MODEL PAPER - 2

MATHEMATICS

1.	If f : $R \rightarrow R$ satisfies f(x	+y) = f(x) + f(y) for all x, y Î l	R and f(1) = 7, then $\sum_{r=1}^{n} f(r)$) is (Functions)	
	1)	2) $\frac{7(n+1)}{2}$	3) n(n+1)	4) $\frac{7n(n+1)}{2}$	
2.	The domain of the func	tion f(x) = $\frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$ is		(Functions)	
	1) [2, 3]	2) [2, 3)	3) [1, 2]	4) [1, 2)	
3.	The sum of the first n te	erms of the series $1^2 + 2.2^2$ -	+ 3 ² + 2.4 ² + 5 ² + 2.6 ² +	is $\frac{n(n+1)^2}{2}$ when n is even.	
	When n is odd the sum <i>duction)</i>	ı is		2 (Mathematical In-	
	1) $\frac{3n(n+1)}{2}$	$2)\left[\frac{n(n+1)}{2}\right]^2$	3) $\frac{n(n+1)^2}{4}$	4) $\frac{n^2(n+1)}{2}$	
4.	$\operatorname{Let} A = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix} \text{ If } A $	² = 25, then a equals		(Matrices)	
	1) 5 ²	2) 1	4) 5		
5.	If w (1 1) is a cubic root of	unity, then $\begin{vmatrix} 1 & 1+i+\omega^2 & \alpha \\ 1-i & -1 & \omega^2 \\ -i & -1+\omegai & \alpha \end{vmatrix}$	p ² equals	(Matrices)	
			*		
6.	1) 0 The number of values of solution, is	2) 1 f k, for which the system of a	4) w equations (k + 1)x + 8y =	4k, kx + (k + 3)y = 3k - 1 has no <i>(Matrices)</i>	
	1) 1	2) 2	3) 3	4) Infinite	
7.	Let $\overline{a}, \overline{b}$ and \overline{c} be three no	on-zero vectors such that no	two of these are collinear	r. If the vector $\overline{a}_{+}2\overline{b}$ is collinear	
	with \overline{c} and $\overline{b} + 3\overline{c}$ is co	llinear with \overline{a} (I being some	non-zero scalar) then \overline{a} .	$+2\overline{b} + 6\overline{c} =$ (Addition of Vectors)	
	1) _λ ā	2) 0	3) _{\lambda \bar c}}	4) $\lambda \overline{b}$	
8.	Consider the points A, respectively. Then ABC 1) Square	B, C and D with position ve D is a 2) Rhombus	ctors 7i - 4j + 7k, i - 6j + 3) Rectangle	10k, -i - 3j + 4k and 5i - j + 5k (Addition of Vectors) 4) None of these	
9.	The distance between t	he line $\bar{r} = 2i - 2j + 3k + l(i - 1)$	j + 4k) and the plane \overline{r} .	(i + 5j + k) = 5 is	
	10	3	10 10	(Dot and cross product)	
	1) $\frac{10}{3}$	2) $\frac{3}{10}$ 3	$\frac{10}{3\sqrt{3}}$ 4) $\frac{10}{9}$		
10.	lf, in a right angled triar	igle ABC, the hypotenuse A	$B = p, then \overline{AB} \cdot \overline{AC} + \overline{BC}$	$\cdot \overline{BA} + \overline{CA} \cdot \overline{CB} =$	
11.	1) $2p^2$ Let $\overline{u} = i + j$, $\overline{v} = i - j$ and to	2) p ² /2 \overline{w} =i + 2j + 3k. If \overline{n} is a unit	3) p^2 vector such that $\overline{u}.\overline{n} = 0$	4) $4p^2$ and $\overline{v}_{.\overline{n}} = 0$, then $ \overline{w}_{.\overline{n}} $ is equal (<i>Triple product</i>)	
	1) 0	2) 1 3) 2 4) 3		
12.	If $\frac{\sin x + \cos x}{\cos^3 x} = a \tan^3 x + \frac{1}{3}$	b tan² x + c tanx + d, then	a + b + c + d =	(Trignomentric Function)	
13.	1) 4 If tan A = 18/17, tan B =	2) -4 3 : 1/35 then A - B =) 1 4) -1	(Compound Angles)	
	1) 0	2) π/4	3) π/3	4) π/2	
	WWW.AIMSTUTORIAL.IN				

WWW.AIMSTUTORIAL.IN

14.	A quadratic equation w	hose roots are tan $22\frac{1}{2}^{\circ}$ a	and cot $22\frac{1}{2}^{\circ}$ is	(Multi	iple and submultiple)
15.	1) $x^2 - 2\sqrt{2}x + 1 = 0$ The value of sinx + sin	2) $2x^2 - \sqrt{2} + 1 = 0$ by = a and cosx + cosy = b	3) $x^2 + 2\sqrt{2}x - 1 = 0$ b, then cos (x - y) =	4) x² - ₂√₂ x ·	- 1 = 0 (Transformation)
	1) $\frac{a^2+b^2+2}{2}$	2) $\frac{a^2-b^2+2}{2}$	3) $\frac{a^2+b^2-2}{2}$	4) $\frac{b^2 - a}{2}$	² + 2
16. 17	Range of $\log_{1/5} [\sqrt{2} (cc)]$ 1) [-1, 0]	- s x + sin x) + 3] is 2) [-2, -1]	3) [0, 1]	- (Periodici 4) [0, ∞) (Tric	ty & Extreme values)
	1) $n\pi + \frac{\pi}{6}$	2) $n\pi \pm \frac{\pi}{6}$	3) $2n\pi \pm \frac{\pi}{6}$	4) $n\pi \pm \frac{\pi}{3}$	
18.	$\operatorname{Cot}^{\operatorname{\scriptscriptstyle -1}}\left(\sqrt{\coslpha} ight)$ - Tan-1 $\left($	$\sqrt{\cos \alpha}$) = x, then sin x eq	ual to		(Inverse Triangle)
	1) $\tan^2 \frac{\alpha}{2}$	2) $\cot^2 \frac{\alpha}{2}$	3) tanα	4) cot $\frac{\alpha}{2}$	
19.	$\tanh^{-1}\left(\frac{1}{3}\right) + \coth^{-1}(3) =$			(H	yperbolic Functions)
	1) log 2	2) log 3	3) log $\sqrt{3}$	4) log √2	
20.	In a triangle ABC, 2ca	$a \sin\left(\frac{A-B+C}{2}\right)$ is equal to	to	(P	roperties of triangle)
	1) a² + b² - c²	2) $c^2 + a^2 - b^2$	3) b ² + c ² - a ²	4) c² - a²	² - b ²
21.	$\frac{r_1(r_2 + r_3)}{\sqrt{r_1r_2 + r_2r_3 + r_3r_1}} =$			(F	Properties of triangle)
~~	1) a	2) b	3) c	4) a²	
22.	The locus represented 1) $x^2 + y^2 = 2^2$	by $x = \frac{1}{2}a(t + \frac{1}{t})$, $y = \frac{1}{2}a(t + \frac{1}{t})$ 2) $x^2 + y^2 = 2^2$	$-\frac{1}{t}$ is $y^2 - 2^2$	(1) $x^2 - 2y^2 - 2$	(Locus)
00		z = x - y - a		4) X - 2y - a	
23. 24.	1) $2X - 3Y - 4 = 0$ Perpendicular bisector	2) 2X + 3Y - 4 = 0 of the line segment joining	3) 3X - 2Y + 4 = (3) 7X - 2Y + 4 = (19 P(1, 4) and Q(k, 3)	= 0 becomes (7)	ransformation of axis) 2Y + 4 = 0 it -4, then a possible
	value of k is 1) -4	2) 1	3) 2	4) -2	(Straight Lines)
25.	The line segment joinir k is	ng the points $(1,2)$ and $(k,$	1) is divided by the lir	3x + 4y - 7 = 0	in the ratio 4 : 9 then (Straight Lines)
26.	If one of the lines giver	2) -2 n by 6x² - xy + 4cy² = 0 is 3 2) -1	3) 3 3x + 4y = 0 then c equ 3) 3	4)-3 Jals (4)-3	Pair of straight line)
27.	The quadrilateral form	ed by the pair of lines x^2 -	$5x + 6 = 0, 9x^2 + 24xy$	/ + 16y ² + 3x + 4 (P	y - 6 = 0 is air of straight line)
28.	1) parallelogram The centroid of the tetra ratio	2) rhombus ahedron ABCD divides the	3) rectangle line joining the vertex <i>i</i>	4) squar A to the centroid o <i>(Three dim</i>)	e of triangle BCD in the entional theorem)
29.	1) 1 : 2 The projections of a line 1) 50	2) 2 : 1 e of length 'd' on the co-or 2) 5/ $\sqrt{2}$	3) 1 : 3 dinate planes are 3, 4 3) 5	4) 3 : 1 , 5 then d = (4) $5\sqrt{2}$, Directions Consines)
30.	A plane which passes t	through the point (3,2,0) a	and the line $\frac{x-4}{1} = \frac{y-3}{5}$	$\frac{7}{2} = \frac{z-4}{4}$ is	(Plane)
	1) x - y + z = 1	2) x + y + z = 5	3) x - 2y - z = 1	4) 2x - y + z = 5	5
31.	$\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 2} \right)^x \text{ is equ}$	al to			(Limits)
	1) e ⁴	2) e ²	3) e ³	4) e	
32.	$\lim_{x\to\infty} \left(\frac{3x-4}{3x+2}\right)^{\frac{x+1}{3}} =$				(Limits)
	1) e ^{-2/3}	2) e ^{3/2}	3) e ^{2/3}	4) e	

WWW.AIMSTUTORIAL.IN

33.	The function $f(x) = \begin{cases} 0, x \\ 1, x \end{cases}$	x is rational x is irrationalis			(Continuity)
	1) Continuous only at x 3) Discontinuous at 0, 7	= 1 1	 Discontinuous only Discontinuous eve 	/ at 0 ry where	
		.2 .			
34.	If y = $(x + \sqrt{1 + x^2})^n$, then	$(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx}$ is			(Differentiations)
	1) n²y	2) -n²y	3) -у	4) 2x²y	
35.	Let $f(x) = \begin{cases} x^2, & \text{if } x \le a \\ ax + b, & \text{if } x \le a \end{cases}$	$\frac{1}{2}$. If f is differentiable at	t x = 1 then		(Differentiations)
36.	1) $a = 1$, $b = -1$ If $y = x^n$ then the ratio o	2) a = 2, b = -1 f the relative errors in y a	3) a = 2, b = 1 and x are	4) a = 1,	, b = 1 <i>(Error's)</i>
37.	1) 1:1 If the line ax + by + c =	2) 2:1 0 is a normal to xy = 1 th	3) n:1 nen	4) 1:n ((Tangents and normal)
38.	1) $a > 0$, $b < 0$ The rate of change of a	2) $a > 0$, $b > 0$ rea of a square plate is eq	3) $a > b = 0$	4) change of its p	a < 0, b < 0 perimeter. Then length
	of the side is		1		(Rate of change)
30	1) 2 units	2) 3 units	3) 4 units $f(x) = \sin x$ in	4) 6 units	(Moan valuos thoorom)
55.	1) $\pi/6$	2) π/3	3) $\pi/4$	4) $\pi/2$	wean values theorem)
40.	A point on the parabola	$y^2 = 18x$ at which the or	dinare increases at twic	e the rate of th	ne abscissa, is
			(0 , 0)	(Ma (0, 0)	aximum and winimum)
	1) (2,4)	2) (2,-4)	$3)\left(-\frac{9}{8},\frac{9}{2}\right)$	4) $\left(\frac{3}{8},\frac{3}{2}\right)$	
	1		Ś		
41.	If $z = x - iy$ and $z^{-3} = p - b$	+ iq, then $\left(\frac{x}{p} + \frac{y}{q}\right) / (p^2 + \frac{y}{q})$	+ q²) =		(Complex Number)
	1) 1	2) -1	3) 2	4) -2	
42.	If $z = i(i + \sqrt{2})$, then the	e value of $z^4 + 4z^3 + 6z^2 + 6z^2$	+ 4215		(Complex Number)
	1) -9	2) - 5	3)3	4) 6	
43.	If $(\sqrt{3} + i)^{100} = 2^{99} (a + ik)^{100}$	b) then b =			(De-Moiver's Theorem)
<u>1</u> 1	1) 1 The value of a for which	2) $\sqrt{3}$	3) $\sqrt{2}$	4) 2 ation x² - (a - 2	(2) x - a - 1 = 0 assume
	the least value is				(Quadratic Expression)
45	1) 2 If α and β are the roots	2) 3	3) 0 1 = 0 then $\alpha^{2009} + \beta^{2009}$ is	4) 1 s equal to	(Quadratic Expression)
40.	1) -2	2) -1	3) 1	4) 2	(Quadratic Expression)
46.	The non - repeated roo	t of $x^3 + 4x^2 + 5x + 2 = 0$	is		(Theory of Equation)
	1) $-\frac{5}{3}$	2) -2	3) -1	4) 1	
47.	The range of the function	on f (x) = $7 - x P_{x-3}$ is		(Perr	mutation & Combination)
48.	1) {1,2,3} The least positive integr	2) {1,2,3,4,5,6} ral value of x which satisf	3) {1,2,3,4} ies the inequality ¹⁰ C _ >	4) {1,2,3,4,5 2. ¹⁰ C is <i>(Peri</i>	} mutation & Combination)
40	1) 6	2) 5	3) 8	4) 9 [×]	,
49.	together is	1 which 8 boys and 5 gli	ris can sit around a rou	ind table so tr <i>(Pern</i>	nat no two girls come nutation & Combination)
50.	1) 8! ⁹ P ₅ If ⁿ P = 720, ⁿ C = 120, t	2) 7! ⁸ P hen (n.r) is	3) 8! ⁸ P ₅	4) 7! ⁹ P ₅ (<i>Pern</i>	nutation & Combination)
сс. Г4	1) (7,4)	2) (6,2)	3) (8,4)	4) (10,3)	······································
51.	1) - ${}^{20}C_{10}$	2) $\frac{1}{2} {}^{20}C_{10}$	+ ²⁵ C ₁₀ IS 3) 0	4) ²⁰ C ₁₀	(Binomiai Theorem)
52	The remainder left out y	2^{10}	lod by Q is	. 10	(Binomia)
52.	Theorem)	when $o^{-1} - (o_2)^{-11}$ is divid	100 09 9 18		(Binomial
	1) 2	2) 7	3) 8	4) 0	
50	1 <u>k</u>	X			
53.	$(x+1)(x^2+x+1) - x+1$	$x^{2} + x + 1$ then k =			(Partial Fraction)
	1) 0	2) 1	3) -1	4) -2	

54.	The measure of dispers 1) Standard deviation	sion which is used to find 2) Mean deviation	d more consistent data is 3) Quartile deviation	<i>(Measure of Dispersion)</i> 4) Range
55.	A pair of fair dice is thro	wn independently three	times. The probability of	getting a score of exactly 9 twice is (Probability)
	1) 1/729	2) 8/9	3) 8/729	4) 8/243
56.	Events A,B,C are mutua	ally exclusive events su	ch that P (A) = $\frac{3x+1}{3}$, P (B	B) = $\frac{1-x}{4}$ and P (C) = $\frac{1-2x}{2}$. The set
	of possible values of x a	are in the interval.		(Probability)
	1) $\left[\frac{1}{3},\frac{1}{2}\right]$	$2)\left\lfloor\frac{1}{3},\frac{2}{3}\right\rfloor$	$3)\left\lfloor\frac{1}{3},\frac{13}{3}\right\rfloor$	4) [0,1]
57.	A and B play a game w of them win a prize. The	here each is asked to s e probability that they w	elect a number from 1 to ill not win a prize in a sing	25. If the two numbers match, both gle trial is <i>(Probability)</i>
	1) $\frac{1}{25}$	2) $\frac{24}{25}$	3) $\frac{2}{25}$	4) None of these
58.	The mean and variance $P(X = 1)$ is	e of a random variable X	(having a binomial distrib	oution are 4 and 2 respectively, then (<i>Random Variable</i>)
	1) $\frac{1}{32}$	2) $\frac{1}{16}$	3) ¹ / ₈	4) $\frac{1}{4}$
59.	A random variable X has k =	s the range {1, 2, 3, 4}. If	P (X = 1) = 1/k, P (X = 2) =	2/k, P (X=3) = 3/k, P(X=4)=4/k then (Random Variable)
60.	1) 1 The circle described c	2) 10 on the line ioining the r	3) 1/10 points(0, 1) (a, b) as d	4) 1/5 iameter cuts the x - axis in points
	whose abscissae are r 1) $x^2 + ax + b = 0$	oots of the equation $2) x^2 + 2x = b = 0$	(0, 1)(1, 2) = 0	(Circles)
61.	A circles touches the x	- axis and also touches	the circle with centre at	(0,3) and radius 2. The locus of the
	centre of the circle is 1) a parabola	2) a hyperbola	3) a circle Ϛ	4) an ellipse
62.	The equation of the circ	cum circle of the triangle	e formed by the lines y +	$\sqrt{3x} = 6$, y - $\sqrt{3x} = 6$ and y = 0 is (<i>Circles</i>)
60	1) $x^2 + y^2 - 4y = 0$	2) $x^2 + y^2 + 4x = 0$	3) $x^2 + y^2 + 4y - 12 = 0$	4) $x^2 + y^2 - 4y - 12 = 0$
03.	of the other circle. The	ΔPAB is	S are by acute angle, an	(System of Circles)
64.	1) Equilateral Two circles whose radii	2) Right angled are r and R and whose	(3) Isoscles 4) (3) (3) (3) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	Right angled and Isoscles res is 'd' cut each other orthogonally.
	Then the length of their	r common chord is		(System of Circles)
	1) $\frac{2rR}{\sqrt{r+R}}$	22) $\frac{rR}{\sqrt{r^2+R^2}}$	3) $\frac{2rR}{\sqrt{r^2 + R^2}}$	4) $\frac{2rR}{r^2 + R^2}$
65.	If $a \neq 0$ and the line 2	2bx + 3cy + 4d = 0 past	ssing through the points	s of intersection of the parabolas
	$y^2 = 4ax and x^2 = 4ay, 1) d^2 + (2b + 3c)^2 = 0$	$\begin{array}{c} \text{then} \\ 2 \end{pmatrix} d^2 + (3b + 2c)^2 = 0 \end{array}$	3) d ² + (2b - 3c) ² = 0	(Parabola) 4) $d^2 + (3b - 2c)^2 = 0$
66.	If two tangents drawn tangent is double of the tangent is double of tangent is doubl	n from the point (α, β) he other, then) to the parabola $y^2 = 4$	Ix be such that the slope of one (Parabola)
67	1) $\beta = (2/9)\alpha^2$	2) $\alpha = (2/9)\beta^2$	3) $2\alpha = 9\beta^2$	4) $\alpha^2 = 9\beta^2$
07.	length of the semi maj	or axis is		(Ellipse)
	1) $\frac{5}{3}$	2) $\frac{8}{3}$	3) $\frac{2}{3}$	4) $\frac{4}{3}$
68.	The radius of the circle	e passing through the fo	bci of the ellipse $\frac{x^2}{16} + \frac{y^2}{16}$	=1 and having its centre at (0,3) is
			10 9	(Ellipse)
	1) 4 unit	2) 3 unit	3)	4) $\frac{7}{2}$ unit
69.	The locus of a point P(lpha , eta) moving under the $lpha$	condition that the line y =	$\alpha \mathbf{x} + \beta$ is a tangent to the hyperbola
	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, is			(Hyperbola)
	1) hyperbola	2) a parabola	3) a circle	4) an ellipse
70.	$\int \frac{x^5}{\sqrt{1+x^3}} dx =$			(Integration)
	1) $\frac{2}{9}(1+x^3)^{5/2} + \frac{2}{3}(1+x^3)^{5/2}$) ^{3/2} + C	2) log $ \sqrt{x} + \sqrt{1 + x^3} + c$	
	3) $\log \sqrt{x} - \sqrt{1 + x^3} + c$		4) $\frac{2}{9}$ (1+x ³) $\frac{2}{9}$ (1+x ³)	ATMSTUTORIAL.IN

71.	$\int \frac{(x^2-2)}{(x^4+5x^2+4)\tan^{-1}\left(\frac{x^2+2}{x}\right)} dx =$			(Integration)
	2) log $ \tan^{-1} \sqrt{x+2} + c$ 2) log $ \tan^{-1} \frac{x^2+2}{x} + c$	3) $\sin^{-1}\left(\frac{x+2}{x}\right)$ + c	4) $\tan^{-1}\left(\frac{x+2}{x}\right)$ +	с
72.	$\int \frac{1}{9\sin^2 x - 16\cos^2 x} dx$			(Integration)
	1) $\frac{1}{24} \log \left \frac{3 \tan x - 4}{3 \tan x + 4} \right + c$	2) $\frac{1}{24} \log \left \frac{4 \tan x - 3}{4 \tan x + 3} \right $ +	- c	
	3) $\frac{1}{24} \log \left \frac{3 \tan x + 4}{3 \tan x - 4} \right + c$	4) $\frac{1}{24} \log \left \frac{4 \tan x + 3}{4 \tan x - 3} \right $ +	с	
73.	Let $\frac{d}{dx}f(x) = \left(\frac{e^{\sin x}}{x}\right)$, $x > 0$. If $\int_{1}^{4} \frac{3}{x}e^{\sin(x^3)}dx = F(k)$	-F(1), then one of the poss	sible values of k,	is (Definite Integration)
	1) 15 2) 16	3) 63	4) 64	
74.	Let I = $\int_{0}^{1} \frac{\sin x}{\sqrt{x}} dx$ and J = $\int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx$ then which	one of the following is tru	le?	(Definite Integration)
	1) I > $\frac{2}{3}$ and J < 2 2) I > $\frac{2}{3}$ and J > 2	3) I < $\frac{2}{3}$ and J < 2	4) I < $\frac{2}{3}$ and .	J > 2
75.	$\int_{0}^{a} x^{3} (ax - x^{2})^{3/2} dx =$			(Definite Integration)
	1) $-\frac{9\pi a^7}{2048}$ 2) $\frac{3\pi a^7}{2048}$	3) $\frac{9\pi a^7}{2048}$	4) $\frac{9\pi a^7}{2345}$	
76.	The area of the region bounded by the curves 1) 2 square units 2) 3 square units	y = x - 1 and $y = 3 - x c) 4 square units$	is 4) 6 square ur	<i>(Areas)</i> nits
77.	The area of the portion of the circular disc of ra	adius a cut off between th	e chords of the	length a and a/2 is
	1) $\frac{\sqrt{15}}{16}a^2 - \frac{\sqrt{3}}{4}a^2 - \frac{\pi}{3}a^2 + a^2 \sin^{-1}\frac{\sqrt{15}}{4}$	(2) $\frac{\sqrt{15}}{32}a^2 - \frac{\sqrt{3}}{8}a^2$		(Areas)
	3) $\frac{\pi}{6}a^2 - \frac{a^2}{2}\sin^{-1}\frac{\sqrt{15}}{4}$	4) None		
78.	The differential equation of the family of circles	s with fixed radius 5 units	and centre on t	he line y = 2 is
	1) $(y - 2)^2 (y')^2 = 25 - (y - 2)^2$ 3) $(y - 2) (y')^2 = 25 - (y - 2)^2$	2) $(y - 2)^2 (y')^2 = 25 + (y - 2)(y')^2 = 25 + (x - 2)(y')^2 = 25 + ($	y - 2)² (l - 2)²	Differential Equations)
79.	Solution of the differential equation cos x dy =	y (sin x - y) dx, - $0 < x \frac{\pi}{2}$, is	6	(Differential Equations)
	1) sec x = (tan x + c)y 2) y sec x = tan x + c	3) y tan x = sec x + c	4) tan x = (seo	c x + c) y
80.	The solution of the differential equation $\frac{dy}{dx}$ - y	tan x = e ^x sec x is	(Differential Equations)

1) $y = e^x \cos x + c$ 2) $y \cos x = e^x + c$ 3) $y = e^x \sin x + c$ 4) $y \sin x = e^x + c$