MODEL PAPER - 1

MATHEMATICS

1. $A=\{x \in R: x \neq 0,-4 \leq x \leq 4\} \quad f: A \rightarrow R$ is defined as $f(x)=\frac{|x|}{x}$ then the range of f is
1) $\{1,-1\}$
2) $\{x: 0 \leq x \leq 4\}$
3) $\{1\}$
4) $\{x:-4 \leq x \leq 0\}$
2. The number of relations from $A=\{1,2,3\}$ to
$B=\{4,6,8,10\}$ is
1) $4^{3} \quad$ 2) 2^{7}
2) 2^{12}
3) 3^{4}
3. Let $S(k)=1+3+5+\ldots \ldots .+(2 k-1)=3+k^{2}$. Then which of the following is true ? (Mathematical Induction)
1) $S(1)$ is correct
2) Principle of mathematical induction can be used to prove the formula
3) $S(k) \nRightarrow S(k+1)$
4) $S(k) \Rightarrow S(k+1)$
4. If $D=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|$ for $x \neq 0, y \neq 0$, then D is
(Matrices)
1) divisible by neither x nor y
2) divisible by both x and y
3) divisible by x but not y
4) divisible by y but not x
5. If $\mathrm{A}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{b} & \mathrm{a}\end{array}\right]$ and $\mathrm{A}^{2}=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$, then
(Matrices)
1) $\alpha=a^{2}+b^{2}, \beta=a b$
2) $\alpha=a^{2}+b^{2}, \beta=2 a b$
3) $\alpha=a^{2}+b^{2}, \beta=a^{2}-b^{2}$
4) $\alpha=2 a b, \beta=a^{2}+b^{2}$
6. If the system of equations $x+2 y+3 z=\lambda x, 3 x+y+2 z=\lambda y, 2 x+3 y+z=\lambda z$ has nontrivial solution, then $\lambda=$
1) 6
2) 12
3) 18
4) 16
7. If $i+2 j+3 k, 3 i+2 j+k$ are sides of a parallelogram, then a unit vector parallel to one of the diagonals of the parallelogram is
(Addition of Vectors)
1) $\frac{i+j+k}{\sqrt{3}}$
2) $\frac{i-j+k}{\sqrt{3}}$
3) $\frac{i+j-k}{\sqrt{3}}$
4) $\frac{-i+j+k}{\sqrt{3}}$
8. The vector $\bar{a}=\alpha i+2 j+\beta k$ lies in the plane of the vectors $\bar{b}=i+j$ and $\bar{c}=j+k$ and bisects the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$. Then, which one of the following gives possible values of α and β ?
(Addition of Vectors)
1) $\alpha=1, \beta=1$
2) $\alpha=2, \beta=2$
3) $\alpha=1, \beta=2$
4) $\alpha=2, \beta=1$
9. The value of a, for which the points A, B, C with position vectors $2 i-j+k, i-3 j-5 k$ and $a i-3 j+k$ respectively are the vertices of a right angled triangle with $C=\pi / 2$ are
(Dot and cross product)
1) -2 and -1
2) -2 and 1
3) 2 and -1
4) 2 and 1
10. Let $\overline{\mathrm{a}}=\mathrm{j}-\mathrm{k}$ and $\overline{\mathrm{c}}=\mathrm{i}-\mathrm{j}-\mathrm{k}$. Then the vector $\overline{\mathrm{b}}$ satisfying $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})+\overline{\mathrm{c}}=\overline{0}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$, is (Dot and cross product)
1) $-i+j-2 k$
2) $2 i-j+2 k$
3) $i-j-2 k$
4) $i+j-2 k$
11. Let \bar{a}, \bar{b} and \bar{c} be non-zero vectors such that $(\bar{a} \times \bar{b}) \times \bar{c}=\frac{1}{3}|\bar{b}||\bar{c}| \bar{a} \cdot$ If θ is the acute angle between the vectors $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$, then $\sin \theta$ equals
(Triple product)
1) $\frac{1}{3}$
2) $\frac{\sqrt{2}}{3}$
3) $\frac{2}{3}$
4) $\frac{2 \sqrt{2}}{3}$
12. $\frac{\cos ^{3} A+\sin ^{3} A}{\cos A+\sin A}+\frac{\cos ^{3} A-\sin ^{3} A}{\cos A-\sin A}=$
1) 0
2) -1
3) 1
4) 2
13. $\tan \alpha=\frac{m}{m+1}, \tan \beta=\frac{1}{2 m+1}$ then $\tan (\alpha+\beta)=$
(Compound Angles)
1) -1
2) 0
3) 1
4) 2
14. Let $\cos (\alpha+\beta)=\frac{4}{5}$ and $\sin (\alpha-\beta)=\frac{5}{13}$, where $0 \leq \alpha, \beta \leq \frac{\pi}{4}$. Then tan 2α equals (Multiple and submultiple)
1) $\frac{25}{16}$
2) $\frac{56}{33}$
3) $\frac{19}{12}$
4) $\frac{20}{7}$
15. $m \tan \left(\theta-30^{\circ}\right)=n \tan \left(\theta+120^{\circ}\right)$ then $\frac{m+n}{m-n}=$
(Transformation)
1) $\cos 2 \theta$
2) $2 \cos 2 \theta$
3) $\sin 2 \theta$
4) $2 \sin 2 \theta$
16. The period of the function $f(x)=\sin ^{4} x+\cos ^{4} x$ is
1) π
2) $\frac{\pi}{2}$
3) 2π
17. If $\sin x, \sin 2 x, \sin 3 x$ are in A.P., then $x=$
(Periodicity \& Extreme values)
4) None of these
(Trignometric Equations)
5) $\frac{n \pi}{2}, 2 n \pi$
6) $n \pi, n \pi \pm \frac{\pi}{3}$
7) $n \pi, n \pi \pm \frac{\pi}{4}$
8) $(2 n+1) \frac{\pi}{2}, n \pi \pm \frac{\pi}{6}$
18. If $\operatorname{Cos}^{-1} x-\operatorname{Cos}^{-1} \frac{y}{2}=\alpha$, then $4 x^{2}-4 x y \cos \alpha+y^{2}$ is equal to
(Inverse Triangle)
1) $-4 \sin ^{2} \alpha$
2) $4 \sin ^{2} \alpha$
3) 4
4) $2 \sin 2 \alpha$
19. If $\cosh x=\sec \theta$, then $\operatorname{coth}^{2}\left(\frac{x}{2}\right)=$
(Hyperbolic Functions)
1) $\tan ^{2}\left(\frac{\theta}{2}\right)$
2) $\tan ^{2} \theta$
3) $\cot ^{2}\left(\frac{\theta}{2}\right)$
4) $\cot ^{2} \theta$
20. In a triangle $A B C, \tan \frac{A}{2}=\frac{5}{6}, \tan \frac{C}{2}=\frac{2}{5}$, then
(Properties of triangle)
1) a, c, b are in A.P
2) a, b, c are in A.P
3) b, a, c are in A.P
4) a, b, c are in G.P
21. $\frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}=$
(Properties of triangle)
1) $\frac{1}{r}-\frac{1}{2 R}$
2) $1+\frac{r}{R}$
3) $2+\frac{r}{2 R}$
4) $1-\frac{r}{2 R}$
22. The locus of the point $\left(a+b t, b-\frac{a}{t}\right)$ where t is the parameter
(Locus)
1) $(x-a)(y-b)=a b$
2) $(x+a)(y-b)=a b$
3) $(x-a)(y+b)=a b$
4) $(x-a)(b-y)=a b$
23. The angle of rotation of axes to remove $x y$ term in the equation $x y=c^{2}$ is
(Transformation of axis)
1) $\pi / 12$
2) $\pi / 6$
3) $r / 3$
4) $\pi / 4$
24. The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the 1 pint $(13,32)$. The line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$. Then the distance between K and K
(Straight Lines)
1) $\frac{23}{\sqrt{15}}$
2) $\sqrt{17}$
3) $\frac{17}{\sqrt{15}}$
4) $\frac{23}{\sqrt{17}}$
25. The point on the line $2 x-3 y=5$ which is equidistant from $(1,2)$ and $(3,4)$ is
(Straight Lines)
1) $(2,3)$
2) $(4,1)$
3) $(1,-1)$
4) $(4,6)$
26. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then c has the value
(Pair of straight line)
1) 1
2) -1
3) 2
4) -2
27. The area of the triangle formed by the lines $x^{2}+4 x y+y^{2}=0, x+y=1$ is
(Pair of straight line)
1) $\sqrt{3}$
2) 2
3) 1
4) $\sqrt{3} / 2$
28. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the yz-plane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$. Then
(Three dimentional theorem)
1) $a=2, b=8$
2) $a=4, b=6$
3) $a=6, b=4$
4) $a=8, b=2$
29. A line makes the same angle θ with each of the x and z axes. If the angle β, which it makes with y-axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$, then $\cos ^{2} \theta$ equals
(Directions Consines)
1) $\frac{2}{3}$
2) $\frac{1}{5}$
3) $\frac{3}{5}$
4) $\frac{2}{5}$
30. Distance between two parallel planes $2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is
(Plane)
1) $\frac{3}{2}$
2) $\frac{5}{2}$
3) $\frac{7}{2}$
4) $\frac{9}{2}$
31. $\lim _{x \rightarrow 2} \frac{\sqrt{1-\cos 2(x-2)}}{x-2}$
(Limits)
1) does not exist
2) equals $\sqrt{2}$
3) equals $-\sqrt{2}$
4) equal $\frac{1}{\sqrt{2}}$
32. $\operatorname{Lim}_{x \rightarrow 0} \frac{\sqrt{4+x}-\sqrt[3]{8-3 x}}{x}=$
1) $-\frac{1}{2}$
2) $\frac{1}{2}$
3) -3
4) 0
33. The function $f: R /\{0\} \rightarrow R$ given by $f(x)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$ can be made continuous at $x=0$ by defining $f(0)$ as
1) 2
2) -1
3) 0
4) 1
34. Let $f(a)=g(a)=k$ and their nth derivatives $f^{n}(a), g^{n}(a)$ exist and are not equal for some n. Further if $\lim _{x \rightarrow a} \frac{f(a) g(x)-f(a)-g(a) f(x)+g(a)}{g(x)-f(x)}=4$, then the value of k is equal to
(Differentiations)
1) 4
2) 2
3) 1
4) 0
35. Let y be implicit function of x defined by $x^{2 x}-2 \cdot x^{x} \cot y-1=0$. Then $y^{\prime}(1)$ equals
(Differentiations)
1) -1
2) 1
3) $\log 2$
4) $-\log 2$
36. Approximate value of $\sqrt{63}$ is
1) 3.972
2) 1.028
3) 3.979
4) 7.982
37. The equation of the tangent to the curve $y=x+\frac{4}{x^{2}}$, that is parallel to the $x-$ axis is (Tangents and normal)
1) $y=0$
2) $y=1$
3) $y=2$
4) $y=3$
38. If the rate of change in the radius of a circle is $0.2 \mathrm{~cm} / \mathrm{sec}$, then the rate of change in the area of the circle when the radius is 15 cm is
(Rate of Change)
1) $2 \pi \mathrm{sq} . \mathrm{cm} / \mathrm{sec}$
2) $3 \pi \mathrm{sq} . \mathrm{cm} / \mathrm{sec}$
3.) $6 \pi \mathrm{sq} . \mathrm{cm} / \mathrm{sec}$
3) 8π sq.cm/sec
39. The constant c of Rolle's theorem for the function $f(x)=\log \frac{x^{2}+a b}{(a+b) x}$ in [a, b] where 0 ï [a, b] is
(Mean Values Theorem)
1) $\sqrt{a b}$
2) $\frac{a+b}{2}$
3) $\frac{a-b}{2}$
4) $\frac{b-a}{2}$
40. The function $f(x)=\frac{x}{2}+\frac{2}{x}$ has a local minimum at
(Maxima and Minima)
1) $x=-2$
2) $x=0$
3) $x=1$
4) $x=2$
41. The value of $\sum_{\mathrm{k}=1}^{10}\left(\sin \frac{2 \mathrm{k} \pi}{11}+\mathrm{i} \cos \frac{2 \mathrm{k} \pi}{11}\right)$ is
(Complex Numbers)
1) 1
2) -1
3) - i
4) i
42. If $|z-4|<|z-2|$, its solution is given by
(Complex Numbers)
1) $\operatorname{Re} z>0$
2) $\operatorname{Re} z<0$
3) $\operatorname{Re} z>3$ 4) $\operatorname{Re} z>2$
en the value of $x^{n}+1 / x^{n}$ is
(De-Moiver's Theorem)
4) $2^{n} \cos n \theta$
5) $2^{n} \cos ^{n} \theta$
6) $2 \cos n \theta$
7) $2 \cos ^{n} \theta$
44. If the difference between the roots of the equation $x^{2}+a x+1=0$ is less than $\sqrt{5}$, then the set of possible values of a is
1) $(-3,3)$
2) $(-3, \infty)$
3) $(3, \infty)$
4) $(-\infty,-3)$
45. If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equal to the sum of the squares of their reciprocals, then $\frac{a}{c}, \frac{b}{a}$ and $\frac{c}{b}$ are in
(Quadratic Expression)
1) A.P
2) G.P
3) H.P
4)A.G.P
46. If α, β, γ are the roots of $x^{3}+3 x+2=0$ then the equation whose roots $\alpha(\beta+\gamma), \beta(\gamma+\alpha), \gamma(\alpha+\beta)$ is
(Theory of Equations)
1) $x^{3}-6 x^{2}+9 x+4=0$
2) $x^{3}-3 x^{2}+9 x+4=0$ 3) $x^{3}+6 x^{2}-9 x+4=0$
3) $x^{3}-6 x^{2}-9 x-4=0$
47. If the letters of the word "SACHIN" are arranged in all possible ways and these words are written out as in dictionary, then the word SACHIN appears at serial number
(Permutation \& Combination)
1) 602
2) 603
3) 600
4) 601
48. The value of ${ }^{50} \mathrm{C}_{4}+\sum_{\mathrm{r}=1}^{6}{ }^{56-\mathrm{r}} \mathrm{C}_{3}$ is
(Permutation \& Combination)
1) ${ }^{55} \mathrm{C}_{4}$
2) ${ }^{55} \mathrm{C}_{3}$
3) ${ }^{56} \mathrm{C}_{3}$
4) ${ }^{56} \mathrm{C}_{4}$
49. The number of permutations that can be made using all the letters of the word BANANA is
(Permutation \& Combination)
1) 60
2) 120
3) 360
4) 720
5) 20
6) 30
7) 50
8) 70
51. In the binomial expansion of $(a-b)^{n}, n \geq 5$, the sum of $5^{\text {th }}$ and $6^{\text {th }}$ terms is zero, then $\frac{a}{b}$ equals
(Binomial Theorem)
1) $\frac{5}{n-4}$
2) $\frac{6}{n-5}$
3) $\frac{n-5}{6}$
4) $\frac{n-4}{5}$
52. The coefficient of x^{5} in $\left(1+2 x+3 x^{2}+\ldots \ldots\right)^{-3 / 2}$ is
1) 21
2) 25
3) 26
(Binomial Theorem)
53. If $\frac{2 x-5}{(x-3)^{2}}=\frac{a}{x-3}+\frac{b}{(x-3)^{2}}$ then $\mathrm{a}+\mathrm{b}=$
(Partial Fraction)
1) 1
2) 2
3) 3
4) 4
54. Standard deviation of first ' n ' natural numbers is
(Measure of Dispersion)
1) $\sqrt{\frac{n-1}{n m}}$
2) $\sqrt{\frac{n^{2}+1}{12}}$
3) $\sqrt{\frac{n^{2}-1}{12}}$
4) None
55. It is given that the events A and B are such that $P(A)=\frac{1}{4}, P(A / B)=\frac{1}{2}$ and $P(B / A)=\frac{2}{3}$. Then $P(B)$ is
1) $\frac{1}{2}$
2) $\frac{1}{6}$
3) $\frac{1}{3}$
4) $\frac{2}{3}$
56. Five horses are in a race. Mr. A selects two of the horses and rand bets on them . The probability that Mr . A selected the winning horse, is
(Probability)
1) $\frac{4}{5}$
2) $\frac{3}{5}$
3) $\frac{1}{5}$
4) $\frac{2}{5}$
57. A problem in mathematics is given to three stidents A, B, C and their respective probabilities of solving the problem are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$. Probability that the,problem is solved, is
(Probability)
1) $3 / 4$
2) $1 / 2$
3) $2 / 3$
4) $1 / 3$
58. A random variable X has Poisson distribetion with mean 2. Then $P(X>1.5)$ equals.
(Random Variables)
1) $\frac{3}{e^{2}}$
2) $1-\frac{3}{e^{2}}$
3) 0
4) $\frac{2}{e^{2}}$
59. The probability of answering 6 out of 10 questions correctly in a true or false examination is (Random Variables)
1) ${ }^{10} \mathrm{C}_{4}\left(\frac{1}{2}\right)^{4}$
2) ${ }^{10} \mathrm{C}_{6}\left(\frac{1}{2}\right)^{6}$
3) ${ }^{10} \mathrm{C}_{6}\left(\frac{1}{2}\right)^{10}$
4) ${ }^{10} \mathrm{C}_{6}\left(\frac{1}{2}\right)^{8}$
60. The lines $2 x-3 y=5$ and $3 x-4 y=7$ are diameters of a circle having area as 154 sq. units. Then, the equation of the circle is
(Circles)
1) $x^{2}+y^{2}+2 x-2 y=62$
2) $x^{2}+y^{2}+2 x-2 y=47$
3) $x^{2}+y^{2}-2 x+2 y=47$
4) $x^{2}+y^{2}-2 x+2 y=62$
61. A variable circles passes through the fixed point $A(p, q)$ and touches x-axis. The locus of the other end of the diameter through A is
(Circles)
1) $(x-p)^{2}=4 q y$
2) $(x-q)^{2}=4 p y$
3) $(y-p)^{2}=4 q x$
4) $(y-q)^{2}=4 p x$
(Circles)
5) $2|a|=c$
6) $|a|=c$
7) $a=2 c$
8) $|a|=2 c$
63. The intercept on the line $y=x$ by the circle $x^{2}+y^{2}-2 x=0$ is $A B$. Equation of the circle on $A B$ as a diameter is
(System of Circles)
1) $x^{2}+y^{2}-x-y=0$
2) $x^{2}+y^{2}-x+y=0$
3) $x^{2}+y^{2}+x+y=0$
4) $x^{2}+y^{2}+x-y=0$
64. The intercept on the line $y=x$ by the circle $x^{2}+y^{2}-2 x=0$ is $A B$. Equation of the circle on $A B$ as a diameter is
(System of Circles)
1) $x^{2}+y^{2}-x-y=0$
2) $\left.x^{2}+y^{2}+x-y=0 \quad 3\right) x^{2}+y^{2}+x+y=0$
3) $x^{2}+y^{2}-x+y=0$
65. The equation of a tangent to the parabola $y^{2}=8 x$ is $y=x+2$. the point on this line from which the other tangent to the parabola is perpendicular to the given tangent is
(Parabola)
1) $(-1,1)$
2) $(0,2)$
3) $(2,4)$
4) $(-2,0)$
66. The length of the normal chord at $\left(a^{2}, 2 a t\right)$ is least then $t^{2}=$
(Parabola)
1) 1
2) 2
3) 3
4) 4
67. The equation $\frac{x^{2}}{10-a}+\frac{y^{2}}{4-a}=1$ represents an ellipse if
(Ellipse)
1) $a<4$
2) $a>4$
3) $4<a<10$
4) $a>10$
68. The foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}+\frac{y^{2}}{81}=\frac{1}{25}$ coincide then the value of b^{2} is
(Ellipse)
1) 1
2) 5
3) 7
4) 9
69. For the hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$ which of the following remains constant when α varies? (Hyperbola)
1) Eccentricity
2) Directrix
3) Abscissae of vertices
4) Abscissace of foci
70. If $\int \frac{3^{2 x}}{2^{3 x}} d x=\frac{1}{K}\left(\frac{3^{2 x}}{2^{3 x}}\right)+c$ then $K=$
(Integeration)
1) $2 \mathrm{ln} 3-3 \mathrm{ln} 2$
2) $3 \ln 2-2 \ln 3$
3) $\ln 9+\ln 8$
4) $\ell n \sqrt{72}$
71. If $\int f(x) \cdot \cos x \cdot d x=\frac{1}{2} f^{2}(x)+c$, then $f(x)$ can be
(Integeration)
1) x
2) $\sin x$
3) $\cos x$
4) $x \sin x$
72. $\int \frac{d x}{\cos x-\sin x}$ is equal to
(Integeration)
1) $\frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2}-\frac{\pi}{8}\right)\right|+c$
2) $1 \frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2}-\frac{3 \pi}{8}\right)\right|+c$
73. $\int_{0}^{\infty} \frac{d x}{\left.\left(x+\sqrt{x^{2}+1}\right)\right)^{3}}=$
2) $\left.\frac{1}{\sqrt{2}} \log \right\rvert\, c$ o t $\left.\left(\frac{x}{2}\right) \right\rvert\,+c$
3) $\frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2}+\frac{3 \pi}{8}\right)\right|+c$
(Definite Integration)
4) $3 / 8$
5) $1 / 8$
) $-3 / 8$
6) $-1 / 8$
74. If $\mathrm{I}_{1}=\int_{0}^{1} 2^{x^{2}} d x, I_{2}=\int_{0}^{1} 2^{x^{3}} d x, I_{3}=\int_{1}^{2} 2^{x^{2}} d x$ and $I_{4}=\int_{1}^{2} 2^{x^{3}} d x$ then
(Definite Integration)
1) $I_{3}>I_{4}$
2) $I_{3}=I_{4}$
3) $I_{1}>I_{2}$
4) $I_{2}>I_{1}$
75. $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$, then $\operatorname{Lim}_{n \rightarrow \infty} n\left[I_{n}+I_{n+2}\right.$ equals
(Definite Integration)
1) $1 / 2$
2) 1
3) ∞
4) 0
76. Area bounded by $\frac{|x|}{a}+\frac{|y|}{b}=1$ where $a, b>0$ is
(Areas)
1) $\frac{1}{2 a b}$
2) $a b$
3) $2 a b$
4) $4 a b$
77. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $x=0$ and $x=\frac{3 \pi}{2}$ is
(Areas)
1) $(4 \sqrt{2}-2)$ square units
2) $(4 \sqrt{2}+2)$ square units
3) $(4 \sqrt{2}-1)$ square units
4) $(4 \sqrt{2}+1)$ square units
78. The differential equation for the family of curves $x^{2}+y^{2}-2 a y=0$, where a is an arbitary constant is
(Differential Equations)
1) $2\left(x^{2}-y^{2}\right) y^{\prime}=x y$
2) $2\left(x^{2}+y^{2}\right) y^{\prime}=x y$
3) $\left(x^{2}-y^{2}\right) y^{\prime}=2 x y$
4) $\left(x^{2}+y^{2}\right) y^{\prime}=2 x y$
79. The solution of the differential equation $y d x+\left(x+x^{2} y\right) d y=0$ is
(Differential Equations)
1) $\frac{-1}{x y}=c$
2) $\frac{-1}{x y}+\log y=c$
3) $\frac{1}{x y}+\log y=c$
4) $\log y=c x$
80. The solution of $\frac{d y}{d x}+2 y \cot x=3 x^{2} \operatorname{cosec}^{2} x$ is
(Differential Equations)
1) $y \sin x=x^{3}+c$
2) $y \sin ^{2} x=x^{2}+c$
3) $y \sin ^{2} x=x^{3}+c$
4) $y \sin ^{3} x=x^{3}+c$
