MODEL PAPER - 3
 CHEMISTRY

121. The density of a gas is $1.78 \mathrm{~g} \mathrm{~L}^{-1}$ at STP. The weight of one mole of gas is (Some Basic concept of chemistry)
1) 39.9 gr
2) 22.4 g
3) 3.56 g
4) 29 g
122. Which of the following species is isoelectronic with CO ?
(Structure of Atom)
1) HF
2) N_{2}
3) $\mathrm{N}_{2}{ }^{+}$
4) O_{2}^{-}
123. What will be the wavenumber of yellow radiation having wavelength 240 nm ? (Structure of Atom)
1) $1.724 \times 10^{4} \mathrm{~cm}^{-1}$
2) $4.16 \times 10^{6} \mathrm{~m}^{-1}$
3) $4 \times 10^{14} \mathrm{~Hz}$
4) $219.3 \times 10^{3} \mathrm{~cm}^{-1}$
124. What is the name and symbol of the element with atomic number 112 ?
(Classification of elements)
1) Ununbium Uub ?
2) Unnilbium, Unb
3) Ununnillum, Uun
4) Ununtrium, Uut
125. How many and what types of bonds are present in NH_{4}^{+}? (Chemical Bonding \& Molecular structure)
1) Four covalent bonds
2) Three covalent bonds and one ionic bond
3) Four ionic bonds
4) Three covalent bonds and one coordinate bond
126. In which of the following molecules octet rule is not followed? (Chemical Bonding \& Molecular structure)
1) NH_{3}
b) CH_{4}
c) CO_{2}
d) NO
127. What is the effect on the pressure of a gas if its temperature is increased at constant volume ?
(States of Matter)
1) The pressure of the gas increases
2) The pressure of the gas decreases
3) The pressure of the gas remains same
4) The pressure of the gas becomes double.
128. A flask of capacity 2 L is heated from $35^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$. What volume of air will escape from the flask?
(States of Matter)
1) 10 mL
2) 20 mL
3) 60 mL
4) 50 mL
129. In an adiabtic expansion of ideal gas
(Thermodynamics)
1) $W=-\Delta E$
2) $W=\Delta E$
3) $\Delta E=0$
4) $W=0$
130. For the following reactions : $\mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{3(\mathrm{~g})} \square \quad \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$. The value of K_{c} is 8.2×10^{4}. What will be the value of K_{c} for the reverse reaction ?
(Equilibrium)
1) 8.2×10^{4}
2) $\frac{1}{8.2 \times 10^{4}}$
3) $\left(8.2 \times 10^{4}\right)^{2}$
4) $\sqrt{8.2 \times 10^{4}}$
131. Which type of redox reaction is shown by the following reaction?

$$
\stackrel{0}{\mathrm{C}}_{2(\mathrm{~g})}+2 \stackrel{+1-1}{\mathrm{KBr}}_{(\mathrm{aq})} \rightarrow 2 \mathrm{~K}_{\mathrm{KCl}}^{(\mathrm{aq})}+\mathrm{Br}_{2} \stackrel{0}{4}
$$

(Redox Reactions)

1) Decomposition reaction
2) Non-metal displacement reaction
3) Metal displacement reaction
$4 \mathscr{C}$ isproportionation reaction
132. What is the oxidation number of carbon in $\mathrm{C}_{3} \mathrm{O}_{2}$ (oarbon suboxide)?
(Redox Reactions)
1) $+4 / 3$
2) $+10 / 4$
3) +2
4) $+2 / 3$
133. A deuterium is
1) an electron with a positive charge
2) a nucleus having two protons
3) a nucleus containing a neutron and twopfotons 4) a nucleus containing a neutron and a proton
134. Which of the following alkali metals whenburnt in air forms a mixture of oxide as well as nitride?
(S-Block elements)
1) K
2) Na
3) Li
4) Cs
135. Anhydrous AICl_{3} fumes in air. What is the reason for it?
1) It is hygroscopic in nature.
2) It gives out chlorine when exposed to air.
3) It is hydrolysed in moist air giving out fumes of HCl .
4) It loses water when exposed to moist air.
136. The decreasing order of power of boron halides to act as Lewis acids is
(P-Block elements)
1) $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>\mathrm{BBr}_{3}$
2) $\mathrm{BBr}_{3}>\mathrm{BCl}_{3}>\mathrm{BF}_{3}$
3) $\mathrm{BCl}_{3}>\mathrm{BF}_{3}>\mathrm{BBr}_{3}$
4) $\mathrm{BCl}_{3}>\mathrm{BBr}_{3}>\mathrm{BF}_{3}$
137. Which type of hybridisation of each carbon is there in the compound? $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CN}$
(Organic chemistry-some Basic Principle)
1) $s p^{3}, s p^{2}, s p^{2}, s p$
2) $s p^{3}, s p^{2}, s p^{2}, s p^{3}$
3) $s p^{3}, s p^{2}, s p^{3}, s p^{3}$
4) $s p^{3}, s p^{2}, s p, s p^{3}$
138. Which of the following compounds gives methane on reaction with water?
(Hydro Carbons)
1) CaC_{2}
2) $B_{4} C$
3) SiC
4) $\mathrm{Al}_{4} \mathrm{C}_{3}$
139. The number of chain isomers possible for hydrocarbon $\mathrm{C}_{5} \mathrm{H}_{12}$ is
1) 3
2) 5
3) 4
140. Which of the following is a greenhouse gas ?
1) SO_{2}
2) $\mathrm{H}_{2} \mathrm{~S}$
3) CO_{2}
4) 6
(Environmental Chemistry)
141. Which of the following primitive cells show the given parameters ? $a \neq b \neq c, \alpha=\beta=\gamma=90^{\circ}$
(Solid State)
1) Cubic
2) Tetragonal
3) Orthorhombic
4) Hexagonal
142. What is the molarity of a solution containing 10 g of NaOH in 500 mL of solution ? MSTUTOPsotutions)
1) $0.25 \mathrm{~mol} \mathrm{~L}^{-1}$
2) $0.75 \mathrm{~mol} \mathrm{~L}^{-1}$
3) $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$
4) $1.25 \mathrm{~mol} \mathrm{~L}^{-1}$
143. In the cell, $\mathrm{Zn}\left|\mathrm{Zn}^{2+}\right|\left|\mathrm{Cu}^{2+}\right| \mathrm{Cu}$, the negative terminal is
(Electro Chemistry)
1) Cu
2) Cu^{2+}
3) Zn
4) Zn^{2+}
144. Electrode potential data of few cells is given below. Based on the data, arrange the ions in increasing order of their reducing power.
$\mathrm{Fe}_{(\mathrm{aq})}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}_{(\mathrm{aq})}^{2+} ; \quad \mathrm{E}^{0}=+0.77 \mathrm{~V}$
$\mathrm{Al}_{(\mathrm{aq})}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}_{(\mathrm{s})} ; \quad \mathrm{E}^{0}=-1.66 \mathrm{~V}$
$\mathrm{Br}_{2(\text { aq) }}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}_{(\text {(aq) }}^{-} ; \quad \mathrm{E}^{0}=+1.09 \mathrm{~V}$
(Electro Chemistry)
1) $\mathrm{Br}^{-}<\mathrm{Fe}^{2+}<\mathrm{Al}$
2) $\mathrm{Fe}^{2+}<\mathrm{Al}<\mathrm{Br}^{-}$
3) $\mathrm{Al}<\mathrm{Br}^{-}<\mathrm{Fe}^{2+}$
4) $\mathrm{Al}<\mathrm{Fe}^{2+}<\mathrm{Br}^{-}$
145. For a reaction $R \rightarrow P$, the concentration of a reactant changes from 0.05 M to 0.04 M in 30 minutes. What will be the average rate of reaction in minutes?
(Chemical Kinetics)
1) $4 \times 10^{-4} \mathrm{M} \mathrm{min}^{-1}$
2) $8 \times 10^{-4} \mathrm{M} \mathrm{min}^{-1}$
3) $3.3 \times 10^{-4} \mathrm{M} \mathrm{min}^{-1}$
4) $2.2 \times 10^{-4} \mathrm{M} \mathrm{min}^{-1}$
146. For the reaction $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$, If the rate of disappearence of NH_{3} is $3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, what is the rate of formation of $\mathrm{H}_{2} \mathrm{O}$?
(Chemical Kinetics)
1) $5.4 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
2) $3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
3) $4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
4) $0.6 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
147. Which of the following is less than zero during adsorption?
(Surface Chemistry)
1) ΔG
2) ΔS
3) $\Delta \mathrm{H}$
4) All of these
148. Which of the following is not an ore of magnesium? (Genral Principles and Process of Isolation of elements)
1) Carnallite
2) magnesite
3) Dolomite
4) Gypsum
149. Nitrogen shows different oxidation states ranging from
(P-Block Elements)
1) -3 to +5
2) -5 to +5
3) 0 to -5
4) -3 to +3
(P-Block Elements)
150. Which of the following species has the highest dipole moment?
1) SbH_{3}
2) PH_{3}
3) NH_{3}
4) AsH_{3}
151. Fe^{3+} compounds are more stable than Fe^{2+} compounds because
(d-and-f-block elements)
1) Fe^{3+} has smaller size than Fe^{2+}
2) Fe^{3+} has $3 \mathrm{~d}^{5}$ configuration (half - filled)
3) Fe^{3+} has higher oxidation state
4) Fe^{3+} is paramagnetic in nature
152. The number of ions given by $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{4}$ in aqeous solution will be
3) Five
4) Two 2) Three
53. Which of the following is a primary halide?
$\begin{array}{ll}\text { 1) iso - Propyliodide } & \text { 2) sec- Butyliodide }\end{array}$
3) ter-Butylbromide
4) eleven
(HaloAlkanes \& Halo Arenes)
5) neo - hexylchoride
154. An alkene $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$ is treated with $\mathrm{B}_{2} \mathrm{H}_{6}$ in presencé of $\mathrm{H}_{2} \mathrm{O}_{2}$. The final product formed is
(Alcohols, Phenols and ethers)
1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
2) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
4) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~B}$
155. In the following reaction, product (p) is

1) RCHO
2) RCHO 2) RCH_{3} 4) $\mathrm{RCH}_{2} \mathrm{OH}$
3) RCH_{3}
4) RCOOH
(Aldehydes, Ketones \& Carboxylic acids)
156. Ozonolysis of an organic compound givesformaldehyde as one of the products. This confirms the presence of (Aldehydes, Ketones \& Carboxylic acids)
1) Two ethylenic double bonds
2) a vinyl group
3) an isopropyl group
4) an acetylenic triple bond
157. Identify X, Y and Z in the given reaction:

(Amines)
x
1) $\mathrm{X}-\mathrm{CH}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$
$Y-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$
$\mathrm{Y}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$
$Y-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$
$\mathrm{Y}-\mathrm{NCCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$
Z
$\mathrm{Z}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}$
$\mathrm{Z}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
$\mathrm{Z}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
$\mathrm{Z}-\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
158. Invert sugar is
1) a type of cane sugar
2) Optically inactive form of sugar
3) Mixture of glucose and galactose
4) Mixture of glucose and fructose in equimolar quantities
159. The S in buna - S refers to
(Polymers)
1) Sulphur
2) Styrene
3) sodium
160. Barbituric acid and its derivatives are well known as
1) Tranquilizers
2) antiseptics
3) analgesics
4) salicylate
(Chemistry in everyday life)
5) antipyretics
