MODEL PAPER -1 CHEMISTRY

121.	A solution is prepared by adding	5 g of a solute '	K' to 45 g of solvent	'Y' what is the mas	ss per cent of the solute				
	1) 10% 2) 11 1	%	3)90%	(30111e Basic 4) 75%	concept of chemistry)				
122.	How many orbitals and electron	s are associated	d with $n = 4$?	1)1070	(Structure of Atom)				
	1) 32. 64 2) 16.	32	3) 4. 16	4) 8, 16	(
123.	An electron is in one of the 3d -	orbitals. what a	re the possible valu	ues of n. ℓ and m for	or this electron				
	(Structure of Atom)								
	1) n = 3, ℓ =0, m,=0		2) n=3, ℓ=1, m, =	-1, 0, +1	,				
	3) n=3, ℓ =2, m, = -2, -1, 0, +1, +2	2	4) n=3, ℓ=3, m, =	-3,-2-1, 0, +1,+2,+	·3				
124.	Which is the most electropositiv	e element ?	, t	(0	Classification of elements)				
	1) Na 2) Cu		3) Cs	4) Ca					
125.	25. According to molecular orbital theory, which of the following will not exist?								
	(Chemical B	onding & Molecula	ar structure)						
	1) H_{2}^{+} 2) Be_{2}^{-}		3) B ₂	4) C ₂					
126.	Which of the following species h	as unpaired elec	trons	(Chemical Bond	ling & Molecular structure)				
	1) N_2 2) F_2	_	3) O ⁻ ₂	4)O ²⁻ 2					
127.	What is the variation of Z with p	pressure ?	-		(States of Matter)				
	1) At very low pressures, all gases show $Z=1$ (2) At high pressures, all gases show $Z > 1$								
	3) At intermediate pressures, all gases show $Z < 1 = 4$) All of the above.								
			(n^2) (V = b) = DT	• .					
128.	The unit of a in van der waals	equation, (P+-,	$\frac{1}{\sqrt{2}} \int (v - nb) = nRI$	is	(States of Matter)				
	1) atm L^2 mol ⁻² 2) atm	L mol ⁻²	3) atm L mol ⁻¹	4) atm L ² m	10 1 -1				
120		oro giv	on holow:		CO · AH - 303 7k I ·				
129.	Two reactions	are giv	en below.	$O_{(\text{graphite})} + O_{2(g)} \rightarrow$	$CO_{2(g)}, \Delta I I = -393.7 \text{ KJ},$				
	$C_{(diamond)} \rightarrow C_{(draphite)}$; $\Delta H = -2.1 \text{ kJ}$ what quantity of diamond will give 800 kJ of heat on burning ?								
	(Thermodynamics)								
	1) 24.25 g 2) 15.2	24 g	3) 2 g	4) 12.12 g					
130.	The solubility product of BaCl,	is 3.2 x 10 ⁻⁹ , wha	at will be its solubili	ty in mol L ⁻¹ ?	(Equilibrium)				
	1) 4 x 10 ⁻³ 2) 3.2	x 10 ⁻⁹	3) 1 x 🕂 🖓 3	4) 1 x 10 ⁻⁹					
131.	Fluorine is best oxidising agent	because	∼ 3 ⁷	(4	Redox Reactions)				
	1) It is most electronegative		2) It has highest re	eduction potential					
	3) It has highest oxidation poten	tial	4) Thas smallest	size.					
132.	Which species is acting as a rec	ducing agent in t	he following reaction	on?					
	$14H^{+} + Cr_{2}O_{7}^{2-} + 3Ni \rightarrow$	• 2Cr ³⁺ + 7H ₂ O 🗲	3Ni ²⁺		(Redox Reactions)				
	1) Cr ₂ O ²⁻ , 2) Ni		3) H⁺	4) H ₂ O					
133.	Hydrolysis of SiCl, gives	S.	- /	/ 2 -	(Hydrogen)				
	1) Si(OH), 2) SiO	Cl A	3) SiO	4) H _a SiO ₄					
134.	The difference of water molecul	es in gypsum ar	d plaster of paris is	, 2 4	(S-Block elements)				
	5	A	1	1					
	1) $\frac{3}{2}$ 2) 2		3) $\frac{1}{2}$	4) 1 '					
125	Compete the following reactions		2	2					
155.	(i) SiO + 2NaOH \searrow X +H O	.							
	(ii) SiO + 4HE \rightarrow Y +2H O								
	(III) SI +2CH3CI $\xrightarrow{\text{SUPOWAGE}}$ Z				(P-Block elements)				
	1) X- Na_2SiO_3 , Y-SiF ₄ , Z-(CH ₃) ₂ S	SiCl ₂	2) X-H ₂ SiO ₃ , Y-SiF	$F_2, Z-CH_3SiCl_3$					
	3) X-Na ₂ SiO ₃ , Y-H ₂ SiO ₃ , Z-(CH ₃)₃SiCl	4) X-Na ₂ SiO ₃ , Y-H	$l_2 SiF_4$, Z-(CH ₃) ₂ SiC	l ₂				
136.	A type of zeolite used to conver	t alcohols direct	ly into gasoline is	0.7014 -	(P-Block elements)				
407	1) Zeolite A 2) Zeo	lite L	3) Zeolite Beta	4) ZSM - 5					
137.	In Lassaigne's test for N, S and	halogens, the o	ganic compound is	6 (Organic chemi	stry-some Basic Principle)				
	1) Fused with sodum		2) dissolved with sole	sodamide					
138	What is the carbon carbon bo	nd length in ben	4) Fuseu wiin caic	JUITI	(Hydro Carbona)				
150.	1) 1 20 $^{\circ}$ A and 1 31 $^{\circ}$ 2)1 3	10 lengti 11 ben. 80 0Δ	20102 (10) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	0 °Δ 4) 1 20 °Δ	(Hydro Carbons)				
					۲.				
139.	I he following reaction is known	$has C_6H_6 + CH_3C$	$G_{(anhy.)} \rightarrow C_6 H_5 CH$	I ₃ + HCI	(Hydro Carbons)				
	1) Wurtz - Fitting reaction		2) Friedel - Crafts	reaction					
	3) Rosenmund reaction		4) Sandmeyer rea	iction					
140.	Eutrophication causes			(Environmer	ntal Chemistry)				
	1) Increase in nutrients		2) Increase in diss	solved salts.AIM	ISTUTORIAL.IN				
	reduction in dissolved oxyger	ו	4) Reduction in wa	ater pollution.	(

WWW.AIMSTUTORIAL.IN

141.	The density of a metal which o	Si ystailises in DCC i	attice with unit cell edge	(Collid Stoto)	iu molar mass bug		
	$\begin{array}{c} \text{mol}^{-1} \text{ will be} \\ 1 \ 10 \ \text{q} \ \text{cm}^{-3} \\ \end{array} \qquad 2 \ 14$	1 2 a cm ⁻³	3) 6 15 a cm ⁻³	(Solid State) 4 0 32 a cm ⁻³			
142.	Which of the following will hav	/e same value of va	an't Hoff factor as that of	K.[Fe(CN).]?	(Solutions)		
	1) $AI_{c}(SO_{4})_{c}$ 2) AI_{c}		3) Al(NO ₂)	4) Al(OH)	(0010000)		
143.	The amount of chlorine evolve	ed by passing 2A o	f current in an aqueous s	olution of NaCl f	or 30 minutes is		
					(Electro Chemistry)		
	1) 2.64 g 2) 1.3	32 g	3) 3.62 g	4) 4.22 g			
144.	If 54 g of silver is deposited du	ring an electrolysis	reaction, how much alum	ninium will be dep	osited by the same		
	amount of electric current?	-	0) 07		(Electro Chemistry)		
115	1) 2.7 g 2) 4.5	5 g	3) 27 g	4) 5.4g	(Ohamiaal Kinatiaa)		
145.	1)Evothermic reaction 2) Er	dothermic reaction	e_{1}	(1) None of the	(Cnemical Kinetics)		
146	The activation energy in a che	emical reaction is d	efined as		(Chemical Kinetics)		
110.	1) The difference in energies	of reactants and pr	oducts		(onemear raneaes)		
	2) The sum of energies of read	ctants and product	S				
	3) The difference in energy of	intermediate comp	plex with the average ene	ergy of reactants	and products		
	4) The difference in energy of	intermeidate comp	plex and the average ene	rgy of reactants			
147.	The separation of an emulsion	n into its constituer	nt liquids is known as		(Surface Chemistry)		
	1) Emulsification 2) Pr	rotection of colloid	3) Coagulation	Demulsificati	on		
148.	Which of the following slags is	s produced during e	extraction of iron?				
		0:0	(Genral Principle	s and Process of Is	olation of elements)		
140	1) $CaSIO_3$ 2) Fe	eSIU ₃ agant hassauss it h		4) ZNSIO ₃	(/- = (
149.	1) highest electron affinity	agent because it na	2) highest reduction not	еntial	lock Elements)		
	3) highest oxidation potential		4) lowest electron affinit	V			
150.	The correct order of acidity of	oxoacids of haloo	ens is	у (Р-В	lock Elements)		
	1) HCIO < HCIO ₂ < HCIO ₂ < F	ICIO,	2)HCIO, < HCIO, < HCI	0, < HClO			
	3) HCIO < HCIO ² < HCIO ³ < H	ICIO ¹ 2	4) $HCIO_{4}^{4} < HCIO_{2}^{3} < HC$	IO, < HCIO			
151.	The correct configuration of f-	block elements is		d- a)	nd -f-block elements)		
	1) (n - 2)f ¹⁻¹⁴ (n-1)d ⁰⁻¹ ns ²		2) (n-1)f ¹⁻¹⁴ (n-1)d ⁰⁻¹ ns ²				
	3) (n-3)f ¹⁻¹⁴ (n-2)d ⁰⁻¹ (n-1)s ²		4) (n-2) f^{0-1} (n-1) d^{0-1} ns ²				
152.	Which of the following comple	exes will have tetral	nedral shape?		lination Compounds)		
152	1) $[POCI_4]^2$ 2) $[POCI_4]^2$	′ɑ(UN) ₄]²² bromobutano rocu	3) $[NI(GN)_4]^2$	4) $[NICI_4]^2$	kanaa 8 Hala Aranaa)		
155.	1) Equimolar mixture of 1 and	2-hutene	2) Predominantly 2-bute	(naioAli	kanes & Haio Arenes)		
	3) Predominantly 1-butene	2 Butche	4) Predominantly 2-buty	ne			
454		Zndust	CH ₂ Cl , v alkaline	KMnO₄ , ⁊ –			
154.	Consider the following reactio	on Phenoi	anhyd. AlCl ₃	$\longrightarrow 2$. The pr	oduct Z IS		
		Ś		(Alcohols,)	Phenols and ethers)		
155	1) Benzaldenyde 2) Be	enzoic acid vieldo	3) Benzene	4) Toluene			
155.	in a set of the given reactions,		u a product C				
	$CH_3COOH + PCI_5 \rightarrow A \xrightarrow{C_6 n_6}{Anh.All}$	$\stackrel{s}{\underset{Cl_{3}}{\longrightarrow}} B \xrightarrow{C_{2}H_{5}MgBr}_{ether} \rightarrow B$	C. Product C would be	Aldehydes, Ketone	es & Carboxylic acids)		
		A CONTRACTOR		C_2H_5			
					-		
450	1) $CH_3CH(OH)C_2H_5$ 2) CF	H ₃ COC ₆ H ₅	$3) CH_{3}CH(OH)C_{6}H_{5}$	4) CH ₃ - C(OH)	C ₆ H ₅		
100.	b. What happens when a carboxylic acid is treated with lithium aluminium hydride?						
			with lithium aluminium hy	/dride?			
	(Aldehyde) 1) Aldehyde is formed 2) Pr	des, Ketones & Carbo rimary alcohol is fo	with lithium aluminium hy oxylic acids) rmed 3) Ketone is forme	/dride? d 4) Grianard re	agent is formed		
	(Aldehyde 1) Aldehyde is formed 2) Pr	des, Ketones & Carbo rimary alcohol is fo	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme	/dride? d 4) Grignard re	agent is formed		
157.	$(Aldehyde)$ 1) Aldehyde is formed 2) Pr $C_{6}H_{6} \xrightarrow{HNO_{3}}{H_{2}SO_{4}} P \xrightarrow{Sn/HCl} Q $	$\frac{\text{des, Ketones & Carbo}}{\text{rimary alcohol is for}}$	with lithium aluminium hy oxylic acids) rmed 3) Ketone is forme →S . The end product S ir	/dride? d 4) Grignard re n the given seque	eagent is formed ence of reactions is		
157.	(Aldehyde 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q -$ 1) Benzoic acid 2) Be	the formation of the f	with lithium aluminium hy oxylic acids) rmed 3) Ketone is forme →S . The end product S ir 3) Phenol	/dride? d 4) Grignard re n the given seque 4) Chlorobenze	eagent is formed ence of reactions is ene <i>(Amines)</i>		
157. 158.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q -$ 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv	typic acid is treated des, Ketones & Carbo rimary alcohol is for $\xrightarrow{\text{NaNO}_2}_{\text{HCI}} P \xrightarrow{\text{H}_3\text{PO}_2}_{\text{H}_2\text{O}}$ enzene /es	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme > S . The end product S ir 3) Phenol	/dride? d 4) Grignard re n the given seque 4) Chlorobenze	eagent is formed ence of reactions is ene (Amines) (Bio Molecules)		
157. 158.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q -$ 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv 1) An aldopentose and a nitrog	And the second	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme → S . The end product S ir 3) Phenol 2) An aldope phasic acid 4) A pitrogon	/dride? d 4) Grignard re n the given seque 4) Chlorobenze entose and phose	eagent is formed ence of reactions is ene (Amines) (Bio Molecules) phoric acid		
157. 158.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q -$ 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv 1) An aldopentose and a nitrog 3) An aldopentose, anitrogeno	Asymptotic actions treated des, Ketones & Carbo rimary alcohol is for $\xrightarrow{\text{NaNO}_2}_{\text{HCI}} P \xrightarrow{\text{H}_3\text{PO}_2}_{\text{H}_2\text{O}}$ enzene /es genous base ous base and phos is used in the insul	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme → S . The end product S ir 3) Phenol 2) An aldope phoric acid 4) A nitrogen ation of electricity carryin	 /dride? d 4) Grignard read a the given seque 4) Chlorobenze entose and phose ous base and phose ous base and phose 	eagent is formed ence of reactions is ene (Amines) (Bio Molecules) ohoric acid osphoric acid		
157. 158. 159.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q -$ 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv 1) An aldopentose and a nitrog 3) An aldopentose, anitrogend Low density polythene (LDP) in pipes and squeeze bottles become	As the field of the second se	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme → S . The end product S in 3) Phenol 2) An aldope phoric acid 4) A nitrogen ation of electricity carryin	 /dride? d 4) Grignard read a the given seque 4) Chlorobenze entose and phose ous base and phose ous base and phose ous base and phose 	eagent is formed ence of reactions is ene (Amines) (Bio Molecules) ohoric acid osphoric acid ufacture of flexible (Polymers)		
157. 158. 159.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q -$ 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv 1) An aldopentose and a nitrog 3) An aldopentose, anitrogend Low density polythene (LDP) if pipes and squeeze bottles bed 1) It is tough, hard and rigid	Applie acid is treated des, Ketones & Carbo rimary alcohol is for $\xrightarrow{\text{NaNO}_2}_{\text{HCI}} P \xrightarrow{\text{H}_3\text{PO}_2}_{\text{H}_2\text{O}}$ enzene /es genous base pus base and phos is used in the insul- cause	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme → S . The end product S ir 3) Phenol 2) An aldope phoric acid 4) A nitrogen ation of electricity carryin	vdride? d 4) Grignard re n the given seque 4) Chlorobenze entose and phose ous base and ph og wires and man	eagent is formed ence of reactions is ene (Amines) (Bio Molecules) ohoric acid osphoric acid ufacture of flexible (Polymers)		
157. 158. 159.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q -$ 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv 1) An aldopentose and a nitrog 3) An aldopentose, anitrogend Low density polythene (LDP) i pipes and squeeze bottles bed 1) It is tough, hard and rigid 2) It is chemically inert, tough,	splic acid is treated des, Ketones & Carbo rimary alcohol is for $\xrightarrow{NaNO_2}{HCl} P \xrightarrow{H_3PO_2}{H_2O}$ enzene ves genous base ous base and phos is used in the insul- cause flexible and poor o	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme → S . The end product S ir 3) Phenol 2) An aldope phoric acid 4) A nitrogen ation of electricity carryin	/dride? d 4) Grignard re n the given seque 4) Chlorobenze entose and phosp ous base and pho ng wires and man	eagent is formed ence of reactions is ene (Amines) (Bio Molecules) ohoric acid osphoric acid ufacture of flexible (Polymers)		
157. 158. 159.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q-$ 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv 1) An aldopentose and a nitrog 3) An aldopentose, anitrogend Low density polythene (LDP) is pipes and squeeze bottles bed 1) It is tough, hard and rigid 2) It is chemically inert, tough, 3) It is very tough, good condu	Applie actors treated des, Ketones & Carbo rimary alcohol is for $\xrightarrow{NaNO_2}{HCI} P \xrightarrow{H_3PO_2}{H_2O}$ enzene /es genous base pus base and phos is used in the insul- cause flexible and poor of uctor of electricity a	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme → S . The end product S ir 3) Phenol 2) An aldope phoric acid 4) A nitrogen ation of electricity carryin conductor of electricity and flexible	vdride? d 4) Grignard re n the given seque 4) Chlorobenze entose and phose ous base and ph og wires and man	eagent is formed ence of reactions is ene (Amines) (Bio Molecules) ohoric acid osphoric acid ufacture of flexible (Polymers)		
157. 158. 159.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q -$ 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv 1) An aldopentose and a nitrog 3) An aldopentose, anitrogend Low density polythene (LDP) is pipes and squeeze bottles bed 1) It is tough, hard and rigid 2) It is chemically inert, tough, 3) It is very tough, good conduct	Applie actors treated des, Ketones & Carbo rimary alcohol is for $\xrightarrow{NaNO_2} P \xrightarrow{H_3PO_2} H_2O$ enzene ves genous base bus base and phos is used in the insul- cause flexible and poor of uctor of electricity a oft, water absorber	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme → S . The end product S ir 3) Phenol 2) An aldope phoric acid 4) A nitrogen ation of electricity carryin conductor of electricity and flexible nt and poor conductor of	/dride? d 4) Grignard re n the given seque 4) Chlorobenze entose and phose ous base and ph g wires and man	eagent is formed ence of reactions is ene (Amines) (Bio Molecules) ohoric acid osphoric acid ufacture of flexible (Polymers)		
157. 158. 159. 160.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q -$ 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv 1) An aldopentose and a nitrog 3) An aldopentose, anitrogend Low density polythene (LDP) is pipes and squeeze bottles bed 1) It is tough, hard and rigid 2) It is chemically inert, tough, 3) It is very tough, good condu 4) It is chemically inert, very so The use of aspartame is limite	Applie acid is treated des, Ketones & Carbo imary alcohol is for $\xrightarrow{NaNO_2} P \xrightarrow{H_3PO_2} H_2O$ enzene ves genous base pus base and phos is used in the insul- cause flexible and poor of uctor of electricity a oft, water absorber ed to cold foods and	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme → S . The end product S ir 3) Phenol 2) An aldope phoric acid 4) A nitrogen ation of electricity carryin conductor of electricity and flexible nt and poor conductor of d drinks because	vdride? d 4) Grignard re n the given seque 4) Chlorobenze entose and phosp ous base and ph g wires and man heat <i>(Chemistry ir</i>	eagent is formed ence of reactions is ene (Amines) (Bio Molecules) ohoric acid osphoric acid ufacture of flexible (Polymers)		
157. 158. 159. 160.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q -$ 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv 1) An aldopentose and a nitrog 3) An aldopentose, anitrogend Low density polythene (LDP) if pipes and squeeze bottles bed 1) It is tough, hard and rigid 2) It is chemically inert, tough, 3) It is very tough, good conduct 4) It is chemically inert, very so The use of aspartame is limited 1) It is unstable to heat and de	Applie actions treated des, Ketones & Carbo rimary alcohol is for $\xrightarrow{NaNO_2} P \xrightarrow{H_3PO_2} H_2O$ enzene ves genous base ous base and phose is used in the insul- cause flexible and poor of uctor of electricity a off, water absorber ed to cold foods and composes at cook	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme → S . The end product S ir 3) Phenol 2) An aldope phoric acid 4) A nitrogen ation of electricity carryin conductor of electricity and flexible nt and poor conductor of d drinks because ing temperature	vdride? d 4) Grignard re n the given seque 4) Chlorobenze entose and phose ous base and pho g wires and man heat <i>(Chemistry ir</i>	eagent is formed ence of reactions is ene (Amines) (Bio Molecules) ohoric acid osphoric acid ufacture of flexible (Polymers)		
157. 158. 159. 160.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}_{H_2SO_4}$ P $\xrightarrow{Sn/HCl}$ Q- 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv 1) An aldopentose and a nitrog 3) An aldopentose, anitrogend Low density polythene (LDP) is pipes and squeeze bottles bed 1) It is tough, hard and rigid 2) It is chemically inert, tough, 3) It is very tough, good condu 4) It is chemically inert, very so The use of aspartame is limite 1) It is unstable to heat and de 2) It is 500 times sweeter than 3) It becomes hitter at acclaim	Applications treated des, Ketones & Carbo rimary alcohol is for $\xrightarrow{NaNO_2} P \xrightarrow{H_3PO_2} H_2O$ enzene ves genous base pus base and phose is used in the insul- cause flexible and poor of uctor of electricity a oft, water absorber ed to cold foods and composes at cook in cane sugar	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme → S . The end product S in 3) Phenol 2) An aldope phoric acid 4) A nitrogen ation of electricity carryin conductor of electricity and flexible ht and poor conductor of d drinks because ing temperature	vdride? d 4) Grignard re n the given seque 4) Chlorobenze entose and phosp ous base and ph g wires and man heat <i>(Chemistry ir</i>	eagent is formed ence of reactions is ene (Amines) (Bio Molecules) ohoric acid osphoric acid ufacture of flexible (Polymers)		
157. 158. 159. 160.	(Aldehyd 1) Aldehyde is formed 2) Pr $C_6H_6 \xrightarrow{HNO_3}_{H_2SO_4}$ P $\xrightarrow{Sn/HCl}$ Q 1) Benzoic acid 2) Be A nucleoside on hydrolysis giv 1) An aldopentose and a nitrog 3) An aldopentose, anitrogend Low density polythene (LDP) if pipes and squeeze bottles bed 1) It is tough, hard and rigid 2) It is chemically inert, tough, 3) It is very tough, good condu 4) It is unstable to heat and de 2) It is 500 times sweeter than 3) It becomes bitter at cooking 4) It reacts with the food at coordination	Applied a clock is treated des, Ketones & Carbo rimary alcohol is for $\frac{NaNO_2}{HCl} \rightarrow P - \frac{H_3PO_2}{H_2O}$ enzene /es genous base pus base and phos is used in the insul- cause flexible and poor of uctor of electricity a oft, water absorber ed to cold foods and ecomposes at cook in cane sugar temperature pking temperature	with lithium aluminium hy pxylic acids) rmed 3) Ketone is forme > S . The end product S in 3) Phenol 2) An aldope phoric acid 4) A nitrogen ation of electricity carryin conductor of electricity and flexible and poor conductor of d drinks because ing temperature	vdride? d 4) Grignard re n the given seque 4) Chlorobenze entose and phosp ous base and ph g wires and man heat <i>(Chemistry ir</i>	eagent is formed ence of reactions is ene (Amines) (Bio Molecules) ohoric acid osphoric acid ufacture of flexible (Polymers)		