MODEL PAPER - 2

CHEMISTRY

	In a reaction conatiner, limiting reagent and how 1) H_2 is limiting reagent 2) Cl_2 is limiting reagent 3) H_2 is limiting reagent 4) Cl_2 is limiting reagent	100 g of hydrogen and 1 w much HCl is formed in and 36.5 g of HCl are fo t and 102.8 g of HCl are and 142 g of HCl are fo t and 73 g of HCl are for	100 g of Cl ₂ are mixed for the reaction ? prmed. formed. rmed med.	the formation (Some Ba	of HCl gas, what is the asic concept of chemistry)
122.	Few electrons have foll	lowing quantum number	̈́S,		
	(i) n = 4, l = 1	(ii) n = 4, l = 0	(iii) n = 3, l = 2	(iv) n = 3, l =	= 1
	Arrange them in the ord	ler of increasing energy	from lowest to highest.		(Structure of Atom)
	1) (iv) < (ii) < (iii) < (i)	2) (ii) < (iv) < (i) < (iii)	3) (i) < (iii) < (ii) < (iv)	4) (iii) < (i) < (iv) < (ii)
123.	The number of radial n	odes and angular nodes	s for d - orbital can be rep	presented as	(Structure of Atom)
	1) (n - 2) radial nodes -	+1 angular node = (n-1)	total nodes		
	2) (n - 1) radial nodes +	1 angular node = (n - 1)	total nodes		
	3) (n - 3) radial nodes +	-2 angular nodes = (n -	ℓ -1) total nodes		
	4) (n - 3) radial nodes +	2 angular nodes = (n-1)	total nodes		
124.	Which of the following	groups conatins metals,	non - metals and metallo	ids? (C	lassification of elements)
	1) Group 17	2) Group 14	3) Group 13	4)Group 12	
125.	Which of the following h	nas strongest bond?	(Chemical Bondi	ing & Molecular structure)
	1) HF	2) HCI	3) HBr	4) HI	
126.	Hydrogen bond betwee	en two atoms is formed d	ue to (Chemical Bondi	ng & Molecular structure)
	1) Displacement of ele	ctrons towards more ele	ectronegative atom resu	lting in fractio	nal positive charge on
	hydrogen				
	2) Displacement of elect	trons towards hydrogen	atom resulting in a polar	molecule	
	3) Formation of a bond	between hydrogen aton	ns of one molecule and th	e other	
	4) Existence of an attra	ctive force which binds h	ydrogen atoms together		
127.	It is observed that H_2 a	nd He gases always sho	ow positive deviation fror	n ideal behavi	our i.e., Z > 1. This is
	because				(States of Matter)
	1) The value of a is very	y large due to high attra	ctive forces		
	2) The weak intermolec	cular forces of attraction	due to which a is very sn	hall and a/V^2 is	s negligible
	3) The value of b is very	y large due to large size	of the molecules		
	4) Both a and b are very	v amall and negligible			
100			\sim		
128.	Surface tension does n	ot vary with			(States of Matter)
128.	Surface tension does n 1) temperature	ot vary with 2) concentration	30 size of the surface	4) vapour pr	(States of Matter) ressure.
128. 129.	Surface tension does n 1) temperature Which of the following r	ot vary with 2) concentration relationships is not corre	3) size of the surface	4) vapour pr	(States of Matter) essure. (Thermodynamics)
128. 129.	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$	ot vary with 2) concentration relationships is not corre	3) size of the surface ct? 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{fusion}$	4) vapour pr	(States of Matter) ressure. (Thermodynamics)
128. 129.	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \Sigma H^0_{f(reactants)}$	ot vary with 2) concentration relationships is not corre $\cdot \sum H^{0}_{\text{f(products)}}$	3) size of the surface (C) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H$ (4) $\Delta H_{r}^{0} = \Sigma B.E$ of react	4) vapour pr vap tants - Σ B.E c	(States of Matter) ressure. (Thermodynamics) of products
128. 129. 130.	Surface tension does n 1) temperature Which of the following n 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H_r^0 = \Sigma H_{f(reactants)}^0$ Solubility product expression	ot vary with 2) concentration relationships is not corre $\Sigma = \Pi_{\text{f(products)}}^{0}$ ession of salt MX ₄ which	3) size of the surface (1) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H$ (2) $\Delta H_{sub}^{0} = \Sigma B.E$ of reaction (3) $\Delta H_{r}^{0} = \Sigma B.E$ of reactions is sparingly soluble with	4) vapour pr vap tants - Σ B.E c a solubility s	<i>(States of Matter)</i> ressure. <i>(Thermodynamics)</i> of products can be given as
128. 129. 130.	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{\text{freactants}} - Solubility product expression$	ot vary with 2) concentration relationships is not corre $\sum_{\Sigma} H^{0}_{f(products)}$ ession of salt MX ₄ which	3) size of the surface (2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H$ (4) $\Delta H_{r}^{0} = \Sigma B.E$ of react (5) is sparingly soluble with	4) vapour pr vap tants - Σ B.E c a solubility s	<i>(States of Matter)</i> ressure. <i>(Thermodynamics)</i> of products can be given as <i>(Equilibrium)</i>
128. 129. 130.	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{f(reactants)}$ Solubility product express 1) 256 s ⁵	ot vary with 2) concentration relationships is not corre $\Sigma H^{0}_{\text{f(products)}}$ ession of salt MX ₄ which 2) 16 s ³	3) Size of the surface (1) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H$ (2) $\Delta H_{sub} = \Sigma B.E$ of react (3) $\Delta H_{r}^{0} = \Sigma B.E$ of react (3) 5S	4) vapour pr tants - Σ B.E c a solubility s 4) 25 s ⁴	<i>(States of Matter)</i> ressure. <i>(Thermodynamics)</i> of products can be given as <i>(Equilibrium)</i>
128.129.130.131.	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{\text{f(reactants)}}$ Solubility product expresent 1) 256 s ⁵ Which of the following	ot vary with 2) concentration relationships is not corre $\Sigma = H^0_{\text{f(products)}}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily or	3) Size of the surface (1) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H$ (2) $\Delta H_{sub} = \Sigma B.E$ of react (3) $\Delta H^{0}_{r} = \Sigma B.E$ of react (4) $\Delta H^{0}_{r} = \Sigma B.E$ of react (5) Soluble with (5) S	4) vapour pr ^{vap} tants - _Σ B.E o a solubility s 4) 25 s ⁴	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions)
128.129.130.131.	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{\text{f(reactants)}}$ - Solubility product expresent 1) 256 s ⁵ Which of the following 1) F ⁻	ot vary with 2) concentration relationships is not correct $\Sigma = H^0_{f(products)}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻	3) size of the surface (1) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ (2) $\Delta H_{gub}^{0} = \Sigma B.E$ of react (3) 5s (4) ΔS (5) S (4) $\Delta H_{gub}^{0} = \Sigma B.E$ of react (5) S (6) S (6) S (7)	4) vapour pr tants - ∑ B.E c a solubility s 4) 25 s⁴ 4) Cl ⁻	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions)
 128. 129. 130. 131. 132. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{f(reactants)}$ Solubility product express 1) 256 s ⁵ Which of the following 1) F ⁻ Given E ⁰ ₀ = +0.80	ot vary with 2) concentration relationships is not correct $\sum H^0_{\text{f(products)}}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V : E ⁰ ₂ 200 = +0.34 V : E	3) Size of the surface 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H$ 4) $\Delta H_{r}^{0} = \Sigma B.E$ of react is sparingly soluble with 3) 5s stidised ? 3) I ⁻ $E_{r}^{0} + 3\pi t^{2} = +0.76 V ; E_{r}^{0} + 4$	4) vapour pr tants - Σ B.E c a solubility s 4) 25 s ⁴ 4) Cl ⁻	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following
128.129.130.131.132.	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{f(reactants)}$ Solubility product express 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80$	ot vary with 2) concentration relationships is not corre $\Sigma H^{0}_{\text{f(products)}}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E^{0}_{Cu^{2+}/Cu} = +0.34 V; E	3) Size of the surface 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ 4) $\Delta H^{0}_{r} = \sum B.E$ of reactions is sparingly soluble with 3) 5s stidised ? 3) I ⁻ $\Xi^{0}_{Fe^{+3}/Fe^{+2}} = +0.76 \text{ V}; E^{0}_{Ce^{+4}}$	 4) vapour pr vap tants - ∑ B.E of a solubility s 4) 25 s⁴ 4) Cl⁻ vapour pr vapour pr<td>(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following</td>	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following
128.129.130.131.132.	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{\text{f(reactants)}}$ - Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^*/Ag} = +0.80^{\circ}$ statements is not correct 1) En ³⁺ does not oxidize	ot vary with 2) concentration relationships is not correct $\Sigma = H^0_{\text{f(products)}}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E ⁰ _{Cu²⁺/Cu} = +0.34 V; E	3) Size of the surface 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ 4) $\Delta H_{r}^{0} = \Sigma B.E$ of reactions is sparingly soluble with 3) 5s (idised ? 3) I ⁻ $E_{Fe^{+3}/Fe^{+2}}^{0} = +0.76 V ; E_{Ce^{+4}}^{0}$	4) vapour pr vap tants - Σ B.E c a solubility s 4) 25 s ⁴ 4) Cl ⁻ $_{(Ce^{+3})} = +1.60V$	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions)
 128. 129. 130. 131. 132. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{\text{f(reactants)}}$ Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80$ Statements is not correct 1) Fe ³⁺ does not oxidise 2) Ag will reduce Cu ²⁺ to	y small and negligible ot vary with 2) concentration relationships is not corre $\sum H^0_{\text{f(products)}}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E ⁰ _{Cu²⁺/Cu} = +0.34 V; E ct ?	3) Size of the surface 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ 4) $\Delta H_{r}^{0} = \Sigma B.E$ of react is sparingly soluble with 3) 5s stidised ? 3) I ⁻ $E_{Fe^{+3}/Fe^{+2}}^{0} = +0.76 V ; E_{Ce^{+4}}^{0}$ 2) Cu reduces Ag+ to A 4) Eo3t reduces Cu ²⁺ to A	 4) vapour pr vap tants - ∑ B.E o a solubility s 4) 25 s⁴ 4) Cl⁻ vap (Ce⁺³) = +1.60V 	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions)
 128. 129. 130. 131. 132. 132. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_g$ Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80^{\circ}$ statements is not correct 1) Fe ³⁺ does not oxidise 3) Ag will reduce Cu ²⁺ to Strength of 10 volume to	y small and negligible ot vary with 2) concentration relationships is not correct $\Sigma H^0_{\text{f(products)}}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E ⁰ _{Cu²⁺/Cu} = +0.34 V; E ct? Cu	3) Size of the surface 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ 4) $\Delta H^{0}_{r} = \sum B.E$ of reactions is sparingly soluble with 3) 5s stidised ? 3) I ⁻ $E^{0}_{Fe^{+3}/Fe^{+2}} = +0.76 V ; E^{0}_{Ce^{+4}}$ 2) Cu reduces Ag+ to A 4) Fe ³⁺ reduces Cu ²⁺ to an appendix	 4) vapour pr vap tants - ∑ B.E of a solubility s 4) 25 s⁴ 4) Cl⁻ vap (Ce⁺³ = +1.60V) 	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions)
 128. 129. 130. 131. 132. 133. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{f(reactants)}$ Solubility product express 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80$ statements is not correct 1) Fe ³⁺ does not oxidise 3) Ag will reduce Cu ²⁺ to Strength of 10 volume h	ot vary with 2) concentration relationships is not correct $\sum H^0_{\text{f(products)}}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E^0_{Cu^{2+}/Cu} = +0.34 V ; E ct ? $\sum Ce^{3+}$ $\sum Cu$ hydrogen peroxide soluti 2) 17 a 1-1	3) Size of the surface (1) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{1}$ (2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{1}$ (3) $\Delta H_{r}^{0} = \Sigma B.E$ of reactions (4) $\Delta H_{r}^{0} = \Sigma B.E$ of reactions (5) $\Delta H_{r}^{0} $	4) vapour pr vap tants - Σ B.E c a solubility s 4) 25 s ⁴ 4) Cl ⁻ v _{(Ce⁺³} = +1.60V g Cu 4) 68 c l -1	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions) (Hydrogen)
 128. 129. 130. 131. 132. 133. 134. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{greatants}$ Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80$ statements is not correct 1) Fe ³⁺ does not oxidise 3) Ag will reduce Cu ²⁺ to Strength of 10 volume from the statements with	y small and negligible ot vary with 2) concentration relationships is not correct $\Sigma = H^0_{f(products)}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E ⁰ _{Cu²⁺/Cu} = +0.34 V; E ct ? $E = Ce^{3+}$ o Cu hydrogen peroxide soluti 2) 17 g L ⁻¹	3) Size of the surface 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ 4) $\Delta H_{r}^{0} = \Sigma B.E$ of reactions is sparingly soluble with 3) 5s stidised ? 3) I ⁻ $E_{Fe^{+3}/Fe^{+2}}^{0} = +0.76 V ; E_{Ce^{+4}}^{0}$ 2) Cu reduces Ag+ to A 4) Fe ³⁺ reduces Cu ²⁺ to on means 3) 34 g L ⁻¹	 4) vapour pr vap tants - ∑ B.E of a solubility s 4) 25 s⁴ 4) Cl⁻ vap tanta = +1.60V g Cu 4) 68 g L⁻¹ 	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions) (Hydrogen)
 128. 129. 130. 131. 132. 133. 134. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{f(reactants)}$ Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80$ statements is not correct 1) Fe ³⁺ does not oxidise 3) Ag will reduce Cu ²⁺ to Strength of 10 volume h 1) 30.35 g L ⁻¹ Slaked lime reacts with	y small and negligible ot vary with 2) concentration relationships is not corre $\sum H^0_{\text{f(products)}}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E ⁰ _{Cu²⁺/Cu} = +0.34 V; E ct ? 2 Ce^{3+} o Cu hydrogen peroxide soluti 2) 17 g L ⁻¹ n chlorine to give	3) Size of the surface 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ 4) $\Delta H^{0}_{r} = \sum B.E$ of react is sparingly soluble with 3) 5s stidised ? 3) I ⁻ $E_{Fe^{+3}/Fe^{+2}}^{0} = +0.76 V ; E_{Ce^{+4}}^{0}$ 2) Cu reduces Ag+ to A 4) Fe ³⁺ reduces Cu ²⁺ to on means 3) 34 g L ⁻¹ 2) Co(OCI)	 4) vapour pr tants - ∑ B.E o a solubility s 4) 25 s⁴ 4) Cl⁻ (Ce⁺³) = +1.60V g Cu 4) 68 g L⁻¹ 	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions) (Hydrogen) (S-Block elements)
 128. 129. 130. 131. 132. 133. 134. 125. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_g$ Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80^{\circ}$ statements is not correct 1) Fe ³⁺ does not oxidise 3) Ag will reduce Cu ²⁺ to Strength of 10 volume f 1) 30.35 g L ⁻¹ Slaked lime reacts with 1) CaCl ₂	ot vary with 2) concentration relationships is not correct $\sum H^0_{f(products)}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E^0_{Cu^{2+}/Cu} = +0.34 V; E Ct? $2 Ce^{3+}$ 2 Cu hydrogen peroxide soluti 2) 17 g L ⁻¹ n chlorine to give 2) CaO	3) Size of the surface 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ 4) $\Delta H^{0}_{r} = \Sigma B.E$ of reactions is sparingly soluble with 3) 5s stidised ? 3) I ⁻ $\Xi^{0}_{Fe^{+3}/Fe^{+2}} = +0.76 V ; E^{0}_{Ce^{+4}}$ 2) Cu reduces Ag+ to A 4) Fe ³⁺ reduces Cu ²⁺ to an means 3) 34 g L ⁻¹ 3) Ca(OCl) ₂	4) vapour pr vap tants - Σ B.E c a solubility s 4) 25 s ⁴ 4) Cl ⁻ v _{Ce⁺³} = +1.60V g Cu 4) 68 g L ⁻¹ 4) CaCO ₃	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions) (Hydrogen) (S-Block elements)
 128. 129. 130. 131. 132. 133. 134. 135. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{f(reactants)}$ - Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80$ statements is not correct 1) Fe ³⁺ does not oxidise 3) Ag will reduce Cu ²⁺ to Strength of 10 volume h 1) 30.35 g L ⁻¹ Slaked lime reacts with 1) CaCl ₂ Glass and cement are f	y small and negligible ot vary with 2) concentration relationships is not correct $\Sigma = H^0_{f(products)}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E ⁰ _{Cu²⁺/Cu} = +0.34 V; E ct ? c Ce ³⁺ o Cu hydrogen peroxide soluti 2) 17 g L ⁻¹ n chlorine to give 2) CaO two important examples	3) Size of the surface (1) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{1}$ (2) $\Delta H_{sub} = \sum B.E$ of reactions (3) $\Delta H_{r}^{0} = \sum B.E$ of reactions (4) $\Delta H_{r}^{0} = \sum B.E$ of reactions (5) $\Delta H_{r}^{0} = \sum B.E$ of reactions (6) $\Delta H_{r}^{0} = \sum B.E$ of reactions (7) $\Delta H_{r}^{0} = \sum $	4) vapour pr vap tants - Σ B.E c a solubility s 4) 25 s ⁴ 4) Cl ⁻ v _{(Ce⁺³} = +1.60V g Cu 4) 68 g L ⁻¹ 4) CaCO ₃ (<i>P-B</i>)	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions) (Hydrogen) (S-Block elements)
 128. 129. 130. 131. 132. 133. 134. 135. 126. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{f(reactants)}$ Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80$ V statements is not correct 1) Fe ³⁺ does not oxidise 3) Ag will reduce Cu ²⁺ to Strength of 10 volume h 1) 30.35 g L ⁻¹ Slaked lime reacts with 1) CaCl ₂ Glass and cement are following the following	y small and negligible ot vary with 2) concentration relationships is not correct $\Sigma = H^0_{f(products)}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E ⁰ _{Cu²⁺/Cu} = +0.34 V; F ct? $\Sigma = Ce^{3+}$ o Cu hydrogen peroxide soluti 2) 17 g L ⁻¹ n chlorine to give 2) CaO two important examples 2) Silicates	3) Size of the surface 3) Size of the surface 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{1}$ 4) $\Delta H^{0}_{r} = \sum B.E$ of react is sparingly soluble with 3) 5s stidised ? 3) I ⁻ $E_{Fe^{+3}/Fe^{+2}}^{0} = +0.76 V ; E_{Ce^{+4}}^{0}$ 2) Cu reduces Ag+ to A 4) Fe ³⁺ reduces Cu ²⁺ to on means 3) 34 g L ⁻¹ 3) Ca(OCl) ₂ of 3) Zeolites a close 2	4) vapour pr tants - Σ B.E c a solubility s 4) 25 s ⁴ 4) Cl ⁻ $_{Ce^{+3}} = +1.60V$ g Cu 4) 68 g L ⁻¹ 4) CaCO ₃ (<i>P-B</i> /4) organic pr	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions) (Hydrogen) (S-Block elements) lock elements) olymers
 128. 129. 130. 131. 132. 133. 134. 135. 136. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_g$ Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80^{\circ}$ statements is not correct 1) Fe ³⁺ does not oxidise 3) Ag will reduce Cu ²⁺ to Strength of 10 volume f 1) 30.35 g L ⁻¹ Slaked lime reacts with 1) CaCl ₂ Glass and cement are f 1) Man - made silcates Which of the following a 1) HE	y small and negligible ot vary with 2) concentration relationships is not correct $\sum H^0_{\text{f(products)}}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E ⁰ _{Cu²⁺/Cu} = +0.34 V; F ct? ct? ce ³⁺ o Cu hydrogen peroxide soluti 2) 17 g L ⁻¹ n chlorine to give 2) CaO two important examples 2) Silicates acids cannot be stored in 2) HCL	3) Size of the surface 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ 4) $\Delta H^{0}_{r} = \sum B.E$ of reactions is sparingly soluble with 3) 5s stidised ? 3) I ⁻ $\Xi^{0}_{Fe^{+3}/Fe^{+2}} = +0.76 \text{ V}; E^{0}_{Ce^{+4}}$ 2) Cu reduces Ag+ to A 4) Fe ³⁺ reduces Cu ²⁺ to an	4) vapour pr vap tants - Σ B.E c a solubility s 4) 25 s ⁴ 4) Cl ⁻ $_{/Ce^{+3}} = +1.60V$ g Cu 4) 68 g L ⁻¹ 4) CaCO ₃ (<i>P-B</i>) 4) organic pr	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions) (Hydrogen) (S-Block elements) olymers (P-Block elements)
 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_g$ Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80^{\circ}$ statements is not correct 1) Fe ³⁺ does not oxidise 3) Ag will reduce Cu ²⁺ to Strength of 10 volume h 1) 30.35 g L ⁻¹ Slaked lime reacts with 1) CaCl ₂ Glass and cement are form 1) Man - made silcates Which of the following a 1) HF	y small and negligible ot vary with 2) concentration relationships is not correct $\Sigma = H^0_{f(products)}$ ession of salt MX ₄ which 2) 16 s ³ halides is most asily ov 2) Br ⁻ V; E ⁰ _{Cu²⁺/Cu} = +0.34 V; F ct? ct? ce Ce ³⁺ o Cu hydrogen peroxide soluti 2) 17 g L ⁻¹ n chlorine to give 2) CaO two important examples 2) Silicates acids cannot be stored in 2) HCl	3) Size of the surface 2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ 4) $\Delta H^{0}_{r} = \sum B.E$ of reactions is sparingly soluble with 3) 5s (idised ? 3) I: $E_{Fe^{+3}/Fe^{+2}}^{0} = +0.76 \text{ V}$; $E_{Ce^{+4}}^{0}$ 2) Cu reduces Ag+ to A 4) Fe^{3+} reduces Cu^{2+} to A 4) Fe^{3+} reduces Cu^{2+} to A 4) Fe^{3+} reduces Cu^{2+} to A 3) 34 g L^{-1} 3) Ca(OCI)_{2} of 3) Zeolites n glass ? 3) H_{2}SO_{4} but produces 1.02c of P	4) vapour pr vap tants - Σ B.E c a solubility s 4) 25 s ⁴ 4) Cl ⁻ $_{(Ce^{+3})} = +1.60V$ g Cu 4) 68 g L ⁻¹ 4) CaCO ₃ (<i>P-B</i>) 4) organic pr 4) HI	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions) (Hydrogen) (S-Block elements) olymers (P-Block elements)
 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{f(reactants)}$ - Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80$ Statements is not correct 1) Fe ³⁺ does not oxidise 3) Ag will reduce Cu ²⁺ to Strength of 10 volume h 1) 30.35 g L ⁻¹ Slaked lime reacts with 1) CaCl ₂ Glass and cement are form 1) Man - made silcates Which of the following a 1) HF 2.18g of an organic control	y small and negligible ot vary with 2) concentration relationships is not correct $\Sigma = H^0_{f(products)}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E ⁰ _{Cu²⁺/Cu} = +0.34 V; B ct ? $\Sigma = Ce^{3+}$ D Cu hydrogen peroxide soluti 2) 17 g L ⁻¹ n chlorine to give 2) CaO two important examples 2) Silicates acids cannot be stored in 2) HCl mpound containing sulp	3) Size of the surface (1) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ (1) $\Delta H_{r}^{0} = \Sigma B.E$ of reactions is sparingly soluble with (3) 5s (idised ? (3) I ⁻ $E_{Fe^{+3}/Fe^{+2}}^{0} = +0.76 V$; $E_{Ce^{+4}}^{0}$ (2) Cu reduces Ag+ to A (4) Fe ³⁺ reduces Cu ²⁺ to A (4) Fe ³⁺ reduces Cu ²⁺ to A (5) Cu reduces Ag+ to A (4) Fe ³⁺ reduces Cu ²⁺ to A (5) Cu reduces Ag+ to A (6) Cu reduces Ag+ to A (7) Cu reduces Cu ²⁺ to a (7) Cu reduces Cu ²⁺ to a (7) Cu reduces Cu ²⁺ to a (7) Cu reduces Ag+ to A	4) vapour pr vap iants - Σ B.E c a solubility s 4) 25 s ⁴ 4) Cl ⁻ $_{(Ce^{+3})} = +1.60V$ g Cu 4) 68 g L ⁻¹ 4) CaCO ₃ (<i>P-Bi</i>) 4) organic pr 4) HI aSO ₄ . THe pe	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions) (Hydrogen) (S-Block elements) olymers (P-Block elements) recentage of sulphur in
 128. 129. 130. 131. 131. 132. 133. 134. 135. 136. 137. 	Surface tension does n 1) temperature Which of the following r 1) $\Delta H = \Delta E + \Delta n_g RT$ 3) $\Delta H^0_r = \sum H^0_{f(reactants)}$ Solubility product expression 1) 256 s ⁵ Which of the following 1) F ⁻ Given $E^0_{Ag^+/Ag} = +0.80$ statements is not correct 1) Fe ³⁺ does not oxidise 3) Ag will reduce Cu ²⁺ to Strength of 10 volume h 1) 30.35 g L ⁻¹ Slaked lime reacts with 1) CaCl ₂ Glass and cement are f 1) Man - made silcates Which of the following a 1) HF 2.18g of an organic corr the compound is 1) 7 26%	y small and negligible ot vary with 2) concentration relationships is not correct $\sum H^0_{f(products)}$ ession of salt MX ₄ which 2) 16 s ³ halides is most easily ov 2) Br ⁻ V; E ⁰ _{Cu²⁺/Cu} = +0.34 V; E ct ? $2 Ce^{3+}$ o Cu hydrogen peroxide soluti 2) 17 g L ⁻¹ n chlorine to give 2) CaO two important examples 2) Silicates acids cannot be stored in 2) HCl mpound containing sulp	3) Size of the surface (1) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{4}$ (1) $\Delta H_{r}^{0} = \Sigma B.E$ of react (1) is sparingly soluble with (3) 5s (3) 5s (4) SS (4) SS (5) $E_{Fe^{+3}/Fe^{+2}}^{0} = +0.76 V$; $E_{Ce^{+4}}^{0}$ (2) Cu reduces Ag+ to A (4) Fe ³⁺ reduces Cu ²⁺ to (5) State of the surface of the second (3) Cu reduces Ag+ to A (4) Fe ³⁺ reduces Cu ²⁺ to (5) State of the surface of the second (3) Cu reduces Ag+ to A (4) Fe ³⁺ reduces Cu ²⁺ to (5) State of the second (3) Cu reduces Ag+ to A (4) Fe ³⁺ reduces Cu ²⁺ to (5) State of the second (5) State of the second (6) State of the second (7) State of the sec	4) vapour pr tants - Σ B.E c a solubility s 4) 25 s ⁴ 4) Cl ⁻ $_{Ce^{+3}} = +1.60V$ g Cu 4) 68 g L ⁻¹ 4) CaCO ₃ (<i>P-B</i> /4) organic pr 4) HI aSO ₄ . THe pe	(States of Matter) ressure. (Thermodynamics) of products can be given as (Equilibrium) (Redox Reactions) which of the following (Redox Reactions) (Hydrogen) (S-Block elements) olymers (P-Block elements) orcentage of sulphur in

WWW.AIMSTUTORIAL.IN

WWW.AIMSTUTORIAL.IN

- 138. Which of the following species does not show aromaticity?
 - U.S.

3) N H (Hydro Carbons)

139. Similar to alkenes and alkynes benzene also undergoes ozonolysis. In the sequence of the given reaction identify X and Y. *(Hydro Carbons)*

$$+ O_3 \longrightarrow X \xrightarrow{Zn/H_2O} Y$$

WWWW.AIMSTUTORIAL.IN

WWW.AIMSTUTORIAL.IN

3) It is a sodium salt of fatty acid4) It is a surface active reagent

157. The product 'D' in the following sequence of reactions is (Amines) NH₂ $\Rightarrow A \xrightarrow{\text{NaNO}_2} B \xrightarrow{\text{HBF}_4} C \xrightarrow{\text{Heat}} D$ HCI bawolio OFOX + HVELLE 1) 2,4,6-tribromofluorobenzene 2) Flurobenzene 3) p-bromofluorobenzene 4) tribromobenzene 158. Which of the following is not produced by human body? (Bio Molecules) 1) Enzymes 2) Vitamins 3) Proteins 4) Nucleic acid 159. Synthetic biopolymer, PHBV is made up of the following monomers (Polymers) 1) 3-hydroxybutanoic acid + 3-hydroxypentanoic acid 2) 2-hydroxybutanoic acid + 2-hydroxypropanoic 3) 3-chlorobutanoic acid +3-chloropentanoic acid 4) 2-chlorobutanoic acid+3-methylpentanoic acid 160. Which is not true for a detergent molecule? (Chemistry in everyday life) 1) It has a non-polar organic part and a polar group 2) It is not easily biodegraded

ANA AND CONTRACTION OF A CONTRACTICA OF

WWW.AIMSTUTORIAL.IN