## WWW.AIMSTUTORIAL.IN

## MODEL PAPER - 5

### **PHYSICS**

| 81. | Law of force between c<br>1) Coulomb                                                                                                                                                                            | harges was discovered<br>2) Chadwick                                                 | by<br>3) Galileo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>(Physical world)</i><br>4) Lord Kelvin                                                             |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| 82. | The velocity of a body i                                                                                                                                                                                        | s given by the equation                                                              | $v = \frac{b}{t} + ct^2 + dt^3$ . The dir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mensional formula of b is                                                                             |  |  |  |
|     |                                                                                                                                                                                                                 |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Units and Mesurement)                                                                                |  |  |  |
| 00  | 1) [M <sup>o</sup> LT <sup>o</sup> ]                                                                                                                                                                            | 2) [ML <sup>0</sup> T <sup>0</sup> ]                                                 | 3) [M <sup>o</sup> L <sup>o</sup> T]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4) [MLT <sup>-1</sup> ]                                                                               |  |  |  |
| 83. | ne x and y coordinate                                                                                                                                                                                           | The acceerlation of par                                                              | te t are given by x = 7t +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $4t^2$ and y = 5t, where x and y are in<br>(Motion in a Straight Line)                                |  |  |  |
|     | 1) Zero                                                                                                                                                                                                         | 2) 8m/s <sup>2</sup>                                                                 | 3) 20 m/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4) 40 m/s <sup>2</sup>                                                                                |  |  |  |
| 84. | At a certain height a bo<br>velocity of 10 ms <sup>-1</sup> . The<br>become perpendicular                                                                                                                       | dy at rest explodes into t<br>time interval after the e<br>to each other is (g = 10n | two equal fragments with explosion for which the venter of the second seco | one fragment receiving a horizontal elocity vectors of the two fragments <i>(Motion in a Plane)</i>   |  |  |  |
| 05  | 1) 1s                                                                                                                                                                                                           | 2) 2s                                                                                | 3) 1.5s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4) 1.75s                                                                                              |  |  |  |
| 85. | a height equal to thrice                                                                                                                                                                                        | e the maximum range of                                                               | A. The ratio of the time of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of flight of A to the time of fall of B is<br>(Motion in a Plane)                                     |  |  |  |
|     | 1)                                                                                                                                                                                                              | 2) <sub>1: \sqrt{3}</sub>                                                            | 3) <sub>2∶√3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4) $\sqrt{3}$ : 2                                                                                     |  |  |  |
| 86. | A bomb of mass 6kg init                                                                                                                                                                                         | tially at rest explodes in to                                                        | o three identical fragemer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nts. One of the fragments moves with                                                                  |  |  |  |
|     | a velocity of $10:\sqrt{3}\hat{i}$ m                                                                                                                                                                            | /s, another fragment mo                                                              | oves with a velocity if 10j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m/s, then the third fragment moves                                                                    |  |  |  |
|     | with a velocity of magni                                                                                                                                                                                        | tude                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Law of Motion)                                                                                       |  |  |  |
| 07  | 1) 30 m/s                                                                                                                                                                                                       | 2) 20 m/s                                                                            | 3) 15 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4) 5 m/s                                                                                              |  |  |  |
| 87. | A nucleous of mass hui<br>the collision is elastic t                                                                                                                                                            | mber "A" initially at rest is                                                        | s hit directly by an a parti-<br>is after the collision is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cle with a velocity "V". Assuming that                                                                |  |  |  |
|     |                                                                                                                                                                                                                 | 8v                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.7                                                                                                   |  |  |  |
|     | 1) $\frac{4}{A+4}$                                                                                                                                                                                              | 2) $\frac{6}{A-4}$                                                                   | 3) $\frac{4}{A-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4) $\frac{3}{4}$                                                                                      |  |  |  |
| 88. | The kinetic energy of a r<br>5ms <sup>-1</sup> , his kinetic energy                                                                                                                                             | nan is half that of a boy w<br>is 100% more than that                                | hose mass is half that of t<br>of the boy. The initial velo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | he man. When the man speeds up by city of the man is <i>(Work, Energy, Power)</i>                     |  |  |  |
|     | 1) $(\sqrt{2} + 1)$ m/s                                                                                                                                                                                         | 2) 5 m/s                                                                             | 3) $2(\sqrt{2}-1)$ m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4) 2 m/s                                                                                              |  |  |  |
| 89. | An open knife edge of distance 's' into the woo                                                                                                                                                                 | mass M is propped fro                                                                | om a height 'h' on a woo<br>ce offered by the wood to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oden floor. If the blade penetrates a bthe blade is <i>(Work, Energy, Power)</i>                      |  |  |  |
|     |                                                                                                                                                                                                                 | (h)                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(h)^2$                                                                                               |  |  |  |
|     | 1) Mg 💦 📢                                                                                                                                                                                                       | 2) Mg $\left(1+\frac{11}{s}\right)$                                                  | 3) Mg $\left(1 - \frac{11}{s}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4) Mg $\left(1+\frac{n}{s}\right)$                                                                    |  |  |  |
| 90. | A simple pendululm is of the string when the bol                                                                                                                                                                | oscillating with an angula<br>is at extreme position,                                | ar amplitude 60º. If m is m<br>mean position respectiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hass of bob and $T_1$ , $T_2$ are tensions in<br>rely then (System of Particles and RM)               |  |  |  |
|     | A) $T_1 = \frac{mg}{2}$                                                                                                                                                                                         | B) T <sub>2</sub> = 2mg                                                              | C) T <sub>1</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D) T <sub>2</sub> = 3 mg                                                                              |  |  |  |
| 91. | 1) A and B are true<br>A simple pendulum con<br>between the point of su                                                                                                                                         | 2) A and D are true<br>sists of a light string fron<br>spension and the cente        | 3) B and C are true<br>n which a spherical bob o<br>r of bob is L. At the lowes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4) C and D are true<br>f mass M is suspended. the distance<br>it position the bob is given tangential |  |  |  |
|     | velocity of $\sqrt{5 g L}$ . The K.E. of the bob when the string becomes horizontal is (System of Particles and RM)                                                                                             |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       |  |  |  |
|     | 1) Zero                                                                                                                                                                                                         | 2) $\frac{\text{MgL}}{2}$                                                            | 3) $\frac{3MgL}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4) $\frac{5MgL}{2}$                                                                                   |  |  |  |
| 92. | A small mass lying at th<br>vertical where it looses                                                                                                                                                            | ne top of a smooth conve<br>contact with surface is                                  | ex hemisphere is just pus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | shed horizontally. The angle with the (System of Particles and RM)                                    |  |  |  |
|     | 1) tan <sup>-1</sup> $\left(\frac{2}{3}\right)$                                                                                                                                                                 | 2) $\sin^{-1}\left(\frac{2}{3}\right)$                                               | 3) $\cos^{-1}\left(\frac{2}{3}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4) $\cot^{-1}\left(\frac{2}{3}\right)$                                                                |  |  |  |
| 93. | A particle hanging from<br>the same spring stretch                                                                                                                                                              | spring stretches by 1 cl<br>ses by the same partica                                  | m at earth's surface. At a l (Radius of earth $R = 64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | point 800 km above earth's surface                                                                    |  |  |  |
|     | 1) 1 cm                                                                                                                                                                                                         | 2) 0.79 cm                                                                           | 3) 1.2 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4) 1.4 cm                                                                                             |  |  |  |
| 94. | A simple pendulum has a time period $T_1$ when on the earth's surface and $T_2$ when taken to a height R above the earth's surface R is the radius of the earth. The value of $T_2/T_1$ is <i>(Gravitation)</i> |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       |  |  |  |
|     | 1) 1                                                                                                                                                                                                            | 2) $\sqrt{2}$                                                                        | 3) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4) 2                                                                                                  |  |  |  |

#### WWWW.AIMSTUTORIAL.IN

# WWW.AIMSTUTORIAL.IN

| 1) $\frac{P_0}{K}$ (2) pK (3) $\frac{P}{KP}$ (4) pK<br>96. A body with a volume V neither sinks nor floats in a liquid. The vessel containing the liquid falls with an accelera<br>g/2. Then the volume of solid inside the liquid in the falling condition is<br>(Mechanical Properties of File<br>1) V (2) V/2 (3) zero (4) 3V/4<br>97. Intensity of radiation is 100 units when the distance between source & absorber is 'd' units, if the distance<br>doubled then intensity will be ( <i>Themal Properties of He</i><br>1) 200 units (2) 400 units (3) 25 units (4) 100 units<br>98. In an adiabatic change, the pressure P and temperature T of a monoatomic gas are related as P×T° where<br>equals<br>1) 5/3 (2) 2/3 (3) 3/5 (4) 5/2<br>99. During an adiabatic change the density becomes $\frac{1}{16}$ th of the initial value, then $\frac{P_1}{P_2} = (\gamma = 1.5)$<br>( <i>Thermodynamics</i> )<br>1) 16 (2) 4 (3) 32 (4) 64<br>100. Each molecule of a gas has f degrees of freedom. The ratio $\frac{C_p}{C_v} = Y$ for the gas is<br>( <i>Kinetic Theory of gas</i><br>1) 1 + $\frac{f}{2}$ (2) 1 + $\frac{1}{f}$ (3) 1 + $\frac{2}{f}$ (4) 1 + $\frac{(f-1)}{3}$<br>101. An observer moves towards a stationery source of sound with a velocity one-fifth of velocity of sound 1<br>percentage increase in apparent frequency is<br>1) 15% (2) 20% (3) Zero (4) 0.5% (Mar<br>1) 5% (2) 20% (3) Zero (4) 0.5% (Mar<br>1) 5% (2) 20% (3) Zero (4) 0.5% (Mar<br>1) 19% (2) 37° (3) 45° (4) 49°<br>103. On one face of a prism of refractive index 1.5 as shown in figure.<br>angle between the emergent rays is nearly (Ray Optics and Optical Instrume<br>(Ray Optics and Optical Instrume<br>(Ray Optics and Optical Instrume<br>(Ray Optics and Optical Instrume<br>(Ray Optics and Optical Instrume<br>(1) $\mu = \sqrt{1 + (\frac{\sin A + \cos A}{\sin A})^2}$ (4) $\mu = \sqrt{1 + (\frac{\sin (1 + \cos A)^2}{\sin A})^2}$<br>104. The distance between the two sitts in a Young's double sitt experiment is d and the distance of the sort<br>from the plane of the sitts is b, P is a point on the screen directly infront of one of the slits. The path differe<br>between the waves arriving at P from the two slits in a voung's double sitt experiment is d and                                                                                                  | 95.  | Density of a material is ρ and its bulk modulus is k. What is the increasing in density when it is subjected to a pressure of 'P'. <i>(Mechanical Properties of Solids)</i> |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| 96. A body with a volume V neither sinks nor floats in a liquid. The vessel containing the liquid flast with an accelerar g/2. Then the volume of solid inside the liquid in the falling condition is (Mechanical Properties of File 1) V (2) V(2) S) zero (4) 3V/4<br>97. Intensity of radiation is 100 units when the distance between source & absorber is 'd' units, if the distance dubled then intensity will be (Thermal Properties of Methanical Properties of Methanical Properties of Methanical Properties of Methanical Distance between source & absorber is 'd' units, if the distance dubled then intensity will be (Thermal Properties of Methanical S) 25 units (4) 100 units (5) 100 units (2) 400 units (2) 2/3 (3) 3/5 (4) 5/2 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 1)                                                                                                                                                                          | 2) pK                                                                                  | 3) $rac{ ho}{ m KP}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4) ρΚ                                                                                                |  |  |  |
| 97. Intensity of radiation is 100 units when the distance between source & absorber is d' units, if the distance doubled then intensity will be<br>(Thermal Properties of Ma<br>1) 200 units 2) 400 units 3) 25 units 4) 100 units 7° c when<br>equals (Thermodynami<br>1) 5/3 2) 2/3 3) 3/5 4) 5/2<br>99. During an adiabatic change the density becomes $\frac{1}{16}$ th of the initial value, then $\frac{P_1}{P_2} = (\gamma = 1.5)$<br>(Thermodynamics)<br>1) 16 2) 4 3) 32 4) 64<br>100. Each molecule of a gas has f degrees of freedom. The ratio $\frac{C_p}{C_v} = \gamma$ for the gas is (Kinetic Theory of gas<br>1) $1 + \frac{f}{2}$ 2) $1 + \frac{1}{f}$ 3) $1 + \frac{2}{f}$ 4) $1 + \frac{(f-1)}{3}$<br>101. An observer moves towards a stationery source of sound with a velocity one-fifth of velocity of sound.<br>percentage increase in apparent frequency is (Waw<br>1) 5% 2) 20 % 3) Zero 4) 0.5% (Waw<br>1) 105% 2) 20 % 3) Zero 4) 0.5% (Waw<br>1) 105% 2) 37° (Way 0 ptics and 0 ptical Instrume<br>(Ray Optics and Optical Instrume<br>1) $\mu = \sqrt{1 + (\frac{\sin A + \cos y}{\sin A})^2}$<br>103. On one face of a prism of refractive index 1.5 as shown in figure.<br>angle between the other refracting whate, the ray travels at grazing emergence.<br>(Ray Optics and Optical Instrume<br>1) $\mu = \sqrt{1 + (\frac{\sin A + \cos y}{\sin A})^2}$<br>104. The distance between the two slits in a Young's double slit experiment is d and the distance of the scree<br>from the plane of the slits is b, P is a point on the screen directly infront of one of the slits. The path differe<br>between the waves arriving at P from the two slits is<br>(Wave Optics)<br>1) $\frac{d'}{b}$ 2) $\frac{d'}{2b}$ 3) $\frac{2d'}{b}$ 4) $\frac{d'}{4b}$<br>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration<br>the proton and deutron is :<br>(Clectric Charges and Fields)<br>1) 1 : 1 2) 1 : 2 3) 2 : 1 F The value of C' is                                                                                                                                                                                                                                                                                                                                                                 | 96.  | A body with a volume V ne<br>g/2. Then the volume of<br>1) V                                                                                                                | either sinks nor floats in a<br>solid inside the liquid in 1<br>2) V/2                 | liquid. The vessel contain<br>the falling condition is<br>3) zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ing the liquid falls with an acceleration<br>(Mechanical Properties of Fluids)<br>4) 3V/4            |  |  |  |
| 98. In an adiabatic change, the pressure P and temperature T of a monoatomic gas are related as $P \propto T^c$ when equals (Thermodynamic) 1) 5/3 (2) 2/3 (3) 3/5 (4) 5/2 (7)<br>99. During an adiabatic change the density becomes $\frac{1}{16}$ th of the initial value, then $\frac{P_1}{P_2} = (\gamma = 1.5)$ (Thermodynamics) 1) 16 (2) 4 (3) 32 (4) 64 (7)<br>100. Each molecule of a gas has f degrees of freedom. The ratio $\frac{C_p}{C_v} = \gamma$ for the gas is (Kinetic Theory of gas (1) $1 + \frac{f}{2}$ (2) $1 + \frac{f}{f}$ (3) $1 + \frac{2}{f}$ (4) $1 + \frac{(f-1)}{3}$<br>101. An observer moves towards a stationery source of sound with a velocity one-fifth of velocity of sound. percentage increase in apparent frequency is (War 1) 5% (2) 20 % (3) Zero (4) 0.5% (War 1) 5% (2) 20 % (3) Zero (4) 0.5% (War 1) 5% (2) 20 % (3) Zero (4) 0.5% (War 1) 5% (2) 20 % (3) 45° (4) 40° (102. Two parallel light rays are incident at one surface of a prism of refractive index 1.5 as shown in figure. angle between the emergent rays is nearly (Ray Optics and Optical Instrument 1) $\mu = \sqrt{1 + \left(\frac{\sin A + \cos A}{\sin A}\right)^2}$ (2) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>104. The distance between the two slits in a Young's double slit experiment is d and the distance of the screen from the other refracting a 1 P from the two slits is n a Young's double slit experiment of a distance of the slits. The path differe between the waves arriving at P from the two slits is a 20 $\frac{2d^2}{b}$ (4) $\frac{d^2}{4b}$<br>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration the percending on the slots. The path differe between the two slits is n entry or the slits is $U$ and $U$ and $U$ and $U$ and $U$ and $U$ and $U$ are or the slits. The path differe between the two slits is n a Young's double slit experiment is d and the distance of the screen from the plane of the slits is $P$ is a point on the screen directly infront of one of the slits. The path differe between the two slits is $P$ is a point on the screen directly infront of one of the slits. The pa                                                                                                                                              | 97.  | Intensity of radiation is 1<br>doubled then intensity w<br>1) 200 units                                                                                                     | 00 units when the dista<br>rill be<br>2) 400 units                                     | nce between source & al 3) 25 units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bsorber is 'd' units, If the distance is<br>( <i>Thermal Properties of Matter</i> )<br>4) 100 units  |  |  |  |
| 1) 5/3 2) 2/3 3) 3/5 4) 5/2<br>99. During an adiabatic change the density becomes $\frac{1}{16}$ th of the initial value, then $\frac{P_1}{P_2} = (\gamma = 1.5)$ ( <i>Thermodynamics</i> )<br>1) 16 2) 4 3) 32 4) 64<br>100. Each molecule of a gas has f degrees of freedom. The ratio $\frac{C_P}{C_V} = \gamma$ for the gas is ( <i>Kinetic Theory of gas</i><br>1) 1 + $\frac{f}{2}$ 2) 1 + $\frac{1}{f}$ 3) 1 + $\frac{2}{f}$ 4) 1 + $\frac{(f-1)}{3}$<br>101. An observer moves towards a stationery source of sound with a velocity one-fifth of velocity of sound.<br>percentage increase in apparent frequency is<br>1) 5% 2) 20 % 3) Zero 4) 0.5%<br>102. Two parallel light regard are incident at one surface of a prism of refractive index 1.5 as shown in figure.<br>angle between the emergent rays is nearly ( <i>Ray Optics and Optical Instrume</i><br>1) 19 <sup>9</sup> 2) 37 <sup>0</sup> 73,45° 4) 49 <sup>0</sup><br>103. On one face of a prism of refractive index 1.5 as shown in figure.<br>1) $\mu = \sqrt{1 + \left(\frac{\sin A + \cos 5}{\sin A}\right)^2}$ 4) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>3) $\mu = \sqrt{1 - \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$ 4) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>104. The distance between the two silts in a Young's double silt experiment is d and the distance of the source from the solute silts is h. P is a point on the screen directly inform of one of the silts. The path differe between the waves arriving at P from the two silts is a $(Maw Optics)^2$<br>1) $\frac{d^2}{b}$ 2) $\frac{d^2}{2b}$ 3) $\frac{2d^2}{b}$ 4) $\frac{d^2}{4b}$<br>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration is 1 ( <i>Lectric Charges and Fields</i> )<br>1) 1: 1 2) 1: 2) 1: 2 3) 2: 1 4) 4 + C is in the distance of a calculation of the refractive index is a part of the network of use heat one divert of C is 5                                                                                                                                                                                                                                                                                                                                                               | 98.  | In an adiabatic change, t<br>equals                                                                                                                                         | he pressure P and temp                                                                 | perature T of a monoatom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ic gas are related as $P \propto T^c$ where C ( <i>Thermodynamics</i> )                              |  |  |  |
| 99. During an adiabatic change the density becomes $\frac{1}{16}$ th of the initial value, then $\frac{P_1}{P_2} = (\gamma = 1.5)$<br>( <i>Thermodynamics</i> )<br>1) 16 2) 4 3) 32 4) 64<br>100. Each molecule of a gas has f degrees of freedom. The ratio $\frac{C_p}{C_v} = \gamma$ for the gas is ( <i>Kinetic Theory of gas</i><br>1) 1 + $\frac{f}{2}$ 2) 1 + $\frac{1}{f}$ 3) 1 + $\frac{2}{f}$ 4) 1 + $\frac{(f-1)}{3}$<br>101. An observer moves towards a stationery source of sound with a velocity one-fifth of velocity of sound.<br>percentage increase in apparent frequency is ( <i>Wav</i><br>1) 5% 2) 20% 3) Zero 4) 0.5% ( <i>Wav</i><br>102. Two parallel light rays are incident at one surface of a prism of refractive index 1.5 as shown in figure.<br>angle between the emergent rays is nearly ( <i>Ray Optics and Optical Instrume</i><br>1) 19° 2) 37° 4) 45° 4) 49°<br>103. On one face of a prism of refractive index 4 and refracting angle A, a ray of light is incident at an angle i. A<br>refraction from the other refractive index 4 and refracting angle A, a ray of light is incident at an angle i. A<br>refraction from the other refractive index 4 and refracting angle A, a ray of light is incident at an angle i. A<br>refraction from the other refractive index 4 and refracting angle A, a ray of light is incident at an angle i. A<br>refraction from the other refractive index 4 and refracting angle A, a ray of light is incident at an angle i. A<br>refraction from the other refractive index 4 and refracting angle A, a ray of light is incident at an angle i. A<br>refraction from the other refractive index 4 and refracting angle A, a ray of light is incident at an angle i. A<br>refraction from the other refractive index 4 and refracting angle A, a ray of light is incident at an angle i. A<br>refraction from the other refractive index 4 and refracting angle A, a ray of light is incident at an angle i. A<br>refractive index 1) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>3) $\mu = \sqrt{1 - \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$ 4) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>3) $\mu = \sqrt{1 - \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$ 4) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>10 $\frac{d^2}{b}$ 2 |      | 1) 5/3                                                                                                                                                                      | 2) 2/3                                                                                 | 3) 3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4) 5/2                                                                                               |  |  |  |
| (Thermodynamics)<br>1) 16 2) 4 3) 32 4) 64<br>100. Each molecule of a gas has f degrees of freedom. The ratio $\frac{C_p}{C_v} = \gamma$ for the gas is (Kinetic Theory of gas<br>1) $1 + \frac{f}{2}$ 2) $1 + \frac{1}{f}$ 3) $1 + \frac{2}{f}$ 4) $1 + \frac{(f-1)}{3}$<br>101. An observer moves towards a stationery source of sound with a velocity one-fifth of velocity of sound.<br>percentage increase in apparent frequency is (Was<br>1) $5\%$ 2) 20 % 3) $2 \text{ ero}$ 4) 0.5%<br>102. Two parallel light rays are incident at one surface of a prism of refractive index 1.5 as shown in figure.<br>angle between the emergent rays is nearly (Ray Optics and Optical Instrument<br>1) $19^{0}$ 2) $37^{0}$ 3) $45^{0}$ 4) $49^{0}$<br>103. On one face of a prism of refractive index 1 and refracting angle A, a ray of light is incident at an angle i. A<br>refraction from the other refracting angles, a ray of light is incident at an angle i. A<br>refraction from the other refracting angles, a ray of light is incident at an angle i. A<br>refraction from the other refracting angles, a ray of light is incident at an angle i. A<br>refraction from the other refracting angles and optical Instrument<br>1) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$ 4) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>104. The distance between the two slits in a Young's double slit experiment is d and the distance of the scr<br>from the plane of the slits is b, P is a point on the screen directly infront of one of the slits. The path differe<br>between the waves arriving at P from the two slits is<br>(Wave Optics)<br>1) $\frac{d^2}{b}$ 2) $\frac{d^2}{2b}$ 3) $\frac{2d^2}{b}$ 4) $\frac{d^2}{4b}$<br>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration<br>the proton and deutron is:<br>(Electric Charges and Fields)<br>1) 1: 1 2) 1: 2 3) 2: 1 Free value of C is                                                                                                                                                                                                                                                                                                                                                                                | 99.  | During an adiabatic cha                                                                                                                                                     | nge the density become                                                                 | es $\frac{1}{16}$ th of the initial value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ie, then $\frac{P_1}{P_2} = (\gamma = 1.5)$                                                          |  |  |  |
| 100. Each molecule of a gas has f degrees of freedom. The ratio $\frac{C_{\mu}}{C_{\nu}} = \gamma$ for the gas is <i>(Kinetic Theory of gas</i><br>1) $1 + \frac{f}{2}$ (2) $1 + \frac{1}{f}$ (3) $1 + \frac{2}{f}$ (4) $1 + \frac{(f-1)}{3}$<br>101. An observer moves towards a stationery source of sound with a velocity one-fifth of velocity of sound.<br>percentage increase in apparent frequency is <i>(Was</i><br>1) $5\%$ (2) $20\%$ (3) $2ro$ (4) $0.5\%$<br>102. Two parallel light rays are incident at one surface of a prism of refractive index 1.5 as shown in figure.<br>angle between the emergent rays is nearly <i>(Ray Optics and Optical Instrume</i><br>1) $19^{\circ}$ (2) $37^{\circ}$ (3) $45^{\circ}$ (4) $49^{\circ}$<br>103. On one face of a prism of refractive index 1 and refracting angle A, a ray of light is incident at an angle i. A<br>refraction from the other refracting a phace, the ray travels at grazing emergence.<br>1) $\mu = \sqrt{1 + \left(\frac{\sin A + \cos 5}{\sin A}\right)^2}$ (2) $\mu = \sqrt{1 + \left(\frac{\sin 1 + \cos A}{\sin A}\right)^2}$<br>3) $\mu = \sqrt{1 - \left(\frac{\sin 1 + \cos A}{\sin A}\right)^2}$ (4) $\mu = \sqrt{1 + \left(\frac{\sin 1 + \cos A}{\sin A}\right)^2}$<br>104. The distance between the two slits in a Young's double slit experiment is d and the distance of the scr<br>from the plane of the slits is b, P is a point on the screen directly infront of one of the slits. The path differe<br>between the waves arriving at P from the two slits is<br>( <i>Wave Optics</i> )<br>1) $\frac{d^2}{b}$ (2) $\frac{d^2}{2b}$ (3) $\frac{2d^2}{b}$ (4) $\frac{d^2}{4b}$<br>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration<br>the proton and deutron is : <i>(Electric Charges and Fields)</i><br>1) $1 : 1$ (2) $1 : 2$ (3) $2 : 1$ (4) $4 : 1$<br>105. The value of C is is                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 1) 16                                                                                                                                                                       | 2) 4                                                                                   | 3) 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>(Thermodynamics)</i><br>4) 64                                                                     |  |  |  |
| 1) $1 + \frac{f}{2}$ (2) $1 + \frac{f}{f}$ (3) $1 + \frac{2}{f}$ (4) $1 + \frac{(f-1)}{3}$<br>101. An observer moves towards a stationery source of sound with a velocity one-fifth of velocity of sound. The percentage increase in apparent frequency is (Waw 1) 5% (2) 20% (3) Zero (4) 0.5% (Waw 1) 5% (2) 20% (3) Zero (4) 0.5% (Waw 1) 5% (2) 20% (3) Zero (4) 0.5% (Waw 1) 5% (2) 20% (3) Zero (4) 0.5% (Waw 1) 5% (2) 20% (3) Zero (4) 0.5% (Waw 1) 5% (2) 20% (3) Zero (4) 0.5% (Waw 1) 5% (Zero (4) 0.5% (Zero (4) 0.5% (Waw 1) 5% (Zero (4) 0.5%                                                                                                                                                                                                                                                  | 100. | Each molecule of a gas                                                                                                                                                      | has f degrees of freedo                                                                | m. The ratio $\frac{C_P}{C_V} = \gamma$ for the formula of the ratio $\frac{C_P}{C_V} = \gamma$ for the ratio of | he gas is <i>(Kinetic Theory of gases</i> )                                                          |  |  |  |
| 101. An observer moves towards a stationery source of sound with a velocity one-fifth of velocity of sound. The percentage increase in apparent frequency is the probability of the slits is b, P is a point on the stress and optical Instrument is a many is a point on the slits is b, P is a point on the slits is b, P is a point on the source of the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the slits is b, P is a point on the screen directly infront of one of the slits. The path differe between the waves arriving at P from the two slits is b, P is a point on the screen directly infront of one of the slits. The path differe between the waves arriving at P from the two slits is b, P is a point on the screen directly infront of one of the slits                                                                                                                                                                                                                                                                    |      | 1) 1 + $\frac{f}{2}$                                                                                                                                                        | 2) 1+ <sup>1</sup> / <sub>f</sub>                                                      | 3) $1 + \frac{2}{f}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4) 1+ $\frac{(f-1)}{3}$                                                                              |  |  |  |
| 1) 5% 2) 20% 3) Zero 4) 0.5%<br>102. Two parallel light rays are incident at one surface of a prism of refractive index 1.5 as shown in figure. Ta angle between the emergent rays is nearly (Ray Optics and Optical Instrument (Ray Optics and Optical Instrument)<br>1) 19° 2) 37° 3) 45° 4) 49°<br>103. On one face of a prism of refractive index 4 and refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting and refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting and refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting and refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting and the region of the region of the refracting and the region of the region of the refracting and refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting and refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting and refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting and refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting and refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting and refracting angle A, a ray of light is incident at an angle i. A refracting angle A, a ray of light is incident at an angle i. A refracting angle A, a ray of light is incident at an angle i. A refracting angle A, a ray of light is incident at an angle i. A refracting angle A, a ray of light is incident at an angle i. A refracting angle A, a ray of light is incident at an angle i. A refracting angle A, a ray of light is incident at an angle i. A field and the other refracting angle A, a ray of light is incident at an angle A, a ray of light is incident at an angle A, a ray of light is incident at an angle A, a ray of light is incident angle angle A, a ray of                                                                                                                                                                                                                                                              | 101. | An observer moves tow percentage increase in a                                                                                                                              | ards a stationery source<br>apparent frequency is                                      | e of sound with a velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y one-fifth of velocity of sound. The<br>(Waves)                                                     |  |  |  |
| 1)19° 2) 37° 3) 45° 4) 49°<br>103. On one face of a prism of refractive index u and refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting surface, the ray travels at grazing emergence.<br>(Ray Optics and Optical Instrument)<br>1) $\mu = \sqrt{1 + \left(\frac{\sin A + \cos 8}{\sin A}\right)^2}$ 2) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>3) $\mu = \sqrt{1 - \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$ 4) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>104. The distance between the two slits in a Young's double slit experiment is d and the distance of the sorre from the plane of the slits is b, P is a point on the screen directly infront of one of the slits. The path differe between the waves arriving at P from the two slits is (Wave Optics))<br>1) $\frac{d^2}{b}$ 2) $\frac{d^2}{2b}$ 3) $\frac{2d^2}{b}$ 4) $\frac{d^2}{4b}$<br>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration the proton and deutron is :<br>1) 1) 1: 1 2) 1: 2 3) 2: 1 4) 4: 1<br>106. The equivalent capacitance of the network given below is 1 $\mu$ F. The value of 'C' is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102. | 1) 5%<br>Two parallel light rays a<br>angle between the emer                                                                                                                | 2) 20 %<br>re incident at one surfa<br>gent rays is nearly                             | 3) Zero<br>ce of a prism of refractive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4) 0.5%<br>e index 1.5 as shown in figure. The<br>(Ray Optics and Optical Instruments)               |  |  |  |
| 1) 19° 2) 37° 3) 45° 4) 49°<br>103. On one face of a prism of refractive indext and refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the other refracting angle A, a ray of light is incident at an angle i. A refraction from the solution from the refracting angle A, a ray of light is incident at an angle i. A for the figure and the other refraction the plane of the slits is b, P is a point on the screen directly infront of one of the slits. The path differe between the waves arriving at P from the two slits is (Wave Optics) 1) $\frac{d^2}{b}$ 2) $\frac{d^2}{2b}$ 3) $\frac{2d^2}{b}$ 4) $\frac{d^2}{4b}$<br>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration the proton and deutron is : (Electric Charges and Fields) 1) 1 : 1 2) 1 : 2 3) 2 : 1 4) 4 : 1<br>106. The equivalent capacitance of the network given below is 1 u F. The value of 'C' is                                                                                                                                                                                                                                                                                                 |      |                                                                                                                                                                             |                                                                                        | T.M.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      |  |  |  |
| 103. On one face of a prism of refractive index $\mu$ and refracting angle A, a ray of light is incident at an angle I. A refraction from the other refracting surface, the ray travels at grazing emergence.<br>(Ray Optics and Optical Instrument)<br>1) $\mu = \sqrt{1 + \left(\frac{\sin A + \cos A}{\sin A}\right)^2}$<br>2) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>3) $\mu = \sqrt{1 - \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>104. The distance between the two slits in a Young's double slit experiment is d and the distance of the scruf from the plane of the slits is b, P is a point on the screen directly infront of one of the slits. The path differe between the waves arriving at P from the two slits is<br>1) $\frac{d^2}{b}$<br>2) $\frac{d^2}{2b}$<br>3) $\frac{2d^2}{b}$<br>4) $\frac{2d^2}{b}$<br>4) $\frac{d^2}{4b}$<br>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration the proton and deutron is :<br>(Electric Charges and Fields)<br>1) 1 : 1<br>2) 1 : 2<br>3) 2 : 1<br>4) 4 : 1<br>106. The equivalent capacitance of the network given below is 1 $\mu$ F. The value of 'C' is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400  | 1)19º                                                                                                                                                                       | 2) 37°                                                                                 | 3) 45°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4) 49 <sup>0</sup>                                                                                   |  |  |  |
| 1) $\mu = \sqrt{1 + \left(\frac{\sin A + \cos A}{\sin A}\right)^2}$<br>3) $\mu = \sqrt{1 - \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>104. The distance between the two slits in a Young's double slit experiment is d and the distance of the scruftrom the plane of the slits is b, P is a point on the screen directly infront of one of the slits. The path difference between the waves arriving at P from the two slits is <b>(Wave Optics)</b><br>1) $\frac{d^2}{b}$<br>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration the proton and deutron is:<br>1) $1 : 1$<br>106. The equivalent capacitance of the network given below is 1 $\mu$ E. The value of 'C' is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103. | On one face of a prism c<br>refraction from the other                                                                                                                       | refractive index $\mu$ and refracting surface, the r                                   | refracting angle A, a ray of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of light is incident at an angle i. After<br>ergence.<br>(Ray Optics and Optical Instruments)        |  |  |  |
| 3) $\mu = \sqrt{1 - \left(\frac{\sin i + \cos A}{\sin A}\right)^2}$<br>104. The distance between the two slits in a Young's double slit experiment is d and the distance of the screen from the plane of the slits is b, P is a point on the screen directly infront of one of the slits. The path difference between the waves arriving at P from the two slits is <b>(Wave Optics)</b><br>1) $\frac{d^2}{b}$<br>2) $\frac{d^2}{2b}$<br>3) $\frac{2d^2}{b}$<br>4) $\frac{d^2}{4b}$<br>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration the proton and deutron is :<br>1) $1 : 1$<br>2) $1 : 2$<br>3) $2 : 1$<br>4) $4 : 1$<br>106. The equivalent capacitance of the network given below is 1 $\mu$ F. The value of 'C' is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 1) $\mu = \sqrt{1 + \left(\frac{\sin A + \cos A}{\sin A}\right)}$                                                                                                           |                                                                                        | 2) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\left(\frac{1}{2}\right)^2$                                                                         |  |  |  |
| <ul> <li>104. The distance between the two slits in a Young's double slit experiment is d and the distance of the screen from the plane of the slits is b, P is a point on the screen directly infront of one of the slits. The path differe between the waves arriving at P from the two slits is (Wave Optics)</li> <li>1) d<sup>2</sup>/b</li> <li>2) d<sup>2</sup>/2b</li> <li>3) 2d<sup>2</sup>/b</li> <li>4) d<sup>2</sup>/4b</li> <li>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration the proton and deutron is : (Electric Charges and Fields)</li> <li>1) 1 : 1</li> <li>2) 1 : 2</li> <li>3) 2 : 1</li> <li>4) 4 : 1</li> <li>106. The equivalent capacitance of the network given below is 1 u F. The value of 'C' is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 3) $\mu = \sqrt{1 - \left(\frac{\sin i + \cos A}{\sin A}\right)}$                                                                                                           | $\left( \right)^{2}$                                                                   | 4) $\mu = \sqrt{1 + \left(\frac{\sin i + \cos A}{\sin A}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\left(\frac{1}{2}\right)^2$                                                                         |  |  |  |
| 1) $\frac{d^2}{b}$ 2) $\frac{d^2}{2b}$ 3) $\frac{2d^2}{b}$ 4) $\frac{d^2}{4b}$<br>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration the proton and deutron is :<br>1) 1 : 1 2) 1 : 2 3) 2 : 1 4) 4 : 1<br>106. The equivalent capacitance of the network given below is 1 $\mu$ F. The value of 'C' is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104. | The distance between t<br>from the plane of the slits<br>between the waves arriv                                                                                            | he two slits in a Young's<br>s is b, P is a point on the<br>⁄ing at P from the two sli | s double slit experiment<br>screen directly infront of<br>its is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | is d and the distance of the screen<br>one of the slits. The path difference<br><i>(Wave Optics)</i> |  |  |  |
| <ul> <li>105. A proton (mass = M) and a deutron (mass = 2M) are sent into an electric field. The ratio of acceleration the proton and deutron is : <i>(Electric Charges and Fields)</i></li> <li>1) 1 : 1</li> <li>2) 1 : 2</li> <li>3) 2 : 1</li> <li>4) 4 : 1</li> <li>106. The equivalent capacitance of the network given below is 1 µ F. The value of 'C' is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 1) $\frac{d^2}{b}$                                                                                                                                                          | 2) $\frac{d^2}{2b}$                                                                    | 3) $\frac{2d^2}{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4) $\frac{d^2}{4b}$                                                                                  |  |  |  |
| 1) 1 : 1 2) 1 : 2 3) 2 : 1 4) 4 : 1<br>106. The equivalent capacitance of the network given below is 1 µ F. The value of 'C' is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105. | A proton (mass = M) an<br>the proton and deutron i                                                                                                                          | d a deutron (mass = 2M<br>s :                                                          | 1) are sent into an electri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c field. The ratio of accelerations of<br>(Electric Charges and Fields)                              |  |  |  |
| (Electrostatic Potential and Capacitance)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106. | 1) 1 : 1<br>The equivalent capacita                                                                                                                                         | 2) 1 : 2<br>nce of the network give                                                    | 3) 2 : 1<br>n below is 1 μ F. The valu<br><i>(Electrostat</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4) 4 : 1<br>ue of 'C' is<br><i>ic Potential and Capacitance</i> )                                    |  |  |  |



#### WWWW.AIMSTUTORIAL.IN

### WW.AIMSTUTORIAI

2) 1.5 μF 1) 3 u F 3) 2.5 µ F 4) 1 μF 107. In the given circuit, the steady state voltage drop across the capacitor C is



$$\frac{Vr_2}{r_1 + r_3}$$
 3)  $\frac{Vr_1}{r_1 + r_2}$ 

108. The current 'i' in the given branch of circuit is

2

1)  $\frac{Vr_1}{r_2 + r_3}$ 





2) XOR gate

1) AND gate

4) NAND gate

(Current Electricity)

120. A TV tower has a height of 100m. The population density around the TV if the population covered is 60.288 lac, is (Communication System) 3) 7.5 x 10<sup>3</sup> km<sup>-2</sup>WWW427A1101STUTORIAL.IN 1) 5 x 103 km-2 2) 1.5 x 103 km-2

3) NOR gate