1) Superconductivity

81. The scientific principle involved in radio and television is

MODEL PAPER - 4 PHYSICS

82. If L is the inductance, C is the capacitance and R is the resistance, then $R\sqrt{\frac{C}{I}}$ has the dimension

2) Electromagnetic induction 3) Propagation of e.m. wave 4) Emission of γ-rays

				' =
83.	1) MLT ⁻² l ⁻² The position x of a partic	2) ML²T²I cle varies with time t as x	3) ML ⁻¹ T ⁻² I ⁻¹ c = at ² - bt ³ . The accelerat	(Units and Mesurement) 4) M ^o L ^o T ^o l ^o ion of the particle will be zero at time
	t equal to	_		(Motion in a Straight Line)
	1) $\frac{a}{b}$	2) $\frac{2a}{3b}$	3) $\frac{a}{3b}$	4) zero
84.	_	•		f the fragments receives a horizonta ned at 120º to each other is (Motion in a Plane)
	IJ	./3.u	211	11
	1) $\frac{d}{\sqrt{3g}}$	$2) \frac{\sqrt{3} \mu}{g}$	3) $\frac{2\mu}{\sqrt{3g}}$	4) $\frac{\mu}{2\sqrt{3}g}$
85.		imum range of 150m. If i ce travelled by it along t	•	th inclined plane of angle 60° with the Motion in a Plane
	1) $30\sqrt{3}$	2) $40\sqrt{3}$	3) $50\sqrt{3}$	4) $60\sqrt{3}$
86.	-	•		loor. A body of mass m starts moving ve to the plank. The recoil velocityo (Law of Motion)
	1) mv/M	2) $\frac{Mv}{m}$	3) Mv/M+m	4) $\frac{mv}{M+m}$
87.	A shell is fired from the	ground at an angle q wi fragment comes back th	th horizontal velocity 'v'. A rough its initial line of mo	At its highest point it breaks into two tion with same speed, then speed o
	1) 3v cos θ	2) $3v \cos \theta /2$	3) 2v cos θ	4) $\sqrt{3}$ v cos θ /2
88.		ng horizontally explodes s a linear momentum o	in to two equal pieces at t	he instant its momentum is '3p'. One n.The kinetic energy gained by the (Work, Energy, Power
	1) $\frac{25p^2}{m}$	16p ²	3) $\frac{41p^2}{m}$	4) $\frac{73p^2}{2m}$
	1) <u>m</u>	<u>v) m</u>	3) <u> </u>	4) <u>2m</u>
89.	•			amounts to 10% of weight of the ca o run the car at a uniform speed o (Work, Energy, Power)
	1) 112 kW	2) 56 kW	3) 12 kW	4) 6 kW
90.	block of ballistic pendul collision the combined r	um in horizontal direction	n with a velocity 100 ms ⁻¹ ings away from lowest po	. A bullet of mass 0.1kg strickes the and got embeded in the block. Afte bint. The tension in the string when i (System of Particles and RM) 4) 50 N
91.	,	a bob of mass 'm' swings	,	f 60°. When its angular displacemen (System of Particles and RM)
	1) $3\sqrt{3}$ mg	$2) \ \frac{mg}{2} \Big(3\sqrt{3} - 2 \Big)$	$3) \ \frac{1}{2} mg \left(\frac{3}{\sqrt{3}+2} \right)$	4) $\frac{1}{2}$ mg $(3-\sqrt{2})$
92.	The length of a simple p	endulum is 'L'. Its bob fro	om rest position is projecte	ed horizontally with a velcoity $\sqrt{\frac{7gL}{2}}$
	The maximum angular of 1) 30°	displacement of bob suct 2) 60°	n that the string does not s 3) 120°	slack is (System of Particles and RM) 4) 150°
93.	The period of the vertic additional load of mass	cal oscillation of a load of 5kg is applied the perio	of mass 4kg suspended d of oscillational is	form a spring is 0.4 sec. When ar (Oscillation)
	1) 0.9 sec	2) 0.8 sec	3) 0.7 sec	4) 0.6 sec

WWWW.AIMSTUTORIAL.IN

WWW.AIMSTUTORIAL.IN

94.	•			36,000 km. Then, the time period of a km) will approximately be <i>(Gravitation)</i> 4) 4 h			
95.	Bulk modulus of rubber decreased by 0.1%	is 9.8 x 10 ⁸ N/m ² . To wh	nat depth a rubber ball be	e taken in a lake so that its volume is (Mechanical Properties of Solids)			
96.	1) 50 m A denotes the area of froliquid surface. The velo	-	d h the depth of an orifice	4) 200 m of area of cross-section a, below the (Mechanical Properties of Fluids)			
	1) $\sqrt{2gh}$	$2) \sqrt{2gh} \sqrt{\left(\frac{A^2}{A^2 - a^2}\right)}$	3) $\sqrt{2gh}\sqrt{\left(\frac{A}{A-a}\right)}$	4) $\sqrt{2gh}\sqrt{\left(\frac{A^2-a^2}{A^2}\right)}$			
97.				ling temperature is 27°C, the ratio of <i>(Thermal Properties of Matter)</i> 4) 16: 1			
98.	A fixed amount of dry ai is $(\gamma_1 = 1.5)$	r at temperature of 27°C	is compressed to 1/9 of	original volume. Its final temperature <i>(Thermodynamics)</i>			
99.	1) 627°C In an adiabatic expansi done is	,		4) 527°C Ils from 87°C to 27°C, then the work (Thermodynamics)			
	1) 2400 cal	2) 4980 cal	3) 1200 cal	4) 3000 cal			
				$\frac{C_p}{C_v} = \gamma = 1.5$. (Kinetic Theory of gases)			
101.	of the frequencies of the of sound = 350 m/s)	e whistle heard when en	gine is approaching and	4) 2n ₁ = 3n ₂ a 50 m/s speed. What will be the ratio receding from the observer? (speed (Waves)			
	using spectacles of pov	rly objects lying betwee wer		eye. His vision can be corrected by (Ray Optics and Optical			
103.	1) +0.25 D The power of a lens use	2) + 0.5 D ed to remove the myopio	3) - 0.26 D c defeat of eye is 0.66 D.	4) -0.5 D The far point of this eye is (nearly) (Ray Optics and Optical Instruments)			
	1) 25 cm	2) 150 cm	3) 100 cm	4) 75 cm b and screen is at a distance 'd' from ngths are missing. The missing wave (Wave Optics) 4) $\lambda = 2b^2 / 3d$			
	1) $\lambda = \frac{4b^2}{1}$	2) $\lambda = \frac{2b^2}{1}$	3) $\lambda = \frac{b^2}{3d}$	4) $\lambda = 2b^2 / 3d$			
105.			3d on will experience a force				
106.	•	•	3) 4 x 10 ⁻¹² N/C and 'B' in the following fig	gure will be			
			(Electro	estatic Potential and Capacitance)			
		A SHE 3MI	B 3MF				
	1) 9 μ F	, ,	3) 4.5 μ F				
107.	in parallel. The combina	ation is heated. The effe	ective resistance is	³ K ⁻¹) resistance 40Ω are connected (Current Electricity) 4) Greater than 100 Ω			
108.	1) Greater than 24 $_\Omega$ 2) less than 24 $_\Omega$ 3) Greater than 40 $_\Omega$ 4) Greater than 100 $_\Omega$ 108. A copper tube is of internal radius 4 mm and outer radius 5 mm. Its resistance is R ₁ . The tube is filled with suitable copper wire. The resistance of the arrangement is R ₂ . Then R ₂ /R ₁ is (Current Electricity)						
109.		•	9	4) 9/25 c field of flux density B at right angles d and B is also doubled, the radius of <i>unetism</i>)			
	1) 4r	2) 2r	3) 2√2r	4) r / √2			
110.	•	and mass 'm ' describe riform magnetic field, the	en its frequency is	s 'r' when it is projected with a velocity (Moving Charges and Magnetism) WW.AIMSTUTORIAL.IN			

WWW.AIMSTUTORIAL.IN

	1) $\frac{1}{2\pi}\sqrt{\frac{Be}{m}}$	$2) \frac{1}{2\pi} \frac{Be}{m}$	3) $\frac{1}{2\pi} \frac{m}{Be}$	4) $\frac{1}{2\pi} \frac{\text{me}}{2}$			
111.	each pole of the magne	et experience a force of 6	1 ² is placed in a uniform r S x 10 ⁻⁴ N, The length of t	he magnet is (
112.	•		3) 0.2 m inside a large square lo induction of the system i	•	,		
	copiana ana mon com	i oo oomoraa, ino mataan	madelleri er are eyeleiir i	• • •	tromagnetic Induction		
	1) $\frac{L}{\ell}$	2) $\frac{\ell}{L}$	3) $\frac{L^2}{\ell}$	4) $\frac{\ell^2}{L}$			
113.	of A.C is 60 Hz, Then the	ne current which is flowir	_	-	th it. If the frequency (Alternating Current)		
114.	1) 4.55A Light with energy flux 1 it and momentum deliv		3) 0.455A mirror of size 2 cm x 2cm	-	orce experienced by ectromagnetic Waves		
	1) 0.48 μ N; 28.8 μ kgn 3) 28.8 μ N; 4.8 μ kgm		 2) 48 μ N; 2.88 μ kgms 4) 0.24 μ N; 28.8 μ kgr 		-		
115.	one percent of photons	incident on the surface tarea from the surf	n intensity 39.6 watts/m² i emit photo electrons, Th ace will be [Planck	nen the number	of electrons emitted		
	1) 12 x 10 ¹⁸		3) 12 x 10 ¹⁷	4) 12 x 10 ¹⁵	(Duai Nature)		
116.	n th quantum state will b	е	of the k inetic energ		gy of electron in the (Atoms)		
117	1) 1 A radio active isotone h	2) -1 paying a half life of 3 day	3) 2 s was received after 9 da	4) -12 avs. It was found	I that there was only		
117.		•	I weight of the isotopes v 3) 48 gms	•	•		
	A, The necessary char	nge in the base current is	emitter mode is 40. To cl s (at constant V _{CE})		tor current by160 m (Semiconductors)		
119.	The arrangement show	2) 4 μ A n in figure performs the	logic function of	4) 40 m A	(Semiconductors)		
		A ₀ ————————————————————————————————————	○ -• <i>Y</i>				
120.	1) AND gate A TV transmission tow	NAND gate er at a particular station	3) OR gate has a height of 160 m. F		s 6400km mmunication System)		
	i) The range it covers is 45255 m ii) The population that it covers is 77.42 lakhs. When population density is 1200 km ⁻² iii) The height of antenna should be increased by 480 m to double the coverage range						
	1) i and ii are true	2) ii and iii are true	3) i and iii are true	4) i, ii and iii a	re true		