MODEL PAPER - 4

MATHEMATICS

1. Locus of complex numbers satisfying $z^{2}+\bar{z}^{2}=2$ constitute a
(Complex Numbers)
1) Hyperbola
2) Parabola
3) Ellipse
4) Circle
2. If n is a positive integer and $(1+i)^{n}+(1-i)^{n}=k \cos \frac{n \pi}{4}$, then $k=$
(De-Moiver's Theorem)
1) $2^{\frac{n}{2}}$
2) $2^{\frac{n}{2}+1}$
3) $2^{\frac{n}{2}-1}$
4) 2^{n+1}
3. If $f(x)=\frac{x}{x-1}$, then (fofo. \qquad . $\left.\mathrm{of}_{19 \text { times }}\right)(x)$ is equal to
(Functions)
1) $\frac{x}{x-1}$
2) $\left(\frac{x}{x-1}\right)^{19}$
3) $\frac{19 x}{x-1}$
4) x
4. The length of latusrectum of the parabola $x^{2}-4 x-8 y+12=0$ is
(Parabola)
1) 4
2) 6
3) 8
4) 10
5. The locus of the point intersection of the lines $x \cos \alpha-y \sin \alpha=a$ and $x \sin \alpha+y \cos \alpha=b$ is a (Locus)
1) ellipse
2) pair of lines
3) hyperbola
4) circle
6. The real number which most exceeds its cube, is
1) $\frac{1}{2}$
2) $\frac{1}{\sqrt{3}}$
3) $\frac{1}{\sqrt{2}}$
4) $\frac{-1}{\sqrt{3}}$
7. $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2 / 3} x}{\sin ^{2 / 3} x+\cos ^{2 / 3} x} d x=$
1) $\frac{3 \pi}{4}$
2) π
3) $\frac{\pi}{4}$
8. The ratio in which $\overline{\mathbf{i}}+\mathbf{2} \overline{\mathbf{j}}+\mathbf{3} \overline{\mathbf{k}}$ divides the join of $-\mathbf{2} \overline{\mathbf{i}}+\mathbf{3} \overline{\mathbf{j}}+\mathbf{5} \overline{\mathbf{k}}$ and $\mathbf{7} \overline{\mathbf{i}}-\overline{\mathbf{k}}$ is
(Vectors)
1) $-3: 2$
2) $1: 2$
3) $2: 3$
4) $-4: 3$
9. If $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-9}{x-3} & \text { if } x \neq 3 \\ 2 x+k, & \text { otherwise }\end{array}\right.$ is continuQus at $x=3$, then k is equal to
(Continuity)
1) 3
2) 6
3) -6
4) 0
10. $\frac{\sin ^{2} A-\sin ^{2} B}{\sin A \cos A-\sin B \cos B}=$
(Trignomentry)
1) $\tan (A+B)$
2) $\tan (A-B)$
3) $\cot (A+B)$
4) $\cos (A-B)$
11. $\frac{\cos ^{2} 33^{\circ}-\cos ^{2} 57^{\circ}}{\sin 21^{\circ}-\cos 21^{\circ}}=$
(Trignomentry)
1) $\frac{1}{\sqrt{2}}$
2) $-\frac{1}{\sqrt{2}}$
3) $\frac{1}{2}$
4) $-\frac{1}{2}$
12. Maximum value of $5 \cos x+3 \cos \left(x-60^{\circ}\right)+7$ is
(Trignomentry)
1) 7
2) $7+\sqrt{34}$
3) 14
4) 15
13. In $a \triangle A B C, a \tan A+b \tan B=(a+b) \tan \left(\frac{A+B}{2}\right)$, then
(Trignomentry)
1) $A=B$
2) $A=-B$
3) $A=2 B$
4) $B=2 A$
14. The general solution of x satisfying the equation $\sqrt{3} \sin x+\cos x=\sqrt{3}$ is given by (Trignomentry Equations)
1) $x=n \pi \pm \frac{\pi}{3}$
2) $x=n \pi \pm \frac{\pi}{6}$
3) $\mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{2}, 2 \mathrm{n} \pi+\frac{\pi}{6}$
4) $x=2 n \pi \pm \frac{\pi}{2}$
15. The value of $\sin \left[\frac{1}{2} \operatorname{Cot}^{-1}\left(\frac{-3}{4}\right)\right]=$
(Inverse Trignomentry)
1) $\frac{1}{\sqrt{5}}$
2) $\frac{2}{\sqrt{5}}$
3) $\frac{-1}{\sqrt{5}}$
WWW.A4MTVTUTORIAL.IN
16. If $\tanh x=\frac{2}{3}$, then $\tanh 3 x=$
(Hyperbolic)
1) $\frac{8}{9}$
2) $\frac{8}{27}$
3) $\frac{62}{63}$
4) 2
17. In $\triangle A B C$, angles A, B, C are in arithmetic progression, then the value of $\frac{a+c}{\sqrt{a^{2}-a c+c^{2}}}$ will be
(Properties of Triangles)
1) $2 \sin \left(\frac{A+C}{2}\right)$
2) $2 \sin \left(\frac{A-C}{2}\right)$
3) $2 \cos \left(\frac{A+C}{2}\right)$
4) $2 \cos \left(\frac{A-C}{2}\right)$
18. In $\triangle A B C, a^{2} \cot A+b^{2} \cot B+c^{2} \cot C=$
1) $\frac{a b c}{R}$
2) $\frac{a b c}{r}$
3) $\frac{a b c}{s}$
4) $\frac{a b c}{\Delta}$
19. If $A B C D E F$ is a regular hexagon with $\overline{\mathrm{AB}}=\overline{\mathrm{a}}, \overline{\mathrm{BC}}=\overline{\mathrm{b}}$ then match the following (Vectors)

List-I

A) $\overline{B E}$
B) $\overline{\mathrm{FA}}$
C) $\overline{\mathrm{AC}}+\overline{\mathrm{AD}}+\overline{\mathrm{EA}}+\overline{\mathrm{FA}}$
D) $\overline{\mathrm{AB}}+\overline{\mathrm{AC}}+\overline{\mathrm{AD}}+\overline{\mathrm{EA}}+\overline{\mathrm{FA}}$

The correct match is

1) $A-1, B-3, C-2, D-4$
2) $A-4, B-3, C-2, D-1$
3) $A-3, B-2, C-1, D-4$
4) $A-2, B-3, C-4, D-1$
20. $A=(1,1,1), B=(1,2,3), C=(2,-1,1)$ then the length of the internal bisector of $\lfloor A$ is
(3D)
1) $\frac{\sqrt{3}}{2}$
2) $\frac{\sqrt{2}}{3}$
3) $\sqrt{\frac{3}{2}}$
4) $\frac{2}{\sqrt{3}}$
21. If A, B, C, D are four points in space then $|\overline{A B} \times \overline{C D} \sqrt{B C} \times \overline{A D}+\overline{C A} \times \overline{B D}|=k$ (area of $\triangle A B C$) then $k=$
1) 2
2) 3

List - II

1) $4 \bar{a}$
2) $3 \bar{a}$
3) $\bar{a}-\bar{b}$
4) $2(\bar{b}-\bar{a})$
(Properties of Triangles)
\qquad Propertes
\qquad

28. Let $g(x)=1+x-[x]$ and $f(x)=\left\{\begin{array}{cl}-1, & x<0 \\ 0, & x=0 \\ 1, & x>0\end{array}\right.$ then for all $x \in R, f\{g(x)\}$ is equal to
(Functions)
1) x
2) 1
3) $f(x)$
4) $g(x)$
29. If $A=\{1,2,3,4,5\}, B=\{a, b, c, d\}$, then the number of onto functions that can be defined from A to B is
1) 505
2) 36
3) 240
4) 245
(Functions)
30. $2.4^{2 n+1}+3^{3 n+1}$ is divisible by
3) 11
4) 13
31. One value of $\left[\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right]^{\frac{8}{3}}$ is
(De-Moivers Theorem)
1) 1
2) i
3) - i
4) - 1
32. If x is integer satisfying $x^{2}-6 x+5 \leq 0$ and $x^{2}-2 x>0$ then the number of possible values of x is
1) 3
2) 4
3) 2
4) infinity
(Quadratic Expressions)
33. If $20^{3-2 x^{2}}=(40 \sqrt{5})^{3 x^{2}-2}$, then $\mathrm{x}=$
(Quadratic Expressions)
1) ± 1
2) $\pm \sqrt{\frac{4}{5}}$
3) $\pm \sqrt{\frac{12}{13}}$
4) $\pm \sqrt{\frac{13}{12}}$
34. If the roots of the equation $x^{3}-3 p x^{2}-3 q x-r=0$ are in H.P., then the mean root is
(Theory fo Equations)
1) $\frac{3 r}{p}$
2) $\frac{2 r}{q}$
3) $\frac{r}{q}$
4) $\frac{-r}{q}$
35. The value of ' a ' for which the equations $x^{3}+a x+1=0$ and $x^{4}+a x^{2}+1=0$ have a common root is
1) 1
2) -1
3) 2
4) -2
(Theory fo Equations)
36. Statement I: The number of terms in the expansion $o f(x+y+z)^{n}$ are ${ }^{(n+2)} C_{2}$.
(Binomial Theorem)
Statement II: The number of terms in the expansion of $(x+y+z)^{10}$ are 45 .
1) only I is true
2) only II is true
3) both I and II are true
4) neither I nor II is true
37. $1-\frac{1}{5}+\frac{1.4}{5.10}-\frac{1.4 .7}{5 \cdot 10.15}+$ \qquad ∞ ?
(Binomial Theorem)
1) $\sqrt{\frac{1}{8}}$
2) $\sqrt{\frac{3}{8}}$
3) $\sqrt[3]{\frac{5}{8}}$
4) $\sqrt{\frac{5}{8}}$
38. The number of ways of arranging the tetters of the word 'SUCCESSFUL' so that all S's will come together is
1) $\frac{8!}{2!2!}$
2) $\frac{10!}{2!2!}$
3) $\frac{9!}{3!}$
4) 10! (Permutation \& Combination)
39. The number of combinations of 3 letters from the word "ELLIPSE" is
(Permutation \& Combination)
1) 10
2) 8
3) 18
4) 14
40. The number of palindromes with 6 digits that can be formed using the digits $0,2,4,6,8$ is
(Permutation \& Combination)
1) 4×5^{2}
2) 5^{3}
3) 4^{5}
4) 4×5^{4}
41. Coefficient of x^{4} in the expansion of $\frac{2 x-1}{(x-2)(x+1)}$ is
(Partial Fractions)
1) $\frac{17}{32}$
2) $\frac{29}{32}$
3) $\frac{31}{32}$
4) $\frac{33}{32}$
42. The variance of 20 observations is 5 . If each observation is multiplied by 2 , the variance of the resulting observations is
(Measure of Dispersions)
1) 5
2) 10
3) $5 \sqrt{2}$
4) 20
43. The probabilities of solving a problem by 3 students A, B, C are independently are $\frac{1}{3}, \frac{1}{4}, \frac{1}{5}$. The probability that the problem will be solved is
(Probability)
1) $\frac{1}{5}$
2) $\frac{4}{5}$
3) $\frac{3}{5}$
4) $\frac{2}{5}$
44. A box contains 24 identical balls of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the $4^{\text {th }}$ time on the $7^{\text {th }}$ draw is
(Probability)
1) $\frac{5}{64}$
2) $\frac{27}{32}$
3) $\frac{5}{32}$
4) $\frac{1}{2}$
45. One hundred identical coins, each with probability p, of showing up heads are tossed once. If $0<p<1$ and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, then the value of p is
1) $\frac{1}{2}$
2) $\frac{49}{101}$
3) $\frac{50}{101}$
4) $\frac{51}{101}$
(Probability)
46. In a binomial distribution, mean $=\frac{10}{3}$ and sum of mean and variance is $\frac{40}{9}$ then parameter $p=$
(Binomial Theorem)
1) $\frac{1}{3}$
2) $\frac{2}{3}$
3) $\frac{1}{4}$
4) $\frac{1}{2}$
47. The range of random variable $X=\{1,2,3, \ldots \ldots \ldots .$.$\} and the probability are given by P(X=k)=\frac{3^{c k}}{k!}$ and c is constant, then $\mathrm{c}=$
(Random Variables)
1) $\frac{1}{2} \log (\log 2)$
2) $\log _{3}\left(\log _{e} 2\right)$
3) $\frac{\log (\log 2)}{\log _{3} e}$
4) $\log _{2}(\log 3)$
48. If $f(5)=7$ and $f^{\prime}(5)=7$, then $\underset{x \rightarrow 5}{\operatorname{Lt}} \frac{x f(5)-5 f(x)}{x-5}$ is given by
(Limits)
1) -28
2) 28
3) 35
4) -35
49. $\underset{x \rightarrow 0}{\operatorname{Lt}}\left[\operatorname{cosec}^{3} x \cdot \cot x-2 \cot ^{3} x \cdot \operatorname{cosec} x+\frac{\cot ^{4} x}{\sec x}\right]$ is equal to
(Limits)
1) 1
2) -1
3) 0
4) 2
50. Let $3 f(x)-2 f\left(\frac{1}{x}\right)=x$, then $f^{\prime}(2)$ is equal to
(Differentiation)
1) $\frac{2}{7}$
2) $\frac{1}{2}$
3) 2
4) $\frac{7}{2}$
51. Let f be a twice differentiable function such that $f^{\prime \prime}(x)=-f(x)$ and $f^{\prime}(x)=g(x)$. $h^{\prime}(x)=[f(x)]^{2}+[g(x)]^{2}, h(1)=$ $8, h(0)=2$, then $h(2)=$

N
(Differentiation)

1) 1
2) 2
3) 3
4) 14
52. If the relative error in the radius of a sphere is 0.1 , then the relative error in its surface area is (Errors)
1) 0.3
2) 0.4
3) 0.2
4) 0.1
53. The length of a pair of parallel sides of a rectangle is increasing at a rate of $1 \mathrm{~cm} / \mathrm{sec}$, keeping the area constant to $16 \mathrm{~cm}^{2}$. If the length of the parallel sides is 2 cm , the rate of change in other pair of sides is
(Rate of Change)
1) $4 \mathrm{~cm} / \mathrm{sec}$
2) $-4 \mathrm{~cm} / \mathrm{sec}$
3) $-2 \mathrm{~cm} / \mathrm{sec}$
4) $2 \mathrm{~cm} / \mathrm{sec}$
54. If the tangent at P on the curve $x^{m} y^{n}=a^{m+n}$ meets the axes at A, B then P divides $A B$ in the ratio
(Tangents \& Normals)
1) $m: n$
2) $n: m$
3) $1: 1$
4) $m+n: n$
55. Assertion(A) : For the function $f(x)=x^{2}+3 x+2$, Lagrange's mean value theorem is applicable in [1, 2] and the value of c is $\frac{3}{2}$.
Reason(R) : If Lagrange's mean value theorem is applicable for any quadratic polynomial on $[a, b]$ then value of c is $\frac{a+b}{2}$
(Rolle's Theorem)
1) Both A and R are true and R is a correct explanation of A.
2) Both A and R are true but R is not a correct explanation of A.
3) A is true, but R is false
4) A is false and R is true
56. The function xe^{x} is decreasing in
(Maxima \& Minima)
1) $(-\infty, 0)$
2) $(0, \infty)$
3) $(-\infty,-1)$
4) $\left(\frac{1}{e}, \infty\right)$
57. $\int \frac{\left(x-x^{5}\right)^{1 / 5}}{x^{6}} d x$ is equal to
(Integration)
1) $\frac{5}{24}\left(\frac{1}{x^{4}}-1\right)^{6 / 5}+c$
2) $\frac{5}{24}\left(1+\frac{1}{x^{4}}\right)^{6 / 5}+c$
3) $-\frac{5}{24}\left(\frac{1}{x^{4}}-1\right)^{6 / 5}+c$
4) $\frac{-5}{24}\left(\frac{1}{x^{4}}+1\right)^{6 / 5}+c$
58. $\int \frac{\log x}{(1+\log x)^{2}} d x=$
1) $\frac{1}{(1+\log x)^{2}}+c$
2) $\log (1+\log x)+c$
3) $\frac{\log x}{1+\log x}+c$
4) $\frac{x}{1+\log x}+c$
59. $\int_{0}^{\frac{\pi}{2}} \frac{2 \tan x+3 \cot x}{\tan x+\cot x} d x=$
1) $\frac{\pi}{2}$
2) $\frac{\pi}{4}$
3) $\frac{5 \pi}{4}$
4) $\frac{5 \pi}{2}$
60. $\operatorname{Lim}_{n \rightarrow \infty} \sum_{r=1}^{n} \frac{r}{n^{2}+r^{2}}=$
1) $\frac{\pi}{4}$
2) 0
3) $\log 2$
4) $\log \sqrt{2}$
61. Statement I : The general solution of $\frac{y d x-x d y}{y^{2}}=0$ represents a family of straight lines.

Statement II: The general solution of $x d y+y d x=0$ represents a hyperbola.
Which of the above is correct?
(Differenttial Equations)
3) Both I \& II

1) Only I
2) Only II
3) Neither I nor II
62. The solution of $x^{3}-y^{3} \frac{d y}{d x}=2 x$ is
(Differenttial Equations)
1) $x^{4}+y^{4}=4 x^{2}+c$
2) $y^{4}=x^{4}-4 x^{2}+c$
3) $y^{4}=x^{4}+4 x^{2}+c$
4) $x^{4}+y^{4}+4 x^{2}=c$
63. $y=A e^{x}+B e^{2 x}+C e^{3 x}$ satisfies the differential equation
(Differenttial Equations)
1) $y_{3}-6 y_{2}+11 y_{1}-6 y=0$
2) $y_{3}-6 y_{2}-11 y_{1}+6 y=0$
64. The circumcentre of the triangle with vertices $(0,30),(4,0),(30,0)$ is
(Straight Lines)
1) $(10,10)$
2) $(12,12)$
3) $(15,15)$
4) $(17,17)$
65. The incentre of the traingle formed by the lines $x+y \sqrt{3}=0, x-y \sqrt{3}=0$ and $x=3$ is
(Straight Lines)
1) $(0, \sqrt{3})$
2) $(3,0)$
3) $(0,2)$
4) $(2,0)$
66. The equation of the bisector of the acute angle between the lines $2 x-y+4=0$ and $x-2 y=1$ is
(Straight Lines)
1) $x-y+1=0$
2) $x+y+5=0$
3) $x-y=5$
4) $x+y-1=0$
67. The lines $x-y-2=0, x+y-4=0$ and $x+3 y=6$ are concurrent at
(Straight Lines)
1) $(1,2)$
2) $(3,1)$
3) $(2,2)$
4) $(1,1)$
68. The quadrilateral formed by the pairs of lines $x y+x+y+1=0, x y+3 x+3 y+9=0$ is (Pair of Straight Lines)
1) parallelogram
2) rhombus
3) rectangle
4) square
69. If the pair of lines $3 x^{2}-5 x y+p y^{2}=0$ and $6 x^{2}-x y-5 y^{2}=0$ have one line in common, then $p=$
(Pair of Straight Lines)
1) $2, \frac{25}{4}$
2) $-2, \frac{25}{4}$
3) $-2, \frac{-25}{4}$
4) $2, \frac{-25}{4}$
70. The equation to the locus of points which are equidistant from the points $(1,-3,4),(1,3,4)$ is
(3D)
1) $x y=0$
2) $y=0$
3) $z=0$
4) $x=0$
71. If $(2,1,-1)$ and $(1,-1,-1)$ are the direction ratio's of two lines then the direction cosines of the line perpendicular to the lines are
(3D)
1) $\frac{1}{3},-\frac{1}{3}, \frac{2}{3}$
2) $\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}$
3) $\frac{-2}{3}, \frac{-1}{3}, \frac{2}{3}$
4) $\frac{2}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
72. The equation of the plane through the line of intersection of the planes $x+y+z-1=0,2 x+3 y+4 z-5=0$ and perpendicular to the plane is $x-y+z=0$ is
(Planes)
1) $7 x-y-6 z-17=0$
2) $x-z+2=0$

73. If the polar the point $(2,2)$ to the circle $x^{2}+y^{2}=16$ meets the coordinate axes in A and B, then the circum centre of $\triangle O A B$ is
(Circles)
1) $\left(\frac{8}{3}, \frac{8}{3}\right)$
2) $\left(\frac{16}{3}, \frac{8}{3}\right)$
3) $(8,8)$
4) $(4,4)$
74. The points $(4,-2),(3, b)$ are conjugate w.r.t the circle $x^{2}+y^{2}=24$ if $b=$ (Circles)
1) -6
2) 6
3) 4
4) 12
75. The locus of the centre of the circle which cuts the circles $x^{2}+y^{2}+4 x-6 y+9=0$ and $x^{2}+y^{2}-5 x+4 y+2=0$ orthogonally is
(Circles)
1) $9 x+10 y+7=0$
2) $9 x+10 y-7=0$
3) $9 x-10 y-7=0$
4) $9 x-10 y+7=0$
76. The distance of the point $(1,2)$ to the common chord of the circles $x^{2}+y^{2}-2 x+3 y-5=0, x^{2}+y^{2}+10 x+8 y-1=0$ is
1) 2
2) 1
3) $\sqrt{2}$
4) $\sqrt{3}$
(Circles)
77. If $2 y=5 x+k$ is a tangent to the parabola $y^{2}=6 x$, then $k=$
(Parabola)
1) $\frac{2}{3}$
2) $\frac{4}{5}$
3) $\frac{3}{5}$
4) $\frac{6}{5}$
78. Observe the following lists. For the parabola $(y-1)^{2}=4(x-2)$
(Parabola)

List-I

List - II

A) Equation of axis is
B) Equation of latusrectum is

1) $x-2=0$
2) $y-1=0$
C) Equation of directrix is
3) $x-3=0$
D) Equation of tangent at vertex
4) $x-1=0$

The correct match for list - I from list - II is

1) $A-2, B-3, C-4, D-1$
2) $A-2, B-1, C-4, D-3$
3) $A-3, B-2, C-1, D-4$
4) $A-4, B \rightarrow C-3, D-2$
79. Tangent drawn at any point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ euts the major axis at P and minor axis at D. C is centre then $\frac{a^{2}}{C P^{2}}+\frac{b^{2}}{C D^{2}}=$
(Ellipse)
1) 1
2) 2
3) 4
4) $\frac{1}{2}$
80. Product of perpendiculars drawn fromanaint on hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ to its asymptotes is (Hyperbola)
1) $\frac{144}{9}$
2) $\frac{144}{25}$
3) $\frac{25}{9}$
4) $\frac{144}{45}$
