MODEL PAPER - 3

MATHEMATICS

1.	Domain of the function $f(x) = \frac{3}{4-x^2} + \log_{10} (x^3 - x)$ is			(Functions)
	1) (1, 2)	2) (-1, 0) \cup (1, 2)	3) (1, 2) ∪ (2, ∞)	4) (-1, 0) ∪ (1, 2) ∪ (2, ∞)
2.	If f(x) = $\frac{1}{\sqrt{x+2\sqrt{2x-4}}}$	$+\frac{1}{\sqrt{x-2\sqrt{2x-4}}}$ for x > 2, the	nen f(11) =	(Functions)
3.	1) $\frac{7}{6}$ Statement 1: The sum	2) $\frac{5}{6}$ of the series 1 + (1 + 2 +	3) $\frac{6}{7}$ 4) + (4 + 6 + 9) +	4) $\frac{5}{7}$ + (361 + 380 + 400) is 8000.
	Statement 2: $\sum_{k=1}^{n} \left[k^3 - (k) \right]$	$(-1)^3] = n^3$ for any natural network	umber n.	(Mathematical Induction)
	 Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true Statement 1 is true, statement 2 is true 			
4.	Let A = $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and	$10 \text{ B} = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}. \text{ If B is t}$	he inverse of matrix A	, then a is <i>(Matrices)</i>
	1) -2	2) 1 3) 2	4) 5
5.	Let a,b,c be such that b	$b+c \neq 0.$ If $\begin{vmatrix} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c-1 \end{vmatrix} = \begin{vmatrix} a & a \\ a & a+1 & a-1 \\ -b & b+1 & b-1 \\ (-1) & a & a-1 \end{vmatrix}$	$\begin{vmatrix} a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ y^{n+2} & (-1)^{n+1} b & (-1)^n c \end{vmatrix} =$	0, then the value of n is <i>(Matrices)</i>
	1) any even integer	2) any odd integer	any integer	4) zero
6.	If the system of linear then a,b,c satisty	equations, x + 2ay + az =	0, x + 3by + bz = 0 and	d x + 4cy + cz = 0 non - zero solution, <i>(Matrices)</i>
7.	1) 2ab = ac + bc If C is the midpoint of <i>i</i>	2) 2b = a + c AB and P is any point outs	3) b² = ac ide AB, then	4) 2ac = ab + bc (Addition of Vectors)
8.	1) $\overline{PA} + \overline{PB} = 2\overline{PC}$ The vectors $\overline{AB} = 3i + 4k$	2) $\overline{PA} + \overline{PB} = \overline{PC}$ a, and $\overline{AC} = 5i - 2j + 4k$ are the	3) $\overline{PA} + \overline{PB} + 2\overline{PC} =$ sides of a triangle ABC	\overline{P}
9.	1) $\sqrt{18}$ A particle is acted upo the point 5i + 4j + k. Tl	2) $\sqrt{72}$ on by constant forces 4i + j ne work done in standard u	3) $\sqrt{33}$ - 3k and 3i + j - k whic units by the forces is g	4) $\sqrt{288}$ h displace it from a point i + 2j + 3k to iven by (Dot and cross product)
10.	1) 40 units Let \overline{a} and \overline{b} be two un the angle between \overline{a} a	2) 30 units it vectors. If the vectors \overline{c} = and \overline{b} is	3) 25 units $\overline{a} + 2\overline{b}$ and $\overline{d} = 5\overline{a} - 4\overline{b}$	4) 15 units are perpendicular to each other, then <i>(Dot and cross product)</i>
	1) $\frac{\pi}{3}$	2) $\frac{\pi}{4}$	3) $\frac{\pi}{6}$	4) $\frac{\pi}{2}$
11.	If $\overline{a} = \frac{1}{\sqrt{10}}$ (3i + k) and	$\overline{b} = \frac{1}{7}$ (2i+3j-6k), then the v	value of $(2\overline{a} - \overline{b}).[(\overline{a} \times \overline{b})$	$x(\overline{a} + 2\overline{b})]$ is <i>(Triple product)</i>
	1) -5	2) -3	3) 5	4) 3

The expression $\frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A}$ can be written as 12. (Trignomentric Function) 1) secA cosecA + 1 2) tan A + cot A 3) sec A + cosec A 4) sin A cos A + 1 $\tan\left(\frac{\pi}{4}+\theta\right)$. $\tan\left(\frac{3\pi}{4}+\theta\right)=$ (Compound Angles) 3) 1 4) 2 14. $\tan^6 \frac{\pi}{9} - 33 \tan^4 \frac{\pi}{9} + 27 \tan^2 \frac{\pi}{9} =$ (Multiple and submultiple) 3) tan $\frac{\pi}{6}$ 2) $\tan^2\frac{\pi}{3}$ 4) $\tan^{2}\frac{\pi}{6}$ 1) tan $\frac{\pi}{3}$ If a, b are acute angles and $\cos 2a = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta}$, then 15. (Transformation) 3) tanb = $2\sqrt{2}$ tana 2) tana = $\sqrt{2}$ tanb 1) tana = 2 tanb 4) tanb = $\sqrt{2}$ tana $\frac{\sin^2 A + \sin A + 1}{\sin A} \ge k \text{ then } k =$ 16. (Periodicity & Extreme values) 1) 2 3) 3 2) 1 4)4 If tan pq = tan qq, then the values of q form a progression, which is 17. (Trignometric Equations) 2) G.P 3) H.P 4) A.G.P $2 \cot^{-1}(7) + \cos^{-1}\left(\frac{3}{5}\right)$, in principal value, is equal to 18. (Inverse Triangle) 4) Tan⁻¹ $\left(\frac{41}{117}\right)$ (Hyperbolic Functions) 1) $\operatorname{cosec}^{-1}\left(\frac{117}{125}\right)$ 2) $\cos^{-1}\left(\frac{44}{125}\right)$ 19. log (cosh 4x - sinh 4x) = 2) -3x 3) -4x 1) -2x 4) -8x 20. If the angles of a triangle are in the ratio 1:5:6, then the ratio of its sides is (Properties of triangle) **(** $\sqrt{2}$ - 1) : ($\sqrt{2}$ + 1) : 2 $\sqrt{2}$ ($\sqrt{2}$ - 1) : ($\sqrt{3}$ + 1) : 2 $\sqrt{2}$ ($\sqrt{2}$ - 1) : ($\sqrt{3}$ + 1) : 2 $\sqrt{2}$ 1) $(\sqrt{3} - 1) : (\sqrt{3} + 1) : 2\sqrt{2}$ 8) $(\sqrt{3} - 1) : (\sqrt{2} + 1) : 2\sqrt{2}$ In ABC, right angled at A, $\cos^{-1}\left(\frac{R}{r_2 + r_3}\right)$ is 21. (Properties of triangle) 1) 30° 2) 60° 3) 90° $4) 45^{\circ}$ Locus of the point (2+3cost, -5 + 3 sint) is 22. (Locus) 1) $(x - 2)^2 + (y - 5)^2 = 9$ 2) $(x + 2)^2 + (y - 5)^2 = 9$ 3) $(x - 2)^2 + (y + 5)^2 = 9$ 4) $(x + 2)^2 + (y + 5)^2 = 9$ The angle of rotation of the axes so that the equation ax + by + c = 0 may be reduced to the form X = constant is 23. (Transformation of axis) 3) -Tan⁻¹ b/a 1) Tan⁻¹ b/a 2) Tan⁻¹ a/b 4) -Tan⁻¹ a/b 24. The medians AD and BE of a triangle with vertices A (0,b), B(0,0) and C (a,0) are perpendicular to each other if (Straight Lines) 3) $a = \pm \sqrt{2}b$ 1) $b = \sqrt{2}a$ 2) $a = \pm \sqrt{3}b$ 4) $b = \sqrt{3}a$ 25. The area of the quadrilateral formed by the lines 2x - y - 11 = 0, 2x + 3y - 7 = 0, 3x - 5y - 1 = 0, x + 2y + 7 = 0 is (Straight Lines) 2)7 3) 49 4) 49/2 If $ax^2 + by^2 + 2fy + c = 0$ (a¹ 0) represents a pair of lines then 26. (Pair of straight line) 1) f is A.M. between a and c 2) f is A.M. between b and c 3) f is G.M. between a and c 4) f is G.M. between b and c 27. If two lines $2x^2 + 2(K - 1)xy - 3y^2 = 0$ are equally inclined to the axes then K = (Pair of straight line) 3) -1 1) 1 2)2 4) -2 28. If origin is the orthocentre of a triangle formed by the points (cosa, sina, 0), (cosb, sinb, 0), (cosg, sing, 0) then $\sum \cos(2\alpha - \beta - \gamma) =$ (Three dimentional theorem) 1)0 2) 1 3) 2 4) 3 If the direction cosines of a line are $\frac{1}{3}$, $\frac{1}{3}$, n and n < 0 then n = 29. (Directions Consines) 1) $-\frac{\sqrt{7}}{3}$ 2) $-\frac{7}{3}$ 3) $-\frac{\sqrt{3}}{7}$ **ISTUTORIAL.IN**

30.	The perpendicular d	The perpendicular distance from the plane passing through (1, 2, 2), (-5, -1, 2), (1, 0, -4) to the point (2, 2, 4) is				
	1) 1	2) 1/2	3) 7	4) 3/7	(Plane)	
31.	$\lim_{x \to 0} \frac{\sin x - x + x^{3}/6}{x^{5}}$				(Limits)	
	1) 1/120	2) 1/110	3) 1/100	4) 1/90		
32.	$\lim_{x \to 0} \frac{(1 - \cos 2x)(3 + \cos 2x)}{x \tan 4x}$	<u>:osx)</u> =			(Limits)	
	1) $\frac{1}{2}$	2) 1	3) 2	4) $\frac{-1}{4}$		
33.	f is define on [-5, 5]	as f(x) = $\begin{cases} x, & \text{if } x \text{ is ratio} \\ -x, & \text{if } x \text{ is irrati} \end{cases}$	^{nal} then _{onal}		(Continuity)	
	 f(x) is continuous f(x) is continuous 	at every x, except x = 0 at every where	2) f(x) is discontir4) f(x) is discontir	nuous at every x, excep nuous at every where	pt x = 0	
34.	If $y = \sec(Tan^{-1}x)$, the function of the sec (Tan^{-1}x) and the sec (Tan^{-1}x)	hen $\frac{dy}{dx}$ at x = 1 is equal	to	(Dit	fferentiations)	
	1) $\frac{1}{2}$	2) 1	3) _{√2}	4) 1 √2		
35. l	$-et f(x) = \begin{cases} x \\ 2-x \\ -2+3x - x^2 \end{cases}$	for $1 \le x \le 2$ then f(: $\forall x > 2$	x) is	(Differentiatio	ns)	
36.	1) differentiable at x	=1 2) differentiable at x	x = 2 3) differentiable a	at $x = 1 \& x = 2$ 4) f'((percentage error in its	0) = 0 volume is	
	1 5					
	(Error	r's)	R			
	1) 3k/2	2) 2k/3	3) k/3	4) 4k/3		
37.	If y = $4x - 5$ is a tang	ent to the a curve $y^2 = p^2$ 2) $p = -2$, $q = 7$	$x^3 + q$ at (2, 3), then 3) $p = -2$ $q = -2$	(Tang	ents and normal)	
38.	The side of a square the ratio of the chan	e is equal to the diamete ge of their areas is	of a circle. If the side a	and radius change at the	- e same rate, then <i>(Rate of change)</i>	
39.	1) 1 : π Rolle's theorem can	2) π : 1 not applicable for	3) 2 : π	4) 1:2 <i>(Mear</i>	n values theorem)	
	1) $f(x) = \sqrt{1 - x^2}$ in [-1	,1]	2) f(x) = x in [-1,	1]		
40.	3) $f(x) = x^2 - 1$ in [-1, The shortest distance	1] ce between the line y - x	4) $f(x) = x^3 + x^2 - x^2 + x^2 - x^2 + x^2 - x^2 + $	<-1 in [-1, 1] ² is (maximu	um and Minimum)	
	1) $\frac{3\sqrt{2}}{8}$	2) $\frac{2\sqrt{3}}{8}$	3) $\frac{3\sqrt{2}}{5}$	4) $\frac{\sqrt{3}}{4}$		
41.	$ \begin{array}{cccc} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \\ \end{array} = x + i$	iy, then		(1	Complex Numbers)	
	1) x = 3, y = 1	2) x = 1, y = 3	3) x = 0, y = 3	4) x = 0, y = 0		
42.	If z is a complex num	ber of unit modulus and	argument θ , then arg $\left(\begin{array}{c} \\ \end{array} \right)$	$\left(\frac{1+z}{1+\overline{z}}\right)$ equals (Complex Numbers)	
	1) $\frac{\pi}{2}$ - θ	2) θ	3) π - θ	4) - θ		
43.	If $x_n = \cos(\pi/4^n) + i s$	in ($\pi/4^n$) then $x_1 \cdot x_2 \cdot x_3 \cdot \cdot \cdot$		(De	-Moiver's Theorem)	
	1) $\frac{1+i\sqrt{3}}{2}$	2) $\frac{-1+i\sqrt{3}}{2}$	3) $\frac{1-i\sqrt{3}}{2}$	4) $\frac{-1-i\sqrt{3}}{2}$		
44.	If one root of the equivalue of q is	uation $x^2 + px + 12 = 0$ is	s 4, while the equation :	x² + px + q = 0 has equ (Qua	al roots, then the adratic Expression)	
	1) $\frac{49}{4}$	2) 12	3) 3	4) 4		

45.	If the quadratic equation the interval	$n 3x^2 + 2(a^2 + 1)x + (a^2 - 1)x + (a^2 -$	3a + 2) = 0 possesses ro	ots of opposite s	igns, then 'a' lies in <i>Quadratic Expression)</i>
46.	1) (2,3) If the roots of 32x ³ - 48x	2) (-∞,-1) ² + 22x - 3 = 0 are in A.P	3) (-1,1) . then the middle root is	4) (1,2) (Theory of Equations)
	1) 2	2) $\frac{1}{2}$	3) 4	4) $\frac{1}{4}$	
47.	The number of ways of	distributing 8 identical b	alls in 3 distinct boxes, so	that none of the Permut	e boxes is empty is tation & Combination)
48.	1) 5 Assuming the balls to b balls can be selected fro	2) 21 e identical except for dif om 10 white, 9 green an 2) 879	3) 3 ⁸ ference in colours, the nu d 7 black balls is 3) 880	4) ^s C ₃ Imber of ways in <i>(Permu</i>)	which one or more tation & Combination)
49.	Ten candidates A_1, A_2, A_3	A_{3}, \dots, A_{10} can be arrang	ed in a row. If A ₁ is just ab	hove A_2 then the r	number of ways are
50.	1) 9! 2! If "C ₄ , "C ₅ , "C ₆ are in A.F 1) 11	2) 10! P, then the value of n is 2) 17	3) 10! 2! 3) 8	4) 9! (Permut 4) 14 or 7	ation & Combination)
51.	The number of integral	terms in the expansion of	of $(\sqrt{3} + \sqrt[8]{5})^{256}$ is	.)	(Binomial Theorem)
52.	1) 32 The coefficient of t^{24} in (1) ${}^{12}C_6$	2) 33 (1 + t^2) ¹² (1 + t^{12}) (1 + t^{24}) 2) $t^2C_6 + 13$	3) 34) is 3) ¹² C ₆ + 2	4) 35 4) ¹² C ₆ + 1	(Binomial Theorem)
53.	$\frac{3x-1}{(1-x+x^2)(2+x)} =$				(Partial Fractions)
	1) $\frac{x}{x^2 - x + 1} + \frac{1}{x + 2}$	2) $\frac{x}{x^2 + x + 1} + \frac{2}{x + 2}$	3) $\frac{x}{x^2 - x + 1} + \frac{1}{x + 2}$	4) $\frac{x}{x^2 - x + 1} - \frac{2}{x + 1}$	-2
54.	If standard deviation of a	data is 3, arithmetic mea	in is 20, then coefficient of	variation is (M	leasure of Dispersion)
55.	Three houses are avail without consulting other	2) 3/20 lable in a locality. Three rs. The probability that a	3) 20/3 persons apply for the he ill the three apply for the s	4) None ouses. Each app same house is	olies for one house (Probability)
	1) $\frac{7}{1}$	2) $\frac{8}{-}$	$(3)\frac{1}{-}$	4) $\frac{2}{1}$	
56	⁷ 9 If A and B are two mutua	9 ally exclusive events the	9 9	ý 9	(Probability)
	1) $P(A) < P(\overline{B})$	2) $P(A) > P(\overline{B})$	3) P (A) < P (B)	4) None of the	se
57.	Let A and B be two ever	nts such that $P(A \cup B) \ge$	$\frac{3}{4}$ and $\frac{1}{8} \leq P(A \cap B) \leq \frac{3}{8}$	<u>3</u> 8	(Probability)
	Statement 1: P(A) + P(E	$3) \geq \frac{7}{8}.$			
	Statement 2: P(A) + P(E	$3) \leq \frac{11}{8}.$			
	 Statement 1 is true, Statement 2 is true; statement 2 is not a correct explanation for statement 1 Statement 1 is true, Statement 2 is false Statement 1 is false, Statement 2 is true Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for statement 1 				tement 1 nent 1
58.	A fair die is tossed eight	t times. The probability t	hat a third six is observed	l on the eight thr	ow, is (Random Variables)
	1) $\frac{{}^7C_2 \times 5^5}{6^7}$	2) $\frac{{}^{7}C_{2} \times 5^{5}}{6^{8}}$	$3) \ \frac{{}^7C_2 \ x \ 5^5}{6^6}$	4) None of thes	se
59.	If X is a Poisson variate	e such that $P(X = 0) = \frac{1}{2}$, then the variance of X is	3	(Random Variables)
	1) $\frac{1}{2}$	2) 2	3) log _e 2	4) 3	
60.	The area of equilatera	al triangle inscrible in	the circle $x^2 + y^2 + 6x - 6x$	8y + 4 = 0 is	(Circles)
	1) 63√3	2) $\frac{63\sqrt{3}}{4}$	3) $\frac{9\sqrt{3}}{4}$	4) $\frac{3\sqrt{63}}{4}$	

61. 62	The circle $x^2 + y^2 = 4x + 1$ 1) -85 < m < -35 The length of the diama	-8y + 5 intersects the lin 2) -35 < m < 15	ne 3x - 4y = m at two dist 3) 15 < m < 65	inct points, if d) 35 < m < 85	(Circles)
02.	point (2,3) is 1) 6/5	2) 5/3	3) 10/3	4) 3/5	(Circles)
63.	If P and Q are the point $x^2 + y^2 + 2x + 2y - p^2 = 0$) then there is a circle pa	circle $x^2 + y^2 + 3x + 7y + 2$ assing through P,Q and (2) all except one value	2p - 5 = 0 and 1,1) and	(System of Circles)
C 4	3) all except two values	of p	4) exactly one value of	p.	
04. of	1) 12/5	2) 24/25	3) 24/5	4) 25/24	(System of Circles)
65.	1) $x + 3y - 19 = 0$	b) x - 2y - 9 = 0	whose vertex $(3, 2)$ and 3) 2x + 6y - 24 = 0	tocus (2, -1) is 4) x - 3y - 19 = ((Parabola))
66.	If the vertex of the paral <i>(Parabola)</i>	bola y = x² - 8x + c lies or 1) -16	n x-axis, then the value of 2) -4	rcis 3)4 4)1	6
67.	An ellipse has OB as a eccentricity of the ellip	semi minor axis, F and se is	$I_{F'}$ its foci and the ang	le _{FBF'} is a righ	t angle. Then the <i>(Ellipse</i>)
	1) $\frac{1}{\sqrt{2}}$	2) $\frac{1}{4}$	3) $\frac{1}{2}$	4) $\frac{1}{\sqrt{2}}$	
68.	If the minor axis of an e	ellipse subtends an angl	e 60º at each foci its ecc	 ✓ √2 entricity is 	(Ellipse)
69	1) cos 15 ^o The equation of the cho	2) cos 30º	3) $\cos 45^{\circ}$	4) cos 60º	ola xy = c^2 is
00.			(X_2, Y_2) on the real X		
	1) $\frac{1}{x_1 + x_2} + \frac{1}{y_1 + y_2} = 1$		2) $\frac{1}{x_1 - x_2} + \frac{1}{y_1 - y_2} = 1$		(Hyperbola)
	3) $\frac{x}{y_1 + y_2} + \frac{y}{x_1 + x_2} = 1$		4) $\frac{x}{y_1 - y_2} + \frac{y}{x_1 - x_2} = 1$		
70.	$\int \left(\frac{\tan \frac{1}{x}}{x}\right)^2 dx =$		ORIAL		(Integration)
	1) x - tanx + c	2) $\frac{1}{x}$ - tan $\frac{1}{x}$ +c	3) $\frac{1}{x}$ +tan $\frac{1}{x}$ + c	4) x + tanx + c	
71.	The value of $\sqrt{2} \int \frac{\sin x}{\sin x}$	$\frac{x}{-\frac{\pi}{4}}$ dx is			(Integration)
	1) x - log $\left \cos \left(x - \frac{\pi}{4} \right) \right + c$		2) x + log $\left \cos \left(x - \frac{\pi}{4} \right) \right $ +	с	
	3) x - log $\left \sin \left(x - \frac{\pi}{4} \right) \right + c$	2	4) x + log $\left \sin \left(x - \frac{\pi}{4} \right) \right $ +	с	
72.	∫e ^{-x} (sec ² x - tan x).dx =				(Integration)
	1) e ^x tan x + c	2) e ^{-x} tan x + c	3) e ^x cot x + c	4) e ^{-x} cot x + c	
73.	The value of $\lim_{x\to 0} \int_{a}^{x^2} \frac{\sec x}{x^3}$	$\frac{c^2 t dt}{\sin x}$ is			(Definite Integrals)
	1) 3	2) 2	3) 1	4) -1	
74.	The value of the integra	al $\int \frac{\sqrt{x}}{\sqrt{9-x}+\sqrt{x}} dx$ is			(Definite Integrals)
	1) 3/2	2) 2	3) 1	4) 1/2	
75.	$\int_0^1 \log \sin\left(\frac{\pi x}{2}\right) dx =$				(Definite Integrals)
	1) $\log \frac{1}{2}$	2) $\log \frac{1}{3}$	3) $\log \frac{1}{4}$	4) 0	
76.	The area of the plane r	egion bounded by the c	urves x + 2y² = 0 and x +	$3y^2 = 1$ is equal	to (Areas)
	1) $\frac{4}{3}$ square units	2) $\frac{5}{3}$ square units	3) $\frac{1}{3}$ square units	4) $\frac{2}{3}$ square un	its

77. The area bounded between the parabolas $x^2 = \frac{y}{4}$ and $x^2 = 9y$ and the straight line y = 2 is

1)
$$\frac{20\sqrt{2}}{3}$$
 2) $10\sqrt{2}$ 3) $20\sqrt{2}$ 4) $\frac{10\sqrt{2}}{3}$

78. Form the differential equation by eliminating the arbitrary constant from the equation $y = e^x(a \cos 2x + b \sin 2x)$ (Differential Equations)

1)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = 0$$
 2) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0$ 3) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 5y = 0$ 4) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 5y = 0$

(Differential Equations)

(Areas)

79. Solution of $\frac{dy}{dx} = \frac{x - y + 2}{x + y - 1}$ 1) $x^2 + y^2 + xy - 4y - 2x = c$ 3) $x^2 - y^2 + xy + 2x - 4y = c$

2) $x^2 - y^2 - 2xy + 4x + 2y = c$ 4) $x^2 + y^2 - xy + 4x - 2y = c$

(Differential Equations)

80. Linear form of $\frac{dy}{dx}$ + x sin 2y = x³ cos² y

1)
$$\frac{du}{dx} + \frac{u}{x^2} = x$$
 2) $\frac{du}{dx} + ux = \frac{du}{dx}$ 3) $\frac{du}{dx} + 2ux = x^3$ 4) $\frac{du}{dx} + \frac{u}{x} = x^2$

