MODEL PAPER - 1
 PHYSICS

81. What is the contribution of S.Chandra Sekhar to Physics
(Physical world)
1) Cosmic radiation
2) Nuclear model \& atom 3) Laser
3) Structure and evolution of stars
82. The length, breadth and thickness of a rectangular sheet of metal are $4.234 \mathrm{~m}, 1.005$ and 2.01 cm respectively. The volume of the sheet to correct significant figures is
(Units and Mesurement)
1) $0.0855 \mathrm{~m}^{3}$
2) $0.086 \mathrm{~m}^{3}$
3) $0.08556 \mathrm{~m}^{3}$
4) $0.08 \mathrm{~m}^{3}$
83. A ball dropped from a point P crosses a point Q in t seconds. The time taken by it to travel from Q to R, if $P Q=Q R$
(Motion in a Straight Line)
1) t
2) $\sqrt{2} t$
3) 2 t
4) $(\sqrt{2}-1) \mathrm{t}$
84. A body of mass ' m ' is projected horizontally with a velocity ' v ' from thetop of a tower of height ' h ' and it reaches ground at a distance ' x ' from the top of a tower. If a second body of mass' $2 m$ ' is projected horizontally from the top of a tower of height 2 h , it reaches the ground at a distance ' 2 x ' from the tower. The horizontal velocity of second body is
(Motion in a Plane)
1) v
2) $2 v$
3) $\sqrt{2} v$
4) $v / 2$
85. A particle is aimed at a mark which is in the same horizontal plane as that of point of projection. If falls 20 m short of the target when it is projected at an angle of 75° and falls 20 m ahead of the target when it is projected with an elevation of 45°. The angle of projection for which the particle exactly hits this target is ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(Motion in a Plane)
1) $\frac{1}{2} \operatorname{Sin}^{-1}\left(\frac{7}{6}\right)$
2) $\frac{1}{2} \operatorname{Sin}^{-1}\left(\frac{6}{7}\right)$
3) $2 \sin ^{-1}\left(\frac{6}{7}\right)$
4) $\frac{1}{2} \operatorname{Sin}^{-1}\left(\frac{3}{4}\right)$
86. A 500 kg rocket has to be fired vertically. Exhaust velocity of the gases is $1.96 \mathrm{~km} / \mathrm{s}$. Minimum mass of the fuel to be released in kg per second is
(Law of Motion)
1) 250 kg
2) 25 kg
3) 2.5 kg
4) 50 kg
87. A balloon has 5 gm of air. A small hole is pierced into it. The air escapes at a uniform rate with a velcoity of $4 \mathrm{cms}^{-1}$. If the balloon shrinks completely in 2.5 second, then the average force acting on the balloon is
(Law of Motion)
1) 2 dyne
2) 50 dyne
3) 8 dyc
4) 8 N
88. A truck moves up a hill of incline 1 in 50 with a speed of 20 KMPH . If the resistance to the motion of the truck is 4% of its weight, the speed of the truck while mongedownhill utilising the same power is (Work, Energy, Power)
1) 20 KMPH
2) 40 KMPH
3) 60 KMPH
4) 80 KMPH
89. A block of mass 2 kg slides along a friction ${ }^{\text {Ness }}$ table iwth a speed of $10 \mathrm{~m} / \mathrm{sec}$. Directly infront of it and moving in the same direction is a block of 155 kg moving at $3 \mathrm{~m} / \mathrm{sec}$. A massless spring of spring constant $\mathrm{k}=1120$ N / m is attached to the back sid of 5 kg mass as shown in figure. When the blocks collides, the maximum compression in the spring(the spring does not bend) will be
(Work, Energy, Power)

1) 0.25 m
2) 0.4 m
3) 0.33 m
4) 1.12 m
90. The diameter of a fly wheel is R. Its coefficient of linear expansion is α. If its temperature is increased by ΔT the percentage increase in its moment of inertia is
(System of Particles and RM)
1) $200 \times \alpha \times \Delta T$
2) $100 \times \alpha \times \Delta T$
3) $50 \times \alpha \times \Delta \mathrm{T}$
4) $150 \mathrm{x} \alpha \times \Delta \mathrm{T}$
91. The moment of inertia of a thin square plate $A B C D$ of uniform thickness about an axis passing through the centre O and perpendicular to the plane of the plate is
(System of Particles and RM)

a) $I_{1}+I_{3}$
b) $I_{2}+I_{4}$
c) $2 I_{1}+I_{3}$
d) $I_{1}+2 I_{3}$
1) a, b are true
2) b, c are true
3) c, d are true
4) b, d are true
92. Two spheres each of mass M and radius $R / 2$ are connected with a massless rod of length $2 R$ as shown in the figure. The moment of inertia of the system about an axis passing through the centre of one of the spheres and perpendicular to the rod is
(System of Particles and RM)

1) $\frac{21}{5} M R^{2}$
2) $\frac{2}{5} M R^{2}$
3) $\frac{5}{2} M R^{2}$
4) $\frac{5}{21} M R^{2}$
93. A spring has a length ℓ and force constant k . It is cut into two parts of length ℓ_{1} and ℓ_{2} such that $\ell_{1}=\mathrm{n} \ell_{2}$ (n is an integer) the force constant of spring of length ℓ_{1} is
(Oscillation)
1) $k(1+n)$
2) $\frac{k}{n}(1+n)$
3) k
4) $\frac{k}{n+1}$
94. Gravitational potential at the centre of a uniform solid sphere of mass ' M ' and radius ' R ' is if potential due to the sphere at the infinity is $\frac{G M}{R}$
(Gravitation)
1) $-\frac{3 G M}{2 R}$
2) $-\frac{G M}{2 R}$
3) $-\frac{G M}{R}$
4) None
95. The length of a metal wire is ℓ_{1} when the tension in it is T_{1} and is ℓ_{2} when the tension is T_{2}. Find the actual length of the wire
(Mechanical Properties of Solids)
1) $\frac{\ell_{1} T_{1}-\ell_{2} T_{2}}{T_{1}+T_{2}}$
2) $\frac{\ell_{1} T_{1}-\ell_{2} T_{1}}{T_{1}+T_{2}}$
3) $\frac{\ell_{1} T_{2}-\ell_{2} T_{1}}{T_{1}+T_{2}}$
4) $\frac{\ell_{2} T_{1}-\ell_{1} T_{2}}{T_{1}-T_{2}}$
96. Two tanks contain different liquids with density in the ratio $2: 1$. Holes of cross-section with ratio $2: 1$ are made at heights h_{1} and h_{2} below the liquid levels in two tanks which have same heights from bottom to tanks. Find the ratio of h_{1} and h_{2} when mass flux through holes same.
(Mechanical Properties of Fluids)
1) $1: 8$
2) $1: 4$
$1: 16$
3) $1: 2$
97. A body takes 8 minutes to cool from $90^{\circ} \mathrm{C}+10^{\circ} \mathrm{C}$ in a surrounding of temperature $25^{\circ} \mathrm{C}$. The time taken by it to cool from $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in the same sarbundings is
(Thermal Properties of Matter)
1) 10 min
2) 9.6 n
3) 12 min
4) 16 min
98. A carnot's engine operates syith source at 500 K \& sink at 375 K . The engine takes 600 K cal of heat in one cycle, the heat rejectedtorsink per cycle is
(Thermodynamics)
1) 250 k cal
2) 350 k cal
3) 450 k cal
4) 550 k cal
99. The coefficient of performance of a carnot refrigeration working between $30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ is
(Thermodynamics)
1) 10
2) 0.1
3) zero
4) 9.1
100. The rms velcoity of H_{2} molecules at $27^{\circ} \mathrm{C}$ is $1930 \mathrm{~m} / \mathrm{s}$. The rms velocity of O_{2} molecules at 1200 K will be
(Kinetic Theory of gases)
1) $365 \mathrm{~m} / \mathrm{s}$
2) $965 \mathrm{~m} / \mathrm{s}$
3) $765 \mathrm{~m} / \mathrm{s}$
4) $865 \mathrm{~m} / \mathrm{s}$
101. Two trains are moving towards each other at speeds of $144 \mathrm{~km} / \mathrm{hr}$ and $54 \mathrm{~km} / \mathrm{hr}$ relative to the ground. The first train sounds a whistle of frequency 600 Hz . Find the frequency of the whistle as heard by a passenger in the second train before the trains meet. ($\mathrm{v}=340 \mathrm{~m} / \mathrm{s}$)
(Waves)
1) 610 Hz
2) 510 Hz
3) 710 Hz
4) 170 Hz
102. A myopic person can not see objects lying beyond 2 m . The focal length and power of the lens required to remove this defect will be
(Ray Optics and Optical Instruments)
1) 1 m and 0.5 D
2) $-2 m$ and -0.5 D
3) 0.5 m and 0.5 D
4) -0.5 m , and 0.5 D
103. A person cannot see an object lying beyond 80 cm , where as a normal person can easily see the object distant 160 m . the focal length and nature of the lens used to rectify this defect will be
(Ray Optics and Optical Instruments)
1) 160 cm , concave
2) 160 cm , conven
3) 60 cm , concave
4) 60 cm , conven
104. In young's double slit experiment the two slits act as coherent source of equal amplitude and of wavelength λ. In another experiment with the same set up, the two slits are source of equal wavelength and amplitude A and 2A. but are incoherent. The ratio of intensity of light at the mid-point of the screen in the first case to that in the second is
(Wave Optics)
1) $\frac{4}{\sqrt{5}}$
2) $\frac{2}{\sqrt{5}}$
3) $\frac{4}{5}$
4) $\frac{4}{3}$
105. AN infinite number of charges each equal to q are placed along the x-axis at $x=1, x=2, x=4, x=8$ meter.... The electric field at the point $x=0$ due to this set of charges is
(Electric Charges and Fields)
1) $\frac{Q}{4 \pi \epsilon_{0}}$
2) $\frac{Q}{3 \pi \epsilon_{0}}$
3) $\frac{Q}{2 \pi \epsilon_{0}}$
4) $\frac{Q}{\pi \epsilon_{0}}$
106. The capacity of a parallel plate condenser with air medium is $60 \mu \mathrm{~F}$ having distance of separation d . If the space between the plates is filled with two slabs each of thickness $\mathrm{d} / 2$ and dielectric constants 4 and 8 , the effective capacity becomes
(Electrostatic Potential and Capacitance)
1) $160 \mu \mathrm{~F}$
2) $320 \mu \mathrm{~F}$
3) $640 \mu \mathrm{~F}$
4) $360 \mu \mathrm{~F}$
107. The energy stored in the capacitor is

1) $12 \mu \mathrm{~J}$
2) $24 \mu \mathrm{~J}$
3) $36 \mu \mathrm{~J}$
4) $48 \mu \mathrm{~J}$
(Current Electricity)
108. In the circuit shown in figure, the potentials of B, C and D are :

1) $V_{B}=6 \mathrm{~V} ; \mathrm{V}_{\mathrm{C}}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=11 \mathrm{~V}$
2) $\mathrm{V}_{\mathrm{B}}=11 \mathrm{~V} ; \mathrm{V}_{\mathrm{C}}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}$
3) $\mathrm{V}_{\mathrm{B}}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{C}}=11 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}$
4) $V_{B}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{C}}=6 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=11 \mathrm{~V}$
109. A straight conductor carrying a current is kept in a μ ntorm magnetic field so as to experience maximum force. If now the conductor is turned in its own phaters such that the force acting on it is half of the maximum force, Then the angle made by the conductoothe final position with respect to the field is
(Moving Charges and Magnetism)
1) 60°
2) 45°
3) 30°
4) 90°
110. Due to a straight vertical currepritrying conductor, a null point occured at P on east of the conductor. The net magnetic induction at and ' Q ' which is at same distance on north of the conductor is
(Moving Charges and Magnetism)
1) 0
2) $\sqrt{3} B_{H}$
3) B_{H}
4) $\sqrt{2} B_{H}$
111. A bar Magnet of pole strength $2 \mathrm{amp}-\mathrm{m}$ is kept in a magnet field of induction $4 \times 10^{-5} \mathrm{web} / \mathrm{m}^{2}$ such that the axis of magnet makes on angle 30° with the direction of the field. The couple acting on the magnet is found to be $80 \times 10^{-7} \mathrm{~N}-\mathrm{m}$ Then the distance between the two poles of the magnet is
(Magnetism and Matter)
1) 20 m
2) 2 m
3) 3 cm
4) 20 cm
112. A step - down transformer has primary voltage 1100 V . The transformation ratio is $1: 5$ If the primary current is 10 A then the secondary voltage secondary current assuming the transformer to be an ideal transformer
(Electromagnetic Induction)
1) $220 \mathrm{~V}, 50 \mathrm{~A}$
2) $220 \mathrm{~V}, 5 \mathrm{~A}$
3) $22 \mathrm{~V}, 50 \mathrm{~A}$
4) $22 \mathrm{~V}, 5 \mathrm{~A}$
113. The instantaneous value of emf and current in an A.C circuit are; $E=1.414 \sin \left(100 \pi t-\frac{\pi}{4}\right)$, $I=0.707 \sin (100 \pi t)$. The RMS value of current will be
(Alternating Current)
1) 1 A
2) $\frac{1}{\sqrt{2}} \mathrm{~A}$
3) $\sqrt{2} \mathrm{~A}$
4) $\frac{1}{2} \mathrm{~A}$
114. In an electromagnetic wave, the amplitude of electric field is $1 \mathrm{~V} / \mathrm{m}$. The frequency of wave is $5 \times 10^{14} \mathrm{~Hz}$. The wave is propagating along z-axis. The average energy density of electric field, in Joule $/ \mathrm{m}^{3}$, will be
(Electromagnetic Waves)
1) 1.1×10^{-11}
2) 2.2×10^{-12}
3) 3.3×10^{-13}
4) 4.4×10^{-14}
115. Light of wavelength $4000 \mathrm{~A}^{0}$ is incident on a metal surface of work function 2.5 eV . Given $\mathrm{h}=6.62 \times 10^{-34} \mathrm{Js}$, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the maximum KE of photoelectrons emitted and the corresponding stopping potential are respectively
1) $0.6 \mathrm{eV}, 0.6 \mathrm{~V}$
2) $2.5 \mathrm{eV}, 2.5 \mathrm{~V}$
3) $3.1 \mathrm{eV}, 3.1 \mathrm{~V}$
4) $0.6 \mathrm{eV}, 0.3 \mathrm{~V}$
116. In the lowest orbit, the binding energy of an electron in hydrogen atom is 13.6 eV . The enrgy required to take out the electron from the lower three orbits in (ev) will be :
(Atoms)
1) $13.6,6.8,8.4$
2) $13.6,10.2,3.4$
3) $13.6,27.2,40.8$
4) $13.6,3.4,1.5$
117. The half - life of a cobalt - 60 isotope is 5.2 years. if 1.0 g of cobalt - 60 decays with time, the amount (in grams) remaining after 20.8 years is
(Nuclei)
1) 0.25
2) 0.50
3) 0.125
4) 0.0625
118. In a transistor $\beta=50$, the change in the voltage across $5 \mathrm{~K} \Omega$ resistor which is connected in collector circuit is 5 V . The change is base current is
(Semiconductors)
1) $10 \mu \mathrm{~A}$
2) $20 \mu \mathrm{~A}$
3) $50 \mu \mathrm{~A}$
4) $100 \mu \mathrm{~A}$
(Semiconductors)
119. The get an output $Y=1$ from circuit of fig. below the input must be

1) $A-0, B-1, C-0$
2) $\mathrm{A}-1, \mathrm{~B}-0, \mathrm{C}-0$
3) $\mathrm{A}-1, \mathrm{~B}-0, \mathrm{C}-1$
4) A-1, B-1, C-0
120. 1% of $10^{12} \mathrm{~Hz}$ of a satellite link was used for telephony. The number of channels or subscribers if each channel is of 8 KHz are
(Communication System)
1) 2.5×10^{7}
2) 1.25×10^{6}
3) 2.5×10^{8}
4) 1.25×10^{8}
