MODEL PAPER - 2

MATHEMATICS

1. If $f: R \rightarrow R$ satisfies $f(x+y)=f(x)+f(y)$ for all x, y Î R and $f(1)=7$, then $\sum_{r=1}^{n} f(r)$ is
(Functions)
1) $\frac{7 n}{2}$
2) $\frac{7(n+1)}{2}$
3) $n(n+1)$
4) $\frac{7 n(n+1)}{2}$
2. The domain of the function $f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^{2}}}$ is
(Functions)
1) $[2,3]$
2) $[2,3)$
3) $[1,2]$
4) $[1,2)$
3. The sum of the first n terms of the series $1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+$ \qquad is $\frac{n(n+1)^{2}}{2}$ when n is even. When n is odd the sum is
(Mathematical Induction)
1) $\frac{3 n(n+1)}{2}$
2) $\left[\frac{n(n+1)}{2}\right]^{2}$
3) $\frac{n(n+1)^{2}}{4}$
4) $\frac{n^{2}(n+1)}{2}$
4. Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$ If $\left|\mathrm{A}^{2}\right|=25$, then $|\mathrm{a}|$ equals
(Matrices)
1) 5^{2}
2) 1
3) $\frac{1}{5}$
4) 5
5. If $w\left(\begin{array}{ll}1 & 1\end{array}\right)$ is a cubic root of unity, then $\left|\begin{array}{ccc}1 & 1+i+\omega^{2} & \omega^{2} \\ 1-i & -1 & \omega^{2} \\ -i & -1+\omega-i & \alpha^{4}\end{array}\right|$ equals
(Matrices)
1) 0
2) 1
3) i
4) w
6. The number of values of k, for which the system of equations $(k+1) x+8 y=4 k, k x+(k+3) y=3 k-1$ has no solution, is
(Matrices)
1) 1
2) 2
3) 3
4) Infinite
7. Let \bar{a}, \bar{b} and \bar{c} be three non-zero vectors such that no two of these are collinear. If the vector $\bar{a}+2 \bar{b}$ is collinear with \bar{c} and $\bar{b}+3 \bar{c}$ is collinear with $\bar{a}(I$ being some non-zero scalar) then $\bar{a}+2 \bar{b}+6 \bar{c}=$
(Addition of Vectors)
1) $\lambda \bar{a}$
2) $\overline{0}$
3) $\lambda \overline{\mathrm{c}}$
4) $\lambda \bar{b}$
8. Consider the points A, B, C and D with position vectors $7 i-4 j+7 k, i-6 j+10 k,-i-3 j+4 k$ and $5 i-j+5 k$ respectively. Then $A B C D$ is a
(Addition of Vectors)
1) Square
2) Rhombus
3) Rectangle
4) None of these
9. The distance between the line $\bar{r}=2 i-2 j+3 k+l(i-j+4 k)$ and the plane $\bar{r} \cdot(i+5 j+k)=5$ is
(Dot and cross product)
1) $\frac{10}{3}$
2) $\frac{3}{10}$
3) $\frac{10}{3 \sqrt{3}}$
4) $\frac{10}{9}$
10. If, in a right angled triangle $A B C$, the hypotenuse $A B=p$, then $\overline{A B} \cdot \overline{\mathrm{AC}}+\overline{\mathrm{BC}} \cdot \overline{\mathrm{BA}}+\overline{\mathrm{CA}} \cdot \overline{\mathrm{CB}}=$
(Dot and cross product)
1) $2 p^{2}$
2) $p^{2} / 2$
3) p^{2}
4) $4 p^{2}$
11. Let $\bar{u}=i+j, \bar{v}=i-j$ and $\bar{w}=i+2 j+3 k$. If \bar{n} is a unit vector such that $\bar{u} \cdot \bar{n}=0$ and $\bar{v} \cdot \bar{n}=0$, then $|\bar{w} \cdot \bar{n}|$ is equal to
(Triple product)
1) 0
2) 1
3) 2
4) 3
12. If $\frac{\sin x+\cos x}{\cos ^{3} x}=a \tan ^{3} x+b \tan ^{2} x+c \tan x+d$, then $a+b+c+d=$
1) 4
2) -4
3) 1
4) -1
13. If $\tan A=18 / 17, \tan B=1 / 35$ then $A-B=$
$\begin{array}{ll}\text { 3) } \pi / 3 & \text { 4) } \pi / 2\end{array}$
WWW.AIMISTUTORIAL.IN
14. A quadratic equation whose roots are $\tan 22 \frac{1}{2}^{\circ}$ and $\cot 22 \frac{1}{2}^{\circ}$ is
(Multiple and submultiple)
1) $x^{2}-2 \sqrt{2} x+1=0$
2) $2 x^{2}-\sqrt{2}+1=0$
3) $x^{2}+2 \sqrt{2} x-1=0$
4) $x^{2}-2 \sqrt{2} x-1=0$
15. The value of $\sin x+\sin y=a$ and $\cos x+\cos y=b$, then $\cos (x-y)=$
(Transformation)
1) $\frac{a^{2}+b^{2}+2}{2}$
2) $\frac{a^{2}-b^{2}+2}{2}$
3) $\frac{a^{2}+b^{2}-2}{2}$
16. Range of $\log _{1 / 5}[\sqrt{2}(\cos x+\sin x)+3]$ is
1) $[-1,0]$
2) $[-2,-1]$
3) $[0,1]$
4) $[0, \infty)$
(Trignometric Equations)
5) $n \pi+\frac{\pi}{6}$
6) $n \pi \pm \frac{\pi}{6}$
7) $2 n \pi \pm \frac{\pi}{6}$
8) $n \pi \pm \frac{\pi}{3}$
18. $\operatorname{Cot}^{-1}(\sqrt{\cos \alpha})-\operatorname{Tan}^{-1}(\sqrt{\cos \alpha})=\mathrm{x}$, then $\sin \mathrm{x}$ equal to
(Inverse Triangle)
1) $\tan ^{2} \frac{\alpha}{2}$
2) $\cot ^{2} \frac{\alpha}{2}$
3) $\tan \alpha$
4) $\cot \frac{\alpha}{2}$
19. $\tanh ^{-1}\left(\frac{1}{3}\right)+\operatorname{coth}^{-1}(3)=$
(Hyperbolic Functions)
1) $\log 2$
2) $\log 3$
3) $\log \sqrt{3}$
4) $\log \sqrt{2}$
20. In a triangle $A B C, 2 c a \sin \left(\frac{A-B+C}{2}\right)$ is equal to
(Properties of triangle)
1) $a^{2}+b^{2}-c^{2}$
2) $c^{2}+a^{2}-b^{2}$
3) $b^{2}+c^{2}-a^{2}$
4) $c^{2}-a^{2}-b^{2}$
21. $\frac{r_{1}\left(r_{2}+r_{3}\right)}{\sqrt{r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}}}=$
(Properties of triangle)
1) a
2) b
3) c
4) a^{2}
22. The locus represented by $x=\frac{1}{2} a\left(t+\frac{1}{t}\right), y=\frac{1}{2} a\left(t-\frac{1}{t}\right)$ is
(Locus)
1) $x^{2}+y^{2}=a^{2}$
2) $x^{2}-y^{2}=a^{2}$
3) $2 x^{2}-y^{2}=a^{2}$
4) $x^{2}-2 y^{2}=a^{2}$
23. If the axes are rotated through an angle 180° the equation $2 x-3 y+4=0$ becomes (Transformation of axis)
1) $2 X-3 Y-4=0$
2) $2 X+3 Y-4=0$
3) $3 X-2 Y+4=0$
4) $3 X+2 Y+4=0$
24. Perpendicular bisector of the line segmentsoining $P(1,4)$ and $Q(k, 3)$ has y-intercept -4, then a possible value of k is
3) 2
4) -2
5) -4
6) 1
(Straight Lines)
25. The line segment joining the points $(1,2)$ and $(k, 1)$ is divided by the line $3 x+4 y-7=0$ in the ratio $4: 9$ then k is
(Straight Lines)
1) 2
2) -2 3) 3
3) -3
26. If one of the lines given by $6 x^{2}-x y+4 c y^{2}=0$ is $3 x+4 y=0$ then c equals
1) 1
2) -1
3) 3
4) -3
27. The quadrilateral formed by the pair of lines $x^{2}-5 x+6=0,9 x^{2}+24 x y+16 y^{2}+3 x+4 y-6=0$ is
(Pair of straight line)
1) parallelogram
2) rhombus
3) rectangle
4) square
28. The centroid of the tetrahedron $A B C D$ divides the line joining the vertex A to the centroid of triangle $B C D$ in the ratio
2) $2: 1$
3) $1: 3$
4) $3: 1$
29. The projections of a line of length ' d ' on the co-ordinate planes are $3,4,5$ then $d=$
(Directions Consines)
1) 50
2) $5 / \sqrt{2}$
3) 5
4) $5 \sqrt{2}$
30. A plane which passes through the point $(3,2,0)$ and the line $\frac{x-4}{1}=\frac{y-7}{5}=\frac{z-4}{4}$ is
(Plane)
1) $x-y+z=1$
2) $x+y+z=5$
3) $x-2 y-z=1$
4) $2 x-y+z=5$
31. $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+5 x+3}{x^{2}+x+2}\right)^{x}$ is equal to
(Limits)
1) e^{4}
2) e^{2}
3) e^{3}
4) e
32. $\operatorname{Lim}_{x \rightarrow \infty}\left(\frac{3 x-4}{3 x+2}\right)^{\frac{x+1}{3}}=$
(Limits)
1) $e^{-2 / 3}$
2) $e^{3 / 2}$
3) $e^{2 / 3}$
4) e
33. The function $f(x)=\left\{\begin{array}{lll}0, & x & \text { is rational } \\ 1, & x \text { is irrational is }\end{array}\right.$
(Continuity)
1) Continuous only at $x=1$
2) Discontinuous only at 0
3) Discontinuous at 0,1
4) Discontinuous every where
34. If $y=\left(x+\sqrt{1+x^{2}}\right)^{n}$, then $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}$ is
(Differentiations)
1) $n^{2} y$
2) $-n^{2} y$
3) $-y$
4) $2 x^{2} y$
35. Let $f(x)=\left\{\begin{array}{ccc}x^{2}, & \text { if } & x \leq 1 \\ a x+b, & \text { if } & x>1\end{array}\right.$. If f is differentiable at $x=1$ then
1) $a=1, b=-1$
2) $a=2, b=-1$
3) $a=2, b=1$
4) $a=1, b=1$
36. If $y=x^{n}$ then the ratio of the relative errors in y and x are
(Error's)
1) $1: 1$
2) $2: 1$
3) $n: 1$
37. If the line $a x+b y+c=0$ is a normal to $x y=1$ then
4) $1: n$
5) $a>0, b<0$
6) $a>0, b>0$
7) $a>b=0$
(Tangents and normal)
38. The rate of change of area of a square plate is equal to that of the rate of change of its perimeter. Then length of the side is
1) 2 units
2) 3 units
3) 4 units
4) 6 units
39. The constant ' c ' of Rolle's theorem for the function $f(x)=\sin x$ in $[0,2 p]$ is (Mean values theorem)
1) $\pi / 6$
2) $\pi / 3$
3) $\pi / 4$
4) $\pi / 2$
40. A point on the parabola $y^{2}=18 x$ at which the ordinare increases at twice the rate of the abscissa, is
(maximum and Minimum)
1) $(2,4)$
2) $(2,-4)$
3) $\left(-\frac{9}{8}, \frac{9}{2}\right)$
4) $\left(\frac{9}{8}, \frac{9}{2}\right)$
41. If $z=x$ - iy and $z^{\frac{1}{3}}=p+i q$, then $\left(\frac{x}{p}+\frac{y}{q}\right) /\left(p^{2}+q^{2}\right)=\quad$ (Complex Number)
1) 1
2) -1
3) 2
4) -2
42. If $z=i(i+\sqrt{2})$, then the value of $z^{4}+4 z^{3}+6 z^{2}+4 \hat{z}$ is
(Complex Number)
1) -9
2) -5
3) 3
4) 6
43. If $(\sqrt{3}+i)^{100}=2^{99}(a+i b)$ then $b=$
(De-Moiver's Theorem)
1) 1
2) $\sqrt{3}$
3) $\sqrt{2}$
4) 2
44. The value of a for which the sum of the squares of the roots of the equation $x^{2}-(a-2) x-a-1=0$ assume the least value is
(Quadratic Expression)
1) 2
2) 3
3) 0
4) 1
45. If α and β are the roots of the equation $x^{2}-x+1=0$, then $\alpha^{2009}+\beta^{2009}$ is equal to
(Quadratic Expression)
1) -2
2) -1
3) 1
4) 2
46. The non - repeated root of $x^{3}+4 x^{2}+5 x+2=0$ is
(Theory of Equation)
1) $-\frac{5}{3}$
2) -2
3) -1
4) 1
47. The range of the function $f(x)=7-x P_{x-3}$ is
1) $\{1,2,3\}$
2) $\{1,2,3,4,5,6\}$
3) $\{1,2,3,4\}$
(Permutation \& Combination)
48. The least positive integral value of x which satisfies the inequality ${ }^{10} C_{x-1}>2 .{ }^{10} \mathrm{C}_{x}$ is (Permutation \& Combination)
1) 6
2) 5
3) 8
4) 9
49. The number of ways in which 8 boys and 5 girls can sit around a round table so that no two girls come
(Permutation \& Combination)
together is
$\begin{array}{ll}3) \\ 8! & { }^{8} P_{5}\end{array}$ 4) $7!{ }^{9} P_{5}^{(P)}$
1) $8!{ }^{9} P_{5}$
2) $7!{ }^{8} P_{5}$
50. If ${ }^{n} P_{r}=\frac{5}{720},{ }^{n} C_{r}=120$, then (n, r) is
(Permutation \& Combination)
3) $(8,4)$
4) $(10,3)$
(Binomial Theorem)
51. The sum of the series ${ }^{20} \mathrm{C}_{0}-{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{2}-{ }^{20} \mathrm{C}_{3}+\ldots .+{ }^{20} \mathrm{C}_{10}$ is

$$
\text { 4) }{ }^{20} \mathrm{C}_{10}
$$

52. The remainder left out when $8^{2 n}-(62)^{2 n+1}$ is divided by 9 is

Theorem)

1) 2
2) 7
3) 8
4) 0
53. If $\frac{1}{(x+1)\left(x^{2}+x+1\right)}=\frac{k}{x+1}-\frac{x}{x^{2}+x+1}$ then $k=$
(Partial Fraction)
1) 0
2) 1
3) -1
4) -2
54. The measure of dispersion which is used to find more consistent data is
(Measure of Dispersion)
1) Standard deviation
2) Mean deviation
3) Quartile deviation
4) Range
55. A pair of fair dice is thrown independently three times. The probability of getting a score of exactly 9 twice is
(Probability)
1) $1 / 729$
2) $8 / 9$
3) $8 / 729$
4) $8 / 243$
56. Events A, B, C are mutually exclusive events such that $P(A)=\frac{3 x+1}{3}, P(B)=\frac{1-x}{4}$ and $P(C)=\frac{1-2 x}{2}$. The set of possible values of x are in the interval.
(Probability)
1) $\left[\frac{1}{3}, \frac{1}{2}\right]$
2) $\left[\frac{1}{3}, \frac{2}{3}\right]$
3) $\left[\frac{1}{3}, \frac{13}{3}\right]$
4) $[0,1]$
57. A and B play a game where each is asked to select a number from 1 to 25 . If the two numbers match, both of them win a prize. The probability that they will not win a prize in a single trial is
(Probability)
1) $\frac{1}{25}$
2) $\frac{24}{25}$
3) $\frac{2}{25}$
4) None of these
58. The mean and variance of a random variable X having a binomial distribution are 4 and 2 respectively, then $P(X=1)$ is
(Random Variable)
1) $\frac{1}{32}$
2) $\frac{1}{16}$
3) $\frac{1}{8}$
4) $\frac{1}{4}$
59. A random variable X has the range $\{1,2,3,4\}$. If $P(X=1)=1 / k, P(X=2)=2 / k, P(X=3)=3 / k, P(X=4)=4 / k$ then $\mathrm{k}=$
(Random Variable)
1) 1
2) 10
3) $1 / 10$
4) $1 / 5$
60. The circle described on the line joining the points $(0,1)(a, b)$ as diameter cuts the x-axis in points whose abscissae are roots of the equation
(Circles)
1) $x^{2}+a x+b=0$
2) $x^{2}+a x-b=0$
3) $x^{2}-a x+b=0$
4) $x^{2}-a x-b=0$
61. A circles touches the x - axis and also touches the circle with centre at $(0,3)$ and radius 2 . The locus of the centre of the circle is
(Circles)
1) a parabola
2) a hyperbola
3) a circle
4) an ellipse
62. The equation of the circum circle of the triangle formed by the lines $y+\sqrt{ } 3 x=6, y-\sqrt{ } 3 x=6$ and $y=0$ is
(Circles)
1) $x^{2}+y^{2}-4 y=0$
2) $x^{2}+y^{2}+4 x=0$
3) $x^{2}+y^{2}+4 y-12=0$
4) $x^{2}+y^{2}-4 y-12=0$
63. If A, B are the centres of two intersecting circles ate by acute angle, and each passes through the centres of the other circle. Then $\triangle P A B$ is
(System of Circles)
1) Equilateral
2) Right angled
3) Isoscles
4) Right angled and Isoscles
64. Two circles whose radii are r and R and whose distance between the centres is ' d ' cut each other orthogonally. Then the length of their common chord is
(System of Circles)
1) $\frac{2 r R}{\sqrt{r+R}}$
2) $\frac{2 r R}{\sqrt{r^{2}+R^{2}}}$
3) $\frac{2 r R}{r^{2}+R^{2}}$
4) $\frac{r R}{\sqrt{r^{2}+R^{2}}}$
65. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passing through the points of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, then
(Parabola)
1) $d^{2}+(2 b+3 c)^{2}=0$
2) $d^{2}+(3 b+2 c)^{2}=0$
3) $d^{2}+(2 b-3 c)^{2}=0$
4) $d^{2}+(3 b-2 c)^{2}=0$
66. If two tangents drawn from the point (α, β) to the parabola $y^{2}=4 x$ be such that the slope of one tangent is double of the other, then
(Parabola)
1) $\beta=(2 / 9) \alpha^{2}$
2) $\alpha=(2 / 9) \beta^{2}$
3) $2 \alpha=9 \beta^{2}$
4) $\alpha^{2}=9 \beta^{2}$
67. A focus of an ellipse is at the origin. The directrix is the line $x=4$ and the eccentricity is $\frac{1}{2}$, then the length of the semi major axis is
(Ellipse)
1) $\frac{5}{3}$
2) $\frac{8}{3}$
3) $\frac{2}{3}$
4) $\frac{4}{3}$
68. The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having its centre at $(0,3)$ is
(Ellipse)
1) 4 unit
2) 3 unit
3) $\sqrt{12}$ unit
4) $\frac{7}{2}$ unit
69. The locus of a point $P(\alpha, \beta)$ moving under the condition that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, is
(Hyperbola)
1) hyperbola
2) a parabola
3) a circle
4) an ellipse
70. $\int \frac{x^{5}}{\sqrt{1+x^{3}}} d x=$
(Integration)
1) $\frac{2}{9}\left(1+x^{3}\right)^{5 / 2}+\frac{2}{3}\left(1+x^{3}\right)^{3 / 2}+c$
2) $\log \left|\sqrt{x}+\sqrt{1+x^{3}}\right|+c$
3) $\log \left|\sqrt{x}-\sqrt{1+x^{3}}\right|+c$
4) $\frac{2}{9}\left(1+x^{3}\right)^{3 / 2} \frac{2}{\beta}\left(1+x^{3}\right)^{1 / 2} A^{+}$CISTUTORIAL.IN
71. $\int \frac{\left(x^{2}-2\right)}{\left(x^{4}+5 x^{2}+4\right) \tan ^{-1}\left(\frac{x^{2}+2}{x}\right)} d x=$
(Integration)
2) $\log \left|\tan ^{-1} \sqrt{x+2}\right|+c$
3) $\log \left|\tan ^{-1} \frac{x^{2}+2}{x}\right|+c$
4) $\sin ^{-1}\left(\frac{x+2}{x}\right)+c$
5) $\tan ^{-1}\left(\frac{x+2}{x}\right)+c$
72. $\int \frac{1}{9 \sin ^{2} x-16 \cos ^{2} x} d x$
(Integration)
1) $\frac{1}{24} \log \left|\frac{3 \tan x-4}{3 \tan x+4}\right|+c$
2) $\frac{1}{24} \log \left|\frac{4 \tan x-3}{4 \tan x+3}\right|+c$
3) $\frac{1}{24} \log \left|\frac{3 \tan x+4}{3 \tan x-4}\right|+c$
4) $\frac{1}{24} \log \left|\frac{4 \tan x+3}{4 \tan x-3}\right|+c$
73. Let $\frac{d}{d x} f(x)=\left(\frac{e^{\sin x}}{x}\right), x>0$. If $\int_{1}^{4} \frac{3}{x} e^{\sin \left(x^{3}\right)} d x=F(k)-F(1)$, then one of the possible values of k, is (Definite Integration)
1) 15
2) 16
3) 63
4) 64
74. Let $\mathrm{I}=\int_{0}^{1} \frac{\sin \mathrm{x}}{\sqrt{\mathrm{x}}} \mathrm{dx}$ and $\mathrm{J}=\int_{0}^{1} \frac{\cos \mathrm{x}}{\sqrt{\mathrm{x}}} \mathrm{dx}$ then which one of the following is true?
(Definite Integration)
1) I $>\frac{2}{3}$ and J <2
2) I $>\frac{2}{3}$ and J >2
3) I $<\frac{2}{3}$ and J <2
4) I $<\frac{2}{3}$ and J >2
75. $\int_{0}^{a} x^{3}\left(a x-x^{2}\right)^{3 / 2} d x=$
(Definite Integration)
1) $-\frac{9 \pi a^{7}}{2048}$
2) $\frac{3 \pi a^{7}}{2048}$
3) $\frac{9 \pi a^{7}}{2048}$
4) $\frac{9 \pi a^{7}}{2345}$
76. The area of the region bounded by the curves $y=\mid x$ - 1 Fand $y=3-|x|$ is
(Areas)
1) 2 square units
2) 3 square units
c) 4 square units
3) 6 square units
77. The area of the portion of the circular disc of radius of been the chords and a $\mathrm{a} / 2$ is
1) $\frac{\sqrt{15}}{16} a^{2}-\frac{\sqrt{3}}{4} a^{2}-\frac{\pi}{3} a^{2}+a^{2} \sin ^{-1} \frac{\sqrt{15}}{4}$
$\frac{\sqrt{15}}{32} a^{2}-\frac{\sqrt{3}}{8} a^{2}$
2) $\frac{\pi}{6} a^{2}-\frac{a^{2}}{2} \operatorname{Sin}^{-1} \frac{\sqrt{15}}{4}$
3) None
(Areas)
78. The differential equation of the family of circles with fixed radius 5 units and centre on the line $y=2$ is
1) $(y-2)^{2}\left(y^{\prime}\right)^{2}=25-(y-2)^{2}$
2) $(y-2)^{2}\left(y^{\prime}\right)^{2}=25+(y-2)^{2}$
(Differential Equations)
3) $(y-2)\left(y^{\prime}\right)^{2}=25-(y-2)^{2}$
4) $(y-2)\left(y^{\prime}\right)^{2}=25+(x-2)^{2}$
79. Solution of the differential equation $\cos x d y=y(\sin x-y) d x,-0<x \frac{\pi}{2}$, is
(Differential Equations)
1) $\sec x=(\tan x+c) y$
2) $y \sec x=\tan x+c$
3) $y \tan x=\sec x+c$
4) $\tan x=(\sec x+c) y$
80. The solution of the differential equation $\frac{d y}{d x}-y \tan x=e^{x} \sec x$ is
(Differential Equations)
1) $y=e^{x} \cos x+c$
2) $y \cos x=e^{x}+c$
3) $y=e^{x} \sin x+c$
4) $y \sin x=e^{x}+c$
