MODEL PAPER - 6

CHEMISTRY

121. 1 mole of water contains
(Some Basic concept of chemistry)
1) 6.023×10^{23} atoms \quad 2) 6.023×10^{23},molecules 3$) 3 \times 6.023 \times 10^{23}$ molecules 4) None of these
122. What is the velocity of electron present in first Bohr orbit of hydrogen atom?
(Structure of Atom)
1) $2.18 \times 10^{5} \mathrm{~m} / \mathrm{s}$
2) $2.18 \times 10^{6} \mathrm{~m} / \mathrm{s}$
3) $2.18 \times 10^{-18} \mathrm{~m} / \mathrm{s}$
4) $2.18 \times 10^{-9} \mathrm{~m} / \mathrm{s}$
123. According to Bohr's theory, the angular momentum of an electron in 5 th orbit is
(Structure of Atom)
1) $\frac{10 \mathrm{~h}}{\pi}$
2) $\frac{25 \mathrm{~h}}{\pi}$
3) $\frac{1.5 \mathrm{~h}}{\pi}$
4) $\frac{2.5 h}{\pi}$
124. An element has atomic number 79. Predict the group and period in which the element is placed.
(Classification of elements)
1) $2^{\text {nd }}$ group, $7^{\text {th }}$ period
2) $11^{\text {th }}$ group, $6^{\text {th }}$ period 3$) 13^{\text {th }}$ group, $6^{\text {th }}$ period
3) $12^{\text {th }}$ group, $6^{\text {th }}$ period
125. The correct sequence of bond length in single bond, double bond and triple bond of C is
(Chemical Bonding \& Molecular structure)
1) $(\mathrm{C}-\mathrm{C})<(\mathrm{C}=\mathrm{C})<(\mathrm{C} \equiv \mathrm{C})$
2) $\mathrm{C} \equiv \mathrm{C}<\mathrm{C}=\mathrm{C}<\mathrm{C}-\mathrm{C}$
3) $\mathrm{C}-\mathrm{C}<\mathrm{C}=\mathrm{C}<\mathrm{C} \equiv \mathrm{C}$
4) $\mathrm{C}=\mathrm{C}<\mathrm{C} \equiv \mathrm{C}<\mathrm{C}-\mathrm{C}$
126. Arrange the following in increasing order of covalent character $-\mathrm{NaCl}, \mathrm{MgCl}_{2}, \mathrm{AlCl}_{3}$.
(Chemical Bonding \& Molecular

structure)

1) $\mathrm{NaCl}<\mathrm{MgCl}_{2}<\mathrm{AlCl}_{3}$
2) $\mathrm{MgCl}_{2}<\mathrm{NaCl}<\mathrm{AlCl}_{3}$
3) $\mathrm{AlCl}_{3}<\mathrm{MgCl}_{2}<\mathrm{NaCl}$
4) $\mathrm{NaCl}<\mathrm{AlCl}_{3}<\mathrm{MgCl}_{2}$
127. What is the density of CO_{2} at $27^{\circ} \mathrm{C}$ and 2.5 atm pressure ?
(States of Matter)
1) $5.2 \mathrm{~g} \mathrm{~L}^{-1}$
2) $6.2 \mathrm{~g} \mathrm{~L}^{-1}$
3) $7.3 \mathrm{~g} \mathrm{~L}^{-1}$
4) $4.46 \mathrm{~g} \mathrm{~L}^{-1}$
128. Molecular mass of a gas is 78 . Its density at $98^{\circ} \mathrm{C}$ and 1 am will be
(States of Matter)
1) $200 \mathrm{~g} \mathrm{~L}^{-1}$
2) $2.56 \mathrm{~g} \mathrm{~L}^{-1}$
3) $256 \mathrm{~g} \mathrm{~L}^{-1}$
4) $78 \mathrm{~g} \mathrm{~L}^{-1}$
129. A reaction proceeds through two paths I and II to convert $X \rightarrow Z$.

What is the correct relationship between $\mathrm{Q}, \mathrm{Q}_{1}$ and Q_{2} (Thermodynamics)

1) $Q=Q_{1} \times Q_{2}$
2) $Q=Q_{1}+Q_{2}$
3) $Q_{2}=Q_{2}-Q_{1}$
4) $Q=Q_{1} / Q_{2}$
130. For the reaction $a+b \square \quad c+d$, initially concentrations of a and b are equal and at equilibrium the concentration of d will be twice of that of a. What will be the equilibrium constant for the reaction? (Equilibrium)
1) 2
2) 9
3) 4
4) 3
131. Write the stoichiometric coefficient for the following reaction:

$$
\mathrm{xI}_{2}+\mathrm{yOH}^{-} \rightarrow \mathrm{IO}_{3}^{-} \frac{+}{\nabla} \mathrm{Z}^{-}+3 \mathrm{H}_{2} \mathrm{O}
$$

(Redox Reactions)

1) $x-6, y-3, z-5$
2) $x-3, y-2, z-3$?
3) $x-3, y-6, z-5$
4) $x-3, y-3, z-3$
132. Which compound amongst the following the highest oxidation number of Mn ?
(Redox Reactions)
1) KMnO_{4}
2) $\mathrm{K}_{2} \mathrm{MnO}_{4} \quad A$
3) MnO_{2}
4) $\mathrm{Mn}_{2} \mathrm{O}_{3}$
133. Which property of Hydrogen is shown by the following reactions ?
(Hydrogen)
i) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} \rightarrow 3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O}$
ii) $\mathrm{CO}+\mathrm{H}_{2} \xrightarrow[\mathrm{Cr}_{2} \mathrm{O}_{3}]{\mathrm{ZnO}} \mathrm{CH}_{3} \mathrm{OH}$
1) Reducing character
2) Oxidising character
3) Combustibility
4) High reactivity
134. Baking soda is
(S-Block elements)
1) NaHCO_{3}
2) $\mathrm{NaHCO}_{3}, 6 \mathrm{H}_{2} \mathrm{O} \quad$ 3) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
3)
4) $\mathrm{Na}_{2} \mathrm{CO}_{3}, 10 \mathrm{H}_{2} \mathrm{O}$
135. $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+\mathrm{X} \rightarrow \mathrm{H}_{3} \mathrm{BO}_{3}$. What is X in the reaction?
(P-Block elements)
1) Aqueous solution of NaOH 2) Dilute nitric acid 3) Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or HCl 4) water
136. Which of the following compounds is formed in borax bead test?
(P-Block elements)
1) Metaborate
2) Tetraborate
3) Triborate
4) Orthoborate
137. Which of the following represents 3 - methylpenta $-1,3$ - diene ?
(Organic chemistry-some Basic Principle)
1) $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$
2) $\mathrm{CH}_{2}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$
3) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\mathrm{CH}_{2}$
4) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$
138. Chlorination of methane does not occur in dark because
(Hydro Carbons)
1) Methane can form free radicals in presence of sunlight only
2) To get chlorine free radicals from Cl_{2} molecules energy is required. It cannot happen in dark
3) Substitution reaction can take place only in sunlight and not in dark
4) Termination step cannot take place in dark. It requires sunlight.
139. Presence of unsaturation in organic compounds can be tested with
(Hydro Carbons)
1) Fehling's reagent
2) Tollen's reagent
3) Baeyer's reagent
4) Fittig's reaction

WWWW.AIMSTUTORIAL.IN
140. Freon's are not recommended to be used in regfrigerators because they
(Environmental Chemistry)

1) Cause global warming
2) Cause acid rain
3) Cause depletion of ozone layer
4) Cause very less cooling.
141. How many chloride ions are surrounding sodium ion in sodium chloride crystal?
(Solid State)
1) 4
2) 8
3) 6
4) 12
142. The density of a solution prepared by dissolving 120 g of urea (mol. mass $=60 \mathrm{u}$) in 1000 g of water is $1.15 \mathrm{~g} /$ mL . The molarity of this solution is
(Solutions)
1) 1.78 M
2) 1.02 M
3) 2.05 M
4) 0.50 M
143. Limiting molar conductivity for some ions is given below (in $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$): $\mathrm{Na}^{+}-50.1, \mathrm{Cl}^{-}-763, \mathrm{H}^{+}-349.6 \mathrm{CH}_{3} \mathrm{COO}^{-}-40.9, \mathrm{Ca}^{2+}-119.0$.
What will be the limiting molar conductivities ($\Lambda^{0}{ }_{\mathrm{m}}$) of $\mathrm{CaCl}_{2}, \mathrm{CH}_{3} \mathrm{COONa}$ and NaCl respectively?
(Electro Chemistry)
1) $97.65,111.0$ and $242.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
2) $195.3,182.0$ and $26.2 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
3) $271.6,91.0$ and $126.4 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4) $119.0,1024.5$ and $9.2 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
144. The equivalent conductivity of $\mathrm{N} / 10$ solution of acetic acid at $25^{\circ} \mathrm{C}$ is $14.3 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$. what will be the degree of dissociation of acetic acid ? $\left(\Lambda_{\propto C H}^{3} \mathrm{COOH}=390.71 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}\right.$ equiv $\left.^{-1}\right) \quad$ (Electro Chemistry)
1) 3.66%
2) 3.9%
3) 2.12%
4) 0.008%
145. The rate constant of a reaction depends upon
2) extent of the reaction
3) Temperature of the reaction
4) The time of completion of reaction.
5) Initial concentration of the reactants
146. The chemical reaction, $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$ proceeds as $\mathrm{O}_{3} \square \quad \mathrm{O}_{2}+[\mathrm{O}] \quad$ (fast) $[\mathrm{O}]+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2} \quad$ (slow) The rate law expression will be \quad (Chemical Kinetics)
1) Rate $=k[\mathrm{O}]\left[\mathrm{O}_{3}\right]$
2) Rate $=k\left[\mathrm{O}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{-1}$
3) Rate $=k\left[\mathrm{O}_{3}\right]^{2}$
4) Rate $=k\left[\mathrm{O}_{2}\right][\mathrm{O}]$
147. In Freundlich adsorption equation $x / m=k p^{1 / n}$, the value of n is
(Surface Chemistry)
1) Alwyas grater than one
2) Always smaller
3) Always equal to one
4) Greater than one at low temperature and smaller than one at high temperature.
148. Sulphide ore of zinc / copper is concentrated by
(Genral Principles and Process of Isolation of elements)
1) Floatation process
2) electromagnetic proces
3) gravity separation 4) distillation.
149. How many $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bonds appear in cyclic meta - phosphoric acid ?
(P-Block Elements)
1) Four
2) Three
3) Twos
4) One
150. Which of the following is not correctly matched ?
(P-Block Elements)
1) $\mathrm{PCl}_{5}-s p^{3} d$ hybridisation
2) $\mathrm{PG}_{3}-s p^{3}$ hybridisation
3) PCl_{5} (solid) $-\left[\mathrm{PtCl}_{4}\right]^{+}\left[\mathrm{PtCl}_{6}\right]$
4) $\mathrm{H}_{3} \mathrm{PO}_{3}$ - tribasic
151. The magnetic moment of a divalent ion in aqueoussolution with atomic number 25 is
(d-and -f-block elements)
1) $5.9 \mathrm{~B} . \mathrm{M}$
2) $2.9 \mathrm{~B} . \mathrm{M}$
3) $6.9 \mathrm{~B} . \mathrm{M}$
4) 9.9 B.M
152. Among the following which are ambidentate ligands?
(i) SCN^{-}
(ii) NO_{3}^{-}
(iii) NO_{2}
(iv) $\mathrm{C}_{2} \mathrm{O}^{2-}$
3) (ii) and (iii)
4) (i) and (iii)
5) (i) and (iv)
(Co-ordination Compounds)
nikov's rule?
6) (ii) and (iv)
(HaloAlkanes \& Halo Arenes)
7) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HBr}$
8) $\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{Cl}_{2}$,
9) $\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{HBr}$
10) $\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{Br}_{2}$
154. An alcohol x when treated with hot conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave an alkene y with formula $\mathrm{C}_{4} \mathrm{H}_{8}$. This alkene on ozonlysis gives single product with molecular formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$. The alcohol is
(Alcohols, Phenols and ethers)
1) butan-1-0|
2) butan-2-ol
3) 2 - methylpropan-1-ol
4) 2,2-dimethylbutan - 1-ol
155. Which of the following compounds will undergo cannizzaro reaction? (Aldehydes, Ketones \& Carboxylic acids)
1) $\mathrm{CH}_{3} \mathrm{CHO}$
2) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO}$
156. Match the column I with column II and mark the appropriate choice.
column I
(A) Clemmensen reduction
(B) Rosenmund reduction
(C) lodoform reaction
(D) Cannizzaro reaction
column II
(i) Conc, KOH
(ii) $\mathrm{Zn} / \mathrm{Hg}+$ conc. HCl
(iii) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$
(iv) $\mathrm{NaOH}+\mathrm{I}_{2}$
(Aldehydes, Ketones \& Carboxylic acids)
1) (A) \rightarrow (i), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (iv)
2) (A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (i), (D) \rightarrow (ii)
3) (A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (iv), (D) \rightarrow (i)
4) (A) \rightarrow (iv), (B) \rightarrow (i), (C) \rightarrow (ii), (D) \rightarrow (iii)
157. Electrophilic substitution of aniline with bromine - water at room temperature gives
(Amines)
1) 2 -bromoaniline
2) 3 - bromoaniline
3) 2,4,6 - tribromoaniline
4) 3,5,6 - tribromoaniline
158. Denaturation of protein leads to loss of its biological activity by
(Bio Molecules)
1) Formation of amino acids
2) Loss of primary structure
3) Loss of both primary and secondary structure
4) Loss of both secondary and tertiary structures.

WWWW.AIMSTUTORIAL.IN
159. Composition of Ziegler - Natta catalyst is 1) $\left(\mathrm{Et}_{3}\right)_{3} \mathrm{Al} . \mathrm{TiCl}_{2} \quad$ 2) $(\mathrm{Me})_{3} \mathrm{Al} . \mathrm{TiCl}_{2}$
160. Barbiturates acts as

1) Hypnotic i.e., sleep producing agents
2) Activator of neurotransmitters
3) $(\mathrm{Et})_{3} \mathrm{Al}^{2} \cdot \mathrm{TiCl}_{4} \quad$ 4) $(\mathrm{Et})_{3} \mathrm{Al}^{2} \cdot \mathrm{PtCl}_{4}$
(Chemistry in everyday life)
4) non-narcotic analgesics
5) Antiallergic drugs.
