MODEL PAPER - 8

CHEMISTRY

121. An organic compound on analysis gave $C=54.2 \%, H=9.2 \%$ by mass, its empirical formula is
(Some Basic concept of chemistry)
1) CHO_{2}
2) $\mathrm{CH}_{2} \mathrm{O}$
3) $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}$
4) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
122. The radius of hydrogen atom in ground state is $0.53^{\circ} \mathrm{A}$. What will be the radius of Li^{2+} in the ground state?
(Structure of Atom)
1) $1.06 \mathrm{~A}^{0}$
2) $0.265 \mathrm{~A}^{0}$
3) $0.17 \mathrm{~A}^{0}$
4) $0.53 \mathrm{~A}^{0}$
123. An electron in excited hydrogen atom falls from fifth energy level to second energy level. In which of the following regions, the spectrum line will be observed and is part of which series of the atomic spectrum ?
(Structure of Atom)
1) Visible, Balmer
2) Ultraviolet, Lyman
3) Infrared, Paschen
4) Infrared, Brackett
124. Few general names are given along with their valence shell configurations. mark the incorrect name,
(Classification of elements)
1) $n s^{2} n p^{6}$ - Noble gases
2) $n s^{2} n p^{5}$ - Halogens
3) ns^{1} - Alkali metals
4) $n s^{2}-n p^{2}$ - Chalcogens
125. How many sigma and pi bonds are present in toluene? (Chemical Bonding \& Molecular structure)
1) 10σ and 3π bonds
2) 12σ and 3π bonds
3) 15σ and 3π bonds
4) 6σ and 3π bonds
126. Which of the following orbitals will not form sigma bond after overlapping ?
(Chemical Bonding \& Molecular structure)
1) s-orbital and s-orbital
2) s-orbital and p_{z} - orbital
3) p_{z} - orbital and p_{z} - orbital
4) p_{x} - orbital and p_{x} - orbital
127. The correct value of the gas constant ' R ' is close to
(States of Matter)
1) 0.082 litre - atmosphere K
2) 0.082 litre-atmosphere $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
3) 0.082 litre - atmosphere- $\mathrm{K} \mathrm{mol}^{-1}$
4) 0.082 litre $^{-1}$ atmosphere ${ }^{-1} \mathrm{~K} \mathrm{~mol}$.
128. Value of gas constant R in the ideal gas equation $P V=n R T$ depends upon
(States of Matter)
1) Temperature of the gas
2) Pressure of the gas
3) Units in which P, V and T are measured
4) nature of the gas
129. What will be $\Delta \mathrm{H}$ for the reaction, $\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{C}+2 \mathrm{H}+2 \mathrm{Cl}\left(\mathrm{B} . \mathrm{E}\right.$ of $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{Cl}$ bonds are $416 \mathrm{KJ} \mathrm{mol}^{-1}$ and $325 \mathrm{KJ} \mathrm{mol}^{-1}$ respectively
(Thermodynamics)
1) 832 KJ
2) 1482 KJ
3) $650 \stackrel{\rightharpoonup}{\mathrm{~K}} \mathrm{~J}$
4) 1855 KJ
130. Which of the following species can act both as an acidias well as a base ?
(Equilibrium)
1) SO_{4}^{2-}
2) HSO_{4}^{-}
3) $R \bar{D}^{3-}$
4) OH^{-}
131. The oxidation state of Fe in $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is
2) +3
(3) +4
3) +6
4) +2
(Redox Reactions)
132. The stoichiometric constants for the reaction $\mathrm{pCu}+\mathrm{qHNO}_{3} \rightarrow \mathrm{rCu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{sNO}+\mathrm{tH}_{2} \mathrm{O}$
1) $3,3,3,2,3$
2) $3,2,3,2,4$
3) $3,8,3,2,4$
4) $2,3,3,3,2$
133. The temporary hardness of water due to calcium bicarbonate can be removed by adding
(Redox Reactions)
1) CaCO_{3}
2) CaCl_{2}
3) HCl
4) $\mathrm{Ca}(\mathrm{OH})_{2}$
134. Which of the following is arranged according to increasing basic strength ?
(S-Block elements)
1) $\mathrm{CaO}<\mathrm{MgO}<\mathrm{SrO}<\mathrm{BaO}<\mathrm{BeO}$
2) $\mathrm{BaO}<\mathrm{SrO}<\mathrm{CaO}<\mathrm{MgO}<\mathrm{BeO}$
3) $\mathrm{BeO}<\mathrm{MgO}<\mathrm{CaO}<\mathrm{BaO}<\mathrm{SrO}$
4) $\mathrm{BeO}<\mathrm{MgO}<\mathrm{CaO}<\mathrm{SrO}<\mathrm{BaO}$
(P-Block elements)
135. Chemically borax is
2) Sodium orthoborate
3) Sodium metaborate
4) Sodium hexaborate
5) Sodium tetraborate decahydrate
136. Borax is not used
(P-Block elements)
1) As a styptic to stop bleeding 2) In making enamel and pottery glazes
2) As a flux in soldering
3) In making optical glasses.
137. Which of the following is an electrophilic reagent?
(Organic chemistry-some Basic Principle)
1) $\mathrm{H}_{2} \mathrm{O}$
2) NH_{3}
3) OH^{-}
4) NO_{2}^{+}
138. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[170^{\circ} \mathrm{C}]{\text { conc. } \mathrm{H}_{4} \mathrm{SO}_{4}} \mathrm{~A} \xrightarrow[500^{\circ} \mathrm{C}]{\mathrm{Cl}_{2}} \mathrm{~B} A$ and B are
(Hydro Carbons)
1) $\mathrm{A}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~B}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
2) $\mathrm{A}=\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~B}=\mathrm{CH}_{2} \mathrm{ClCH}=\mathrm{CH}_{2}$
3) $\mathrm{A}=\mathrm{CH}_{2}=\mathrm{CH}_{2}, \mathrm{~B}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
4) $\mathrm{A}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~B}=\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
139. The most acidic hydrogen atoms are present in
(Hydro Carbons)
3) ethyne
4) ethane
5) ethene
6) benzene,
140. Mark the example which is not correctly matched?
(Environmental Chemistry)
1) Air pollutants - Oxides of sulphur, nitrogen and carbon
2) Particulate pollutants - Dust, mist, fumes
3) Global warming - methane, Ozone, CFC's
4) Water soluble chemical pollutants - Oxides of nitrogen, carbon and sodium
141. A solid $A B$ has a rock salt structure. If radius of cation A^{+}is 120 pm , what is the minimum value of radius of B anion ?
(Solid State)
1) 120 pm
2) 240 pm
3) 290 pm
4) 360 pm
142. 10% solution of urea is isotonic with 6% solution of a non - volatile solute X, what is the molecular massof solute X ?
(Solutions)
1) $6 \mathrm{~g} \mathrm{~mol}^{-1}$
2) $60 \mathrm{~g} \mathrm{~mol}^{-1}$
3) $36 \mathrm{~g} \mathrm{~mol}^{-1}$
4) $32 \mathrm{~g} \mathrm{~mol}^{-1}$
143. Specific conductance of 0.1 M NaCl solution is $1.01 \times 10^{-2} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$. Its molar conductance in ohm- $\mathrm{cm}^{2} \mathrm{~mol}^{-}$ ${ }^{1}$ is
(Electro Chemistry)
1) 1.01×10^{2}
2) 1.01×10^{3}
3) 1.01×10^{4}
4) 1.01
144. How much electricity in terms of faraday is required to produce 100 g of Ca from molten CaCl_{2} ?
(Electro Chemistry)
1) 1 F
2) 2 F
3) 3 F
4) 5 F
145. A first order reaction is 20% complete in 10 minutes. what is the specific rate constant for the reaction
(Chemical Kinetics)
1) $0.0970 \mathrm{~min}^{-1}$
2) $0.009 \mathrm{~min}^{-1}$
3) $0.0223 \mathrm{~min}^{-1}$
4) $2.223 \mathrm{~min}^{-1}$
146. In a first order reaction, the concentration of reactant is reduced to $1 / 8$ of the initial concentration in 75 minutes at 298 K . what is the half - life period of the reaction in minutes? (Chemical Kinetics)
1) 50 min
2) 15 min
3) 30 min
4) 25 min
147. Which of the following gases present in a polluted area will be adsorbed most easily on the charcoal gas mask?
(Surface Chemistry)
1) H_{2}
2) O_{3}
3) N_{2}
4) SO_{2}
148. Which of the following metals cannot be obtained by reduction of its metal oxide by aluminium ?
(Genral Principles and Process of Isolation of elements)
1) Cr
2) Mn
3) Fe
4) Mg
149. Dry SO_{2} does not bleach dry flowers because
(P-Block Elements)
1) nascent hydrogen responsible for bleaching is produced only in presence of moisture
2) Water is the actual reducing agent responsible for bleaching
3) Water is stronger acid than SO_{2}
4) The OH^{-}ions produced by water cause bleaching
150. Match the column I with column II and mark the appropriate choice.

Column - I
Column - II
A. Thiosulphuric acid
(i) $\mathrm{H}_{2} \mathrm{SO}_{5}$
B. Caro's acid
C. Marshall's acid
D. Dithionic acid
(ii) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$

1) $A \rightarrow$ (iv) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
(iv) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}^{3}$
2) $\overrightarrow{A F} \rightarrow$ (iv); $B \rightarrow$ (iii); $C \rightarrow$ (ii) $D \rightarrow$ (i)
3) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iv) $\mathrm{D} \rightarrow$ (ii)

4A \rightarrow (ii); B \rightarrow (iii); C \rightarrow (i) $D \rightarrow$ (iv)
(P-Block Elements)
151. The equation $3 \mathrm{MnO}_{4}^{2+}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}$ respresents $2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ (d-and -f-block elements) $\begin{array}{llll}\text { 1) reduction } & 2) \text { disproportionation } & 3) \text { Oxidation in acidic medium 4) Reduction in acidic medium }\end{array}$
152. The correct IUPAC name of the coordinattion compound $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$ is (Co-ordination Compounds)

1) Potassium pentacyanonitrosylferrate (II)
2) Potassium pentacyanonitroferrate (III)
3) Potassium nitritopentacyanoferrate (IV) ${ }^{\circ}$
4) Potassium nitritepentacyanoiron (II)
153. $\mathrm{CH}_{3} \mathrm{OH} \xrightarrow{\mathrm{Pl}_{3}} \mathrm{X} \xrightarrow{\mathrm{KCN}} \mathrm{Y} \xrightarrow{\text { Hydrolysis }} \mathrm{Z}$ The final product in the reaction is (HaloAlkanes \& Halo Arenes)
1) $\mathrm{CH}_{3} \mathrm{OH}$
2) HCOOH
3) $\mathrm{CH}_{3} \mathrm{CHO}$
4) $\mathrm{CH}_{3} \mathrm{COOH}$
154. The most suitable reagent for the conversion of $\mathrm{RCH}_{2} \mathrm{OH} \rightarrow \mathrm{RCHO}$
(Alcohols, Phenols and ethers)
1) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
2) CrO_{3}
3) KMnO_{4}
4) $P C C$
155. Identify $(\mathrm{X}),(\mathrm{Y})$ and (Z) reagents in the given sequence of reaction.
$\mathrm{CH} \equiv \mathrm{CH} \xrightarrow{X} \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{Y} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \xrightarrow{Z} \mathrm{CH}_{3} \mathrm{COCH}_{3}$
(Aldehydes, Ketones \& Carboxylic acids)
1) $X=\mathrm{H}_{2} \mathrm{SO}_{4} Y=\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-} \mathrm{Z}=\mathrm{PCl}_{5}$, heat
2) $\mathrm{X}=\mathrm{HNO}_{3}, \mathrm{Y}=\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Z}=\mathrm{H}_{2} \mathrm{SO}_{4}$, heat
3) $\mathrm{X}=\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Hg}^{2+}, \mathrm{Y}=\mathrm{PCl}_{5} / \mathrm{H}_{2} \mathrm{O}, \mathrm{Z}=\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{OH}^{-}$
4) $\mathrm{X}=\mathrm{H}_{2} \mathrm{SO}_{4}^{4} / \mathrm{Hg}^{2+}, \mathrm{Y}=\mathrm{CH}_{3} \mathrm{MgBr} / \mathrm{H}_{2} \mathrm{O}, \mathrm{Z}^{2}=\mathrm{K}_{2}^{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$
156. Which of the following does not answer iodoform test?
1) n - Butyl alcohol
2) sec-Butyl alcohol
3) Acetophenone
157. Which of the follwoing has highest pK_{b} value
3) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
158. Deficiency of vitamin E causes ${ }^{3}$
1) rickets
2) scurvy
3) muscular weakness
(Aldehydes, Ketones \& Carboxylic acids)
4) Acetaldehyde
5) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(Bio Molecules)
6) beri beri.
7) neoprene
8) Terylene
9) teflon
10) nylon 6
160. An ester which is effective in curing malaria is
1) ethyl acetate
2) methyl acetate
3) methyl salicylatēWW A) ethyl (bengepate TORIAL.IN
