WWW.AIMSTUTORIAL.IN

MODEL PAPER - 2 PHYSICS

93. A force of 6.4 N stretches a vertical spring by 0.1 m. The mass that must be suspended from the spring so that it oscillates with a period of $\begin{pmatrix} \pi/4 \end{pmatrix}$ seconds. (Oscillation)

3)41

3) (1∕_π) kg 1) $\left(\frac{\pi}{4}\right)$ kg 2) 1 kg 4) 10 kg

1)21

WWWW.AIMSTUTORIAL.IN

WWW.AIMSTUTORIAL.IN

94. The potential, energy of the shown system (mass of both the shells is m and internal and outer radius is r & 2r) is (Gravitation)

WWW.AIMSTUTORIAL.IN

108. The potential difference between the points A and B is

	1) 1.50V	2) 2.50 V	3) 1.00V	4) 1.78V
109.	9. A magnetic field 4 x 10 ⁻³ \hat{K} T exerts a force $(4\hat{i} + 3\hat{j})x10^{-10}N$ on a particle having a charge 10 ⁻⁹ C and gc			
	the X-Y plane . The velo	ocity of the particle is	,	(Moving Charges and Magnetism)
	1) –75î +100ĵ	2) 100î + 75ĵ	3) 75î + 100ĵ	4) 100î – 75ĵ
110.	A current of 5 amp flow density is 2×10^{-7} T then 1) due north 10m from t 3) due east 5m from the	ws downwards in along n the neutral point is he wire e wire	g straight vertical conduc 2) due east 10m from th 4) due west 5 m from th	ctor and the earth's horizontal flux <i>(Moving Charges and Magnetism)</i> he wire ne wire
111.	A magnetic needle of pole strength $20\sqrt{3}$ Am is pivoted at its centre. Its N - pole is pulled eastward by a string. The horizontal force required to produce a deflection of 30° from magnetic meridian (take $B_{H} = 10^{-4}$ T) is <i>(Magnetism and Matter)</i>			
	1) 4 x 10 ⁻³ N	2) 2 x 10 ⁻³ N	3) $\frac{2}{\sqrt{3}}$ x10 ⁻³ N	4) 4√3x10 ⁻³ N
112.	The efficiency of a trans voltage is 100 V, the sec	former is 98%. The prin condary current is	nary voltage and current	are 200 V and 6 A. If the secondary (Electromagnetic Induction)
	I)II.70A	2) 12.25 A	3) 3.00 A	4) 2.94 A
113.	The instantaneous value of emf and current in an A.C circuit are, $E = 1.414 \sin\left(100\pi t - \frac{\pi}{4}\right)$			
	$\mathrm{I}=0.707\text{sin}\big(100\pi t\big)$. The	ne RMS value of emf wi	hoe	(Alternating Current)
	1) _{2√2} ∨	2) 1V STUTU	3) $\frac{1}{2}$ V	4) $\frac{1}{2\sqrt{2}}$ V
114.	Light with energy flux 3 experienced by it is	6 w/cm² is incident on	a well polished metal sq	uare plate of side 2 cm. The force (Electromagnetic Waves)
115.	1) 0.96 μ N 3) 0.24 μ N 3) 0.12 μ N 4) 0.36 μ N Work function of a metal is 2.1 eV. The pair of wavelengths which is able to emit photoelectrons is			
	1) 4000 00 7500 00			(Dual Nature)
116.	The wavelength of first line of lyman series in hydrogen atom 1216 °A. The wavelength of first line of Lyman series for 10 times ionised sodium atom will be (Atoms)			
447	1) 0.1 A ⁰	2) 1000 A ⁰	3) 100 A ⁰	4) 10 A^0
117.	that radioactive element	t is	ted to 1 gram in 2.303 mi	inutes. The nail - life (in minutes) of (<i>Nuclei</i>)
118.	1) 1/0.693 The current gain of trans	2) 6.93 istor in a common emitte	3) 1 er circuit is 40. The ratio o	4) 0.693 f emitter current to base current is
	1) 40	2) /1	3) 12	(Semiconductors)
119.	The expression of Y in f	ollowing circuit is	5) +2	(Semiconductors)
		A Y1 B Y1	Y2	
		D	Т	
120	1) ABCD	2) A + BCD	3) A+B+C+D	4) AB+CD
120.	A 600 W carrier is modu	ulated to a deph of 75%	by a 400 Hz sine wave.T	The total antenna power is

1) 769 W 2) 796 W 3) 679 W 4) 637.5 W

WWWW.AIMSTUTORIAL.IN

(Current Electricity)