MODEL PAPER - 1

MATHEMATICS

15.	m tan(θ - 30°) = n tan(θ + 120°) then $\frac{m+n}{m-n}$ =			(Transformation)
16.	1) cos 2 θ The period of the func	2) 2 cos 2 θ tion f(x) = sin ⁴ x + cos ⁴ x is	3) sin 20	4) 2 sir <i>(Peric</i>	ר 20 Dicity & Extreme values)
	1) π	2) $\frac{\pi}{2}$	3) 2π	4) Non	e of these
17.	If sinx, sin 2x, sin 3x ar	e in $A.P.$, then x =		(Tr	ignometric Equations)
	1) ^{nπ} / ₂ , 2nπ	2) nπ, nπ <u>+</u> π <u>3</u>	3) nπ, nπ <u>+</u> π / <u>4</u>	4) (2n+1) $\frac{\pi}{2}$, nπ <u>+</u>
18.	If $\cos^{-1}x - \cos^{-1}\frac{y}{2} = \alpha$,	then $4x^2$ - $4xy \cos \alpha + y^2$	is equal to		(Inverse Triangle)
	1) -4 sin² α	2) 4 sin² α	3) 4	4) 2 sin 2 α	
19.	If $\cosh x = \sec \theta$, then	$\operatorname{coth}^2\left(\frac{x}{2}\right) =$			(Hyperbolic Functions)
	1) $\tan^2\left(\frac{\theta}{2}\right)$	2) $\tan^2 \theta$	3) $\cot^2\left(\frac{\theta}{2}\right)$	4) $\cot^2 \theta$	
20.	In a triangle ABC, tan	$\frac{A}{2} = \frac{5}{6}$, tan $\frac{C}{2} = \frac{2}{5}$, then			(Properties of triangle)
	1) a, c, b are in A.P	2) a, b, c are in A.P	3) b, a, c are in A	A.P 4) a, b	, c are in G.P
21.	$\frac{r_1}{bc} + \frac{r_2}{ca} + \frac{r_3}{ab} =$				(Properties of triangle)
	1) $\frac{1}{r} - \frac{1}{2R}$	2) 1 + ^r / _R	3) 2 + $\frac{r}{2R}$	4) 1	r 2R
22.	The locus of the point	$\left(a+bt,b-\frac{a}{t}\right)$ where t is the	parameter		(Locus)
	1) (x -a) (y - b) = ab	2) (x +a) (y - b) = ab	3) (x -a)(y + b) = a	ab 4) (x- a) (b -y) = ab
23.	The angle of rotation c 1) $\pi/12$	f axes to remove xy term 2) π/6	in the equation $xy = c$ 3) $\pi/3$	² is 4) π/4	(Transformation of axis)
24.	The line L given by $\frac{x}{5}$ +	$\frac{y}{b} = 1$ passes through the	oint (13, 32). The line	K is parallel to	L and has the equation
	$\frac{x}{c} + \frac{y}{3} = 1$. Then the dis	tance between K and is			(Straight Lines)
	1) $\frac{23}{2}$	2) 17	$(3) \frac{17}{\sqrt{2}}$	4) $\frac{23}{\sqrt{2}}$	
25	$\sqrt{15}$	$2 \sqrt{11}$	$\sqrt[3]{\sqrt{15}}$	'⁄√17 8:4) is	(Straight Linos)
20.				,+, 13	(Straight Lines)
26.	1) (2,3) If the sum of the slopes	2) (4,1) s of the lines given by $x^2 - 2$	3) (1,-1) cxy - 7y² = 0 is four tim	4) (4,6 nes their produc) ct, then c has the value (Pair of straight line)
	1) 1	2) -1	3) 2	4) -2	
27.	The area of the triangl	e formed by the lines x ² +	$4xy + y^2 = 0, x + y = 0$	1 is	(Pair of straight line)
	1) _{√3}	2) 2	3) 1	4) _{√3} /2	2
28.	The line passing throug	gh the points (5, 1, a) and ((3, b, 1) crosses the yz	z-plane at the p <i>(Three di</i>	oint $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$. Then <i>mentional theorem</i>)
29.	1) a = 2, b = 8 A line makes the same such that $sin^2\beta$ = 3 sin	2) a = 4, b = 6 angle θ with each of the $2^{2}\theta$, then $\cos^{2}\theta$ equals	3) a = 6, b = 4 x and z axes. If the ar	4) a = 8, b = β , which it	2 makes with y - axis, is (Directions Consines)
	1) $\frac{2}{3}$	2) $\frac{1}{5}$	3) $\frac{3}{5}$	4) $\frac{2}{5}$	
30.	Distance between two	parallel planes 2x + y + 2	z = 8 and 4x + 2y + 4	z + 5 = 0 is	(Plane)
	1) $\frac{3}{2}$	2) $\frac{5}{2}$	3) $\frac{7}{2}$	4) $\frac{9}{5}$	
	ŕ 2	· 2	· 2		
			WWW	.AIMSTU	TORIAL.IN

31.	$\lim_{x\to 2} \frac{\sqrt{1-\cos 2(x-2)}}{x-2}$				(Limits)
	1) does not exist	2) equals $\sqrt{2}$	3) equals - $\sqrt{2}$	4) equal $\frac{1}{\sqrt{2}}$	
32.	$\lim_{x \to 0} \frac{\sqrt{4 + x} - \sqrt[3]{8 - 3x}}{x} =$				(Limits)
	1) $-\frac{1}{2}$	2) ¹ / ₂	3) -3	4) 0	
33.	The function f : R/{0}	\rightarrow R given by f(x) = $\frac{1}{x}$	$-\frac{2}{e^{2x}-1}$ can be made co	ontinuous at x = 0 b	y defining f(0) as <i>(Continuity)</i>
34.	1)2 Let f(a) = g(a) = k a	2) -1 nd their nth derivativ	3)0 es fʰ(a), gʰ(a) exist and	4) 1 are not equal for	some n. Further if
	$\lim_{x\to a} \frac{f(a)g(x) - f(a) - g(a)f}{g(x) - f(x)}$	$\frac{(x)+g(a)}{a}$ =4, then the	value of k is equal to		(Differentiations)
	1) 4	2) 2	3) 1	4) 0	
35.	Let y be implicit functi	on of x defined by x^{2x}	- 2.x [×] cot y - 1 = 0. Then	y′ (1) equals	(Differentiations)
36.	1) -1 Approximate value of 1) 3.972	2) 1 √ <u>63</u> is 2) 1.028	3) log2 3) 3.979	4) - log2 4) 7.982	(Error's)
37.	The equation of the ta	ingent to the curve y =	$x + \frac{4}{x^2}$, that is parallel	to the x - axis is	(Tangents and normal)
38.	1) y = 0 If the rate of change i when the radius is 15 1) 2π sq.cm/sec	2) y = 1 n the radius of a circle cm is 2) 3π sq.cm/sec	3) y = 2 e is 0.2cm/sec, then the 316π sq.cm/sec	4) y = 3 rate of change in t 4) 8π sq.cm/sec	he area of the circle <i>(Rate of Change)</i>
39.	The constant <i>c</i> of F	Rolle's theorem for	the function $f(x) = \log \left(\frac{1}{2} \right)$	$g \frac{x^2 + ab}{(a+b)x}$ in [a, b]	where 0 Ï [a, b] is
				(1	Mean Values Theorem)
	1) √ <u>ab</u>	$2) \frac{a+b}{2}$	3) $\frac{a-b}{2}$	4) $\frac{b-a}{2}$	
40.	The function f (x) = $\frac{x}{2}$	$+\frac{2}{x}$ has a local minim	ium at		(Maxima and Minima)
41	1) x = -2 The value of $\sum_{n=1}^{10} \sin \frac{2}{n}$	$(\frac{\pi}{2}) = 0$	3) x = 1	4) x = 2	Complex Numbers)
	1) 1	1 11 / 2	3) - i	4) i	
42.	If z - 4 < z - 2 , its so	lution is given by 2) Re $z \le 0$	3) Re z > 3	4) Re z > 2	(Complex Numbers)
43.	If x satisfies the equation 1° cos n θ	tion x^2 - 2x cos θ +1 =0 2) 2 ⁿ cos θ), then the value of $x^n + 1$ 3) 2 cos n θ	$1/x^n$ is (4) 2 cos $^n\theta$	De-Moiver's Theorem)
44.	If the difference betwee values of a is	een the roots of the e	quation $x^2 + ax + 1 = 0$ is	s less than $\sqrt{5}$, the	n the set of possible <i>Quadratic Expression</i>)
45.	1) (-3, 3) If the sum of the roots	2) (-3, ∞) s of the quadratic equa	3) (3, ∞) ation ax ² + bx + c = 0 is e	4) (- ∞ , -3) equal to the sum of	the squares of their
	reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$	and $\frac{c}{b}$ are in		(G	uadratic Expression)
46	1) A.P If α B γ are the roots	2) G.P of x^3 + 3x + 2 = 0 the	3) H.P n the equation whose ro	4) A.G.P ots α (β + γ) β (γ + α)	$\gamma(\alpha + \beta)$ is
47.	1) $x^3 - 6x^2 + 9x + 4 = 0$ If the letters of the wo dictionary, then the wo 1) 602	 2) x³ - 3x² + 9x + 4 rd "SACHIN" are arra ord SACHIN appears a 2) 603 	= 0 3) x^3 + 6 x^2 - 9x + 4 inged in all possible way at serial number 3) 600	= 0 4) $x^3 - 6x^2 - 9x^2$ (rs and these words (Permu 4) 601	(Theory of Equations) (-4=0 are written out as in Intation & Combination)

	6			
48.	The value of ${}^{50}C_4 + \sum_{r=1}^{0} {}^{50}C_4$	^{5-r} C ₃ is		(Permutation & Combination)
49.	1) ${}^{55}C_4$ The number of permuta	2) ${}^{55}C_3$	3) ${}^{56}C_3$ using all the letters of the	4) ⁵⁶ C ₄ e word BANANA is
	4) 00	0) 400	0) 000	(Permutation & Combination)
50.	1) 60 If ⁿ C ₂₀ = ⁿ C ₅₀ then n =	2) 120	3) 360	4) 720 (Permutation & Combination)
	1) 20	2) 30	3) 50	4) 70
51.	In the binomial expansio	n of (a - b) ⁿ , n <u>></u> 5, the su	m of 5^{th} and 6^{th} terms is ze	ero, then $\frac{a}{b}$ equals
				(Binomial Theorem)
	1)	2) 6 n-5	3) <u>n - 5</u>	4) <u>n-4</u>
52.	The coefficient of x^5 in (1) 21	1 + 2x + 3x ² +) ^{-3/2} is 2) 25	3) 26	<i>(Binomial Theorem)</i> 4) None of these
53.	If $\frac{2x-5}{(x-3)^2} = \frac{a}{x-3} + \frac{b}{(x-3)^2}$ t	hen a + b =		(Partial Fraction)
54.	1) 1 Standard deviation of fir	2) 2 st 'n' natural numbers is	3) 3	4) 4 (Measure of Dispersion)
	1) $\sqrt{\frac{n-1}{nm}}$	2) $\sqrt{\frac{n^2+1}{12}}$	3) $\sqrt{\frac{n^2-1}{12}}$	4) None
55.	It is given that the event	s A and B are such that	$P(A) = \frac{1}{4}$, $P(A/B) = \frac{1}{2}$	and P(B / A) = $\frac{2}{3}$. Then P(B) is
				(Probability)
	1) $\frac{1}{2}$	2) $\frac{1}{6}$	3) $\frac{1}{3}$	4) $\frac{2}{3}$
56.	Five horses are in a rac Mr. A selected the winnin	e. Mr. A selects two of th ng horse, is	he horses at random and	bets on them . The probability that (Probability)
	1) $\frac{4}{-}$	2) $\frac{3}{-}$	3)4	4) 2/-
57	⁷ 5	-75	5 Topto A B C and their rec	5
57.			Jenis A, D, C and their res	spective probabilities of solving the
	problem are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$. Probability that the pro	blem is solved, is	(Probability)
58.	A random variable X has	s Poisson distribution wit	(3) 2/3 th mean 2. Then P(X > 1.3)	4) 1/3 5) equals. <i>(Random Variables)</i>
	1) $\frac{3}{2}$	2) 1 - $\frac{3}{2}$	3) 0	4) $\frac{2}{2}$
50	^{''} e ²	e^2	e correctly in a true or fal	' e ²
59.	The probability of answe	anng o out of TO question	is correctly in a true or rais	
	1) ${}^{10}C_4 \left(\frac{1}{2}\right)^4$	2) ${}^{10}C_6\left(\frac{1}{2}\right)^6$	3) ${}^{10}C_{6}\left(\frac{1}{2}\right)^{10}$	4) ${}^{10}C_6\left(\frac{1}{2}\right)^{\circ}$
60.	The lines $2x - 3y = 5$ and	3x - 4y = 7 are diameter	s of a circle having area a	as 154 sq. units. Then, the equation
	of the circle is 1) $x^2 + y^2 + 2x - 2y = 62$		2) $x^2 + y^2 + 2x - 2y = 47$	(Circles)
	3) $x^2 + y^2 - 2x + 2y = 47$		$4)x^2 + y^2 - 2x + 2y = 62$	
61.	A variable circles passes	through the fixed point.	Δ (n a) and touches x - ay	
	diameter through A is	s through the fixed point?	(p, q) and todolics x - a/	is. The locus of the other end of the <i>(Circles)</i>
62.	diameter through A is 1) $(x - p)^2 = 4qy$ The two circles $x^2 + y^2 =$	2) $(x - q)^2 = 4py$ ax and $x^2 + y^2 = c^2 (c > c^2)$	3) (y - p) ² = 4qx 0) touch each other if	tis. The locus of the other end of the (Circles) 4) $(y - q)^2 = 4px$ (Circles)
62.	diameter through A is 1) $(x - p)^2 = 4qy$ The two circles $x^2 + y^2 =$ 1) 2 $ a = c$	2) $(x - q)^2 = 4py$ ax and $x^2 + y^2 = c^2 (c > 2) a = c$	3) $(y - p)^2 = 4qx$ 0) touch each other if 3) $a = 2c$	tis. The locus of the other end of the (Circles) 4) $(y - q)^2 = 4px$ (Circles) 4) $ a = 2c$
62. 63.	diameter through A is 1) $(x - p)^2 = 4qy$ The two circles $x^2 + y^2 =$ 1) 2 $ a = c$ The intercept on the line	2) $(x - q)^2 = 4py$ ax and $x^2 + y^2 = c^2 (c > 2) a = c$ by $y = x$ by the circle $x^2 + y^2$	3) $(y - p)^2 = 4qx$ 0) touch each other if 3) a = 2c $x^2 - 2x = 0$ is AB. Equation	tis. The locus of the other end of the (Circles) 4) (y - q) ² = 4px (Circles) 4) a = 2c of the circle on AB as a diameter is (System of Circles)
62. 63. 64.	diameter through A is 1) $(x - p)^2 = 4qy$ The two circles $x^2 + y^2 =$ 1) 2 $ a = c$ The intercept on the line 1) $x^2 + y^2 - x - y = 0$ The intercept on the line diameter is	2) $(x - q)^2 = 4py$ ax and $x^2 + y^2 = c^2$ (c > 2) $ a = c$ by $x^2 + y^2 - x + y = 0$ ine $y = x$ by the circle	3) $(y - p)^2 = 4qx$ 0) touch each other if 3) $a = 2c$ $x^2 - 2x = 0$ is AB. Equation 3) $x^2 + y^2 + x + y = 0$ $x^2 + y^2 - 2x = 0$ is AB. E	tis. The locus of the other end of the (Circles) 4) $(y - q)^2 = 4px$ (Circles) 4) $ a = 2c$ of the circle on AB as a diameter is (System of Circles) 4) $x^2 + y^2 + x - y = 0$ Equation of the circle on AB as a (System of Circles)
62. 63. 64.	diameter through A is 1) $(x - p)^2 = 4qy$ The two circles $x^2 + y^2 =$ 1) 2 $ a = c$ The intercept on the line 1) $x^2 + y^2 - x - y = 0$ The intercept on the line diameter is 1) $x^2 + y^2 - x - y = 0$	2) $(x - q)^2 = 4py$ ax and $x^2 + y^2 = c^2$ (c > 2) $ a = c$ by $x^2 + y^2 - x + y = 0$ ine $y = x$ by the circle 2) $x^2 + y^2 - x + y = 0$ ine $y = x$ by the circle	3) $(y - p)^2 = 4qx$ 0) touch each other if 3) $a = 2c$ $x^2 - 2x = 0$ is AB. Equation 3) $x^2 + y^2 + x + y = 0$ $x^2 + y^2 - 2x = 0$ is AB. E 3) $x^2 + y^2 + x + y = 0$	tis. The locus of the other end of the (Circles) 4) $(y - q)^2 = 4px$ (Circles) 4) $ a = 2c$ of the circle on AB as a diameter is (System of Circles) 4) $x^2 + y^2 + x - y = 0$ Equation of the circle on AB as a (System of Circles) 4) $x^2 + y^2 - x + y = 0$ the circle on the circle on the circles)
62. 63. 64. 65.	diameter through A is 1) $(x - p)^2 = 4qy$ The two circles $x^2 + y^2 =$ 1) 2 $ a = c$ The intercept on the line 1) $x^2 + y^2 - x - y = 0$ The intercept on the line diameter is 1) $x^2 + y^2 - x - y = 0$ The equation of a tangent tangent to the parabola 1) $(1 - 1)$	2) $(x - q)^2 = 4py$ ax and $x^2 + y^2 = c^2$ (c > 2) $ a = c$ by $x^2 + y^2 - x + y = 0$ ine $y = x$ by the circle 2) $x^2 + y^2 - x + y = 0$ ine $y = x$ by the circle 2) $x^2 + y^2 + x - y = 0$ ent to the parabola $y^2 = 1$ is perpendicular to the g	3) $(y - p)^2 = 4qx$ 0) touch each other if 3) $a = 2c$ $x^2 - 2x = 0$ is AB. Equation 3) $x^2 + y^2 + x + y = 0$ $x^2 + y^2 - 2x = 0$ is AB. E 3) $x^2 + y^2 + x + y = 0$ 8) $x^2 + y^2 + x + y = 0$ 8x is $y = x + 2$. the point given tangent is 2) $(2 - 4)$	tis. The locus of the other end of the (Circles) 4) $(y - q)^2 = 4px$ (Circles) 4) $ a = 2c$ of the circle on AB as a diameter is (System of Circles) 4) $x^2 + y^2 + x - y = 0$ Equation of the circle on AB as a (System of Circles) 4) $x^2 + y^2 - x + y = 0$ to n this line from which the other (Parabola) (A) $(2, 0)$

66.	The length of the norr 1) 1	mal chord at (at², 2at) i 2)2	is least then t² = 3) 3	4) 4	(Parabola)
67.	The equation $\frac{x^2}{10-2} + \frac{y}{4}$	$\frac{2}{2}$ =1 represents an ellip	ose if		(Ellipse)
	1) a < 4	2) a > 4	3) 4 < a < 10	4) a > 10	
68.	The foci of the ellipse	$\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyp	erbola $\frac{x^2}{144} + \frac{y^2}{81} = \frac{1}{25}$ coi	incide then the	value of b ² is
	1) 1	2) 5	3) 7	4) 9	(Empse)
69.	For the hyperbola $\frac{x^2}{\cos^2}$	$\frac{y^2}{\sin^2 \alpha} = 1$ which of th	e following remains cons	stant when α var	ries? (Hyperbola)
	1) Eccentricity	2) Directrix	3) Abscissae of vertices	4) Abscissace	of foci
70.	If $\int \frac{3^{2x}}{2^{3x}} dx = \frac{1}{K} \left(\frac{3^{2x}}{2^{3x}} \right) + c$ the	nen K =			(Integeration)
	1) 2 ln 3 - 3 ln 2	2) 3 ℓn 2 - 2 ℓn 3	3) <i>l</i> n 9 + <i>l</i> n 8	4) ℓn √72	
71.	If $\int f(x) \cdot \cos x \cdot dx = \frac{1}{2} f(x)$	$^{2}(x)$ +c, then f(x) can be			(Integeration)
	1) x	2) sin x	3) cos x	4) x sin x	
72.	$\int \frac{dx}{\cos x - \sin x}$ is equal	to			(Integeration)
	1) $\frac{1}{\sqrt{2}} \log \left \tan \left(\frac{x}{2} - \frac{\pi}{8} \right) \right $) + c	2) $\frac{1}{\sqrt{2}} \log \left \operatorname{cot} \left(\frac{x}{2} \right) \right $	+ c	
	3) $I_{\sqrt{2}}^1 \log \left \tan\left(\frac{x}{2} - \frac{3\pi}{8}\right) \right $	·) + c	4) $\frac{1}{\sqrt{2}} \log \left[\tan \left(\frac{x}{2} + \frac{3\pi}{8} \right) \right]$) + c	
73.	$\int_{0}^{\infty} \frac{\mathrm{d}x}{\left(x + \sqrt{x^2 + 1}\right)^3} =$		NTOR:		(Definite Integration)
	1) 3/8	2) 1/8	3) -3/8	4) -1/8	
74.	If $I_1 = \int_0^1 2^{x^2} dx$, $I_2 = \int_0^1 2^{x^2}$	$^{3} dx, I_{3} = \int_{1}^{2} 2^{x^{2}} dx$ and I	$_{4} = \int_{1}^{2} 2^{x^{3}} dx$ then		(Definite Integration)
	1) $I_3 > I_4$	2) $I_3 = I_4$	3) I ₁ > I ₂	4) I ₂ > I ₁	
75.	$I_n = \int_0^{11/4} \tan^n x dx$, then I_n	$\lim_{n \to \infty} n[I_n + I_{n+2}]$ equals			(Definite Integration)
	1) 1/2	2) 1	3)∞	4) 0	
76.	Area bounded by $\frac{ \mathbf{x} }{a} + \frac{ \mathbf{y} }{b} = 1$ where a, b > 0 is (Areas)				(Areas)
	1) <u>1</u> 2ab	2) ab	3) 2ab	4) 4ab	
77.	The area bounded by t	he curves y = cos x and	y = sin x between the or	dinates x = 0 an	d x = $\frac{3\pi}{2}$ is
	1) (4 $\sqrt{2}$ - 2) square ur	nits	2) (4 $\sqrt{2}$ + 2) square u	nits	(Areas)
	3) (4 $\sqrt{2}$ - 1) square ur	nits	4) (4 $\sqrt{2}$ + 1) square units		
78.	The differential equation for the family of curves $x^2 + y^2 - 2ay = 0$, where a is an arbitrary constant is (Differential Equations)				constant is Differential Equations)
79.	1) $2(x^2 - y^2) y' = xy$ The solution of the diffe	2) $2(x^2 + y^2) y' = xy$ erential equation ydx + (2)	3) $(x^2 - y^2) y' = 2xy$ x + x ² y) dy = 0 is	4) $(x^2 + y^2) y'$	= 2xy Differential Equations)
	1) $\frac{-1}{xy} = c$	$2) \frac{-1}{xy} + \log y = c$	3) $\frac{1}{xy}$ + log y = c	4) log y = cx	
80.	The solution of $\frac{dy}{dt}$ +2y c	cot x = 3x² cosec² x is		(Differential Equations)
	1) y sin x = $x^3 + c$	2) y sin² x = x² + c	3) y sin² x = x³ + c	4) y sin ³ x = x^3	+ C