 = (0 - 1) \cdot 1 + c \Rightarrow c = 1 \)

Put \(x = 2 \) \(\Rightarrow \quad y(2) \cdot 1 = (0 - 1) \cdot 1 + 1 \)

\(y(2) = 0. \)

3. (6) \(6\int f(t) dt = 3xf(x) - x^3 \)

\[\Rightarrow \quad 6f(x) = 3f(x) + 3xf'(x) - 3x^2 \]

\[\Rightarrow \quad x f'(x) - f(x) = x^2 \]

\[\Rightarrow \quad x \frac{dy}{dx} - y = x^2 \]

\[\Rightarrow \quad \frac{x \frac{dy}{dx} - y}{x^2} = \frac{dx}{x} \]

\[\Rightarrow \quad \int \frac{x \frac{dy}{dx} - y}{x^2} = \int \frac{dx}{x} \]

\[\Rightarrow \quad \frac{x}{x} = x + c \]

\[\therefore \quad \frac{y}{x} = x + c \]

Given \(f(1) = 2 \)

\[\Rightarrow \quad c = 1 \]

\[\Rightarrow \quad y = x^2 + x \]

Note

If we put \(x = 1 \) in the given equation we get \(f(1) = 1/3. \)
Appendix

Solutions to Concept Application Exercises

Chapter 1

Exercise 1.1

1. \(f(x) = \frac{x - 3}{(x + 3)\sqrt{x^2 - 4}} \)

 we must have \(x^2 - 4 > 0 \) and \(x \neq -3 \)

 \(\Rightarrow \) domain is \(x \in (-\infty, -3) \cup (-3, 2) \cup (2, \infty) \).

2. \(f(x) = \sqrt{2 - x} - \frac{1}{\sqrt{9 - x^2}} \)

 We must have \(i) x \leq 2 \) and \(ii) 9 - x^2 > 0 \) \(\Rightarrow |x| < 3 \) or \(-3 < x < 3 \).

 Hence, domain is \((-3, 2] \).

3. \(f(x) = \frac{x - 2}{x + 2} + \frac{1 - x}{1 + x} \)

 We must have \(x - 2 \geq 0 \) and \(1 - x \geq 0 \).

 \(\frac{x - 2}{x + 2} \geq 0 \Rightarrow x \geq 2 \) or \(x < -2 \).

 \(\frac{1 - x}{1 + x} \geq 0 \Rightarrow -1 < x \leq 1 \).

 Hence, the given function has empty domain.

4. \(f(x) = \sqrt{\frac{2}{x^2 - x + 1} - \frac{1}{x + 1} - \frac{2x - 1}{x^2 + 1}} \)

 We must have \(2 \frac{x^2 - x + 1}{x^2 - x + 1} \geq 0 \)

 \(\Rightarrow 2(x + 1) - (x^2 - x + 1) - (2x - 1) \geq 0 \)

 \(\Rightarrow \frac{(x + 1)(x^2 - x + 1)}{x + 1} \geq 0 \)

 \(\Rightarrow \frac{x - 2 - 1}{x - 2 - 1} \geq 0 \), \(x \neq -1 \)

 \(\Rightarrow 2 - x \geq 0, x \neq -1 \) (as \(x^2 - x + 1 > 0 \) for \(\forall x \in R \))

 \(\Rightarrow x \leq 2, x \neq -1 \)

 Hence, domain of the function is \((-\infty, -1) \cup (-1, 2] \).

5. \(f(x) = \sqrt{x - \sqrt{1 - x^2}} \) to get defined \(x - \sqrt{1 - x^2} \geq 0 \)

 \(\Rightarrow x \geq \sqrt{1 - x^2} \)

 \(\Rightarrow x \) is positive and \(x^2 \geq 1 - x^2 \)

 \(\Rightarrow x^2 \geq 1/2 \)

 \(\Rightarrow x \in \left[\frac{1}{\sqrt{2}} \right] (-1 \leq x \leq 1) \)

6. \(f(x) = \frac{x^2 + 1}{x^2 + 2} - \frac{x^2 + 1}{x^2 + 2} = 1 - \frac{1}{x^2 + 2} \)

 Now \(x^2 + 2 \geq 2, \forall x \in R \)

 \(\Rightarrow 0 < \frac{1}{x^2 + 2} < \frac{1}{2} \leq \frac{-1}{x^2 + 2} < 0 \)

 \(\Rightarrow \frac{1}{2} - \frac{1}{x^2 + 2} < 1 \)

7. Using wavy curve method and the fact that \(x = 0 \) and \(3 \) are the repeated roots of \(x(e^x - 1) + 2(x + 3) = 0 \), we get the sign scheme of the given expression as

 \(\begin{array}{c|c|c|c|c}
 x & -2 & 0 & 3 \\
 \hline
 + & + & + & + \\
 \end{array} \)

 Fig. S-1.1

Thus, the complete solution set is \(x \in (-\infty, -2] \cup \{0, 3\} \).

Exercise 1.2

1. Let \(\frac{x^2 + 34x - 71}{x^2 + 2x - 7} = y \)

 \(\Rightarrow x^2(1 - y) + 2(17 - y)x + (7y - 71) = 0 \)

 For the real value of \(x \), \(b^2 - 4ac \geq 0 \)

 \(\Rightarrow y^2 - 14y + 45 \geq 0 \)

 \(\Rightarrow y \leq 5 \) or \(y \geq 9 \)

 Hence, range is \((-\infty, 5] \cup [9, \infty) \).

2. Let \(y = \sqrt{x - 1} + \sqrt{5 - x} \)

 \(\Rightarrow y^2 = x - 1 + 5 - x + 2\sqrt{(x - 1)(5 - x)} \)

 \(\Rightarrow y^2 = 4 + 2\sqrt{-x^2 - 5 + 6x} \)

 \(\Rightarrow y^2 = 4 + 2\sqrt{-x^2 - 3 + x^2} \)

 \(\Rightarrow y^2 \) has minimum value \(4 \) [when \(4 - (x - 3)^2 = 0 \)] and the maximum value \(8 \) when \(x = 3 \).

 \(\Rightarrow y \in [2, 2\sqrt{2}] \)

3. \(f(x) = \sqrt{x^2 + ax + 4} \) is defined for all \(x \).

 \(\Rightarrow x^2 + ax + 4 \geq 0 \) for all \(x \)
4. \(f(x) = \sqrt{3-2x-x^2} \) is defined if \(3-2x-x^2 \geq 0 \)

\[\Rightarrow x^2 + 2x - 3 \leq 0 \]
\[\Rightarrow (x-1)(x+3) \leq 0 \]
\[\Rightarrow x \in [-3, 1] \]

Also, \(f(x) = \sqrt{4-(x+1)^2} \) which has maximum value when \(x+1 = 0 \).

Hence, the range is \([0, 2]\).

Exercise 1.3

1. a. \(1 \leq |x-2| \leq 3 \)

We know that \(a \leq |x| \leq b \iff x \in [-b, -a] \cup [a, b] \).

Given that \(1 \leq |x-2| \leq 3 \)

\[\Rightarrow (x-2) \in [-3, -1] \cup [1, 3] \]
\[\Rightarrow x \in [-1, 1] \cup [3, 5] \]

b. \(0 < |x-3| \leq 5 \)

\[\Rightarrow x-3 \neq 0 \text{ and } |x-3| \leq 5 \]
\[\Rightarrow x \neq 3 \text{ and } -5 \leq x-3 \leq 5 \]
\[\Rightarrow x \neq 3 \text{ and } -2 \leq x \leq 8 \]
\[\Rightarrow x \in [-2, 3) \cup (3, 8] \]

c. \(|x-2| + |2x-3| = |x-1| \)

\[\Rightarrow |x-2| + |2x-3| = |2x-3| + |2-x| \]
\[\Rightarrow (x-2)(2x-3) \leq 0 \]
\[\Rightarrow 3/2 \leq x \leq 2 \]
\[\Rightarrow x \in [3/2, 2] \]

d. \(\frac{|x-3|}{x+1} \leq 1 \)

\[\Rightarrow -1 \leq \frac{x-3}{x+1} \leq 1 \]
\[\Rightarrow \frac{x-3}{x+1} -1 \leq 0 \text{ and } 0 \leq \frac{x-3}{x+1} +1 \]
\[\Rightarrow \frac{-4}{x+1} \leq 0 \text{ and } 0 \leq \frac{2x-2}{x+1} \]
\[\Rightarrow x > -1 \text{ and } \{x < -1 \text{ or } x \geq 1\} \]
\[\Rightarrow x \geq 1 \]

2. \(a. f(x) = \frac{1}{\sqrt{x-|x|}} \)

\[x-|x| = \begin{cases} x-x = 0, & \text{if } x \geq 0 \\ x+x = 2x, & \text{if } x < 0 \end{cases} \]
\[\Rightarrow x-|x| \leq 0 \text{ for all } x \]
\[\Rightarrow \frac{1}{\sqrt{x-|x|}} \text{ does not take real values for any } x \in \mathbb{R} \]
\[\Rightarrow f(x) \text{ is not defined for any } x \in \mathbb{R} \]
Hence, the domain \((f)\) is \(\phi\).

b. \(f(x) = \frac{1}{\sqrt{x+|x|}} \)

3. Given \(|2x+3| + |2x-3| = \begin{cases} 4x & \text{if } x \geq \frac{3}{2} \\ 6 & \text{if } -\frac{3}{2} < x < \frac{3}{2} \\ -4x & \text{if } x \leq -\frac{3}{2} \end{cases} \)

and \(y = ax + 6 \)

Graph of \(f(x) \) is shown in Fig. S-1.3

Clearly the minimum value of \(f(x) \) will occur at \(x=b \) which is \(c-a \).

5. \(f(x) = \sqrt{1-\sqrt{x^2-6x+9}} = \sqrt{1-\sqrt{(x-3)^2}} = \sqrt{1-|x-3|} \)

\[\Rightarrow \text{Range of } f(x) \text{ is } [0, 1]. \]
Exercise 1.4

1. \(f(x) = \sqrt{\sin x + \sqrt{16 - x^2}} \)
 \[\Rightarrow \sin x \geq 0 \text{ and } 16 - x^2 \geq 0 \]
 \[\Rightarrow 2n\pi \leq x \leq (2n + 1)\pi \text{ and } -4 \leq x \leq 4 \]
 \[\therefore \text{ domain is } [-4, -\pi] \cup [0, \pi]. \]

2. a. We know that \(\tan x \) is periodic with period \(\pi \). So, check the solution in the interval \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \).

```
Fig S-1.4
```

It is clear from Fig S-1.4, \(\tan x < 2 \) when \(-\frac{\pi}{2} < x < \tan^{-1} 2 \)

\[\Rightarrow \text{ General solution is } n\pi - \frac{\pi}{2} < x < n\pi + \tan^{-1} 2 \]

\[\Rightarrow n \in \left(n\pi - \frac{\pi}{2}, n\pi + \tan^{-1} 2\right) \]

b. \(\cos x \) is periodic with period \(2\pi \).
 So, check the solution in \([0, 2\pi]\).

```
Fig S-1.5
```

It is clear from Fig S-1.5, \(\cos x \leq -\frac{1}{2} \) when \(\frac{2\pi}{3} \leq x \leq \frac{4\pi}{3} \).

On generalizing the above solution, we get

\[2n\pi + \frac{2\pi}{3} \leq x \leq 2n\pi + \frac{4\pi}{3}; \ n \in \mathbb{Z} \]

\[\therefore \text{ solution of } \cos x \leq -\frac{1}{2} = x \in \left[2n\pi + \frac{2\pi}{3}, 2n\pi + \frac{4\pi}{3}\right]; \]

\[n \in \mathbb{Z} \]

3. Let \(f(x) = \tan x \) and \(g(x) = x + 1 \);
 which could be shown as

```
Fig S-1.6
```

From Fig S-1.6, \(\tan x = x + 1 \) has infinitely many solutions but the least positive value of \(x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \).

4. \(f(x) = \sec\left(\frac{\pi}{4} \cos^2 x\right) \)
 We know that, \(0 \leq \cos^2 x \leq 1 \).
 \[\Rightarrow 0 \leq \frac{\pi}{4} \cos^2 x \leq \frac{\pi}{4} \]
 For the above value of \(\theta = \frac{\pi}{4} \cos^2 x \), \(\sec x \) is an increasing function.
 at \(\cos x = 0 \), \(f(x) = 1 \) and at \(\cos x = 1 \), \(f(x) = \sqrt{2} \)
 \[\therefore 1 \leq \sqrt{2} \Rightarrow x \in [1, \sqrt{2}] \]

5. \(f(x) = \tan x, x \in [1, 2] \) (see Fig S-1.7)
 Here the limited values of \(x \) are given.
 The best way to get the range of \(\tan x \) for such values of \(x \) is graphical one.
 Consider the graph of \(f(x) = \tan x \) for \(x \in [1, 2] \)
 Clearly from the graph, \(\tan x \in (-\infty, \tan 2] \cup [\tan 1, \infty) \)

```
Fig S-1.7
```

6. \(f(x) = \frac{1}{1 - 3\sqrt{1 - \sin^2 x}} \)
 \[= \frac{1}{1 - 3\sqrt{\cos^2 x}} \]
 \[= \frac{1}{1 - 3|\cos x|} \]
 Now \(-3|\cos x| \in [-3, 0] \)
 \[1 - 3|\cos x| \in [-2, 1] \]
 \[\Rightarrow \frac{1}{1 - 3|\cos x|} \in (-\infty, -1/2] \cup [1, \infty) \]
Exercise 1.5

1. a. \(f(x) \) is defined if \(x \in [-1, 1] \) and \(x \neq 0 \)
 \[\Rightarrow \quad x \in [-1, 0) \cup (0, 1] \]

b. \(f(x) = \sin^{-1}(x) - 1 \)
 Since the domain of \(\sin^{-1} x \) is \([-1, 1]\). Therefore, \(f(x) \) is defined if \(-1 \leq x - 1 \leq 2 \)
 \[\Rightarrow \quad 1 \leq |x - 1| \leq 3 \]
 \[\Rightarrow \quad -3 \leq x - 1 \leq -1, \text{ or } 1 \leq x - 1 \leq 3 \]
 \[\Rightarrow \quad 0 \leq x \leq 4, \text{ or } 2 \leq x \leq 4 \]
 \[\Rightarrow \quad \text{domain} = [-2, 0] \cup [2, 4] \]

2. \(f(x) = \tan^{-1}\left(\sqrt{(x - 1)^2 + 1}\right) \)
 Now \((x - 1) + 1 \in [1, \infty) \)
 \[\Rightarrow \quad \tan^{-1}\left(\sqrt{(x - 1)^2 + 1}\right) \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \]

3. For \(x \geq 0 \), \(\cos^{-1}\sqrt{1 - x^2} = \sin^{-1} x \)
 \[\Rightarrow \quad f(x) = 0 \]
 For \(x < 0 \), \(\cos^{-1}\sqrt{1 - x^2} = -\sin^{-1} x \)
 \[\Rightarrow \quad f(x) = -\sqrt{2}\sin^{-1} x \]
 \[\Rightarrow \quad \text{range of } f(x) = [0, \sqrt{\pi}] \]

4. \(y = (x^2 - 1)^2 + 4 \geq 2 \)
 \[\Rightarrow \quad \log_{0.5}(x^4 - 2x^2 + 3) \leq -1 \]
 \[\Rightarrow \quad \cot^{-1}(\log_{0.5}(x^4 - 2x^2 + 3)) \in \left[\frac{3\pi}{4}, \pi\right] \]

Exercise 1.6

1. \(4^x + 8^3(x - 2)^2 - 13 - 2(3x + 1) \geq 0 \)
 \[\Rightarrow \quad 4^x + \frac{4^x}{16} - \frac{4^x}{4} \geq 13 \]
 \[\Rightarrow \quad 4^x \geq 4^2 \quad \Rightarrow \quad x \in [2, \infty) \]

2. \(f(x) = \sin^{-1}(\log_2 x) \)
 Since the domain of \(\sin^{-1} x \) is \([-1, 1]\).
 Therefore, \(f(x) = \sin^{-1}(\log_2 x) \) is defined, if \(-1 \leq \log_2 x \leq 1 \)
 \[\Rightarrow \quad 2^{-1} \leq x \leq 2^1 \]
 \[\Rightarrow \quad \frac{1}{2} \leq x \leq 2 \]
 \[\Rightarrow \quad \text{domain} = \left[\frac{1}{2}, 2\right] \]

3. \(f(x) = \log_{\log_2(x - 4)}(x^2 - 11x + 24) \)
 \(f(x) \) is defined if \(x > 4 \) and \(x \neq 1 \) and \(x^2 - 11x + 24 > 0 \)
 \[\Rightarrow \quad x > 4 \text{ and } x \neq 5 \text{ and } (x - 3)(x - 8) > 0 \]
 \[\Rightarrow \quad x > 4 \text{ and } x \neq 5 \text{ and } x < 3 \text{ or } x > 8 \]
 \[\Rightarrow \quad x > 8 \]
 \[\Rightarrow \quad \text{domain} (y) = (8, \infty) \]

4. \(f(x) = \sqrt[3]{4 - x^2} + \log_{10}(x^3 - x) \)
 \(f(x) \) is defined when \(x \pm \pm 2 \) and \(x^3 - x > 0 \)
 \[\Rightarrow \quad x \neq \pm 2 \text{ and } x(x^2 - 1) > 0 \]
 \[\Rightarrow \quad x \neq \pm 2, x \in (-1, 0) \cup (1, \infty) \]
 \[\Rightarrow \quad x \in (-1, 0) \cup (1, 2) \cup (2, \infty) \]

5. \(f(x) = \sqrt[3]{\frac{\log_{0.5}|x - 2|}{|x|}} \)
 Here \(|x| > 0 \forall x \in R - \{0\} \)
 \[\Rightarrow \quad \text{For } f(x) \text{ to get defined } \log_{0.5}|x - 2| \geq 0 \]
6. \[f(x) = \frac{1}{\sqrt{\log_{10} \left(\frac{\log_{10} x}{2 (3 - \log_{10} x)} \right)}} \] Clearly, \(f(x) \) is defined, if
\[
\log_{10} \left(\frac{\log_{10} x}{2 (3 - \log_{10} x)} \right) \geq 0, \quad \frac{\log_{10} x}{2 (3 - \log_{10} x)} > 0 \quad \text{and} \quad x > 0
\]
\[\Rightarrow \log_{10} x \geq 1, \quad \frac{\log_{10} x}{3 - \log_{10} x} < 0 \quad \text{and} \quad x > 0 \]
\[\Rightarrow 3 \log_{10} x - 2 > 0, \quad \frac{\log_{10} x}{(3 - \log_{10} x)} < 0 \quad \text{and} \quad x > 0 \]
\[\Rightarrow 2 \leq \log_{10} x < 3, \quad 0 < \log_{10} x < 3 \quad \text{and} \quad x > 0 \]
\[\Rightarrow 10^2 \leq x < 10^3, \quad 10^0 < x < 10^3 \quad \text{and} \quad x > 0 \]
\[\Rightarrow x \in [10^2, 10^3) \]

7. \[f(x) = \frac{1}{\sqrt{\log_{1/2} \left(x^2 - 7x + 13 \right)}} \] exists
If \(\log_{1/2} \left(x^2 - 7x + 13 \right) > 0 \)
\[\Rightarrow x^2 - 7x + 13 < 1 \quad \text{and} \quad x^2 - 7x + 13 > 0 \]
\[\Rightarrow x^2 - 7x + 12 < 0 \quad \text{and} \quad \left(x - \frac{7}{2} \right)^2 + \frac{3}{4} > 0 \]
\[\Rightarrow 3 < x < 4 \quad \text{and} \quad x \in R \]
\[\Rightarrow 3 < x < 4 \]

8. \[-\sqrt{2} \leq \sin x - \cos x \leq \sqrt{2} \]
\[\Rightarrow 2\sqrt{2} \leq \sin x - \cos x + 3\sqrt{2} \leq 4\sqrt{2} \]
\[\Rightarrow 2 \leq \frac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}} \leq 4 \]
\[\Rightarrow \log_2 2 \leq \log_2 \left(\frac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}} \right) \leq \log_2 4 \]
\[\Rightarrow 1 \leq \log_2 \left(\frac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}} \right) \leq 2 \]

Exercise 1.7

1. \[[x]^2 - 5[x] + 6 = 0 \]
\[\Rightarrow [x] = 2, 3 \]
\[\Rightarrow x \in [2, 4) \]
2. \[y = 3[x] + 1 = 4[x - 1] - 10 = 4[x] - 14 \]
\[\Rightarrow [x] = 15 \quad \text{and} \quad y = 3.15 + 1 = 46 \]
\[\Rightarrow [x + 2y] = 2y + [x] = 2.46 + 15 = 107 \]

3. a. We have, \[f(x) = \frac{1}{\sqrt{x - [x]}} \]
We know that \(0 \leq x - [x] < 1 \) for all \(x \in R \). Also, \(x - [x] = 0 \) for \(x \in Z \).
Now, \(f(x) = \frac{1}{\sqrt{x - [x]}} \) is defined, if \(x - [x] > 0 \)
\[\Rightarrow x \in R - Z \]
\[\Rightarrow 0 < x - [x] < 1 \quad \text{for} \quad x \in R - Z \]
Hence, the domain = \(R - Z \)

b. \[f(x) = \frac{1}{\log_{10} x} \]
We must have \([x] > 0 \) and \([x] \neq 1 \) (as for \([x] = 1 \), \(\log_{10} x \)
\[\Rightarrow [x] \geq 2 \quad \Rightarrow x \in [2, \infty) \]

\[f(x) = \log_{10} (x) \]
\[f(x) \] is defined if \(x > 0 \) which is true for all real numbers except integers.
Hence, the domain is \(R - Z \).

4. \[f(x) = \frac{1}{\sqrt{|x|}} \]
\(f(x) \) is defined
\[|\lfloor x \rfloor - 1| > 5 \]
\[\Rightarrow |\lfloor x \rfloor - 1| > 5 \]
\[\Rightarrow |\lfloor x \rfloor - 1| < -5 \quad \text{or} \quad |\lfloor x \rfloor - 1| > 5 \]
\[\Rightarrow |x| < -5 \quad \text{or} \quad |x| > 11 \quad \Rightarrow |x| > 7 \]
\[\Rightarrow x \in (-\infty, -7) \cup (7, \infty) \]

5. a. \(1 - \sin x \geq 0 \quad \Rightarrow \sin x \leq 1 \quad \Rightarrow x \in R \)
b. \(1 - 4x^2 > 0 \quad \Rightarrow x \in (-1/2, 1/2) \)
c. \[\log_3 (1 - 4x^2) = 0 \quad \Rightarrow 1 - 4x^2 = 1 \quad \Rightarrow x = 0 \]
d. \(-1 \leq -\{x\} \leq 1 \quad \Rightarrow 0 \leq \{x\} \leq 2 \quad \Rightarrow x \in R \)
Hence, domain is common values of \(a, b, c, \) and \(d \), i.e.,
\[x \in \left(\frac{-1}{2}, \frac{1}{2} \right) - \{0\} \]

6. \[f(x) = \cos (\log_{10} x) \]
For the given function to define \(0 < \{x\} < 1 \)
\[\Rightarrow -\infty < \log_{10} x < 0 \]
For this values of \(\theta = (\log_{10} x) \), \(\cos \theta \) takes all its possible values.
Hence, the range is \([-1, 1] \).

7. \[\log_{10} \left| \frac{x}{x} \right| \]
\[\text{defined, if} \quad |x| > 0, \quad [x] \neq 0 \quad \text{and} \quad x \neq 1 \]
\[\Rightarrow x > 0, \quad x \in [1, \infty) \quad \text{and} \quad x \in [1, 2) \]
\[\Rightarrow x \in [2, \infty) \]
For \(x \in [2, \infty) \), we have \(\log_{10} \left| \frac{x}{x} \right| = \log_{10} 1 = 0 \)
\[\therefore f(x) = \cos^{-1} 0 = \pi/2 \quad \text{for all} \quad x \in [2, \infty) \]
Hence, domain \((f) = [2, \infty) \) and range \((f) = \{\pi/2\} \).

8. \[f(x) = \log_{10} (-1) \sin x \]
where \([.] \) denotes the greatest integer.
To get the range of \(f(x) \), let us examine the values of \(x \) for which the function is defined.
\[f(x) \] is defined if \(\sin x > 0 \) and \([x - 1] > 0 \) and \([x - 1] \neq 1 \)
\[\Rightarrow 0 < \sin x \leq 1 \quad \text{and} \quad x \geq 2 \]
Now for base of the logarithm \(\geq 2 \) and \(x \in (0, 1] \), clearly \(\log_{10} (-1) \sin x \in (-\infty, 0] \).

9. For \(x \geq 2 \), LHS is always non-negative and RHS is always negative.
Hence for \(x \geq 2 \) no solution.
If \(1 \leq x < 2 \), then \(x - 2 = (x - 1) - 1 = x - 2 \), which is an identity
\[\text{For} \quad 0 \leq x < 1, \text{LHS is} \quad '0' \quad \text{and RHS is} \quad (-)\text{ve} \]
\[\Rightarrow \text{No solution.} \]
\[\text{For} \quad x < 0, \text{LHS is} \quad (+)\text{ve}, \text{RHS is} \quad (-)\text{ve} \]
\[\Rightarrow \text{No solution} \]
Hence \(x \in [1, 2) \)
Exercise 1.8

1. \(f(3) = \max \{1, 3 - 1, \min \{4, 9 - 1\}\} = \max \{1, 2, 4\} = 4. \)

2. Here, for maximum, let us consider \(f_1(x) = x^2, f_2(x) = (1 - x)^2 \) and \(f_3(x) = 2x(1 - x) \)

Now taking graph for \(f_1(x), f_2(x) \) and \(f_3(x) \):

![Graph showing f_1(x), f_2(x), f_3(x)](image)

Fig. S-1.8

Here, neglecting the graph, i.e., below the point of intersection.

Since we want to find the maximum of three functions \(f_1(x), f_2(x) \) and \(f_3(x) \):

\[
\begin{align*}
(1 - x)^2, & \quad 0 \leq x < \frac{1}{3} \\
2x(1 - x), & \quad \frac{1}{3} \leq x < \frac{2}{3} \\
x^2, & \quad \frac{2}{3} \leq x \leq 1
\end{align*}
\]

\[
\therefore f(x) = \begin{cases}
(1 - x)^2, & 0 \leq x < \frac{1}{3} \\
2x(1 - x), & \frac{1}{3} \leq x < \frac{2}{3} \\
x^2, & \frac{2}{3} \leq x \leq 1
\end{cases}
\]

3. a.

![Graph showing f(x)](image)

From the graph \(f(x) = \begin{cases}
1, & |x| > 1 \\
-1, & 0 < |x| < 1 \\
0, & |x| = 1
\end{cases} \)

b.

![Graph showing y = x^3 - x, y = sgn(x^3 - x)](image)

Exercise 1.9

1. b. Clearly \(f(x) \) must be \(x + 2 \) as for this function each image has its preimage and each image has one and only one preimage.

2. When \(n \) is even

Let \(f(2m_1) = f(2m_2) \)

\[
\Rightarrow \quad \frac{2m_1}{2} = \frac{2m_2}{2} \\
\Rightarrow \quad m_1 = m_2
\]

When \(n \) is odd

Let \(f(2m_1 + 1) = f(2m_2 + 1) \)

\[
\Rightarrow \quad \frac{2m_1 + 1}{2} = \frac{2m_2 + 1}{2} + 1 \Rightarrow m_1 = m_2
\]

\(f(x) \) is one-one.

Also when \(n \) is even, \(-n = \frac{2m}{2} = -m \)

When \(n \) is odd, \(n-1 = \frac{2m+1-1}{2} = m \)

Hence, the range of the function is \(Z \).

\(\Rightarrow \) function is onto.

3. \(f(x) = f(-x) \). So, \(f \) is many-one.

Also, \(f(x) = 1 - \frac{5}{x^2 + 1} > 1 - 5 = -4. \) So, \(f \) is into.

4. \(f(x) = \sin x - \sqrt{3} \cos x + 1 \)

\[
= 2 \left(\sin \frac{x}{2} - \cos x \frac{\sqrt{3}}{2} \right) + 1 \\
= 2 \left(\sin x \cos \frac{\pi}{3} - \cos x \sin \frac{\pi}{3} \right) + 1 \\
= 2 \sin \left(x - \frac{\pi}{3} \right) + 1
\]

Clearly, \(f \) is onto, when the interval of \(S \) is \([-1, 3]\).

5. c. For \(-1 < x < 1 \), \(\tan^{-1} \frac{2x}{1 - x^2} = 2 \tan^{-1} x \)

\(\therefore \) range of \(f(x) = \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \).

6. \(g(x) \) is surjective if \(\frac{1}{2} \leq \frac{x^2 - k}{1 + x^2} < 1, \forall x \in R, \)

\[
\Rightarrow \quad \frac{1}{2} \leq 1 - \frac{(k + 1)}{x^2 + 1} < 1 \quad \forall x \in R \\
\Rightarrow \quad \frac{1}{2} \leq \frac{(k + 1)}{x^2 + 1} < 0 \quad \forall x \in R
\]
\[0 < \frac{(k + 1)}{x^2 + 1} \leq \frac{1}{2}, \forall x \in R \]
\[\Rightarrow k + 1 > 0; \text{So } k > -1 \]
and \[\frac{k + 1}{x^2 + 1} \leq \frac{1}{2}, \forall x \in R \]
or \[x^2 - (2k + 1) \geq 0 \forall x \in R \]
\[\Rightarrow 4(2k + 1) \leq 0 \]
\[\therefore k \leq -\frac{1}{2} \]
From (1) and (2), \(k \in \left(-1, -\frac{1}{2} \right] \)

Exercise 1.10

1. \(f(-x) = (g(-x) - g(x))^3 = - (g(x) - g(-x))^3 = - f(x) \)
Hence, \(f(x) \) is an odd function.

2. \(\log \left(\frac{x^4 + x^2 + 1}{x^2 + x + 1} \right) = \log(x^2 - x + 1) \), which is neither odd nor even.

3. \(f(-x) = (-x)(-g(-x)) \cdot g(x) + \tan(\sin(-x)) = -(x)(g(x) - g(-x) - \sin(\sin(x))) = - f(x) \)
Hence, \(f(x) \) is an odd function.

4. \[0 \leq \left| \frac{\sin x}{2} \right| \leq \frac{1}{2} \Rightarrow \left| \frac{\sin x}{2} \right| = 0 \]
\[\Rightarrow f(x) = \cos x \text{ which is even} \]

5. \(f(x) = \log \left(x + \sqrt{x^2 + 1} \right) \)
\[f(-x) = \log \left(-x + \sqrt{x^2 + 1} \right) \]
\[f(x) + f(-x) \]
\[= \log \left(x + \sqrt{x^2 + 1} \right) + \log \left(-x + \sqrt{x^2 + 1} \right) \]
\[= \log \left(\sqrt{x^2 + 1} + x \right) + \log \left(\sqrt{x^2 + 1} - x \right) \]
\[= \log(x^2 + 1 - x^2) = \log 1 = 0 \]
\[\Rightarrow f(-x) = - f(x) \]
Hence, \(f(x) \) is an odd function.

6. \[f(-x) = \begin{cases} [x + 1] + [1 + x], & -1 < -x < 1 \\ -(-x) = x, & -x \geq 1 \end{cases} \]
\[= \begin{cases} [1 - x] + [1 + x], & -1 < x < 1 \\ x, & x \leq 1 \end{cases} \]
\[= f(x) \]
Hence, the function is even.

Exercise 1.11

1. \(f(x) = \sin^3 x + \cos^4 x \)
 \(\sin x \) has period \(2\pi \) and \(\cos^4 x \) has period \(\pi \), and L.C.M. of \(\pi \) and \(2\pi \) is \(2\pi \).
 Hence, period is \(2\pi \).

2. b. \(\sqrt[3]{x} \) is not periodic, therefore, \(\sqrt[3]{x} + \cos^2 x \) is not periodic although \(\cos^2 x \) is periodic.

3. Clearly, \(f(x) = \tan(\sqrt{n}x) \) has period \(\frac{\pi}{3} \),
 but, it is given that \(\tan(\sqrt{n}x) \) has a period \(\frac{\pi}{3} \).
\[\Rightarrow \frac{\pi}{\sqrt{n}} = \frac{\pi}{3} \]
\[\Rightarrow \sqrt{n} = 9 \Rightarrow n \in [9, 10] \).

4. a. Period of \(|\sin 4x| + |\cos 4x| \) is \(\frac{\pi}{8} \)
 Period of \(|\sin 4x - \cos 4x| + |\sin 4x + \cos 4x| = \frac{\pi}{8} \)
 Because period of \(|\sin x - \cos x| + |\sin x + \cos x| = \frac{\pi}{8} \)
The period of given function is \(\frac{\pi}{8} \).

b. \(f(x) = \sin \frac{\pi x}{n} - \cos \frac{\pi x}{(n+1)} \)
 Period of \(\sin \frac{\pi x}{n} \) is \(\frac{2\pi}{\pi} = 2n! \) and period of \(\cos \frac{\pi x}{(n+1)} \) is \(\frac{2\pi}{n!} \)
\[\Rightarrow \frac{2\pi}{2(n+1)!} = 2n+1! \]
Hence, period of \(f(x) \) is \(n \cdot \text{L.C.M. of } (2n!, 2(n+1)!) \)
\[= 2(n+1)! \]

c. \(f(x) = \sin x + \tan \frac{x}{2} + \sin \frac{x}{2^n} + \tan \frac{x}{2^n} + \sin \frac{x}{2^{n+1}} + \tan \frac{x}{2^n} + \sin \frac{x}{2^{n+1}} + \tan \frac{x}{2^n} + \cdots \)
Period of \(\sin x \) is \(2\pi \)
Period of \(\tan \frac{x}{2} \) is \(2\pi \)
Period of \(\sin \frac{x}{2^n} \) is \(8\pi \)
Period of \(\tan \frac{x}{2^n} \) is \(8\pi \)

Hence, period of \(f(x) = \text{L.C.M. of } (2\pi, 8\pi, \ldots, 2^n\pi) = 2^n\pi \)
5. Since the period of \(|\sin x| + |\cos x| \) is \(\pi/2 \), it is possible when \(\lambda = 1 \).

6. Given \(f(x) + f(x + 4) = f(x + 2) + f(x + 6) \) (1)

Replace \(x \) by \(x + 2 \)

\[f(x + 2) + f(x + 6) = f(x + 4) + f(x + 8) \] (2)

From equations (1) and (2), we have \(f(x) = f(x + 8) \)

Hence, \(f(x) \) is periodic with period 8.

Exercise 1.12

1. Given \((gof)(\frac{-5}{3}) = (fog)(\frac{-5}{3}) \)

\[g \left(f \left(\frac{-5}{3} \right) \right) - f \left(g \left(\frac{-5}{3} \right) \right) = g(-2) - f \left(\frac{5}{3} \right) = 2 - 1 = 1 \]

2. \(f(x) = \begin{cases}
1+|x|, & x < -1 \\
|x|, & x \geq -1
\end{cases} \)

\(f(-2.3) = 1 + |2.3| = 3.3 \). Now \(f(f(-2.3)) = f(3.3) = [3.3] = 3 \)

3. \(f(x) = \log \left(\frac{1+x}{1-x} \right) \)

\[f \left(\frac{2x}{1+x^2} \right) = \log \left(\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}} \right) = \log \left(\frac{x^2+1+2x}{x^2+1-2x} \right) \]

\[= \log \left(\frac{1+x^2}{1-x} \right) = 2 \log \left(\frac{1+x}{1-x} \right) = 2f(x) \]

4. Here, \(f(x) \) is defined by \([-3, 2]\).

\(\Rightarrow x \in [-3, 2] \).

For \(g(x) = f(\lfloor x \rfloor) \) to be defined, we must have

\(-3 \leq \lfloor x \rfloor \leq 2 \)

\(\Rightarrow 0 \leq |x| \leq 2 \)

\(\Rightarrow -2 \leq |x| \leq 2 \) \[\text{as } |x| \geq 0 \text{ for all } x \]

\(\Rightarrow -2 \leq x \leq 2 \)

\[\text{[by the definition of greatest integral function]} \]

Hence, domain of \(g(x) \) is \([-2, 3]\).

5. \(g \) is meaningful if \(0 \leq 9x^2 - 1 \leq 2 \)

\(\Rightarrow 1 \leq 9x^2 \leq 3 \)

i.e., \(x \in \left[-\frac{1}{\sqrt{3}}, -\frac{1}{3} \right] \cup \left[\frac{1}{3}, \frac{1}{\sqrt{3}} \right] \).

6. \(f(x) = \begin{cases}
\log_e x, & 0 < x < 1 \\
x^2 - 1, & x \geq 1
\end{cases} \)

and \(g(x) = \begin{cases}
x + 1, & x < 2 \\
x^2 - 1, & x \geq 2
\end{cases} \)

\[g(f(x)) = \begin{cases}
(f(x) + 1), & f(x) < 2 \\
(f(x))^2 - 1, & f(x) \geq 2
\end{cases} \]

\[f(x) + 1, \quad x < e^2, \quad 0 < x < 1 \]

\[x^2 - 1, \quad -\sqrt{3} < x < \sqrt{3}, \quad x \geq 1 \]

\[f(x) + 1, \quad 0 < x < 1 \]

\[x^2 - 1, \quad 1 \leq x < \sqrt{3} \]

\[(x^2 - 1)^2 - 1, \quad x \geq \sqrt{3} \]

7. \(g(f(x)) = \tan \left(\frac{x - \pi}{4} \right) = \tan \frac{x - 1}{x + 1} \)

\[\Rightarrow g(x) = \frac{x - 1}{x + 1} \quad \Rightarrow f(g(x)) = \tan \left(\frac{x - 1}{x + 1} \right) \]

8. \(g(x) \) is defined if \(f(x + 1) \) is defined.

Hence the domain of \(g \) is all \(x \) such that \((x + 1) \in [0, 2] \)

\(\Rightarrow -2 \leq x \leq 1 \)

Also \(f(x + 1) \in [0, 1] \)

\(\Rightarrow f(x + 1) \in [-1, 0] \)

\(\Rightarrow 1 - f(x + 1) \in [0, 1] \)

\(\Rightarrow \text{range of } g(x) \in [0, 1] \)

Exercise 1.13

1. \(y = \frac{e^x - e^{-x}}{e^x + e^{-x} + 2} \)

\[\Rightarrow y = \frac{e^{2x} - 1}{e^{2x} + 1} \]

\[\Rightarrow e^x = \frac{1 - y}{y - 3} \]

\[\Rightarrow x = \frac{1}{2} \log_e \left(\frac{y - 1}{3 - y} \right) \]

\[\Rightarrow f^{-1}(y) = \log_e \left(\frac{y - 1}{3 - y} \right)^{1/2} \]

\[\Rightarrow f^{-1}(y) = \log_e \left(\frac{x}{3 - x} \right)^{1/2} \]

2. Let \(y = 1 - 2^x \)

\(\Rightarrow 2^x = 1 - y \)

\(\Rightarrow -x = \log_2(1 - y) \)

\(\Rightarrow f^{-1}(x) = g(x) = -\log_2(1 - x) \)

3. Given \(f: (2, 3) \rightarrow (0, 1) \) and \(f(x) = x - [x] \)

\(\Rightarrow f(x) = y - x - 2 \)

\(\Rightarrow y + 2 = f^{-1}(y) \)

\(\Rightarrow f^{-1}(y) = x + 2 \)

4. Since the domain of the function is \(I \), we have \(f(x) = x + 1 \)

\(\Rightarrow f^{-1}(x) = x - 1 \)

5. \(f(x) = \begin{cases}
x^3 - 1, & x < 2 \\
x^2 + 3, & x \geq 2
\end{cases} \)

For \(f(x) = x^3 - 1, x < 2, f^{-1}(x) = (x + 1)^{1/3}, x < 7 \)

\(\text{as } x < 2 \Rightarrow x^3 < 8 \Rightarrow x^3 - 1 < 7 \)

For \(f(x) = x^2 + 3, x \geq 2, f^{-1}(x) = (x - 3)^{1/2}, x \geq 7 \)

\(\text{as } x \geq 2 \Rightarrow x^2 \geq 4 \Rightarrow x^2 + 3 \geq 7 \)
Hence, \(f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \geq 7 \end{cases} \)

6. \(f: [-1, 1] \rightarrow [-1, 1] \) defined by \(f(x) = x|x| \)

\[
 f(x) = \begin{cases}
 x^2, & x \geq 0 \\
 -x^2, & x < 0
 \end{cases}
\]

\(\Rightarrow f^{-1}(x) = \begin{cases}
 \sqrt{x}, & x \geq 0 \\
 -\sqrt{-x}, & x < 0
 \end{cases} \)

Also \(y = \text{sgn}(x) \sqrt{|x|} = \begin{cases}
 \sqrt{x}, & x > 0 \\
 0, & x = 0 \\
 -\sqrt{-x}, & x < 0
 \end{cases} \)

Hence, proved.

7. \(y = 2^{x(x-2)} \)

\(\Rightarrow x^2 - 2x = \log_2 y \)

\(\Rightarrow x^2 - 2x - \log_2 y = 0 \)

\(\Rightarrow x = 1 \pm \sqrt{1 + \log_2 y} \)

\(\Rightarrow f^{-1}(x) = 1 - \sqrt{1 + \log_2 x} \)

as \(f^{-1} : [\frac{1}{2}, \infty) \rightarrow (-\infty, 1] \)

Exercise 1.14

1.

Fig. S-1.11

2.

Fig. S-1.12

3.

Fig. S-1.13

4.

Fig. S-1.14

5.

Fig. S-1.15

6. There are exactly six solutions.

Fig. S-1.16

7. \(\frac{x^2}{|x-1|} \leq 1 \Rightarrow x^2 \leq |x-1|, x \neq 1 \)

Fig. S-1.17

Figure S-1.17 represents the graph of \(y = x^2 \) and \(y = |x-1| \)

Solving \(x^2 = 1 - x \), we get \(x = \frac{-1 \pm \sqrt{5}}{2} \).

Thus, the solution is \(\left\{ \frac{-1 - \sqrt{5}}{2}, \frac{-1 + \sqrt{5}}{2} \right\} \).

8.a. Domain of both \(f(x) = \frac{\sec x}{\cos x} - \frac{\tan x}{\cot x}, g(x) = \frac{\cos x}{\sec x} + \frac{\sin x}{\csc x} \)

is \(x \in R - \left\{ \frac{n\pi}{2}, n \in Z \right\} \)
Also both functions simplify to 1
Hence both functions are identical.
\(b. \) \(x^2 - 6x + 10 = (x - 3)^2 + 1 > 0 \)
Hence \(f(x) = 1 \quad \forall x \in R. \)

Also \(\cos^2 x + \sin^2 \left(x + \frac{\pi}{6} \right) > 0 \)
Hence \(g(x) = 1 \quad \forall x \in R. \)
\(\Rightarrow f(x) \) and \(g(x) \) are identical.

\(c. \) \(f(x) = e^{ln(x^2 + 3x + 3)} \)
As \(x^2 + 3x + 3 = \left(x + \frac{3}{2} \right)^2 + \frac{3}{4} > 0 \quad \forall x \in R. \)
Hence \(f(x) = x^2 + 3x + 3 \quad \forall x \in R. \)
\(\Rightarrow f(x) \) is identical to \(g(x). \)

\(d. \) \(f(x) = \frac{\sin x}{\sec x} + \frac{\cos x}{\cosec x} \)
\(= 2 \sin x \cos x \)
\(= 2 \cos^2 x \cot x \)
\(= g(x) \)

Also domain of both the functions is \(x \in R - \left\{ \frac{n\pi}{2}, n \in Z \right\} \)

\section*{Chapter 2}

\textbf{Exercise 2.1}

1. L.H.L of \(f(x) \) at \(x = 0 \)
 \(= \lim_{x \to 0} f(x) \)
 \(= \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} \frac{-h - (-h)}{h} \)
 \(= \lim_{h \to 0} \frac{-h - h}{h} = \lim_{h \to 0} \frac{-2h}{h} = \lim_{h \to 0} 2 = 2 \)
R.H.L of \(f(x) \) at \(x = 0 \)
 \(= \lim_{h \to 0} f(0 + h) = \lim_{h \to 0} \frac{h - |h|}{h} \)
 \(= \lim_{h \to 0} \frac{h - h}{h} = \lim_{h \to 0} \frac{0}{h} = \lim_{h \to 0} 0 = 0 \)
Clearly, \(\lim_{x \to 0} f(x) \neq \lim_{x \to 0} f(x) \)
So, \(\lim_{x \to 0} f(x) \) does not exist.

2. Let \(f(x) = \frac{e^{1/x} - 1}{e^{1/x} + 1} \)
 L.H.L of \(f(x) \) at \(x = 0 \)
 \(= \lim_{x \to 0} f(x) = \lim_{h \to 0} (0 - h) = \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} \)

3. \(\lim_{x \to 0^-} \frac{3x + |x|}{7x - 5|x|} = \lim_{x \to 0^-} \frac{3x - x}{7x + 5x} = \lim_{x \to 0^-} \frac{2x}{7x + 5x} = \lim_{x \to 0^-} \frac{2}{7 + 5} = \frac{2}{12} = \frac{1}{6} \)
 and \(\lim_{x \to 0^+} \frac{3x + |x|}{7x - 5|x|} = \lim_{x \to 0^+} \frac{3x + x}{7x - 5x} = \lim_{x \to 0^+} \frac{4x}{2x} = 2 \)
Hence the limit does not exist.

4. We have, \(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x^2 = 0 \)
 and \(\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 = 0 \)
Hence, \(\lim_{x \to 0} f(x) \) is equal to 0.

5.

\textbf{Exercise 2.2}

1. \(\frac{1}{x} \leq \lfloor x \rfloor \leq x \)
 \(\Rightarrow 1 - \frac{1}{x} < \lfloor x \rfloor \leq 1 \)
Now \(\lim_{x \to 0^+} \left(1 - \frac{1}{x} \right) = 1. \)
Therefore, by Sandwich theorem, \(\lim_{x \to 0} \left\lfloor x \right\rfloor = 1. \)
2. As \(0 \leq \log_a x \leq \sqrt{x}\) \((x > 1)\)

\[
0 \leq \frac{\log_a x}{x} \leq \frac{1}{\sqrt{x}} \quad (x > 1)
\]

\[
0 \leq \lim_{x \to \infty} \frac{\log_a x}{x} \leq \lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0
\]

\[
\Rightarrow \lim_{x \to \infty} \frac{\ln x}{x} = 0
\]

Exercise 2.3

1. \[
\lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5} = \lim_{x \to 0} \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots + \frac{x^3}{6} = \lim_{x \to 0} \frac{1}{5!} \frac{x^3}{7!} + \ldots = \frac{1}{120}
\]

2. \[
\lim_{x \to 0} \frac{\sin x + \log(1-x)}{x^2} = \lim_{x \to 0} \left(\frac{x^2}{3!} + \frac{x^5}{5!} \ldots + \frac{x^3}{2} \ldots \right)
\]

\[
\lim_{x \to 0} \left(\frac{-x^2}{2} \frac{1}{3!} \frac{1}{3} - \frac{x^4}{4} \ldots \right) = \frac{1}{2}
\]

3. \[
\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \left(\frac{x + \frac{x^2}{2} \ldots + \frac{x^3}{1!} \ldots}{x^2} - 1 \right) = \frac{1}{2}
\]

Exercise 2.4

1. \[
\lim_{x \to 1} \frac{(2x - 3) \left(\sqrt[3]{x - 1} \times \left(\sqrt{1 + x} \right)\right)}{(x - 1)(2x + 3) \times \left(\sqrt[3]{1 + x} \right)} = \frac{-1}{5 \times 2} = \frac{-1}{10}
\]

2. \[
\lim_{x \to 1} \frac{\left(\sum_{x = 1}^{100} x^k \right) - 100}{(x - 1)}
\]

\[
= \lim_{x \to 1} \frac{(x + x^2 + x^3 + \ldots + x^{100}) - 100}{(x - 1)}
\]

\[
= \lim_{x \to 1} \frac{(x - 1) + (x^2 - 1) + (x^3 - 1) + \ldots + (x^{100} - 1)}{(x - 1)}
\]

\[
= \lim_{x \to 1} \left(\frac{x - 1}{x - 1} + \frac{x^2 - 1}{x - 1} + \frac{x^3 - 1}{x - 1} + \ldots + \frac{x^{100} - 1}{x - 1}\right)
\]

\[
= \lim_{x \to 1} \left(1 + \frac{2}{x} + \frac{3}{x} + \ldots + \frac{100}{x}\right)
\]

3. \[
\lim_{x \to \infty} \left(x^2 + \frac{ax + 1}{x^2} - \sqrt{a^2x^2 + 1}\right)
\]

(Rationalizing)

\[
= \lim_{x \to \infty} \frac{ax}{\sqrt{a^2 + \frac{a}{x} + 1 + \sqrt{a^2 + 1}}}
\]

\[
= \lim_{x \to \infty} \frac{a}{\sqrt{a^2 + \frac{a}{x} + 1 + \sqrt{a^2 + 1}}}
\]

\[
= \lim_{x \to \infty} \frac{a}{\sqrt{a^2 + \frac{a}{x} + 1 + \sqrt{a^2 + 1}}}
\]

\[
= \frac{a}{\sqrt{a^2 + \frac{a}{x} + 1 + \sqrt{a^2 + 1}}}
\]

\[
= \frac{a}{2a}
\]

\[
= \frac{1}{2}
\]

5. When \(n\) is even:

Given series \(1^2 - 2^2 + 3^2 + 4^2 + \ldots + n^2\)

\[
= 1^2 + 2^2 + 3^2 + 4^2 + \ldots + n^2
\]

\[
= \left(1^2 + 2^2 + (3^2 - 4^2) + \ldots + [(n - 1)^2 - n^2]\right)
\]

\[
= (1^2 + 2^2 + 3^2 + 4^2 + \ldots + n) - \frac{n(n+1)}{2}
\]

\[
= \frac{n(n+1)}{2}
\]

\[
= \frac{n(n+1)}{2}
\]

\[
\Rightarrow \text{Given } L = \lim_{n \to \infty} \frac{n(n+1)}{2n^2} = -1/2
\]

When \(n\) is odd:

Given series

\[
1^2 - 2^2 + 3^2 + 4^2 + \ldots + n^2
\]

\[
= -1 + 2 + 3 + \ldots + (n - 1) + n^2
\]

\[
= \frac{n(n-1)}{2} + n^2
\]

\[
= \frac{n(n+1)}{2}
\]

\[
\Rightarrow \text{Given } L = \lim_{n \to \infty} \frac{n(n+1)}{2n^2} = 1/2
\]

6. \[
\lim_{n \to \infty} \left[\frac{2 - \sqrt{8 + x}}{2h^3 + h^3}\right]
\]
Exercise 2.5

1. \[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x}{180} = \frac{\pi}{180} \quad (\therefore \pi^\circ = \frac{\pi}{180} \text{ radian}) \]

2. \[\lim_{x \to 0} \frac{1 - \cos nx}{x^2} = \lim_{x \to 0} \frac{\frac{2\sin^2 \frac{nx}{2}}{2}}{2 \sin^2 \frac{x}{2}} \]
 \[= \lim_{x \to 0} \left[\frac{\sin^2 \frac{nx}{2}}{4} \right] \cdot \frac{1}{n^2 x^2} \]
 \[= \frac{m^2}{n^2} \]

3. \[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \cos x - 1}{\cot x - 1} \]
 \[= \lim_{x \to \frac{\pi}{4}} \frac{2 \cos^2 x - 1}{\cos x - \sin x \sqrt{2} \cos x + 1} \]
 \[= \lim_{x \to \frac{\pi}{4}} \frac{\cos^2 x - \sin^2 x}{\cos x - \sin x \sqrt{2} \frac{1}{\sqrt{2} + 1}} \]
 \[= \frac{1}{2 \sqrt{2}} \lim_{x \to \frac{\pi}{4}} (\cos x + \sin x) = \frac{1}{2} \]

4. We have \[\lim_{x \to 0} \frac{\cot 2x - \csc 2x}{x} \]
 \[= \lim_{x \to 0} \frac{\frac{1}{\sin 2x} - \frac{1}{\sin 2x}}{x} = \lim_{x \to 0} \frac{\cos 2x - 1}{x \sin 2x} \]
 \[= \lim_{x \to 0} \frac{-1}{x \sin 2x} = -\lim_{x \to 0} \frac{2 \sin^2 x}{x \sin 2x} = -
 \lim_{x \to 0} \frac{\tan x}{x} = -1 \]

5. \[\lim_{x \to 0} \frac{\tan 2x - x}{3x - \sin x} = \lim_{x \to 0} \left[\frac{2 \tan 2x - 1}{3 - \sin x} \right] = \frac{1}{2} \]

6. \[\lim_{h \to 0} \frac{\sqrt{3} \sin \left(\frac{\pi}{6} + h \right) - \cos \left(\frac{\pi}{6} + h \right)}{\sqrt{3} h (\sqrt{3} \cos h - \sin h)} \]
 \[= \lim_{h \to 0} \frac{\sqrt{3} \sin \left(\frac{\pi}{6} + h \right) - \frac{1}{2} \cos \left(\frac{\pi}{6} + h \right)}{h (\sqrt{3} \cos h - \sin h)} \]

Exercise 2.6

1. \[\lim_{x \to \infty} \left(a^{1/x} - 1 \right) = \lim_{x \to \infty} \left[\frac{a^{1/x} - 1}{1/x} \right] \]
 \[= \log_a a = \log_a 1 \]

2. \[\lim_{x \to 0} \frac{2x - 1}{x - \cos x} = \lim_{x \to 0} \frac{2 \sin^2 x}{x \sin 2x} \]
 \[= \log 2 \lim_{x \to 0} \frac{x^2}{2 \sin^2 x} = 2 \log 2 = \log 4 \]

3. \[\lim_{x \to 2} \frac{\sin (e^{x-2} - 1)}{\log (x - 1)} \]
 \[= \lim_{t \to 0} \frac{\sin (e^{2-t} - 1)}{\log (1 + t)} \]
 \[= \lim_{t \to 0} \frac{\sin (e^{2-t} - 1)}{e^{2-t} - 1} \cdot \frac{e^{2-t} - 1}{t} \cdot \frac{t}{\log (1 + t)} \]
 \[= 1 \times 1 \times 1 = 1 \]

4. \[\lim_{x \to 0} \frac{e^x - \cos x}{x^2} \]
 \[= \lim_{x \to 0} \left[\frac{e^x - 1 + 1 - \cos x}{x^2} \right] \]
 \[= 1 + \lim_{x \to 0} \frac{2 \sin^2 x}{x^2} = 1 + \frac{1}{2} = \frac{3}{2} \]

5. \[\lim_{x \to 0} \frac{e^{x^2} - e^{-x^2} - 2}{x^2} \]
 \[= \frac{0}{0} \text{ form} \]
\[
\lim_{x \to 0} \frac{1}{x} \left(e^x - 1 \right)^2 = 1
\]

6. \[
\lim_{x \to a} \frac{\log(x - a)}{\log(e^x - a^a)} = \frac{1}{x - a} \frac{e^x - a^a}{e^x (x - a)}
\]

(Applying L’Hopital’s rule)

\[
= \lim_{x \to a} \frac{e^x - a^a}{e^x (x - a)}
\]

\[
= \lim_{x \to a} \frac{e^x (e^x - a^a) - e^x (e^x a^a - e^x a^a)}{(e^x a^a - e^x)}
\]

\[
= 1
\]

7. \[
\lim_{x \to 0} \frac{\sin x}{x} \left(\frac{12x}{(\tan x - \sin x)} - 1 \right)
\]

\[
= a^0 \ln a = \ln a
\]

8. \[
\lim_{x \to 0} \frac{1 - 3^x - 4^x + 12^x}{\sqrt{2 \cos x + 7} - 3}
\]

\[
= \lim_{x \to 0} \frac{(3^x - 1)(4^x - 1)}{\sqrt{2 \cos x + 7} - 3}
\]

\[
= \lim_{x \to 0} \frac{(3^x - 1)(4^x - 1)(\sqrt{2 \cos x + 7} + 3)}{2 \cos x + 7 - 9}
\]

\[
= \lim_{x \to 0} \frac{(3^x - 1)(4^x - 1)}{2 \cos x}
\]

\[
= \lim_{x \to 0} \frac{x}{(\ln 3)(\ln 4)} \frac{1}{2(1 - \cos x)}
\]

\[
= -\frac{1}{2} \ln 3 \times \ln 4
\]

9. \[
L = \lim_{x \to 0} \frac{129^x - (243)^x - (81)^x + 9^x + 3^x - 1}{x^3}
\]

\[
= \lim_{x \to 0} \frac{(3^x - 1)(9^x - 1)(27^x - 1)}{x}
\]

\[
= (\ln 3)(\ln 9)(\ln 27)
\]

Exercise 2.7

1. \[
A = \lim_{x \to 0} \frac{x + 2}{x + 1}
\]

\[
= \lim_{x \to 0} \frac{x^2 + 3}{x + 1}
\]

\[
= \lim_{x \to 0} \left(1 + \frac{3}{x + 1} \right)^{x+3}
\]

\[
= \lim_{x \to 0} \left(1 + \frac{1}{x + 1} \right)^{1+3}
\]

\[
= \left(1 + \frac{1}{x + 1} \right)^{1+3}
\]

\[
= e^1
\]

2. \[
\lim_{x \to 0} \left(1 + \frac{1}{a + bx} \right)^{c + dx}
\]

\[
= \lim_{x \to 0} \left(1 + \frac{1}{a + bx} \right)^{c + dx}
\]

\[
= e^{d/b}
\]

3. \[
\lim_{x \to 0} \left(1 + \frac{1}{x/2} \right)^{-2}
\]

\[
= e^{-2}
\]

4. Given limit takes 1 forms

\[
\Rightarrow L = \lim_{x \to 7/2} \left(23^x - 9x + 8 \right) \cos(2x - 7)
\]

\[
= \lim_{x \to 7/2} \left((2x - 7)(x - 1) + 1 \right) \cos(2x - 7)
\]

\[
= \lim_{x \to 7/2} \left(\cos(2x - 7) \right)
\]

\[
= e^{5/2}
\]

5. Given limit takes 1 forms

\[
\Rightarrow L = \lim_{x \to 0} \left(\frac{\sin(x/2)}{2 - px} \right) \sec^2 \left(\frac{\pi}{2 - qx} \right)
\]

\[
= \lim_{x \to 0} \left(\frac{\sin(x/2)}{1 - px} \right) \sec^2 \left(\frac{\pi}{2 - qx} \right)
\]

\[
= e^{\cos^2 \left(\frac{\pi}{2 - qx} \right)}
\]

\[
= \lim_{x \to 0} \left(\frac{\cos(x/2)}{1 - px} \right)
\]

\[
= \lim_{x \to 0} \left(\frac{\sin(x/2)}{1 - px} \right)
\]

\[
= \lim_{x \to 0} \left(\frac{\pi}{2 - qx} \right)
\]

\[
= \lim_{x \to 0} \left(\frac{\pi}{2 - qx} \right)
\]

\[
= \lim_{x \to 0} \left(\frac{\pi}{2 - qx} \right)
\]

\[
= \lim_{x \to 0} \left(\frac{\pi}{2 - qx} \right)
\]

\[
= \lim_{x \to 0} \left(\frac{\pi}{2 -qx} \right)
\]

\[
= \lim_{x \to 0} \left(\frac{\pi}{2 - qx} \right)
\]
\[
\sin^2 \left(\frac{\pi - \pi}{2 - 2-px} \right) \\
= \lim_{x \to 0} \frac{\left(\frac{\pi - \pi}{2 - 2-px} \right)^2}{\sin^2 \left(\frac{\pi - \pi}{2 - 2-qx} \right)} \times \left(\frac{\pi - \pi}{2 - 2-qx} \right)^2 \\
= \lim_{x \to 0} \frac{\left(\frac{\pi - \pi}{2 - 2-px} \right)^2}{\left(\frac{\pi - \pi}{2 - 2-qx} \right)^2} \\
= \lim_{x \to 0} \frac{\left(\frac{-\pi px}{2(2-px)} \right)^2}{\left(\frac{-\pi qx}{2(2-qx)} \right)^2} \\
= \lim_{x \to 0} \left(\frac{-\pi px}{2(2-px)} \right)^2 \\
= p^2/q^2 \Rightarrow L = e^{p^2/q^2}
\]

Exercise 2.8

1. Let \(y = \lim_{x \to 0} x^x \)

\[\Rightarrow \log y = \log \left(\lim_{x \to 0} x^x \right) \]

\[= \lim_{x \to 0} (\log x^x) \]

\[= \lim_{x \to 0} (x \cdot \log x) = \lim_{x \to 0} \frac{\log x}{x} \]

\[= \lim_{x \to 0} \frac{1/x}{1/x^2} \quad (\text{Applying L' Hopital rule}) \]

\[= \lim_{x \to 0} (-x) = 0 \]

2. \(\lim_{x \to \pi/2} \tan x \log \sin x = \lim_{x \to \pi/2} \frac{\log \sin x}{\cot x} \)

\[= \lim_{x \to \pi/2} \frac{1}{\sin x} \cdot \cos x \]

\[= \lim_{x \to \pi/2} \frac{1}{\sin x} \cdot \cos x \]

\[= 0 \quad (\text{Applying L' Hopital's Rule}) \]

3. \(\lim_{x \to 0} \frac{\log \cos x}{x} \)

\[= \lim_{x \to 0} \frac{-\tan x}{1} \]

\[= 0 \]

4. \(\lim_{x \to 0} \frac{2^x - 1}{(1 + x)^{1/2} - 1} \)

\[= \lim_{x \to 0} \frac{2^x \log 2}{2(1 + x)^{-1/2}} \quad (\text{Applying L' Hopital's Rule}) \]

\[= 2 \log 2 \]

\[= \log 4 \]

5. \(\lim_{x \to \pi/4} (2 - 2 \tan x)^{1/\ln \tan x} \)

\[= \lim_{x \to \pi/4} \left(2 - 2 \tan x \right)^{1/\ln \tan x} \]

\[= e^{\lim_{x \to \pi/4} \frac{-2 \sec^2 x}{\tan x \sec^2 x}} \]

\[= e^{\lim_{x \to \pi/4} \frac{-2 \sec^2 x}{\tan x \sec^2 x}} \]

\[= e^{-1} \]

6. Since \(\lim_{x \to a} \frac{a^x - x^a}{x^a - a^x} = -1 \)

\[\Rightarrow \lim_{x \to a} \frac{a^x \log a - a x^{a-1}}{x^a (1 + \log x)} = -1 \]

\[= \lim_{x \to a} \frac{a^x [\log a - 1]}{a^x [1 + \log x]} = -1 \]

\[\Rightarrow \log a - 1 = -1 - \log a \]

\[\Rightarrow 2 \log a = 0 \]

\[\Rightarrow \log a = 0 \]

\[\Rightarrow a = 1 \]

Exercise 2.9

1. \(\lim_{x \to 0} \frac{ae^x - b}{x} = 2 \)

\[\Rightarrow \lim_{x \to 0} \frac{ae^x - a + a - b}{x} = 2 \]

\[= a \lim_{x \to 0} e^x - \lim_{x \to 0} \frac{a - b}{x} = 2 \]

\[= a + \lim_{x \to 0} \frac{a - b}{x} = 2 \]

\[\Rightarrow a - b = 0 \text{ and } a = 2 \]

\[\Rightarrow a = 2, b = 2 \]

2. We have \(\lim_{x \to 0} \left(\frac{x^2 + 1}{x + 1} - (ax + b) \right) = 0 \)
\[
\lim_{x \to a} \left[x^2 (1 - a) - x(a + b) + 1 - b \right] / (x + 1) = 0 \]

Since the limit of the given expression is zero. Therefore, the degree of numerator is less than that of denominator. Denominator on L.H.S. is a polynomial of degree one. So, numerator must be a constant. For this, we must have coeff. of \(x^2 = 0\) and coeff. of \(x = 0 \Rightarrow 1 - a = 0\) and \(- (a + b) = 0 \Rightarrow a = 1, b = -1\)

3. Let \(P = \lim_{x \to 0} (1 + ax + bx^2)^{2/x} \quad (1^{st} form)\)

\[
= e^{\lim_{x \to 0} (2a + 2bx)}
\]

\[
= e^{2a}
\]

\(= e^3\) (given)

\(\therefore \quad a = 3/2, \) and \(b \in R\)

\[\textbf{Chapter 3}\]

\[\textbf{Exercise 3.1}\]

1. Given that \(f(x + y) = f(x) + f(y)\) for all \(x\) and \(y\)

Put \(x = y = 0 \Rightarrow f(0 + 0) = f(0) + f(0) \Rightarrow f(0) = 0\)

Consider some arbitrary point, \(x = a\)

\[\text{L.H.L.} = \lim_{h \to 0} f(a - h) = \lim_{h \to 0} \left[f(a) + f(-h) \right] = f(a) + \lim_{h \to 0} f(-h) = f(a) + f(0) = f(a) \quad (\text{as } f(x) \text{ is continuous at } x = 0)\]

Similarly, we can prove that R.H.L. = \(f(a)\)

Hence, \(f(x)\) is continuous for all \(x\).

2. Given relation \(f(x, y) = f(x) f(y)\)

Put \(x = y = 1 \Rightarrow f(1) = f(1) f(1) \Rightarrow f(1) = 0 \) or \(1\)

If \(f(1) = 0\), then \(f(1) \times 1 = f(0) f(1) = 0\) or \(f(x)\) is identically zero which is continuous for all \(x\).

For \(f(1) = 1:\)

Consider some arbitrary point, \(x = a\)

\[\text{L.H.L.} = \lim_{h \to 0} f(a - h) = \lim_{h \to 0} f \left(a \left(1 - \frac{h}{a} \right) \right) = \lim_{h \to 0} f(a) f \left(1 - \frac{h}{a} \right) = f(a) \lim_{h \to 0} f \left(1 - \frac{h}{a} \right) = f(a) f(1) \quad [\text{as } f(x) \text{ is continuous at } x = 1]\]

Similarly, we can prove that R.H.L. = \(f(a)\)

Hence \(f(x)\) is continuous for all \(x\).

3. Consider some arbitrary point \(x = a\)

\[\text{L.H.L.} = \lim_{h \to 0} f(a - h) = \lim_{h \to 0} f(a) f(-h) = f(a) \lim_{h \to 0} f(-h) = f(a) \lim_{h \to 0} [1 + g(-h)G(-h)] = f(a) \left[1 + \lim_{h \to 0} g(-h) \lim_{h \to 0} G(-h) \right] = f(a) \left[1 + (0) \times (\text{any finite value}) \right] = f(a)\]

[as it is given that \(\lim_{x \to 0} g(x) = 0 \) and \(\lim_{x \to 0} G(x) \) exists]

Similarly, we can prove that R.H.L. = \(\lim_{h \to 0} f(a + h) = f(a)\).

Hence, \(f(x)\) is continuous for all \(x\).

\[\textbf{Exercise 3.2}\]

1. We must have

\[f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \left[\frac{1}{x+1} \right] = \lim_{x \to 0} \left[\frac{1}{x} - \frac{1}{x+1} \right]
\]

\[= \lim_{x \to 0} \left[\frac{1}{x^2} - \frac{1}{x} \right] = \frac{1}{x^2} - \frac{1}{x^3} \cdot \frac{1}{x} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}\]

2. Since \(f(x)\) is continuous at \(x = 2\)

\[f(2) = \lim_{x \to 2} f(x) = \frac{x^2 - (a+2)x + A}{x - 2} = \lim_{x \to 2} \frac{x(x - 2) - A(x - 1)}{x - 2} = \frac{2x - 2}{x - 2} = 2\]

Now \(f(2)\) is finite only when \(A = 0\)

3. For continuity at \(x = 0\)

\[f(0) = \lim_{x \to 0} \left(\frac{1}{x} - \frac{2}{e^{2x} - 1} \right) = \lim_{x \to 0} \frac{e^{2x} - 1 - 2x}{x(e^{2x} - 1)}
\]

\[= \lim_{x \to 0} \left[\frac{1 + (2x) + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \cdots }{x \left(1 + (2x) + \frac{(2x)^2}{2!} + \cdots \right) - 2x} \right]
\]

\[= \lim_{x \to 0} \left(\frac{\frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \cdots }{x \left(\frac{(2x)^2}{2!} + \cdots \right) } \right)
\]
4.6 Calculus

\[
\frac{2^2}{2!} + \frac{3^3}{3!} x + \cdots = \lim_{x \to 0} \frac{1 - \tan x}{4x - \pi}
\]

\[
= \lim_{x \to 0} \frac{0 - \sec^2 x}{4} \quad \text{[L'Hopital's Rule]}
\]

\[
= -\frac{1}{4} \sec^2 \frac{\pi}{4} = -\frac{1}{4} (2) = -\frac{1}{2}
\]

5. \(\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^3}{4} = 0 \quad \therefore f(0) = 0 \)

\(\therefore f(x) \) is continuous at \(x = 0 \).

Also if \(x \neq 0 \), \(f(x) = |x| \), which is continuous for non-zero \(x \).

\(\therefore f(x) \) is continuous everywhere.

6. Clearly continuous at \(x = 1 \).

To check continuity at \(x = 0 \), \(f(0) = e^3 \)

\(\lim_{x \to 0} f(x) = \lim_{x \to 0} (1 + 3x)^{1/x} \quad (1^{\text{st}} \text{ form}) \)

\(= e^{\lim_{x \to 0} 3x \left(\frac{1}{x} \right)} \)

\(= e^{\lim_{x \to 0} 3} = e^3 \)

\(\therefore \lim_{x \to 0} f(x) = f(0) \)

Thus, continuous at \(x = 0 \).

7. \(\lim_{x \to 1} f(x) = \lim_{h \to 0} \frac{h}{e^h + 1} = 0 \) and

\(\lim_{x \to 1} f(x) = \lim_{h \to 0} \frac{-h}{e^h + 1} = 0 \)

Also

\(f(1) = 0 \)

Therefore, \(f(x) \) is continuous at \(x = 0 \).

8. \(f_1(x) = \sqrt{2} \sin x + 3 \)

\(-1 \leq \sin x \leq 1 \)

\(\Rightarrow -2 \leq 2 \sin x \leq 2 \)

\(\Rightarrow 1 \leq \sin x + 3 \leq 5 \)

\(\Rightarrow \sqrt{2} \sin x + 3 \) is defined and hence continuous \(\forall x \in R \)

\(f_2(x) = e^{x^2 + 1} \). Here \(e^{x^2 + 3} > 3, \forall x \in R \)

\(\Rightarrow f_2(x) \) is continuous, \(\forall x \in R \)

\(f_3(x) = \left(\frac{2^{2x} + 1}{2^{3x} + 5} \right)^{5/7} \)

Here \(2^{3x} + 5 = 8^x + 1 > 5, \forall x \in R \)

\(\Rightarrow f_3(x) \) is continuous, \(\forall x \in R \)

\(f_4(x) = \sqrt{\frac{\text{sgn}(x) + 1}{x}} \)

\(= \begin{cases}
\frac{1}{\sqrt{x}} + 1 & x \neq 0 \\
\sqrt{1}, & x = 0 \\
0, & x < 0 \\
1, & x > 0
\end{cases} \)

Clearly \(f_4(x) \) is discontinuous at \(x = 0 \).

9. Since \(f(x) \) is continuous at \(x = 1 \), therefore,

\(\lim_{x \to 1} f(x) = \lim_{x \to 1} f(x) \)

\(\Rightarrow A - B = 3 \Rightarrow A = 3 + B \)

If \(f(x) \) is continuous at \(x = 2 \), then

\(\lim_{x \to 2} f(x) = \lim_{x \to 2} f(x) \)

\(\Rightarrow 6 = 4B - A \)

Solving equations (1) and (2), we get \(B = 3 \)

But \(f(x) \) is not continuous at \(x = 2 \), therefore \(B \neq 3 \)

Hence, \(A = 3 + B \) and \(B \neq 3 \).

10. For any \(x \neq 1, 2 \), we find that \(f(x) \) is the quotient of two polynomials and a polynomial is everywhere continuous.

Therefore, \(f(x) \) is continuous for all \(x \neq 1, 2 \).

\[f(x) = \begin{cases}
\frac{x^4 - 5x^2 + 4}{(x-1)(x-2)}, & x \neq 1, 2 \\
6, & x = 1 \\
12, & x = 2
\end{cases} \]

\(f(1^+) = -6, f(1^-) = 6 \text{ and } f(2^+) = 12 \text{ and } f(2^-) = -12 \)

Hence \(f(x) \) is discontinuous at \(x = 1 \) and \(x = 2 \)

11. \(a \to s, q; b \to t, p; c \to r, q; d \to u, q \)

\(a. f(x) = \frac{1}{x-1} \Rightarrow \lim_{x \to 1} \frac{1}{x-1} = \infty \text{ and } \lim_{x \to 1} \frac{1}{x-1} = -\infty \)
Thus, $f(x)$ has vertical asymptote at $x = 1$. Hence it has non-removable discontinuity at $x = 1$.

Exercise 3.3

1. $f(x) = [x^2 + 1] = [x^2] + 1$
 Now x^2 is monotonic in the range of $[1, 3]$. Hence $[x^2]$ is discontinuous when x^2 is integer, or $x^2 = 2, 3, 4, \ldots, 9$
 $\Rightarrow x = \sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}, \sqrt{9}$
 Note that it is right continuous at $x = 1$ but not left continuous at $x = 3$
 or $\lim_{x \to 1^+} [x^2 + 1] = 2 = f(1)$ and
 $\lim_{x \to 1^-} [x^2 + 1] = 9 \neq 10 = f(3)$

2. Clearly, from Fig. S-3.4, the number of points of discontinuity are 11.

3. Since $g(x) = \tan^{-1} x$ is a strictly increasing function, then $f(x) = [\tan^{-1} x]$ is discontinuous when $\tan^{-1} x$ is an integer.
 Now integral values of $\tan^{-1} x$ are $-1, 0$ and 1.
 Hence $f(x)$ is discontinuous when $\tan^{-1} x = -1, 0, 1$.
 $\Rightarrow x = \tan(-1), \tan 0, \tan 1$
 $\Rightarrow x = -\tan 1, 0, \tan 1$
 Graphically, also this can be analyzed.
 Clearly from the graph given in Fig. S-3.5 $f(x)$ is discontinuous when $\tan^{-1} x = 0, \pm 1$ or $x = 0, \pm 1$
4. $f(x) = \{\cot^{-1} x\} = \cot^{-1} x - \{\cot^{-1} x\}$

$f(x)$ is discontinuous where $\cot^{-1} x$ is an integer.

Clearly from graph shown in Fig. S.3.6 $f(x)$ is discontinuous when $\cot^{-1} x = 1, 2, 3$ or $x = \cot 1, \cot 2, \cot 3$

![Graph of $y = \cot^{-1} x$](downloaded from jeemain.guru)

Fig. S-3.6

5. $f(x) = \lim_{n \to \infty} \frac{x^n}{1 + \sin x^n} = f(x) = \begin{cases} 1 & \text{for } x > 1 \\ 0 & \text{for } x = 1 \\ 0 & \text{for } x < 1 \end{cases}$

Hence, $f(x)$ is discontinuous at $x = 1$.

6. Obviously if $g(x) = \left[\frac{f(x)}{c} \right]$ is continuous then c must exceed the greatest value of $f(x)$ to restrict the ratio $f(x)/c$ between 0 and 1, for which least positive integral value of c is 6.

(\therefore \text{maximum value of } f(x) = 3 \text{ which lies between } 5 \text{ and } 6)

7. Since, $\lim_{n \to \infty} x^{2n} = \begin{cases} 0, & |x| < 1 \\ 1, & |x| = 1 \end{cases}$

\therefore $f(x) = \lim_{n \to \infty} \left(\frac{\pi x}{2} \right)^{2n} = \begin{cases} 0; & \left| \frac{\pi x}{2} \right| < 1 \\ 1; & \left| \frac{\pi x}{2} \right| = 1 \end{cases}$

Thus, $f(x)$ is continuous for all x, except for those values of x for which $\left| \frac{\pi x}{2} \right| = 1$, i.e., x is an odd integer.

\Rightarrow x = (2n + 1) where $n \in I$

Check continuity at $x = (2n + 1)$

L.H.L. = $\lim_{x \to 2n+1} f(x) = 0$ and $f(2n+1) = 1$

Thus, L.H.L. $\neq f(2n+1)$

\Rightarrow $f(x)$ is discontinuous at $x = (2n + 1)$ (i.e., at odd integers)

8. $f(x) = \begin{cases} x^2, & x \text{ is rational} \\ -x^2, & x \text{ is irrational} \end{cases}$

$f(x)$ is continuous when $x^2 = -x^2 \Rightarrow x = 0$

9. $t = \frac{1}{x-1}$ is discontinuous at $x = 1$. Also $y = \frac{1}{t^2 + t - 2}$ is discontinuous at $t = -2$ and $t = 1$

when $t = -2$, $\frac{1}{x-1} = -2 \Rightarrow x = \frac{1}{2}$, when $t = 1$, $\frac{1}{x-1} = 1$

\Rightarrow $x = 2$.

So, $y = f(x)$ is discontinuous at three points, $x = 1$, $\frac{1}{2}$, 2.

10. a. Continuity should be checked at the end-points of intervals of each definition i.e. $x = 0, 1, 2$.

b. For [sin πx], continuity should be checked at all values of x at which sin $\pi x \in I$.

\therefore $x = 0, \frac{1}{2}, 1$

c. For sgn $\left(x - \frac{5}{4} \right)$ $\left(x - \frac{2}{3} \right)$, continuity should be checked when $x - \frac{5}{4} = 0$ (as sgn $(g(x))$ is discontinuous at $g(x) = 0$), i.e., $x = \frac{5}{4}$ and when $x - \frac{2}{3} \not\in I$, i.e., $x = \frac{5}{3}$ (as $\{x\}$ is discontinuous when $x \in I$).

\therefore overall discontinuity should be checked at $x = 0, \frac{1}{2}, 1, \frac{5}{4}, \frac{5}{3}$.

And 2 check the discontinuity yourself. Hence $f(x)$ is discontinuous at $x = 1, \frac{5}{2}, \frac{5}{3}$.

At $x = 0$ and $x = 2, f(x)$ is continuous as $\lim_{x \to 0^+} f(x) = f(0)$ and $\lim_{x \to 2^-} f(x) = f(2)$.

11. $f(x)$ is continuous if $x^2 = x + a$ or $x^2 - x - a = 0$.

For $f(x)$ to be discontinuous, for all real x, equation must have imaginary roots.

\therefore $D < 0$

\therefore $1 + 4a < 0$

\therefore $a < -\frac{1}{4}$

12. $\text{sgn}(x^2 - 1)$ is discontinuous when $x^2 - 1 = 0$ or $x = \pm 1$

But $\log |x| = 0$ when $x = \pm 1$, hence $f(x)$ is continuous at $x = \pm 1$

Then $f(x)$ is continuous in its entire domain.

13. $f(x) = \lim_{n \to \infty} \left(\cos \frac{\pi x}{2} \right)^{2n}$ is discontinuous when $f(x) = \cos \frac{\pi x}{2} = 1$

\Rightarrow $\frac{\pi x}{2} = n\pi \Rightarrow x = 2n, n \in Z$.

Hence the only integer where $f(x)$ is discontinuous is $x = 2$

Exercise 3.4

1. $f(x) = |x + 1| + |x| + |x - 1|

$|x + 1|, |x|, |x - 1|$ are continuous for all x, but non-differentiable at $x = -1, 0, 1$, respectively.

Hence $f(x)$ is non-differentiable at $x = -1, 0, 1$.

\[f(x) = \begin{cases}
-x - 1 + (-x) + (1 - x), & x < -1 \\
-x + 1 + (-x) + (1 - x), & -1 \leq x < 0 \\
-x + 1 + (x) + (1 - x), & 0 \leq x < 1 \\
x + 1 + (x) + (x - 1), & x \geq 1
\end{cases} \]

\[f(x) = \begin{cases}
-3x, & x < -1 \\
x + 2, & -1 \leq x < 0 \\
x + 2, & 0 \leq x < 1 \\
3x, & x \geq 1
\end{cases} \]

\[\therefore \text{graph of } f(x) \text{ is given in Fig. S-3.7.} \]

\[\text{Fig. S-3.7} \]

It is clear from the graph that \(f(x) \) is continuous \(\forall x \in \mathbb{R} \) but not differentiable at \(x = -1, 0, 1 \).

\[\text{2. Domain of } f(x) = [0, 2] \]

\[\text{Fig. S-3.8} \]

Clearly from the graph given in Fig. S-3.8, \(f(x) \) is non-differentiable at \(x = 1 \).

\[\text{3. Since } x \text{ and } |x - x^2| \text{ are continuous for all } x, f(x) = x - |x - x^2| \text{ is continuous for all } x. \]

\[\text{Also } x \text{ is differentiable but } |x - x^2| \text{ is non-differentiable at } x = 0 \text{ and 1, hence } f(x) \text{ is non-differentiable at } x = 0 \text{ and 1.} \]

\[\text{4. We have, } f(x) = |[x]|x | \text{ in } -1 < x \leq 2 \]

\[\Rightarrow f(x) = \begin{cases}
-x, & -1 < x < 0 \\
0, & 0 \leq x < 1 \\
x, & 1 \leq x < 2 \\
2x, & x = 2
\end{cases} \]

\[\text{It is evident from the graph given in Fig. S-3.9 for this function that it is continuous but not differentiable at } x = 0. \text{ Also, it is discontinuous at } x = 1 \text{ and } x = 2, \text{ hence non-differentiable at } x = 1 \text{ and } x = 2. \]

\[\text{Fig. S-3.9} \]

\[\text{5.} \]

\[\text{Fig. S-3.10} \]

Clearly from the graph given in Fig. S-3.10, \(f(x) \) is non-differentiable at \(x = n\pi, n \in \mathbb{Z} \).

\[\text{6.} \]

\[\text{Fig. S-3.11} \]

Clearly from the graph given in Fig. S-3.11, \(f(x) \) is non-differentiable at \(x = 1 \).

\[f(x) = \begin{cases}
ax^2 + 1, & x \leq 1 \\
x^2 + ax + b, & x > 1
\end{cases} \]

\[f(x) \text{ is differentiable at } x = 1, \text{ then we must have,} \]

\[\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) \text{ and } \lim_{x \to 1^-} f'(x) = \lim_{x \to 1^+} f'(x) \]

\[\Rightarrow a + 1 = 1 + a + b \text{ and } 2a = 2 + a. \]

\[\Rightarrow a = 2 \text{ and } b = 0 \]
8. \(f(x) = -\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \begin{cases} 2\tan^{-1}x, & \text{if } 0 \leq x < \infty \\ -2\tan^{-1}x, & \text{if } -\infty < x \leq 0 \end{cases} \)

\Rightarrow f'(x) = \begin{cases} \frac{2}{1+x^2}, & \text{if } 0 < x < \infty \\ -\frac{2}{1+x^2}, & \text{if } -\infty < x < 0 \end{cases}

\Rightarrow f'(0^+) = 1 \text{ and } f'(0^-) = -1

Hence, \(f(x) \) is continuous and non-differentiable at \(x = 0 \).

Using the shortcut method,

Differentiate \(f(x) = -\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) \) w.r.t. \(x \),

\[f'(x) = \frac{1}{\sqrt{1-\left(\frac{1-x^2}{1+x^2}\right)^2}} \frac{d}{dx}\left(-2x(1+x^2) - 2x(1-x^2)\right) \]

\[= \frac{2x}{\sqrt{(1+x^2)^2 - (1-x^2)^2}} \frac{1}{1+x^2} \]

\[= \frac{2x}{\sqrt{4x^2}} \frac{1}{1+x^2} \]

which is discontinuous at \(x = 0 \).

Hence, \(f(x) \) is non-differentiable at \(x = 0 \).

9. \(f(x) = x^2 - 2 \) is rational function with domain \(R \), which is always differentiable.

\(f(x) = \log|x| \) is always differentiable in its domain (draw the graph and verify)

\(f(x) = x^3 \log x \) is always differentiable as \(x^3 \) and \(\log x \) are always differentiable

\(f(x) = (x-2)^{3/5} \Rightarrow f'(x) = \frac{3}{5(x-2)^{2/5}} \) which does not exist at \(x = 2 \), hence non-differentiable at \(x = 2 \) (\(f'(x) \) has vertical tangent at \(x = 2 \)).

10. \(f(x) = |x^2 - 4| - 12 \) is non-differentiable when \(x^2 - 4 = 0 \) and \(|x^2 - 4| = 12 \)

or \(x = \pm 2 \) and \(x^2 - 4 = \pm 12 \) or \(x = \pm 2 \) and \(x^2 = 16 \) or \(x = \pm 4 \)

Hence there are four points of non-differentiability.

11. (i) Graph of \(f(x) = \min\{x, \sin x\} \) is as follow.

From the graph \(f(x) = \begin{cases} x, & x < 0 \\ \sin x, & x \geq 0 \end{cases} \)

\[\Rightarrow f'(x) = \begin{cases} 1; & x < 0 \\ \cos x; & x > 0 \end{cases} \]

\[f'(0^+) = f'(0^-) = 1 \text{. Hence } f(x) \text{ is differentiable at } x = 0. \]

(ii) \(f(x) = \begin{cases} 0; & x \geq 0 \\ x^2; & x < 0 \end{cases} \)

Here \(f(x) \) is continuous at \(x = 0 \).

Now \(f'(x) = \begin{cases} 0; & x > 0 \\ 2x; & x < 0 \end{cases} \)

\(f'(0^+) = 0 \) and \(f'(0^-) = 0 \)

Hence \(f(x) \) is differentiable at \(x = 0 \)

(iii) \(f(x) = x^2 \text{sgn}(x) = \begin{cases} x^2; & x \geq 0 \\ -x^2; & x < 0 \end{cases} \), which is continuous as well as differentiable at \(x = 0 \)

Chapter 4

Exercise 4.1

1. a. Let \(f(x) = \sqrt{\sin x} \Rightarrow f(x + h) = \sqrt{\sin(x + h)} \)

\[\frac{d}{dx}[f(x)] = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

\[= \lim_{h \to 0} \frac{\sqrt{\sin(x + h)} - \sqrt{\sin x}}{h} \] (rationalizing)

\[= \lim_{h \to 0} \frac{\sin(x + h) - \sin x}{h(\sqrt{\sin(x + h)} + \sqrt{\sin x})} \]

\[= \lim_{h \to 0} \frac{2\sin \left(\frac{h}{2}\right) \cos \left(\frac{2x + h}{2}\right)}{h(\sqrt{\sin(x + h)} + \sqrt{\sin x})} \]

\[= \lim_{h \to 0} \frac{2\sin \left(\frac{h}{2}\right)}{h} \lim_{h \to 0} \frac{\cos \left(\frac{2x + h}{2}\right)}{\sqrt{\sin(x + h)} + \sqrt{\sin x}} \]

\[= \cos \frac{x}{\sqrt{\sin x}} = \frac{-\cos x}{2\sqrt{\sin x}} \]

b. Let \(f(x) = \cos^2 x \). Then \(f(x + h) = \cos^2(x + h) \)

\[\frac{d}{dx}[f(x)] = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

\[= \lim_{h \to 0} \frac{\cos^2(x + h) - \cos^2 x}{h} \]

\[= \lim_{h \to 0} \frac{\cos^2(x + h) - \cos^2 x}{h} \]

\[= \lim_{h \to 0} \frac{\sin^2x - \sin^2(x + h)}{h} \]

\[= \lim_{h \to 0} \frac{\sin(x + x + h)\sin(x - (x + h))}{h} \]
\[= \lim_{h \to 0} \frac{\sin(2x+h)\sin(-h)}{h} \]
\[= -\lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \sin(2x+h) \]
\[\Rightarrow \frac{d}{dx} f(x) = -\sin 2x \]

c. Let \(f(x) = \tan^{-1} x \). Then \(f(x+h) = \tan^{-1}(x+h) \)
\[\therefore \frac{d}{dx}[f(x)] = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]
\[= \lim_{h \to 0} \frac{\tan^{-1}(x+h) - \tan^{-1} x}{h} \]
\[= \lim_{h \to 0} \frac{\tan^{-1}\left(\frac{x+h-x}{1+x(x+h)}\right)}{h} \]
\[= \lim_{h \to 0} \frac{\tan^{-1}\left(h\right)}{h} \times \frac{1}{1+x(x+h)} \]
\[= \frac{1}{1+x^2} \]

d. Let \(f(x) = \log x \). Then, \(f(x+h) = \log(x+h) \)
\[\therefore \frac{d}{dx}[f(x)] = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]
\[= \lim_{h \to 0} \frac{\log(x+h) - \log x}{h} \]
\[= \lim_{h \to 0} \frac{\log\left(\frac{x+h}{x}\right)}{h} \]
\[= \lim_{h \to 0} \frac{\log\left(1+\frac{h}{x}\right)}{h} \times \frac{1}{x} \]
\[= \frac{1}{x} \]

2. \(\frac{d}{dx}[f(x)g(x)] = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} \)
\[= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h} \]
\[= \lim_{h \to 0} \left[f(x+h) \frac{g(x+h) - g(x)}{h} + g(x) \frac{f(x+h) - f(x)}{h} \right] \]
\[= f(x) \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} + g(x) \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

Exercise 4.2

1. Let \(y = \log \left(e^{\frac{x-2}{x+2}} \right) \)
\[\Rightarrow y = x + \frac{3}{4} \left[\log(x-2) - \log(x+2) \right] \]
\[\Rightarrow \frac{dy}{dx} = 1 + \frac{3}{4} \left[\frac{1}{x-2} - \frac{1}{x+2} \right] = 1 + \frac{3}{(x^2 - 4)} \]
\[\Rightarrow \frac{dy}{dx} = \frac{x^2 - 1}{x^2 - 4} \]

2. \(y = \sec^{-1} \left(\frac{\sqrt{x+1}}{\sqrt{x-1}} \right) + \sin^{-1} \left(\frac{\sqrt{x-1}}{\sqrt{x+1}} \right) \)
\[= \cos^{-1} \left(\frac{\sqrt{x-1}}{\sqrt{x+1}} \right) + \sin^{-1} \left(\frac{\sqrt{x-1}}{\sqrt{x+1}} \right) = \frac{\pi}{2} \]
\[\Rightarrow \frac{dy}{dx} = 0 \quad \left(\because \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \right) \]

3. \(y = \tan^{-1} \left(\frac{4x}{1+5x^2} \right) + \tan^{-1} \left(\frac{2+3x}{3-2x} \right) \)
\[= \tan^{-1} \left(\frac{5x-x}{1+5x^2} + \tan^{-1} \left(\frac{3-2x}{2} \right) \right) \]
\[= \tan^{-1} \left(\frac{5x-x + \tan^{-1} \left(\frac{3-2x}{2} \right)}{1+5x^2} \right) \]
\[= \tan^{-1} \left(\frac{5x + \tan^{-1} \left(\frac{3-2x}{2} \right)}{1+5x^2} \right) \]
\[\therefore \frac{dy}{dx} = \frac{5}{1+25x^2} \]

4. Let \(y = \tan^{-1} \left(\frac{\sqrt{1+x^2} - 1}{x} \right) \). Putting \(x = \tan \theta \), we get
\[\Rightarrow y = \tan^{-1} \left(\frac{\tan \theta - 1}{\tan \theta} \right) = \tan^{-1} \left(\frac{1-\cos \theta}{\sin \theta} \right) \]
\[\Rightarrow \frac{dy}{dx} = \frac{1}{2} \theta = \frac{1}{2} \tan^{-1} x \]

5. Let \(y = \tan^{-1} \left(\frac{a \cos x - b \sin x}{b \cos x + a \sin x} \right) \)
\[y = \tan^{-1} \left(\frac{a - \tan x}{b + \tan x} \right) \]

\[y = \tan^{-1} \left(\frac{a}{b} \right) - x \]

\[\therefore \frac{dy}{dx} = 0 - 1 = -1 \]

6. Putting \(x^2 = \cos 2\theta \), we get,

\[y = \tan^{-1} \left(\frac{\sqrt{1 + \cos 2\theta} + \sqrt{1 - \cos 2\theta}}{\sqrt{1 + \cos 2\theta} - \sqrt{1 - \cos 2\theta}} \right) \]

\[\Rightarrow y = \tan^{-1} \left(\frac{\sqrt{2 \cos^2 \theta} + \sqrt{2 \sin^2 \theta}}{\sqrt{2 \cos^2 \theta} - \sqrt{2 \sin^2 \theta}} \right) \]

\[\Rightarrow y = \tan^{-1} \left(\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \right) \]

\[= \tan^{-1} \left(\frac{\tan (\pi/4 + \theta)}{1 - \tan \theta} \right) = \tan^{-1} (\tan (\pi/4 + \theta)) \]

\[\therefore \frac{dy}{dx} = \frac{\pi}{4} + \theta \]

\[\Rightarrow \frac{dy}{dx} = \frac{\pi}{4} + \frac{1}{2} \cos^{-1} x^2 \]

\[\Rightarrow \frac{dy}{dx} = \frac{1}{2} \times \frac{2x}{\sqrt{1 - x^4}} = \frac{x}{\sqrt{1 - x^4}} \]

7. From triangular conversions

\[y = \sin^{-1} \left(\frac{x}{\sqrt{1 + x^2}} \right) + \cos^{-1} \left(\frac{1}{\sqrt{1 + x^2}} \right) \]

\[= \tan^{-1} x + \tan^{-1} x = 2 \tan^{-1} x \]

\[\Rightarrow \frac{dy}{dx} = \frac{2}{1 + x^2} \]

8. Let \(y = \tan^{-1} \left(\frac{3a^2 x - x^3}{a^2 - 3x^2} \right) \)

\[= \tan^{-1} \left(\frac{3(x/a) - (x/a)^3}{1 - 3(x/a)^2} \right) \]

\[= \tan^{-1} \left(\frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} \right) \], putting \(x/a = \tan \theta \)

\[= \tan^{-1} \left(\frac{3\tan \theta}{1 - 3\tan^2 \theta} \right) \]

\[\Rightarrow \frac{dy}{dx} = 3 \frac{d}{dx} \tan^{-1} \left(\frac{x}{a} \right) \]

\[= 3 \frac{1}{1 + (x/a)^2} \times \frac{1}{a} = \frac{3a}{a^2 + x^2} \]

9. Putting \(x = \sin \theta, 5 = r \cos \alpha, \) and \(12 = r \sin \alpha, \) so that \(r = 13, \tan \alpha = 12/5, \)

\[\Rightarrow y = \sin^{-1} \left[\frac{r \cos \alpha \sin \theta + r \sin \alpha \cos \theta}{\sqrt{13}} \right] \]

\[= \sin^{-1} \left(\theta + \alpha \right) = \theta + \alpha \]

or \(y = \sin^{-1} x + \tan^{-1} (12/5) \)

\[\Rightarrow \frac{dy}{dx} = 1/\sqrt{1 - x^2} \]

10. \(y = \tan^{-1} \left(\frac{x}{1 + \sqrt{1 - x^2}} \right) \)

Put \(x = \sin \theta \)

\[\Rightarrow y = \tan^{-1} \left(\frac{\sin \theta}{1 + \sqrt{1 - \sin^2 \theta}} \right) = \tan^{-1} \left(\frac{\sin \theta}{1 + \cos \theta} \right) \]

\[= \tan^{-1} \left(\frac{2 \sin \theta \cos \theta}{\cos^2 \theta + \sin^2 \theta} \right) = \tan^{-1} \tan \theta = \theta \]

\[\Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{1 - x^2}} \]

Exercise 4.3

1. \(\sin^{-1} \sqrt{1-x} = \sin^{-1} \sqrt{1 - (\sqrt{x})^2} = \cos^{-1} \sqrt{x} \)

\[\Rightarrow y = 2 \cos^{-1} \sqrt{x} \quad \therefore \frac{dy}{dx} = 2 \times \frac{-1}{2x} = \frac{-1}{2\sqrt{x}} \]

2. \(\frac{dy}{dx} = 2 \frac{1}{2\sin \sqrt{x}} \times \cos \sqrt{x} \times \frac{1}{2\sqrt{x}} \cdot \frac{-1}{2\sqrt{x}} \)

3. Let \(y = e^{\sin^2} \)

Putting \(x^2 = v \) and \(u = \sin^2 = \sin v \), we get

\[y = e^v, \quad u = \sin v \text{ and } v = x^2 \]

\[\Rightarrow \frac{dy}{du} = e^v, \quad \frac{du}{dv} = \cos v \text{ and } \frac{dv}{dx} = 2x \]

Now, \(\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dv} \times \frac{dv}{dx} \)

\[\Rightarrow \frac{dy}{dx} = e^v \cos 2x = e^{\sin u} \cos u \times 2x \]
\[
\frac{dy}{dx} = e^{\sin x} \cos x \cdot 2x
\]

4. \[
\frac{d}{dx} \left[\log \sqrt{\sin e^x} \right] = \frac{d}{dx} \left[\frac{1}{2} \log (\sin e^x) \right] = \frac{1}{2} \cot \sqrt{e^x} \cdot \frac{1}{2\sqrt{e^x}} e^x = \frac{1}{4} e^{x/2} \cot (e^{x/2})
\]

5. Let \(y = a^{(\sin^{-1} x)^3} \)
Using chain rule, we get \[
\frac{dy}{dx} = \frac{d}{dx} \left[a^{(\sin^{-1} x)^3} \right] = a^{(\sin^{-1} x)^3} \log a \frac{d}{dx} ((\sin^{-1} x)^3)
\]
\[= a^{(\sin^{-1} x)^3} \log a 2 \sin^{-1} x \cdot \frac{d}{dx} (\sin^{-1} x)
\]
\[= a^{(\sin^{-1} x)^3} \log a 2 \sin^{-1} x \cdot \frac{1}{\sqrt{1-x^2}}
\]
\[= \frac{2 \log a \sin^{-1} x \cdot (\sin^{-1} x)^3}{\sqrt{1-x^2}}
\]

6. \(y = \log \sqrt{\frac{1+\sin x}{1-\sin x}} \)
\[
\frac{dy}{dx} = \frac{1}{2} \left[\frac{\cos x}{1+\sin x} + \frac{\cos x}{1-\sin x} \right] = \frac{1}{2} \cos x \left(\frac{2}{1-\sin^2 x} \right) = \frac{\cos x}{\cos^2 x} = \sec x
\]
\[
\Rightarrow \frac{dy}{dx} \bigg|_{x=\frac{\pi}{3}} = \sec \frac{\pi}{3} = 2
\]

7. \[
\frac{dy}{dx} = 1(1+x^2)(1+x^4)(1+x^8) \ldots (1+x^{2^n})
\]
\[
+ 2x (1+x)(1+x^4)(1+x^8) \ldots (1+x^{2^{n-1}})
\]
\[
+ 4x^3 (1+x)(1+x^8)(1+x^{16}) \ldots (1+x^{2^{n-2}})
\]
\[
\cdots
\]
\[
+ 2^n x^{2^{n-1}} (1+x)(1+x^8) \ldots (1+x^{2^{n-1}})
\]
\[
\Rightarrow \frac{dy}{dx} \bigg|_{x=0} = 1
\]

8. We have, \(x^y = e^{y \log x} \)
\[
\Rightarrow \quad \frac{dy}{dx} \log x = e^{y \log x} \quad \left[\because x^y = (e^{\log x})^y = e^{y \log x} \right]
\]
\[
\Rightarrow \quad y \log x = x - y
\]

9. We have \(x \sqrt{1+y+y\sqrt{1+y}} = 0 \)
\[
\Rightarrow \quad x \sqrt{1+y} = -y \sqrt{1+y}
\]
\[
\Rightarrow \quad x^2 (1+y) = y^2 (1+y) \quad \text{[On squaring both sides]}
\]
\[
\Rightarrow \quad x^2 - y^2 = y^2 x - y^2
\]
\[
\Rightarrow \quad (x+y)(x-y) = -y (x-y)
\]
\[
\Rightarrow \quad x+y = -y \quad \left[\because x - y \neq 0 \text{ as } x = y \text{ does not satisfy the given equation} \right]
\]
\[
\Rightarrow \quad y = \frac{x}{1+x}
\]
\[
\Rightarrow \quad \frac{dy}{dx} = \frac{(1+x)x(1-x)(0+1)}{(1+x^2)}
\]
\[
\Rightarrow \quad \frac{dy}{dx} = \frac{1}{1+x^2}
\]

Exercise 4.4

1. Given \(x^3 + y^3 - 3axy = 0 \) From
\[
\frac{dy}{dx} = \frac{\text{differentiating of } f \text{ w.r.t. } x \text{ keeping } y \text{ as constant}}{\text{differentiating of } f \text{ w.r.t. } y \text{ keeping } x \text{ as constant}}
\]
\[
\frac{dy}{dx} = \frac{3x^2 - 3ay}{3y^2 - 3ax} = \frac{ay - x^2}{y^2 - ax}
\]

2. Differentiating both sides w.r.t. \(x \), we get
\[
\frac{d}{dx} \left[\log \left(x^2 + y^2 \right) \right] = 2 \frac{d}{dx} \left[\tan^{-1} \left(\frac{y}{x} \right) \right]
\]
\[
\Rightarrow \quad x^2 + y^2 \frac{d}{dx} \left(x^2 + y^2 \right) = 2 \frac{1}{1 + (y/x)^2} \times \frac{d}{dx} \left(\frac{y}{x} \right)
\]
\[
\Rightarrow \quad \frac{1}{x^2 + y^2} \left[2x + 2y \frac{dy}{dx} \right] = 2 \frac{1}{x^2 + y^2} \left[\frac{x \frac{dy}{dx} - y}{x^2} \right]
\]
\[
\Rightarrow \quad 2 \left[x + y \frac{dy}{dx} \right] = 2 \left[\frac{x \frac{dy}{dx} - y}{x^2} \right]
\]
\[
\Rightarrow \quad x + y \frac{dy}{dx} = x \frac{dy}{dx} - y
\]
\[
\Rightarrow \quad \frac{dy}{dx} \left(y-x \right) = -(x+y)
\]
\[
\Rightarrow \quad \frac{dy}{dx} = \frac{x+y}{x-y}
\]
3. \[y = \sqrt{\sin x + y} \]
\[\Rightarrow y^2 = \sin x + y \]
Differentiate w.r.t. \(x \),
\[2y \frac{dy}{dx} = \cos x + \frac{dy}{dx} \]
\[\Rightarrow \frac{dy}{dx} = \cos x \]
\[2y \]
\[\rightarrow \frac{dy}{dx} = \cos x \]
\[2y - 1 \]
\[\Rightarrow \frac{dy}{dx} = \cos x \]
\[2y - 1 \]
\[\Rightarrow \frac{dy}{dx} = \cos x \]

4. \[x = y \sqrt{1 - y^2} \]
Differentiating with respect to \(x \), we get
\[1 = \frac{dy}{dx} \sqrt{1 - y^2} + y \times \frac{1}{2\sqrt{1 - y^2}} (-2y) \times \frac{dy}{dx} \]
\[\Rightarrow 1 = \frac{dy}{dx} \sqrt{1 - y^2} - \frac{y^2}{\sqrt{1 - y^2}} \times \frac{dy}{dx} \]
\[\Rightarrow 1 = \frac{dy}{dx} \left[\frac{1 - y^2 - y^2}{\sqrt{1 - y^2}} \right] \]
\[\Rightarrow 1 = \frac{dy}{dx} \left[\frac{1 - 2y^2}{\sqrt{1 - y^2}} \right] \]
\[\Rightarrow \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - 2y^2} \]

5. We have
\[y = b \tan^{-1} \left(\frac{x}{a} + \tan^{-1} \frac{y}{x} \right) \]
\[\Rightarrow \tan \frac{y}{b} = \frac{x}{a} + \tan^{-1} \frac{y}{x} \]
Differentiating both sides w.r.t. \(x \), we get
\[\frac{1}{b} \sec^2 \left(\frac{y}{b} \right) \frac{dy}{dx} = \frac{1}{a + \left(\frac{y}{x} \right)} \times \frac{x}{x^2} \]
\[\Rightarrow \frac{1}{b} \sec^2 \left(\frac{y}{b} \right) \frac{dy}{dx} = \frac{1}{a + \left(\frac{y}{x} \right)} \times \frac{x}{x^2 - y^2} \]
\[\Rightarrow \frac{dy}{dx} = \frac{1}{b} \sec^2 \left(\frac{y}{b} \right) \left(\frac{x}{x^2 + y^2} \right) \]
\[\Rightarrow \frac{1}{b} \sec^2 \left(\frac{y}{b} \right) \frac{dx}{dy} = \frac{x}{a + \left(\frac{y}{x} \right)} \times \frac{1}{x^2 + y^2} \]
\[\Rightarrow \frac{dy}{dx} = \frac{1}{b} \sec^2 \left(\frac{y}{b} \right) \left(\frac{x}{x^2 + y^2} \right) \]

6. The given series may be written as \(y = \sqrt{\sin x + y} \)
\[\Rightarrow y^2 = \sin x + y \]
\[\Rightarrow 2y \frac{dy}{dx} = \cos x + \frac{dy}{dx} \]
\[\Rightarrow \frac{dy}{dx} = \cos x \]
\[2y - 1 \]
\[\Rightarrow \frac{dy}{dx} = \cos x \]
\[2y - 1 \]
\[\Rightarrow \frac{dy}{dx} = \cos x \]

Exercise 4.5

1. \[\frac{dx}{dt} = \frac{\left(1 + t^2 \right) - 2t}{\left(1 + t^2 \right)^2} = \frac{2 - 2t}{\left(1 + t^2 \right)^2} \]
\[\Rightarrow \frac{dy}{dt} = \frac{\left(1 + t^2 \right) - 2t}{\left(1 + t^2 \right)^2} = \frac{-4t}{\left(1 + t^2 \right)^2} \]
\[\Rightarrow \frac{dy}{dt} = \frac{4}{2 - 2t^2} = \frac{2t}{t^2 - 1} \]
\[\Rightarrow \frac{dy}{dx} = \frac{4}{3} \]

2. \(x = a \cos^3 \theta, y = b \sin^3 \theta \)
\[y_1 = \frac{dy}{dx} = \frac{3b \sin^2 \theta \cos \theta}{-3a \cos^2 \theta \sin \theta} \]
\[= -\frac{b}{a} \tan \theta, \text{ if } \sin \theta \neq 0, \cos \theta \neq 0 \]
\[\therefore y_1 \text{ does not exist at } \theta = 0 \]
Hence \(y_2 \) and \(y_3 \) do not exist at \(\theta = 0 \).

3. \(x = \sqrt{a \sin^2 \theta}, y = \sqrt{a \cos^2 \theta} \)
\[x \cdot y = \sqrt{a \sin^2 \theta \cdot \cos^2 \theta} \]
Differentiating w.r.t. \(x \), we get
\[x \frac{dy}{dx} + y = 0 \]
\[\Rightarrow \frac{dy}{dx} = -\frac{y}{x} \]

4. \(x = a \left[\cos t + \log \tan \frac{t}{2} \right], y = a \sin t \)
Differentiating w.r.t. \(t \), we get
\[\frac{dx}{dt} = a \left[-\sin t + \frac{1}{\tan t/2} \sec^2 t \times \frac{1}{2} \right] \]
\[= a \left[-\sin t + \frac{1}{2 \sin(t/2) \cos(t/2)} \right] \]
\[= a \left[-\sin t + \frac{1}{\sin t} \right] \]
and \(\frac{dy}{dt} = a \cos t \)

\[
\Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \frac{a \cos t}{a \cos^2 t} = \tan t
\]

at \(x = \pi/4 \), \(\frac{dy}{dx} = 1 \)

Exercise 4.6

1. Let \(y = x^n \). Then, \(y = e^{\log x} \)

Differentiating both sides with respect to \(x \), we get

\[
\frac{dy}{dx} = x^n \left(\log x + x \frac{1}{x} \right) \quad \left[\because e^{\log x} = x^n \right]
\]

\[
\Rightarrow \frac{dy}{dx} = x^n (1 + \log x)
\]

2. \(y = e^x \)

\[
\Rightarrow \log y = \log e^x = x
\]

\[
\Rightarrow x \log y = y \log x
\]

\[
\Rightarrow y \frac{1}{x} \frac{dy}{dx} + \log y \frac{dy}{dx} = \frac{y}{x} + \log x \frac{dy}{dx}
\]

\[
\Rightarrow \left(1 + \frac{1}{x} - \log x \right) \frac{dy}{dx} = \frac{y}{x} - \log y
\]

\[
\Rightarrow \frac{dy}{dx} = \frac{y}{x - \log x} = \frac{y(x - y \log x)}{x(x - y \log x)} = \frac{y(x \log y - y)}{x(x \log x - x)}
\]

3. Here \(x = e^{y + x} \)

\[
\Rightarrow \log x = (y + x)
\]

\[
\Rightarrow y = \log x - x
\]

\[
\Rightarrow \frac{dy}{dx} = \frac{1}{x} - 1 = \frac{1 - x}{x}
\]

4. Taking logarithm of both sides,

\[
\Rightarrow \log y = (\tan x)^{\tan x} \log \tan x
\]

\[
\Rightarrow \log y = [\tan x \log \tan x] + \log \log \tan x.
\]

Differentiating with respect to \(x \), we get

\[
\Rightarrow \frac{1}{y \log y} \frac{dy}{dx} = \sec^2 x \log \tan x + \tan x \frac{1}{\tan x} + \frac{\sec^2 x}{\log \tan x \tan x}
\]

\[
\Rightarrow \frac{dy}{dx} = y \log y \sec^2 x \left[\log \tan x + 1 + 1/(\tan x \log \tan x) \right]
\]

At \(x = \pi/4, y = 1 \) and \(\log y = 0 \)

\[
\Rightarrow (dy/dx)_{x=\pi/4} = 0
\]

5. We have \(y = \frac{\sqrt{1-x^2}}{(x^2+3)^{1/3}} \)

Taking log of both sides, we get

\[
\Rightarrow \log y = \frac{1}{2} \log(1-x^2) + \frac{1}{2} \log(2x+3) - \frac{2}{3} \log(x^2+2)
\]

Differentiating both sides with respect to \(x \), we get

\[
\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{1}{2(1-x^2)} (-2x) + \frac{1}{2(2x+3)} \times 2 - \frac{2}{3} \times \frac{1}{x^2+2} \times 2x
\]

\[
\Rightarrow \frac{dy}{dx} = y \left[\frac{x}{1-x^2} + \frac{1}{2x+3} - \frac{4x}{3(x^2+2)} \right]
\]

\[
\Rightarrow \frac{dy}{dx} \bigg|_{x=0} = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}}
\]

Exercise 4.7

1. Let \(y = \tan^{-1} \left(\frac{2x}{1-x^2} \right) \) and \(z = \sqrt{1-x^2} \)

\[
\Rightarrow \frac{dy}{dx} = \frac{2}{1-x^2}
\]

and \(z = \sin^{-1} \frac{2x}{1+x^2} = \tan^{-1} x \)

\[
\Rightarrow \frac{dz}{dx} = 1
\]

2. Let \(y = \sec^{-1} \left(\frac{1}{2x^2-1} \right) \)

Put \(x = \cos \theta \)

\[
\Rightarrow y = \sec^{-1} (2 \theta) \quad \text{and} \quad z = \sqrt{1-\cos^2 \theta} = \sin \theta
\]

\[
\Rightarrow \frac{dy}{d\theta} = 2, \quad \frac{dz}{d\theta} = \cos \theta \Rightarrow \frac{dy}{dz} = \frac{2}{\cos \theta} = \frac{2}{x}
\]

\[
\Rightarrow \frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx} = \frac{2}{\cos \theta} \cdot \frac{1}{-2x} = \frac{1}{x}
\]

3. We have, \(y = f(x^3) \)

\[
\Rightarrow \frac{dy}{dx} = f'(x^3) 3x^2 = 3x^2 \tan x^3
\]

Also, \(z = g(x^5) \)

\[
\Rightarrow \frac{dz}{dx} = g'(x^5) 5x^4 = 5x^4 \sec x^5
\]

\[
\Rightarrow \frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} = \frac{3x^2 \tan x^3}{5x^4 \sec x^5} = \frac{3}{5x^2} \cdot \frac{\tan x^3}{\sec x^5}
\]

\[
\Rightarrow \lim_{x \to 0} \frac{(dy/dz)}{x} = \lim_{t \to 0} \frac{3 \tan x^3}{5x^5 \sec x^5} = \frac{3}{5}
\]
Exercise 4.8

1. \[
\frac{dy}{dx} = \begin{vmatrix}
\cos x & -\sin x & \cos x \\
\cos x & -\sin x & \cos x \\
x & 1 & 1
\end{vmatrix}
= \frac{\sin x \cos x - \cos x \sin x}{\cos x - \sin x - \sin x} + \frac{\sin x \cos x - \cos x \sin x}{\cos x - \sin x - \sin x} = 0 + (\cos^2 x + \sin^2 x) = 1
\]

2. \[
\frac{d^n}{dx^n} [f(x)] = \begin{vmatrix}
\frac{d^n}{dx^n} (x^n) & n! \\
\frac{d^n}{dx^n} (\cos x) & \cos \left(\frac{n\pi}{2}\right) \\
\frac{d^n}{dx^n} (\sin x) & \sin \left(\frac{n\pi}{2}\right)
\end{vmatrix}
= \frac{n!}{\cos \left(\frac{n\pi}{2}\right) \cos \left(\frac{n\pi}{2}\right)} = 2^n \sin \left(\frac{n\pi}{2}\right)
\]

\Rightarrow \frac{d^n}{dx^n} [f(x)]_{x=0} = 0

Exercise 4.9

1. \[
\frac{d}{dx} \left[e^{2x} + e^{-2x} \right] = 2e^{2x} - 2e^{-2x} = 2 \left[e^{2x} - e^{-2x} \right]
\]

2. \[
\frac{d^2}{dx^2} \left[e^{2x} + e^{-2x} \right] = \frac{d}{dx} \left(2e^{2x} - 2e^{-2x} \right) = 2 \left[e^{2x} + e^{-2x} \right]
\]

3. \[
\frac{d^n}{dx^n} \left[e^{2x} + e^{-2x} \right] = 2^n \left[e^{2x} + (-1)^n e^{-2x} \right]
\]

Exercise 4.10

1. \[f(x+y) = f(x)f(y)\]

\[f'(x) = \lim_{h \to 0} \frac{f(5+h) - f(5)}{h} = f(5)\]

\[f''(x) = \lim_{h \to 0} \frac{f(5+h) - f(5)}{h} = f(5)\]

Replace \(x\) by 5 and \(y\) by 0, \(f(5+0) = f(5)f(0)\)

\(f(0) = 1\)
\[f'(5) = f(5) \lim_{h \to 0} \frac{f(5+h) - f(5)}{h} \]
\[= f'(5) f'(0) = 2 \times 3 = 6 \]

2. \(f'(x) = f(x)f'(y) \)

\[f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} \]
\[= \lim_{h \to 0} \frac{f\left(2 + \left(1 + \frac{h}{2}\right)\right) - f(2)}{h} \]
\[= \lim_{h \to 0} \frac{f(2) + f\left(1 + \frac{h}{2}\right) - f(2)}{h} \]
\[= \lim_{h \to 0} \frac{f\left(1 + \frac{h}{2}\right) - 1}{h} \]

Replace \(x \) and \(y \) by 0 in equation (1) \(\Rightarrow f(0) = [f(0)]^2 \)
\(\Rightarrow f(0) = 0 \)

\[\Rightarrow f'(2) = \frac{f(2)}{2} \lim_{h \to 0} \frac{f\left(1 + \frac{h}{2}\right) - f(2)}{h} = \frac{f(2)f'(2)}{2} = \frac{3}{2} \]

3. Given \(f\left(\frac{x + 2y}{3}\right) = f(x) + 2f(y) \) \(\forall x, y \in R \), which satisfies section formula for abscissa on L.H.S. and ordinate on R.H.S. Hence, \(f(x) \) must be the linear function (as only straight line satisfies such section formula).
Hence \(f(x) = ax + b \).
But \(f(0) = 0 \Rightarrow b = 2 \), \(f'(0) = 1 \Rightarrow a = 1 \).
Thus \(f(x) = x + 2 \).

4. \(f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} \)
\[= \lim_{k \to 0} \frac{f'(x+k) - f'(x)}{k} \]
\[= \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} \]
\[= \lim_{h \to 0} \frac{f'(x) - f'(x+h) - f'(x-h) + f'(x)}{h^2} \]
\[= \lim_{h \to 0} \frac{f'(x) - f(x+h) - f(x-h) + f(x)}{h^2} \]
\[= \lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} \]

Chapter 5

Exercise 5.1

1. The curve is \(3xy^2 - 2x^3y = 1 \)

Differentiate w.r.t. \(x \):
\[\frac{dy}{dx} = 4xy - 3y^2 \]

At the point \((1, 1)\)
\[\frac{dy}{dx} = 1/4 \]

Slope of line joining \(P(1, 1) \) and \(Q(-16/5, -1/20) \) is

\[1 + \frac{1}{20} = \frac{21}{4} \]
\[1 + \frac{16}{5} = \frac{84}{4} \]

Also point \(Q(-16/5, -1/20) \) satisfies the curve. Hence proved.

2. We have \(x = a(1 + \cos \theta), y = a \sin \theta \)

\[\Rightarrow \frac{dx}{d\theta} = -a \sin \theta, \quad \frac{dy}{d\theta} = a \cos \theta \]

\[\Rightarrow \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a \cos \theta}{-a \sin \theta} = \cot \theta \]

\[\Rightarrow \text{slope of normal} = \tan \theta \]

The equation of normal is:
\[y - a \sin \theta = \tan \theta (x - a(1 + \cos \theta)) \]
\[y \cos \theta - a \sin \theta \cos \theta = x \sin \theta - a \sin \theta - a \sin \theta \cos \theta \]
\[x \sin \theta = y \cos \theta - a \sin \theta \]

which clearly passes through \((a, 0)\)

3. \(y = ax^2 - 6x + b \) passes through \((0, 2)\)
\[\Rightarrow 2 = 0 - 0 + b \Rightarrow b = 2 \]

Again \(\frac{dy}{dx} = 2ax - 6 \)

At \(x = \frac{3}{2} \)
\[\frac{dy}{dx} = -3a - 6 \]

Since tangent is parallel to \(x \)-axis
\[\Rightarrow \frac{dy}{dx} = 0 \Rightarrow 3a - 6 = 0 \Rightarrow a = 2 \]

Hence \(a = 2, b = 2 \).

4. We have \((1 + x^3)y = 2 - x \) or \(y = \frac{2 - x}{1 + x^3} \)

This meets \(x \)-axis at \((2, 0)\).

Also \(\frac{dy}{dx} = \frac{(1 + x^3)(-1) - (2 - x)2x}{(1 + x^3)^2} \)

At \((2, 0)\),
\[\frac{dy}{dx} = \frac{(1 + 4)(-1) - 0}{(1 + 4)^2} = \frac{1}{5} \]

\[\Rightarrow \text{the required tangent is } y = \frac{1}{5} (x - 2) \text{ or } x + 5y = 2. \]

5. \(y^2 = ax^3 + b \) \(\Rightarrow \frac{dy}{dx} = \frac{3ax^2}{2y} \)

\[\Rightarrow \frac{dy}{dx} \bigg|_{(2;3)} = \frac{3a(2)^2}{2 \times 3} = 2a = 4 \Rightarrow a = 2 \]

Also \((2, 3)\) lies on \(y^2 = ax^3 + b \) \(\Rightarrow 9 = 8a + b \Rightarrow b = -7 \)

6. \(\left(\frac{x}{a} \right)^n + \left(\frac{y}{b} \right)^n = 2 \Rightarrow \frac{n(x/a)^{n-1}}{a^n} + \frac{n(y/b)^{n-1}}{b^n} \frac{dy}{dx} = 0 \)

\[\Rightarrow \frac{dy}{dx} = \frac{b^n x^{n-1}}{a^n y^{n-1}} \]
Calculus

At \((a, b)\), \[\frac{dy}{dx} = -\frac{b^a}{a^b} \cdot \frac{a^{a-1}}{b^{a-1}} = -\frac{b}{a}\]

\[\therefore\text{ tangent at }(a, b)\text{ is }y - b = -\frac{b}{a}(x - a)\]

\[\Rightarrow \frac{y}{b} - 1 = -\frac{x}{a} + 1 \Rightarrow \frac{x}{a} + \frac{y}{b} = 2\]

This shows that \(\frac{x}{a} + \frac{y}{b} = 2\) touches the given curve for all \(n\).

7. Let the line is normal to the curve at point \(P(x_1, y_1)\) on the curve

\[\Rightarrow Ax_1 + By_1 = 1\] \hspace{1cm} (1)

and \(a^{n-1}y_1 = x_1^n\) \hspace{1cm} (2)

Differentiating \(a^{n-1}y = x^n\) w.r.t. \(x\), we get

\[\frac{dy}{dx} = \frac{nx^{n-1}}{xa^{n-1}} = \frac{ny}{x}\]

Now slope of line = slope of normal to the curve at \(P(x_1, y_1)\)

\[\Rightarrow \frac{A}{B} = -\frac{x_1}{ny_1} \Rightarrow nAy_1 = Bx_1\] \hspace{1cm} (3)

From equations (1) and (3), \(A(nAy_1) + B + By_1 = 1\)

\[(nA^2 + B^2)y_1 = B\] \hspace{1cm} (4)

and \(B(nA^2 + B^2)x_1 = nAB\) \hspace{1cm} (5)

Now substitute the values of \(y_1\) and \(x_1\) from equations (4) and (5), respectively, in equation (2).

Exercise 5.2

1. When \(x = 0, y = -1\)

\[\frac{dy}{dx} = 3x^2 + 6x + 4 \Rightarrow \left|\frac{dy}{dx}\right|_{x=0} = 4\]

\[\Rightarrow \text{ Length of tangent } = \left| \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \right| = \left| -1 \cdot \sqrt{1 + \frac{1}{16}} \right| = \frac{\sqrt{17}}{4}\]

2. Let point of tangency be \((x_1, y_1)\)

\[m = \frac{dy}{dx} \bigg|_{x_1} = \frac{2ax_1}{x_1^2 - a^2}\]

Angle between the curves,

\[\tan \theta = \left|\frac{\log a - \log b}{1 + (\log a)(\log b)}\right|\]

\[\Rightarrow \theta = \tan^{-1}\left(\frac{\log a/b}{1 + \log a\log b}\right)\]
2. The two curves are
 \[xy = a^2 \]
 \[x^2 + y^2 = 2a^2 \]
Solving equations (1) and (2), the points of intersection are \((a, a)\) and \((-a, -a)\).

Diff. equation (1), \(dy/dx = -y/x = m_1\) (say)
Diff. equation (2), \(dy/dx = -x/y = m_2\) (say)
At both points, \(m_1 = -1 = m_2\)
Hence the two curves touch each other.

3. \[\frac{dy}{dx}\bigg|_{x=0} = K^2 \]
 \[\Rightarrow \tan \psi = K^2 \Rightarrow \cot \left(\frac{\pi}{2} - \psi \right) = K^2 \]
 \[\Rightarrow \left(\frac{\pi}{2} - \psi \right) = \cot^{-1} K^2 \]

4. \(ay + x^2 = 7,\) and \(x^3 = y\) cuts orthogonally

Now \(\frac{dy}{dx} = -\frac{2x}{a}\) and \(\frac{dy}{dx} = 3x^2\)
\[\Rightarrow \left[\left(\frac{2x}{a} \right) (3x^2) \right]\bigg|_{(1,1)} = -1 \]
\[\Rightarrow -\frac{2}{a} \times 3 = -1 \Rightarrow a = 6 \]

5. \(C_1: 2x - \frac{2y}{3} \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} \bigg|_{x,y_1} = \frac{3x_1}{y_1} = m_1 \)
\(C_2: 3xy^2 \frac{dy}{dx} + y^3 = 0 \Rightarrow \frac{dy}{dx} \bigg|_{x,y_1} = \frac{-y_1}{3x_1} = m_2 \)
\[\therefore m_1 \cdot m_2 = -1 \Rightarrow C_1 \text{ and } C_2 \text{ are orthogonal} \]

6. On solving, we get \((0, 0); (8, 16)\) and \((8, -16)\)
 For \(\sqrt{2}y = x \sqrt{x}\) or \(\sqrt{2}y = -x \sqrt{x}\)
 \[2y^2 = x^3 \]

\[y = \frac{4\pi}{3} (x + 10)^3 \] where \(x\) is the thickness of ice
Exercise 5.5

1. Let \(x = 3 \) and \(\Delta x = 0.02 \). Then
\[
f(3.02) = f(x + \Delta x) = f(3 + 0.02) = f(3) + f'(x)\Delta x
\]
Now \(f(x + \Delta x) = f(x) + \Delta y = f(x) + f'(x)\Delta x \) (as \(dx = \Delta x \))
\[
\Rightarrow f(3.02) = (3^2 + 5x + 3) + (6x + 5) \Delta x
\]
\[
= (3^2 + 5(3) + 3) + (6(3) + 5)(0.02)
\]
\[
= (27 + 15 + 3) + (18 + 5)(0.02)
\]
\[
= 45.46 = 45.46
\]
Hence, approximate value of \(f(3.02) \) is 45.46.

2. Let \(r \) be the radius of the sphere and \(\Delta r \) be the error in measuring the radius.
Then \(r = 9 \) cm and \(\Delta r = 0.03 \) cm. Now, the volume \(V \) of the sphere is given by
\[
V = \frac{4}{3} \pi r^3
\]
or \(\frac{dV}{dr} = 4\pi r^2 \)
Therefore, \(dV = \left(\frac{dV}{dr} \right) \Delta r = (4\pi r^2) \Delta r \)
\[
= 4\pi (9)^2 (0.03) = 9.72 \text{ cm}^3
\]
Thus, the approximate error in calculating the volume is 9.72 \(\pi \text{ cm}^3 \).

3. Consider function \(y = x^6 \)
Let \(x = 2 \) and \(\Delta x = -0.001 \)
Then \(\Delta y = (x + \Delta x)^6 - x^6 \)
Now \(dy \) is approximately equal to \(\Delta y \) and is given by
\[
\Delta y = \frac{dy}{dx}
\]
\[
\Rightarrow f(1.999) = f(2) - 6 \times 32 \times 0.001
\]
\[
= 64 - 64 \times 0.003 = 63.808 \text{ (approx.)}
\]

4. Let \(y = \cos x \) \(\Rightarrow \frac{dy}{dx} = -\sin x \)
Then \(\Delta y = \cos(x + \Delta x) - \cos x = \cos (60^\circ + \theta) - \cos 60^\circ \)
Now \(dy \) is approximately equal to \(\Delta y \) and is given by
\[
\Delta y = \frac{dy}{dx}
\]
\[
\Rightarrow \frac{\Delta y}{\Delta x} = \frac{-\sqrt{3}}{2} \times \frac{1}{2} = -\frac{\sqrt{3}}{2} \times \frac{x}{60}
\]
\[
\Rightarrow \cos 60^\circ \theta = \frac{1}{2} \times \frac{x}{120}
\]

Exercise 5.6

1. Consider the function \(f(x) = x^3 + 2ax^2 + bx \)
Obviously \(f(x) \) being a polynomial function is continuous in \([0, 1]\) and differentiable in \((0, 1)\).
Also \(f(0) = 0 \). If \(f(1) = 0 \), then all the three conditions of Rolle's theorem will be satisfied.
2. Given \(f(x) = 3x^2 + 5x + 7 \)
\[\Rightarrow f(1) = 3 + 5 + 7 = 15 \]
\[f(3) = 27 + 15 + 7 = 49 \]
Again \(f'(x) = 6x + 5 \).
Here \(a = 1, b = 3 \).

Now from Lagrange's mean value theorem
\[f'(c) = \frac{f(b) - f(a)}{b - a} \]
\[\Rightarrow 6c + 5 = \frac{f(3) - f(1)}{3 - 1} \]
\[\frac{49 - 15}{2} = 17 \text{ or } c = 2 \]

3. As \(f(x) \) and \(g(x) \) are continuous and differentiable in \([0, 2]\), then there exists at least one \(c \) such that
\[\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} \]
\[\Rightarrow g(2) - 1 = 2 \Rightarrow g(2) = 3 \]

4. Let \(f(x) = x^5 - a_0 x^4 + 3a_2 x^3 + 9a_3 x^2 + 2bx + c \)
\[f'(x) = 5x^4 - 4a_0 x^3 + 9a_2 x^2 + 2bx + c \]
\[f''(x) = 20x^3 - 12a_1 x^2 + 18a_2 x + 2b \]
\[f'''(x) = 60x^2 - 24a_2 x + 18a \]

or \(f'''(x) = 6(10x^2 - 4a_2 x + 3a) \)

Now, discriminant \(= 16a_2^2 - 4 \times 10 \times 3a \).
\[D = 8(2a_1^2 - 15a) < 0 \quad \text{[as } 2a_1^2 - 15a < 0 \text{ given]} \]

Hence, the roots of \(f'''(x) = 0 \) cannot be real. Therefore, all the roots of the \(f(x) = 0 \) will not be real.

5. We have to prove \((b^3 - a^3) f'(c) - [f(b) - f(a)] (3c^2) = 0 \)

Let us assume a function
\[F(x) = (b^3 - a^3) f'(x) - [f(b) - f(a)] x^3 \]
which is continuous in \([a, b]\) and differentiable in \((a, b)\) as both \(f(x) \) and \(x \) are continuous.

Also \(F(a) = b^3 f(a) - a^3 f(b) = F(b) \)

So, according to Rolle’s theorem, there exists at least one \(c \in (a, b) \) such that \(F(c) = 0 \), which proves the required result.

6. Let \(f(x) \) is equal to \(\log_x x, x \in [a, b], \) and \(0 < a < b \)

Clearly, \(f(x) \) is continuous and differentiable.

Hence according to LMVT there exists at least one \(c \in (a, b) \) such that
\[f'(c) = \frac{f(b) - f(a)}{b - a} \]
\[\Rightarrow \frac{1}{c} = \frac{\log b - \log a}{b - a} = \frac{\log \left(\frac{b}{a} \right)}{b - a} \]

Hence \(a < c < b \)
\[\Rightarrow \frac{1}{a} < \frac{1}{c} < \frac{1}{b} \]

7. Consider \(\phi(x) = f(x) - g(x) \)
\[\Rightarrow \phi'(x) = f'(x) - g'(x) \]
\(\phi(x) \) is also continuous and derivable in \([x_0, x]\).

Using LMVT for \(\phi(x) \) in \([x_0, x]\)
\[\phi'(x) = \frac{\phi(x) - \phi(x_0)}{x - x_0} \]

Since \(\phi'(x) = f'(x) - g'(x) > 0 \)
\[\Rightarrow \phi'(x) > 0 \]
Hence \(\phi(x) - \phi(x_0) > 0 \)
\[\Rightarrow \phi(x) > \phi(x_0) \]
\[f(x) - g(x) > 0 \]
\[\therefore \phi(x_0) - g(x_0) = 0 \]

8. Since \(f(x) \) and \(g(x) \) are continuous and derivable functions.

Now let \(H(x) = \left| \begin{array}{cc} f(a) & f(b) \\ g(a) & g(b) \end{array} \right| \)

\[\text{then } H(a) = 0 \text{ and } H(b) = \left| \begin{array}{cc} f(a) & f(b) \\ g(a) & g(b) \end{array} \right| \]

So, \(H(x) \) satisfies the condition of mean value theorem
\[\Rightarrow \frac{H(b) - H(a)}{b - a} = H'(c), \text{ where } a < c < b \]

or \(H'(c) = \frac{1}{b - a} \left| \begin{array}{cc} f(a) & f(b) \\ g(a) & g(b) \end{array} \right| \)

From (1),
\[H'(c) = \frac{1}{b - a} \left| \begin{array}{cc} f(a) & f(b) \\ g(a) & g(b) \end{array} \right| \]

\[\Rightarrow H'(c) = \frac{1}{b - a} \left| \begin{array}{cc} f(a) & f(b) \\ g(a) & g'(c) \end{array} \right| \]

From equations (2) and (3), we get
\[\left| \begin{array}{cc} f(a) & f(b) \\ g(a) & g'(c) \end{array} \right| = (b - a) \left| \begin{array}{cc} f(a) & f'(c) \\ g(a) & g'(c) \end{array} \right| \]

Chapter 6

Exercise 6.1

1. \(f(x) = \cos^{-1} x + x \),
 Differentiating w.r.t. \(x \), we get,
\[f'(x) = \frac{-1}{1+x^2} + 1 = \frac{-1 + 1 + x^2}{1 + x^2} = \frac{x^2}{1 + x^2} \]

Clearly, \(f''(x) \geq 0 \) for all \(x \).
So, \(f(x) \) increases in \((-\infty, \infty) \).

b. \(f(x) = \log(1 + x) - \frac{2x}{2 + x} \)

\[f'(x) = \frac{1}{1 + x} - \frac{2(2 + x) - 2x}{(2 + x)^2} \]
\[= \frac{1}{1 + x} - \frac{2x}{(2 + x)^2} \]
\[= \frac{x^2}{(x + 1)(x + 2)^2} \]

Obviously, \(f'(x) > 0 \) for all \(x > -1 \)
Hence, \(f(x) \) is increasing on \((-1, \infty) \).

2.

a. \(f(x) = -2x^3 - 9x^2 - 12x + 1 \)
\[f'(x) = -6x^2 - 18x - 12 \]
\[= -6(x + 2)(x + 1) \]
\[f'(x) > 0 \text{ if } x \in (-2, -1) \]
and \(f'(x) < 0 \text{ if } x \in (-\infty, -2) \cup (-1, \infty) \)
Thus, \(f(x) \) is increasing for \(x \in (-2, -1) \) and
\(f(x) \) is decreasing for \(x \in (-\infty, -2) \cup (-1, \infty) \).

b. Let \(y = f(x) = x^2e^{-x} \)

\[\frac{dy}{dx} = 2xe^{-x} - x^2e^{-x} \]
\[= e^{-x}(2x - x^2) \]
\[= e^{-x}x(2 - x) \]
\(f(x) \) is increasing if \(f'(x) > 0 \Rightarrow x(2 - x) > 0 \Rightarrow x \in (0, 2) \)
\(f(x) \) is decreasing if \(f'(x) < 0 \Rightarrow x(2 - x) < 0 \)
\[\Rightarrow x \in (-\infty, 0) \cup (2, \infty) \]

c. We have, \(f'(x) = \cos x - \sin x \)

\[y = \sin x \]
\[y = \cos x \]
\[x = \pi/4, 3\pi/4 \]
\[x = \pi/3, 2\pi/3 \]

\[f(x) \] is increasing if \(f'(x) > 0 \Rightarrow x > \sin x \)
\[\Rightarrow x \in (0, \pi/4) \cup (5\pi/4, 2\pi) \]
(see the graph)
\(f(x) \) is decreasing if \(f'(x) < 0 \Rightarrow x < \sin x \)
\[\Rightarrow x \in (\pi/4, 5\pi/4) \]

d. Given, \(f(x) = 3\cos^2 x + 10 \cos x + 6 \cos^2 x - 3 \)
\[f'(x) = 12 \cos^2 x (-\sin x) + 30 \cos x (-\sin x) + 12 \cos x (-\sin x) \]
\[= -3 \sin 2x (2 \cos^2 x + 5 \cos x + 2) \]
\[= -3 \sin 2x (2 \cos x + 1) (\cos x + 2) \]
when \(f'(x) = 0 \Rightarrow \sin 2x = 0 \Rightarrow x = 0, \pi/2, \pi \)

\[or \ 2 \cos x + 1 = 0 \Rightarrow x = \frac{2\pi}{3} \]
as \(\cos x + 2 \neq 0 \).
Sign scheme of \(f'(x) \)

\[
\begin{array}{c|c|c}
& \text{or } x = \frac{2\pi}{3} & \\
\hline
\pi/2 & + & \\
\text{or } x = 0, \pi/2, \pi & - & \\
\hline
2\pi/3 & + & \\
\end{array}
\]

Fig. 6.2

So, \(f(x) \) decreases on \(\left(0, \frac{\pi}{2} \right) \cup \left(\frac{2\pi}{3}, \pi \right) \) and increases on \(\left(\frac{\pi}{2}, \frac{2\pi}{3} \right) \).

3. \(f'(x) = \frac{\sin x - x \cos x}{\sin^2 x} = \frac{\cos x (\tan x - x)}{\sin^2 x} \)

\[0 < x \leq 1 \Rightarrow x \in \text{ first quadrant } \Rightarrow \tan x > x, \cos x > 0 \]
\[\Rightarrow f'(x) > 0 \text{ for } 0 < x \leq 1 \]
\[\Rightarrow f(x) \text{ is an increasing function.} \]
\[g'(x) = \frac{\tan x - x \sec^2 x}{\sin^2 x} = \frac{\sin x \cos x - x}{\sin^2 x} = \frac{2x - 2x}{2\sin^2 x} \]

now \(0 < 2x \leq 2 \), for which \(\sin 2x < 2x \)
\[\Rightarrow g'(x) < 0 \]
\[\Rightarrow g(x) < 0 \Rightarrow g(x) \text{ is decreasing.} \]

4. \(x = \frac{1}{1 + t^2} \) and \(y = \frac{1}{t(1 + t^2)} \)

\[\frac{dx}{dt} = 2t, \quad \frac{dy}{dt} = \frac{1 + 3t^2}{(1 + t^2)^2} \]
\[\frac{dy}{dx} = \frac{1 + 3t^2}{2t} \]

\[\frac{dy}{dx} > 0 \text{ if } t > 0 \Rightarrow x = \frac{1}{1 + t^2} \in (0, 1) \]
Hence, \(f(x) \) is an increasing function.

5. If \(f(x) = (a + 2)x^3 - 3ax^2 + 9ax - 1 \) decreases monotonically for all \(x \in R \), then \(f'(x) \leq 0 \) for all \(x \in R \)
\[\Rightarrow a + 2 < 0 \text{ and } 3(a + 2)x^2 - 6ax + 9a \leq 0 \text{ for all } x \in R \]
\[\Rightarrow a + 2 < 0 \text{ and discriminant } \leq 0 \]
\[\Rightarrow a < -2 \text{ and } -8a^2 - 24a \leq 0 \]
\[a < -2 \text{ and } a(a + 3) \geq 0 \]
\[a < -2 \text{ and } a \leq -3 \text{ or } a \geq 0 \]
\[a \leq -3. \]

6. Since \(f(x) = \sqrt{3} \sin x - \cos x + b \) is decreasing for all real values of \(x \), therefore \(f'(x) \leq 0 \) all \(x \).
\[\Rightarrow \sqrt{3} \cos x + \sin x - 2a \leq 0 \text{ for all } x \]
\[\Rightarrow \frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x \leq a \text{ for all } x \]
\[\Rightarrow \sin \left(x + \frac{\pi}{3} \right) \leq a \text{ for all } x \]
\[\Rightarrow a \geq 1 \]
\[\Rightarrow \sin \left(x + \frac{\pi}{3} \right) \leq 1 \]
7. \(f(x) = 2 \log |x-1| - x^2 + 2x + 3 \)

\[f'(x) = \frac{2}{x-1} - 2x + 2 = 2 \left[1 - \frac{(x-1)^2}{x-1} \right] \]

\[= \frac{-2x(x-2)}{x-1} \]

Sign scheme for \(f'(x) < 0 \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty, 0)</th>
<th>(1, 2)</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>(-)</td>
<td>(+)</td>
<td>(-)</td>
</tr>
</tbody>
</table>

\(f'(x) > 0 \) if \(x \in (-\infty, 0) \) or \(x \in (1, 2) \)

\[f(x) \] is increasing in \((-\infty, 0) \cup (1, 2) \)

and decreasing if \(x \in (0, 1) \cup (2, \infty) \)

8. \(g(x) = f(\log x) + f(2 - \log x) \)

\[g'(x) = [f'(\log x) - f'(2 - \log x)]/x \]

\(g(x) \) increases if \(g'(x) > 0 \), now \(x > 0 \)

\[f'(\log x) - f'(2 - \log x) > 0 \]

\[f'(\log x) > f'(2 - \log x) \]

\[\log x < 2 - \log x \] \((f''(x) < 0; f'(x) \) is decreasing \)

\[\log x < 1 \]

\[0 < x < e \]

Exercise 6.2

1. Let \(f(x) = \ln(1+x) - \frac{x}{1+x} \)

\[f'(x) = \frac{1}{(1+x)} - \frac{1+x-x}{(1+x)^2} = \frac{x}{(1+x)^2} > 0 \] \((\because x > 0) \)

\[\Rightarrow f(x) \] is an increasing function.

\[x > 0 \Rightarrow f(x) > f(0) \]

\[\Rightarrow \ln(1+x) - \frac{x}{1+x} > 0 \] \((\because f(0) = 0) \)

\[\Rightarrow \frac{x}{1+x} < \ln(1+x). \]

2. Let \(f(x) = \sin x - x \)

\[f'(x) = \cos x - 1 = -(1 - \cos x) = -2 \sin^2 x/2 < 0 \]

\[\Rightarrow f(x) \] is a decreasing function.

Now \(x > 0 \)

\[\Rightarrow f(x) < f(0) \Rightarrow \sin x - x < 0 \]

\[\Rightarrow \sin x < x \] \(\text{(1)} \)

Now, let \(g(x) = x - \frac{x^3}{6} - \sin x \)

\[g'(x) = 1 - \frac{x^2}{2} - \cos x \]

To find sign of \(g'(x), \) we consider

\[\phi(x) = 1 - \frac{x^2}{2} - \cos x \]

\[\phi'(x) = -x + \sin x < 0 \]

\[\Rightarrow \phi(x) < 0 \]

\[\Rightarrow g'(x) < 0 \]

\[\Rightarrow x > 0 \Rightarrow g(x) < g(0) \]

\[\Rightarrow x - \frac{x^3}{6} - \sin x < 0 \] \(\text{(2)} \)

\[\Rightarrow \frac{x}{6} < \sin x \]

Combining equations (1) and (2), we get

\[x - \frac{x^3}{6} < \sin x < x \]

3. Let \(f(x) = \tan^{-1} x - \frac{3x}{x^2 + 3} \)

\[f'(x) = \frac{1}{1+x^2} - \frac{6x(x^2 + 3) - 3x(x^2 + 9)}{(x^2 + 3)^2} \]

\[= \frac{4x^4}{(1+x^2)(x^2+3)^2} \]

Hence \(f(x) \) is increasing throughout.

Also, \(f(0) = 0 \)

Hence, \(f(x) > 0, \forall x > 0 \)

\[\Rightarrow \tan^{-1} x > \frac{3x}{3+x^3} \]

4. Let \(f(x) = \frac{\sin x}{x} \)

\[f'(x) = \frac{(x \cos x - \sin x)}{x^2} = \frac{\cos x(x - \tan x)}{x^2} \]

To find sign of \(f'(x), \) we consider

\[g(x) = x - \tan x, \quad 0 < x < \frac{\pi}{2} \]

\[g'(x) = 1 - \sec^2 x < 0 \]

\[\Rightarrow g(x) \] is a decreasing function.

\[g(x) < g(0) \]

\[\Rightarrow x - \tan x < 0 \]

\[\Rightarrow f'(x) < 0 \]

\[\Rightarrow f(x) \] is a decreasing function.

Also, \(0 < x < \pi/2 \)

\[f(\pi/2) < f(x) < \lim_{x \to 0} f'(x) \]

\[\Rightarrow \frac{2}{\pi} < \frac{\sin x}{x} < 1 \]

Exercise 6.3

1. \(f(x) = 2x^2 - 3x^2 - 12x + 5 \)

\[f'(x) = 6x - 6x - 12 \]

\[f'(x) = 0 \Rightarrow (x-2)(x+1) = 0 \Rightarrow x = -1, 2 \]

Here, \(f(4) = 128 - 48 + 5 = 37 \)

\[f(-1) = -2 - 3 + 12 + 5 = 12 \]

\[f(2) = 16 - 12 + 24 + 5 = 25 \]

\[f(-2) = -16 - 12 + 24 + 5 = 1 \]

Therefore, the global maximum value of function is 37 at \(x = 4 \) and global minimum value is \(-15 \) at \(x = 2 \).

Hence, range of \(f(x) \) is \([-15, 37]\).

2. \(f(x) = 1 + 2 \sin x + 3 \cos^2 x, 0 \leq x \leq 2\pi/3 \)

\[f'(x) = 2 \cos x - 6 \sin x \cos x \]

\[= 2 \cos x (1 - 3 \sin x) \]

If \(f'(x) = 0 \Rightarrow \cos x = 0 \) or \(1 - 3 \sin x = 0 \)
\[x = \pi/2 \text{ or } \sin x = 1/3 \]

\[f''(x) = -2 \sin \pi x - 6 \cos 2x \]

\[f''\left(\frac{\pi}{2}\right) = -2 \sin \frac{\pi}{2} - 6 \cos \frac{2\pi}{2} = -2 + 6 = 4 > 0 \]

Hence, \(x = \pi/2 \) is a point of minima.

\[f'(\sin^{-1}1/3) = -2(1/3) - 6(1 - 2\pi x/9) = -2/3 - 14/3 < 0 \]

Hence, \(x = \sin^{-1}1/3 \) is a point of maximum.

\[f_{\min} = f\left(\frac{\pi}{2}\right) = 1 + 2 \sin \frac{\pi}{2} + 3 \cos^2 \frac{\pi}{2} = 1 + 2 = 3 \]

\[f_{\max} = f\left(\sin^{-1}1/3\right) = 1 + 2 \left(\frac{1}{3}\right) + 3 \left(1 - \frac{1}{9}\right) = \frac{5}{3} + \frac{8}{9} = \frac{13}{3} \]

3. \(f(x) = \sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x, 0 \leq x \leq \pi \)

\[f'(x) = \cos x + \cos 2x + \cos 3x = 2 \cos 2x \cos x + \cos 2x = 2 \cos (2x + 1) \]

Let \(f'(x) = 0 \)

\[\Rightarrow \cos 2x = 0 \text{ or } 2 \cos x + 1 = 0 \]

\[\Rightarrow 2x = \pi/2, 3\pi/2 \text{ or } 2x = -1/2 \]

\[\Rightarrow x = \pi/4, 3\pi/4 \text{ or } x = 2\pi/3 \]

Sign scheme of \(f'(x) \)

\[
\begin{array}{cccc}
\pi/4 & 2\pi/3 & 3\pi/4 \\
+
\end{array}
\]

Fig. S-6.3

Hence, \(x = \pi/4, 3\pi/4 \) are points of maxima.

\[f\left(\frac{\pi}{4}\right) = \sin \frac{\pi}{4} + \frac{1}{2} \sin \left(\frac{\pi}{2}\right) + \frac{1}{3} \sin \left(\frac{3\pi}{4}\right) \]

\[= \frac{1}{\sqrt{2}} + 1 + 1 = \frac{4}{\sqrt{2}} + \frac{1}{2} = \frac{4\sqrt{2} + 3}{6} \]

\[f\left(\frac{3\pi}{4}\right) = \sin \frac{3\pi}{4} + \frac{1}{2} \sin \left(\frac{3\pi}{2}\right) + \frac{1}{3} \sin \left(\frac{9\pi}{4}\right) \]

\[= \frac{1}{\sqrt{2}} + 1 + 1 = \frac{4\sqrt{2} - 3}{6} \]

\[f\left(\frac{2\pi}{3}\right) = \sin^2 \frac{2\pi}{3} + \frac{1}{2} \sin \frac{4\pi}{3} + \frac{1}{3} \sin \frac{9\pi}{3} = \frac{3}{2} - \frac{3}{4} \]

\[= \frac{\sqrt{3}}{4} \]

Thus \(x = \pi/4 \) is the point of global maxima.

\[x = \frac{3\pi}{4} \] is the point of local maxima

\[x = \frac{2\pi}{3} \] is the point of local minima.

4. \(f(\theta) = \sin^p \theta \cos^q \theta, p, q > 0, 0 < \theta < \pi/2 \)

\[f'(\theta) = p \sin^{p-1} \theta \cos^q \theta - q \cos^{p-1} \theta \sin^p \theta \]

\[= p \sin^{p-1} \theta \cos^q \theta - q \cos^{p-1} \theta \sin^p \theta \]

Let \(f'(\theta) = 0 \)

\[\Rightarrow \sin \theta = 0 \text{ or } \cos \theta = 0 \text{ (not possible)} \]

or \(p \cos^2 \theta - q \sin^2 \theta = 0 \Rightarrow \tan^2 \theta = p/q \Rightarrow \tan \theta = \sqrt{\frac{p}{q}} \]

\[\tan \theta \neq -\sqrt{\frac{p}{q}}, \text{ as } 0 < \theta < \pi/2 \]

Check for extremum

When \(\theta = 0, f'(\theta) \to 0 \) (as \(\sin \theta \to 0 \))

When \(\theta = \pi/2, f'(\theta) \to 0 \) (as \(\cos \theta \to 0 \))

also, for \(\theta \in (0, \pi/2), f'(\theta) \) is + ve

Hence, the only point of extremum is point of maxima.

\[\Rightarrow \theta = \tan^{-1}\left(\frac{p}{q}\right) \text{ is point of maxima} \]

\[\text{when } \tan \theta = \left(\frac{p}{q}\right), \cos \theta = \frac{\sqrt{p}}{\sqrt{p+q}} \text{ and } \sin \theta = \frac{\sqrt{q}}{\sqrt{p+q}} \]

Hence, maximum value \(f_{\max} = \left(\frac{\sqrt{q}}{\sqrt{p+q}}\right)^p \left(\frac{\sqrt{p}}{\sqrt{p+q}}\right)^q \)

\[= \left(\frac{p}{p+q}\right)^{p+q} \]

5. \(f(x) = \log_e(3x^4 - 2x^3 - 6x^2 + 6x + 1), x \in (0, 2) \)

\[f'(x) = \frac{12x^3 - 6x^2 - 12x + 6}{(3x^4 - 2x^3 - 6x^2 + 6x + 1)} \]

\[= \frac{6(2x^3 - x^2 - 2x + 1)}{(3x^4 - 2x^3 - 6x^2 + 6x + 1)} \]

\[= \frac{6(x^2 - 1)(2x - 1)}{(3x^4 - 2x^3 - 6x^2 + 6x + 1)} \]

Sign scheme of \(f'(x) \)

\[
\begin{array}{cccc}
-1 & + & 1/2 & + \\
+ & + & + & + \\
- & 1/2 & + & + \\
\end{array}
\]

Fig. S-6.4

But \(x \in (0, 2) \)

Hence, \(x = 1/2 \) is point of maxima,

\[x = 1 \] is point of minima.

Hence, \(f_{\min} = f(1) = \ln 2 \)

and \(f_{\max} = f(1/2) = \ln(39/16) \).

6. \(f(x) = -\sin^3 x + 3 \sin^2 x + 5 \)

\[\Rightarrow f'(x) = -3 \cos x \sin^2 x + 6 \sin x \cos x = -3 \sin x \cos x (\sin x - 2) \]

Now, \(\sin x - 2 < 0 \forall x \in \left[0, \frac{\pi}{2}\right] \)

\[\sin x, \cos x \geq 0 \forall x \in R \]

\[\Rightarrow f'(x) \geq 0 \forall x \in R \]

\[\Rightarrow f(x) \text{ is a strictly increasing function } \forall x \in \left[0, \frac{\pi}{2}\right] \]

Hence, \(f(x) \) is minimum when \(x = 0 \)

and maximum when \(x = \pi/2 \).

\[f_{\min} = f(0) = 5 \]

\[f_{\max} = f(\pi/2) = 7 \]

7. \(f(x) = \frac{1}{3} \left(x + \frac{1}{x} \right) \)

\[\Rightarrow f'(x) = 1 - \frac{1}{x^2} \]

Let \(f'(x) = 0 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1 \)
Also, \(f''(x) = \frac{2}{3}x^3\) \(\Rightarrow f''(1) > 0\) and \(f''(-1) < 0\)

\(\Rightarrow x = 1\) is point of minima and \(x = -1\) is point of maxima.

Here, \(f(1) = \frac{2}{3}\) and \(f(-1) = -\frac{2}{3}\).

![Graph of f(x) with critical points marked](image)

Fig. S-6.5

Thus, local maximum value is less than local minimum value.

8. \(f(x) = x(x^2 - 4)^{-1/3}\)

\[f'(x) = (x^2 - 4)^{-1/3} - \frac{1}{3}(x^2 - 4)^{-4/3}(2x)\] \(x\).

\[= \frac{1}{(x^2 - 4)^{1/3}} \cdot \frac{2x^2}{3(x^2 - 4)^{4/3}}\]

\[= \frac{3(x^2 - 4) - 2x^2}{3(x^2 - 4)^{4/3}}\]

\[= \frac{(x^2 - 12)}{3(x^2 - 4)^{4/3}}\]

Sign scheme of \(f'(x)\)

![Sign scheme of f'(x)](image)

Fig. S-6.6

\(\Rightarrow x = 2\sqrt{3}\) is point of minima and \(x = -2\sqrt{3}\) is point of maxima.

\[f_{\text{max}} = f(-2\sqrt{3}) = (-2\sqrt{3})(12 - 4)^{-1/3} = -\frac{2\sqrt{3}}{2} = -\sqrt{3}\]

\[f_{\text{min}} = f(2\sqrt{3}) = (2\sqrt{3})(12 - 4)^{-1/3} = \sqrt{3}\]

Here, maximum value is less than minimum value.

This is because \(f(x)\) is discontinuous at \(x = \pm 2\).

Since \(f(x)\) is unbounded function both the extreme values are local.

9. For \(x < 1\), \(f'(x) = 3x^2 - 2x + 10 > 0\)

\(\Rightarrow f(x)\) is an increasing function for \(x < 1\)

For \(x > 1\), \(f'(x) = -2\).

\(\Rightarrow f(x)\) is a decreasing function for \(x > 1\). Now \(f(x)\) will have greatest value at \(x = 1\).

If \(\lim_{x \to 0^+} f(x) = f(1)\)

10. \(f(x) = \begin{cases} \tan^{-1} x - 5x^2, & 0 < x < 1 \\ -6x, & x \geq 1 \end{cases}\)

\(f(1) = -6\)

For maximum at \(x = 1\)

\[\lim_{x \to 1} f(x) = \tan^{-1} x - 5 < -6\]

\(\Rightarrow \tan^{-1} x < -1 \Rightarrow \alpha < -\tan 1\)

11. Clearly from the graph give in Fig S-6.7 \(x = \sqrt{2}\) is point of minima

\(x = \sqrt{3}\) is not a point of extremum

\(x = 2\sqrt{3}\) is also not a point of extremum

\(x = 0\) is point of maxima

![Graph of f(x) with points marked](image)

Fig. S-6.7

12. \(f(x) = |x| + |x + \frac{1}{2}| + |x - 3| + |x - \frac{5}{2}|\)

\[y = -4x + 5\]

\[y = -2x + 6\]

\([0, 6, y = 6]\\ y = 2x + 1\]

![Graph of f(x) with lines marked](image)

Fig. S-6.8

From the graph, minimum value is 6.

13. \(f(0) = 1\)

\(f(0^+) = \lim_{x \to 0^+} (x^2 - x + 1) \to 1^-\) as \(x^2 - x + 1\) is decreasing for \((-\infty, 1/2)\)

\(f(0^-) = \lim_{x \to 0^-} (1 + \sin x) \to 1^-\)

Thus, \(f(0^+) < f(0^-)\) and \(f(0) > f(0^-)\).

Then at \(x = 0\), \(f(x)\) is the point of maxima.

14. \(f(x) = x^{2/3} - \frac{4x}{3}\)

\(f'(x) = (2/3)x^{-1/3} - (4/3)x^{1/3}\)
2 \left(1 - 2x^{2/3}\right) \\
3 x^{1/3}

Critical points, \(f'(x) = 0 \) at \(x = \pm \frac{1}{\sqrt{2}} \)

Also \(f'(x) \) does not exist at \(x = 0 \).
As \(f(x) \) is continuous at \(x = 0 \) so it is also a critical point.
Sign scheme of \(f''(x) \)

\[
\begin{array}{c|cc|c|c|c}
& + & - & + & - \\
2/\sqrt{2} & 0 & 1 & 2/\sqrt{2}
\end{array}
\]

Thus \(x = 0 \) is point of minima and \(x = \pm \frac{1}{\sqrt{2}} \) are points of maxima

Also range of \(f(x) \) is \([-\infty, f\left(\pm \frac{1}{\sqrt{2}}\right)] \)

15. \(f(x) = \frac{x^2 + ax + b}{x - 10} \), has a stationary point at \((4, 1)\) so it must lie on the curve.

\[16 + 4 + b = -6 \quad \text{(1)}\]

Also \(\left(\frac{dy}{dx}\right)_{(x=4)} = 0 \)

\[\frac{\left(x^2 - 20x - 10a - b\right)}{(x-10)^2} = 0 \quad \text{(2)}\]

\[10a + b = -64 \]

From (1) and (2) we have \(a = -7, b = 6 \)

Also for these values of \(x \),

\[y = \frac{x^2 - 7x + 6}{x - 10} \quad \text{(3)}\]

\[\frac{dy}{dx} = \frac{(x-4)(x-16)}{(x-10)^2}\]

From \(x = 4 - h \) to \(x = 4 + h \), \(\frac{dy}{dx} \) changes its sign from +ve to -ve.
Hence \(x = 4 \) is point of maxima.

Exercise 6.4

1. Let the additional number of subscribers be \(x \), so the number of subscribers becomes \(725 + x \), and then the profit per subscriber is Rs \((12 - x/100)\).
If \(P \) is the total profit in Rs, then

\[
P = (725 + x)\left(12 - \frac{x}{100}\right) = \frac{x^2}{100} + \frac{19}{4}x + 8700 = \frac{1}{100}\left[870000 - \left(\frac{475}{2}\right)^2 - \left(x - \frac{475}{2}\right)^2\right]
\]

\(P \) is maximum (greatest) when \(x - 475/2 = 0 \)
i.e., \(x = 237.5 \). But \(x \) is +ve integer, so \(x \) can be taken as 237 or 238.
Since \(P(237) = P(238) \), for maximum profit, total number of subscribers should be \(725 + 237 = 962 \)
or \(725 + 238 = 963 \).

Fig. S-6.9

\[h = a \sin \alpha \text{ and } x = a \cos \alpha; x^2 + h^2 = a^2\]

\[V = \frac{1}{3} y^2 h = \frac{1}{3} 2x^2 h \quad \text{(note: } 4x^2 = 2y^2 \Rightarrow y^2 = 2x^2)\]

\[V(\alpha) = \frac{2}{3} a^2 \cos \alpha \sin \alpha = \frac{2}{3} a^2 \sin \alpha \cos^2 \alpha\]

now \(V'(\alpha) = 0 \Rightarrow \tan \alpha = \frac{1}{\sqrt{2}} \); \(V_{\text{max}} = \frac{4\sqrt{3}a^3}{27} \)

3. Equation of the curve is \(y = x^2 + 1 \).
Tangent at \(P(a, b) \) is \(y - b = 2a(x - a) \)
i.e., \(y - (a^2 + 1) = 2a(x - a) \)
\[x = 0 \Rightarrow y = 1 - a^2 \] which is positive for \(0 < a < 1 \) and \(x = 1 \Rightarrow y = 1 + 2a - a^2 \)

Fig. S-6.10

\[OC = 1 - a^2 \text{ and } AB = 1 + 2a - a^2\]
Z = area of trapezium OABC

\[Z = \frac{1}{2} (OC + AB)OA = 1 + a - a^2, \quad 0 < a < 1 \]

\[\frac{dZ}{da} = [1 - 2a] = 0 \Rightarrow a = 1/2 \]

and \(\frac{d^2Z}{da^2} = -4 < 0 \)

\[\therefore \text{at} \ a = 1/2, \text{area of trapezium is maximum (greatest).} \]

Thus, the required point is \((1/2, 5/4)\).

4. Let \(AD = x \) be the height of the cone \(ABC \) inscribed in a sphere of radius \(a \).

\[\therefore OD = x - a \]

![Fig S-6.11](image)

Then radius of its base \(r = CD = \sqrt{(OC^2 - OD^2)} \)

\[= \sqrt{a^2 - (x - a)^2} = \sqrt{2ax - x^2} \]

\[\Rightarrow \text{Volume} \ V \ of \ the \ cone \ is \ given \ by \]

\[V = \frac{1}{3} \pi r^2 x = \frac{1}{3} \pi (2ax - x^2)x = \frac{1}{3} \pi (2ax^2 - x^3) \]

\[\Rightarrow \frac{dV}{dx} = \frac{1}{3} \pi (4ax - 3x^2) \quad \text{and} \quad \frac{d^2V}{dx^2} = \frac{1}{3} \pi (4a - 6x) \]

For max. or min. of \(V, \frac{dV}{dx} = 0 \Rightarrow x = 4a/3 \ (\because x \neq 0) \)

For this value of \(x, \frac{d^2V}{dx^2} = -(4\pi a / 3) = (-\text{ve}) \)

\[\Rightarrow V \text{ is max. (i.e., greatest)] when } x = 4a/3 = (2/3)(2a), \text{i.e., when the height of cone is } (2/3) \text{rd of the diameter of sphere.} \]

5. Here,

\[f(x) = e^x \cos x \]

\[\Rightarrow f'(x) = e^x \cos x - e^x \sin x \]

where, \(f'(x) \) is slope of tangent (i.e., to be minimised)

So let \(f'(x) = g(x) \)

\[\therefore g(x) = e^x \cos x - e^x \sin x \]

\[\Rightarrow g'(x) = e^x \{\cos x - \sin x\} + e^x \{-\sin x - \cos x\} \]

\[= e^x \{-2 \sin x\} \]

which is +ve when \(x \in [\pi, 2\pi] \) and

-ve when \(x \in [0, \pi] \)

i.e., \(g(x) \) is decreasing in \((0, \pi)\) and \(g(x) \) is increasing in \((\pi, 2\pi)\)

So, at \(x = \pi \). Slope of tangent of the function \(f(x) \) attains minima.

6. Let \(C \) be the centre of the circular plot of lawn of with a diameter of 100 m.

\[\text{i.e.,} \quad CA = CB = 50 \text{ m.} \]

![Fig S-6.12](image)

And let \(O \) be the position of light which is directly above \(C \). Also let

\[\angle OAC = \theta, (0 < \theta < \pi/2) \]

Then accordingly to the question, the intensity \(I \) of the light at the circumcentre of the plot is given by

\[I = \frac{k \sin \theta}{(OA)^2} = \frac{k \sin \theta}{(50\sec \theta)^2} \]

or \(I = \frac{k}{(2500)^2} \sin \theta \cos^2 \theta \)

\[\therefore \quad \frac{dI}{d\theta} = \frac{k}{(2500)^2} \cos \theta \cos^2 \theta \cos \theta - \sin \theta \cos \theta \sin \theta \]

For max. or min. of \(I, \frac{dI}{d\theta} = 0, \tan \theta = 1/\sqrt{2} \)

Now we have

\[\frac{d^2I}{d\theta^2} = \frac{k}{(2500)^2} (-\sin \theta \cos^2 \theta + 2 \sin^3 \theta) \]

\[= (k/2500) \sin \theta \cos^2 \theta (-7 + 2 \tan^2 \theta) \]

When \(\tan \theta = 1/\sqrt{2} , \frac{d^2I}{d\theta^2} \) is -ve

Hence, \(I \) is maximum when \(\tan \theta = 1/\sqrt{2} \)

which is the only point of extrema so gives the greatest intensity.

\[\therefore \text{The required height of the light} \]

\[\quad = OC = AC \tan \theta = 50/\sqrt{2} = 25 \sqrt{2} \text{ m.} \]

Chapter 7

Exercise 7.1

1. \(\int (\sec x + \tan x)^2 \, dx \)

 \[= \int \left(\sec^2 x + \tan^2 x + 2 \sec x \tan x \right) \, dx \]

 \[= \int \left(2 \sec^2 x - \tan x + 2 \right) \, dx \]

 \[= 2 \sec x + 2 \tan x + C \]

2. \(\int (1 - \cos x) \csc^2 x \, dx \)
\[
\begin{align*}
3. \quad I &= \int a^x b^x \, dx \\
&= \int (a^{m}b^{n})^{x} \, dx \\
&= \frac{(a^{m}b^{n})^{x}}{\log(a^{m}b^{n})} + C
\end{align*}
\]

4. \[
\begin{align*}
I &= \int \frac{\tan x}{(\sec x + \tan x)} \, dx \\
&= \int \frac{\tan x (\sec x - \tan x)}{(\sec x + \tan x)(\sec x - \tan x)} \, dx \\
&= \int \frac{\tan x (\sec x - \tan x)}{(\sec^2 x - \tan^2 x)} \, dx \\
&= \int (\sec x \tan x - \tan^2 x) \, dx \\
&= \int \sec x \tan x \, dx - \int (\sec^2 x - 1) \, dx \\
&= \sec x - \tan x + x + C
\end{align*}
\]

5. \[
\begin{align*}
I &= \int \frac{x^4}{x + x^5} \, dx \\
&= \int \frac{(x^4 + 1)}{x + x^5} - \int \frac{dx}{x + x^5} \\
&= \int \frac{(x^4 + 1)}{x + x^5} - \int \frac{dx}{x(x^4 + 1)} \\
&= \frac{dx}{x} - \int \frac{dx}{x + x^5} \\
&= \log x - f(x) + C \\
&= \log x - f(x) + C
\end{align*}
\]

6. \[
\begin{align*}
\int \frac{(x^3 + 8)(x - 1)}{x^2 - 2x + 4} \, dx &= \int \frac{(x^3 + 2^3)(x - 1)}{x^2 - 2x + 4} \, dx \\
&= \int \frac{(x + 2)(x^2 - 2x + 4)(x - 1)}{x^2 - 2x + 4} \, dx \\
&= \int (x + 2)(x - 1) \, dx = \int (x^2 + x - 2) \, dx \\
&= \int x^2 \, dx - \int x^0 \, dx = \frac{x^3}{3} + \frac{x^2}{2} - 2x + C
\end{align*}
\]

7. \[
\begin{align*}
\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} \, dx &= \int \frac{\sin^3 x}{\sin^2 x \cos^2 x} \, dx + \int \frac{\cos^3 x}{\sin^2 x \cos^2 x} \, dx \\
&= \int \frac{\sin x}{\cos x} \, dx + \int \frac{\cos x}{\sin x} \, dx \\
&= \int \tan x \sec x \, dx + \int \cot x \cosec x \, dx = \sec x - \cosec x + C
\end{align*}
\]

8. \[
\begin{align*}
\int \tan^{-1}(\sec x + \tan x) \, dx &= \int \tan^{-1} \left(1 + \frac{\sin x}{\cos x}\right) \, dx \\
&= \int \tan^{-1} \left(1 + \frac{\sin \left(\frac{\pi}{2} + x\right)}{\cos \left(\frac{\pi}{2} + x\right)}\right) \, dx \\
&= \int \tan^{-1} \left(1 - \frac{\sin \left(\frac{\pi}{2} - x\right)}{\cos \left(\frac{\pi}{2} - x\right)}\right) \, dx \\
&= \int \tan^{-1} \left(1 - \frac{\sin \left(\frac{\pi}{2} - x\right)}{\cos \left(\frac{\pi}{2} - x\right)}\right) \, dx \\
&= \int \tan^{-1} \left(\frac{2 \sin^2 \left(\frac{\pi}{4} + x\right)}{2 \sin \left(\frac{\pi}{4} + x\right) \cos \left(\frac{\pi}{4} + x\right)}\right) \, dx \\
&= \int \tan^{-1} \left(\tan \left(\frac{\pi}{4} + x\right)\right) \, dx \\
&= \int \frac{\pi}{4} + x \, dx = \frac{\pi}{4} \ln 2 + \frac{1}{2} \int x \, dx = \frac{\pi}{4} x + \frac{x^2}{4} + C
\end{align*}
\]

Exercise 7.2

1. \[
\begin{align*}
\int \frac{dx}{\sqrt{2ax-x^2}} &= \int \frac{dx}{\sqrt{a^2-(x-a)^2}} \\
&= \sin^{-1} \left(\frac{x-a}{a}\right) + C
\end{align*}
\]
6. Let \(I = \int \frac{\sin 2x}{(a + b \cos x)^2} \, dx = \int \frac{2 \sin x \cos x}{(a + b \cos x)^2} \, dx \).

Putting \(a + b \cos x = t \), then \(-b \sin x \, dx = dt \)

\[
I = -\frac{2}{b} \int \frac{1}{t} \left(\frac{t-a}{b} \right) \, dt
\]

\[
= -\frac{2}{b^2} \int \left(\frac{1}{t} - \frac{a}{t^2} \right) \, dt
= -\frac{2}{b^2} \left[\log t + \frac{a}{t} \right] + C
\]

\[
= -\frac{2}{b^2} \left[\log |a + b \cos x| + \frac{a}{a + b \cos x} \right] + C
\]

7. \(I = \int \sin x \cos x \cos 2x \cos 4x \cos 8x \, dx \)

\[
= \frac{1}{2} \int \sin 2x \cos 2x \cos 4x \cos 8x \, dx
\]

\[
= \frac{1}{4} \int \sin 4x \cos 4x \cos 8x \, dx = \frac{1}{8} \int \sin 8x \cos 8x \, dx
\]

\[
= \frac{1}{16} \int \sin 16x \, dx = -\frac{1}{256} \cos 16x + C
\]

8. \(\int \frac{(1 + \ln x)^5}{x} \, dx = \int (1 + \ln x)^5 \, d(1 + \ln x) \)

\[
= \frac{1}{6} (1 + \ln x)^6 + C
\]

9. \(\int \frac{\cos 2x - \cos 20}{\cos x - \cos \theta} \, d\theta = \int \frac{2 \cos^2 x - 1 - (2 \cos^2 \theta - 1)}{\cos x - \cos \theta} \, d\theta \)

\[
= 2 \int \cos^2 x \cos^2 \theta \, d\theta
\]

\[
= 2 \int (\cos x + \cos \theta) \, d\theta
\]

\[
= 2 \cos x + 2 \cos \theta + C
\]

10. \(\frac{x^3}{x+1} = \frac{x^3 + 1 - 1}{x+1} = \frac{1}{x+1} + (x^2 + 1 - x) \)

Thus the given integral is,

\[
\int \left(x^2 + 1 - x - \frac{1}{x+1} \right) \, dx = \frac{x^3}{3} + x - \frac{x^2}{2} - \ln |x+1| + C
\]

11. \(\int \frac{dx}{\sqrt{x} + \sqrt{x-2}} \)
40. Calculus

\[
\int \frac{(\sqrt{x} - \sqrt{x-2})}{x-(x-2)} \, dx
\]
(rationalizing)

\[
= \frac{1}{2} \int (\sqrt{x} - \sqrt{x-2}) \, dx
\]

\[
= \frac{1}{3} \left\{ x^{3/2} - (x-2)^{3/2} \right\} + C
\]

12. \(I = \int \left(\frac{1}{x} + 2x + 3x^2 + 4x^3 + \ldots \right) \, dx \)

\[
= \int (1-x)^{-2} \, dx
\]

\[
= (1-x)^{-1} + C
\]

13. \(I = \int \frac{\ln(x)}{x \ln x} \, dx \), let \(t = \ln(x) \)

\[
\Rightarrow \quad \frac{dt}{dx} = \frac{1}{\ln x} \cdot \frac{1}{x}
\]

\[
\Rightarrow \quad I = \int t \, dt = \frac{1}{2} t^2 + C = \frac{1}{2} [\ln(x)]^2 + C
\]

14. \(I = \int \frac{dx}{x + x \log x} \)

\[
= \int \frac{1}{x} \, dx
\]

\[
= \int (1 + \log x) \, dx
\]

\[
= \log(1 + \log x) + C
\]

15. Put \(\sec x = t \Rightarrow \sec x \tan x \, dx = dt \), therefore

\[
\int \sec^p x \tan x \, dx = \int t^{p-1} \, dt = \frac{t^p}{p} + C = \frac{\sec^p x}{p} + C
\]

16. \(I = \int \frac{\sin^6 x}{\cos^8 x} \, dx \)

\[
= \int \frac{\sin^6 x}{\cos^8 x} \cdot \frac{1}{\cos^2 x} \, dx
\]

\[
= \int \tan^6 x \sec^2 x \, dx
\]

\[
= \frac{\tan^7 x}{7} + C
\]

17. Let \(z = \tan x \) then \(dz = (\sec^2 z - 1) \, dx = \tan^2 x \, dx \)

Now, \(\int (\tan x - x) \tan^2 x \, dx = \int z^2 \, dz = \frac{z^3}{3} + C = \frac{(\tan x - x)^2}{2} + C \)

Exercise 7.3

1. \(I = \int \frac{dx}{(1 + \sin x)^{1/2}} = \int \frac{dx}{\cos \frac{x}{2} + \sin \frac{x}{2}} \)

\[
= \frac{1}{\sqrt{2}} \int \frac{dx}{\sin \left(\frac{x}{2} + \frac{\pi}{4} \right)}
\]

\[
= \frac{1}{\sqrt{2}} \log \left(\tan \left(\frac{x}{4} + \frac{\pi}{8} \right) \right) + C
\]

2. \(I = \int \frac{dx}{\cos x - \sin x} \)

\[
= \frac{1}{\sqrt{2}} \int \frac{dx}{\cos x - \sin x} \cdot \frac{1}{\sqrt{2}}
\]

\[
= \frac{1}{\sqrt{2}} \int \frac{dx}{\sin \left(\frac{\pi}{4} - x \right)}
\]

\[
= \frac{1}{\sqrt{2}} \log \left(\tan \left(\frac{x}{4} \right) \right) + C
\]

3. \(I = \int \frac{\sin x}{\sin (x-a)} \, dx \)

\[
= \int \frac{\sin (x-a) + \cos (x-a) \sin a}{\sin (x-a)} \, dx
\]

\[
= \cos a \int dx + \sin a \int \frac{\cos (x-a)}{\sin (x-a)} \, dx
\]
4. \(I = \int \tan^3 x \, dx \)

\[
= \int \tan^2 x \tan x \, dx \\
= \int (\sec^2 x - 1) \tan x \, dx \\
\Rightarrow \quad I = \int \tan x \sec^2 x \, dx - \int \tan x \, dx \\
\Rightarrow \quad I = I_1 - \log |\sec x| + C, \text{ where } I_1 = \int \tan x \sec^2 x \, dx \\
\text{Putting } \tan x = t \text{ and } \sec^2 x \, dx = dt \text{ in } I_1, \\
\text{we get } I_1 = \int t \, dt = \frac{t^2}{2} = \frac{1}{2} \tan^2 x + C \\
\text{Hence, } I = \frac{1}{2} \tan^2 x - \log |\sec x| + C.
\]

Exercise 7.4

1. \(\int \frac{x^2 \tan^{-1} x^3}{1 + x^6} \, dx \)

\[
= \frac{1}{3} \int \tan^{-1} x^3 \frac{3x^2}{1 + x^6} \, dx \\
= \frac{1}{3} \int \tan^{-1} x^3 (\tan^{-1} x^3)' \, dx \\
= \frac{1}{6} (\tan^{-1} x^3)^2 + C.
\]

2. Put \(x = t^2 \Rightarrow dx = 2t \, dt \)

\[
\Rightarrow \quad \int \frac{\sqrt{x} \, dx}{1 + x} \\
= 2 \int \frac{t^2 \, dt}{1 + t^2} \\
= 2 \left[-t \right] dt \\
= 2(t - \tan^{-1} t) + C \\
= 2\sqrt{x} - 2 \tan^{-1} \sqrt{x} + C.
\]

3. \(\int \cot \frac{x}{\sqrt{\sin x}} \, dx = \int \frac{\cos x}{(\sin x)^{3/2}} \, dx \)

\[
= \int \frac{dz}{z^{3/2}}, \text{ where } z = \sin x \\
= \frac{z^{-1/2}}{1/2} + C = \frac{2}{\sqrt{z}} + C.
\]

4. \(I = \int \frac{dx}{x + \sqrt{x}} = \int \frac{dx}{\sqrt{x}(\sqrt{x} + 1)} \)

\[
\Rightarrow \quad I = \int \frac{2 \, dx}{z + 1} \\
= 2 \log |z + 1| + C \\
= 2 \log \left(\sqrt{x} + 1 \right) + C.
\]

5. \(\int \frac{dx}{9 + 16 \sin^2 x} \)

\[
= \int \frac{dx}{9 \cos^2 x + 25 \sin^2 x} = \int \frac{sec^2 x \, dx}{9 + 25 \tan^2 x} \\
= \int \frac{dz}{9 + 25 z^2} = \frac{1}{25} \int \frac{dz}{z^2 + \left(\frac{3}{5} \right)^2} \\
= \frac{1}{25} \times \frac{1}{3/5} \tan^{-1} \left(\frac{z}{3/5} \right) + C \\
= \frac{1}{15} \tan^{-1} \frac{5z}{3} + C = \frac{1}{15} \tan^{-1} \frac{5 \tan x}{3} + C.
\]

6. \(\int \frac{e^{2x} - 2e^x}{e^{2x} + 1} \, dx \)

\[
= \frac{1}{2} \int \frac{2e^{2x}}{e^{2x} + 1} \, dx - 2 \int \frac{e^x \, dx}{(e^x)^2 + 1} \\
= \frac{1}{2} \log (e^{2x} + 1) - 2 \int \frac{dx}{z^2 + 1}, \text{ where } z = e^x \\
= \frac{1}{2} \log (e^{2x} + 1) - 2 \tan^{-1} (e^x) + C.
\]

7. \(I = \int \frac{ax^3 + bx}{x^4 + c^2} \, dx \)

\[
= \int \left[\frac{ax^3}{x^4 + c^2} + \frac{bx}{x^4 + c^2} \right] \, dx \\
= a \int \frac{4x^3 \, dx}{x^4 + c^2} + b \int \frac{2x}{x^4 + c^2} \, dx \\
= \frac{a}{4} \log (x^4 + c^2) + \frac{b}{2} \int \frac{dt}{t^2 + c^2} \quad \text{(in } t^2 \text{ put } x^2 = t).
Calculus

8. \[I = \int \frac{dx}{x^{2/3}(1+x^{2/3})} \]

Let \(t^3 = x \), \(dt = 3t^2 \, dt \)

\[\Rightarrow \quad I = \int \frac{3t^2 \, dt}{t^2(1+t^2)} = 3 \int \frac{dt}{1+t^2} = 3 \tan^{-1}(t) + C = 3 \tan^{-1}(x^{1/3}) + C \]

9. \[\int e^{\log x}(x^4+1)^{-1} \, dx = \int e^{\log x^4} \frac{dx}{x^4+1} \]

\[= \int e^{x^4} \frac{4x^3 \, dx}{x^4+1} = \frac{1}{4} \int 4x^3 \, dx = \frac{1}{4} \log(x^4+1) + C \]

10. \[\int \frac{\sec x \, dx}{\sqrt{\cos 2x}} = \int \frac{\sec x}{\sqrt{\cos^2 x - \sin^2 x}} \, dx \]

\[= \int \frac{\sec^2 x \, dx}{\sqrt{1 - \tan^2 x}} = \sec^{-1}(\tan x) + C \]

11. [Here power of \(\sin x \) is odd positive integer, therefore, put \(z = \cos x \).]

Let \(z = \cos x \), then \(dz = -\sin x \, dx \)

Now \(\int \sin^3 x \cos^2 x \, dx = \int \sin^2 x \cos^2 x \sin x \, dx \)

\[= \int (1-\cos^2 x) \cos^2 x \sin x \, dx \]

\[= \int (1-z^2)z^2 (-dz) = -\int (z^2 - z^4) \, dz \]

\[= -\left(\frac{z^3}{3} - \frac{z^5}{5} \right) + C = -\cos^3 x + C \frac{\cos^5 x}{5} + C \]

Exercise 7.5

1. \[\int \frac{1}{2x^2 + x - 1} \, dx \]

\[= \frac{1}{2} \int \frac{1}{x^2 + \frac{x}{2} - \frac{1}{2}} \, dx \]

\[= \frac{1}{2} \int \frac{1}{x^2 + x - 1} \, dx \]

\[= \frac{1}{2} \int \frac{1}{(x + 1/4)^2 - (3/4)^2} \, dx \]

\[= \frac{1}{2} \times \frac{1}{2 \left(\frac{3}{4} \right)^2} \log \frac{x + 1/4 - 3/4}{x + 1/4 + 3/4} + C \]

\[= \frac{1}{3} \log \left| \frac{x - 1/2}{x + 1} \right| + C = \frac{1}{3} \log \left(\frac{2x - 1}{2(x + 1)} \right) + C \]

2. \[\int \frac{x}{x^4 + x^2 + 1} \, dx = \int \frac{x}{(x^2)^2 + x^2 + 1} \, dx \]

Let \(x^2 = t \Rightarrow 2x \, dx = dt \Rightarrow dx = \frac{dt}{2x} \)

\[\Rightarrow \quad I = \int \frac{x}{t^2 + t + 1} \frac{dt}{2x} = \frac{1}{2} \int \frac{1}{t^2 + t + 1} \, dt \]

\[= \frac{1}{2} \int \frac{1}{\left(t + \frac{1}{2} \right)^2 + \left(\frac{\sqrt{3}}{2} \right)^2} \, dt \]

\[= \frac{1}{2} \times \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{t + \frac{1}{2}}{\sqrt{3} / 2} \right) + C \]

\[= \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2t + 1}{\sqrt{3}} \right) + C \]

\[= \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2x^2 + 1}{\sqrt{3}} \right) + C \]

3. \[I = \int \frac{4x + 1}{x^2 + 3x + 2} \, dx \]

\[= \int \frac{2(2x + 3) - 5}{x^2 + 3x + 2} \, dx \]

\[= 2 \int \frac{2x + 3}{x^2 + 3x + 2} \, dx - 5 \int \frac{1}{x^2 + 3x + (9/4) - (9/4) + 2} \, dx \]

\[= 2 \log |x^2 + 3x + 2| - 5 \int \frac{1}{(x + 3/2)^2 - 1/4} \, dx \]

\[= 2 \log |x^2 + 3x + 2| - 5 \int \frac{1}{(x + 3/2)^2 - (1/2)^2} \, dx \]
\[= 2 \log |x^2 + 3x + 2| - 5 \frac{1}{2(1/2)} \log \left| \frac{x + \frac{3}{2} - \frac{1}{2}}{x + \frac{3}{2} + \frac{1}{2}} \right| + C \]

\[= 2 \log |x^2 + 3x + 2| - 5 \log \left| \frac{x + 1}{x + 2} \right| + C \]

4. \[\int \frac{x^3 + x + 1}{x^2 - 1} \, dx \]

\[= \int \left(x + \frac{2x + 1}{x^2 - 1} \right) \, dx \]

\[= \int x \, dx + \int \frac{2x}{x^2 - 1} \, dx + \int \frac{1}{x^2 - 1} \, dx \]

\[= \frac{x^2}{2} + \log |x^2 - 1| + \frac{1}{2} \log \left| \frac{x - 1}{x + 1} \right| + C \]

5. \[I = \int \frac{x^2 - 1}{(x^4 + 3x^2 + 1) \tan^{-1} \left(\frac{x + 1}{x} \right)} \, dx \]

\[= \int \frac{1 - \frac{1}{x^2}}{\left(x^2 + \frac{1}{x^2} + 3 \right) \tan^{-1} \left(\frac{x + 1}{x} \right)} \, dx \]

Put \(x + \frac{1}{x} = t \Rightarrow \left(1 - \frac{1}{x^2} \right) \, dx = dt \) and \(x^2 + \frac{1}{x^2} + 2 = t^2 \)

\[\therefore I = \int \frac{dt}{(t^2 + 1) \tan^{-1} \frac{t}{1}} = \ln |\tan^{-1} t| + C \]

\[= \ln |\tan^{-1} \left(x + \frac{1}{x} \right)| + C \]

6. \[I = \int \frac{1}{x^4 + 1} \, dx \]

\[= \int \frac{1}{x^2 + \frac{1}{x^2}} \, dx = \frac{1}{2} \int \frac{2}{x^2 + \frac{1}{x^2}} \, dx \]

\[= \frac{1}{2} \int \left(\frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} - \frac{1 - \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} \right) \, dx \]

\[= \frac{1}{2} \int \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} \, dx - \frac{1}{2} \int \frac{1 - \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} \, dx \]

\[= \frac{1}{2} \int \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} \, dx \]

\[= \frac{1}{2} \left[\frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} \right] + C \]

Putting \(x + \frac{1}{x} = u \) in 1st integral and \(x + \frac{1}{x} = v \) in 2nd integral, we get

\[I = \frac{1}{2} \int \frac{du}{u^2 + \left(\frac{\sqrt{2}}{2} \right)^2} - \frac{1}{2} \int \frac{dv}{v^2 - \left(\frac{\sqrt{2}}{2} \right)^2} \]

\[= \frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{u}{\sqrt{2}} \right) - \frac{1}{2} \times \frac{1}{2\sqrt{2}} \log \left| \frac{v - \sqrt{2}}{v + \sqrt{2}} \right| + C \]

\[= \frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{x + 1/x}{\sqrt{2}} \right) - \frac{1}{2} \log \left| \frac{x^2 - \sqrt{2} + 1}{x^2 + x + \sqrt{2}} \right| + C \]

\[= \frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{x^2 - 1}{\sqrt{2} x} \right) - \frac{1}{2} \log \left| \frac{x^2 - \sqrt{2} x + 1}{x^2 + x + \sqrt{2}} \right| + C \]

7. \[I = \int \frac{1}{\sin^4 x + \cos^4 x} \, dx = \int \frac{1}{\sin^4 x + \cos^4 x} \, dx \]

\[= \frac{\sec^4 x}{\tan x + 1} \, dx = \sec^2 x \sec^2 x \, dx \]

Putting \(\tan x = t \) and \(\sec^2 x \, dx = dt \), we get

\[I = \frac{1}{2} \tan^{-1} \left(\frac{t^2 - 1}{\sqrt{2} t} \right) + C \]

\[= \frac{1}{2} \tan^{-1} \left(\frac{\tan^2 x - 1}{\sqrt{2} \tan x} \right) + C \]

Exercise 7.6

1. \[I = \int \frac{x^2}{\sqrt{1 - x^6}} \, dx = \int \frac{x^2}{\sqrt{1 - (x^3)^2}} \, dx \]

Let \(x^3 = t \Rightarrow 3x^2 \, dx = dt \Rightarrow dx = \frac{dt}{3x^2} \)

\[\Rightarrow I = \frac{1}{3} \int \frac{dt}{\sqrt{1 - t^2}} = \frac{1}{3} \sin^{-1} t + C = \frac{1}{3} \sin^{-1} (x^3) + C \]
2. \[I = \int \frac{x}{\sqrt{a^3 - x^3}} \; dx = \int \frac{\sqrt{x}}{(a^{3/2})^2 - (x^{3/2})^2} \; dx \]

Let \(a^{3/2} = t \Rightarrow \frac{3}{2} a^{3/2} \; dx = dt \Rightarrow dx = \frac{2}{3} \frac{1}{a^{3/2}} \; dt \)

\[I = \int \frac{2/3 \frac{1}{a^{3/2}} \; dt}{(a^{3/2})^2 - t^2} = \frac{2}{3} \int \frac{dt}{(a^{3/2})^2 - t^2} \]

\[= \frac{2}{3} \sin^{-1} \left(\frac{t}{a^{3/2}} \right) + C = \frac{2}{3} \sin^{-1} \left(\frac{x^{3/2}}{a^{3/2}} \right) + C \]

3. \[I = \int \frac{1}{\sqrt{1 - e^{2x}}} \; dx = \int \frac{1}{\sqrt{1 - e^{-2x}}} \; dx = \int \frac{e^{-x}}{\sqrt{e^{-2x} - 1}} \; dx \]

\[= \int \frac{e^{-x}}{\sqrt{(e^{-x})^2 - 1}} \; dx \]

Let \(e^{-x} = t \Rightarrow -e^{-x} \; dx = dt \)

\[I = -\int \frac{dt}{\sqrt{t^2 - 1}} = -\log |t + \sqrt{t^2 - 1}| + C \]

\[= -\log \left| e^{-x} + \sqrt{e^{-2x} - 1} \right| + C \]

4. \[I = \int \frac{2x + 3}{\sqrt{x^2 + 4x + 1}} \; dx \]

\[= \int \frac{2x + 4}{\sqrt{x^2 + 4x + 1}} \; dx - \int \frac{1}{\sqrt{x^2 + 4x + 1}} \; dx \]

\[= \int \frac{dt}{\sqrt{t}} - \int \frac{1}{\sqrt{(x + 2)^2 - (\sqrt{3})^2}} \; dx, \text{ where } t = x^2 + 4x + 1 \]

\[= 2\sqrt{t} - \log |x + 2| + \sqrt{x^2 + 4x + 1} | + C \]

\[= 2\sqrt{x^2 + 4x + 1} - \log |x + 2 + \sqrt{x^2 + 4x + 1}| + C \]

5. Put \(x^{3/2} = t \)

\[\Rightarrow \frac{7}{2} x^{3/2} \; dx = dt \]

\[\therefore I = \frac{2}{7} \frac{dt}{\sqrt{1 + t^2}} = \frac{2}{7} \log (t + \sqrt{1 + t^2}) + C \]

\[= \frac{2}{7} \log (x^{3/2} + \sqrt{1 + x^2}) + C \]

6. \[I = \int x^3 d(\tan^{-1} x) = \int \frac{x^3}{1 + x^2} \; dx \]

\[= \int \left(x - \frac{x}{1 + x^2} \right) \; dx = \frac{x^2}{2} - \frac{1}{2} \ln(1 + x^2) + C \]

Exercise 7.7

1. \[I = \int x \sin^2 x \; dx \]

\[= \int x \left(\frac{1 - \cos 2x}{2} \right) \; dx = \frac{1}{2} \int x \; dx - \frac{1}{2} \int \cos 2x \; dx \]

\[= \frac{1}{2} \left(\frac{x^2}{2} \right) - \frac{1}{2} \left[\int \cos 2x \; dx \right] \]

\[= \frac{1}{4} x^2 - \frac{1}{2} \left[\int \cos 2x \; dx \right] \]

\[= x^2 \left(\frac{x}{2} \right) - \frac{1}{2} \left[\int \cos 2x \; dx \right] \]

\[= \frac{x^2}{4} - \frac{1}{2} \int \cos 2x \; dx \]

\[= \frac{x^2}{4} - \frac{1}{2} \left(\frac{1}{2} \left(-\frac{1}{2} \cos 2x \right) \right) + C \]

\[= \frac{x^2}{4} - \frac{x}{4} \sin 2x - \frac{1}{8} \cos 2x + C \]

2. \[I = \int f(x) \; dx = g(x) \]

\[I = \int f^{-1}(x) \; dx \]

\[= f^{-1}(x) \int dx - \int \left(\frac{d}{dx} f^{-1}(x) \right) \; dx \]

\[= xf^{-1}(x) - \int \left(\frac{d}{dx} f^{-1}(x) \right) \; dx \]

\[= xf^{-1}(x) - \int \left(f^{-1}(x) \right) \; dx \]

Let \(f^{-1}(x) = t \Rightarrow x = f(t) \) and \(d(f^{-1}(x)) = dt \)

\[\Rightarrow I = xf^{-1}(x) - \int f(t) \; dt = xf^{-1}(x) - g(t) \]

\[= xf^{-1}(x) - g(f^{-1}(x)) + C \]

3. \[I = \int g(x) \{ f(x) + f'(x) \} \; dx = \int g(x) f(x) \; dx + \int g(x) f'(x) \; dx \]

\[= f(x) \left(\int g(x) \; dx \right) - \left(\int g(x) \; dx \right) \int f'(x) \; dx + \int g(x) f'(x) \; dx \]

\[= f(x) g(x) - \int g(x) f'(x) \; dx + \int g(x) f'(x) \; dx + C \]

\[= f(x) g(x) + C \]

[\(\therefore \int g(x) \; dx = g(x) \)]

4. Put \(\sqrt{x} = t \Rightarrow \frac{1}{2} \sqrt{x} \; dx = dt \Rightarrow dx = 2t \; dt \)

\[\Rightarrow \int \cos \sqrt{x} \; dx \]
= \int 2t \cos t \, dt \\
= 2 \left[t \sin t - \int \sin t \, dt \right] \\
= 2t \sin t + 2 \cos t + C \\
= 2 \left[\sqrt{x} \sin \sqrt{x} + \cos \sqrt{x} \right] + C \\

5. Putting \sin^{-1} x = t \Rightarrow \frac{1}{\sqrt{1 - x^2}} \frac{dx}{dt} = dt, we get \\
\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx = \int t \sin t \, dt = -t \cos t + \sin t + C \\
= - \sin^{-1} x \cos (\sin^{-1} x) + \sin (\sin^{-1} x) + C \\
= x - \sin^{-1} x \sqrt{1 - x^2} + C \\

6. \int \tan^{-1} \sqrt{x} \cdot 1 \, dx \\
= (\tan^{-1} \sqrt{x})x - \int \frac{1}{1 + \frac{x}{2}} x \, dx \\
= x \tan^{-1} \sqrt{x} - \frac{1}{2} \int \frac{\sqrt{x}}{1 + x} \, dx \\
= x \tan^{-1} \sqrt{x} - \frac{1}{2} \left[2(\sqrt{x} - \tan^{-1} \sqrt{x}) \right] + C \\
= x \tan^{-1} \sqrt{x} - \sqrt{x} + \tan^{-1} \sqrt{x} + C \\
= x + 1 \tan^{-1} \sqrt{x} - \sqrt{x} + C \\

7. \int \cos x \log \left(\tan \frac{x}{2} \right) \, dx \\
= \log \left(\tan \frac{x}{2} \right) \sin x - \int \frac{1}{\tan \frac{x}{2}} \sec^2 \frac{x}{2} \cdot \frac{1}{2} \sin x \, dx + C \\
= \sin x \log \left(\tan \frac{x}{2} \right) - \int \frac{1}{2 \sin \frac{x}{2} \cos \frac{x}{2}} \sin x \, dx + C \\
= \sin x \log \left(\tan \frac{x}{2} \right) - \int dx + C \\
= \sin x \log \left(\tan \frac{x}{2} \right) - x + C \\

8. Put \log x = t, i.e., x = e^t so that dx = e^t \, dt \\
\therefore \int \left(\frac{t-1}{1 + t^2} \right)^2 e^t \, dt \\

= \int e^t \left[\frac{1}{1 + t^2} \right]^2 \, dt \\
= \int e^t \left[\frac{2t}{1 + t^2} \right] \, dt \\
= e^t \left[\frac{1}{1 + t^2} \right] + C \\
= \frac{x}{1 + (\log x)^2} + C \\

9. \int e^{x} (2 - x^2) \, dx \\
= \int e^{x} (1 - x^2 + 1) \, dx \\
= \int e^{x} \left[\frac{(1 - x^2)}{(1 - x)\sqrt{1 - x^2}} + \frac{1}{(1 - x)\sqrt{1 - x^2}} \right] \, dx \\
= \int e^{x} \left[\frac{1}{\sqrt{1 - x^2}} + \frac{1}{(1 - x)\sqrt{1 - x^2}} \right] \, dx \\
= \int e^{x} \left[\frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - x}} \right] \, dx \\
= e^{x} \left[\frac{1 + x}{\sqrt{1 - x}} \right] + C \\

10. \int e^{x} \left(1 + \tan x + \tan^2 x \right) \, dx \\
= \int e^{x} \left(\tan x + \sec^2 x \right) \, dx \\
= e^x \tan x + C \\

11. I = \int \sin^2 (\log x) \, dx, let t = \log x \Rightarrow dt = \frac{dx}{x} \\
\Rightarrow dx = e^t \, dt \\
\Rightarrow I = \int e^t \sin^2 t \, dt = \frac{1}{2} \int e^t (1 - \cos 2t) \, dt \\
\Rightarrow 2I = e^t - \int e^t \cos 2t \, dt \\
\Rightarrow e^t - \frac{e^t}{5} (2\sin 2t + \cos 2t) + C \\
\Rightarrow I = \frac{1}{10} x (5 - 2\sin(2\log x) - \cos(2\log x)) + C \\

12. \int [f(x)g''(x) - f''g(x)] \, dx \\
= \int f(x)g''(x) \, dx - \int f''(x)g(x) \, dx
\[
\begin{align*}
&= \left(f(x)g'(x) - \int f'(x)g(x) \, dx \right) \\
&\quad - \left(g(x)f'(x) - \int g'(x)f(x) \, dx \right) \\
&= f(x)g'(x) - f'(x)g(x) + C
\end{align*}
\]

13. \(I = \int \tan^{-1} \frac{1-x}{\sqrt{1+x}} \, dx \)

Let \(x = \cos 2\theta \Rightarrow dx = -2\sin 2\theta \, d\theta \)

\[
\Rightarrow I = \int \tan^{-1} \frac{1-\cos 2\theta}{\sqrt{1+\cos 2\theta}} (-2\sin 2\theta) \, d\theta
\]

\[
= -2 \int \tan^{-1} \left(\tan \theta \right) \sin 2\theta \, d\theta
\]

\[
= -2 \int \theta \sin 2\theta \, d\theta
\]

\[
= -2 \left[\frac{\theta \cos 2\theta}{2} + \int \frac{\cos 2\theta}{2} \, d\theta \right]
\]

\[
= \theta \cos 2\theta - \frac{\sin 2\theta}{2} + C
\]

Exercise 7.8

1. Let \(I = \int \frac{1}{x^2-4} \sqrt{x+1} \, dx \)

Putting \(x + 1 = t^2 \) and \(dx = 2t \, dt \), we get

\[
I = \int \frac{2t}{(t^2-1)^2-4} \sqrt{t^2} \, dt
\]

\[
= 2 \int \frac{dt}{(t^2-1)(t^2+1)}
\]

\[
= 2 \int \frac{\frac{1}{t^2-3} - \frac{1}{t^2+1}}{2 \sqrt{t}} \, dt
\]

\[
= \frac{1}{2\sqrt{3}} \log \left| \frac{t - \sqrt{3}}{t + \sqrt{3}} \right| - \frac{1}{2} \tan^{-1} t + C
\]

where \(t = \sqrt{x+1} \)

2. \(\int \frac{x^2+1}{x(x^2-1)} \, dx \)

\[
= \int \frac{x^2+1}{x(x-1)(x+1)} \, dx
\]

\[
= \int \left(\frac{1}{x-1} + \frac{1}{x+1} + \frac{1}{x(x+1)} \right) \, dx
\]

\[
= \log |x-1| + \log |x+1| - \log |x| + C
\]

\[
= \log \left| \frac{x^2-1}{x} \right| + C
\]

3. \(I = \int \frac{\sin x}{\sin 4x} \, dx = \int \frac{\sin x}{2 \sin 2x \cos 2x} \, dx \)

\[
= \int \frac{\sin x}{4 \sin x \cos x \cos 2x} \, dx
\]

\[
= \frac{1}{4} \int \frac{\cos x}{\cos x \cos 2x} \, dx + \frac{1}{4} \int \frac{\cos x}{\cos^2 x \cos 2x} \, dx
\]

\[
= \frac{1}{4} \int \frac{\cos x}{(1 - \sin^2 x)(1 - 2\sin^2 x)} \, dx
\]

Putting \(\sin x = t \) and \(\cos x \, dx = dt \), we get

\[
I = \frac{1}{4} \int \frac{dt}{(1-t^2)(1-2t^2)}
\]

\[
= \frac{1}{4} \int \left(\frac{2}{1-2t^2} - \frac{1}{1-t^2} \right) \, dt
\]

\[
\Rightarrow I = -\frac{1}{8} \log \frac{|1+t|}{|1-t|} + \frac{1}{2} \log \left| \frac{1+\sqrt{2} \, t}{1-\sqrt{2} \, t} \right| + C
\]

4. Here, the degree of numerator is greater than that of denominator. So, we divide the numerator by denominator to obtain

\[
\int \frac{x^3}{(x-1)(x-2)} \, dx
\]

\[
= \int \left(x + \frac{7x-6}{(x-1)(x-2)} \right) \, dx
\]

\[
= \frac{x^2}{3} + 3x + \int \left(\frac{-1}{x-1} + \frac{8}{x-2} \right) \, dx
\]

\[
= \frac{x^2}{3} + 3x - \log |x-1| + 8 \log |x-2| + C
\]

5. \(\int \frac{dx}{\sin x(3 + \cos^2 x)} \)

\[
= \int \frac{\sin x \, dx}{\sin^2 x(3 + \cos^2 x)}
\]

\[
= \int \frac{\sin x \, dx}{(1-\cos^2 x)(3 + \cos^2 x)}
\]
\[
I = \int \frac{1}{\sqrt{1-t^2}} \left(-\frac{1}{t^2} \right) dt = -\int \frac{dt}{\sqrt{1-2t}} = -\int (1-2t)^{-1/2} dt = -(2t)^{1/2} + \frac{1}{2} + C = \sqrt{1-2t} + C
\]

2. \[I = \int \frac{x^2-1}{(x+1)^2(x^2+1)} dx\]

Putting \(x+1 = t\), we have

\[I = \int \frac{dt}{t\sqrt{t^2-2}}\]

Again putting \(t^2 - 2 = y^2\), \(2t dt = 2y dy\),

\[I = \int \frac{dy}{(y^2 + 2)^2} = \frac{1}{\sqrt{2}} \tan^{-1} \frac{y}{\sqrt{2}} + C\]

\[= \frac{1}{2} \tan^{-1} \frac{\sqrt{x^2+1} - x^2}{\sqrt{2}} + C\]

3. Let \[I = \int \sec^3 x \, dx\]

\[= \int \sec x \sec^2 x \, dx\]

\[= \int \sqrt{1 + \tan^2 x} \sec^2 x \, dx\]

Putting \(\tan x = z\), \[\sec^2 x \, dx = dz\]

\[\Rightarrow I = \int \sqrt{1 + z^2} \, dz\]

\[= \frac{z\sqrt{z^2+1}}{2} + \frac{1}{2} \log |z + \sqrt{z^2+1}| + C\]

\[= \frac{\tan x}{2} + \frac{1}{2} \log (\tan x + \sec x) + C\]
4. \[I = \int \frac{x+1}{(x-1)\sqrt{x+2}} \, dx \]

Let \(x + 2 = t^2 \)

\[\Rightarrow \quad dx = 2t \, dt \]

\[\Rightarrow \quad I = \int \frac{t^2 - 1}{2t} \, dt \]

\[= 2 \int \frac{t^2 - 3 + 2}{(t^2 - 3)} \, dt \]

\[= 2 \int \left(1 + \frac{2}{(t^2 - 3)} \right) \, dt \]

\[= 2t + \frac{2}{\sqrt{3}} \log \left| \frac{t - \sqrt{3}}{t + \sqrt{3}} \right| + C \]

\[= 2\sqrt{x+2} + \frac{2}{\sqrt{3}} \log \left| \frac{\sqrt{x+2} - \sqrt{3}}{\sqrt{x+2} + \sqrt{3}} \right| + C \]

5. \[I = \int \frac{x}{(x^2 + 4)\sqrt{x^2 + 1}} \, dx \]

Let \(x^2 + 1 = t^2 \Rightarrow x \, dx = t \, dt \)

\[\Rightarrow \quad I = \int \frac{t \, dt}{(t^2 + 3)t} \]

\[= \frac{1}{\sqrt{3}} \tan^{-1} \frac{t}{\sqrt{3}} + C = \frac{1}{\sqrt{3}} \tan^{-1} \sqrt{\frac{x^2 + 1}{3}} + C \]

6. \[I = \int \frac{1}{(x+1)\sqrt{x^2 + x + 1}} \, dx \]

Let \(x + 1 = \frac{1}{t} \Rightarrow dx = -\frac{1}{t^2} \, dt \)

\[\Rightarrow \quad I = \int \frac{1}{\frac{1}{t} \sqrt{\left(\frac{1}{t} - 1 \right)^2 + \left(\frac{1}{t} - 1 \right) + 1}} \left(-\frac{1}{t^2} \right) \, dt \]

\[= -\int \frac{dt}{\sqrt{(1-t)^2 + (t-1)^2 + t^2}} \]

\[= -\int \frac{dt}{\sqrt{t^2 - 1 + 1}} = -\int \frac{dt}{\sqrt{t-1} + \frac{3}{4}} \]

\[= -\log \left| t - \frac{1}{2} \right| + \sqrt{t^2 - t + 1} + C \]

7. \[I = \int \frac{x^3 + 1}{\sqrt{x^2 + x}} \, dx \]

\[= \int \frac{x^3 + x + 1 - x}{\sqrt{x^2 + x}} \, dx = \int x\sqrt{x^2 + x} \, dx - \int \frac{x - 1}{\sqrt{x^2 + x}} \, dx \]

\[= \frac{1}{2} \left[\int (2x+1)\sqrt{x^2 + x} \, dx - \int \sqrt{x^2 + x} \, dx \right] \]

\[- \frac{1}{2} \int \frac{2x+1-3}{\sqrt{x^2 + x}} \, dx \]

\[= \frac{1}{2} \left[\int (2x+1)\sqrt{x^2 + x} \, dx - \int \frac{1}{\sqrt{x + \frac{1}{2}}} \, dx \right] \]

\[- \frac{1}{2} \int \frac{2x+1-3}{\sqrt{x^2 + x}} \, dx \]

\[= \frac{1}{2} \left[\int (2x+1)\sqrt{x^2 + x} \, dx - \int \frac{1}{\sqrt{x + \frac{1}{2}}} \, dx \right] \]

\[- \frac{1}{2} \left[2(x^2 + x)^{3/2} - \frac{x + 1}{2} \sqrt{x^2 + x} + \frac{1}{4} \log \left(x + \frac{1}{2} + \sqrt{x^2 + x} \right) \right] \]

\[- \frac{1}{2} \left[2\sqrt{x^2 + x} - 3 \log \left(x + \frac{1}{2} + \sqrt{x^2 + x} \right) \right] + C \]

Exercise 7.10

1. \[I = \int \frac{dx}{x^2(1+x^{1/5})} = \int \frac{dx}{x^6 \left(\frac{1}{x^{1/5}} + 1 \right)} \]

Let \(t = 1 + \frac{1}{x^{1/5}} \Rightarrow dt = -\frac{5dx}{x^6} \)

\[\Rightarrow \quad I = -\frac{1}{5} \int t^{1/5} \, dt = -t^{1/5} + C = - \left(1 + \frac{1}{x^{1/5}} \right)^{1/5} + C \]

\[= \frac{(1+x^{1/5})^{1/5}}{x} + C \]

2. \[I = \int \frac{1+x^4}{(1-x^4)^{3/2}} \, dx = \int \frac{x^3(x + 1/x^3) \, dx}{(1-x^4)^{3/2}} \]

\[= \int \frac{(x + 1/x^3) \, dx}{(1/x^2 - x^2)^{3/2}} \]
Let \(\frac{1}{x^2} - x^2 = t \Rightarrow \left(\frac{-2}{x^3} - 2x \right) dx = dt \)

\[\Rightarrow \left(x + \frac{1}{x^3} \right) dx = -\frac{1}{2} dt \]

\[\Rightarrow I = -\frac{1}{2} \int t^{1/2} dt = \int \frac{1}{\sqrt{t}} + C = -\frac{1}{\sqrt{x^2 - x^4}} + C \]

3. \(\int \frac{1}{x^2(x^4 + 1)^{3/4}} dx = \int \frac{1}{x^5\left(1 + \frac{1}{x^4}\right)^{3/4}} dx \)

\[= \frac{1}{4} \int t^{1/4} dt = -\frac{1}{4} t^{1/4} + C = -t^{1/4} + C, \text{ where} \]

\[t = 1 + \frac{1}{x^4} \]

\[= -\left(1 + \frac{1}{x^4}\right)^{1/4} + C \]

4. \(\int \frac{(x^4 - x)^{1/4}}{x^5} dx = \int \frac{1}{x^4} \left(1 - \frac{1}{x^3}\right)^{1/4} dx \),

Putting \(1 - \frac{1}{x^3} = t \), we get

\[I = \frac{1}{3} \int t^{1/4} dt = \frac{4}{15} t^{5/4} + C = \frac{4}{15} \left(1 - \frac{1}{x^3}\right)^{5/4} + C \]

5. \(I = \int \frac{(x - 1)dx}{(x + 1)\sqrt{x^3 + x^2 + x}} \)

\[= \int \frac{(x^2 - 1)}{(x^2 + 2x + 1)\sqrt{x^3 + x^2 + x}} dx \]

\[= \int \frac{\left(1 - \frac{1}{x^2}\right)}{\left(x + \frac{1}{x} + 2\right)\sqrt{x + \frac{1}{x} + 1}} dx \]

Putting \(x + \frac{1}{x} = u^2 \), \(I = \int \frac{2u du}{(u^2 + 1)u} = 2\tan^{-1}u + C \)

\[= 2\tan^{-1}\sqrt{x + \frac{1}{x} + 1} + C \]

6. \(I = \int x^2(\ln e^{x}) dx = \int x^2(1 + \ln x) dx \)

let \(t = x^2 \Rightarrow \frac{dt}{dx} = x \left(x \cdot \frac{1}{x} + \ln x \right) \)

\[\Rightarrow dt = x^2 (1 + \ln x) dx \Rightarrow I = \int dt = t + C = x^2 + C \]

7. \(\int \frac{x - q}{x - p} dx = \)

\[\Rightarrow \frac{1}{2} \left(\frac{x - p}{x - q} \right)^{1/2} \left(\frac{x - p}{x - q} \right)^{1/2} dx = dt. \]

\[\Rightarrow \int \frac{dx}{(x - p)^{3/2}/(x - q)^{1/2}} = \frac{2 dt}{q - p} \]

\[\Rightarrow f = -\int \frac{2 dt}{p - q} = -\frac{2}{p - q} \cdot \sqrt{x - q} + C \]

8. Let \((\sqrt{1 + x^2} + x)^n = z \)

\[\Rightarrow n (\sqrt{1 + x^2} + x)^{n-1} \left(\frac{x}{\sqrt{1 + x^2}} + 1 \right) dx = dz \]

\[\Rightarrow \frac{(\sqrt{1 + x^2} + x)^n}{\sqrt{1 + x^2} + x} dx = \frac{dz}{n} \]

\[\therefore \text{given integral} = \int \frac{dx}{n} = \frac{1}{n} z + C \]

\[= \frac{1}{n} (\sqrt{1 + x^2} + x)^n + C \]

9. \(\int \frac{dx}{\cos^3 x \sin 2x} \)

\[= \frac{1}{\sqrt{2}} \int \frac{dx}{\cos^{7/2} x \sin^{1/2} x} \]

\[= \frac{1}{\sqrt{2}} \int \frac{dx}{\cos^{4} x \tan^{1/2} x} \]

\[= \frac{1}{\sqrt{2}} \int (1 + \tan^2 x) \sec^2 x \ dx \]

\[= \frac{1}{\sqrt{2}} \int \frac{(1 + t^2)^2}{t^{1/2}} \ dt \]

\[= \frac{1}{\sqrt{2}} \left(t^{1/2} + t^{3/2} \right) + C, \text{ where } t = \tan x \]
10. \[\int \sec^5 x \csc^3 x \, dx \]
\[= \int \frac{dx}{\cos^5 x \sin^3 x} \]
\[= \int \frac{dx}{\cos^8 x \tan^3 x} \]
\[= \int \frac{\sec^6 x \sec^2 x \, dx}{\tan^3 x} \]
\[= \int \frac{(1 + \tan^2 x)^3 \sec^2 x \, dx}{\tan^3 x} \]
\[= \int \left(1 + \frac{1}{t^2}\right)^3 \frac{dt}{t^3} \]
\[= \int \left(1 + \frac{1}{t^2} + \frac{1}{t} + \frac{3}{2} \right) \, dt \]
\[= \left(\frac{t^4}{4} + \frac{t^2}{2} + \frac{t^2}{2} + 3 \log t + C\right), \text{ where } t = \tan^{10} x. \]

Chapter 8

Exercise 8.1

1. a. Here \(f(x) = \cos x \)
\[\int_a^b \cos x \, dx \]
\[= \lim_{n \to \infty} h \left[\cos a + \cos (a + h) + \cdots + \cos \left(a + (n-1)h \right) \right], \]
where \(nh = b - a \)
\[= \lim_{n \to \infty} h \left[\cos \left(a + \frac{1}{2} (n - 1)h \right) \sin \left(\frac{1}{2} nh \right) \right] \]
\[= \lim_{n \to \infty} \left[2 \cos \left(a + \frac{1}{2} nh - \frac{1}{2} h \right) \sin \left(\frac{1}{2} nh \right) \cdot \left(\frac{1}{2} h \right) \right] \]
\[= 2 \cos \left(a + \frac{1}{2} (b-a) - 0 \right) \sin \left(\frac{1}{2} (b-a) \right) \times 1 \]
\[= 2 \cos \frac{1}{2} (a + b) \sin \frac{1}{2} (b-a) \]
\[= \sin b - \sin a \]

b. Here \(f(x) = x^3 \)
\[\int_a^b x^3 \, dx = \lim_{n \to \infty} \sum_{r=0}^{n-1} (a + rh)^3 \]
\[= \lim_{n \to \infty} \left[nh^3 + 3a^2 h^2 \sum_{r=1}^{n-1} r + 3ah \sum_{r=1}^{n-1} r^2 + h^4 \sum_{r=1}^{n-1} r^3 \right] \]
\[= \lim_{n \to \infty} \left[nh^3 + 3a^2 h^2 \left(\frac{n(n-1)}{2} \right) + 3ah \left(\frac{n(n-1)(2n-1)}{6} \right) \right. \]
\[+ \left. h^4 \left(\frac{(n-1)^2 n^2}{4} \right) \right] \]
\[= \left(nh \right)^3 + 3a^2 \left(\frac{(nh-h)(nh)}{2} \right) \]
\[+ 3a \left(\frac{(nh)(nh-h)(2nh-h)}{6} \right) \]
\[+ \left(\frac{(nh-h)^2 (nh)^2}{4} \right) \]
\[\left[\because \text{as } n \to \infty, h \to 0, nh \to b - a \right] \]
\[= \frac{1}{4} (b-a)^3 + \frac{3a^2}{2} \left(\frac{(b-a)(b-a)}{2} \right) \]
\[+ 3a \left(\frac{(b-a)(b-a)(2b-a)-0}{6} \right) \]
\[
\int_0^1 \frac{dx}{\sqrt{4-x^2}} = \left| \sin^{-1} \frac{x}{2} \right|_0^1 \\
= \sin^{-1} \frac{1}{2} - 0 = \frac{\pi}{6}
\]

b. \(\lim_{n \to \infty} \left[\frac{1}{n^2} \sec^2 \frac{1}{n} + \frac{1}{n^2} \sec^2 \frac{4}{n} + \ldots + \frac{1}{n^2} \sec^2 \frac{1}{n} \right] \)

\[= \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \sec^2 \frac{r}{n} \]

\[= \int_0^1 \sec^2 x^2 \, dx \]

Put \(x^2 = t \) so that \(2x \, dx = dt \)
When \(x = 0, t = 0 \).
When \(x = 1, t = 1 \)

\[\therefore \text{the required limit} = \frac{1}{2} \left[\tan \left(\frac{1}{n} \right) \right]_0^1 = \frac{1}{2} \left[\tan 1 - 0 \right] = \frac{1}{2} \tan 1 \]

e. \(\lim_{n \to \infty} \sum_{r=1}^{n} \frac{K}{n^2 + K^2} \)

\[= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n^2} \times \frac{K}{1 + \left(\frac{K}{n} \right)^2} \]

\[= \int_0^{1/n} \frac{x}{1 + x^2} \, dx \]

\[= \frac{1}{2} \log (1 + x^2) \bigg|_0^1 = \frac{1}{2} \log 2 \]

d. \(\lim_{n \to \infty} \sum_{r=1}^{n} \sqrt{\frac{1}{r}} \)

\[\Rightarrow \text{Limit} = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \sqrt{\frac{n}{r}} \]

\((1/n \text{ is properly adjusted and a function of } \frac{r}{n} \text{ is created at all three places})\)

e. \(\lim_{n \to \infty} \left[\frac{n!}{n^n} \right]^{\frac{\ell}{2}} \)

\[= \lim_{n \to \infty} \left(\frac{1 \times 2 \times 3 \ldots n}{n \times n \times n \ldots n} \right)^{\frac{\ell}{2}} \]

\[= \lim_{n \to \infty} \left(\frac{1}{n} \times \frac{2}{n} \times \frac{3}{n} \ldots \frac{n}{n} \right)^{\frac{\ell}{n}} \]

\[\Rightarrow \log A = \lim_{n \to \infty} \frac{\log 1 + \log 2 + \ldots + \log n}{n} \]

\[= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{\log r}{n} \]

\[= \int_0^1 \log x \, dx = \int_0^1 \log x \, dx - \int_0^1 x \times 1/x \, dx \]

\[= 0 - \int_0^1 \, dx = 0 - [x]_0^1 = -1 \]

\[\therefore A = e^{-1} = 1/e \]

Exercise 8.2

1. Here, the mistake lies in the substitution \(\tan \frac{1}{2} x = t \), because \(\tan \frac{1}{2} x \) is discontinuous at \(x = \pi \) which is a point in the interval \([0, 2\pi]\).

2. \(\int_0^\pi \frac{dx}{1 + \sin x} = \int_0^\pi \frac{1 - \sin x}{1 - \sin^2 x} \, dx = \int_0^\pi \frac{1 - \sin x}{\cos^2 x} \, dx \)

\[= \int_0^\pi \sec^2 x - \sec x \tan x \, dx \]

\[= | \tan x - \sec x |_0^\pi = (\tan \pi - \sec \pi) - (\tan 0 - \sec 0) \]

\[= 0 - (-1) - (-1) = 1 + 1 = 2 \]

3. \(I = \int_0^\infty \frac{dx}{(e^{2x} + e^x)} \)

\[= \int_0^\infty \frac{e^x \, dx}{e^{2x} + e^x} \] (multiply \(N \) and \(D' \) by \(e^x \))

\[= \int_0^\infty \frac{e^{-x} \, dx}{1 + e^{-2x}} \]

\[\Rightarrow I = \frac{1}{e} \int_0^\infty \frac{dt}{e^t + e^{-t}} \]

\[= \frac{1}{e^2} \tan^{-1} \frac{t}{e^t} \]

\[= \frac{1}{e^2} \left[\frac{\pi}{2} - \frac{\pi}{4} \right] = \frac{\pi}{4e^2} \]
4. Put \(x = \sin \theta \), \(\therefore \ dx = \cos \theta \, d\theta \)

When \(x = 0 \), \(\theta = 0 \), then when \(x = \frac{1}{\sqrt{2}} \), \(\theta = \frac{\pi}{4} \)

\. the given integral

\[
\int_0^{\pi/4} \sin^{-1} (\sin \theta) \cos \theta \, d\theta = \int_0^{\pi/4} \sec^2 \theta \, d\theta
\]

\[
= \left[\tan \theta \right]_0^{\pi/4} = \frac{\pi}{2} - 0
\]

\[
= \frac{\pi}{2}
\]

5. Put \(x = \sin \theta \), \(\therefore \ dx = \cos \theta \, d\theta \)

\. the given integral

\[
\int_0^{\pi/2} \left(2 - \sin^2 \theta \right) \cos \theta \, d\theta = \int_0^{\pi/2} \frac{1}{\sin \theta} \, d\theta
\]

\[
= \int_0^{\pi/2} \left(1 + \frac{1}{\cos \theta} \right) \, d\theta
\]

\[
= \left[\sec \theta \right]_0^{\pi/2} = \sec \frac{\pi}{2} - \sec 0
\]

\[
= \infty - 1
\]

\[
= \frac{\pi}{2}
\]

Exercise 8.3

1. \(I = \int_a^b x f(x) \, dx = \int_a^b x (a + b - x) \, dx \)

\[
= \int_a^b (a + b - x) f((a + b) - (a + b - x)) \, dx
\]

\[
= \int_a^b (a + b - x) f(x) \, dx = \int_a^b f(x) \, dx - I
\]

\[
\Rightarrow 2I = (a + b) \int_a^b f(x) \, dx \Rightarrow I = \frac{a + b}{2} \int_a^b f(x) \, dx
\]

2. \(I = \int_3^6 \frac{\sqrt{x}}{\sqrt{9 - x + \sqrt{x}}} \, dx \)

\[
\therefore \ I = \int_3^6 \frac{\sqrt{9 - x}}{\sqrt{x + \sqrt{9 - x}}} \, dx
\]

Adding equations (1) and (2), \(2I = \int_3^6 \frac{1}{\sqrt{x}} \, dx \)

\[
\Rightarrow \int_3^6 \frac{1}{\sqrt{x}} \, dx = 6 - 3 = 3
\]

Hence \(I = \frac{3}{2} \).

3. Let \(I = \int_0^{\pi/2} \frac{\sin x}{\sqrt{\sin x + \cos x}} \, dx \)

\[
= \int \frac{\sin \left(\frac{\pi}{2} - x \right)}{\sqrt{\sin \left(\frac{\pi}{2} - x \right) + \cos \left(\frac{\pi}{2} - x \right)}} \, dx
\]

\[
= \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x + \sin x}} \, dx
\]

Adding equations (1) and (2), we get

\[
2I = \int_0^{\pi/2} \frac{1}{\sqrt{x}} \, dx = \int_0^{\pi/2} \frac{\pi}{2} - 0 = \frac{\pi}{2}
\]

Hence \(I = \frac{\pi}{4} \).

4. Using \(\int_a^0 f(x) \, dx = \int_0^a f(a - x) \, dx \)

\(I = -I \Rightarrow I = 0 \)

5. \(I = \int_0^1 (1 - x) \, dx \) (replacing \(x \) by \(1 - x \))

\[
= \int_0^1 (x^n - x^{n+1}) \, dx
\]

\[
= \left[\frac{x^{n+1}}{n+1} - \frac{x^{n+2}}{n+2} \right]_0^1
\]
\[\frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{(n+1)(n+2)} \]

6. \(f(x)f(a-x) = 1 \Rightarrow f(a-x) = \frac{1}{f(x)} \)

Now, \(I = \int_0^a \frac{dx}{1 + f(x)} \)

\[= \int_0^a \frac{dx}{1 + f(a-x)} \]

\[= \int_0^a \frac{f(x)dx}{1 + f(x)} \]

\[\Rightarrow 2I = \int_0^a \frac{1 + f(x)}{1 + f(x)} \ dx = a \Rightarrow I = a/2 \]

7. \(I = \int_0^{\pi/2} \sin 2x \log \tan x \ dx \)

\[= \int_0^{\pi/2} \sin \left(\frac{\pi}{2} - x \right) \log \tan \left(\frac{\pi}{2} - x \right) \ dx \]

\[= \int_0^{\pi/2} \sin 2x \log \tan x \ dx = -I \]

\[\Rightarrow 2I = 0 \]

\[\Rightarrow I = 0 \]

8. Let \(I = \int_0^{\pi} \frac{x^2}{x^2 + a^2} \ dx, \ a > 0 \)

\[\therefore I = \int_0^{\pi} \frac{x}{x^2 + a^2} \ dx \]

\[\Rightarrow I = \int_0^{\pi} \frac{x}{x^2 + a^2} \ dx \]

Adding equations (1) and (2), we get \(2I = 4 \int_0^{\pi/2} \cos^2 x \ dx \)

\[= 4 \left(\frac{1}{2} \right) \left(\frac{\pi}{2} \right) = \pi \]

\[\Rightarrow I = \frac{\pi}{2} \]

9. Let \(I = \int_0^\infty \frac{x \sin x \ dx}{1 + \cos^2 x} \)

\[\Rightarrow I = \int_0^\infty \frac{(\pi - x) \sin x \ dx}{1 + \cos^2 x} \]

Adding (1) and (2), we get \(2I = \pi \int_0^\infty \frac{\sin x \ dx}{1 + \cos^2 x} \)

or \(I = -\frac{\pi}{2} \int_1^{\infty} \frac{dt}{1 + t^2} = -\frac{\pi}{2} \left[\tan^{-1} t \right]_1^{-1} \)

[Putting \(\cos x = t, \ -\sin x \ dx = dt \)]

\[= -\frac{\pi}{2} \left[\tan^{-1} (-1) - \tan^{-1} 1 \right] = \frac{\pi^2}{4} \]

10. \(I_1 = \int_0^\pi f(\sin^2 x + \cos^2 x) \ dx \)

Adding \(2I = \pi \int_0^\pi f(\sin^2 x + \cos^2 x) \ dx \)

\[= 2\pi \int_0^{\pi/2} f(\sin^2 x + \cos^2 x) \ dx \]

\[\Rightarrow I_1 = \pi \int_0^{\pi/2} f(\sin^2 x + \cos^2 x) \ dx = \pi I_2 \]

11. \(I = \int_0^\pi \log(1 + \cos x) \ dx = \int_0^\pi \log \left(\frac{2\cos^2 \frac{x}{2}}{2} \right) \ dx \)

\[= \int_0^\pi \left[\log 2 + \log \cos \frac{x}{2} \right] \ dx = \pi \log 2 + 2 \int_0^\pi \log \cos \frac{x}{2} \ dx \]

\[= \pi \log 2 + 2 \times 2 \int_0^{\pi/2} \log \cos t dt, \ where \ t = \frac{x}{2} \ and \ dx = 2 dt \]

\[= \pi \log 2 + 4 \times \left(-\frac{1}{2} \log 2 \right) = -\pi \log 2 \]

12. \(I = \int_0^{\pi/2} \left(\sin^{-1} x \right) \ dx \)

\[= \left[\left(\sin^{-1} x \right)(\log x) \right]_0^{\pi/2} - \int_0^{\pi/2} \frac{1}{\sqrt{1 - x^2}} \log x \ dx \]

\[= 0 - \lim_{x \to 0} \sin^{-1} x (\log x) \]

\[= -\int_0^{\pi/2} \frac{1}{\sqrt{1 - \sin^2 \theta}} \log \sin \theta \cos \theta \ d\theta \]

\[= -\lim_{x \to 0} \log x \ x - \int_0^{\pi/2} \log \sin \theta \cos \theta \ d\theta = \frac{\pi}{2} \log 2 \]

Exercise 8.4

1. Let \(I = \int_{-\pi/2}^{\pi/2} \sin^2 x \cos^2 x (\sin x + \cos x) \ dx \)

\[= \int_{-\pi/2}^{\pi/2} \sin^3 x \cos^2 x \ dx - \int_{-\pi/2}^{\pi/2} \sin^2 x \cos^3 x \ dx \] (1)

Since \(\sin^3 x \cos^2 x \) is an odd function and \(\sin^2 x \cos^3 x \) is an even function, therefore \(\int_{-\pi/2}^{\pi/2} \sin^3 x \cos^2 x \ dx = 0 \)

and, \(\int_{-\pi/2}^{\pi/2} \sin^2 x \cos^3 x \ dx = 2 \int_0^{\pi/2} \sin^2 x \cos^3 x \ dx \).

Therefore, \(I = 2 \int_0^{\pi/2} \sin^2 x \cos^3 x \ dx \)

\[= 2 \int_0^{\pi/2} t^2 (1 - t^2) \ dt \]

\[= 2 \int_0^1 (t^2 - t^4) \ dt = 2 \left[\frac{1}{3} - \frac{1}{5} \right] = \frac{4}{15} \]

2. \(I = \int_{-1}^{1} \frac{x^3 + |x| + 1}{x^2 + 2 |x| + 1} \ dx \)
\[I = \int_{-\pi/2}^{\pi/2} [\cos^3 (t + 2\pi)] dt \\
= \int_{-\pi/2}^{\pi/2} [t^2 + \cos^2 t] dt \\
= 0 + 2 \int_{0}^{\pi/2} \cos^2 t \ dt \]
\[= 0 + 2 \int_{0}^{\pi/2} 1 + \cos 2t \ dt \\
= \frac{\pi}{2} + 0 = \frac{\pi}{2} \\
\]

Exercise 8.5

1. We have \(f(x) = \sqrt{1 - \cos 2x} = \sqrt{2 \sin^2 x} = \sqrt{2} |\sin x| \)
 Now \(f(x + \pi) = \sqrt{2} |\sin(x + \pi)| = \sqrt{2} |\sin x| = f(x) \)
 i.e., \(f(x) \) is periodic function with period \(\pi \)
 \[\int_{0}^{2\pi} \sqrt{1 - \cos 2x} \ dx \\
= \int_{0}^{\pi} \sqrt{2} |\sin x| \ dx \\
= 100\sqrt{2} \int_{0}^{\pi} \sin x \ dx \\
= 100\sqrt{2} [-\cos x]_{0}^{\pi} = -200 \sqrt{2} \\
\]
 Since \(\cos^2 x \) is a periodic function with period \(\pi \). Therefore, so is \(f(\cos^2 x) \).
 Hence, \(\int_{0}^{\pi} f(\cos^2 x) dx = n \int_{0}^{\pi} f(\cos^2 x) dx \Rightarrow k = n. \)

2. Let, \(I = \int_{0}^{\pi} (|\cos x| + |\sin x|) dx \)
 \[= \int_{0}^{\pi} (|\cos x| + |\sin x|) dx + \int_{\pi}^{2\pi} (|\cos x| + |\sin x|) dx \\
= 2n \int_{0}^{\pi/2} (|\cos x| + |\sin x|) dx + \int_{0}^{\pi/2} (|\cos x| + |\sin x|) dx \\
= 2n \int_{0}^{\pi/2} (|\cos x| + |\sin x|) dx + \int_{0}^{\pi/2} (\cos x + |\sin x|) dx \\
= 4n + \sin t - \cos t + 1 \\
\]

3. Let, \(I = \int_{0}^{\pi} (e^x + x) dx \\
= \int_{0}^{\pi} e^{x} e^x dx + \int_{0}^{\pi} e^{x} x dx \\
= 2n \int_{0}^{\pi/2} e^x x dx + \int_{0}^{\pi/2} e^x x dx \\
= 2n \int_{0}^{\pi/2} e^x x dx + \int_{0}^{\pi/2} e^x \sin x dx \\
= 4n + \sin t - \cos t + 1 \\
\]

4. \(\int_{0}^{\pi} e^{2x} (\cos x + \sin x) dx \\
= \int_{0}^{\pi} e^{2x} (\cos x + \sin x) dx \\
= 20 \int_{0}^{\pi/2} e^{2x} (\cos x + \sin x) dx (\text{has period \(1/2\)}) \\
= 20 \int_{0}^{\pi/2} e^{2x} dx \text{, for } x \in (0, 1/2), \{2x\} = 2x \\
= 10(e^{2x})_{0}^{\pi/2} \\
= 10(e-1) \\
\]

5. \(f(x + a) + f(x) = 0 \)
 \[\Rightarrow f(x + 2a) + f(x + a) = 0 \]
 \[\Rightarrow f(x) = f(x + 2a) \]
\[f(x) \text{ is periodic with period } 2a. \]

Since \(\int_b^{b+2a} f(x) \, dx \) is independent of \(b \), then \(c \) must be \(k(2a) \) where \(k \in \mathbb{N} \).

Hence, least positive value of \(c \) is \(2a \).

Exercise 8.6

1. \[L = \lim_{x \to 4} \int_4^x \frac{4(t-f(t)) \, dt}{x-t} = \lim_{x \to 4} \int_4^x \frac{4(t-f(t)) \, dt}{x-t} \quad (0/0 \text{ form, using L'Hôpital's Rule}) \]

\[\Rightarrow L = \lim_{x \to 4} \frac{4x-f(x)}{x-4} = 16 - f(4) \]

2. Given limit is of the form \(\frac{0}{0} \)

Then by L'Hôpital's Rule,

\[\text{Given limit } \lim_{x \to 0} \int_x^0 \cos t^2 \, dt = \lim_{x \to 0} \frac{\cos x^2}{1} = 1. \]

3. \(f(x) = \int_0^x (t^2 - 1)(t - 2) \, dt \)

\[\Rightarrow f'(x) = x(x-1)(x-2) = 0 \]

\[\Rightarrow x = 0, 1, 2 \]

At \(x = 0 \) and \(2 \), \(f'(x) \) changes sign from -ve to +ve.

Hence, \(x = 0 \) and \(2 \) are points of minima.

4. \[g(x) = \int_0^x \frac{t^2}{1+t^4} \, dt \]

\[\Rightarrow g'(x) = \frac{x}{1+x^4} = \frac{g'(2)}{17} \]

Now \(f(x) = e^{g(x)} \)

\[\Rightarrow f''(2) = e^g(2) \cdot \frac{2}{17} \]

5. \(f(x) = \frac{\sin \sqrt{\theta}}{\cos^2 x} - \frac{\sin \sqrt{\theta}}{\cos x} \)

\[\Rightarrow f'(x) = \sin x \left[\frac{\sin \sqrt{\theta} - 2x - \sqrt{\theta}}{1 + \cos^2 \theta} \right] \]

\[\Rightarrow f' \left(\frac{\pi}{2} \right) = \pi \]

6. \(y|_{x=1} = 0, \frac{dy}{dx} = \frac{1}{\sqrt{1+x^6}} - \frac{3x^2}{\sqrt{1+x^4}} - \frac{1}{\sqrt{1+x^4}} - 2x \)

\[\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{2}} \]

\[\Rightarrow \text{Required equation is } y\sqrt{2} = x - 1. \]

7. \(\int_{\pi/3}^x \sqrt{3 - \sin^2 t} \, dt + \int_0^\pi \cos t \, dt = 0 \)

Differentiating both sides w.r.t. \(x \) then

\[\frac{d}{dx} \left[\int_{\pi/3}^x \sqrt{3 - \sin^2 t} \, dt \right] + \frac{d}{dx} \int_0^\pi \cos t \, dt = 0 \]

\[\Rightarrow \sqrt{3 - \sin^2 \theta} + \cos y \frac{dy}{dx} = 0 \]

\[\Rightarrow \frac{dy}{dx} = -\frac{\sqrt{3 - \sin^2 \theta}}{\cos y} \]

Exercise 8.7

1. \(1 \leq x \leq 3 \)

\[\Rightarrow 1 \leq x^2 \leq 9 \]

\[\Rightarrow 4 \leq x^2 + 3 \leq 12 \]

\[\Rightarrow 2 \leq \sqrt{x^2 + 3} \leq 2 \sqrt{3} \]

\[\Rightarrow 2(3-1) \leq \int_1^{\sqrt{3 + x^2}} \, dx \leq 2 \sqrt{3} \]

\[\Rightarrow 4 \leq \int_1^{\sqrt{3 + x^2}} \, dx \leq 4 \sqrt{3} \]

2. \(0 < x < 1, x^2 > x^3 \)

\[\Rightarrow 2x^3 > 2x^2 \]

\[\Rightarrow \int_0^{x^3} \, dx > \int_0^{x^2} \, dx \]

Hence, \(I_1 \geq I_2 \)

Also, \(1 < x < 2, x^2 < x^3 \)

\[\Rightarrow 2x^2 < 2x^3 \]

\[\Rightarrow \int_0^{x^2} \, dx < \int_1^{x^3} \, dx \]

\[\Rightarrow I_3 < I_4 \]

3. \(I_1 = \int_0^{\pi/2} \cos(x) \, dx = \int_0^{\pi/2} \cos^2(x) \, dx \)

\[I_2 = \int_0^{\pi/2} \sin(x) \, dx \]

\[I_3 = \int_0^{\pi/2} \cos(x) \, dx \]

\[I_4 = \int_0^{\pi/2} \cos^2(x) \, dx \]

Let \(f_1(x) = \cos(x) \)

\[f_2(x) = \sin(x) \]

\[f_3(x) = \cos(x) \]

Fig. 8.8.1

From Fig. 8.8.1 it is clear that the area under \(f_1(x) \) is the largest and that under \(f_3(x) \) is the least.

\[\therefore I_1 > I_2 > I_3 \]

4. \(0 < x^3 < x^2 \)

\[\Rightarrow x^2 - x^3 < 2x^2 \]

\[\Rightarrow -2x^2 < -x^3 < -x^2 \]
\[4 - 2x^2 < 4 - x^2 - x^3 < 4 - x^2 \]
\[\Rightarrow \sqrt{4 - 2x^2} < \sqrt{4 - x^2 - x^3} < \sqrt{4 - x^2} \]
\[\Rightarrow \frac{1}{\sqrt{4 - x^2}} < \frac{1}{\sqrt{4 - x^2 - x^3}} < \frac{1}{\sqrt{4 - x^2}} \]
\[\Rightarrow \int_0^{1/\sqrt{4-x^2}} \frac{1}{\sqrt{4 - x^2 - x^3}} dx < \int_0^{1/\sqrt{4-x^2}} \frac{1}{\sqrt{4 - x^2}} dx \]
\[\Rightarrow \sin^{-1} \left(\frac{x}{2} \right) \bigg|_0^1 < \int_0^{1/\sqrt{4-x^2}} \frac{dx}{\sqrt{4 - x^2 - x^3}} < \frac{\pi}{4\sqrt{2}} \]
\[\Rightarrow \frac{\pi}{6} < \int_0^{1/\sqrt{4-x^2}} \frac{dx}{\sqrt{4 - x^2 - x^3}} < \frac{\pi}{4\sqrt{2}} \]

Exercise 8.8

1. \[\int_1^2 [x^2 + \{x\}]dx \]
 \[= \int_0^{5/2} [x^2 + x + 1]dx + \int_0^{1} [x^2 + x]dx \]
 \[= \frac{\pi^2}{2} - \frac{5}{2} \]

2. Let \(x = n + f, \forall \, n \in I \) and \(0 \leq f < 1 \), \(\therefore \{x\} = n \)
 \[\int_0^\pi [t] dt = \int_0^1 [t] dt + \int_1^2 [t] dt + \int_2^3 [t] dt + \cdots + \int_n^{n + f} [t] dt \]
 \[= 0 + 1 \int_1^2 dt + 2 \int_2^3 dt + \cdots + n \int_n^{n + f} dt \]
 \[= 2 \left(\frac{\pi^2}{2} - \frac{n^2}{2} + nf \right) \]

3. \(\forall \, x \in [0, \infty), \, ne^{-x} \in (0, n] \)
 - If \(0 < ne^{-x} < 1 \) \(\Rightarrow \exists \, x \in (n \ln n, \infty) \)
 - If \(1 \leq ne^{-x} < 2 \) \(\Rightarrow \exists \, x \in (n \ln n/2, \ln n) \)
 - If \(2 \leq ne^{-x} < 3 \) \(\Rightarrow \exists \, x \in (n \ln 3, \ln n/2) \)
 - \(\cdots \)
 - If \(n - 1 \leq ne^{-x} < n \) \(\Rightarrow \exists \, x \in \left(0, \frac{n}{n-1}\right) \)

4. \[\int_0^{2\pi} [\cot^{-1} x]dx \]
 \[= \int_0^{\pi/2} [\cot^{-1} x]dx + \int_{\pi/2}^{\pi} [\cot^{-1} x]dx + \int_\pi^{2\pi} [\cot^{-1} x]dx \]
 (verify that \(\cot 2 > -\pi/2 \))
 \[= 2 \int_0^{\pi/2} [\cot^{-1} x]dx + \int_0^{\pi} [\cot^{-1} x]dx + \int_{\pi}^{2\pi} [\cot^{-1} x]dx \]
 \[= 2 \left(\cot 2 - \frac{\pi}{2} \right) + (\cot 2 - \cot 2) = \pi + 2 \cot 1 + \cot 2 \]

5. Given \(\int_b^0 \frac{e^{-y}dy}{1 + t + t^2} \)
 \(\Rightarrow \frac{e^{-y}}{1 + t + t^2} \) \(\Rightarrow dt = -dy \)
 \[\Rightarrow \int_b^{e^{-y}} \frac{e^{-y}dy}{1 + t + t^2} = \int_0^{e^{-y}} \frac{e^{-y}}{1 + t + t^2} dy \]
 \[= -ae^{-b} \]

6. Given \(f(x) = \int_0^x \log \frac{1}{1 + t + t^2} dt \)
 \[= \int_0^x \frac{1}{1 + t + t^2} \log t dt \]
 Let \(y = \frac{1}{1 + t + t^2} \)
 \[\Rightarrow dy = -\frac{dt}{t^2} \]
 \[\Rightarrow f\left(\frac{1}{x}\right) = \int_0^{\frac{1}{x}} \frac{1}{1 + \frac{1}{x} + \frac{1}{x^2}} \log \left(\frac{1}{y^2}\right) dy \]
 \[= \frac{x}{1 + y + y^2} dy = f(x) \]

7. We have
 \[f\left(\frac{1}{x}\right) + x^2 f(x) = 0 \Rightarrow f(x) = -\frac{1}{x^2} f\left(\frac{1}{x}\right) \]
\[I = \int_{\sin \theta}^{\cos \theta} f(x) \, dx = \int_{\sin \theta}^{\cos \theta} -\frac{1}{x} f\left(\frac{1}{x}\right) \, dx, \]

\[\text{put } \frac{1}{x} = t \implies -\frac{1}{x^2} \, dx = dt \]

\[\Rightarrow I = \int_{\sin \theta}^{\cos \theta} f(t) \, dt = -\int_{\cos \theta}^{\sin \theta} f(t) \, dt = -I \implies I = 0 \]

8. Put \(x + 1 = t \) in first integral

\[\int_{1}^{e} \frac{e^t}{t} \, dt + \int_{1}^{e} \frac{x^2 - 2}{x} \, dx \]

\[= \int_{1}^{e} \frac{e^t}{t} \, dt + \int_{1}^{e} x \log x \, dx \]

\[= \left[\frac{e^t}{x} \log x \right]_{1}^{e} \int_{1}^{e} x \log x \, dx + \int_{1}^{e} x \log x \, dx \]

\[= e^2 - 2 \]

9. \(I_n = \int_{0}^{\infty} (x^2)^n \, dx \)

\[\text{put } x^2 = t \implies x \, dx = dt/2 \]

\[\Rightarrow I_n = \frac{1}{2} \int_{0}^{\infty} t^n e^{-t} \, dt \]

\[= \frac{1}{2} \left[n! - \int_{0}^{\infty} t^n e^{-t} \, dt \right] \]

\[= \frac{n}{2} \int_{0}^{\infty} t^n e^{-t} \, dt = n I_{n-1} \]

\[\Rightarrow I_{n-1} = (n-1) I_{n-2} \]

\[\Rightarrow I_n = n! I_0 = n! \left(\frac{1}{2} \right) \int_{0}^{\infty} t^n e^{-t} \, dt = n! \left(\frac{1}{2} \right) \frac{n!}{2} \]

\[\Rightarrow I_{n,n} = \frac{\pi}{2} \int_{0}^{\sin x} (\sin x \cos^n x) \, dx \]

\[= \frac{m-1}{n+1} \int_{0}^{\sin x} \cos^{m-2} x \cos^n x \, dx = \frac{m-1}{n+1} \int_{0}^{\sin x} \sin^{m-2} x \cos^n x \, dx \]

\[= \frac{m-1}{n+1} I_{m-2,n} - \frac{m-1}{n+1} I_{m,n} \]

\[\Rightarrow \frac{1}{n+1} I_{m,n} = \frac{m-1}{n+1} I_{m-2,n} \]

\[\Rightarrow I_{m,n} = \frac{m-1}{m+n} I_{m-2,n} \]

\[\Rightarrow I_{m,n} = \frac{m-1}{m+n} \left(\frac{m-3}{m+n-2} \right) \left(\frac{m-5}{m+n-4} \right) \ldots I_{0,n} \]

according as \(m \) is even or odd

\[I_{0,n} = \int_{0}^{\sin x} x \, dx \text{ and } I_{1,n} = \int_{0}^{\sin x} x \cos^n x \, dx = \frac{1}{n+1} \]

\[\Rightarrow I_{m,n} = \frac{(m-1)(m-3)(m-5)\ldots(n-1)(n-3)(n-5)\ldots\pi}{(m+n)(m+n-2)(m+n-4)\ldots} \]

\[\text{when both } m, n \text{ are even} \]

\[\frac{(m-1)(m-3)(m-5)\ldots(n-1)(n-3)(n-5)\ldots}{(m+n)(m+n-2)(m+n-4)\ldots} \]

\[\text{otherwise} \]

Chapter 9

Exercise 9.1

1. The line \(y = 4x \) meets \(y = x^3 \) at \(4x = x^3 \).

\[\therefore x = 0, 2, -2 \implies y = 0, 8, -8 \]

\[\Rightarrow A = \int_{0}^{2} (4x - x^3) \, dx = \left(2x^2 - \frac{x^4}{4} \right)_{0}^{2} = 4 \text{ sq. units} \]

![Fig. S-9.1](image-url)
2.

Fig. S-9.2

Required area = \[\int_{-2}^{1} (x + 2) \, dx + \int_{-1}^{0} x^2 \, dx \]

\[= \left[\frac{x^2}{2} + 2x \right]_{-1}^{1} + \left[\frac{x^3}{3} \right]_{-1}^{0} \]

\[= \left(\frac{1}{2} - 2 \right) - (2 - 4) + \left(0 + \frac{1}{3} \right) \]

\[= \frac{5}{6} \text{ sq. units.} \]

3. The given curve is

\[y = \begin{cases} \sqrt{4-x^2}, & 0 \leq x < 1 \\ \sqrt{3x}, & 1 \leq x \leq 3 \end{cases} \]

Obviously, the curve is the arc of the circle \(x^2 + y^2 = 4 \) (1)

between \(0 \leq x < 1 \) and the arc of parabola \(y^2 = 3x \) (2)

between \(1 \leq x \leq 3 \)

Required area = shaded area

= Area \(OABCO + \text{Area } CBDECB \)

Fig. S-9.3

\[= \int_{0}^{1} \sqrt{4-x^2} \, dx + \int_{1}^{3} \sqrt{3x} \, dx \]

\[= \left[\frac{1}{2} x \sqrt{4-x^2} + \frac{4}{2} \sin^{-1} \left(\frac{x}{2} \right) \right]_{0}^{1} + \left[\frac{\sqrt{3}}{3} \frac{x^{3/2}}{3/2} \right]_{1}^{3} \]

\[= \left(\frac{\sqrt{3}}{2} + \frac{\pi}{3} \right) + \frac{2}{3} (9 - \sqrt{3}) \]

\[= \frac{1}{6} (2\pi - \sqrt{3} + 36) \text{ sq. units.} \]

4.

Fig. S-9.4

Required area = \[\int_{0}^{\pi/2} |\sin x - \cos x| \, dx \]

\[= 2 \int_{0}^{\pi/4} (\cos x - \sin x) \, dx \]

\[= 2 \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1 \right] \]

\[= 2 \left(\sqrt{2} - 1 \right) \text{ sq. units} \]

5.

Fig. S-9.5

The required area is shown by shaded portion in the figure.

The required area is \(A = \int_{-\pi/2}^{\pi/2} \left| \sin y \right| \, dy \times \frac{\pi}{2} \)

\[= 2 \text{ sq. units.} \]

6.

Fig. S-9.6

\[y = \tan^{-1} x \]

\[y = \cot^{-1} x \]
Integrating along x-axis.

\[A = \int_0^1 \left(\cot^{-1} x - \tan^{-1} x \right) \, dx \]

\[= \int_0^{\frac{\pi}{2}} \left(-2 \tan^{-1} x \right) \, dx \]

Integrating along y-axis, we get

\[A = 2 \int_0^{\frac{\pi}{4}} x \, dy = 2 \int_0^{\frac{\pi}{4}} \tan y \, dy = \left[\log(\sec y) \right]_0^{\frac{\pi}{4}} \]

\[= \log 2 \text{ sq. units} \]

7. Common area = area of circle – area of ellipse

\[= \pi a^2 - \pi ab \]

\[= \pi a(a - b) \text{ sq. units} \]

which is clearly an area of ellipse whose semi-axis are a and $a - b$.

8.

![Diagram](image)

From the figure, required area = area of shaded region

\[= 1 + 1 + 1 + 1 = 4 \text{ sq. units} \]

Chapter 10

Exercise 10.1

1. \[\frac{d^2 y}{dx^2} = \left[1 + \left(\frac{dy}{dx} \right)^4 \right]^{5/3} \]

\[\Rightarrow \left(\frac{d^2 y}{dx^2} \right)^3 = \left[1 + \left(\frac{dy}{dx} \right)^4 \right]^5 \]

Hence, the order is 2 and the degree is 3.

2. \[\frac{d^3 y}{dx^3} = x \ln \left(\frac{dy}{dx} \right) \]

Clearly, the order is 3 and the degree is not defined due to

\[\ln \left(\frac{dy}{dx} \right) \]

term.

3. \[\left(\frac{d^3 y}{dx^3} \right)^3 + 3 \left(\frac{d^2 y}{dx^2} \right)^2 + \sin x = 2 \cos x \]

Clearly, order is 4 and degree is 3.

4. We have \[\left(\frac{d^3 y}{dx^3} \right)^{2/3} + 4 - \frac{2}{3} \frac{d^3 y}{dx^3} + \frac{5}{3} \frac{dy}{dx} = 0 \]

\[\Rightarrow \left(\frac{d^3 y}{dx^3} \right)^2 = \left[3 \frac{d^2 y}{dx^2} - 5 \frac{dy}{dx} - 4 \right]^3 \]

Clearly, it is a differential equation of degree 2 and order 3.

5. The given equation when expressed as a polynomial in derivative is

\[a^2 \left(\frac{d^2 y}{dx^2} \right)^2 = \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^3 \]

Clearly, it is a second order differential equation of degree 2.

Exercise 10.2

1. Equation of such parabolas is given by $y = ax^2 + bx + c$.

Here, we have three effective constants, so it is required to differentiate three times.

\[y = ax^2 + bx + c \]

\[\Rightarrow \frac{dy}{dx} = 2ax + b \]

\[\Rightarrow \frac{d^2 y}{dx^2} = 2a \]

\[\Rightarrow \frac{d^3 y}{dx^3} = 0 \text{, which is the required differential equation.} \]

2. \[y = Ae^{2x} + Be^{-2x} \]

\[\Rightarrow \frac{dy}{dx} = 2Ae^{2x} - 2Be^{-2x} \]

\[\Rightarrow \frac{d^2 y}{dx^2} = 4Ae^{2x} + 4Be^{-2x} = 4(Ae^{2x} + Be^{-2x}) \]

\[\Rightarrow \frac{d^3 y}{dx^3} = 4y, \text{ which is the required differential equation.} \]

3. All such lines are given by $y = mx + c$.

Here, we have two effective constants m and c, so it is required to differentiate twice.

\[y = mx + c \]

\[\Rightarrow \frac{dy}{dx} = m \]

\[\Rightarrow \frac{d^2 y}{dx^2} = 0 \]

4. Equation of such ellipses is given by \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. \]

(1)
Here we have two effective constants.

Diff. equation (1) w.r.t. \(x \), we get

\[
\frac{2x}{a^2} + \frac{2yy'}{b^2} = 0
\]

or \(\frac{x}{a^2} + \frac{yy'}{b^2} = 0 \) \hspace{1cm} (2)

Diff. equation (2) w.r.t. \(x \), we get

or \(\frac{1}{a^2} + \frac{yy''}{b^2} + \frac{y'^2}{b^2} = 0 \) \hspace{1cm} (3)

Eliminating \(a^2 \) and \(b^2 \) from equations (2) and (3), we get

\[
x = \frac{yy'}{yy'' + y'^2}
\]

or \(x(yy'' + y'^2) = yy' \)

5. Differentiating the given equation, we get

\[
\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1
\] \hspace{1cm} (1)

\[
\frac{2x}{a^2 + \lambda} + \frac{2y \frac{dy}{dx}}{b^2 + \lambda} = 0
\]

\[
\Rightarrow \frac{x^2}{a^2 + \lambda} + \frac{xy \frac{dy}{dx}}{b^2 + \lambda} = 0
\] \hspace{1cm} (2)

(1) - (2) gives

\[
\frac{y^2 - xy \frac{dy}{dx}}{b^2 + \lambda} = 1
\]

\[
\Rightarrow b^2 + \lambda = y^2 - xy \frac{dy}{dx}
\]

\[
\therefore a^2 + \lambda = \frac{x^2 \frac{dy}{dx} - xy}{\frac{dy}{dx}}
\]

Eliminating \(\lambda \), we get

\[
a^2 - b^2 = \frac{x^2 \frac{dy}{dx} - xy}{\frac{dy}{dx}} - y^2 + xy \frac{dy}{dx}
\]

Exercise 10.3

1. The given equation can be rewritten as

\[
\int \frac{\sec^2 x}{\tan x} \, dx + \int \frac{\sec^2 y}{\tan y} \, dy = \log c
\]

\[
\Rightarrow \log \tan x + \log \tan y = \log c; \text{ where } c \text{ is an arbitrary positive constant}
\]

\[
\Rightarrow \tan x \tan y = c.
\]

2. \(y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right) \)

\[
\Rightarrow \int \frac{dx}{a + x} = \int \frac{dy}{y - ay^2} = \int \left(\frac{1}{y} + \frac{a}{1 - ay} \right) \, dy
\]

[By partial fractions]

Integrating, we get

\[
\log (a + x) + \log c = \log y - \log (1 - ay)
\]

where \(c \) is an arbitrary positive constant.

Thus, the solution can be written as \(\frac{y}{1 - ay} = c(a + x) \)

3. Given \(\frac{dy}{dx} = \frac{x + y + 1}{x + y - 1} \)

Putting \(x + y = v \), we have

\[
1 + \frac{dy}{dx} = \frac{dv}{dx}
\]

Hence, the given equation transforms to

\[
-1 + \frac{dv}{dx} = \frac{v + 1}{v - 1}
\]

\[
\Rightarrow \frac{dv}{dx} = \frac{2v}{v - 1}
\]

\[
\Rightarrow \int \frac{v - 1}{v} \, dv = \int 2dx
\]

\[
\Rightarrow 2x = v - \log v + \log c
\]

\[
\Rightarrow \log (vc) = v - 2x
\]

\[
\Rightarrow v = ce^{-2x}
\]

\[
\Rightarrow x + y = ce^{-2x}, \text{ where } c \text{ is an arbitrary constant.}
\]

4. \(\frac{dy}{dx} + yf'(x) = f(x) f'(x) \)

\[
\Rightarrow \frac{dy}{dx} = [f(x) - y] f'(x)
\]

Put \(f(x) - y = t \)

\[
\Rightarrow f'(x) - \frac{dt}{dx} = dt
\]

Then the given equation transforms to

\[
\Rightarrow f'(x) - \frac{dt}{dx} = tf'(x)
\]

\[
\Rightarrow (1-t)f'(x) = \frac{dt}{dx}
\]
3. Given equation is \[\frac{dy}{dx} = \frac{x + y \sin \left(\frac{y}{x}\right)}{x \sin \left(\frac{y}{x}\right)} \]

or \[\frac{dy}{dx} = \frac{1 + (y/x) \sin \left(\frac{y}{x}\right)}{\sin \left(\frac{y}{x}\right)} \]

Put \(y = vx \), then \[\frac{dy}{dx} = v + x \frac{dv}{dx} \]

And the given equation transforms to \[v + x \frac{dv}{dx} = \csc v + v \]

\[\Rightarrow \sin v \frac{dv}{dx} = dx/x \]

Integrating and replacing \(v \) by \(y/x \), we get \(\cos(y/x) + \log |x| = c, c \in R \)

4. \[y^2 dy + (x+y^2)dx = 0 \]

\[\Rightarrow y \frac{dy}{dx} = \frac{x + y^2}{y^2} \]

Let \(y^2 = t \) \[\Rightarrow 2y \frac{dy}{dx} = \frac{dt}{dx} \]

Equation (1) transforms to \[\frac{dt}{dx} = \frac{x + t}{t} \]

\[\Rightarrow \frac{dt}{dx} = 2 \left(\frac{x}{t} + 1 \right) \], which is homogeneous.

5. Here, \[\frac{dy}{dx} = \frac{2x - y + 1}{x + 2y - 3} \]

Cross multiplying, we get \[xdy + (2y - 3)dy = (2x + 1)dx - ydx \]

\[\Rightarrow (xdy + ydx) + (2y - 3)dy = (2x + 1)dx \]

Integrating, we get: \[xy + \frac{y^2}{2} - 3y = x^2 + x + c \]

Exercise 10.5

1. Given equation is linear and \(P = \cot x, Q = \sin x \)

\[\therefore \text{I.F.} = e^{\int \cot x \, dx} = e^{\log \sin x} = \sin x \]

Hence, the solution is \[y \sin x = \int \sin x \sin x \, dx + c \]

\[\Rightarrow y \sin x = \frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right] + c \]

\[\therefore y \sin x = \frac{1}{4} [2x - \sin 2x] + c \]

2. The given equation can be rewritten as
\[
\frac{dx}{dy} - 1x = (y+1)
\]

[linear, y as independent variable]

Here \(P = -1, Q = (y+1) \)

I.F. = \(e^{- \int P \, dy} = e^{-y} \)

Therefore, the solution is

\[
x e^{-y} = \int (y+1) e^{-y} \, dy + c
\]

\[
= -(y+1) e^{-y} - e^{-y} + c
\]

or

\[
x = ce^y - y - 2
\]

3. We have

\[
\frac{dy}{dx} + \frac{2x}{1-x^2} y = \frac{x}{\sqrt{1-x^2}}
\]

Here, \(P = \frac{2x}{1-x^2} \) and \(Q = \frac{x}{\sqrt{1-x^2}} \)

I.F. = \(e^{\int \frac{2x}{1-x^2} \, dx} = e^{\log(1-x^2)} \)

Therefore, the solution is

\[
\frac{y}{1-x^2} = \int \frac{x}{\sqrt{(1-x^2)}} \times \frac{1}{1-x^2} \, dx + c
\]

\[
= \frac{1}{\sqrt{1-x^2}} + c
\]

\[
\Rightarrow \quad y = \sqrt{1-x^2} + c (1-x^2)
\]

4. Given equation is

\[
\frac{dx}{dy} = \frac{2y \ln y + y - x}{y}
\]

or

\[
\frac{dx}{dy} + \frac{1}{y} x = (2 \ln y + 1)
\]

I.F. = \(y \) and solution is

\[
x y = \int (2 \ln y + 1) \, ydy + c
\]

\[
\Rightarrow \quad xy = y^2 \ln y + c
\]

exercise 10.6

1. Dividing by \(e^y \), we get

\[
e^{-y} \frac{dy}{dx} + e^{-y} \frac{1}{x} = \frac{1}{x^2}
\]

Putting \(e^{-y} = \nu \), we get

\[
\frac{\nu}{dx} + \frac{\nu}{x} = \frac{1}{x^2}
\]

or

\[
\frac{\nu}{dx} - \frac{1}{x} \nu = -\frac{1}{x^2} \quad \text{(linear)}
\]

I.F. = \(e^{- \int \frac{1}{x} \, dx} = e^{-\log x} = 1/x \)

Therefore, solution is

\[
\frac{y}{x} = \int \frac{1}{x^2} \, dx + c
\]

\[
\Rightarrow \frac{y}{x} = \frac{x^2}{2} + c
\]

\[
\Rightarrow e^{-x} = \frac{x^2}{2} + c
\]

2. The given equation can be expressed as

\[
\sec^2 y \frac{dy}{dx} + 2x \tan y = x^4,
\]

Put \(\tan y = z \) so that \(\sec^2 y \frac{dy}{dx} = \frac{dz}{dx} \)

Given equation transforms to

\[
\frac{dz}{dx} + 2xz = x^4 \]

which is linear in \(z \).

I.F. = \(e^{\int 2x \, dx} = e^{x^2} \)

Therefore, solution is given by

\[
z e^{x^2} = \int x^4 e^{x^2} \, dx + c
\]

(substitute for \(x^2 = t \) and then integrate by parts)

3. \[
\frac{dy}{dx} + \frac{xy}{(1-x^2)} = x \sqrt{y}
\]

Dividing by \(\sqrt{y} \), we have

\[
\frac{1}{\sqrt{y}} \frac{dy}{dx} + \frac{x}{(1-x^2)} \sqrt{y} = x
\]

(1)

Putting \(\sqrt{y} = \nu \), so \(\frac{1}{2\sqrt{y}} \frac{dy}{dx} = \frac{d\nu}{dx} \),

Then given equation transforms to

\[
\frac{d\nu}{dx} + \frac{x}{2(1-x^2)} \nu = \frac{1}{2} x
\]

(2)

I.F. = \(e^{\int \frac{x}{2(1-x^2)} \, dx} = e^{\frac{1}{4} \log|1-x^2|} \)

\[
= 1/(1-x^2)^{1/4}
\]

Therefore, the solution is
Integrating equation (2), we get
\[\frac{x^4}{4} + \frac{1}{3} \left(\frac{x}{y} \right)^3 = c \]
\[\Rightarrow 3x^4y^3 + 4x^4 = cy^3, \text{ which is the required solution.} \]

Exercise 10.8

1. Since subnormal is \(y \frac{dy}{dx} \)
we have, \(y \frac{dy}{dx} = ky \)
\[\Rightarrow \frac{dy}{y} = k \frac{dx}{x} \]
Integrating, we get
\[\log y = kx + \log c \text{ or } y = ce^{kx}. \]

2. Length of normal = \(y \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \)
and radius vector = \(\sqrt{x^2 + y^2} \)
\[\Rightarrow y^2 \left[1 + \left(\frac{dy}{dx} \right)^2 \right] = x^2 + y^2 \]
\[\Rightarrow \frac{dy}{dx} = \pm x \]
\[\Rightarrow y \frac{dy}{dx} + x \frac{dx}{dx} = 0 \]
\[\Rightarrow y^2 + x^2 = c. \]

3. \(y \frac{dy}{dx} + (x + x^2) dy = 0 \)
\[\Rightarrow (x \frac{dy}{dx} + y \frac{dx}{dx}) + x^2 \frac{dy}{dx} = 0 \]
\[\Rightarrow d(xy) + x^2 \frac{dy}{dx} = 0 \]
\[\Rightarrow \frac{d(xy)}{xy^2} + \frac{1}{y} \frac{dy}{dx} = 0 \]
Integrating, we get \(-\frac{1}{xy} + \log y = c \).

4. The given equation is \(xy^4 \frac{dx}{dx} + y \frac{dy}{dx} + x \frac{dy}{dx} = 0 \)
Dividing by \(y^4 \), we get
\[\frac{dy}{dx} \left(\frac{x}{y} \right) + \left(\frac{x}{y} \right)^2 d \left(\frac{x}{y} \right) = 0 \]
\[\Rightarrow \left(\frac{x}{y} \right)^2 d \left(\frac{x}{y} \right) = \frac{y - x \frac{dy}{dx}}{x \frac{dy}{dx} - y} \]
\[\Rightarrow \frac{dy}{dx} = \frac{y - x \frac{dy}{dx}}{x \frac{dy}{dx} - y} \]
\[\Rightarrow x \frac{dy}{dx} - y + \frac{y - x \frac{dy}{dx}}{x \frac{dy}{dx} - y} = 0 \]
Length of perpendicular \(QR \) upon the tangent from the foot of ordinate \(Q(x, 0) \) is
\[k = \left| \frac{x \frac{dy}{dx} - y + \frac{y - x \frac{dy}{dx}}{x \frac{dy}{dx} - y}}{\sqrt{1 + \left(\frac{dy}{dx} \right)^2}} \right| \]
\[1 + \left(\frac{dy}{dx} \right)^2 = \frac{y^2}{k^2} \quad \text{or} \quad \frac{dy}{dx} = \pm \sqrt{\frac{y^2 - k^2}{k^2}} \]

\[\int \frac{dy}{\sqrt{y^2 - k^2}} = \pm \int \frac{1}{k} \, dx \]

\[\log \left[y + \sqrt{y^2 - k^2} \right] = \frac{x}{k} + \log c \]

\[y + \sqrt{y^2 - k^2} = ce^{\pm \frac{x}{k}} \]

4. **Area of OBPO:** area of OPAP = \(m : n \)

![Fig. S-10.2](image)

\[xy \int_{x}^{y} \frac{dx}{x} = \frac{m}{n} \]

\[nxy = (m+n) \int_{x}^{y} dx \]

Differential w.r.t. \(x \), we get

\[n \left(x \frac{dy}{dx} + y \right) = (m+n) y \]

\[nx \frac{dy}{dx} = ny \implies \frac{m}{n} \frac{dx}{x} = \frac{dy}{y} \]

\[y = cx^{m/n} \]

\[x^2 + y^2 = cx \]

(Fig. S-10.2)

Differentiating w.r.t. \(x \), we get

\[2x + 2y \frac{dy}{dx} = c \]

Eliminating \(c \) between equations (1) and (2)

\[2x + 2y \frac{dy}{dx} = \frac{x^2 + y^2}{x} \quad \Rightarrow \quad \frac{dy}{dx} = \frac{y^2 - x^2}{2xy} \]

Replace \(\frac{dy}{dx} \) by \(-\frac{dx}{dy} \), we get

\[\frac{dx}{x^2 - y^2} = \frac{2xy}{y^2 - x^2} \]

This equation is homogeneous, and its solution gives the orthogonal trajectories as

\[y^2 = 4ax \]

(Fig. S-10.3)

\[\frac{dy}{dx} = 4a \]

Eliminating \(a \) from equations (1) and (2), we get

\[y^2 = 2y \frac{dy}{dx} \]

Replacing \(\frac{dy}{dx} \) by \(-\frac{dx}{dy} \), we get

\[y = 2 \left(-\frac{dx}{dy} \right) \frac{1}{x} \]

\[2x \frac{dx}{y} + y \frac{dy}{y} = 0 \]

Integrating each term, we get

\[x^2 + \frac{y^2}{2} = c \]

\[2x^2 + y^2 = 2c \]

which is the required orthogonal trajectories.

Exercise 10.9

1. Let \(N(t) \) denote the balance in the account at any time \(t \). Initially, \(N(0) = 500 \).

For the first four years, \(k = 0.085 \). Therefore,

\[\frac{dN}{dt} - 0.085N = 0 \]

Its solution is

\[N(t) = ce^{0.085t} \]

(0 ≤ \(t \) ≤ 4) \quad \text{(1)}

At \(t = 0 \), \(N(0) = 500 \), then from (1) \(5000 = ce^{0.085(0)} = c \)

and equation (1) becomes \(N(t) = 5000 e^{0.085t} \) \(\text{for} \ 0 \leq \ t \leq 4 \) \quad \text{(2)}

Substituting \(t = 4 \) into equation (2),

we find the balance after four years to be

\[N(4) = 5000 e^{0.085(4)} = 5000 (1.4404948) = 7024.74 \]

This amount also represents the beginning balance for the last three-year period.

Over the last three years, the interest rate is 9.25%

\[\therefore \quad \frac{dN}{dt} - 0.925N = 0 \quad \text{(4 ≤ \(t \) ≤ 7)} \]

Its solution is

\[N(t) = ce^{0.0925t} \]

(4 ≤ \(t \) ≤ 7) \quad \text{(3)}

At \(t = 4 \), \(N(4) = 7024.74 \), then from equation (3)

\[7024.74 = ce^{0.0925(4)} = c (1.4473755) \] or \(c = 4852.23 \)

then from equation (3)

\[N(7) = 4852.23 e^{0.0925(7)} = 4852.23 (1.910758) \]

Exercise 10.10

1.

![Fig. S-10.3](image)

Let us allow the water to flow for \(dt \) time.

We suppose that in this time the height of the water level reduces by \(dh \). Therefore,
\[\pi (2.5)^2 \, dh = 2.5 \sqrt{h} \pi (0.025)^2 \, dt \]

or \[\frac{dh}{dt} = -2.5 \times 10^{-4} \sqrt{h} \]

(negative signs denote that the rate of flow will decrease as \(t \) increases)

\[\int \frac{dh}{\sqrt{h}} = -2.5 \times 10^{-4} \int dt \]

\(\Rightarrow \) \[2 \sqrt{h} = -2.5 \times 10^{-4} \, t + c \]

At \(t = 0, h = 3 \) \(\Rightarrow c = 2 \sqrt{3} \)

Hence, for \(h = 0, t = \frac{2 \sqrt{3}}{2.5 \times 10^{-4}} = 8000 \sqrt{3} \) s.

2. Let \(x \) denote the population at a time \(t \) in years.

Then \(\frac{dx}{dt} \propto x \) \(\Rightarrow \frac{dx}{dt} = kx \), where \(k \) is a constant of proportionality

Solving \(\frac{dx}{dt} = kx \), we get \(\int \frac{dx}{x} = \int k \, dt \)

\(\Rightarrow \) \[\log x = kt + c \Rightarrow x = e^{kt} + e^c \]

where \(x_0 \) is the population at time \(t = 0 \).

Since it doubles in 50 years, at \(t = 50 \), we must have \(x = 2x_0 \)

Hence, \(2x_0 = x_0 e^{50k} \) \(\Rightarrow 50k = \log 2 \)

\(\Rightarrow k = \frac{\log 2}{50} \), so that \(x = x_0 e^{50t} \)

To find \(t \), when it triples, i.e., \(x = 3x_0 \)

\(\Rightarrow \) \[3x_0 = x_0 e^{50t} \]

\(\Rightarrow \) \[\log 3 = \frac{\log 2 \, t}{50} \]

\(\Rightarrow \) \[t = \frac{50 \log 3}{\log 2} = 50 \log_2 3 \]

3. Let \(T \) be the temperature of the substance at a time \(t \).

\[\frac{dT}{dt} = \alpha (T - 290) \]

\(\Rightarrow \) \[\frac{dT}{T - 290} = -k \, dt \]

(Negative sign because \(\frac{dT}{dt} \) is rate of cooling)

\(\Rightarrow \) \[\int \frac{dT}{T - 290} = -k \int dt \]

(1)

Integrating the L.H.S. between the limits, we get

\(T = 370 \) to \(T = 330 \) and the R.H.S. between the limits \(t = 0 \)

to \(t = 10 \), we get

\[\int_{370}^{330} \frac{dT}{T - 290} = -k \int_0^{10} \]

\(\Rightarrow \) \[\log (T - 290)_{370}^{330} = -kt_{10}^{10} \]

\(\Rightarrow \) \[\log 40 - \log 80 = -k \times 10 \]

\(\Rightarrow \) \[\log 2 = 10 \, k \]

\(\Rightarrow k = \frac{\log 2}{10} \]

(2)

Now integrating equation (1) between \(T = 370 \) and \(T = 295 \) and \(t = 0 \) and \(t = \tau \)

\[\int_{370}^{295} \frac{dT}{T - 290} = -k \int_0^\tau \]

\(\Rightarrow \) \[\log (T - 290)_{370}^{295} = -kt \]

\(\Rightarrow \) \[\log 16 = -kt \]

\(\Rightarrow \) \[t = \frac{\log 16}{k} \]

Hence from equation (2), we get

\[t = \frac{\log 16}{\log 2} \times 10 = 40 \]

i.e., after 40 min.