MODEL PAPER - 6

CHEMISTRY

122. What is the velocity of electron 1) 2.18 x 10^5 m/s 2	ctron present in first B 2) 2.18 x 10 ⁶ m/s	3) 2.18 x 10 ⁻¹⁸ m/s	molecules 4) No m? 4) 2.18 x 10 ⁻⁹ r	(Structure of Atom) m/s
123. According to Bohr's theor $1)\frac{10h}{\pi}$ 2		3) $\frac{1.5h}{\pi}$		(Structure of Atom)
<i><i><i>i</i>c</i></i>	<i>70</i>	70	<i></i>	
 124. An element has atomic nu 1) 2nd group, 7th period 			(Classifi	cation of elements)
125. The correct sequence of	,	bond, double bond and t	, .	•
1) (C - C) < (C = C) < (C =	-	2) $C \equiv C < C = C < C - 4$) $C = C < C - C = C < C - 4$	С	
3) C - C < C = C < C \equiv C 126. Arrange the following in ir				
	iereachig eraer er eer			l Bonding & Molecular
structure) 1) NaCl < MgCl ₂ < AlCl ₃ 127. What is the density of CC	D_2 at 27 °C and 2.5 atm	· • •	NaCl 4) NaCl · 4) 4.46 g L ⁻¹	< AICl ₃ < MgCl ₂ (States of Matter)
1) 5.2 g L ⁻¹ 2 128. Molecular mass of a gas i	2) 6.2 g L ⁻¹ is 78. Its density at 98	³) 7.3 g L ³	4) 4.46 g L ⁻⁺	(States of Matter)
1) 200 g L ⁻¹ 2	2) 2.56 g L ⁻¹	3) 256 g L ⁻¹	4) 78 g L-1	, , , , , , , , , , , , , , , , , , ,
129. A reaction proceeds throu	igh two paths I and II t	o convert $X \rightarrow Z$.		
	Q path I Q_1 Q_2 path II	~		
What is the correct relation 1) $Q = Q_1 \times Q_2$ 2	$\begin{array}{l} \text{onship between Q, Q}_1\\ \text{(2) Q = Q}_1 + \text{(2) Q}_2 \end{array}$	and Q_2 3) $Q_7 = Q_2 - Q_1$	4) Q = Q ₁ / Q ₂	(Thermodynamics)
		ations of a and b are equa		um the concentration
of d will be twice of that of	a. What will be the eq	uttorium constant for the	e reaction ?	
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co	a. What will be the eq 2) 9 pefficient for the follow	uil brium constant for the 3) 4 ing reaction :		um the concentration
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co	a. What will be the eq 2) 9 Defficient for the follow $kI_2 + yOH^- \rightarrow IO_3^-$	utilibrium constant for the 3) 4 ing reaction : ⁻ + 3H ₂ O	e reaction ? 4) 3 (Re	um the concentration <i>(Equilibrium)</i> edox Reactions)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2	a. What will be the eq 2) 9 Defficient for the follow $kI_2 + yOH^- \rightarrow IO_3^-$ 2) x- 3, y-2, z-3	utilibrium constant for the 3) 4 ing reaction : ⁻ + 3H ₂ O 3) x- 3, y-6, z- 5	e reaction ? 4) 3 (R 4) x- 3, y-3, z-	um the concentration <i>(Equilibrium)</i> edox Reactions) - 3
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs	a. What will be the eq 2) 9 Defficient for the follow $kI_2 + yOH^- \rightarrow IO_3^-$ 2) x- 3, y-2, z-3	utilibrium constant for the 3) 4 ing reaction : ⁻ + 3H ₂ O 3) x- 3, y-6, z- 5 highest oxidation numbe	e reaction ? 4) 3 (R 4) x- 3, y-3, z-	um the concentration <i>(Equilibrium)</i> edox Reactions)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog	a. What will be the eq 2) 9 coefficient for the follow $kI_2 + yOH^- \rightarrow IO_3^- 2I^-$ 2) x- 3, y-2, z-3 st the following has the 2) K ₂ MnO ₄ gen is shown by the following has the follo	utilibrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation numbe 3) MnO ₂ llowing reactions ?	e reaction ? 4) 3 (R 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃	um the concentration <i>(Equilibrium)</i> edox Reactions) - 3
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H	a. What will be the eq 2) 9 coefficient for the follow $kI_2 + yOH^- \rightarrow IO_3^- + 2I^-$ 2) x- 3, y-2, z-3 st the following has the 2) K ₂ MnO ₄ gen is shown by the follow H ₂ O	uitbrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation number 3) MnO ₂ Ilowing reactions ? ii) CO + H ₂ $\xrightarrow{ZnO}{Cr_2O_3}$ CH	e reaction ? 4) 3 (R 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ I ₃ OH	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H 1) Reducing character	a. What will be the eq 2) 9 coefficient for the follow $kI_2 + yOH^- \rightarrow IO_3^- + 2I^-$ 2) x- 3, y-2, z-3 st the following has the 2) K ₂ MnO ₄ gen is shown by the follow H ₂ O	utilibrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation number 3) MnO ₂ llowing reactions ? ii) CO + H ₂ $\xrightarrow{ZnO}_{Cr_2O_3}$ CH er 3) Combustibility	e reaction ? 4) 3 (R 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ I ₃ OH 4) High reac	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H 1) Reducing character 134. Baking soda is 1) NaHCO ₃ 2	a. What will be the eq 2) 9 coefficient for the follow $xI_2 + yOH^- \rightarrow IO_3^- + 2I^-$ by x- 3, y-2, z-3 st the following has the 2) K ₂ MnO ₄ gen is shown by the follow H ₂ O 2) Oxidising character 2) NaHCO ₃ , 6H ₂ O	uitbrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation number 3) MnO ₂ llowing reactions ? ii) CO + H ₂ $\xrightarrow{ZnO}{Cr_2O_3}$ CH er 3) Combustibility 3) Na ₂ CO ₃	e reaction ? 4) 3 (R 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ I ₃ OH 4) High reac (S-Block element	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen) :tivity nts)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H 1) Reducing character 134. Baking soda is 1) NaHCO ₃ 2 135. Na ₂ B ₄ O ₇ + X \rightarrow H ₃ BO ₃ . W	a. What will be the eq 2) 9 befficient for the follow $xI_2 + yOH^- \rightarrow IO_3^- + ZI^-$ 2) x- 3, y-2, z-3 st the following has the 2) K ₂ MnO ₄ gen is shown by the follow H ₂ O 2) Oxidising character 2) NaHCO ₃ , 6H ₂ O hat is X in the reaction	utilibrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation number 3) MnO ₂ llowing reactions ? ii) CO + H ₂ $\xrightarrow{ZnO}{Cr_2O_3}$ CH er 3) Combustibility 3) Na ₂ CO ₃ n ?	e reaction ? 4) 3 (R 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ I ₃ OH 4) High reac (S-Block element 4) Na ₂ CO ₃ , 10 (P·	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen) :tivity nts)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H 1) Reducing character 134. Baking soda is 1) NaHCO ₃ 2	a. What will be the eq 2) 9 Defficient for the follow $xI_2 + yOH^- \rightarrow IO_3^- 2I^-$ 2) x- 3, y-2, z-3 at the following has the 2) K ₂ MnO ₄ gen is shown by the follow H ₂ O 2) Oxidising character 2) NaHCO ₃ , 6H ₂ O hat is X in the reaction aOH 2) Dilute nitric a	utilibrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation number 3) MnO ₂ llowing reactions ? ii) CO + H ₂ $\xrightarrow{ZnO}_{Cr_2O_3} \rightarrow CH$ er 3) Combustibility 3) Na ₂ CO ₃ n? icid 3) Conc. H ₂ SO ₄ or H	e reaction ? 4) 3 (R 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ I ₃ OH 4) High reac (<i>S-Block element</i> 4) Na ₂ CO ₃ , 10 (<i>P</i> ICI 4) water	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen) :tivity nts) H ₂ O -Block elements)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H 1) Reducing character 134. Baking soda is 1) NaHCO ₃ 2 135. Na ₂ B ₄ O ₇ + X \rightarrow H ₃ BO ₃ . W 1) Aqueous solution of Na 136. Which of the following cor 1) Metaborate 2	a. What will be the eq 2) 9 befficient for the follow $kI_2 + yOH^- \rightarrow IO_3^- + ZI^-$ 2) x- 3, y-2, z-3 st the following has the 2) K ₂ MnO ₄ gen is shown by the follow H ₂ O 2) Oxidising character 2) NaHCO ₃ , 6H ₂ O hat is X in the reaction aOH 2) Dilute nitric a mpounds is formed in 2) Tetraborate	utilibrium constant for the 3) 4 ing reaction : $^- + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation number 3) MnO ₂ llowing reactions ? ii) CO + H ₂ $\xrightarrow{ZnO}_{Cr_2O_3} \rightarrow$ CH er 3) Combustibility 3) Na ₂ CO ₃ n? icid 3) Conc. H ₂ SO ₄ or H borax bead test ? 3) Triborate	e reaction ? 4) 3 (Ra 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ I ₃ OH 4) High reac (S-Block element 4) Na ₂ CO ₃ , 10 (Pa (Cl 4) water (Pa 4) Orthoborate	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen) tivity nts) H ₂ O -Block elements) -Block elements)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H 1) Reducing character 134. Baking soda is 1) NaHCO ₃ 2 135. Na ₂ B ₄ O ₇ + X \rightarrow H ₃ BO ₃ . W 1) Aqueous solution of Na 136. Which of the following cor 1) Metaborate 2 137. Which of the following rep 1) CH ₂ = CH(CH ₂) ₂ CH ₃	a. What will be the eq 2) 9 befficient for the follow $kI_2 + yOH^- \rightarrow IO_3^- 2I^-$ 2) x- 3, y-2, z-3 st the following has the 2) K ₂ MnO ₄ (2) K ₂ MnO ₄ (2) MaHCO ₃ , 6H ₂ O (3) NaHCO ₃ , 6H ₂ O (4) hat is X in the reaction (4) AHCO ₃ , 6H ₂ O (5) hat is X in the reaction (4) AHCO ₃ , 6H ₂ O (5) hat is X in the reaction (6) AHCO ₃ is formed in (7) Tetraborate (7) Tetraborate (7) Tetraborate	utilibrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation number 3) MnO ₂ llowing reactions ? ii) CO + H ₂ $\xrightarrow{2nO} \\ Cr_2O_3 \rightarrow CH$ er 3) Combustibility 3) Na ₂ CO ₃ n ? icid 3) Conc. H ₂ SO ₄ or H borax bead test ? 3) Triborate ta -1,3 - diene ?	e reaction ? 4) 3 (R_4 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ I_3OH 4) High reaction (S-Block element 4) Na ₂ CO ₃ , 10 (P_4 (Cl 4) water (P_4 4) Orthoborate ($Organic chemistry$	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen) tivity nts) H ₂ O -Block elements) -Block elements)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H 1) Reducing character 134. Baking soda is 1) NaHCO ₃ 2 135. Na ₂ B ₄ O ₇ + X \rightarrow H ₃ BO ₃ . W 1) Aqueous solution of Na 136. Which of the following cor 1) Metaborate 2 137. Which of the following rep 1) CH ₂ = CH(CH ₂) ₂ CH ₃ 3) CH ₃ CH = C(CH ₃)CH=C 138. Chlorination of methane co	a. What will be the eq 2) 9 befficient for the follow $kI_2 + yOH^- \rightarrow IO_3^- 2I^-$ 2) x- 3, y-2, z-3 st the following has the 2) K ₂ MnO ₄ 2) K ₂ MnO ₄ 2) K ₂ MnO ₄ 2) Oxidising characte 2) NaHCO ₃ , 6H ₂ O hat is X in the reaction aCH 2) Dilute nitric a mpounds is formed in 2) Tetraborate bresents 3 - methylpent H_2	utilibrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation number 3) MnO ₂ llowing reactions ? ii) CO + H ₂ $\xrightarrow{2nO} \\ Cr_2O_3 \rightarrow CH$ er 3) Combustibility 3) Na ₂ CO ₃ n? icid 3) Conc. H ₂ SO ₄ or H borax bead test ? 3) Triborate ta -1,3 - diene ? () 2) CH ₂ = CHCH(CH ₃)CH 4) CH ₃ CH = C(CH ₃) ₂ because	e reaction ? 4) 3 (R_4 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ I_3OH 4) High reaction (S-Block element 4) Na ₂ CO ₃ , 10 (P_4 (Cl 4) water (P_4 4) Orthoborate ($Organic chemistry$	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen) tivity nts) H ₂ O -Block elements) -Block elements)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H 1) Reducing character 134. Baking soda is 1) NaHCO ₃ 2 135. Na ₂ B ₄ O ₇ + X \rightarrow H ₃ BO ₃ . W 1) Aqueous solution of Na 136. Which of the following cor 1) Metaborate 2 137. Which of the following rep 1) CH ₂ = CH(CH ₂) ₂ CH ₃ 3) CH ₃ CH = C(CH ₃)CH=C	a. What will be the eq 2) 9 befficient for the follow $xI_2 + yOH^- \rightarrow IO_3^-$ 21 2) x- 3, y-2, z-3 at the following has the 2) K ₂ MnO ₄ gen is shown by the follow H ₂ O 2) Oxidising characte 2) NaHCO ₃ , 6H ₂ O hat is X in the reaction aOH 2) Dilute nitric a mpounds is formed in 2) Tetraborate bresents 3 - methylpent H_2 does not occur in dark radicals in presence of icals from Cl ₂ molecula	utilibrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation number 3) MnO ₂ llowing reactions ? ii) CO + H ₂ $\xrightarrow{ZnO}_{Cr_2O_3} \rightarrow CH$ er 3) Combustibility 3) Na ₂ CO ₃ n? icid 3) Conc. H ₂ SO ₄ or H borax bead test ? 3) Triborate ta -1,3 - diene ? (2) CH ₂ = CHCH(CH ₃)C 4) CH ₃ CH = C(CH ₃) ₂ because of sunlight only es energy is required. It of	e reaction ? 4) 3 (Ra 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ (A) Mn ₂ O ₃ (A) High react (S-Block element 4) Na ₂ CO ₃ , 10 (P- (Cl 4) water (P- 4) Orthoborate (P- 4) Orthoborate (P- 4) Orthoborate (P- 4) Orthoborate	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen) tivity nts) H ₂ O -Block elements) -Block elements) -Block elements) (Hydro Carbons)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H 1) Reducing character 134. Baking soda is 1) NaHCO ₃ 2 135. Na ₂ B ₄ O ₇ + X \rightarrow H ₃ BO ₃ . W 1) Aqueous solution of Na 136. Which of the following cor 1) Metaborate 2 137. Which of the following rep 1) CH ₂ = CH(CH ₂) ₂ CH ₃ 3) CH ₃ CH = C(CH ₃)CH=C 138. Chlorination of methane co 1) Methane can form free 2) To get chlorine free radia 3) Substitution reaction ca 4) Termination step canno	a. What will be the eq 2) 9 Defficient for the follow $xI_2 + yOH^- \rightarrow IO_3$ ZI 2) x- 3, y-2, z-3 at the following has the 2) K ₂ MnO ₄ gen is shown by the follow H ₂ O 2) Oxidising character 2) NaHCO ₃ , 6H ₂ O hat is X in the reaction aCH 2) Dilute nitric a mpounds is formed in 2) Tetraborate resents 3 - methylpent H ₂ does not occur in dark radicals in presence of icals from Cl ₂ molecule an take place only in sub- ot take place in dark. It	utilibrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 a highest oxidation number 3) MnO ₂ llowing reactions ? ii) CO + H ₂ $\xrightarrow{ZnO}_{Cr_2O_3} \rightarrow CH$ ar 3) Combustibility 3) Na ₂ CO ₃ n ? icid 3) Conc. H ₂ SO ₄ or H borax bead test ? 3) Triborate ta -1,3 - diene ? (2) CH ₂ = CHCH(CH ₃)C 4) CH ₃ CH = C(CH ₃) ₂ because of sunlight only es energy is required. It of unlight and not in dark requires sunlight.	e reaction ? 4) 3 (Ra 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ (A) Mn ₂ O ₃ (A) High react (S-Block element 4) Na ₂ CO ₃ , 10 (P- (Cl 4) water (P- 4) Orthoborate (P- 4) Orthoborate (P- 4) Orthoborate (P- 4) Orthoborate	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen) :tivity nts) H ₂ O -Block elements) -Block elements) -Block elements) -Come Basic Principle) (Hydro Carbons) n dark
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H 1) Reducing character 134. Baking soda is 1) NaHCO ₃ 2 135. Na ₂ B ₄ O ₇ + X \rightarrow H ₃ BO ₃ . W 1) Aqueous solution of Na 136. Which of the following cor 1) Metaborate 2 137. Which of the following rep 1) CH ₂ = CH(CH ₂) ₂ CH ₃ 3) CH ₃ CH = C(CH ₃)CH=C 138. Chlorination of methane co 1) Methane can form free 2) To get chlorine free radia 3) Substitution reaction ca	a. What will be the eq 2) 9 Defficient for the follow $xI_2 + yOH^- \rightarrow IO_3$ 21 2) x- 3, y-2, z-3 at the following has the 2) K ₂ MnO ₄ 2) NaHCO ₃ , 6H ₂ O hat is X in the reaction aOH 2) Dilute nitric a mpounds is formed in 2) Tetraborate oresents 3 - methylpent xI_2 does not occur in dark radicals in presence of icals from Cl ₂ molecule an take place only in subtraction by take place in dark. It in organic compounds	utilibrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation number 3) MnO ₂ llowing reactions ? ii) CO + H ₂ $\xrightarrow{2nO}_{Cr_2O_3} \rightarrow CH$ er 3) Combustibility 3) Na ₂ CO ₃ n? cid 3) Conc. H ₂ SO ₄ or H borax bead test ? 3) Triborate ta -1,3 - diene ? (2) CH ₂ = CHCH(CH ₃)C 4) CH ₃ CH = C(CH ₃) ₂ because of sunlight only es energy is required. It of unlight and not in dark requires sunlight. s can be tested with	e reaction ? 4) 3 (Ra 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ (A) Mn ₂ O ₃ (A) High react (S-Block element 4) Na ₂ CO ₃ , 10 (Particle (Particle) (Pa	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen) etivity nts) H ₂ O -Block elements) -Block elements) -Block elements) -Block elements) (Hydro Carbons) n dark (Hydro Carbons)
of d will be twice of that of 1) 2 2 131. Write the stoichiometric co 1) x- 6, y-3, z- 5 2 132. Which compound amongs 1) KMnO ₄ 2 133. Which property of Hydrog i) Fe ₃ O ₄ + 4H ₂ \rightarrow 3Fe + 4H 1) Reducing character 134. Baking soda is 1) NaHCO ₃ 2 135. Na ₂ B ₄ O ₇ + X \rightarrow H ₃ BO ₃ . W 1) Aqueous solution of Na 136. Which of the following cor 1) Metaborate 2 137. Which of the following rep 1) CH ₂ = CH(CH ₂) ₂ CH ₃ 3) CH ₃ CH = C(CH ₃)CH=C 138. Chlorination of methane of 1) Methane can form free 2) To get chlorine free radia 3) Substitution reaction ca 4) Termination step canno 139. Presence of unsaturation	a. What will be the eq 2) 9 Defficient for the follow $xI_2 + yOH^- \rightarrow IO_3$ 21 2) x- 3, y-2, z-3 at the following has the 2) K ₂ MnO ₄ 2) NaHCO ₃ , 6H ₂ O hat is X in the reaction aOH 2) Dilute nitric a mpounds is formed in 2) Tetraborate oresents 3 - methylpent xI_2 does not occur in dark radicals in presence of icals from Cl ₂ molecule an take place only in subtraction by take place in dark. It in organic compounds	utilibrium constant for the 3) 4 ing reaction : $^{-} + 3H_2O$ 3) x- 3, y-6, z- 5 highest oxidation number 3) MnO ₂ llowing reactions ? ii) CO + H ₂ $\xrightarrow{2nO}_{Cr_2O_3} \rightarrow CH$ er 3) Combustibility 3) Na ₂ CO ₃ n? cid 3) Conc. H ₂ SO ₄ or H borax bead test ? 3) Triborate ta -1,3 - diene ? (2) CH ₂ = CHCH(CH ₃)C 4) CH ₃ CH = C(CH ₃) ₂ because of sunlight only es energy is required. It of unlight and not in dark requires sunlight. s can be tested with 3) Baeyer's reagent	e reaction ? 4) 3 (Ra 4) x- 3, y-3, z- er of Mn? 4) Mn ₂ O ₃ (A) Mn ₂ O ₃ (A) High react (S-Block element 4) Na ₂ CO ₃ , 10 (Particle (Particle) (Pa	um the concentration (Equilibrium) edox Reactions) - 3 (Redox Reactions) (Hydrogen) etivity nts) H ₂ O -Block elements) -Block elements) -Block elements) -Block elements) (Hydro Carbons) n dark (Hydro Carbons)

WWW.AIMSTUTORIAL.IN

140.	Freon's are not recomm 1) Cause global warming	g	2) Ca	ause acid rain	-	(Environmental Chemistry,
141.	3) Cause depletion of oz How many chloride ions			ause very less o n sodium chlori	•	(Solid State)
142.	1) 4 The density of a solution mL. The molarity of this 1) 1.78 M	n prepared by dis	,		,	(Solutions)
143.	Limiting molar conducti Na⁺ - 50.1, Cl⁻ - 763, H⁺	vity for some ion - 349.6 CH ₃ CO	is is given belo O ⁻ - 40.9, Ca ²⁻	ow (in S cm² mc ⁺ -119.0.	ol⁻¹):	
	What will be the limiting				(E	lectro Chemistry)
44.	1) 97.65, 111.0 and 242 3) 271.6, 91.0 and 126.4 The equivalent conduct	4 S cm ² mol ⁻¹	4) 11	9.0, 1024.5 and	$d 9.2 \mathrm{S}\mathrm{cm}^2\mathrm{m}^2$	
	degree of dissociation o	of acetic acid ? (\ _{∞CH₃COOH} =390	.71 ohm ⁻¹ cm ² e	equiv-1)	(Electro Chemistry)
	1) 3.66%	2) 3.9%	3) 2.1		4) 0.0089	%
	The rate constant of a r 1) Temperature of the re 3) Initial concentration o	eaction f the reactants	2) ex 4) Th	tent of the reac ne time of comp		(Chemical Kinetics) on.
46.	The chemical reaction,	$2O_3 \rightarrow 3O_2 \text{ proc}$	eeds as			
	$O_3 \square O_2 + [O]$ (fast)					(Chemical Kinetics)
47.	1) Rate = $k[O] [O_3]$ In Freundlich adsorptio 1) Alwyas grater than or	n equation x/m =			4) Rate	= k [O ₂] [O] (Surface Chemistry)
	2) Always smaller3) Always equal to one4) Greater than one at log		and smaller th	an one at high t	emperature	
48.	Sulphide ore of zinc / co		rated by	(Genral Princip	oles and Process	s of Isolation of elements) illation.
49.	How many P - O - P bo	nds appear in cy	clic meta - ph			(P-Block Elements)
	· · · —					
	1) Four	•	,		4) One	
50.	Which of the following is $1) PCI_5 - sp^3 d$ hybridisation	s not correctly m tion	atched ? 2) P	vo J ₃ - sp ³ hybridis	·	(P-Block Elements)
	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisa 3) $PCI_5(solid) - [PtCI_4]^+ [I]$ The magnetic moment	s not correctly m tion PtCl ₆] ⁻ of a divalent ion	atched ? 2) P 4) in aqueous so	vo $J_3 - sp^3$ hybridis PO $_3 - tribasicplution with aton(d- and -f-t$	sation nic number 25 block elements)	is
51.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisa 3) $PCI_5(solid) - [PtCI_4]^+ [I]$ The magnetic moment 1) 5.9 B.M	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M	in aqueous sc 3) Pe 4) P 3) A 3) 6.9	vo J ₃ - sp ³ hybridis PO ₃ - tribasic plution with aton <i>(d- and -f-t</i> 9 B.M	sation nic number 25	is
51.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisa 3) $PCI_5(solid) - [PtCI_4]^+ [I]$ The magnetic moment	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M hich are ambiden	atched ? 2) P 4) P in aqueous sc 3) 6.9 itate ligands ?	vo , sp ³ hybridis PO ₃ - tribasic plution with atom <i>(d- and -f-t</i>) 9 B.M	sation nic number 25 block elements) 4) 9.9 B.I	is
51. 52.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisar 3) $PCI_5(solid) - [PtCI_4]^+ [I]$ The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN ⁻ 1) (i) and (iii)	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M hich are ambiden (ii) NO $_3$ (2) (i) and (iv)	in aqueous so 3) 6 . 3) 6 . 3) 6 . 3) 6 . 3) 6 . 3) $(ii)10^{-2} (iv)3$) (iii)	vo $J_3 - sp^3$ hybridis $PO_3 - tribasic olution with atom (d- and -f-k 9 B.M V) C_2O^{2-4}) and (iii)$	sation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and	is M (Co-ordination Compound d (iv)
51. 52. 53.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisa 3) $PCI_5(solid) - [PtCI_4]^+ [I The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN- 1) (i) and (iii) Which of the following r 1) C_2H_4 + HBr$	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO $_3$ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂	atched ? 2) P 4) $+$ in aqueous so 3) 6.9 itate loands ? iii) $+$ 3) (ii) Markovnikov 3) C	vo $J_3 - sp^3$ hybridis $PO_3 - tribasic$ olution with aton <i>(d- and -f-t</i>) 9 B.M J_2O^{2-4}) and (iii) 's rule ? $J_6 + HBr$	sation nic number 25 block elements) 4) 9.9 B.I 4) (ii) and <i>(Hal</i> 4) C ₃ H ₆ +	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂
51. 52. 53.	Which of the following is 1) PCl ₅ - sp ³ d hybridisa 3) PCl ₅ (solid) - [PtCl ₄]* [I The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN ⁻ 1) (i) and (iii) Which of the following r	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO ⁻ ₃ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂	atched ? 2) P 4) H_3 in aqueous so 3) 6.9 itate ligands ? iii) NO_2 (iv 3) (ii) Markovnikov 3) C 3) C 4)	vo $J_3 - sp^3$ hybridis $J_2O_3 - tribasic olution with atom (d- and -f-k 9 B.M J_2O^{2-4}) and (iii)'s rule ?J_4 + HBran alkene y withhe alcohol is$	sation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) C_3H_6 + formula C_4H_8 (Alcoh	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers)
51. 52. 53. 54.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisa 3) $PCI_5(solid) - [PtCI_4]^+ [I The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN^-1) (i) and (iii)Which of the following r1) C_2H_4 + HBrAn alcohol x when treatgives single product with1) butan - 1-0l$	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M hich are ambiden (ii) NO $_3$ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ red with hot conc h molecular forn 2) butan - 2 - o	atched ? 2) P 4) H in aqueous so 3) 6.9 itate ligands ? iii) NO_2 (iv 3) (ii) Markovnikov 3) C 1, H ₂ SO ₄ gave 3 nula C ₂ H ₄ O. T 3) 2 -	vo $J_3 - sp^3$ hybridis $JPO_3 - tribasic olution with atom (d- and -f-t 9 B.M J) C_2O^{2-4}) and (iii)'s rule ?J_4 + HBran alkene y withhe alcohol is- methylpropan$	ation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) C ₃ H ₆ + n formula C ₄ H ₈ (Alcoh - 1 -ol 4) 2,2	is (<i>Co-ordination Compound</i> d (iv) o <i>Alkanes & Halo Arenes</i>) - Br ₂ . This alkene on ozonlys o <i>ls, Phenols and ethers</i>) - dimethylbutan - 1-ol
51. 52. 53. 54.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisar 3) $PCI_5(solid) - [PtCI_4]^+ [I The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN- 1) (i) and (iii) Which of the following r 1) C_2H_4 + HBrAn alcohol x when treatgives single product with1) butan - 1-0IWhich of the following c1) CH3CHO$	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO $_{3}$ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ red with hot conc h molecular form 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃	hatched ? 2) P 4) H 2) P 4) H 3) 6.9 3) 6.9 3) 6.9 3) 6.9 4) H 3) 6.9 4) H 4) H	vo $A_3 - sp^3$ hybridis $PO_3 - tribasic plution with atom (d- and -f-k 9 B.M 4) C2O2-4) and (iii) 's rule ? A_6 + HBran alkene y withhe alcohol is- methylpropanzzaro reaction 7H_5CHO$	ation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) C ₃ H ₆ + n formula C ₄ H ₈ (Alcoh - 1 -ol 4) 2,2	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids
51. 52. 53. 54.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisa 3) $PCI_5(solid) - [PtCI_4]^+ [I The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN^-1) (i) and (iii)Which of the following r1) C_2H_4 + HBrAn alcohol x when treatgives single product with1) butan - 1-0IWhich of the following c1) CH_3CHOMatch the column I with$	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO $_{3}$ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ red with hot conc h molecular form 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃	atched ? 2) P 4) P 4) P 3) 6.9 3) 6.9 3) 6.9 3) 6.9 3) 6.9 4) P 3) 6.9 4) P 4) P 4	vo $A_3 - sp^3$ hybridis $PO_3 - tribasic plution with atom (d- and -f-k 9 B.M 4) C2O2-4) and (iii) 's rule ? A_6 + HBran alkene y withhe alcohol is- methylpropanzzaro reaction 7H_5CHO$	sation nic number 25 block elements) 4) 9.9 B.1 4) C ₃ H ₆ + 1 formula C ₄ H ₈ (Alcoh - 1 -ol 4) 2,2 ? (Aldehydes, K	is (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids
51. 52. 53. 54.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisar 3) $PCI_5(solid) - [PtCI_4]^+ [I The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN- 1) (i) and (iii) Which of the following r 1) C_2H_4 + HBrAn alcohol x when treatgives single product with1) butan - 1-0lWhich of the following c1) CH_3CHOMatch the column I withcolumn I(A) Clemmensen redu$	s not correctly m tion PtCl ₆]- of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO- $_3$ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ and with hot conc h molecular forn 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃ column II and m	atched ? 2) P 4) H_3 in aqueous so 3) 6.9 3) 6.9 3) 6.9 (ii) M_2 (iv) 4) M_3 (ii) 4) M_4 (iv) 4) M_2 (iv) 3) C 1) M_2 (iv) 4) M_3 (ii) 4) M_4 (iv) 4) M_2 (iv) 4) M_2 (iv) 4) M_2 (iv) 3) C 1) M_2 (iv) 4) M_2 (iv) 4	vo $A_3 - sp^3$ hybridis $PO_3 - tribasic plution with atom (d- and -f-k 9 B.M 4) C2O2-4) and (iii) 's rule ? A_6 + HBran alkene y withhe alcohol is- methylpropanzzaro reaction 7H_5CHO$	sation nic number 25 block elements) 4) 9.9 B.1 4) C ₃ H ₆ + 1 formula C ₄ H ₈ (Alcoh - 1 -ol 4) 2,2 ? (Aldehydes, K	is (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids
51. 52. 53. 54.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisa 3) $PCI_5(solid) - [PtCI_4]^+ [I The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN- 1) (i) and (iii) Which of the following r 1) C_2H_4 + HBrAn alcohol x when treatgives single product with1) butan - 1-0IWhich of the following c1) CH_3CHOMatch the column I withcolumn I(A) Clemmensen reduction(B) Rosenmund reduction$	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO ⁻ ₃ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ and with hot conc h molecular form 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃ column II and m	in aqueous so in aqueous so a a b a b a b a b a b a b a b a b a b a	vo A_3^{-} - sp ³ hybridis PO_3^{-} tribasic plution with atom (<i>d-</i> and -f-k 9 B.M 4) C ₂ O ²⁻ 4) and (iii) 3's rule ? A_6^{+} +HBr an alkene y with he alcohol is - methylpropan zzaro reaction f A_5^{-} CHO priate choice.	sation nic number 25 block elements) 4) 9.9 B.1 4) C ₃ H ₆ + 1 formula C ₄ H ₈ (Alcoh - 1 -ol 4) 2,2 ? (Aldehydes, K	is (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids
51. 52. 53. 54.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisa 3) $PCI_5(solid) - [PtCI_4]^+ [I The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN- 1) (i) and (iii) Which of the following r 1) C_2H_4 + HBrAn alcohol x when treatgives single product with1) butan - 1-0IWhich of the following c1) CH_3CHOMatch the column I withcolumn I(A) Clemmensen reduction(B) Rosenmund reduction$	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO ⁻ ₃ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ and with hot conc h molecular form 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃ column II and m	in aqueous so in aqueous so a a b a b a b a b a b a b a b a b a b a	vo A_3^{-} - sp ³ hybridis PO_3^{-} tribasic plution with atom (<i>d-</i> and -f-k 9 B.M 4) C ₂ O ²⁻ 4) and (iii) 3's rule ? A_6^{+} +HBr an alkene y with he alcohol is - methylpropan zzaro reaction f A_5^{-} CHO priate choice.	sation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) C ₃ H ₆ + n formula C ₄ H ₈ (Alcoh - 1 -ol 4) 2,2 ? (Aldehydes, K 4) C ₆ H ₅ C	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids H ₂ CHO
51. 52. 53. 54.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisar 3) $PCI_5(solid) - [PtCI_4]^+ [I The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN- 1) (i) and (iii) Which of the following r 1) C_2H_4 + HBrAn alcohol x when treatgives single product with1) butan - 1-0lWhich of the following c1) CH_3CHOMatch the column I withcolumn I(A) Clemmensen reduc(B) Rosenmund reducc(C) lodoform reaction(D) Cannizzaro reaction$	s not correctly m tion PtCl ₆]- of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO- $_3$ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ and (iv) and (iv) reactions follows 2) CH ₃ COCH ₃ column II and m action (i	in aqueous so in aqueous so a 3) 6.9 a 4 a 4 a 7 a 6 a 6 a 7 a 6 a 7 a 6 a 7 a 7 a 7 a 7 a 7 a 7 a 7 a 7	vo A_3^{-} - sp ³ hybridis PO_3^{-} tribasic plution with atom (<i>d-</i> and -f-k 9 B.M 4) C ₂ O ²⁻ 4) and (iii) 3's rule ? A_6^{+} +HBr an alkene y with he alcohol is - methylpropan zzaro reaction f A_5^{-} CHO priate choice.	sation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) C ₃ H ₆ + n formula C ₄ H ₈ (Alcoh - 1 -ol 4) 2,2 ? (Aldehydes, K 4) C ₆ H ₅ C	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids H ₂ CHO
51. 52. 53. 54.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisa 3) $PCI_5(solid) - [PtCI_4]^+ [I The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN- 1) (i) and (iii) Which of the following r 1) C_2H_4 + HBrAn alcohol x when treatgives single product with1) butan - 1-0IWhich of the following c1) CH_3CHOMatch the column I withcolumn I(A) Clemmensen reduc(B) Rosenmund reducc(C) lodoform reaction(D) Cannizzaro reaction1) (A) \rightarrow (i), (B) \rightarrow (iii), (C$	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO ⁻ ₃ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ add with hot conc h molecular form 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃ column II and m uction (i con (i) C) \rightarrow (ii), (D) \rightarrow (iv)	in aqueous so in aqueous so in aqueous so itate ligands ? iii) NO_2 (iv ark ovnikov 3) C_3 H_2SO_4 gave 3) C_3 H_2SO_4 gave 3) C_3 3) C_4 3) C_5 indergo canni 3) C_6 ark the approp column II i) Conc, KOH i) Zn /Hg + co iii) H_2 / Pd - B iv) NaOH + I_2 /)	vo A_3^{-} - sp ³ hybridis PO_3^{-} tribasic plution with atom (<i>d-</i> and -f-k 9 B.M 4) C ₂ O ²⁻ 4) and (iii) 3's rule ? A_6^{+} +HBr an alkene y with he alcohol is - methylpropan zzaro reaction f A_5^{-} CHO priate choice.	sation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) C ₃ H ₆ + n formula C ₄ H ₈ (Alcoh - 1 -ol 4) 2,2 ? (Aldehydes, K 4) C ₆ H ₅ C	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids H ₂ CHO
51. 52. 53. 54.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisar 3) $PCI_5(solid) - [PtCI_4]^+ [I The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN- 1) (i) and (iii) Which of the following r 1) C_2H_4 + HBrAn alcohol x when treatgives single product with1) butan - 1-0lWhich of the following c1) CH_3CHOMatch the column I withcolumn I(A) Clemmensen reduc(B) Rosenmund reducc(C) lodoform reaction(D) Cannizzaro reaction$	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO ⁻ ₃ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ ced with hot conc h molecular form 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃ column II and m uction (i con (i C) \rightarrow (ii), (D) \rightarrow (iv (C) \rightarrow (i), (D) \rightarrow (iv)	atched ? 2) P 4) P_3 in aqueous so 3) 6.9 in aqueous so 3) 6.9 itate ligands ? iii) NO_2 (iv 3) (ii) Markovnikov 3) C ₃ iii) NO_2 (iv 3) C ₃ iii) NO_2 (iv 3) C ₃ iii) NO_2 (iv 3) C ₃ ark to appropriate column II i) Conc, KOH i) Zn /Hg + co iii) H_2 / Pd - B iv) NaOH + I_2 /) i)	vo A_3^{-} - sp ³ hybridis PO_3^{-} tribasic plution with atom (<i>d-</i> and -f-k 9 B.M 4) C ₂ O ²⁻ 4) and (iii) 3's rule ? A_6^{+} +HBr an alkene y with he alcohol is - methylpropan zzaro reaction f A_5^{-} CHO priate choice.	sation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) C ₃ H ₆ + n formula C ₄ H ₈ (Alcoh - 1 -ol 4) 2,2 ? (Aldehydes, K 4) C ₆ H ₅ C	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids H ₂ CHO
51. 52. 53. 54. 55.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisar 3) $PCI_5(solid) - [PtCI_4]^+ [I]$ The magnetic moment 1) 5.9 B.M Among the following which (i) SCN ⁻ 1) (i) and (iii) Which of the following r 1) $C_2H_4 + HBr$ An alcohol x when treat gives single product with 1) butan - 1-0I Which of the following c 1) CH_3CHO Match the column I with column I (A) Clemmensen reduc (B) Rosenmund reduct (C) lodoform reaction (D) Cannizzaro reaction (D) Cannizzaro reaction (D) Cannizzaro reaction (D) Cannizzaro reaction (D) Cannizzaro reaction (D) (A) \rightarrow (ii), (B) \rightarrow (iii), (C 2) (A) \rightarrow (iii), (B) \rightarrow (iii), (C 4) (A) \rightarrow (iv), (B) \rightarrow (iii), (C	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M hich are ambiden (ii) NO-3 (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ and (iv) compounds will u 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃ column II and m uction (i con (i C) \rightarrow (ii), (D) \rightarrow (ii) C) \rightarrow (ii), (D) \rightarrow (ii)	atched ? 2) P 4) $+$ in aqueous so 3) 6.9 in aqueous so 3) 6.9 itate lipands ? iii) NO_2 (iv 3) (ii) Markovnikov 3) C 3) C 1 3) 2 - indergo canni 3) C ark the approp column II i) Conc, KOH i) Zn /Hg + co iii) H ₂ / Pd - B iv) NaOH + I ₂ /) i) i)	vo P_3 - sp ³ hybridis PO_3 - tribasic plution with atom (<i>d-</i> and -f-k 9 B.M <i>i</i>) C ₂ O ²⁻ and (iii) <i>i</i> 's rule ? H_6 +HBr an alkene y with he alcohol is - methylpropan zzaro reaction 7 H_5 CHO priate choice. aSO ₄	Sation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) $C_3H_6 + 1$ n formula C_4H_8 (Alcoh) - 1 -ol 4) 2,2 (Aldehydes, Kea (Aldehydes, Kea	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids H ₂ CHO
51. 52. 53. 54. 55.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisa 3) $PCI_5(solid) - [PtCI_4]^+ [I]$ The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN ⁻ 1) (i) and (iii) Which of the following r 1) $C_2H_4 + HBr$ An alcohol x when treat gives single product with 1) butan - 1-0I Which of the following r 1) CH_3CHO Match the column I with column I (A) Clemmensen reduc (B) Rosenmund reduce (C) lodoform reaction (D) Cannizzaro reaction 1) $(A) \rightarrow (i), (B) \rightarrow (iii), (C)$ 2) $(A) \rightarrow (iii), (B) \rightarrow (ii), (C)$ 2) $(A) \rightarrow (ii), (B) \rightarrow (ii), (C)$ Electrophilic substitutio	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO ⁻ ₃ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ ad with hot conc h molecular form 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃ column II and m uction (i C) \rightarrow (ii), (D) \rightarrow (ii C) \rightarrow (ii), (D) \rightarrow (ii C) \rightarrow (ii), (D) \rightarrow (ii n of aniline with l	in aqueous so (in aqueous so	V_{1} , - sp ³ hybridis PO_{3} - tribasic plution with atom (<i>d-</i> and -f- <i>k</i> 9 B.M V_{1} C ₂ O ²⁻) and (iii) 's rule ? H_{6} +HBr an alkene y with he alcohol is - methylpropan zzaro reaction f H_{5} CHO priate choice. PO_{4} er at room temp	sation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) $C_3H_6 +$ h formula C_4H_8 (Alcoh - 1 -ol 4) 2,2 (Aldehydes, Kea 4) C_6H_5C (Aldehydes, Kea berature gives	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids H ₂ CHO
51. 52. 53. 55. 56.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisar 3) $PCI_5(solid) - [PtCI_4]^+ [I]$ The magnetic moment 1) 5.9 B.M Among the following which (i) SCN ⁻ 1) (i) and (iii) Which of the following r 1) $C_2H_4 + HBr$ An alcohol x when treat gives single product with 1) butan - 1-0I Which of the following c 1) CH_3CHO Match the column I with column I (A) Clemmensen reduc (B) Rosenmund reduct (C) lodoform reaction (D) Cannizzaro reaction (D) Cannizzaro reaction (D) Cannizzaro reaction (D) Cannizzaro reaction (D) Cannizzaro reaction (D) (A) \rightarrow (ii), (B) \rightarrow (iii), (C 2) (A) \rightarrow (iii), (B) \rightarrow (iii), (C 4) (A) \rightarrow (iv), (B) \rightarrow (iii), (C	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M hich are ambiden (ii) NO ⁻ ₃ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ ted with hot conc h molecular forn 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃ column II and m uction (i C) \rightarrow (ii), (D) \rightarrow (ii C) \rightarrow (ii), (D) \rightarrow (ii C) \rightarrow (ii), (D) \rightarrow (ii n of aniline with l 2) 3 - bromoan	atched ? 2) P 4) P 4) P in aqueous so 3) 6.9 itate ligands ? iii) NO_2 (iv 3) (ii) Markovnikov 3) C 3) C 3) C 1 3) 2 - indergo canni 3) C ark the approp column II i) Conc, KOH i) Zn /Hg + co iii) H ₂ / Pd - B iv) NaOH + I ₂ /) i) i) promine - wate line 3) 2,	vo $P_3 - sp^3$ hybridis $PO_3 - tribasic olution with atom (d- and -f-k 9 B.M P_2O^{2-4}) and (iii)'s rule ?P_3 + HBran alkene y withhe alcohol is- methylpropanzzaro reaction 7P_5CHOpriate choice.P_5CHOpriate choice.P_5CHOpriate choice.P_5CHOpriate choice.$	sation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) $C_3H_6 +$ h formula C_4H_8 (Alcoh - 1 -ol 4) 2,2 (Aldehydes, Kea 4) C_6H_5C (Aldehydes, Kea berature gives	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids H ₂ CHO
51. 52. 53. 55. 56. 57.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisa 3) $PCI_5(solid) - [PtCI_4]^+ [I]$ The magnetic moment 1) 5.9 B.M Among the following wh (i) SCN ⁻ 1) (i) and (iii) Which of the following r 1) $C_2H_4 + HBr$ An alcohol x when treat gives single product with 1) butan - 1-0I Which of the following of 1) CH_3CHO Match the column I with column I (A) Clemmensen reduc (B) Rosenmund reduce (C) lodoform reaction (D) Cannizzaro reaction 1) (A) \rightarrow (ii), (B) \rightarrow (iii), (C 2) (A) \rightarrow (iii), (B) \rightarrow (iii), (C 2) (A) \rightarrow (ii), (B) \rightarrow (iii), (C Electrophilic substitutio 1) 2 - bromoaniline Denaturation of protein 1) Formation of amino a	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M nich are ambiden (ii) NO ⁻ ₃ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ and with hot conc h molecular form 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃ column II and m uction (i con (i C) \rightarrow (ii), (D) \rightarrow (ii) (C) \rightarrow (ii), (D) \rightarrow (ii) (C) \rightarrow (ii), (D) \rightarrow (ii) n of aniline with l 2) 3 - bromoand leads to loss of cids	atched ? 2) P 4) P 4) P in aqueous so 3) 6.9 itate ligands ? iii) NO_2 (iv 3) (ii) Markovnikov 3) C 3) C 3) C 1 3) 2 - indergo canni 3) C ark the approp column II i) Conc, KOH i) Zn /Hg + co iii) H ₂ / Pd - B iv) NaOH + I ₂ /) i) i) promine - wate line 3) 2,	vo $P_3 - sp^3$ hybridis $PO_3 - tribasic olution with atom (d- and -f-k 9 B.M P_2O^{2-4}) and (iii)'s rule ?P_3 + HBran alkene y withhe alcohol is- methylpropanzzaro reaction 7P_5CHOpriate choice.P_5CHOpriate choice.P_5CHOpriate choice.P_5CHOpriate choice.$	sation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) $C_3H_6 +$ n formula C_4H_8 (Alcoh - 1 -ol 4) 2,2 ? (Aldehydes, Kea 4) C_6H_5C	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids H ₂ CHO tones & Carboxylic acids) (Amines) 6 - tribromoaniline
151. 152. 153. 154. 155. 156.	Which of the following is 1) $PCI_5 - sp^3 d$ hybridisar 3) $PCI_5(solid) - [PtCI_4]^+ [I]$ The magnetic moment 1) 5.9 B.M Among the following which (i) SCN ⁻ 1) (i) and (iii) Which of the following r 1) $C_2H_4 + HBr$ An alcohol x when treat gives single product with 1) butan - 1-0I Which of the following r 1) CH_3CHO Match the column I with column I (A) Clemmensen reduct (B) Rosenmund reduct (C) lodoform reaction (D) Cannizzaro reaction 1) (A) \rightarrow (ii), (B) \rightarrow (iii), (C 2) (A) \rightarrow (iii), (B) \rightarrow (iii), (C Electrophilic substitution 1) 2 - bromoaniline Denaturation of protein	s not correctly m tion PtCl ₆] ⁻ of a divalent ion 2) 2.9 B.M hich are ambiden (ii) NO ⁻ ₃ (2) (i) and (iv) reactions follows 2) C ₃ H ₆ +Cl ₂ addition form 2) butan - 2 - o compounds will u 2) CH ₃ COCH ₃ column II and m uction (i C) \rightarrow (ii), (D) \rightarrow (ii C) \rightarrow (ii), (D) \rightarrow (ii C) \rightarrow (ii), (D) \rightarrow (ii n of aniline with l 2) 3 - bromoani leads to loss of cids ture	atched ? 2) P 4) P 4) P in aqueous so 3) 6.9 itate ligands ? iii) NO_2 (iv 3) (ii) Markovnikov 3) C 3) C 3) C 1 3) 2 - indergo canni 3) C ark the approp column II i) Conc, KOH i) Zn /Hg + co iii) H ₂ / Pd - B iv) NaOH + I ₂ /) i) promine - wate line 3) 2, its biological a	V_{3}^{2} - sp ³ hybridis PO_{3} - tribasic olution with atom (<i>d-</i> and -f-t 9 B.M $V_{1}^{2}C_{2}O^{2-4}$) and (iii) 's rule ? H_{6} +HBr an alkene y with he alcohol is - methylpropan zzaro reaction ? $H_{5}CHO$ priate choice. $PO_{1}^{2}CHO$ priate choice. $PO_{1}^{2}CHO$ priate choice. $PO_{1}^{2}CHO$ priate choice. $PO_{1}^{2}CHO$ priate choice.	sation nic number 25 block elements) 4) 9.9 B.1 4) (ii) and (Hal 4) $C_3H_6 +$ 1 of a di 2,2 (Aldehydes, Kea (Aldehydes, Kea berature gives hiline 4) 3,5,1	is M (Co-ordination Compound d (iv) oAlkanes & Halo Arenes) - Br ₂ . This alkene on ozonlys ols, Phenols and ethers) - dimethylbutan - 1-ol etones & Carboxylic acids, H ₂ CHO tones & Carboxylic acids) (Amines) 6 - tribromoaniline

- 159. Composition of Ziegler Natta catalyst is 1) $(Et_3)_3AI.TiCl_2$ 2) $(Me)_3AI.TiCl_2$
- 160. Barbiturates acts as 1) Hypnotic i.e., sleep producing agents
 - 3) Activator of neurotransmitters

3) $(Et)_{3}AI.TiCl_{4}$

(Polymers) 4) $(Et)_{3}AI.PtCl_{4}$ (Chemistry in everyday life)

- 2) non-narcotic analgesics
- 4) Antiallergic drugs.

WWWW.AIMSTUTORIAL.IN