MODEL PAPER - 8

MATHEMATICS

1	If $2\sin x + 5\cos y + 7\sin y$	$x = 14$ then $7 \tan - +$	4cos v - 6cos z =		(Trigonometric)
	1) 4	2) -3	3) 11	4) 5	(mgenemetro)
2.	tan 70º - tan 20º - 2tan4 1) (2,10º)	-0º = k tan θ, (k,θ) = 2) (4,10º)	3) (2,20°)	4) (4,20°)	(Trigonometric)
3.	$\frac{\mathrm{d}}{\mathrm{d}x}\left\{\sin^2\cot^{-1}\sqrt{\frac{1+x}{1-x}}\right\} =$				(Differentiation)
	1) 0	2) 1/2	3)-1/2	4) -1	
4.	If $\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{2},\boldsymbol{\theta}_{3}\boldsymbol{\theta}_{n}$ are	in A.P, then $\frac{\sin \theta_1 + \sin \theta_2}{\cos \theta_1 + \cos \theta_1}$	$\frac{1}{10000000000000000000000000000000000$,	(Differentiation)
	1) 0	2) tan ($\theta_1 + \theta_n$)	3) tan $\left(\frac{\theta_1 + \theta_n}{2}\right)$	4) cot $\left(\frac{\theta_1 + \theta_2}{2}\right)$	$\frac{n}{2}$
5.	A monument ABCD state segments AB, AC and and α + β + γ = 180°, t	ands on a level ground AD subtends angles o hen x² =	d, A being on the groun α , β and γ respectively.	d. At a point If AB = a, A	Ý on the ground the C = b, AD = c, AP = x (Properties of Triangle)
	1) $\frac{b-a}{b+a}$	2) $\frac{abc}{a+b+c}$	3) $\frac{a+b+c}{abc}$	4) $\frac{2abc}{a+b+c}$	
6.	Number of different pro	ducts that can be forme 2) 248	ed with 8 different prime 3) 247	numbers is 4) 255	
7.	Ín a triangle ∆ABC, 6r =	\dot{R} , $r_1 = 7r$ then $\angle A =$	· 🔷	,	(Properties of Triangle)
8.	1) $\frac{\pi}{4}$ If in a $\triangle ABC.\cos A \cos \beta$	2) $\frac{\pi}{6}$ B + sin A sin B sin C = 2	3) $\frac{\pi}{2}$ b : c =	4) $\frac{\pi}{3}$	(Properties of Triangle)
	1) 1 : 1: $\sqrt{2}$	2) 1 : √2 ∶ √3	3) 2 : 3	4) 1 : 1 : √3	3
9.	If in a ∆ABC, a = 6, b =	3, $\cos(A - B) = \frac{4}{5}$, then	the area of ∆ABC =		(Properties of Triangle)
10.	1) 6 If a² + b² + c² = 1, then a	2) 8 the range of ab + be	3) 10 ca is	4) 9	(Functions)
	1) [1,0)	$2)\left[\frac{-1}{2},0\right]$	3) $\left[\frac{-1}{2},1\right]$	4) [-1,1]	
11.	Let α,β are the roots of value of $\alpha^2 + \beta^2 =$	the quadratic equation	$x^2 - (a - 2)x - (a + 1) = 0$	where a is va	ariable. Then the least (Quadratic Expression)
12.	If α is a root of $x^7 = 1$ and	1) 3 at $\alpha \neq$ 1, then the value α	2) 5 of α^{101} + α^{102} + α^{103} +	3) 74) 10 α ²⁰⁵ =	(De-Moiver's Theorem)
10	1) 1 $\overline{}$ and $\overline{}$ are two units of	2) 0	3) -104 $$	4) 104	
13.	b and c are two unit ve	ectors along positive x a	nd y axes and a is any	vector, then	(vectors)
	$(\overline{a}.\overline{b})\overline{b} + (\overline{a}.\overline{c})\overline{c} + {\frac{a}{c}}$	$\frac{\overline{a.(bxc)}}{ bxc }$			
	1) [–] a	2) _b	3) ⁻ _c	4) $\bar{a} + \bar{b} + \bar{c}$	
14.	If $ A = 4$, $ adj A = 64$, the set of th	nen the number of elem	ents in the matrix A is	3) 12	(<i>Matrices</i>) 4) 16
15.	The least number of ne 1) 0	gative roots of the equa 2) 1	tion $x^5 - 3x^4 + 4x^3 - 5x^2 + 3) 2$	6x - 7 = 0 is 4) 3	(Theory of Equations)
16.	If α , β , γ are the roots of	the equation $ax^3 + bx^2$	+ $cx + d = 0$, then the value	ue of $\sum_{\alpha} \alpha^2 \beta^2$	= (Theory of Equations)
	1) $\frac{c^2 + 2bd}{a^2}$	2) $\frac{2bd - c^2}{a^2}$	3) $\frac{c^2 - 2bd}{a^2}$	4) $\frac{c^2 + bd}{a^2}$	
17.	If g (x) = 1 + \sqrt{x} , f [g(x)] 1) 1 + 2x ²)] = $3 + 2\sqrt{x} + x$, then f 2) 2 + x^2	(x) = 3) 1 + x	4) 1 + x ²	(Functions)

		3-x -6 3		
18.	One of the roots of x if	$\begin{vmatrix} -6 & 3-x & 3 \\ 3 & 3 & -6-x \end{vmatrix} = 0$	is	(Matrices)
	1) 6	2) 3	3) -3	4) 0
19.	If $\overline{a} = 2\overline{i} + 3\overline{j} + 4\overline{k}$, $\overline{b} =$	$\overline{i} + \overline{j} + 5\overline{k}$ and $\overline{a}, \overline{b}, \overline{c}$ for	orm a left handed system	then \overline{C} = (Vectors)
	1) 11ī-6j-k	2) -11ī +6j +k	3) 11ī - 6j +k	4) 11ī +6j +k
20.	$\bar{a}.\left\{(\bar{b}+\bar{c})x(\bar{a}+\bar{b}+\bar{c})\right\}$			(Vectors)
	1) 0	2) a b c	3) - a b c	4) $2\left[\overline{a} \ \overline{b} \ \overline{c} \right]$
21.	sin [cot ^{_1} {tan (cos ^{_1} x)}] :	=		(Inverse Trignomentry)
	1) $\frac{1}{x}$	2) $\frac{-1}{x^2}$	3) x	4) $\sqrt{1-x^2}$
22.	If $\bar{a}, \bar{b}, \bar{c}$ are non copla	nar unit vectors such t	that $\overline{a} x (\overline{b} x \overline{c}) = \frac{b+c}{\sqrt{2}}$,	then the angle between \bar{a}, \bar{b} is
	1) π	2) $\frac{\pi}{4}$	3) $\frac{\pi}{2}$	4) $\frac{3\pi}{4}$ (Vectors)
23.	Assertion(A) : Number points i	r of unit vectors perper s two.	idicular to the plane conta	aining three non collinear (Vectors)
	Passon(P) : A unit vect	or perpendicular to bot	$\frac{1}{a \times b}$	
	Which of the following i			
24.	 a) A is true R is false A man is known to spe 	e but R is the correct e e but R is not the corre e but R is not the corre	xplanation of A oct explanation of A 4) A is false R is true 4 times. He throws a die	e and reports that it is six. Then the
	1	3	$\hat{\mathbf{X}}_3$	(<i>Frobability)</i>
~-	1) $\frac{1}{3}$	2) - 5	$(3) \frac{1}{8}$	4) -2
25.	Consider the following	two statements:		(Probability) 1
	I: The probability that ra	andomly chosen day of	f a month is monday, is $\frac{1}{8}$	<u>.</u>
	II: If A is any event of a	random experiment, th	ien 0 <u><</u> P (A) <u><</u> 1.	
26. 27.	Then the which of the a 1) I only A coin is tossed once. I the number of points in 1) 24 The range of a rando	above statement is true 2) II only f head comes up, then the sample space of t 2) 12 m variable X is {0,1,2	 ? 3) Both I and II it is tossed again and if a he experiment is 3) 7 2,3	4) Neither I nor II tail comes up, a die is thrown. Then <i>(Probability)</i> 4) 8 babilities are given by P(X = k) =
	$\frac{c(k+1)}{2^k}$, k = 0,1,2,	then c =		(Random Variables)
	1	<u> </u>	<u> </u>	4) 3
00	1) $\frac{-}{2}$	$2)\frac{-}{3}$	$3)\frac{-}{4}$	$4)\frac{-}{4}$
28.	5 digit numbers we get	sible by 3 is to be form	2) 216	nout repetition. The total number of (Permutation & Combinations)
29.	There are 6 '+' signs a	nd 4 '-' signs. The nu	mber of ways of arrangir	ng them so that no two '-' signs are
	together is 1) 35	2) 42	3) 48	<i>(Permutation & Combinations)</i> 4) 56
30.	If A = $\begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and $ A^3 =$	[:] 125, then α =		(Matrices)
	1) 0	2) <u>+</u> 2	3) <u>+</u> 3	4) <u>+</u> 5
31.	The value of λ for which is	n the system of equation	ns 2x - y - z = 12, x - 2y +	$z = -4$, $x + y + \lambda z = 4$ has no solution (<i>Matrices</i>)
	1) 3	2) -3	3) 2	4) -2
			WWW.	AIMSTUTORIAL.IN

32.	If in the expansion of (7 1) 11	1 + x) ⁿ , 9 th , 10 th , 11 th term 2) 12	ns coefficients a 3) 14	re in A.P, then n = 4) 16	(Binomial Theorem)
33.	If $\frac{3x}{(x-6)(x+\alpha)} = \frac{2}{x-6} +$	$\frac{1}{x+\alpha}$ then $\alpha =$	3) 2	4) 1	(Partial Fraction)
34.	$\frac{(1 + \tan 22^{\circ})(1 + \tan 22^{\circ})}{(1 - \cot 22^{\circ})(1 - \cot 23^{\circ})}$	$\frac{3^{0}}{3^{0}}$ =	5)2		(Trignometry)
	1)-1	2) 2	3) 1	4) 4	
35.	If $f(x) = \int_{0}^{\sin x} t^2 dt$, then	period of _f ′(x) is			(Trignometry)
	1) π /2	2) $\frac{2\pi}{3}$	3) 2π	4) π	
36.	If $z = x + iy$ satisfies am 1) 1 · 2	up (z - 1) = amp (z + 3i) t 2) 1 · 3	hen the value o $3) 2 \cdot 3$	f (x - 1) : y 4) 1· 4	(Complex Numbers)
37.	The value of tan ² (sec-	$^{1}3) + \cot^{2}(\csc^{-1}4) =$	0) 2 : 0	1) 1. 1	
38.	1) 20 A man from the top of a time the angle of depre	2) 21 100 m high tower sees a ession becomes 60º. Th	3) 22 a car moving tov e distance in m	4) 23 wards the tower at an a etres travelled by the	angle of 30º. After some car during this time is
	1) $\frac{100\sqrt{3}}{3}$	2) $\frac{200\sqrt{3}}{3}$	3) 100 √ <u>3</u>	4) 200 $\sqrt{3}$	(Properties of Triangle)
39.	If $a_k = \frac{1}{k(k+1)}$ for $k = \frac{1}{k(k+1)}$	1,2,, n then $\begin{pmatrix} n \\ \sum k=1 \end{pmatrix}$	$\left(\mathbf{a}_{\mathbf{k}}\right)^{2} =$		(Mathematical Induction)
	1) $\frac{n}{n+1}$	2) $\frac{n^2}{n+1}$	3) $\frac{n}{(n+1)^2}$	4) $\frac{n^2}{(n+1)^2}$	
40.	If cosh α = secx, then	$\tan^2 \frac{x}{2} =$	RIFY		(Hyperbolic Functions)
	1) $\operatorname{coth}^2 \frac{\alpha}{2}$	2) sech ² $\frac{\alpha}{2}$	3) $tanh^2 \frac{\alpha}{2}$	4) cosech ²	$\frac{\alpha}{2}$
41.	$\operatorname{Lt}_{x \to 0} \frac{\tan x - x}{x^2 \tan x} =$		2		(Limits)
	1) 0	2) 1/2	3) 1/3	4) 1	
42.	$\operatorname{Lt}_{x \to \infty} \frac{6x^2 - \cos 3x}{x^2 + 5} =$	A			(Limits)
	1) $\frac{6}{5}$	2) 6	3) 1	4) $\frac{-3}{5}$	
43.	If $y = \frac{\sin^2 x}{1 + \cot x} + \frac{\cos^2 x}{1 + \tan x}$	then $\frac{dy}{dx}$ at x = $\frac{\pi}{4}$ is			(Differentiation)
	1) 0	2) -1	3) 1	4) √2	
44.	$\frac{\mathrm{d}}{\mathrm{d}x} \sin^{-1}\left(\frac{3x}{2} - \frac{x^3}{2}\right) =$				(Differentiation)
	1) $\frac{3}{\sqrt{4-x^2}}$	2) $\frac{6}{\sqrt{4-x^2}}$	3) $\frac{3}{\sqrt{4+x^2}}$	4) $\frac{1}{\sqrt{4-x^2}}$	
45.	$f(x) = \begin{cases} \left(\frac{a^{x} + b^{x} + c^{x}}{3}\right)^{t/x}, x \\ k & , x = \end{cases}$	$\neq 0$ is continuous x = 0	then k =		(Continunity)
	1) abc	2) 1	3) (abc)³	4) (abc) ^{1/3}	
46.	If $f(x) = e^x$, $g(x) = \sin^{-1} x$	and and h(x) = f(g(x)) t	hen $\frac{h'(x)}{h(x)}$ =		(Differentiation)
	1) $\frac{1}{\sin^{-1}x.\sqrt{1-x^2}}$	2) $\frac{1}{\sqrt{1-x^2}}$	3) $\frac{e^{x}}{\sin^{-1}e^{x}.\sqrt{1-x}}$	$\overline{e^{2x}} \qquad 4) \frac{e^x}{\sqrt{1-e^{2x}}}$	
47.	In a cube the percentage	ge increase in the side i	s 1. The percen	tage increase in volur	ne of cube is <i>(Error)</i>
	1) 2	2) $\frac{1}{2}$	3) $\frac{1}{3}$ W	WW.A‡MSTU	J TORIAL.IN

48. The area of the triangle formed by the tangent
$$y = c^2$$
 with co-ordinate axes is (rangents 4 Normats) (1) c^2 (2) $2c$ (3) $2c^3$ (4) c^3 (4) c^3

66.	lf 2x + 3y = 7 make equ 1) 3	al angles with ax ² + 12x 2) 7	y + ky² = 0 then k = 3) 14	4) 21	(Pair of Straight Lines)
67.	If the line $3x + 4y = 1$ cu	its 25x² + 25y² = 4 in P a	and Q and O is the origin	then <u>POQ</u> =	(Pair of Straight Lines)
	1) $\frac{\pi}{6}$	2) $\frac{\pi}{4}$	3) $\frac{\pi}{3}$	4) $\frac{\pi}{2}$	
68.	If (p, q, r) is equidistant 1) -1	from (1, 2, -3) (2, -3, 1) 2) 0	and (-3, 1, 2) then p + q 3) 1	+ r = 4) 6	(3D)
69.	lf a line makes angles 6	60° , 45°, 45° and θ with fo	our diagonals of a cube t	then $\sin^2\theta$ =	(Direction Cosines)
	1) $\frac{1}{12}$	2) ¹¹ / ₁₂	3) $\sqrt{\frac{11}{12}}$	4) 31 12	
70.	If the plane $2x - 3y + 5z$ k =	2 - 2 = 0 divides the line	segment joining (1, 2, 3)	and (2, 1, k) i	n the ratio 9 : 11 then (<i>Plane</i>)
	1) -2	2) 1	3) -10	4) -1/2	
71.	O is the origin and OA, equation to the circumo	OB are a pair of tange circle of the $\triangle OPQ$ is	ents to the circle $x^2 + y^2 +$	+ 2gx + 2fy + (c = 0, c > 0, then the (Circles)
	1) $x^2 + y^2 - gx - fy = 0$	2) $x^2 + y^2 + \frac{g}{2}x + \frac{f}{2}y = 0$	3) $x^2 + y^2 - \frac{g}{2}x - \frac{f}{2}y = 0$	4) x ² +y ² +gx+	fy = 0
72.	If the pole of a straight I touches the circle x^2+y^2	ine with respect to the c = r ² , then	ircle $x^2 + y^2 = a^2$ lies on the	e circle x ² +y ² =9	9a². If the straight line (Circles)
	1) $9a^2 = r^2$	2) $9r^2 = a^2$	3) $3r^2 = a^2$	4) $r^2 = a^2$	
73.	The condition that the c	Fircles $x^2 + y^2 + 2g_1x + 2f_1y$	$y = 0, x^2 + y^2 + 2g_2 x + 2f_2 y =$	0 may touch e	each other is (Circles)
74.	1) $g_1 g_2 = f_1 f_2$ The locus of the centre or is	2) $g_1 f_2 = g_2 f_1$ of the circle which cuts the	3) $g_1 + g_2 = t_1 + t_2$ e circles x ² +y ² +4x-6y+9 =	4) $g_1 - g_2 = t_1$ 0 and x ² +y ² -4x	-t ₂ +6y+4=0 orthogonally (Svstem of Circles)
	1) 4x - 6y + 5 = 0	2) 4x - 6y - 5 = 0	3) $8x - 12y + 5 = 0$	4) 8x + 12y +	+ 5 = 0
75.	If only one common tan then p =	gent can be drawn to th	e circles x^2 $x^2 - 2x - 4y$	- 20 = 0 and ($(x + 3)^2 + (y + 1)^2 = p^2,$ (System of Circles)
	1) 20	2) 16	3) 9	4) 10	
76.	The locus of the point of one another is	f intersection of two tang	gents to the parabola y ² =	= 4ax which ma	ake an angle 30º with (Parabola)
	1) $(x+a)^2 = 3(y^2-4ax)$	2) $(x+a)^2 = y^2 - 4ax$	$3(y^2 - 4ax = 3(x+a)^2)$	4) y^2 -4ax = 9	(x+a) ²
11.	If the lines $2x + 3y + 12$	= 0, x - y + k = 0 are co	njugate lines with respec	ct to the parab	ola $y^2 = 8x$ then k =
70	1) - 12	2) //2	3) 12	4) -2	(Parabola)
78.	I he equation of the ellip	pse with its axes as the	coordinate axes and wh	ose latusrectu	m is 10 and distance
	1) $x^2 + 2y^2 = 16$	2) $x^2 + 2y^2 = 32$	3) $x^2 + 2y^2 = 64$	4) x ² + 2y ² =	(Ellipse) 100
79.	The locus of point of int	ersection of perpendicu	lar tangents to $\frac{x^2}{25} - \frac{y^2}{9} =$	1 is	(Hyperbola)
	1) x ² + y ² = 16	2) x ² + y ² = 25	3) $x^2 + y^2 = 34$	4) $x^2 + y^2 = 9$)
80.	The area (in square uni	ts) bounded by the curv	$x = -2y^2$ and $x = 1 - 3$	y² is	(Areas)
	1) $\frac{2}{3}$	2) 1	3) $\frac{4}{3}$	4) $\frac{5}{3}$	