MODEL PAPER - 3 CHEMISTRY

121.	The density of a gas is 1.78 g L ⁻¹ at STP. The w 1) 39.9 gr 2) 22.4 g	-	s (Some Basic 4) 29 g	concept of chemistry)
122.	Which of the following species is isoelectronic v 1) HF 2) N ₂		, •	(Structure of Atom)
123.	What will be the wavenumber of yellow radiation 1) $1.724 \times 10^4 \text{ cm}^{-1}$ 2) $4.16 \times 10^6 \text{ m}^{-1}$	n having wavelength 240	nm? <i>(Structur</i>	
124.	What is the name and symbol of the element w 1) Ununbium Uub? 2) Unnilbium, Unb	rith atomic number 112?	(Class	sification of elements)
125.	How many and what types of bonds are prese 1) Four covalent bonds	nt in NH ⁺ ₄ ? <i>(CI</i> 2) Three covalent bond	nemical Bondin s and one ion	g & Molecular structure) ic bond
126.	 3) Four ionic bonds In which of the following molecules octet rule is 1) NH₃ b) CH₄ 			
127.	What is the effect on the pressure of a gas if its			nt volume ? (States of Matter)
	1) The pressure of the gas increases	2) The pressure of the g	jas decreases	5
128.	1) The pressure of the gas increases 3) The pressure of the gas remains same A flask of capacity 2 L is heated from 35° C to 4	4) The pressure of the g	jas becomes o will escape fro	double. om the flask?
	•		-	(States of Matter)
129.	1) 10 mL 2) 20 mL In an adiabtic expansion of ideal gas	3) 60 mL	4) 50 mL	(Thermodynamics)
120.	1) W = $-\Delta E$ 2) W= ΔE	3) ∆E = 0	4) $W = 0$	
130.	For the following reactions : $NO_{(g)} + O_{3(g)} \square$ value of K_c for the reverse reaction ?	$NO_{2(g)} + O_{2(g)}$. The value	e of K _c is 8.2 > (Equilibri	
	1) 8.2×10^4 2) $\frac{1}{8.2 \times 10^4}$	3) (8.2 x 10 ⁴) ²	4) $\sqrt{8.2 \times 10^4}$	-
131.	Which type of redox reaction is shown by the fo	llowing reaction ?		
	${}^{0}\text{Cl}_{2(g)} + 2KBr_{(aq)}^{+1-1} \rightarrow 2KC$	$I_{(aq)}^1 + Br_{2(q)}^0$		(Redox Reactions)
	1) Decomposition reaction	2) Metal displacement re	eaction	
122	3) Non-metal displacement reaction What is the evidetican number of earlier in C.O.	4) isproportionation re	action	(Dadas Baatiana)
132.	What is the oxidation number of carbon in C_3O_3 1) +4/3 2) +10/4	3) +2	4) +2/3	(Redox Reactions)
133.	A deuterium is		, ,	(Hydrogen)
	1) an electron with a positive charge3) a nucleus containing a neutron and two protes	2) a nucleus having ons 4) a nucleus contain	•	and a proton
134.	Which of the following alkali metals when burnt		-	
	4) //	2) 1 :		S-Block elements)
135.	1) K 2) Na Anhydrous AlCl ₃ fumes in air. What is the reas	3) Li on for it ?	4) Cs	(P-Block elements)
	1) It is hygroscopic in nature.		·	,
	2) It gives out chlorine when exposed to air.	-f1101		
	3) It is hydrolysed in moist air giving out fumes of4) It loses water when exposed to moist air.	DI FICI.		
136.	The decreasing order of power of boron halides 1) BF ₃ > BCl ₃ > BBr ₃ 2) BBr ₃ > BCl ₃ > BF ₃		4) BCl ₂ > BE	(<i>P-Block elements</i>) Br ₂ > BF ₂
137.	Which type of hybridisation of each carbon is the	0 0	· ·	· ·
			-	e Basic Principle)
120	1) sp ³ , sp ² , sp ² , sp 2) sp ³ , sp ² , sp ² , sp ³ Which of the following compounds gives method		4) sp ³ , sp ² , s	
100.	Which of the following compounds gives method 1) CaC_2 2) B_4C	3) SiC	4) Al ₄ C ₃	(Hydro Carbons)
139.	The number of chain isomers possible for hydr			(Hydro Carbons)
140.	1) 3 2) 5 Which of the following is a greenhouse gas?	3) 4		mental Chemistry)
111	1) SO ₂ 2) H ₂ S Which of the following primitive cells show the s	3) CO ₂	4) O ₂	000
141.	Which of the following primitive cells show the g	Jiven parameters ? a ≠ b :	\neq C , $\alpha = \beta = \gamma =$	= 90° (Solid State)
142	1) Cubic 2) Tetragonal What is the molarity of a solution containing 10	3) Orthorhombic 0 g of NaOH in 500 mV of	4) Hexagona	al

	1) 0.25 mol L ⁻¹	2) 0.75 mol L ⁻¹	3) 0.5 mol L ⁻¹	4) 1.25 mol L ⁻¹		
143.	In the cell, $Zn Zn^{2+} Cu^{2+} $	Cu , the negative termi	nal is	(Electro Chemistry)		
144.	1) Cu 2) Cu ²⁺ 3) Zn 4) Zn ²⁺ Electrode potential data of few cells is given below. Based on the data, arrange the ions in increasing order their reducing power.					
	$Fe^{3+}_{(aq)} + e^{-} \rightarrow Fe^{2+}_{(aq)}; E^{0}$	= +0.77 V				
	$Al_{(aq)}^{3+} + 3e^- \rightarrow Al_{(s)}; E^0 =$	= -1.66 V				
	$Br_{2(aq)} + 2e^- \rightarrow 2Br_{(aq)}^-; E$			(Electro Chemistry)		
145.		e concentration of a read	3) Al < Br⁻ < Fe²⁺ ctant changes from 0.05 N	4) AI < Fe ²⁺ < Br VI to 0.04 M in 30 minutes. What w (Chemical Kinetics)		
146.	1) 4 x 10^{-4} M min ⁻¹ For the reaction $4NH_3$ + is the rate of formation o	2) 8 x 10 ⁻⁴ M min ⁻¹ $5O_2 \rightarrow 4NO + 6H_2O$, If t				
147.	1) $5.4 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$ 3) $4 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$ Which of the following is 1) ΔG	s less than zero during a 2) ∆S	2) 3.6 x 10 ⁻³ mol L ⁻¹ s ⁻¹ 4) 0.6 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹ dsorption ? 3) ΔH	(Surface Chemistry)		
148.	Which of the following is	not an ore of magnesiu	m [?] (Genral Principles an	nd Process of Isolation of elements)		
149.	Nitrogen shows differen	t oxidation states rangin	~	(P-Block Elements)		
150.	Which of the following s	2) -5 to +5 pecies has the highest o 2) PH ₂	,	4) -3 to +3 (P-Block Elements) 4) AsH ₃		
151.	Fe ³⁺ compounds are mor	re stable than Fe²+ comp		(d- and -f-block elements		
152.	The number of ions give	en by [Pt (NH ₃) ₆]Cl ₄ in ac 2) Three	qeous solution will be	(Co-ordination Compounds) 4) eleven		
153.	Which of the following is	a primary halide ? 2) sec- Butyliodide	3) ter-Butylbromide	(HaloAlkanes & Halo Arenes) 4) neo - hexylchoride		
	1) CH ₃ CH ₂ CHO In the following reaction	2) CH ₃ CH(OH)CH ₃	3) CH ₃ CH ₂ CH ₂ OH	(Alcohols, Phenols and ethers) 4) (CH ₃ CH ₂ CH ₂) ₃ B		
		$R - C - CI - \frac{H_2}{Pd/BaSO_4}$	(Alde	hydes, Ketones & Carboxylic acids)		
156.	1) RCHO	2) RCH ₃	3) RCOOH	4) RCH ₂ OH oducts. This confirms the presence		
	of 1) Two ethylenic double	bonds	(Aldehy 2) a vinyl group	rdes, Ketones & Carboxylic acids)		
157.	3) an isopropyl group Identify X, Y and Z in the	given reaction :	4) an acetylenic triple bo	ond		
		$CH_2 = CH_2 \xrightarrow{Br_2 \\ CCI_4} X -$	$\xrightarrow{\text{NaCN}} Y \xrightarrow{\text{LiAlH}_4} Z$	(Amines)		
	X 1) X - CH ₂ Br - CH ₂ Br 2) X-CH ₂ Br - CH ₂ Br 3) X-CH ₃ CH ₂ Br 4) CH ₂ Br-CH ₂ Br	Y Y- CH ₃ CH ₂ CH ₂ CN Y-CH ₃ CH ₂ CN Y-CH ₃ CH ₂ CN Y-CH ₃ CH ₂ CN	Z Z-CH ₃ CH ₂ CH ₂ CH ₂ NH ₃ Z-CH ₃ CH ₂ CH ₂ NH ₂ Z-CH ₃ CH ₂ CH ₂ NH ₂ Z-H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ NH ₃	H.		
158.	Invert sugar is	111001120112011		(Bio Molecules)		
	 a type of cane sugar Optically inactive form Mixture of glucose and 	d galactose				
159	4) Mixture of glucose and The S in buna - S refers	•	quantities	(Polymers)		
	1) Sulphur	2) Styrene	3) sodium	4) salicylate		
160.	Barbituric acid and its de 1) Tranquilizers	erivatives are well knowr 2) antiseptics	າ as 3) analgesics	(Chemistry in everyday life) 4) antipyretics		

* * * * *