MODEL PAPER - 5

CHEMISTRY

121. How many moles of	of oxygen gas can be prod	luced during electrolytic o	decomposition of 180 g of water?				
1) 2.5 moles	2) 5 moles	3) 10 moles	(Some Basic concept of chemistr 4) 7 moles	y)			
			ron of a hydrogen atom in n = 6 dro	ns to			
ground state ?			(Structure of Ato	•			
1) 6	2) 15	3) 30	-	,			
• •			rs between two stationary states	with			
energies E_1 (lower) and E_2 (higher) is given by							
(Structure of Atom)							
$(1)_{1} = \frac{E_1 + E_2}{E_1 + E_2}$	2) $v = \frac{E_1 - E_2}{h}$	$(E_1 \times E_2)$	$(1) y_{1} = \frac{E_{2} - E_{1}}{E_{2} - E_{1}}$				
h	2) ⁰ – h	5) 0 - h	4) ⁰ h				
124. Which of the follow	wing elements shown as p	airs with their atomic nun	nbers belong to the same period ?				
	00 0) 7 40 and 7 47	0 7 44 and 7 04	(Classification of elemen	ts)			
			I 4) Z = 16 and Z = 35 (Chemical Bonding & Molecular stru	o t u mo)			
125. In which of the following $125.$ 1) NCl ₂	2) RbCl	3) BeCl ₂	4) BCl ₃	clure)			
126. The correct oder o	f decreasing bond length						
	(Chemical Bonding & I	Molecular structure)					
1) CO > CO ₂ >CO	²⁻ ₃ 2) $CO^{2-}_{3} > CO_{2} > C$	$0 \qquad 3) CO_2 > CO > CO$					
	res will be occupied by 4.4		(States of Mat	ter)			
1) 22.4 L	2) 44.8 L	,	4) 2.24 L	(a.r.)			
	ure 28 g of N2 will occupy 2) 487.2 K			er)			
,	,		e on the system and 2 Kj of heat is	aiven			
by the system ?			(Thermodynamic	-			
1) +10 kJ	2) -10 kJ	3) +5 kJ	4) - 5 kJ				
130. For the reaction 2	$NO_{2(g)} \square N_2O_{4(g)}K_p / K_c$ is	s equal to	(Equilibrium)				
		∕					
1) 1 BT	2) √ RT	3) RT	4) (RT) ²				
1.11		×Y'					
131. Permanganate (VII) ion, MnO ⁻⁴ oxidises I- ion to T ² and gives manganese (IV) oxide MnO ₂ in basic medium							
The skeletal ionic e			Inese (IV) oxide MnO_2 in basic me $MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values				
	equation is given as pMnC	$D_{4(aq)}^{-} \rightarrow rI_{(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rI_{(\ell)}^{-}$	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values	of p,			
	equation is given as pMnC	$D_{4(aq)}^{-} \rightarrow rI_{(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rI_{(\ell)}^{-}$	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values	of p,			
q, r and s are 1) p-1,q - 2, r- 8, s	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s	$D_{4(aq)}^{-} \rightarrow rI_{4(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rI_{4(aq)}^{-}$ 3) p-2,q -4, r- 2, s -8	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (<i>Redox React</i> 3 4) p-1,q - 4, r- 8, s -2	of p, <i>ions)</i>			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. T	$D_{4(aq)}^{-} \rightarrow rI_{4(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rI_{4(aq)}^{-}$ 3) p-2,q -4, r- 2, s -8	MnO _{2(s)} + sI _{2(s)} + yOH ⁻ _(aq) the values <i>(Redox React</i> 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pos	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. Th pound is	$O_{4(aq)}^{-} \rightarrow rI_{(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rI_2^{-}$ 3) p-2,q -4, r- 2, s -8 be oxidation number of X	MnO _{2(s)} + sI _{2(s)} + yOH ⁻ _(aq) the values (<i>Redox React</i> 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pos (<i>Redox Reaction</i>)	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. Tr pound is 2) Y ₂ (XZ ₃) ₂	$O_{4(aq)}^{-} \rightarrow rI_{(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rI_2^{-}$ 3) p-2,q -4, r- 2, s -8 the oxidation number of X 3) X ₃ (YZ ₄) ₂	MnO _{2(s)} + sI _{2(s)} + yOH ⁻ _(aq) the values <i>(Redox React</i> 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pos	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtua 1) $CO_2 + H_2$	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂	$D_{4(aq)}^{-}$ $qI_{(aq)}^{-}$ + xH ₂ O _(ℓ) → rl 3) p-2,q -4, r- 2, s -8 le oxidation number of X 3) X ₃ (YZ ₄) ₂ 3) CO+CO ₂	$ \begin{array}{c} \text{MnO}_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-} \text{ the values} \\ (\textit{Redox React}) \\ \textbf{Redox React} \\ \textbf{S} \textbf{4}) \textbf{p-1,q-4, r-8, s-2} \\ \textbf{is +2, Y is +5 and Z is -2, The pos} \\ \textbf{(Redox Reaction (Redox Reaction (A) X_3(Y_4Z)_2) \\ (\textit{Hydrogen)} \\ \textbf{4}) CO+O_2 \\ \end{array} $	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ ₂ 133. Syngas is a mixtua 1) $CO_2 + H_2$ 134. Which of the follow	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal s	$O_{4(aq)}^{-}$ $(qI_{(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rI$ 3) p-2,q-4, r- 2, s -8 the oxidation number of X 3) X ₃ (YZ ₄) ₂ 3) CO+CO ₂ tability ?	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox React 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pos (Redox Reaction 4) X ₃ (Y ₄ Z) ₂ (Hydrogen) 4) CO+O ₂ (S-Block elements)	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ ₂ 133. Syngas is a mixtua 1) $CO_2 + H_2$ 134. Which of the follow 1) Li ₂ CO ₃	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃	$\begin{array}{c} O_{4(aq)}^{-} \Rightarrow rI \\ O$	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox Reaction 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pose (Redox Reaction 4) X ₃ (Y ₄ Z) ₂ (Hydrogen) 4) CO+O ₂ (S-Block elements) 4) Rb ₂ CO ₃	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtur 1) $CO_2 + H_2$ 134. Which of the follow 1) Li ₂ CO ₃ 135. Which of the follow	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃ wing hydroxides is acidic?	$P_{4(aq)}^{-} \rightarrow rI_{(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rI_2^{-}$ R_2^{-} 3) p-2,q -4, r- 2, s -8 Re oxidation number of X 3) $X_3(YZ_4)_2$ 3) CO+CO ₂ tability ? 3) K_2CO_3	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox React 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pos (Redox Reaction 4) X ₃ (Y ₄ Z) ₂ (Hydrogen) 4) CO+O ₂ (S-Block elements) 4) Rb ₂ CO ₃ (P-Block elements)	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtua 1) $CO_2 + H_2$ 134. Which of the follow 1) $Li_2 CO_3$ 135. Which of the follow 1) Al(OH)_3	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ $	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox React 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pose (Redox Reaction 4) X ₃ (Y ₄ Z) ₂ (Hydrogen) 4) CO+O ₂ (S-Block elements) 4) B(OH) ₃	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtua 1) $CO_2 + H_2$ 134. Which of the follow 1) $Li_2 CO_3$ 135. Which of the follow 1) Al(OH)_3	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃ wing is not an ore of allum	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ $	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox React 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pos (Redox Reaction 4) X ₃ (Y ₄ Z) ₂ (Hydrogen) 4) CO+O ₂ (S-Block elements) 4) Rb ₂ CO ₃ (P-Block elements)	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ ₂ 133. Syngas is a mixtur 1) $CO_2 + H_2$ 134. Which of the follow 1) Li ₂ CO ₃ 135. Which of the follow 1) Al(OH) ₃ 136. Which of the follow 1) Aluminium power	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃ wing is not an ore of allum	$O_{4(aq)}^{-} \rightarrow rI_{(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rI_2^{-}$ (aq) = 0 (aq) = 0 $(\ell) = 0$ $(\ell) = $	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox React 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pose (Redox Reaction 4) X ₃ (Y ₄ Z) ₂ (Hydrogen) 4) CO+O ₂ (S-Block elements) 4) B(OH) ₃ (P-Block elements)	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ ₂ 133. Syngas is a mixtur 1) $CO_2 + H_2$ 134. Which of the follow 1) Li ₂ CO ₃ 135. Which of the follow 1) Al(OH) ₃ 136. Which of the follow 1) Aluminium power	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃ wing is not an ore of allum ler 2) Zinc powder of CH ₃ CH ₂ - C - CH-CHC II I	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox Reaction 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pose (Redox Reaction 4) X ₃ (Y ₄ Z) ₂ (Hydrogen) 4) CO+O ₂ (S-Block elements) 4) B(OH) ₃ (P-Block elements) 4) copper turnings.	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtur 1) $CO_2 + H_2$ 134. Which of the follow 1) $Li_2 CO_3$ 135. Which of the follow 1) $Al(OH)_3$ 136. Which of the follow 1) Aluminium power 137. The correct name	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃ wing is not an ore of allum ler 2) Zinc powder of CH ₃ CH ₂ - C - CH-CHO II I O CN	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox Reaction 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pose (Redox Reaction 4) X ₃ (Y ₄ Z) ₂ (Hydrogen) 4) CO+O ₂ (S-Block elements) 4) Rb ₂ CO ₃ (P-Block elements) 4) B(OH) ₃ (P-Block elements) 4) copper turnings.	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtur 1) $CO_2 + H_2$ 134. Which of the follow 1) $Li_2 CO_3$ 135. Which of the follow 1) $Al(OH)_3$ 136. Which of the follow 1) Aluminium power 137. The correct name 1) 2 - Cyano - 3 - or	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃ wing is not an ore of allum ler 2) Zinc powder of CH ₃ CH ₂ - C - CH-CHC II I O CN kopentanal	$(Org 2)^{-}_{4(aq)}$ $(aq)^{-}_{(aq)} + xH_2O_{(\ell)} \rightarrow rI$ $(aq)^{-}_{(aq)}$ $(aq)^{-}_{(aq)} + xH_2O_{(\ell)} \rightarrow rI$ $(aq)^{-}_{(aq)}$ $(aq)^{-}_{(\ell)} \rightarrow rI$ $(aq)^{-}_{(aq)}$ $(aq)^{-}_{(\ell)} \rightarrow rI$ $(aq)^{-}_{(aq)}$ $(aq)^{-}_{(\ell)} \rightarrow rI$ $(aq)^{-}_{(aq)} \rightarrow rI$ $(aq)^$	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox Reaction (Redox Reaction () X_3(Y_4Z)_2 (Hydrogen) 4) CO+O_2 (S-Block elements) 4) B(OH)_3 (P-Block elements) 4) copper turnings. (Redox Reaction (Redox Reaction () X_3(Y_4Z)_2 () CO+O_2 () CO	of p, <i>ions)</i> sible			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtur 1) $CO_2 + H_2$ 134. Which of the follow 1) $Li_2 CO_3$ 135. Which of the follow 1) Al(OH)_3 136. Which of the follow 1) Aluminium power 137. The correct name 1) 2 - Cyano - 3 - or 3) 2 - cyano - 1,3 - p	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal similar 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃ wing is not an ore of allum ler 2) Zinc powder of CH ₃ CH ₂ - C - CH-CHC II I O CN kopentanal entadiene	$(Org 2)_{4(aq)} = (A_{(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rI$ $(A_{(aq)}^{-}) = (A_{(aq)}^{-}) + xH_2O_{(\ell)} \rightarrow rI$ $(A_{(aq)}^{-}) = (A_{(aq)}^{-}) + xH_2O_{(\ell)} \rightarrow rI$ $(A_{(aq)}^{-}) = (A_{(aq)}^{-}) + xH_2O_{(\ell)} \rightarrow rI$ $(A_{(aq)}^{-}) \rightarrow rI$ $(A_{(aq)}^$	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox Reaction 3 4) p-1,q - 4, r- 8, s -2 is +2, Y is +5 and Z is -2, The pose (Redox Reaction 4) X ₃ (Y ₄ Z) ₂ (Hydrogen) 4) CO+O ₂ (S-Block elements) 4) Rb ₂ CO ₃ (P-Block elements) 4) B(OH) ₃ (P-Block elements) 4) copper turnings. (Pallock elements) (P-Block elements)	of p, <i>ions)</i> sible (s)			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtur 1) $CO_2 + H_2$ 134. Which of the follow 1) $Li_2 CO_3$ 135. Which of the follow 1) $Al(OH)_3$ 136. Which of the follow 1) $Al(OH)_3$ 137. The correct name 1) 2 - Cyano - 3 - oz 3) 2 - cyano - 1,3 - p 138. A mixure of 1-iodo	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal similar 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃ wing is not an ore of allum ler 2) Zinc powder of CH ₃ CH ₂ - C - CH-CHC II I O CN kopentanal entadiene	$0_{4(aq)}^{-} = qI_{(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rI$ 3 3) p-2,q -4, r- 2, s -8 is a consideration number of X 3) X ₃ (YZ ₄) ₂ 3) CO+CO ₂ tability ? 3) CO+CO ₂ tability ? 3) K ₂ CO ₃ 3) TI(OH) ₃ inium? 3) Iron turnings is (Org 2) 2 - formyl -3 - oxop 4) 1,3-dioxo-2-cyance is treated with sodium	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox Reaction (Redox Reaction () X_3(Y_4Z)_2 (Hydrogen) 4) CO+O_2 (S-Block elements) 4) B(OH)_3 (P-Block elements) 4) copper turnings. (Redox Reaction (Redox Reaction () X_3(Y_4Z)_2 () CO+O_2 () CO	of p, ions) sible is)			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtur 1) $CO_2 + H_2$ 134. Which of the follow 1) $Li_2 CO_3$ 135. Which of the follow 1) $Al(OH)_3$ 136. Which of the follow 1) Aluminium power 137. The correct name 1) 2 - Cyano - 3 - or 3) 2 - cyano - 1,3 - p 138. A mixure of 1-iodor reaction. Which of 1)Propane + Hexa	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃ wing is not an ore of allum ler 2) Zinc powder of CH ₃ CH ₂ - C - CH-CHC II I O CN kopentanal entadiene bethane and 1-iodopropar the following hydrocarbor ne 2) Ethane + propar	$0_{4(aq)}$ (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) (aq) (aq) $(aq)(aq)$ (aq) (aq) (aq) $(aq)(aq)$ (aq) (aq) (aq) (aq) $(aq)(aq)$ (aq) $(aq$	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (<i>Redox React</i>) (<i>Redox React</i>) (<i>Redox Reaction</i> (<i>Redox Reaction</i> 4) X ₃ (Y ₄ Z) ₂ (<i>Hydrogen</i>) 4) CO+O ₂ (<i>S-Block elements</i>) 4) Rb ₂ CO ₃ (<i>P-Block elements</i>) 4) B(OH) ₃ (<i>P-Block elements</i>) 4) copper turnings. (<i>P-Block elements</i>) 4) copper turnings. (<i>P-Block elements</i>) 4) copper turnings.	of p, ions) sible is) Vurtz pons)			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtur 1) $CO_2 + H_2$ 134. Which of the follow 1) $Li_2 CO_3$ 135. Which of the follow 1) $Al(OH)_3$ 136. Which of the follow 1) Aluminium power 137. The correct name 1) 2 - Cyano - 3 - or 3) 2 - cyano - 1,3 - p 138. A mixure of 1-iodor reaction. Which of 1)Propane + Hexa	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. Tr pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃ wing is not an ore of allum ler 2) Zinc powder of CH ₃ CH ₂ - C - CH-CHO II I O CN kopentanal entadiene bethane and 1-iodopropar the following hydrocarbor	$0_{4(aq)}$ (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) (aq) (aq) $(aq)(aq)$ (aq) (aq) (aq) $(aq)(aq)$ (aq) (aq) (aq) (aq) $(aq)(aq)$ (aq) $(aq$	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (<i>Redox React</i>) (<i>Redox React</i>) (<i>Redox Reaction</i> (<i>Redox Reaction</i> 4) X ₃ (Y ₄ Z) ₂ (<i>Hydrogen</i>) 4) CO+O ₂ (<i>S-Block elements</i>) 4) Rb ₂ CO ₃ (<i>P-Block elements</i>) 4) B(OH) ₃ (<i>P-Block elements</i>) 4) copper turnings. (<i>P-Block elements</i>) 4) copper turnings. (<i>P-Block elements</i>) 4) copper turnings.	of p, ions) sible (s) Vurtz pons)			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtur 1) $CO_2 + H_2$ 134. Which of the follow 1) $Li_2 CO_3$ 135. Which of the follow 1) $Al(OH)_3$ 136. Which of the follow 1) Aluminium power 137. The correct name 1) 2 - Cyano - 3 - or 3) 2 - cyano - 1,3 - p 138. A mixure of 1-iodor reaction. Which of 1)Propane + Hexa 139. Which of the follow	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃ wing is not an ore of allum ler 2) Zinc powder of CH ₃ CH ₂ - C - CH-CHC II I O CN kopentanal entadiene bethane and 1-iodopropar the following hydrocarbor ne 2) Ethane + propar wing is the most stable fre	$0_{4(aq)}$ (aq) (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) (aq) (aq) (aq) $(aq)(aq)$ (aq) (aq) (aq) (aq) (aq) $(aq)(aq)$ (aq)	$MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values (Redox Reaction (Redox Reaction (R	of p, ions) sible (s) Vurtz pons)			
q, r and s are 1) p-1,q - 2, r- 8, s 132. A compound conta formula of the com 1) XYZ_2 133. Syngas is a mixtur 1) $CO_2 + H_2$ 134. Which of the follow 1) $Li_2 CO_3$ 135. Which of the follow 1) $Al(OH)_3$ 136. Which of the follow 1) Aluminium power 137. The correct name 1) 2 - Cyano - 3 - or 3) 2 - cyano - 1,3 - p 138. A mixure of 1-iodor reaction. Which of 1)Propane + Hexa	equation is given as pMnC - 4 2) p-2,q - 6, r- 2, s ains atoms X, Y and Z. The pound is 2) $Y_2(XZ_3)_2$ re of 2) CO + H ₂ wing has lowest thermal si 2) Na ₂ CO ₃ wing hydroxides is acidic? 2) Ga(OH) ₃ wing is not an ore of allum ler 2) Zinc powder of CH ₃ CH ₂ - C - CH-CHC II I O CN kopentanal entadiene bethane and 1-iodopropar the following hydrocarbor ne 2) Ethane + propar	$0_{4(aq)}$ (aq) (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) $+ xH_2O_{(\ell)} \rightarrow rI$ (aq) (aq) (aq) (aq) (aq) (aq) $(aq)(aq)$ (aq) (aq) (aq) (aq) (aq) $(aq)(aq)$ (aq)	$\begin{array}{c} MnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-} \text{ the values} \\ (Redox Reaction (Redox (Red$	of p, ions) sible (s) Vurtz pons)			

WWWW.AIMSTUTORIAL.IN

WWW.AIMSTUTORIAL.IN

-							
140.	In Antarctica,ozone de	pletion is due to the forn	nation of which of the fol	•	unds? vironmental Chemistry)		
	1) Acrolein	2) PAN	3) PCBs	4) Chlorine r	••		
141.	A cubic solid is made up	,	,	,			
	•		ula of the compound and				
	and Q?		·		(Solid State)		
	1) PQ ₂ , 6 : 6	2) PQ, 6 : 6	3) P ₂ Q, 6 : 8	4) PQ, 8 : 8	, , , , , , , , , , , , , , , , , , ,		
142.	When 1.04 g of BaCl ₂ i	s present in 10 ⁵ g of solu	ution the concentration o	f soultion is	(Solutions)		
	1) 0.104 ppm	2) 10.4 ppm	3) 0.0104 ppm	4) 104 ppm	(<i>, ,</i>		
143.	What will be the emf of	,	,	,			
			~				
		01M) AgNO ₃ (0.05M) Ag	()		(Electro Chemistry)		
	1) 0.828 V	2) 0.0413 V	,				
144.	What will be the reduc	tion potential for the folle	owing half - cell reaction	at 298 K? (Giv	ven : [Ag ⁺]=0.1 M and		
	E ⁰ _{cell} = +0.80 V)				(Electro Chemistry)		
	1) 0.741 V	2) 0.80 V	3) -0.80 V	4) - 0.741 V			
145.	For the reaction, $2N_2$	$O_{s} \rightarrow 4NO_{2} + O_{2}$ rate and	d rate constant are 1.02	2 x 10 ⁻⁴ mol L ⁻¹	s ⁻¹ and 3.4 x 10 ⁻⁵ s ⁻¹		
		entration of N_2O_5 in mol L			Chemical Kinetics)		
	1) 3.4 x 10 ⁻⁴	2) 3.0	3) 5.2	4) 3.2 x 10 ⁻⁵	enemical America		
	,	,	,	,			
1/6	Consider the reaction :		$\frac{N_2O_4}{k_2O_4}$ - k and $\frac{d[NO_2]}{k_2O_4}$	- k' then	(Chemical Kinetics)		
140.	Consider the reaction.	$2 \ln_2 O_4 \square 4 \ln O_2 \Pi = -$	dt dt		(Chemical Kinetics)		
				1			
	1) 2k' = k	2) k' = 2k	3) k' = k	4) $k = \frac{1}{4}k'$			
				ý 4			
147.	Which of the following	-		0.00	(Surface Chemistry)		
	1) HCl	2) NH ₃	3) O ₂	4) CO ₂			
148.	Froth floatation proces	ss of concentration is ba					
				s and Process of	f Isolation of elements)		
	,	properties with the frothin					
		cific gravities of gangue					
			ticles in frothing agent a				
4.40			rticles with water and from				
149.	PCl ₃ on hydrolysis give				ock Elements)		
450	1) $H_3 PO_3$		3) $H_4 PO_4$	4) POCl ₃	·		
150.	Arrange the following in	n decreasing Lewis acid	strength - PF_3 , POI_3 , PBI	₃ , דו ₃ . (<i>P-Bloc</i>	ck Elements)		
	1) $PI_3 > PBr_3 > PCI_3 > P$		2) $PF_3 > PCI_3 > PBr_3 >$				
151	3) $PCI_3 > PBr_3 > PI_3 > P$		$PBr_3 > PI_3 > PF_3 > P$	5	-1 1 - 6 - 1 1		
151.	The correct order of nu		205 IS (2) NU2+ > Cu2+ > Eo3+ >	() Cr ³⁺	d- and -f-block elements)		
	1) $Cu^{2+} > Ni^{2+} > Cr^{3+} > F$ 3) $Fe^{3+} > Cr^{3+} > Ni^{2+} > C$	-e°	2) Ni ²⁺ > Cu ²⁺ > Fe ³⁺ > 4) Cr ²⁺ > Fe ³⁺ > > Ni ²⁺ >				
150	,	· · · · · · · · · · · · · · · · · · ·	,		ation state of C_0 is ± 2		
152.	The charges x and y on and Fe is +2 in their res		$(10) [CO(101 _3)_2 CI_4] $ (11) [F				
	1) $x = +1$, $y = -1$	2) x = 1 y = +2	3) x = -1, y = -4	(0.000)	lination Compounds)		
152	The negative part of the						
155.			atoms. This rule is known				
	1) Saytzeff's rule						
154	What happens when ter	,	,	,			
104.			2) 2-Methylpropene is f		iois, Frienois and ethers)		
	3) 1 - Butene is formed		4) Butanal is formed.	onned			
155	The addition of HCN to	carbonyl compounds is	,	(Aldohydos Kot	onos & Carboyulic acida)		
100.			n 3) Free radical addition				
156	Aldehydes other than fo	,		,			
100.	give			-	es & Carboxylic acids)		
	•	2) secondary alcohols	3) primary alcohols	-			
157	Arrange the following in	, <u>-</u>	,	<i>,</i>			
107.	1) $C_6 H_5 N H_2 < N H_3 < (C$	H) NH < CH NH	2) $CH_3NH_2 < (CH_3)_2NH_2$				
	3) $C_6 H_5 N H_2 < N H_3 < C H_3$	1 NH < (CH) NH	4) $(CH_3)_2$ NH < CH_3NH				
158	What are the hydrolysi		$+)(01_{3})_{2}$	$_{2}$	(Bio Molecules)		
100.		-	3) Glucose + Galaitos				
150	Natural rubber is a poly	•	J Olucose · Galailos	Giucose			
159.	1) 1, 1 - dimethylbutadie		2) 2 methyl -1, 3 - buta	diene	(Polymers)		
	3) 2 - chlorobuta -1, 3-d		4) 2 - chlorobut - 2 - en				
160			,		n as		
100.	160. The chemical substances used to bring down body temperature in high fever are known as (Chemistry in everyday life)						
	1)Analgesics	2) Antipyretics	3) Antihistomines				
			3) Antihistamines WV		TU I UKIAL.IN		