MODEL PAPER - 8

MATHEMATICS

1. If $2 \sin x+5 \cos y+7 \sin z=14$, then $7 \tan \frac{x}{2}+4 \cos y-6 \cos z=$
(Trigonometric)
1) 4
2) -3
3) 11
4) 5
2. $\tan 70^{\circ}-\tan 20^{\circ}-2 \tan 40^{\circ}=k \tan \theta,(k, \theta)=$
1) $\left(2,10^{\circ}\right)$
2) $\left(4,10^{\circ}\right)$
3) $\left(2,20^{\circ}\right)$
4) $\left(4,20^{\circ}\right)$
3. $\frac{d}{d x}\left\{\sin ^{2} \cot ^{-1} \sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}}\right\}=$
(Differentiation)
1) 0
2) $1 / 2$
3) $-1 / 2$
4) -1
4. If $\theta_{1}, \theta_{2}, \theta_{3} \ldots \ldots \ldots \theta_{n}$ are in A.P, then $\frac{\sin \theta_{1}+\sin \theta_{2}+\ldots \ldots \ldots \ldots+\sin \theta_{n}}{\cos \theta_{1}+\cos \theta_{2}+\ldots \ldots \ldots+\cos \theta_{n}}=$
(Differentiation)
1) 0
2) $\tan \left(\theta_{1}+\theta_{n}\right)$
3) $\tan \left(\frac{\theta_{1}+\theta_{n}}{2}\right)$
4) $\cot \left(\frac{\theta_{1}+\theta_{n}}{2}\right)$
5. A monument $A B C D$ stands on a level ground, A being on the ground. At a point P on the ground the segments $A B, A C$ and $A D$ subtends angles α, β and γ respectively. If $A B=a, A C=b, A D=c, A P=x$ and $\alpha+\beta+\gamma=180^{\circ}$, then $x^{2}=$
(Properties of Triangle)
1) $\frac{b-a}{b+a}$
2) $\frac{a b c}{a+b+c}$
3) $\frac{a+b+c}{a b c}$
4) $\frac{2 a b c}{a+b+c}$
6. Number of different products that can be formed with 8 different prime numbers is
1) 256
2) 248
3) 247
4) 255
7. In a triangle $\triangle A B C, 6 r=R, r_{1}=7 r$ then $\angle A=$
(Properties of Triangle)
1) $\frac{\pi}{4}$
2) $\frac{\pi}{6}$
3) $\frac{\pi}{2}$
4) $\frac{\pi}{3}$
8. If in a $\triangle A B C, \cos A \cos B+\sin A \sin B \sin C=1$, then $a: b: c=$
(Properties of Triangle)
1) $1: 1: \sqrt{2}$
2) $1: \sqrt{2}: \sqrt{3}$
3) $1 \cdot 2: 3$
4) $1: 1: \sqrt{3}$
9. If in $a \triangle A B C, a=6, b=3, \cos (A-B)=\frac{4}{5}$, then the area of $\triangle A B C=$
(Properties of Triangle)
1) 6
2) 8
3) 10
4) 9
10. If $a^{2}+b^{2}+c^{2}=1$, then the range of $a b+b c+c a$ is
(Functions)
1) $[1,0)$
2) $\left[\frac{-1}{2}, 0\right)$
3) $\left[\frac{-1}{2}, 1\right]$
4) $[-1,1]$
11. Let α, β are the roots of the quadratic equation $x^{2}-(a-2) x-(a+1)=0$ where a is variable. Then the least value of $\alpha^{2}+\beta^{2}=$
(Quadratic Expression)
12. If α is a root of $x^{7}=1$ and $\alpha \neq 1$, then the value of $\alpha^{101}+\alpha^{102}+\alpha^{103}+$
3) 74) 10
1) 1
2) 0
3) -104
4) 104
13. \bar{b} and \bar{c} are two unit vectors along positive x and y axes and \bar{a} is any vector, then
(De-Moiver's Theorem)
(Vectors)
$(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{b}}+(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})_{\bar{c}}+\frac{\{\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} x \overline{\mathrm{c}})\}(\overline{\mathrm{b}} x \overline{\mathrm{c}})}{|\overline{\mathrm{b}} x \overline{\mathrm{c}}|}$
1) \bar{a}
2) \bar{b}
3) \bar{c}
4) $\bar{a}+\bar{b}+\bar{c}$
14. If $|A|=4,|\operatorname{adj} A|=64$, then the number of elements in the matrix A is
1) 4
2) 9
3) 12
4) 16
15. The least number of negative roots of the equation $x^{5}-3 x^{4}+4 x^{3}-5 x^{2}+6 x-7=0$ is (Theory of Equations)
1) 0
2) 1
3) 2
4) 3
16. If α, β, γ are the roots of the equation $a x^{3}+b x^{2}+c x+d=0$, then the value of $\sum \alpha^{2} \beta^{2}=$ (Theory of Equations)
1) $\frac{c^{2}+2 b d}{a^{2}}$
2) $\frac{2 b d-c^{2}}{a^{2}}$
3) $\frac{c^{2}-2 b d}{a^{2}}$
4) $\frac{c^{2}+b d}{a^{2}}$
17. If $g(x)=1+\sqrt{x}, f[g(x)]=3+2 \sqrt{x}+x$, then $f(x)=$
(Functions)
1) $1+2 x^{2}$
2) $2+x^{2}$
3) $1+x$
4) $1+x^{2}$
18. One of the roots of x if $\left|\begin{array}{ccc}3-x & -6 & 3 \\ -6 & 3-x & 3 \\ 3 & 3 & -6-x\end{array}\right|=0$ is
(Matrices)
1) 6
2) 3
3) -3
4) 0
19. If $\bar{a}=2 \bar{i}+3 \bar{j}+4 \bar{k}, \bar{b}=\bar{i}+\bar{j}+5 \bar{k}$ and $\bar{a}, \bar{b}, \bar{c}$ form a left handed system then $\bar{c}=$
(Vectors)
1) $11 \bar{i}-6 \bar{j}-\bar{k}$
2) $-11 \bar{i}+6 \bar{j}+\bar{k}$
3) $11 \bar{i}-6 \bar{j}+\bar{k}$
4) $11 \bar{i}+6 \bar{j}+\bar{k}$
20. $\overline{\mathrm{a}} .\{(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \times(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}})\}$
(Vectors)
1) 0
2) $\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$
3) $-\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$
4) $2\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$
21. $\sin \left[\cot ^{-1}\left\{\tan \left(\cos ^{-1} x\right)\right\}\right]=$
1) $\frac{1}{x}$
2) $\frac{-1}{x^{2}}$
3) x
4) $\sqrt{1-x^{2}}$
22. If $\bar{a}, \bar{b}, \bar{c}$ are non coplanar unit vectors such that $\bar{a} \times(\bar{b} \times \bar{c})=\frac{\bar{b}+\bar{c}}{\sqrt{2}}$, then the angle between \bar{a}, \bar{b} is
1) π
2) $\frac{\pi}{4}$
3) $\frac{\pi}{2}$
4) $\frac{3 \pi}{4}$
(Vectors)
23. Assertion(A) : Number of unit vectors perpendicular to the plane containing three non collinear points is two.
(Vectors)
Reason(R): A unit vector perpendicular to both \bar{a} and \bar{b} is $\pm \frac{\bar{a} \times \bar{b}}{|\bar{a} \times \bar{b}|}$.
Which of the following is true?
1) Both A and R are true but R is the correct explanation of A
2) Both A and R are true but R is not the correct explanation of A
3) A is true R is false
4) A is false R is true
24. A man is known to speak truth 3 times out of 4 times. He throws a die and reports that it is six. Then the probability that it is actually six is
(Probability)
1) $\frac{1}{3}$
2) $\frac{3}{5}$
$\frac{3}{8}$
3) $\frac{1}{2}$
25. Consider the following two statements:
(Probability)
I: The probability that randomly chosen day of a month is monday, is $\frac{1}{84}$.
II: If A is any event of a random experiment, then $0 \leq P(\overline{\mathrm{~A}}) \leq 1$.
Then the which of the above statement is true?
1) I only
2) II only
3) Both I and II
4) Neither I nor II
26. A coin is tossed once. If head comes up, then it is tossed again and if a tail comes up, a die is thrown. Then the number of points in the sample space of the experiment is
(Probability)
1) 24
2) 12
3) 7
4) 8
27. The range of a random variable X is $\{0,1,2,3 \ldots \ldots \ldots\}$ and its probabilities are given by $P(X=k)=$ $\frac{c(k+1)}{2^{k}}, k=0,1,2, \ldots \ldots \ldots$ then $c=$
(Random Variables)
1) $\frac{1}{2}$
2) $\frac{1}{3}$
3) $\frac{1}{4}$
4) $\frac{3}{4}$
28. A five digit number divisible by 3 is to be formed using $0,1,2,3,4,5$ without repetition. The total number of 5 digit numbers we get is
(Permutation \& Combinations)
1) 72
2) 84
3) 216
4) 228
29. There are 6 ' + ' signs and 4 ' - ' signs. The number of ways of arranging them so that no two ' - ' signs are together is
(Permutation \& Combinations)
1) 35
2) 42
3) 48
4) 56
30. If $A=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and $\left|A^{3}\right|=125$, then $\alpha=$
(Matrices)
1) 0
2) ± 2
3) ± 3
4) ± 5
31. The value of λ for which the system of equations $2 x-y-z=12, x-2 y+z=-4, x+y+\lambda z=4$ has no solution is
(Matrices)
1) 3
2) -3
3) 2
4) -2
32. If in the expansion of $(1+x)^{\mathrm{n}}, 9^{\text {th }}, 10^{\text {th }}, 11^{\text {th }}$ terms coefficients are in A.P, then $\mathrm{n}=$
(Binomial Theorem)
1) 11
2) 12
3) 14
4) 16
33. If $\frac{3 x}{(x-6)(x+\alpha)}=\frac{2}{x-6}+\frac{1}{x+\alpha}$ then $\alpha=$
(Partial Fraction)
1) 6
2) 3
3) 2
4) 1
34. $\frac{\left(1+\tan 22^{\circ}\right)\left(1+\tan 23^{\circ}\right)}{\left(1-\cot 22^{\circ}\right)\left(1-\cot 23^{\circ}\right)}=$
1) -1
2) 2
3) 1
4) 4
35. If $f(x)=\int_{0}^{\sin x} t^{2} d t$, then period of $f^{\prime}(x)$ is
(Trignometry)
1) $\frac{\pi}{2}$
2) $\frac{2 \pi}{3}$
3) 2π
4) π
36. If $z=x+$ iy satisfies $a m p(z-1)=a m p(z+3 i)$ then the value of $(x-1): y$
(Complex Numbers)
1) $1: 2$
2) $1: 3$
3) $2: 3$
4) $1: 4$
37. The value of $\tan ^{2}\left(\sec ^{-1} 3\right)+\cot ^{2}\left(\operatorname{cosec}^{-1} 4\right)=$
1) 20
2) 21
3) 22
4) 23
38. A man from the top of a 100 m high tower sees a car moving towards the tower at an angle of 30°. After some time the angle of depression becomes 60°. The distance in metres travelled by the car during this time is
1) $\frac{100 \sqrt{3}}{3}$
2) $\frac{200 \sqrt{3}}{3}$
3) $100 \sqrt{3}$
4) $200 \sqrt{3}$
(Properties of Triangle)
39. If $a_{k}=\frac{1}{k(k+1)}$ for $k=1,2, \ldots \ldots \ldots$. , n then $\left(\sum_{k=1}^{n} a_{k}\right)^{2}=$
(Mathematical Induction)
1) $\frac{n}{n+1}$
2) $\frac{n^{2}}{n+1}$
3) $\frac{n}{(n+1)^{2}}$
4) $\frac{n^{2}}{(n+1)^{2}}$
40. If $\cosh \alpha=\sec x$, then $\tan ^{2} \frac{x}{2}=$
(Hyperbolic Functions)
1) $\operatorname{coth}^{2} \frac{\alpha}{2}$
2) $\operatorname{sech}^{2} \frac{\alpha}{2}$
3) $\operatorname{cosech}^{2} \frac{\alpha}{2}$
$\tanh ^{2} \frac{\alpha}{2}$
41. $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\tan x-x}{x^{2} \tan x}=$
1) 0
2) $1 / 2$
3) $1 / 3$
4) 1
42. $\operatorname{Lt}_{x \rightarrow \infty} \frac{6 x^{2}-\cos 3 x}{x^{2}+5}=$

(Limits)
1) $\frac{6}{5}$
2) 6
3) 1
4) $\frac{-3}{5}$
43. If $y=\frac{\sin ^{2} x}{1+\cot x}+\frac{\cos ^{2} x}{1+\tan x}$ then $\frac{d y}{d x}$ at $x=\frac{\pi}{4}$ is
(Differentiation)
1) 0
2) -1
3) 1
4) $\sqrt{2}$
44. $\frac{d}{d x} \sin ^{-1}\left(\frac{3 x}{2}-\frac{x^{3}}{2}\right)=$
1) $\frac{3}{\sqrt{4-x^{2}}}$
2) $\frac{6}{\sqrt{4-x^{2}}}$
3) $\frac{3}{\sqrt{4+x^{2}}}$
4) $\frac{1}{\sqrt{4-x^{2}}}$
45. $f(x)=\left\{\begin{array}{c}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{1 / x}, x \neq 0 \\ k \quad, x=0\end{array}\right.$ is continuous $x=0$ then $k=$
(Continunity)
1) $a b c$
2) 1
3) $(a b c)^{3}$
4) $(a b c)^{1 / 3}$
46. If $f(x)=e^{x}, g(x)=\sin ^{-1} x$ and and $h(x)=f(g(x))$ then $\frac{h^{\prime}(x)}{h(x)}=$
(Differentiation)
1) $\frac{1}{\sin ^{-1} x \cdot \sqrt{1-x^{2}}}$
2) $\frac{1}{\sqrt{1-x^{2}}}$
3) $\frac{e^{x}}{\sin ^{-1} e^{x} \cdot \sqrt{1-e^{2 x}}}$
4) $\frac{e^{x}}{\sqrt{1-e^{2 x}}}$
47. In a cube the percentage increase in the side is 1 . The percentage increase in volume of cube is
(Error)
1) 2
2) $\frac{1}{2}$
3) $\frac{1}{3}$
WWW.A4)³STUTORIAL.IN
48. The area of the triangle formed by the tangent $x y=c^{2}$ with co-ordinate axes is
(Tangents \& Normals)
1) c^{2}
2) 2 c
3) $2 c^{2}$
4) c
49. Water is being poured into the inverted conical vessel at the rate 1.5 cubic meter $/ \mathrm{min}$. Its depth is always equal to twice its radius. The level of water is rising at the rate of $\frac{3}{8 \pi}$ meter/min when its depth is
1) 1 mt
2) 2 mt
3) 3 mt
4) 4 mt
(Rate of Change)
50. The function $f(x)=\tan ^{-1}(\sin x+\cos x)$ is an increasing function in
(Maxima \& Minima)
1) $\left(\frac{-\pi}{2}, \frac{\pi}{4}\right)$
2) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
3) $\left(0, \frac{\pi}{2}\right)$
4) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
51. The height of the cylinder of maximum volume which can be inscribed in a sphere of radius ' r ' is
1) $\sqrt{2} r$
2) $\frac{2 r}{\sqrt{3}}$
3) $\frac{4 r}{\sqrt{3}}$
4) $\sqrt{\frac{2}{3}} r$
(Maxima \& Minima)
52. Lagrange's theorem can not applicable for
(Mean Value Theorem)
1) $f(x)=x^{2}$ in $[1,2]$
2) $f(x)=x^{3}$ in $[-1,1]$
3) $f(x)=x$ in $[-1,1]$
4) $f(x)=\frac{1}{x}$ in $[-1,1]$
53. Standard deviation of $27,35,40,35,36,36,29$ is
(Measure of Dispersion)
1) 17.14
2) 4.14
3) 34
4) None
54. $\int \frac{1}{\left(1+e^{x}\right)\left(1+e^{-x}\right)} d x=$
2) $\frac{2}{1+e^{x}}+c$
3) $\frac{-2}{1+e^{x}}+c$
4) $\frac{-1}{1+e^{x}}+c$
5) $\frac{1}{1+e^{x}}+c$
55. $\int \sec ^{-1} x d x=$
(Integration)
1) $x \sec ^{-1} x+\cosh ^{-1} x+c$
2) $x \sec ^{-1} x-\cosh ^{-1} x+c$
3) $x \sec ^{-1} x-\sinh ^{-1} x+c$
4) $x \sec ^{-1} x+\sinh ^{-1} x+c$
56. $\int_{-1}^{1} \frac{1}{\left(1+x^{2}\right)^{2}} d x=$
1) $\frac{\pi}{4}-\frac{1}{2}$
2) $\frac{\pi}{4}+\frac{1}{2}$
3) $\frac{\pi}{8}$
4) $\frac{\pi}{8}+\frac{1}{2}$
57. $\int_{0}^{\pi} x \sin ^{5} x \cos ^{6} x d x$
(Definite Integrals)
1) $\frac{8 \pi}{693}$
2) $\frac{8 \pi^{2}}{693}$
3) $\frac{16 \pi}{693}$
4) $\frac{16 \pi^{2}}{693}$
58. The area of the region bounded by the curves $y=|x-2|, x=1, x=3$ and x-axis is
(Areas)
1) 2
2) 4
3) $1 / 2$
4) 1
59. If a, b, c are the orders of the differential equations $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0,\left(\frac{d y}{d x}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+y^{4}=0, \frac{d^{3} y}{d x^{3}}+2\left(\frac{d y}{d x}\right)^{4}=$ $\cos x$ then the ascending order of a, b, c is
(Definite Integrals)
1) a, b, c
2) b, c, a
3) b, a, c
4) c, b, a
60. The solution of $x d y=\left(y+x \cos ^{2} \frac{y}{x}\right) d x$ is
(Definite Integrals)
1) $\tan \left(\frac{y}{x}\right)=\log c x$
2) $\tan \frac{y}{x}=\log c y$
3) $\sin \left(\frac{y}{x}\right)=\log c x$
4) $\cot \frac{y}{x}=\log c x$
61. $O(0,0) A(6,0) B(0,4)$ are three points. If P is a point such that area of $\triangle P O B$ is twice the area of $\triangle P O A$, then the locus of P is
1) $x^{2}-3 y^{2}=0$
2) $x^{2}-9 y^{2}=0$
3) $y^{2}-9 x^{2}=0$
4) $y^{2}-3 x^{2}=0$
(Locus)
62. The angle of ration of axes to remove $x y$ term in the equation $7 x^{2}+2 \sqrt{3} x y+9 y^{2}=10$ is
(Transformations)
1) $\frac{\pi}{12}$
2) $\frac{\pi}{6}$
3) $\frac{\pi}{3}$
4) $\frac{5 \pi}{12}$
63. If the straight line drawn through the point $P(\sqrt{3}, 2)$ making an angle $\frac{\pi}{6}$ with x-axis meets the line $\sqrt{3} x-4 y+8=0$ at Q. Then PQ is
1) 4
2) 5
3) 6
4) 9
64. If the lines $a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0,(a \neq b \neq c)$ are concurrent then the point of concurrence is
1) $(0,0)$
2) $(1,1)$
3) $(2,2)$
4) $(-1,-1)$
65. Area of triangle formed by angle bisectors of co-ordinate axes and the line $x=6$ in sq. units is
1) 36
2) 18
3) 72
4) 9
(Straight Lines)
66. If $2 x+3 y=7$ make equal angles with $a x^{2}+12 x y+k y^{2}=0$ then $k=$
(Pair of Straight Lines)
1) 3
2) 7
3) 14
4) 21
67. If the line $3 x+4 y=1$ cuts $25 x^{2}+25 y^{2}=4$ in P and Q and O is the origin then $P P O Q=$ (Pair of Straight Lines)
1) $\frac{\pi}{6}$
2) $\frac{\pi}{4}$
3) $\frac{\pi}{3}$
4) $\frac{\pi}{2}$
68. If (p, q, r) is equidistant from $(1,2,-3)(2,-3,1)$ and $(-3,1,2)$ then $p+q+r=$
(3D)
1) -1
2) 0
3) 1
4) 6
69. If a line makes angles $60^{\circ}, 45^{\circ}, 45^{\circ}$ and θ with four diagonals of a cube then $\sin ^{2} \theta=$
(Direction Cosines)
1) $\frac{1}{12}$
2) $\frac{11}{12}$
3) $\sqrt{\frac{11}{12}}$
4) $\frac{31}{12}$
70. If the plane $2 x-3 y+5 z-2=0$ divides the line segment joining $(1,2,3)$ and $(2,1, k)$ in the ratio $9: 11$ then $\mathrm{k}=$
(Plane)
1) -2
2) 1
3) -10
4) $-1 / 2$
71. O is the origin and $O A, O B$ are a pair of tangents to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0, c>0$, then the equation to the circumcircle of the $\triangle O P Q$ is
(Circles)
1) $x^{2}+y^{2}-g x-f y=0$
2) $x^{2}+y^{2}+\frac{g}{2} x+\frac{f}{2} y=0$
3) $x^{2}+y^{2}-\frac{g}{2} x-\frac{f}{2} y=0$
4) $x^{2}+y^{2}+g x+f y=0$
72. If the pole of a straight line with respect to the circle $x^{2}+y^{2}=a^{2}$ lies on the circle $x^{2}+y^{2}=9 a^{2}$. If the straight line touches the circle $x^{2}+y^{2}=r^{2}$, then
(Circles)
1) $9 a^{2}=r^{2}$
2) $9 r^{2}=a^{2}$
3) $3 r^{2}=a^{2}$
4) $r^{2}=a^{2}$
73. The condition that the circles $x^{2}+y^{2}+2 g_{1} x+2 f_{1} y=0, x^{2}+y^{2}+2 g_{2} x+2 f_{2} y=0$ may touch each other is (Circles)
1) $g_{1} g_{2}=f_{1} f_{2}$
2) $g_{1} f_{2}=g_{2} f_{1}$
3) $g_{1}+g_{2}=f_{1}+f_{2}$
4) $g_{1}-g_{2}=f_{1}-f_{2}$
74. The locus of the centre of the circle which cuts the circles $x^{2}+y^{2}+4 x-6 y+9=0$ and $x^{2}+y^{2}-4 x+6 y+4=0$ orthogonally is
(System of Circles)
1) $4 x-6 y+5=0$
2) $4 x-6 y-5=0$
3) $8 x-12 y+5=0$
4) $8 x+12 y+5=0$
75. If only one common tangent can be drawn to the circles $x^{2}+y^{2}-2 x-4 y-20=0$ and $(x+3)^{2}+(y+1)^{2}=p^{2}$, then $p=$
(System of Circles)
1) 20
2) 16
3) 9
4) 10
76. The locus of the point of intersection of two tangents to the parabola $y^{2}=4 a x$ which make an angle 30° with one another is
(Parabola)
1) $(x+a)^{2}=3\left(y^{2}-4 a x\right)$
2) $(x+a)^{2}=y^{2}-4 a x$
3) $y^{2}-4 a x=3(x+a)^{2}$
4) $y^{2}-4 a x=9(x+a)^{2}$
77. If the lines $2 x+3 y+12=0, x-y+k=0$ are conjugate lines with respect to the parabola $y^{2}=8 x$ then $k=$
1) -12
2) $7 / 2$
3) 12
4) -2
(Parabola)
78. The equation of the ellipse with its axes as the coordinate axes and whose latusrectum is 10 and distance between the foci is the length of minor axis
(Ellipse)
1) $x^{2}+2 y^{2}=16$
2) $x^{2}+2 y^{2}=32$ a
3) $x^{2}+2 y^{2}=64$
4) $x^{2}+2 y^{2}=100$
79. The locus of point of intersection of perpendicular tangents to $\frac{x^{2}}{25}-\frac{y^{2}}{9}=1$ is
(Hyperbola)
1) $x^{2}+y^{2}=16$
2) $x^{2}+y^{2}=25$
3) $x^{2}+y^{2}=34$
4) $x^{2}+y^{2}=9$
80. The area (in square units) bounded by the curves $x=-2 y^{2}$ and $x=1-3 y^{2}$ is
(Areas)
1) $\frac{2}{3}$
2) 1
3) $\frac{4}{3}$
4) $\frac{5}{3}$
