MODEL PAPER - 3

MATHEMATICS

1. Domain of the function $f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ is
(Functions)
1) $(1,2)$
2) $(-1,0) \cup(1,2)$
3) $(1,2) \cup(2, \infty)$
4) $(-1,0) \cup(1,2) \cup(2, \infty)$
2. If $f(x)=\frac{1}{\sqrt{x+2 \sqrt{2 x-4}}}+\frac{1}{\sqrt{x-2 \sqrt{2 x-4}}}$ for $x>2$, then $f(11)=$
(Functions)
1) $\frac{7}{6}$
2) $\frac{5}{6}$
3) $\frac{6}{7}$
4) $\frac{5}{7}$
3. Statement 1: The sum of the series $1+(1+2+4)+(4+6+9)+$ \qquad $+(361+380+400)$ is 8000 . Statement 2: $\sum_{k=1}^{n}\left[k^{3}-(k-1)^{3}\right]=n^{3}$ for any natural number n.
1) Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 1.
2) Statement 1 is true, statement 2 is false
3) Statement 1 is false, statement 2 is true
4) Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1
4. Let $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $10 B=\left[\begin{array}{rrr}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$. If B is the inverse of matrix A, then a is
(Matrices)
1) -2
2) 1
3) 2
4) 5
5. Let a, b, c be such that $b+c_{\neq} 0$. If $\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c-1\end{array}\right|+\left|\begin{array}{ccc}a+1 & b+1)^{c} & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2} & (-1)^{n+1} b & (-1)^{n} c\end{array}\right|=0$, then the value of n is (Matrices)
1) any even integer
2) any odd integer
3) any integer
4) zero
6. If the system of linear equations, $x+2 a y+a z=0, x+3 b y+b z=0$ and $x+4 c y+c z=0$ non - zero solution, then a,b,c satisty
1) $2 a b=a c+b c$
2) $2 b=a+c$
3) $b^{2}=a c$
4) $2 a c=a b+b c$
(Matrices)
7. If C is the midpoint of $A B$ and P is any point outside $A B$, then
(Addition of Vectors)
1) $\overline{\mathrm{PA}}+\overline{\mathrm{PB}}=2 \overline{\mathrm{PC}}$
2) $\overline{\mathrm{PA}}+\overline{\mathrm{PB}}=\overline{\mathrm{PC}}$
3) $\overline{\mathrm{PA}}+\overline{\mathrm{PB}}+2 \overline{\mathrm{PC}}=\overline{0}$
4) $\overline{\mathrm{PA}}+\overline{\mathrm{PB}}+\overline{\mathrm{PC}}=\overline{0}$
8. The vectors $\overline{A B}=3 i+4 k$, and $\overline{A C}=5 i-2 j+4 k$ are the sides of a triangle $A B C$. The length of the median through A is
(Addition of Vectors)
1) $\sqrt{18}$
2) $\sqrt{72}$
3) $\sqrt{33}$
4) $\sqrt{288}$
9. A particle is acted upon by constant forces $4 i+j-3 k$ and $3 i+j-k$ which displace it from a point $i+2 j+3 k$ to the point $5 i+4 j+k$. The work done in standard units by the forces is given by (Dot and cross product)
1) 40 units
2) 30 units
3) 25 units
4) 15 units
10. Let \bar{a} and \bar{b} be two unit vectors. If the vectors $\bar{c}=\bar{a}+2 \bar{b}$ and $\bar{d}=5 \bar{a}-4 \bar{b}$ are perpendicular to each other, then the angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is
(Dot and cross product)
1) $\frac{\pi}{3}$
2) $\frac{\pi}{4}$
3) $\frac{\pi}{6}$
4) $\frac{\pi}{2}$
11. If $\bar{a}=\frac{1}{\sqrt{10}}(3 i+k)$ and $\bar{b}=\frac{1}{7}(2 i+3 j-6 k)$, then the value of $(2 \bar{a}-\bar{b}) \cdot[(\bar{a} \times \bar{b}) \times(\bar{a}+2 \bar{b})]$ is (Triple product)
1) -5
2) -3
3) 5
4) 3
12. The expression $\frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}$ can be written as
(Trignomentric Function)
1) $\sec A \operatorname{cosec} A+1$
2) $\tan A+\cot A$
3) $\sec A+\operatorname{cosec} A$
4) $\sin A \cos A+1$
13. $\tan \left(\frac{\pi}{4}+\theta\right) \cdot \tan \left(\frac{3 \pi}{4}+\theta\right)=$
1) 0
2) -1
3) 1
(Compound Angles)
14. $\tan ^{6} \frac{\pi}{9}-33 \tan ^{4} \frac{\pi}{9}+27 \tan ^{2} \frac{\pi}{9}=$
4) 2
(Multiple and submultiple)
5) $\tan \frac{\pi}{3}$
6) $\tan ^{2} \frac{\pi}{3}$
7) $\tan \frac{\pi}{6}$
8) $\tan ^{2} \frac{\pi}{6}$
15. If a, b are acute angles and $\cos 2 a=\frac{3 \cos 2 \beta-1}{3-\cos 2 \beta}$, then
(Transformation)
1) $\tan a=2$ tanb
2) $\operatorname{tana}=\sqrt{2}$ tanb
3) $\operatorname{tanb}=2 \sqrt{2} \tan a$
4) $\operatorname{tanb}=\sqrt{2}$ tana
16. $\frac{\sin ^{2} A+\sin A+1}{\sin A} \geq k$ then $k=$
(Periodicity \& Extreme values)
1) 2
2) 1
3) 3
4) 4
17. If $\tan p q=\tan q q$, then the values of q form a progression, which is
(Trignometric Equations)
1) A.P
2) G.P
3) H.P
4) A. G.P
18. $2 \cot ^{-1}(7)+\cos ^{-1}\left(\frac{3}{5}\right)$, in principal value, is equal to
(Inverse Triangle)
1) $\operatorname{cosec}^{-1}\left(\frac{117}{125}\right)$
2) $\cos ^{-1}\left(\frac{44}{125}\right)$
3) $\cos ^{-12}\left(\frac{44}{117}\right)$
4) $\operatorname{Tan}^{-1}\left(\frac{41}{117}\right)$
(Hyperbolic Functions)
19. $\log (\cosh 4 x-\sinh 4 x)=$
1) $-2 x$
2) $-3 x$
3) $-4 x$
4) $-8 x$
20. If the angles of a triangle are in the ratio $1: 5: 6$, then the ratio of its sides is (Properties of triangle)
1) $(\sqrt{3}-1):(\sqrt{3}+1): 2 \sqrt{2}$
2) $(\sqrt{2}-1):(\sqrt{2}+1): 2 \sqrt{2}$
3) $(\sqrt{2}-1):(\sqrt{3}+1): 2 \sqrt{2}$
4) $(\sqrt{3}-1):(\sqrt{2}+1): 2 \sqrt{2}$
21. In $A B C$, right angled at $A, \cos ^{-1}\left(\frac{R}{r_{2}+r_{3}}\right)$ is
(Properties of triangle)
1) 30°
2) 60°
3) 90°
4) 45°
22. Locus of the point $(2+3 \cos t,-5+3 \sin (t)$ is
(Locus)
1) $(x-2)^{2}+(y-5)^{2}=9$
2) $(x+2)^{2}+(y-5)^{2}=9$
3) $(x-2)^{2}+(y+5)^{2}=9$
4) $(x+2)^{2}+(y+5)^{2}=9$
23. The angle of rotation of the axes so that the equation $a x+b y+c=0$ may be reduced to the form $X=$ constant is
(Transformation of axis)
1) $\operatorname{Tan}^{-1} \mathrm{~b} / \mathrm{a}$
2) $\operatorname{Tan}^{-1} a / b$
3) $-\mathrm{Tan}^{-1} \mathrm{~b} / \mathrm{a}$
4) $-\operatorname{Tan}^{-1} a / b$
24. The medians $A D$ and $B E$ of a triangle with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are perpendicular to each other if
(Straight Lines)
1) $b=\sqrt{2} a$
2) $a= \pm \sqrt{3} b$
3) $a= \pm \sqrt{2} b$
4) $b=\sqrt{3} a$
25. The area of the quadrilateral formed by the lines $2 x-y-11=0,2 x+3 y-7=0,3 x-5 y-1=0, x+2 y+7=0$ is
(Straight Lines)
1) $7 / 2$
2) 7
3) 49
4) $49 / 2$
26. If $a x^{2}+b y^{2}+2 f y+c=0\left(a^{1} 0\right)$ represents a pair of lines then
(Pair of straight line)
1) f is A.M. between a and c
2) f is A.M. between b and c
3) f is G.M. between a and c
4) f is G.M. between b and c
27. If two lines $2 x^{2}+2(K-1) x y-3 y^{2}=0$ are equally inclined to the axes then $K=$
(Pair of straight line)
1) 1
2) 2
3) -1
4) -2
28. If origin is the orthocentre of a triangle formed by the points (cosa, sina, 0), (cosb, sinb, 0), (cosg, sing, 0) then $\sum \cos (2 \alpha-\beta-\gamma)=$
(Three dimentional theorem)
1) 0
2) 1
3) 2
4) 3
29. If the direction cosines of a line are $\frac{1}{3}, \frac{1}{3}, \mathrm{n}$ and $\mathrm{n}<0$ then $\mathrm{n}=$
(Directions Consines)
1) $-\frac{\sqrt{7}}{3}$
2) $-\frac{7}{3}$
3) $-\frac{\sqrt{3}}{7}$
4) $-\frac{3}{7}$

WWW.AIMSTUTORIAL.IN
30. The perpendicular distance from the plane passing through $(1,2,2),(-5,-1,2),(1,0,-4)$ to the point $(2,2,4)$ is

1) 1
2) $1 / 2$
3) 7
4) $3 / 7$
31. $\operatorname{Lt}_{x \rightarrow 0} \frac{\sin x-x+x^{3} / 6}{x^{5}}$
1) $1 / 120$
2) $1 / 110$
3) $1 / 100$
4) $1 / 90$
32. $\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}=$
(Limits)
1) $\frac{1}{2}$
2) 1
3) 2
4) $\frac{-1}{4}$
33. f is define on $[-5,5]$ as $f(x)=\left\{\begin{array}{ll}x, & \text { if } x\end{array}\right.$ is rational $\begin{array}{ll}-x, & \text { if } x \text { is irrational }\end{array}$ then
(Continuity)
1) $f(x)$ is continuous at every x, except $x=0$
2) $f(x)$ is discontinuous at every x, except $x=0$
3) $f(x)$ is continuous at every where
4) $f(x)$ is discontinuous at every where
34. If $y=\sec \left(\operatorname{Tan}^{-1} x\right)$, then $\frac{d y}{d x}$ at $x=1$ is equal to
1) $\frac{1}{2}$
2) 1
3) $\sqrt{2}$
4) $\frac{1}{\sqrt{2}}$
35. Let $f(x)=\left\{\begin{array}{cc}x & \forall x<1 \\ 2-x & \text { for } \\ -2+3 x-x^{2} & \forall x>2\end{array}\right.$ then $f(x)$ is
(Differentiations)
$\left.\begin{array}{llll}\text { 1) differentiable at } x=1 & 2) \text { differentiable at } x=2 & 3\end{array}\right)$ differentiable at $x=1 \& x=2 \quad$ 4) $f^{\prime}(0)=0$
36. If the percentage error in the surface area of sphere is k, then the percentage error in its volume is

(Error's)

1) $3 k / 2$
2) $2 \mathrm{k} / 3$
3) $k / 3$
4) $4 \mathrm{k} / 3$
37. If $y=4 x-5$ is a tangent to the a curve $y^{2}=p x^{3}+q$ at $(2,3)$, then
(Tangents and normal)
1) $p=2, q=-7$
2) $p=-2, q=7$
3) $p=-2, q=-7$
4) $p=2, q=2$
38. The side of a square is equal to the diameter of a circle. If the side and radius change at the same rate, then the ratio of the change of their areas is
(Rate of change)
1) $1: \pi$
2) $\pi: 1$
3) $2: \pi$
4) $1: 2$
39. Rolle's theorem can not applicable for
(Mean values theorem)
1) $f(x)=\sqrt{1-x^{2}}$ in $[-1,1]$
2) $f(x)=|x|$ in $[-1,1]$
3) $f(x)=x^{2}-1$ in $[-1,1]$
4) $f(x)=x^{3}+x^{2}-x-1$ in $[-1,1]$
40. The shortest distance between the line $y-x=1$ and the curve $x=y^{2}$ is
(maximum and Minimum)
1) $\frac{3 \sqrt{2}}{8}$
2) $\frac{2 \sqrt{3}}{8}$
3) $\frac{3 \sqrt{2}}{5}$
4) $\frac{\sqrt{3}}{4}$
41. If $\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|=x+i y$, then
(Complex Numbers)
1) $x=3, y=1$
2) $x=1, y=3$
3) $x=0, y=3$
4) $x=0, y=0$
42. If z is a complex number of unit modulus and argument θ, then $\arg \left(\frac{1+z}{1+\bar{z}}\right)$ equals (Complex Numbers)
1) $\frac{\pi}{2}-\theta$
2) θ
3) $\pi-\theta$
4) $-\theta$
43. If $x_{n}=\cos \left(\pi / 4^{n}\right)+i \sin \left(\pi / 4^{n}\right)$ then $x_{1} \cdot x_{2} \cdot x_{3} \ldots \ldots \infty=$
(De-Moiver's Theorem)
1) $\frac{1+i \sqrt{3}}{2}$
2) $\frac{-1+i \sqrt{3}}{2}$
3) $\frac{1-i \sqrt{3}}{2}$
4) $\frac{-1-i \sqrt{3}}{2}$
44. If one root of the equation $x^{2}+p x+12=0$ is 4 , while the equation $x^{2}+p x+q=0$ has equal roots, then the value of q is
(Quadratic Expression)
1) $\frac{49}{4}$
2) 12
3) 3
4) 4
45. If the quadratic equation $3 x^{2}+2\left(a^{2}+1\right) x+\left(a^{2}-3 a+2\right)=0$ possesses roots of opposite signs, then ' a ' lies in the interval
(Quadratic Expression)
1) $(2,3)$
2) ($-\infty,-1$)
3) $(-1,1)$
46. If the roots of $32 x^{3}-48 x^{2}+22 x-3=0$ are in A.P. then the middle root is
(Theory of Equations)
1) 2
2) $\frac{1}{2}$
3) 4
4) $\frac{1}{4}$
47. The number of ways of distributing 8 identical balls in 3 distinct boxes, so that none of the boxes is empty is
(Permutation \& Combination)
1) 5
2) 21
3) 3^{8}
4) ${ }^{8} \mathrm{C}_{3}$
48. Assuming the balls to be identical except for difference in colours, the number of ways in which one or more balls can be selected from 10 white, 9 green and 7 black balls is
(Permutation \& Combination)
1) 630
2) 879
3) 880
4) 629
49. Ten candidates $A_{1}, A_{2}, A_{3}, \ldots . . . A_{10}$ can be arranged in a row. If A_{1} is just above A_{2} then the number of ways are
(Permutation \& Combination)
1) 9 ! 2 !
2) 10 !
3) $10!2$!
4) 9 !
50. If ${ }^{n} C_{4},{ }^{n} C_{5},{ }^{n} C_{6}$ are in A.P, then the value of n is
(Permutation \& Combination)
1) 11
2) 17
3) 8
4) 14 or 7
51. The number of integral terms in the expansion of $(\sqrt{3}+\sqrt[8]{5})^{256}$ is
(Binomial Theorem)
1) 32
2) 33
3) 34
4) 35
52. The coefficient of t^{24} in $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$ is
(Binomial Theorem)
1) ${ }^{12} \mathrm{C}_{6}$
2) ${ }^{12} \mathrm{C}_{6}+13$
3) ${ }^{12} \mathrm{C}_{6}+2$
4) ${ }^{12} C_{6}+1$
53. $\frac{3 x-1}{\left(1-x+x^{2}\right)(2+x)}=$
(Partial Fractions)
1) $\frac{x}{x^{2}-x+1}+\frac{1}{x+2}$
2) $\frac{x}{x^{2}+x+1}+\frac{2}{x+2}$
3) $\frac{x}{x^{2}-x+1} \frac{1}{x+2}$
4) $\frac{x}{x^{2}-x+1}-\frac{2}{x+2}$
54. If standard deviation of a data is 3 , arithmetic mean is 20 , ther coefficient of variation is
(Measure of Dispersion)
1) 15
2) $3 / 20$
3) $20 / 3$
4) None
55. Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house is
(Probability)
1) $\frac{7}{9}$
2) $\frac{8}{9}$
$\frac{1}{9}$
3) $\frac{2}{9}$
56. If A and B are two mutually exclusive events, then
(Probability)
1) $P(A)<P(\bar{B})$
2) $P(A)>P(\bar{B})$
3) $P(A)<P(B)$
4) None of these
57. Let A and B be two events such that $A(A \cup B) \geq \frac{3}{4}$ and $\frac{1}{8} \leq P(A \cap B) \leq \frac{3}{8}$.
(Probability)
Statement 1: $P(A)+P(B) \geq \frac{7}{8}$.
Statement 2: $P(A)+P(B) \leq \frac{11}{8}$.
1) Statement 1 is true, Statement 2 is true; statement 2 is not a correct explanation for statement 1
2) Statement 1 is true, Statement 2 is false
3) Statement 1 is false, Statement 2 is true
4) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for statement 1
58. A fair die is tossed eight times. The probability that a third six is observed on the eight throw, is
(Random Variables)
1) $\frac{{ }^{7} C_{2} \times 5^{5}}{6^{7}}$
2) $\frac{{ }^{7} C_{2} \times 5^{5}}{6^{8}}$
3) $\frac{{ }^{7} C_{2} \times 5^{5}}{6^{6}}$
4) None of these
59. If X is a Poisson variate such that $P(X=0)=\frac{1}{2}$, then the variance of X is
(Random Variables)
1) $\frac{1}{2}$
2) 2
3) $\log _{e} 2$
4) 3
60. The area of equilateral triangle inscrible in the circle $x^{2}+y^{2}+6 x-8 y+4=0$ is
(Circles)
1) $63 \sqrt{ } 3$
2) $\frac{63 \sqrt{3}}{4}$
3) $\frac{9 \sqrt{3}}{4}$
4) $\frac{3 \sqrt{63}}{4}$
61. The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects the line $3 x-4 y=m$ at two distinct points, if
(Circles)
1) $-85<m<-35$
2) $-35<m<15$
3) $15<m<65$
d) $35<$ m <85
62. The length of the diameter of the circle which touches the x - axis at the point $(1,0)$ and passes through the point $(2,3)$ is
(Circles)
1) $6 / 5$
2) $5 / 3$
3) $10 / 3$
4) $3 / 5$
63. If P and Q are the points of intersection of the circle $x^{2}+y^{2}+3 x+7 y+2 p-5=0$ and $x^{2}+y^{2}+2 x+2 y-p^{2}=0$ then there is a circle passing through P, Q and $(1,1)$ and
(System of Circles)
1) all values of p
2) all except one value of p
3) all except two values of p
4) exactly one value of p.
64. Two circles of radii 3,4 intersect orthogonally. Then the length of the common chord is (System of Circles)
1) $12 / 5$
2) $24 / 25$
3) $24 / 5$
4) $25 / 24$
65. The equation of the directrix of the parabola whose vertex $(3,2)$ and focus $(2,-1)$ is
(Parabola)
1) $x+3 y-19=0$
b) $x-2 y-9=0$
2) $2 x+6 y-24=0$
3) $x-3 y-19=0$
66. If the vertex of the parabola $y=x^{2}-8 x+c$ lies on x-axis, then the value of c is
(Parabola)
1) -16
2) -4
3) 4
4) 16
67. An ellipse has $O B$ as semi minor axis, F and F^{\prime} its foci and the angle FBF^{\prime} is a right angle. Then the eccentricity of the ellipse is
(Ellipse)
1) $\frac{1}{\sqrt{3}}$
2) $\frac{1}{4}$
3) $\frac{1}{2}$
4) $\frac{1}{\sqrt{2}}$
68. If the minor axis of an ellipse subtends an angle 60° at each foci its eccentricity is
(Ellipse)
1) $\cos 15^{\circ}$
2) $\cos 30^{\circ}$
3) $\cos 45^{\circ}$
4) $\cos 60^{\circ}$
69. The equation of the chord joining two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the rectangular hyperbola $x y=c^{2}$ is
1) $\frac{x}{x_{1}+x_{2}}+\frac{y}{y_{1}+y_{2}}=1$
2) $\frac{x}{x_{1}-x_{2}}+\frac{y}{y_{1}-y_{2}}=1$
(Hyperbola)
3) $\frac{x}{y_{1}+y_{2}}+\frac{y}{x_{1}+x_{2}}=1$
4) $\frac{x}{y_{1}-y_{2}}+\frac{y}{\sqrt{x_{y}}-x_{2}}=1$
70. $\int\left(\frac{\tan \frac{1}{x}}{x}\right)^{2} d x=$
(Integration)
1) $x-\tan x+c$
2) $\frac{1}{x}-\tan \frac{1}{x}+c$
$\frac{1}{x}+\tan \frac{1}{x}+c$
3) $x+\tan x+c$
71. The value of $\sqrt{2} \int \frac{\sin x}{\sin \left(x-\frac{\pi}{4}\right)} d x$ is
(Integration)
1) $x-\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+c$
2) $x+\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+c$
3) $x-\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+c$
4) $x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+c$
72. $\int e^{-x}\left(\sec ^{2} x-\tan x\right) \cdot d x=$
(Integration)
1) $e^{x} \tan x+c$
2) $e^{-x} \tan x+c$
3) $e^{x} \cot x+c$
4) $e^{-x} \cot x+c$
73. The value of $\operatorname{Lim}_{x \rightarrow 0} \int_{a}^{x^{2}} \frac{\sec ^{2} t d t}{x \sin x}$ is
(Definite Integrals)
1) 3
2) 2
3) 1
4) -1
74. The value of the integral $\int_{3}^{6} \frac{\sqrt{x}}{\sqrt{9-x}+\sqrt{x}} d x$ is
(Definite Integrals)
1) $3 / 2$
2) 2
3) 1
4) $1 / 2$
75. $\int_{0}^{1} \log \sin \left(\frac{\pi x}{2}\right) \mathrm{dx}=$
1) $\log \frac{1}{2}$
2) $\log \frac{1}{3}$
3) $\log \frac{1}{4}$
4) 0
76. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to
(Areas)
1) $\frac{4}{3}$ square units
2) $\frac{5}{3}$ square units
3) $\frac{1}{3}$ square units
4) $\frac{2}{3}$ square units
77. The area bounded between the parabolas $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line $y=2$ is
(Areas)
1) $\frac{20 \sqrt{2}}{3}$
2) $10 \sqrt{2}$
3) $20 \sqrt{2}$
4) $\frac{10 \sqrt{2}}{3}$
78. Form the differential equation by eliminating the arbitrary constant from the equation $y=e^{x}(a \cos 2 x+b \sin 2 x)$
(Differential Equations)
1) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=0$
2) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=0$
3) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-5 y=0$
4) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-5 y=0$
79. Solution of $\frac{d y}{d x}=\frac{x-y+2}{x+y-1}$
(Differential Equations)
1) $x^{2}+y^{2}+x y-4 y-2 x=c$
2) $x^{2}-y^{2}-2 x y+4 x+2 y=c$
3) $x^{2}-y^{2}+x y+2 x-4 y=c$
4) $x^{2}+y^{2}-x y+4 x-2 y=c$
80. Linear form of $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$
(Differential Equations)
1) $\frac{d u}{d x}+\frac{u}{x^{2}}=x$
2) $\frac{d u}{d x}+u x=\frac{d u}{d x}$
3) $\frac{d u}{d x}+2 u x=x^{3}$
4) $\frac{d u}{d x}+\frac{u}{x}=x^{2}$
