MODEL PAPER - 3 PHYSICS

81.	What is the working pri 1) Digital logic	nciple of steam engine? 2) Super conductivity	3) Laws of thermodynan	(Physical world) nics 4) Nuclear fission
82.	The resistance of a me	tal is given by $R = \frac{V}{T}$, wh	ere V is potential differend	ce and I is the current. In a circuit the
83.	potential difference acrivalue of resistance with 1) $4\Omega \pm 16.25\%$ Water drops fall from the when the sixth drop be are (g = 10 ms ⁻²)	ross resistance is V = (8 given its percentage error? 2) $4\Omega \pm 0.7\%$ The roof of a building 20m gins to fall, the heigths of	\pm 0.5)V and current in resolution \pm 70% high at regular time interference of the second and fourth definition \pm	sistance, I = (2 ± 0.2) A. What is the (Units and Mesurement) 4) $4\Omega \pm 7\%$ vals. If the first drop strikes the floor rops from the ground at that instant (Motion in a Straight Line)
84.			3) 19.2m and 0.8m into two equal fragmen	4) 7.2m and 16.8m ts. One of the fragments attains a
		$0\sqrt{3}$ ms ⁻¹ . The horizontal 0° relative to each other is		fragments when their displacement (Motion in a Plane)
	1) 40√3	2) 80√3	3) $120\sqrt{3}$	4) _{480√3}
85.	A hose pipe lying on the		n of water upward at an a	ngle 60° to the vertical at a speed of (<i>Motion in a Plane</i>) 4) 6.03m
86.	An object initially at rest	t explodes, disintegrating	into 3 parts of equal mass	s. Parts 1 and 2 have the same initial vill have an initial speed of (Law of Motion)
	1) √2 v	2) v / 2	3) $\sqrt{2}$	4) √2v
87.	A hammer of mas M str	,	h a velocity of "u" m/s and	drives it "a" meter into a fixed block (Law of Motion)
	$1)\left(\frac{M}{m+M}\right)\frac{u^2}{2a}$	$2)\left(\frac{M^2}{(m+M)^2}\right)\frac{u^2}{2a}$	3) $\left(\frac{M^2}{(m+M)}\right) \frac{u^2}{2a}$	$4)\left(\frac{M+m}{m}\right)\frac{u^2}{2a}$
88.	of 60m above sea leve	neight of 300 m above seel. 1000 kg of water pas ctrical power out put is (2) 2.5 MW	ses through the turbine	to a power house which is at heigth per second. If the efficiency of the (Work, Energy, Power) 4) 6 MW
89.	,	raight line with retardatio	,	lacement x Its loss of kinetic energy (Work, Energy, Power) 4) log _e x
90.	The bob of a simple pe that the bob describes when the bob is at an a	ndulum is given a velocity vertical circle of radius e	y in horizontal direction w equal to length of pendul sition of vertical circle. Th	hen the bob is at lowest position, so um and tension in the string is 10N e tension in the string when the bob (System of Particles and RM) 4) 3.5 N
91.		ertical circle of radius 'r'. I m tensions in the string is		minimum speeds is $\sqrt{3}:1$, the ratio (System of Particles and RM)
	1) 3 : 1	2) 5 : 1	3) 7 : 1	4) 9 : 1
92.	ABC is a right angled	triangular plate of unifor	m thickness. The sides a	are such that AB > BC as shown in Then which of the following relations (System of Particles and RM)
	1) I ₁ = I ₂ = I ₃	$I_{1} = \frac{I_{3}}{4 \text{ cm}} I_{3}$ $B = \frac{I_{2}}{I_{2}} C$ $2) I_{2} > I_{1} > I_{3}$	3) I ₃ > I ₂ > I ₁	
93.	-	oring system has a mech ns ⁻¹ . Then the force const		when it has an amplitude 0.1m and (Oscillation)

 $1) \frac{-GM^2}{R}$

1) 100 Nm⁻¹

 $2) \frac{-GM^2}{2R}$

2) 200 Nm⁻¹

94. The self graviational potential energy of a spherical shell of mass M and radius R is

 $3) - \frac{3}{5} \frac{GM^2}{R}$

3) 300 Nm⁻¹

(Gravitation)

4) 50 Nm⁻¹

WWW.AIMSTUTORIAL.IN

95.				oined in series to form a composite equired to produce a total elongation (Mechanical Properties of Solids)	
	1) 110 N	2) 220 N	3) 330 N	4) 440 N	
96.	A stream line body with	relative density ρ_1 falls	into air from a height h₁ o	on the surface of a liquid of relative quid will be (Mechanical Properties of	
	1) $\sqrt{2h_1/g}$	2) $\sqrt{2h_1/g} x \frac{\rho_2}{\rho_1}$	$3) \sqrt{\frac{2h_1}{g}} x \frac{\rho_1}{\rho_2}$	4) $\sqrt{\frac{2h_1}{g}} \times \frac{\rho_1}{(\rho_2 - \rho_1)}$	
97.		-	,	e d from the sun. Assuming that the er atmospheric effects we conclude (Thermal Properties of Matter)	
	1) $T_0 \propto d^2$	2) $T_0 \propto d^{-2}$	3) $T_0 \propto d^{1/2}$	4) $T_0 \propto d^{-1/2}$	
98.	Agas is compressed isc c.c and 34 c.c. The valu	othermally and adiabaticate of γ for the gas is	ally. The corresponding c	change in volume are found to be 51 <i>(Thermodynamics)</i>	
99.	1) 1.67	2) 1.4	,	4) 1.5 mpletely. Assume that all the energy	
99.	_		of in order that it mets constant of and J = 4.2 joules/cal.)		
	1) 1000 km	2) 100 km	3) 33.6 km	4) 1 km	
100.			n square velocity is V _{rms} ,		
			$3) V_{rms} = \frac{V_s}{2}$	10	
101.	_			OO Hz. The frequencies heard by a the train has just passed (speed of (Waves)	
	,		3) 800 Hz, 880 Hz	,	
102.			stances of 20 cm from his	s eyes. To see distanobjects clearly	
	the kind of lenses and its 1) 100 cm convex	s focal length must be 2) 100 cm concave	3) 20 cm convov	(Ray Optics and Optical Instruments) 4) 20 cm concave	
103	,	,	3) 20 cm convex	n distance of an object which he can	
100.	see without spectacle is	=	(Ray Optics and Optical Ins		
	1) 25 cm	2) 50 cm	3) 100 cm	4) 10 cm	
104.	1) 25 cm 2) 50 cm 3) 100 cm 4) 10 cm 4. In young's double slit experiment, the distance between the slit is 'd' and the screen is at a distance 'D' from the slits. If maximum brightness is formed opposite to a slit on the screen, the order of that band (λ = wavelength of the light) (Wave Option 1) $\frac{d^2}{\lambda D}$ 3) $\frac{2d^2}{\lambda D}$ 4) $\frac{D^2}{2\lambda d}$				
	$(\lambda = \text{wavelength of the })$	light)		(Wave Optics)	
	1) $\frac{d^2}{d^2}$	21 d2	3) $\frac{2d^2}{d^2}$	4) D ²	
	'' λD	2λD	λD	⁺ / 2λd	
105.	Charges 20,30, -40 and of the diagonals is	l 50 μ C are at the corne	rs of a square of 10 cm. ⁻	The field at the point of intersection (Electric Charges and Fields)	
	1) $360\sqrt{10} \times 10^5 \frac{N}{C}$	2) $360 \times 10^5 \frac{N}{C}$	3) $360 \times 10^6 \frac{N}{C}$	4) $36\sqrt{10} \times 10^5 \frac{N}{C}$	
106.		-		attery. Now a dielectric with K=4 is	
	introduced between the	plates of second capac	itor. The potential differe	•	
	1) 60 V, 40 V	2) 70V, 30V	3) 75V, 25V	rostatic Potential and Capacitance) 4) 80V, 20V	
107.	A resistance is made by	connecting two wires (s	eries) of same material o	of radii 2 mm and 5 mm and length 8 ial difference on the longer wire is (Current Electricity)	
	1) 15V	2) 18 V	3) 16V	4) 20V	
108.	,	,	,	nductance of one conductor is 1.1	
	siemen, the conductance			(Current Electricity)	
	1) 10	2) 11	3) 1	4) 1.1	
109.	An a - particle described described by the proton			B. The radius of the circular path (Moving Charges and Magnetism)	
	1) r/2	2) r	3) √2 r	4) 2r	
110	,	,	, ,	ity is V. Electric field E and magnetic	
	field B are mutually perp	pendicular. The magnitu	de of E is 1 volt /cm and	that of B is 2 tesla. Now it happens the electron, then the velocity of the (Moving Charges and Magnetism)	
	1) 50 ms ⁻¹	2) 2 cms ⁻¹	3) 0.5 cms ⁻¹	4) 200 ms ⁻¹	

WWW.AIMSTUTORIAL.IN

111.	A bar magnet with poles 25 cm apart and pole strength 14.4 A-m rests with its centre on a frictionless p If it is held in equilibrium at 60° to a uniform magnetic fild in induction 0.25 T by applying a force F at angles to its axis 10 cm from the pivot, The value of F in Newton is (nearly) (Magnetism Matter)					
112.	1) 3.9N The coefficient of mutu		3) 15.6 N s is 5H. The current throu m.f in the secondary coil v	4) 31.2 N gh the primary coil is reduced to zero will be		
			·	(Electromagnetic Induction		
	1) 30KV	2) 1.67 KV	3) 15 KV	4) 600 V		
113.	Voltage and current in a	an A.C circuit are given l	by $V = 5 \sin\left(100\pi t - \frac{\pi}{6}\right)$ a	and $I = 4 \sin \left(100\pi t + \frac{\pi}{6} \right)$		
				(Alternating Current)		
	1) Voltage leads the cu	•	2) Current leads the vo	• •		
	3) Voltage leads the cu		4) Current and voltage			
114.	0		•	nal at normal incidence. If the surface		
	has an area of 20 cm ² ,	the average force exerte	ed on the surface during a	•		
				(Electromagnetic Waves)		
	1) 1.2 x 10 ⁻⁶ N	2) 2.4 x 10 ⁻⁶ N	,	4) 1.5 x 10 ⁻⁶ N		
115.	•			kinetic energies of 1.8 eV and 4 eV		
			te. Then the value of Plan			
	1) 6.57 x 10 ⁻³⁴ Js	,	3) 6.66 x 10 ⁻³⁴ Js	•		
116.	The number of revolution	ons done by an electron	'e' in one second in the fi	rst orbit of hydrogen atom is		
				(Atoms)		
	1) 6.57 x 10 ¹⁵	2) 6.57 x 10 ¹³		4) 6.57 x 10 ¹⁴		
117.	The half life period of of present is	Pb ²¹⁰ is 22 years. If 2g o	of Pb²™ is taken, Then afte	r 11 years the amount of Pb ²¹⁰ will be (<i>Nuclei</i>)		
	1) 0.1414 g	2) 1.414 g	3) 2.828 g	4) 0.707 g		
118.	A common emitter tran	nsistor amplifier has a c	current gain of 50. If the	load resistance is $4K\Omega$, and inpu		
	resistance is 500 Ω , The voltage gain of amplifier is (Semiconductors)					
	1) 100	2) 200	3) 300	4) 400		
119.	,		figure, the input must be			
	J i		atta	•		
		A B				
		i i i i i i i i i i i i i i i i i i i	4			
		6	-			
	1) A=0, B=1, C=0	2) A=1, B=0, C=0	3) A=1, B=0, C=1	4) A=1, B=1, C=0		
120.	The number of AM bro	ad casting stations that		a 100 KHz band width if the highes		
	frequency modulating a			(Communication System		
	1) 5	2) 7	3) 20	4) 10		