MODEL PAPER - 7

<u>MATHEMATICS</u>

15.	The value of k, for which the equation $x^2 + 2(k + 1) x + k^2 = 0$ has equal roots, is (Quadratic Expression)						
	1) -1	2) $-\frac{1}{2}$	3) 1	4) 2			
16.	If $R = (5\sqrt{5} + 11)^{2n+1}$, f	= R - [R] then Rf =			(Binomial Theorem)		
	1) 1	2) 2 ⁿ	3) 2 ²ⁿ	4) 4 ^{2n + 1}			
17.	If $\frac{1}{(x-a)(x^2+b)} = \frac{A}{x-b}$	$\frac{1}{a} + \frac{Bx + C}{x^2 + b}$ then B =			(Partial Fraction)		
	1) $\frac{1}{2}$	2) $\frac{-1}{a^2 + b}$	3) $\frac{1}{1}$	4) $-\frac{1}{a+b^2}$			
18.	The letters of the wor	d RANDOM are writter	n in all possible ways ar is	nd these word: (Perm	s written out as in a utation & Combination)		
19.	1) 614 The number of rectanc	2) 615 gles on a chess board is	3) 613	4) 616 (<i>Perm</i>	utation & Combination)		
	1) 1225	2) 1296	3) 900	4) 1024			
20.	the same number is	numbers less than 1000) are divisible by 5 in whic		Its more than once in Itation & Combination)		
	1) 154	2) 136	3) 144	4) 152			
21.	If $P(A \cup B) = \frac{3}{4}$; $P(\overline{A})$	$=\frac{2}{3}$ then P $\left(\overline{A} \cap B\right)$ =			(Probability)		
	1) $\frac{1}{12}$	2) $\frac{7}{12}$	3) $\frac{5}{12}$	4) $\frac{11}{12}$			
22.	12	12	′′ 12 n one by one with replac	12	bability that the least		
<i></i> .	number on any selecte	ed chit is 5, is	\sim		(Probability)		
	1) $1 - \left(\frac{2}{7}\right)^{-1}$	2) $4\left(\frac{2}{7}\right)^{-1}$	$3)\left(\frac{3}{7}\right)^{4}\left(\frac{2}{7}\right)^{4}$	$4)\left(\frac{3}{7}\right)^{4}$			
23.	A bag contains four ba are white is	lls, two balls are drawn a	and found to be white. Th	ne probability th	nat all the balls in bag (Probability)		
	1) $\frac{2}{5}$	2) $\frac{1}{5}$	$(3) \frac{4}{5}$	4) $\frac{3}{5}$			
24.	A random variable X ha	as the following distributi	ion		(Random Variables)		
	X = x _i : 1 2	3					
	P(X - x _i): k 2k	3k 4k					
	then k, P(x < 3)						
	1) $\frac{1}{10}$, $\frac{3}{5}$	2) $\frac{1}{10}$, $\frac{3}{10}$	$(3) \frac{3}{3}, \frac{1}{3}$	4) $\frac{1}{10}$, $\frac{5}{12}$			
	10 0	10 10	10 10				
25.	X is a Poisson variate	such that $P(X = 2) = \frac{2}{3}$	P(X = 1) then P(X = 0) =	:	(Random Variables)		
	1) $e^{-\frac{3}{4}}$	2) $e^{-\frac{4}{3}}$	3) $e^{-\frac{1}{3}}$	4) $e^{\frac{1}{3}}$			
26.	The range of function f	$f(x) = 4^{x} + 2^{x} + 4^{-x} + 2^{-x}$	[′] + 3 is		(Functions)		
	1) $\left[\frac{3}{4},\infty\right)$	$2)\left(\frac{3}{4},\infty\right)$	3) (7 , ∞)	4) [7, ∞)			
27.	If the sum to n terms o $1) 3^{n} - 1$	of a series is 2 ⁿ⁺¹ + n - 2 2) 2 ⁿ + 1	then n th term = 3) 2 ⁿ - 1	(4) 3 ⁿ + 1	Mathematical Induction)		
28.	,	am with $\overline{AB} = \overline{a}$ and \overline{OB}	,	,	(Vectors)		
	1) $\overline{a} + \overline{b}$	2) <u>a</u> – <u>b</u>	3) <u>b</u> – a	4) $\frac{1}{2}(\overline{a}-\overline{b})$			
29.			$\overline{a} + \overline{b} + \overline{c} = \alpha \overline{d}$ and $\overline{b} + \overline{c} + \overline{c}$	2	$+\overline{b}+\overline{c}+\overline{d}$ is equal to		
20.	1) 0	2) $\alpha \overline{a}$	3) $\beta \overline{b}$	$4) (\alpha + \beta)\overline{c}$	(Vectors)		
	·/ U	-) ua	o) ho	-) (u + p) o	(vectors)		

		1		
43. If	Tan ⁻¹ $\frac{x+1}{x-1}$ + Tan ⁻¹ $\frac{x-1}{x}$	$-^{-}$ = Tan ⁻¹ (-7), then x =		(Inverse Trignometry)
1)) 1	Z) Z	3) no solution	4) -2
44. If :	$2\sinh^{-1}\left(\frac{a}{\sqrt{1-a^2}}\right) = \log\left(\frac{a}{\sqrt{1-a^2}}\right)$	$\left(\frac{1+x}{1-x}\right)$ then x =		(Hyperbola)
1)) a	2) - a	3) $\frac{1+a}{1-a}$	4) $\frac{1-a}{1+a}$
45. If i	in a triangle ABC, $\frac{b+}{11}$	$\frac{c}{12} = \frac{c+a}{12} = \frac{a+b}{13}$, then	cos A is equal to	(Properties of Triangle)
1)	$)\frac{1}{5}$	2) $\frac{5}{7}$	3) $\frac{19}{35}$	4) $\frac{13}{35}$
46. If	5	1	55	'' 35 riangle to the opposite sides, then (Properties of Triangle)
-		2) $\frac{a^2b^2c^2}{4B^3}$	3) $\frac{4a^2b^2c^2}{r^3}$	4) $\frac{a^2b^2c^2}{8R^3}$
47. In	n an obtuse angled trai	ngle, circumcentre lies	IX.	(Properties of Triangle)
48. lf	A = (4, 0), B=(-4, 0) ar	e the two points and A	3) lies on one side P - PB = 4, then the loce 2 2x ² + x ² = 12	us of P is (Locus)
49. Tŕ			-	are translated to (1, -2) is (<i>Transformation of Axes</i>)
1)) c, b, a	2) c, a, b	3) a, b, c triangle with vertices A(4) a, c, b 0, 1), B(2, 0), C(2, -2) is
1)) x - 1 = 0	2) x + y -1 = 0	3) y - 1 = 0	(Straight Lines) 4) y = 0 reciprocals of its intercepts on the
			(11) _ 🤝	na sinna a la sfita interna nta su tha
51. A	straight line passes the	hrough the fixed point	$\left(\frac{1}{k},\frac{1}{k}\right)$. The sum of the	reciprocals of its intercepts on the
CO	oordinate axes is		$\left(\overline{k}, \overline{k}\right)$. The sum of the	(Straight Lines)
co 1)	bordinate axes is $\left(\frac{2}{k}\right)$	2)	3) 252	<i>(Straight Lines)</i> 4) k I triangle with the line 2x + 3y + 5 = 0 is
co 1) 52. Th 1)	bordinate axes is $\frac{2}{k}$ he equation to the pair of $23x^2 - 48xy + 3y^2 = 0$ he length of the interce	2) $\frac{k}{2}$ of lines through the origin 2) 23x ² + 48xy - 3y ² ept on the x-axis cut by	3) $2k$ and forming an equilateral 3) $23x^2 + 48xy + 3y^2 =$ the pair of lines $2x^2 + 5x$	(Straight Lines) 4) k I triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) = 0 4) $23x^2 - 48xy - 3y^2 = 0$ $xy + 3y^2 + 6x + 7y + 1 = 0$ is
co 1) 52. Th 1) 53. Th	bordinate axes is $\frac{2}{k}$ he equation to the pair of $23x^2 - 48xy + 3y^2 = 0$ he length of the interce	2) $\frac{k}{2}$ of lines through the origin 2) 23x ² + 48xy - 3y ² ept on the x-axis cut by	3) $2k$ and forming an equilateral 3) $23x^2 + 48xy + 3y^2 =$ the pair of lines $2x^2 + 5x$	(Straight Lines) 4) k 1 triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) = 0 4) $23x^2 - 48xy - 3y^2 = 0$ $xy + 3y^2 + 6x + 7y + 1 = 0$ is (Pair of Straight Lines)
co 1) 52. Tr 53. Tr 53. Tr 1)	oordinate axes is) $\frac{2}{k}$ he equation to the pair o) $23x^2 - 48xy + 3y^2 = 0$ he length of the interce) $\sqrt{7}$	2) $\frac{k}{2}$ of lines through the origin 2) $23x^2 + 48xy - 3y^2 = 2$ ept on the x-axis cut by 2) $2\sqrt{7}$	3) $2k$ and forming an equilateral 3) $23x^2 + 48xy + 3y^2 =$ the pair of lines $2x^2 + 5x$ 3) $\frac{\sqrt{7}}{2}$	(Straight Lines) 4) k I triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) = 0 4) $23x^2 - 48xy - 3y^2 = 0$ $xy + 3y^2 + 6x + 7y + 1 = 0$ is (Pair of Straight Lines) 4) $\sqrt{2}$ the centroid of the $\triangle ABC$ is
co 1) 52. Tr 53. Tr 53. Tr 1)	oordinate axes is) $\frac{2}{k}$ he equation to the pair o) $23x^2 - 48xy + 3y^2 = 0$ he length of the interco) $\sqrt{7}$ a, B, C are the projection	2) $\frac{k}{2}$ of lines through the origin a 2) $23x^2 + 48xy - 3y^2 = 2$ ept on the x-axis cut by 2) $2\sqrt{7}$ ons of P(5, -2,6) on the	3) 2 and forming an equilateral 3) $23x^2 + 48xy + 3y^2 =$ the pair of lines $2x^2 + 5x$ 3) $\frac{\sqrt{7}}{2}$ coordinate planes then the	(Straight Lines) 4) k 1 triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) = 0 4) $23x^2 - 48xy - 3y^2 = 0$ $xy + 3y^2 + 6x + 7y + 1 = 0$ is (Pair of Straight Lines) 4) $\sqrt{2}$ the centroid of the $\triangle ABC$ is (3D)
co 1) 52. Th 53. Th 53. Th 1) 54. A,	oordinate axes is) $\frac{2}{k}$ he equation to the pair o) $23x^2 - 48xy + 3y^2 = 0$ he length of the interco) $\sqrt{7}$ a, B, C are the projection	2) $\frac{k}{2}$ of lines through the origin a 2) $23x^2 + 48xy - 3y^2 = 2$ ept on the x-axis cut by 2) $2\sqrt{7}$ ons of P(5, -2,6) on the	3) $2k$ and forming an equilateral 3) $23x^2 + 48xy + 3y^2 =$ the pair of lines $2x^2 + 5x$ 3) $\frac{\sqrt{7}}{2}$	(Straight Lines) 4) k 1 triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) = 0 4) $23x^2 - 48xy - 3y^2 = 0$ $xy + 3y^2 + 6x + 7y + 1 = 0$ is (Pair of Straight Lines) 4) $\sqrt{2}$ the centroid of the $\triangle ABC$ is (3D)
co 1) 52. Tr 53. Tr 53. Tr 1) 54. A, 1)	oordinate axes is) $\frac{2}{k}$ he equation to the pair of) $23x^2 - 48xy + 3y^2 = 0$ he length of the interco) $\sqrt{7}$ a, B, C are the projection) (5, -2, 6)	2) $\frac{k}{2}$ of lines through the origin a 2) $23x^2 + 48xy - 3y^2 =$ ept on the x-axis cut by 2) $2\sqrt{7}$ ons of P(5, -2, 6) on the 2) $\left(\frac{5}{3}, -\frac{2}{3}, 2\right)$	3) 2 and forming an equilateral 3) $23x^2 + 48xy + 3y^2 =$ the pair of lines $2x^2 + 5x$ 3) $\frac{\sqrt{7}}{2}$ coordinate planes then the	(Straight Lines) 4) k 4) k 1 triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) = 0 4) $23x^2 - 48xy - 3y^2 = 0$ (y + 3y ² + 6x + 7y + 1 = 0 is (Pair of Straight Lines) 4) $\sqrt{2}$ the centroid of the \triangle ABC is (3D) 4) $\left(\frac{10}{3}, -\frac{4}{3}, 4\right)$
co 1) 52. Th 53. Th 1) 54. A, 1) 55. A	bordinate axes is) $\frac{2}{k}$ he equation to the pair of) $23x^2 - 48xy + 3y^2 = 0$ he length of the interco) $\sqrt{7}$ a, B, C are the projection) (5, -2, 6) a = (-2, 3, 4), B = (-4, 4, 4)	2) $\frac{k}{2}$ of lines through the origin a 2) $23x^2 + 48xy - 3y^2 =$ ept on the x-axis cut by 2) $2\sqrt{7}$ ons of P(5, -2, 6) on the 2) $\left(\frac{5}{3}, -\frac{2}{3}, 2\right)$	3) $2\sqrt{3}$ and forming an equilateral 3) $23x^2 + 48xy + 3y^2 =$ the pair of lines $2x^2 + 5x$ 3) $\frac{\sqrt{7}}{2}$ coordinate planes then the 3) $\left(\frac{20}{3}, -\frac{8}{3}, 8\right)$ b, 1, 2) then the projection	(Straight Lines) 4) k 4) k 1 triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) = 0 4) $23x^2 - 48xy - 3y^2 = 0$ (y + 3y ² + 6x + 7y + 1 = 0 is (Pair of Straight Lines) 4) $\sqrt{2}$ the centroid of the \triangle ABC is (3D) 4) $\left(\frac{10}{3}, -\frac{4}{3}, 4\right)$
co 1) 52. Tr 53. Tr 1) 54. A, 1) 55. A 1) 55. Tr	bordinate axes is) $\frac{2}{k}$ he equation to the pair of) $23x^2 - 48xy + 3y^2 = 0$ he length of the intercommon) $\sqrt{7}$ a, B, C are the projection) $(5, -2, 6)$ a = (-2, 3, 4), B = (-4, 4, 4)) $\frac{1}{\sqrt{29}}$ he equation of the plan	2) $\frac{k}{2}$ of lines through the origin a 2) $23x^2 + 48xy - 3y^2 =$ ept on the x-axis cut by 2) $2\sqrt{7}$ ons of P(5, -2, 6) on the 2) $\left(\frac{5}{3}, -\frac{2}{3}, 2\right)$ 6), C = (4, 3, 5), D = (0 2) $\frac{3}{\sqrt{29}}$ he passing through (1, -	3) $23x^{2}$ + $48xy + 3y^{2}$ = the pair of lines $2x^{2} + 5x^{3}$ $3) \frac{\sqrt{7}}{2}$ coordinate planes then the $3) \left(\frac{20}{3}, -\frac{8}{3}, 8\right)$ (1, 2) then the projection $3) \frac{16}{\sqrt{29}}$ (2, 4), (3, -4, 5) and perpendicular	(Straight Lines) 4) k 4) k 1 triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) = 0 4) $23x^2 - 48xy - 3y^2 = 0$ $xy + 3y^2 + 6x + 7y + 1 = 0$ is (Pair of Straight Lines) 4) $\sqrt{2}$ the centroid of the $\triangle ABC$ is (3D) 4) $\left(\frac{10}{3}, -\frac{4}{3}, 4\right)$ on of \overline{AB} on \overline{CD} is (3D) 4) 0 endicular to yz - plane is (Plane)
co 1) 52. Tr 53. Tr 1) 53. Tr 1) 54. A, 1) 55. A 1) 55. Tr 1) 56. Tr 1) 57. Tr	bordinate axes is) $\frac{2}{k}$ he equation to the pair of) $23x^2 - 48xy + 3y^2 = 0$ he length of the intercomposition) $\sqrt{7}$ a, B, C are the projection) $(5, -2, 6)$ a = (-2, 3, 4), B = (-4, 4, 4)) $\frac{1}{\sqrt{29}}$ he equation of the plan) $2y + z = 0$ he equation of the circ	2) $\frac{k}{2}$ of lines through the origin a 2) $23x^2 + 48xy - 3y^2 =$ ept on the x-axis cut by 2) $2\sqrt{7}$ ons of P(5, -2, 6) on the 2) $\left(\frac{5}{3}, -\frac{2}{3}, 2\right)$ 6), C = (4, 3, 5), D = (0 2) $\frac{3}{\sqrt{29}}$ he passing through (1, - 2) y + 2z + 6 = 0 le of radius 5 with centre	3) $23x^2 + 48xy + 3y^2 =$ the pair of lines $2x^2 + 5x^2$ $3) \frac{\sqrt{7}}{2}$ coordinate planes then the $3) \left(\frac{20}{3}, -\frac{8}{3}, 8\right)$ (1, 2) then the projection $3) \frac{16}{\sqrt{29}}$ (2, 4), (3, -4, 5) and perpending (3) y + 2z - 6 = 0 e on X-axis and passing	(Straight Lines) 4) k 4) k 1 triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) $= 0$ 4) $23x^2 - 48xy - 3y^2 = 0$ $xy + 3y^2 + 6x + 7y + 1 = 0$ is (Pair of Straight Lines) 4) $\sqrt{2}$ the centroid of the $\triangle ABC$ is (3D) 4) $\left(\frac{10}{3}, -\frac{4}{3}, 4\right)$ on of \overline{AB} on \overline{CD} is (3D) 4) 0 endicular to yz - plane is (Plane) 4) $3y + 2z - 2 = 0$ through the point (2, 3) is (Circles)
co 1) 52. Tr 53. Tr 1) 53. Tr 1) 54. A, 1) 55. A 1) 55. A 1) 55. Tr 1) 57. Tr 1) 58. If f	bordinate axes is) $\frac{2}{k}$ he equation to the pair of) $23x^2 - 48xy + 3y^2 = 0$ he length of the intercomposition) $\sqrt{7}$ a, B, C are the projection) $(5, -2, 6)$ a = (-2, 3, 4), B = (-4, 4, 4)) $\frac{1}{\sqrt{29}}$ he equation of the plan) $2y + z = 0$ he equation of the circomposition) $x^2 + y^2 - 12x - 11 = 0$ the two circles $x^2 + y^2$ he equation of possible for the plant of the the the plant of the second	2) $\frac{k}{2}$ of lines through the origin a 2) $23x^2 + 48xy - 3y^2 = 22$ ept on the x-axis cut by 2) $2\sqrt{7}$ ons of P(5, -26) on the 2) $\left(\frac{5}{3}, -\frac{2}{3}, 2\right)$ 6), C = (4, 3, 5), D = (0 2) $\frac{3}{\sqrt{29}}$ the passing through (1, -2) y + 2z + 6 = 0 le of radius 5 with centre 2) $x^2 + y^2 + 4x - 21 = 0$ = 4 and $x^2 + y^2 - 24x - 1$	3) $23x^2 + 48xy + 3y^2 =$ the pair of lines $2x^2 + 5x^2$ 3) $\frac{\sqrt{7}}{2}$ coordinate planes then the 3) $\left(\frac{20}{3}, -\frac{8}{3}, 8\right)$ 0, 1, 2) then the projection 3) $\frac{16}{\sqrt{29}}$ 2, 4), (3, -4, 5) and perpending 3) $y + 2z - 6 = 0$ e on X-axis and passing 3) $x^2 + y^2 + 12x + 11 = 0$	(Straight Lines) 4) k 4) k 1 triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) $= 0$ 4) $23x^2 - 48xy - 3y^2 = 0$ $xy + 3y^2 + 6x + 7y + 1 = 0$ is (Pair of Straight Lines) 4) $\sqrt{2}$ the centroid of the $\triangle ABC$ is (3D) 4) $\left(\frac{10}{3}, -\frac{4}{3}, 4\right)$ on of \overline{AB} on \overline{CD} is (3D) 4) 0 endicular to yz - plane is (Plane) 4) $3y + 2z - 2 = 0$
co 1) 52. Tr 1) 53. Tr 1) 54. A, 1) 54. A, 1) 55. A 1) 55. A 1) 55. Tr 1) 56. Tr 1) 57. Tr 1) 58. If f tho (Ca (Ca) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca)	bordinate axes is) $\frac{2}{k}$ he equation to the pair of) $23x^2 - 48xy + 3y^2 = 0$ he length of the intercomposition) $\sqrt{7}$ a, B, C are the projection) $(5, -2, 6)$ a = (-2, 3, 4), B = (-4, 4, 4)) $\frac{1}{\sqrt{29}}$ he equation of the plan) $2y + z = 0$ he equation of the circomposible of the two circles $x^2 + y^2$ he number of possible of the two circles $x^2 + y^2$ he locus of centre of a = 3 is	2) $\frac{k}{2}$ of lines through the origin a 2) $23x^2 + 48xy - 3y^2 = 4xy - 48xy - 3y^2 = 4xy - 48xy - 3y^2 = 4xy - 4xy - 3y^2 = 4xy - 4xy$	3) 2^{10} and forming an equilateral (0) 3) $23x^{2} + 48xy + 3y^{2} =$ the pair of lines $2x^{2} + 5x$ 3) $\frac{\sqrt{7}}{2}$ coordinate planes then the 3) $\left(\frac{20}{3}, -\frac{8}{3}, 8\right)$ (0, 1, 2) then the projection 3) $\frac{16}{\sqrt{29}}$ (2, 4), (3, -4, 5) and perpending (3) $x^{2} + y^{2} + 12x + 11 = 0$ (10y + a ² = 0, a \in I, have 3) 0	(Straight Lines) 4) k I triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) $= 0$ 4) $23x^2 - 48xy - 3y^2 = 0$ $xy + 3y^2 + 6x + 7y + 1 = 0$ is (Pair of Straight Lines) 4) $\sqrt{2}$ the centroid of the $\triangle ABC$ is (3D) 4) $\left(\frac{10}{3}, -\frac{4}{3}, 4\right)$ on of \overline{AB} on \overline{CD} is (3D) 4) 0 endicular to yz - plane is () () () () () () () () () () () () () (
co 1) 52. Tr 1) 53. Tr 1) 54. A, 1) 55. A 1) 55. A 1) 55. A 1) 55. Tr 1) 56. Tr 1) 57. Tr 1) 58. If fit (C. 1) 59. Tr x = (C. 1) 60. Ci	bordinate axes is) $\frac{2}{k}$ he equation to the pair of) $23x^2 - 48xy + 3y^2 = 0$ he length of the intercomover) $\sqrt{7}$, B, C are the projection) $(5, -2, 6)$ x = (-2, 3, 4), B = (-4, 4, -4)) $\frac{1}{\sqrt{29}}$ he equation of the plan) $2y + z = 0$ he equation of the circomover) $x^2 + y^2 - 12x - 11 = 0$ the two circles $x^2 + y^2$ he number of possible for $Circles$) 11 he locus of centre of a = 3 is <i>Circles</i>)) $y^2 + 6x = 13$	2) $\frac{k}{2}$ of lines through the origin a 2) $23x^2 + 48xy - 3y^2 = 48xy - 3x^2 + y^2 + 4xy - 21 = 00xy = 4xy - 3xy - 3x$	3) 2 and forming an equilateral (a) 3) $23x^2 + 48xy + 3y^2 = 1$ the pair of lines $2x^2 + 5x^2$ (b) $\frac{\sqrt{7}}{2}$ coordinate planes then the (coordinate planes the projection (coordinate pla	(Straight Lines) 4) k I triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) $= 0$ 4) $23x^2 - 48xy - 3y^2 = 0$ $xy + 3y^2 + 6x + 7y + 1 = 0$ is (Pair of Straight Lines) 4) $\sqrt{2}$ the centroid of the $\triangle ABC$ is (3D) 4) $\left(\frac{10}{3}, -\frac{4}{3}, 4\right)$ on of \overline{AB} on \overline{CD} is (3D) 4) 0 endicular to yz - plane is (Plane) 4) $3y + 2z - 2 = 0$ through the point (2, 3) is (Circles) 04) $x^2 + y^2 - 4x + 21 = 0$ eactly two common tangents, then 4) 2 s off a length of 4 units from the line
co 1) 52. Th 1) 53. Th 1) 54. A, 1) 55. A 1) 55. A 1) 55. A 1) 56. Th 1) 57. Th 1) 57. Th 1) 58. If 1 the (C, (C, (C, (C, (C, (C, (C, (C, (C, (C,	bordinate axes is) $\frac{2}{k}$ he equation to the pair of) $23x^2 - 48xy + 3y^2 = 0$ he length of the intercomposition) $\sqrt{7}$ a, B, C are the projection) $(5, -2, 6)$ a = (-2, 3, 4), B = (-4, 4, 4)) $\frac{1}{\sqrt{29}}$ he equation of the plan) $2y + z = 0$ he equation of the circc) $x^2 + y^2 - 12x - 11 = 0$ the two circles $x^2 + y^2$ he number of possible Dircles) 11 he locus of centre of a = 3 is Dircles) $y^2 + 6x = 13$ Sircle $x^2 + y^2 + 2ax + 2$	2) $\frac{k}{2}$ of lines through the origin a 2) $23x^2 + 48xy - 3y^2 = 48xy - 3x^2 = 48xy - 3x^2 = 58xy - 3xy - 3xy$	3) 2 and forming an equilateral (a) 3) $23x^2 + 48xy + 3y^2 = 1$ the pair of lines $2x^2 + 5x^2$ (b) $\frac{\sqrt{7}}{2}$ coordinate planes then the (coordinate planes the projection (coordinate pla	(Straight Lines) 4) k I triangle with the line $2x + 3y + 5 = 0$ is (Pair of Straight Lines) $= 0$ 4) $23x^2 - 48xy - 3y^2 = 0$ $xy + 3y^2 + 6x + 7y + 1 = 0$ is (Pair of Straight Lines) 4) $\sqrt{2}$ the centroid of the $\triangle ABC$ is (3D) 4) $\left(\frac{10}{3}, -\frac{4}{3}, 4\right)$ on of \overline{AB} on \overline{CD} is (3D) 4) 0 endicular to yz - plane is (Plane) 4) $3y + 2z - 2 = 0$ through the point (2, 3) is (Circles) 04) $x^2 + y^2 - 4x + 21 = 0$ eactly two common tangents, then 4) 2 s off a length of 4 units from the line 4) $x^2 + 6y = 13$ + 2gx + 2fy + c = 0 then length of (System of Circles)

62. 63.	The sum of the distanc 1) 8 Length of the latus rect	2) 6	the foci of an ellipse 16(3) 50 $^{2} - y^{2} - 4x - 4y - 20 = 0$	(x - 2) ² + 25(y+ 3 4) 10	$(Hyperbola)^2 = 400$ is <i>(Ellipse)</i>
05.	1) 4	2) 12	3) 7	4) 3	(пурегоога)
64.	$\operatorname{Lt}_{x\to 0} \frac{x \cdot 2^x - x}{1 - \cos x} \text{ is equal to}$)			(Limits)
	1) 2 log 2	2) log 2	3) $\frac{1}{2} \log 2$	3) $\frac{1}{2}$	
65.	If $\underset{x\to 0}{\text{Lt}} \frac{\log(3+x) - \log(3)}{x}$	(-x) = k, the value of k	is		(Limits)
	1) 0	5	3) $\frac{2}{3}$	$(4)-\frac{2}{3}$	
66.	If α is a repeated root of 1) a	of ax ² + bx + c = 0, then 2) b	$Lt_{x\to\alpha} \frac{\tan(ax^2 + bx + c)}{(x-\alpha)^2}$ is 3) c	4) 0	(Limits)
67.	If f(x) = $\begin{cases} \frac{x^2 - (a+2)x + x - 2}{x - 2} \\ 2, \end{cases}$	$x \neq 2$ is continuou x = 2	s at $x = 2$, then the value	of a is	(Continuity)
	1) - 6	2)0	3) 1	4) -1	
68.	Let $f(x+y) = f(x) f(y)$ for 1) 22	all x and y. Suppose tha 2) 33	at $f(3) = 3$ and $f'(0) = 11$, 3) 28	4) 30	Jai to <i>(Differentiation)</i>
69.	The ratio of relative err 1) 1 : n	ors of y and x with resp 2) n : 1	ect to the given function $(3) 1:1$	y = x ⁿ is 4) 2 : 1	(Errors)
70.	A variable triangle is in		dius R. If the rate of cha	,	R times the rate of (Rate of Change)
71.	1) $\pi/2$ The point of the curve y	2) $\pi/4$ $y^3 + 3x^2 = 12y$. Where the	3) $\pi/6$ e tangent is vertical is	4) π/3	(Tangents & Normals)
	1) (0, 0)	$2)\left(\frac{4}{\sqrt{3}},1\right)$	2] for the function 3) $\left(\frac{4}{\sqrt{3}}, 2\right)$ 2] for the function 3) f(x) = 2x ³ + 3 t the product of 5 th power	$4)\left(\frac{4}{\sqrt{3}},\frac{11}{\sqrt{3}}\right)$	
72.	Rolle's theorem is appl 1) $f(x) = x^3$	icable in the interval [-2 2) f(x) = 4x⁴	2] for the function 3) $f(x) = 2x^3 + 3$	4) $f(x) = \pi x $	(Mean Value Theorem)
73.	The ratio of two parts o maximum is	f a number 'a' such that	t the product of 5 th power	[·] of one and 6 th β	oower of the other is (Maxima & Minima)
	1) 25 : 36	2) 6 : 11	3) 5 : 11	4) 5 : 6	
74.	$\int \frac{1}{\sqrt{\sin x}} dx$ is equal to				(Integration)
	1) $2\sqrt{\sin x} + c$	$2) \frac{1}{2\sqrt{\sin x}} + c$	3) $\frac{-2}{\sqrt{\sin x}} + c$	4) $\frac{2}{\sqrt{\sin x}}$ + c	
75.	$\int_{0}^{\frac{\pi}{2}} \left(2 \operatorname{Tan} \frac{x}{2} + x \sec^2 \frac{x}{2} \right) dx$	x =			(Definite Integrals)
	1) π π/2	2) π/2	3) 2π/3	4) π/6	
76.	$a_n = \int_{\pi/4}^{\pi/2} \cot^n x dx$, then 1) GP	$a_{2} + a_{4}, a_{3} + a_{5}, a_{4} + a_{6}$	are in		(Definite Integrals)
	1) GP	2) AP	3) HP	4)AGP	
77.	$\operatorname{Lt}_{n \to \infty} \left[\frac{\sqrt{n^2 - 1^2}}{n^2} + \frac{\sqrt{n^2 - 2}}{n^2} \right]$	$\frac{2^2}{n^2} + \frac{\sqrt{n^2 - 3^2}}{n^2} + \dots n$ te	erms]		(Definite Integrals)
	1) $\frac{\pi}{4}$	2) $\frac{\pi}{2}$	3) $\frac{\pi}{3}$	4) $\frac{\pi}{6}$	

78. The differential equation of family of parabolas with foci at the origin and axis along the x-axis is

1)
$$y\left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} - y = 0$$

2) $x\left(\frac{dy}{dx}\right)^2 + 2y\frac{dy}{dx} - y = 0$ (Differentiation Equatons)
3) $y\left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} + y = 0$
4) $x\left(\frac{dy}{dx}\right)^2 - 2x\frac{dy}{dx} + y = 0$

79. Soltuion of the differential equation $x \sin \frac{y}{x} dy = \left(y \sin \frac{y}{x} - x\right) dx$ is

(Differentiation Equatons)

1)
$$\log x = \cos\left(\frac{y}{x}\right) + C$$
 2) $\log y = \cos\left(\frac{x}{y}\right) + C$ 3) $\log x = \cos\left(\frac{x}{y}\right) + C$ 4) $\log y = \cos\left(\frac{y}{x}\right) + C$

80. The solution of $(x^2 - y^2) dx + 2xy dy = 0$ is 1) $x^2 - y^2 = cx$ 2) $x^2 + y^2 = cy$ 3) $x^2 + y^2 = cx$

(Differentiation Equatons) 4) $x^2 - y^2 = cy$

