MODEL PAPER - 6

MATHEMATICS

WWW.AIMSTUTORIAL.IN

12.	Length of perpendicula	r from the origin to the p	plane passing through the	e point A(\overline{a}) and cor	ntaining the line
	$\overline{r}=\overline{b}+\lambda\overline{c}$ is				(Vectors)
	1) $\frac{\left[\overline{a}\ \overline{b}\ \overline{c}\ \right]}{\left \overline{a}\ x\ \overline{b}\ +\ \overline{b}\ x\ \overline{c}\ +\ \overline{c}\ x\ \overline{a}\right }$	$2) \frac{\left[\overline{a} \overline{b} \overline{c}\right]}{\left \overline{a} x \overline{b} + \overline{b} x \overline{c}\right }$	3) $\frac{\left\ \left[\overline{a}\ \overline{b}\ \overline{c}\ \right]\right }{\left \overline{b}\ x\ \overline{c}+\overline{c}\ x\ \overline{a}\right }$	$4) \frac{\left[\overline{a} \ \overline{b} \ \overline{c} \right]}{\left \overline{c} \ x \ \overline{a} + \overline{a} \ x \ \overline{b}\right }$	
13.	Volume of the tetrahed	from with edges $\overline{i} + 2\overline{j} + 2$	$2\overline{k}, 2\overline{i} - \overline{j} + 2\overline{k}, 2\overline{i} + 2\overline{j}$	— k .	(Vectors)
	1) $\frac{9}{2}$ cubic units	2) $\frac{7}{2}$ cubic units	3) $\frac{10}{2}$ cubic units	4) $\frac{13}{2}$ cubic units	
14.	Assertion (A): For any	vector $\overline{\mathbf{a}}$, $\left \overline{\mathbf{a}} \times \overline{\mathbf{i}}\right ^2 + \left \overline{\mathbf{a}} \times \overline{\mathbf{i}}\right ^2$	$\overline{j}\Big ^{2} + \Big \overline{a} \times \overline{k}\Big ^{2} = 2\Big \overline{a}\Big ^{2}.$		(Vectors)
	Reason (R): For any ve	ectors $\overline{\mathbf{a}}, \overline{\mathbf{b}}$ and $\overline{\mathbf{c}}, \overline{\mathbf{a}}$	$\overline{\mathbf{b}} \ \overline{\mathbf{c}} \end{bmatrix} = (\overline{\mathbf{a}} \ \mathbf{x} \ \overline{\mathbf{b}}). \ \overline{\mathbf{c}}$		
	Then the correct statement is 1) Both A and R are true and R is the correct explanation of A 2) Both A and R are true and R is not the correct explanation of A 3) A is true and R is false 4) A is false and R is true				
15.	$\overline{a} = 2\overline{i} - 3\overline{j}, \ \overline{b} = \overline{i} + \overline{j} - 3\overline{j}$	$\overline{k}, \ \overline{c} = 3\overline{i} - \overline{k}$.			(Vectors)
	List - I	List II			
	i) [ā b̄ c]	a) $\frac{2}{3}$			
	ii) $\begin{bmatrix} \overline{b} + \overline{c} & \overline{c} + \overline{a} & \overline{a} + \overline{b} \end{bmatrix}$	b) 16			
	iii) $\begin{bmatrix} \overline{b} x \overline{c} & \overline{c} x \overline{a} & \overline{a} x \overline{b} \end{bmatrix}$	c) 8	A STATE		
	with \overline{a} \overline{b} \overline{c} as cote	rminous			
	edges is	d) 4	COF.		
	The correct match from 1) d, c, b, a	list I to II is 2) b, c, a, d	3)c, d, a, b	4) d, b, c,a	
16.	A = $[a_{ij}]_{nxn}$ such that a_{ij} 1) 3	= (i + j) ² and trace of A 2) 6	⇒ 120 then n =3) 5	4) 4	(Matrices)
		n^{2} (n + 1) ² (n + 2)	2		
17.	If $n \in Z$, the value of $\begin{pmatrix} r \\ r \end{pmatrix}$	$(n + 3)^2$ $(n + 4)^2$ $(n + 5)^2$ $(n + 6)^2$ $(n + 7)^2$ $(n + 8)^2$	² / ₂ is		(Matrices)
18.	1) - 8 The system of n equation	2) 8 ons in 'n' unknowns exp	3) - 216 pressed in the form of AX	4) - 108 = B has infinitely m	any solutions if <i>(Matrices</i>)
	1) $ A \neq 0$ 2) $ A \neq 0$, $(adj A) B \neq O$ 3) $ A = 0$, $(adj A) B = O$ 4) $ A \neq 0$, $(adj A) B = O$				
19.	The value of $\sqrt{1-\cos^2 1}$	100° .cos ec $100^{\circ} + \sqrt{1 - 1}$	$\sin^2 100^\circ . s ec 100^\circ =$		(Trignomentry)
20.	If 3 sec α - 5 tan α = k,	6 sec α + k tan α = 5 tl	$3)^{1}$	4) -2	(Trignomentry)
	1) 34	2) 70	3) 14	4) 20	
21.	If sin 2θ = k then $\frac{\tan^3}{1 + \tan^3}$	$\frac{\theta}{1^2 \theta} + \frac{\cot^3 \theta}{1 + \cot^2 \theta} =$			(Trignomentry)
	1) $\frac{1-k^2}{k}$	2) $\frac{2-k^2}{k}$	3) $\frac{1+k^2}{k}$	$4) \ \frac{2+k^2}{k}$	
22.	Period of $\sin \frac{\pi X}{2} + 2\cos \theta$	$\frac{\pi x}{3}$ - tan $\frac{\pi x}{4}$ is			(Trignomentry)
	1) 12	2) 24	3) 16	4) 15	
23.	$\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac$	$\frac{4\pi}{5} =$			(Trignomentry)
	1) 2 16	2) 1 16	3) 3 16	4) 5 16	

-					
24.	The number of solution	ns of the equation cot ² x	$-(\sqrt{3}+1)\cot x + \sqrt{3} = 0$	in the interva	$I\left(0,\frac{\pi}{2}\right)$
	1) 2	2) 3	3) 4	4) 0	(Trignomentry Equation)
25.	The value of tan (2T an	$1^{-1}\frac{1}{5}-\frac{\pi}{4}=$			(Inverse Trignomentry)
26. 27.	1) $\frac{7}{17}$ If $\sin \alpha \cos h\beta = \cos \theta a$ 1) $\cos \alpha$ In $\triangle ABC$, if $2a^2 + 4b^2 + b^2$	2) $-\frac{5}{17}$ and $\cos\alpha \sinh\beta = \sin\theta$ th 2) $\cos^2 \alpha$ $c^2 = 4ab + 2ac$ then $\cos^2 \beta$	3) $\frac{5}{17}$ nen sin h ² β = 3) sin α s B =	4) $-\frac{7}{17}$ 4) $\sin^2 \alpha$	(Hyperbolic Function) (Properties of Triangle)
	1) 7 /8	2) $\frac{5}{8}$	3) $\frac{3}{8}$	4) 1 8	
28.	In $\triangle ABC$, if $\frac{s-a}{11} = \frac{s-a}{12}$	$\frac{b}{2} = \frac{s-c}{13}$ then $\tan^2 \frac{A}{2} =$			(Properties of Triangle)
	1) 11 <u>39</u>	2) 13 33	3) $\frac{12}{37}$	4) $\frac{33}{13}$	
29.	In $\triangle ABC$, $r_1 = 2r_2 = 3r_3 t$ 1) $\frac{\pi}{2}$	then $\angle A =$	$(3)\frac{\pi}{2}$	4) $\frac{2\pi}{2\pi}$	(Properties of Triangle)
30.	¹ / 3 Sum of 99 th powers of 1	^{-/} 4 the roots of the equatior	$x^7 - 1 = 0$ is	·/ 3 4) 693	(De-Moiver's Theroem)
31.	Statement I: x ² - 2x + Statement II: 2x - 7 - 5	10 has minimum value a 5x² has maximum value	at $x = 1$ at $x = 1$	4)000	(Quadratic expression)
32.	1) Only I is true sec α , cosec α are roo 1) p ² = q(q - 2)	2) Only II is true ts of x ² - px + q = 0 ther 2) p ² = q(q + 2)	3) Both L and II are true 3) $p^2 + q^2 = 2q$	 4) Neither I r 4) p² + q² = 2 	nor II is true <i>(Quadratic expression)</i> 2p
33.	α,β,γ are roots of the	equation $x^3 - 3x + 1 = 0$	then the equation whose	roots are α –	$\frac{1}{\beta\gamma}, \beta - \frac{1}{\gamma\alpha}, \gamma - \frac{1}{\alpha\beta}$
34.	1) $x^3 - 3x + 8 = 0$ Exponent of 7 in 100! is	2) $x^3 - 12x + 8 = 0$	3) $x^3 - 6x + 8 = 0$	(4) x ³ - 9x + 8 <i>(Perr</i> 4) 16	neory expression) 3 = 0 nutaion & Combination)
35.	There are 3 different b geography. Total numb 1) 4095	ooks on economics, 4 d er of selections with atle 2) 4096	lifferent books on politica ast one book on each su 3) 3255	al science and bject is <i>(Per</i> 4) 3254	1 5 different books on mutaion & Combination)
36.	The term independent	of x in the expansion of	$\left(\frac{2\sqrt{x}}{5} - \frac{1}{2x\sqrt{x}}\right)^{11}$ is		(Binomial Theorem)
	1) 8 th term	2) 6 th term	3) 5 th term	4) does not	exist
37.	If C, stands for ⁿ C _r and	$\sum_{r=1}^{n} r \cdot \frac{C_r}{C_{r-1}} = 210 \text{ then n}$	=		(Binomial Theorem)
20	1) 19 $x^{3} - 8x^{2} + 10$ A	2)20 B C	3) 21 D then the descending	4) 10	
38.	$(x-1)^4 = \frac{1}{x-1}$	$\frac{1}{1} + \frac{1}{(x-1)^2} + \frac{1}{(x-1)^3} + \frac{1}{(x-1)^3}$	$(-1)^4$, then the descending	ng order of A,	B, C, D IS
39.	1) C, B, A, D Variance of 20 observ observations is	2) D, A, C, B ations is 5. If each obs	3) D, B, A, C servations is increased b	4) D, A, B, C by 2, the vari (/	ance of the resulting Measure of Dispersion)
40.	1) 0.2 A team of 8 couples (hu the probability that then	2) 5 usband and wife) attend re is atleast one couple is 8	3) 10 a lucky draw in which 4 p s	4) 20 persons picke	d up for a prize. Then (<i>Probability</i>)
	1) $\frac{11}{30}$	2) $\frac{0}{13}$	3) $\frac{3}{13}$	4) $\frac{14}{30}$	
41.	Two numbers are select probability that minimu	ted randomly from the s m of the two numbers is	set S = {1, 2, 3, 4, 5, 6} wi s less than 4 is	thout replacer	ment one by one. The (Probability)
	1) $\frac{1}{15}$	2) $\frac{1}{5}$	3) $\frac{4}{5}$	4) $\frac{3}{5}$	
			WWW.A	AIMSTU	TORIAL.IN

42.	Three numbers are cho minimum of the chosen	osen at random without numbers is 3 or their r	t replacement from {1, 2 maximum is 7 is	2, 3,10}.	The probability that (Probability)
	1) $\frac{11}{30}$	2) $\frac{11}{40}$	3) $\frac{13}{40}$	4) $\frac{1}{7}$	
43.	X follows a binomial dis	tribution with paramete	rs n = 8 and p = $\frac{1}{2}$ then	P(X - 4 ≤ 2) =	(Random Variables)
	1) 118 128	2) 119 128	3) 117 128	4) 121 128	
44.	A person who throws a odd number. If 4 dice are	die gains two points for e rolled and total score 2	r getting an even numbe X is observed then the rai	r and loses one nge of X is	e point for getting an <i>(Random Variables)</i> ວຸຣຸຊາ
45.	If the vertices P, Q, R o always rational point ?	f a triangle are rational	points, which of the follo	owing points of	the triangle PQR is (22)
46.	1) centroid The locus of the point of ir	2) incentre ntersection of the lines x s	3) orthocentre $\sin \theta + (1 - \cos \theta) y = a \sin \theta$	4) circumcen θ , x sin θ - (1 + α	tre $(x + a \sin \theta = 0)$ is $(x + a \sin \theta = 0)$ is
47.	1) parabola When origin is shifted to	2) ellipse o suitable point the equ	3) straight line ation xy + 3x - 4y = c trai	4) circle nsforming as X	Y = 10 then c =
	1) 22	2) -22	3) 2	4) -2	Transformation of axis)
48.	Each side of square is $y = x$. Then the coordina	of length 4. The centre ates of its vertices are	of the square is $(3, 7)$ ar	nd one of its dia	agonals is parallel to (Straight Lines)
	1) $(2, 5)$, $(2, 7)$, $(4, 7)$, $($	4, 4) 5, 5)	2) $(2, 5), (2, 6), (3, 5), (2, 6), (3, 5), (3, 5), (2, 6), (3, 7), ($	3, 6) 4 4)	
49.	The length of the perpe	ndicular from the point ((0, 0) to the striaght line	passing throug	h P(1, 2) such that P
	bisects the intercepted <i>Lines</i>)	portion between the ax	es is		(Straight
	1) $\sqrt{5}$	2) $\frac{4}{\sqrt{5}}$	3) 4	4) $\frac{\sqrt{5}}{4}$	
50.	If the acute angle betwee	een the lines 2x - 3y +1	$= 0$ kx + 5y - 6 = 0 is $\frac{\pi}{4}$	then k =	(Straight Lines)
51.	1) 1 The centroid of the triar	2) 2 ngle formed by the lines	3) - 1 x² + xy - 2y² = 0, x + y +	4) - 2 2 = 0	(Pair of
	1) $\left(\frac{5}{3}, \frac{1}{3}\right)$	$2)\left(\frac{-5}{3},\frac{1}{3}\right)$	$3)\left(\frac{5}{3},\frac{-1}{3}\right)$	$4)\left(\frac{-5}{3},\frac{-1}{3}\right)$	
52.	If y = mx bisects the ang	\mathbf{x}^2 gle between the lines \mathbf{x}^2	(tan²θ + cos²θ) + 2xy tan	$\theta - y^2 \sin^2 \theta = 0$	If $\theta = \frac{\pi}{3}$, the value
	of $\sqrt{3}$ m ² + 4m is				(Pair of Straight Lines)
	1) 1	2) $\frac{1}{\sqrt{3}}$	3) _{√3}	4) 7 \ 3	
53.	If $ax^2 + 2hxy + by^2 + 2gx$	+ 2fy + c = 0 represents	s a pair of parallel lines th	nen $\sqrt{\frac{g^2 - ac}{f^2 - bc}} =$	(Pair of Straight Lines)
	1)	2) <mark>b</mark>	3) $\sqrt{\frac{b}{a}}$	4) $\sqrt{\frac{a}{b}}$	
54.	P, Q, R, S, T are five co	ollinear points such that	PQ = QR = RS = ST ar	nd P = (x_1, y_1, z_2)) and T = (x_2, y_2, z_2)
	then the point $\left(\frac{5x_2 + 3x_3}{8}\right)$	$(x_1, \frac{5y_2 + 3y_1}{8}, \frac{5z_2 + 3z_1}{8})$	is midpoint of		(3D)
55.	1) PQ The angle between the 6mn - $2\ell n + 5\ell m = 0$ is	2) QR ines whose direction	3) RS cosines are given by th	4) ST ne equations 3	ℓ + m + 5n = 0 and (Direction Cosines)
	1) $\cos^{-1}\left(\frac{1}{3}\right)$	2) $\cos^{-1}\left(\frac{1}{6}\right)$	3) $\cos^{-1}\left(\frac{2}{3}\right)$	4) $\operatorname{Cos}^{-1}\left(\frac{5}{6}\right)$	
56.	The equation of the plan $3x + 3y + 2z = 8 = 0$	ne through the point (-1,	, 6, 2) and perpendicular	to the planes x	+ 2y + 2z - 5 = 0 and
	1) $2x - 4y + 3z + 20 = 0$	2) 2x + y - 3z + 26 = 0	3) 2x - 4y + 3z + 23 = 0 WWW.A) 4) 2x + 5y - 2 AIMSTUT	z + 12 = 0

57.	$\operatorname{Lt}_{x\to 0} \frac{1 - \cos(1 - \cos x)}{x^4} =$				(Limits)
	1) $\frac{1}{2}$	2) $\frac{1}{4}$	3) $\frac{1}{8}$	4) 1 16	
58.	If f(x) is continuous in [0	0, 1] and f $\left(\frac{1}{3}\right)$ =1 then \int_{n}^{1}	$\operatorname{Lt}_{\to\infty} f\left(\frac{n}{\sqrt{9n^2+1}}\right) =$		(Continuous)
	1) 1	2) 0	3) 1/3	4) 2	
59.	$f: R \rightarrow R$ is a function s	such that f(1) = 2, f(2) =	= 6, and f(x+y) = f(x) + kx	xy - 2y² for all x, y	∈R then <i>(Functions)</i>
60.	1) $f'(x) = f(x)$ The radius and height of volumes of the sphere a Changes)	2) $f'(x) = 6f(x)$ of a cylinder are equal to and cylinder respective	3) f'(x) = 6 o the radius of a sphere. ly is	4) $f'(x) = 6x$ The ratio of the r	rates of change of (Rate of
61.	1) 3 : 4 The tangent to the curv	2) 2 : 3 'e y = x ³ - 6x ² + 9x + 4, (3) 3 : 2) <u>< x <</u> 5 has minimum s	4) 4 : 3 lope at (x ₁ , y ₁) the	en x ₁ = Fangents & Normals)
	1) 2	2) 3	3) 4	4) 5	
62.	The tangent drawn to th	the ellipse $\frac{x^2}{64} + \frac{y^2}{49} = 1$ cu	its the coordinate axes a	t A, B. Then least	length of AB is <i>(Ellipse</i>)
63.	1) 40 Semi vertical angle of a Statement I: Error in ve	2) 30 cone is 45° , and height plume is 45π .	3) 15 is 30.05 cm, then which	4) 225 of the following a	re true? (Errors)
	Statement II: Percenta	ge error in volume is $\frac{1}{2}$. 📚		
64.	1) Only I The value of c for whic interval [1, 3] is	2) Only II h the conclusion of me	3) both I & I an value theorem holds	4) neither I nor I for the function 1 (M	l f(x) = log _e x on the <i>lean Value Theorem)</i>
	1) $\frac{1}{2}\log_{e} 3$	2) 2 log ₃ e	3) log₃ e	4) log _e 3	
65.	If the relation between	subnormal SN and s	ubtangent ST at any po	oint on the curve	$by^2 = (x + a)^3$ is
	$p(SN) = q(ST)^2$, then $\frac{p}{q}$	=		ר)	「angents & Normals)
	1) $\frac{8b}{27}$	2) $\frac{27}{8b}$	3) $\frac{27b}{8}$	4) $\frac{8}{27b}$	
66.	Assertion (A): Both sin	x and cos x are decrea	sing functions in the inte	rval $\left(\frac{\pi}{2},\pi\right)$.	(Maxima & Minima)
67	 Reason (R): If a differentiable function decreases in an interval (a, b) then its derivative also decreases in (a, b) 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true and (R) is false 4) (A) is false and (R) is true 				
07.	(Circles)		0) 1		
68.	The angle between the <i>(Circles)</i>	pair of tangents from (3) 4 13, 0) to the circle x ² + y ²	4) 2 = 25 is	
	1) $\cos^{-1}\left(\frac{5}{12}\right)$	2) Tan ⁻¹ $\left(\frac{5}{12}\right)$	3) $2\cos^{-1}\left(\frac{5}{12}\right)$	4) $2\text{Tan}^{-1}\left(\frac{5}{12}\right)$	
69.	I he radical axis of two h	on-intersecting circles di	vides the line segment joi	ning the centres o	f circles in the ratio (Systemof Circles)
70.	1) of their areas If the slopes of normals of m ₁ , m ₂ , m ₂ is	2) of their radii at P(8, 8), Q(2, -4), R(8	3) 1 : 1 , -8) on parabola y² = 8x a	4) 1 : -1 are $m_{1}^{}$, $m_{2}^{}$, $m_{3}^{}$ the	n ascending order (Parabola)
71.	1) $m_1^{1'}$, $m_2^{2'}$, m_3^{3} The equation to the direction $m_3^{1'}$, $m_4^{2'}$, $m_3^{2'}$, $m_3^{2'}$, $m_3^{2'}$, $m_3^{2'}$, $m_4^{2'}$, $m_5^{2'}$	2) m_1 , m_3 , m_2 ectrix of the parabola x^2 2) $x + 4 = 0$	3) m_3 , m_1 , m_2 + 8x + 12y + 4 = 0 is 3) y - 4 = 0	4) m_2 , m_3 , m_1 4) $v + 4 = 0$	(Parabola)
72.	, The latusrectum of an e	ellipse is $\frac{1}{2}$ of the major	r axis. Its eccentricity is	,,	(Ellipse)
	1) $\frac{2}{3}$	2) $\sqrt{\frac{2}{3}}^{3}$	3) $\sqrt{\frac{3}{2}}$	4) $\frac{2}{\sqrt{3}}$	
			VV VV VV.A		JKIAL.IN

73. The equation to the director circle of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is (Ellipse) 1) $x^2 + y^2 = 25$ 74. If the line x + y + 1 = 0 is an asymptote of $x^2 - y^2 + x - y - 2 = 0$, the other asymptote is 1) x + y = 02) x - y = 03) x - y = 14) x - y + 1 = 04) $x^2 + y^2 = 41$ (Hyperbola) 4) x - y + 1 = 0 75. $\int \frac{2x + \sin 2x}{1 + \cos 2x} dx =$ 1) x tan x + c (Integration) 2) x sec x + c 3) x sec x tan x + c 4) x (tan x + sec x) + c 76. $\int_{0}^{\pi/2} \frac{4\sin x + 3\cos x}{\sin x + \cos x} \, dx =$ (Definite Integrals) 1) $\frac{5\pi}{4}$ 2) $\frac{3\pi}{2}$ 3) $\frac{7\pi}{4}$ 4) $\frac{5\pi}{6}$ 77. $\int_{0}^{\pi/4} \frac{\sin x + \cos x}{3 + \sin 2x} dx =$ (Definite Integrals) 3) $\frac{1}{4} \log 3$ 4) $\frac{1}{8} \log 3$ 1) log 2 2) log 3 78. The area of the region bounded by |x| + |y| = 1 is (Areas) 1) 1 2) 2 3) √**2** 4) 2 √**2** 79. The general solution $\frac{dy}{dx} = \sqrt{1 - x^2 - y^2 + x^2 y^2}$ is (Differentiation Equations) 1) $\sin^{-1} y = \frac{1}{2} \sin^{-1} x + c$ 2) $\sin^{-1} \sqrt{x} \sqrt{1-x^2} + \sin^{-1} x + c$ 4) $\sin^{-1} x + c$ 3) $2\sin^{-1} y = x\sqrt{1-x^2} + \sin^{-1} x + c$ 80. An integrating factor of $(x + y + 1) \frac{dy}{dx} = 1$ is 1) e^{-x} 2) e^{-y} (Differentiation Equations) 4) e^y