MODEL PAPER - 6

PHYSICS

81.	The theory of relativity	-		(Physical world)
82.			3) Einstein where t is time, C is cap	4) Chadwick pacitance and R is resistance of coil.
	then the dimensions of 1) [MLT ⁻¹]	f CR is 2) [MºLT]	3) [MºLºT]	(Units and Mesurement) 4) [M ⁰ L ⁰ T ⁰]
83.	k= 2m/sec ² . The distar	nce travelled in the first 3	seconds will be	with the time that is $v = kt$, where (Motion in a Straight Line)
	1) 9 m	2) 16 m	3) 27 m	4) 36 m
84.				a wall 30m high and 120 $\sqrt{3}$ m away
	-		•	o seconds. How far from the wall does is the same on both sides of the wall? (Motion in a Plane)
	1) 150√3 m	2) $180\sqrt{3}$ m	3) $120\sqrt{3}$ m	4) $210\sqrt{3}$ m
85.	The range of a project	tile, when launched at	an angleof $22\frac{1}{2}^{\circ}$ with the	ne horiontal is 5 km. The additiona
	horizontal distance the	projectile would cover w	vhen projected with same	e velocity at 30° is (Motion in a Plane)
	1) $5\left(\frac{\sqrt{3}}{2}-1\right)$	2) $5\left(\sqrt{\frac{3}{2}}-1\right)$	3) $5\sqrt{\frac{3}{2}}$	4) $5\left[\sqrt{\frac{3}{2}}+1\right]$
86.	of mass 500 kg is left s	stationary. The velocity o	f the other part must be	explodes into two pieces. One piece (Law of Motion)
87.	1) 600 m/s A person weighing 60	2) 800 m/s kg in a small boat of ma	3) 1500 m/s ss 140 kg that is at rest,	4) 1000 m/s throws a 5 kg stone in the horizonta
		•	of the boat immediately 3) 0.35 ms ⁻¹	_
88.	A box of mas 50 kg at r	rest is pulled up on an inc	clined plane 12m long an	nd 2m high by a constant force of 100
	13 (g = 10 1113 <i>)</i>			e work done against friction is Joules (Work, Energy, Power)
89.	1) 50 Two idential cylindrical	2) 100 vessels each of area of o	3) 150 cross-section A are on a le	4) 200 evel ground. Each contains a liquid of
	density 'o'. The heights	s of liquid columns are h	and h If the two vessels	are connected by means of a narrow
	1) $\frac{A\rho g(h_1 - h_2)^2}{2}$	2) $\frac{A\rho g}{2}(h_1^2-h_2^2)$	3) $\frac{A\rho g}{4}(h_1^2-h_2^2)$	ells is (Work, Energy, Power) $4) \frac{A\rho g}{4} (h_1 - h_2)^2$
90.	A vehicle is travelling ald If the normal reactions	ong concave road then alo	ong convex road of same es the lowest point of con	radius of curvatures at uniform speed. cave surface, highest point of convex = 10 m/s ⁻²) (System of Particles and RM, 4) 900 kg
91.	The bob of a simple p describes vertical circle	pendulum at rest position of radius equal to length	n is given minimum velo	ocity in horizontal direction so that it relocity of the bob at the highest point
	1) √2 ∨	2) √3 ∨	3) 2 V	4) 3 V
92.	describes vertical circle	e of radius equal to length	h of pendulum ℓ . If the ter	horizontal direction so that the bob nsion in string is 4 times weight of bob nest pointof vertical circle is
				(System of Particles and RM)
	1) $\sqrt{\frac{g\ell}{2}}$	2) √gℓ	$3)\sqrt{\frac{3g\ell}{2}}$	4) √2gℓ

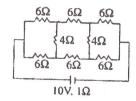
93. A point of mass m is suspended at the end of a massless wire of length ℓ and cross section A. if Y is the

3) $2\pi\sqrt{\frac{\ell}{YAm}}$

Young's modulus for the wire, the frequency of oscillation along the vertical line is

 $2)~2\pi\sqrt{\frac{YA\ell}{m}}$

WWWW.AIMSTUTORIAL.IN


(Oscillation)

WWW.AIMSTIJTORIAL.IN

	acceleration due to grav			radius i with angular speed ω . The (Gravitation)
	1) $\frac{r^3\omega}{R}$	$r^2\omega^3$	3) $\frac{r^3 \omega^2}{R^2}$	$r^2\omega^2$
	IX	IX	IX	IX
95.	the force developed in t	he copper bar to the ire	on bar of identical length	d a half times that of Iron, the ratiio of s and cross sections, when heated be taken to be equal to that of Iron) is (Mechanical Properties of Solids)
	1) 3/2	2) 2/3	3) 9/4	4) 4/9
96.		•		the pressure difference being P and ased to 2P, the rae of flow becomes (Mechanical Properties of Fluids)
	1) Q/8	2) Q/5	3) Q/4	4) Q/3
97.		·		from this black body at 273°C is (Thermal Properties of Matter)
98.	1) 2 E Two identical balls 'A' ar	2) E/2 nd 'B' are moving with s	3) 16E ame velocity. If velocity of	4) E/16 of 'A' is reduced to half and of 'B' to
	zero, then the rise in ten			(Thermodynamics)
	1) 3 : 4	2) 4 : 1	3) 2 : 1	4) 1 : 1
99.	· ·	of this gas is suddenly of	compressed to 100 c.c. If	the initial pressure is P, then the final
	pressure will be	_		(Thermodynamics)
	1) $\frac{P}{32}$	2) ^{2p} / ₅	3) 8 P	4) 32 P
100.	During an adiabatic pro	cess, the pressure of a	a gas is found to be prop	portional to the cube of its absolute
	temperature. The ration	$\frac{C_{P}}{C_{V}} = \gamma \text{ for the gas is}$		(Kinetic Theory of gases)
404	1) 2	2) 3/2	3) 5/3	4) 4/3
	is 340m/s then speed ar	nd direction of the obser	ver is	duced by 20%. If the speed of sound (Waves) source source ale of incidence is equal to the angle
	is 340m/s then speed ar 1) 86 m/s towards the s 3) 86 m/s away from the A ray of light passes thro	nd direction of the obser source e source ough an equilateral dias	ver is 2000 were solved to the second to the	(Waves) source source ale of incidence is equal to the angle
	is 340m/s then speed ar 1) 86 m/s towards the s 3) 86 m/s away from the A ray of light passes thro	nd direction of the obser source e source ough an equilateral dias	ver is 2000 were solved to the second to the	(Waves)
102.	is 340m/s then speed ar 1) 86 m/s towards the s 3) 86 m/s away from the A ray of light passes thro of emergence. If the an prism. 1) √7	nd direction of the obsersource e source ough an equilateral glass gle of emergence is 3/4	ver is 2008 m/s towards the second 4008 m/s away from the sprism, such that the angle times the angle of prism 30000	(Waves) source source ale of incidence is equal to the angle
102.	is 340m/s then speed ar 1) 86 m/s towards the s 3) 86 m/s away from the A ray of light passes thre of emergence. If the an prism. 1) √7 There is a prism with lef surfaces of the prism is over the refracting surfa	and direction of the obser- source e source ough an equilateral glas- gle of emergence is 3/4 20 \(\frac{2}{2}\) ractive index equal to \(\sqrt{2}\) polished. A beam of mo- ce of the prism is	ver is 2008 m/s towards the second 2008 m/s away from the sprism, such that the angle times the angle of prism 30000 $\sqrt{5}$ and the refracting angle nochromatic light will retriated	source se source gle of incidence is equal to the angle m. The refractive index of the glass (Ray Optics and Optical Instruments) 4) $\sqrt{3}$ / 2 e equal to 30°. One of the refracting race its path if its angle of incidence (Ray Optics and Optical Instruments)
102. 103.	is 340m/s then speed ar 1) 86 m/s towards the s 3) 86 m/s away from the A ray of light passes thre of emergence. If the an prism. 1) √7 There is a prism with ef surfaces of the prism is over the refracting surfa 1) 0° In young's double slit e	and direction of the observance source source bugh an equilateral glassingle of emergence is 3/4 and a source of the prism is 2) 30° apperiment interference is screen distant D metre	ver is 2008 m/s towards the second 2008 m/s towards the second 2008 m/s away from the sprism, such that the angle it times the angle of prism 3000 $\sqrt{5}$ and the refracting angle nochromatic light will retrest 3000 is produced due to slits a from the slits. If λ in met	source se source gle of incidence is equal to the angle m. The refractive index of the glass (Ray Optics and Optical Instruments) 4) $\sqrt{3}$ / 2 e equal to 30°. One of the refracting race its path if its angle of incidence
102. 103.	is 340m/s then speed ar 1) 86 m/s towards the s 3) 86 m/s away from the A ray of light passes thro of emergence. If the an prism. 1) √7 There is a prism with ef surfaces of the prism is over the refracting surfa 1) 0° In young's double slit e pattern is observed on a the number of fringes pe	and direction of the observance source source bugh an equilateral glassingle of emergence is 3/4 and a source of the prism is 2) 30° apperiment interference is screen distant D metre	ver is 2008 m/s towards the second 2008 m/s towards the second 2008 m/s away from the sprism, such that the angle it times the angle of prism 3000 $\sqrt{5}$ and the refracting angle nochromatic light will retrest 3000 is produced due to slits a from the slits. If λ in met is:	source the source given of incidence is equal to the angle of incidence is equal to the angle of the refractive index of the glass $(Ray\ Optics\ and\ Optical\ Instruments)$ (Ray\ $\sqrt{3}\ /\ 2$) the equal to 30° . One of the refracting race its path if its angle of incidence $(Ray\ Optics\ and\ Optical\ Instruments)$ (Ray\ Optics\ and\ Optical\ Instruments) and\ (Ray\ Optics\ and\ Optical\ Instruments) and\ (Wave\ Optics)
102.103.104.	is 340m/s then speed ar 1) 86 m/s towards the s 3) 86 m/s away from the A ray of light passes throof emergence. If the an prism. 1) $\sqrt{7}$ There is a prism with ref surfaces of the prism is over the refracting surfaction 1) 0° In young's double slit expattern is observed on a the number of fringes per 1) $\frac{\lambda D}{d}$ The breakdown electric radius 1 mm is	and direction of the observance source bugh an equilateral glassingle of emergence is $3/4$ ractive index equal to $\sqrt{2}$ polished. A beam of more of the prism is $2) 30^{\circ}$ experiment interference is screen distant D metre er metre on the screen is $2) \frac{\lambda d}{D}$ intensity for air is $3 \times 10^{\circ}$	ver is 2) 68 m/s towards the second 4) 68 m/s away from the sprism, such that the angle times the angle of prism 3) $\sqrt{5}$ 2 and the refracting angle nochromatic light will retrest 3) 45° is produced due to slits a from the slits. If λ in met is: 3) $\frac{d}{\lambda D}$ 6 V/m. The maximum chains $\frac{d}{d}$ 30 $\frac{d}{d}$ 70 $\frac{d}{d}$ 71 $\frac{d}{d}$ 71 $\frac{d}{d}$ 72 $\frac{d}{d}$ 73 $\frac{d}{d}$ 74 $\frac{d}{d}$ 75 $\frac{d}{d}$ 75 $\frac{d}{d}$ 76 $\frac{d}{d}$ 77 $\frac{d}{d}$ 77 $\frac{d}{d}$ 77 $\frac{d}{d}$ 77 $\frac{d}{d}$ 77 $\frac{d}{d}$ 78 $\frac{d}{d}$ 79 $\frac{d}{d}$ 79 $\frac{d}{d}$ 79 $\frac{d}{d}$ 79 $\frac{d}{d}$ 79 $\frac{d}{d}$ 79 $\frac{d}{d}$ 70 $\frac{d}{d}$ 71 $\frac{d}{d}$ 71 $\frac{d}{d}$ 72 $\frac{d}{d}$ 73 $\frac{d}{d}$ 74 $\frac{d}{d}$ 75 $\frac{d}{d}$ 75 $\frac{d}{d}$ 76 $\frac{d}{d}$ 77 $\frac{d}{d}$ 77 $\frac{d}{d}$ 77 $\frac{d}{d}$ 77 $\frac{d}{d}$ 78 $\frac{d}{d}$ 79 $\frac{d}{d}$ 79 $\frac{d}{d}$ 79 $\frac{d}{d}$ 70 $\frac{d}{d$	source the source gle of incidence is equal to the angle of the refractive index of the glass (Ray Optics and Optical Instruments) 4) $\sqrt{3}$ / 2 e equal to 30°. One of the refracting race its path if its angle of incidence (Ray Optics and Optical Instruments) 4) 60° distance d metre apart. The fringe re, denotes, the wavelength of light, (Wave Optics) 4) $\frac{D}{\lambda d}$ arge that can be held by a sphere of (Electric Charges and Fields)
102.103.104.105.	is 340m/s then speed ar 1) 86 m/s towards the s 3) 86 m/s away from the A ray of light passes throof emergence. If the an prism. 1) $\sqrt{7}$ There is a prism with efficiency surfaces of the prism is over the refracting surfaction 1) 0^{0} In young's double slit expattern is observed on a the number of fringes per 1) $\frac{\lambda D}{d}$ The breakdown electric radius 1 mm is 1) 0.33 C A parallel plate capacito	and direction of the observource source bugh an equilateral glassingle of emergence is $3/4$ ractive index equal to $\sqrt{2}$ polished. A beam of more of the prism is $2 \cdot 30^{\circ}$ experiment interference a screen distant D metre er metre on the screen is $2 \cdot \frac{\lambda d}{D}$ intensity for air is $3 \times 10^{\circ}$ or with air as medium be to two equal halves	ver is 20 68 m/s towards the second 4) 68 m/s away from the sprism, such that the angle times the angle of prism $3) \sqrt{5}$ 2 and the refracting angle nochromatic light will retrest $3) 45^{\circ}$ is produced due to slits a from the slits. If λ in met is: 3) $\frac{d}{\lambda D}$ 6 V/m. The maximum chains and filled with two means towards and filled with two means $\frac{d}{dt}$	source the source gile of incidence is equal to the angle of the refractive index of the glass (Ray Optics and Optical Instruments) 4) $\sqrt{3}$ / 2 The equal to 30°. One of the refracting race its path if its angle of incidence (Ray Optics and Optical Instruments) 4) 60° distance d metre apart. The fringe re, denotes, the wavelength of light, (Wave Optics) 4) $\frac{D}{\lambda d}$ arge that can be held by a sphere of
102.103.104.105.106.	is 340m/s then speed ar 1) 86 m/s towards the s 3) 86 m/s away from the A ray of light passes throof emergence. If the an prism. 1) $\sqrt{7}$ There is a prism with ref surfaces of the prism is over the refracting surfaction 1) 0° In young's double slit expattern is observed on a the number of fringes per 1) $\frac{\lambda D}{d}$ The breakdown electric radius 1 mm is 1) 0.33 C A parallel plate capacitor capcitor is divided in $K_1 = 2$ and $K_2 = 4$. The of 1) 10 μ F	and direction of the observance source by the source ough an equilateral glassingle of emergence is $3/4$ polished. A beam of more of the prism is $2) 30^{\circ}$ experiment interference ascreen distant D metre er metre on the screen is $2) \frac{\lambda d}{D}$ intensity for air is $3 \times 10^{\circ}$ with air as medium be to two equal halves apacitance will now be. $2) 20 \mu$ F	ver is 20 68 m/s towards the second 4) 68 m/s away from the sprism, such that the angle times the angle of prism $3) \sqrt{5}$ 2 and the refracting angle nochromatic light will retrest $3) 45^{\circ}$ is produced due to slits a from the slits. If λ in met is: $3) \frac{d}{\lambda D}$ $4 V/m$ $3) 3.3 C$ $4 V/m$ $5 V/m$ $5 V/m$ $6 V/m$ $6 V/m$ $6 V/m$ $6 V/m$ $6 V/m$ $7 V/m$ $8 V/m$ $8 V/m$ $8 V/m$ $8 V/m$ $9 V/m$ 9	source be source gle of incidence is equal to the angle on. The refractive index of the glass (Ray Optics and Optical Instruments) 4) $\sqrt{3}$ / 2 e equal to 30°. One of the refracting race its path if its angle of incidence (Ray Optics and Optical Instruments) 4) 60° distance d metre apart. The fringe re, denotes, the wavelength of light, (Wave Optics) 4) $\frac{D}{\lambda d}$ arge that can be held by a sphere of (Electric Charges and Fields) 4) 3.3 μ C apacitance of 10 μ F. The area of the redia having dielectric constant ctrostatic Potential and Capacitance) 40 μ F
102.103.104.105.106.	is 340m/s then speed ar 1) 86 m/s towards the s 3) 86 m/s away from the A ray of light passes throof emergence. If the an prism. 1) $\sqrt{7}$ There is a prism with ref surfaces of the prism is over the refracting surfaction 1) 0° In young's double slit expattern is observed on a the number of fringes per 1) $\frac{\lambda D}{d}$ The breakdown electric radius 1 mm is 1) 0.33 C A parallel plate capacitor capcitor is divided in $K_1 = 2$ and $K_2 = 4$. The of 1) 10 μ F	and direction of the observance source by the source ough an equilateral glassingle of emergence is $3/4$ polished. A beam of more of the prism is $2) 30^{\circ}$ experiment interference ascreen distant D metre er metre on the screen is $2) \frac{\lambda d}{D}$ intensity for air is $3 \times 10^{\circ}$ with air as medium be to two equal halves apacitance will now be. $2) 20 \mu$ F	ver is 20 68 m/s towards the second three second times the angle of prism $3) \sqrt{5}$ $\sqrt{2}$ and the refracting angle mochromatic light will retrest $3) 45^{\circ}$ is produced due to slits a from the slits. If λ in met is $3 + \frac{1}{2}$ $\frac{1}{2}$ \frac	source be source gle of incidence is equal to the angle on. The refractive index of the glass (Ray Optics and Optical Instruments) 4) $\sqrt{3}$ / 2 e equal to 30°. One of the refracting race its path if its angle of incidence (Ray Optics and Optical Instruments) 4) 60° distance d metre apart. The fringe re, denotes, the wavelength of light, (Wave Optics) 4) $\frac{D}{\lambda d}$ arge that can be held by a sphere of (Electric Charges and Fields) 4) 3.3 μ C apacitance of 10 μ F. The area of the redia having dielectric constant ctrostatic Potential and Capacitance) 40 μ F

108. Current in the main circuit shown is

(Current Electricity)

1) 1.5 A

2) 2 A

3) 0.6 A

4) 1 A

109. A porton, a deuteron and an α - particle are accelerated through same potential difference and then they enter a normal uniform magnetic field, the ratio of their kinetic energies will be

(Moving Charges and Magnetism)

2) 1 : 1: 2

3) 1:1:1

4) 1 : 2: 4

110. A beam of protons enters a uniform magnetic field of 0.3 T with a velocity of 4 x 105 m/sec in a direction making an angle of 60° with the direction of magnetic field. The path of motion of the particle will be

(Moving Charges and Magnetism)

2) Straight line

3) Parabolic

4) helical

111. When two magnetic poles one of which is four times greater than the other in pole strength, are placed 5 cm apart in air. They exert a mutual force of 144 mg. wt. On each other. The pole strengths of the poles are (Magnetism and Matter) (in amper metre) ($g = 10 \text{ m/s}^2$).

1) 6, 3

2)9,3

3) 12, 3

4) 18, 6

112. An inductor of 12 mH and a resistor of 4 $\kappa\Omega$ are connected in series across a battery of 240 V through a switch. After closig the switch the current in the circuit starts growing. When the currents is 15 mA, the potential differences across the indicator will be (Electromagnetic Induction)

1)60V

2) 120 V

3) 180 V

4) 240 V

113. The equation of an alternating voltage is E = 220 sin (ω t + π / 6) and the equation of the current in the circuit is I = 10 sin (ω t - π / 6) Then the impedance of the circuit is (Alternating Current)

2) 22 ohm

3) 11 ohm

4) 17 ohm

114. In an apparatus, The electric field was found to oscillate with amplitude of 18 V/m. The amplitude of the oscillating magnetic field will be (Electromagnetic Waves)

1) 4 x 10⁻⁶ T

2) 6 x 10⁻⁸ T

3) 9 x 10³ T

4) 11 x 10⁻¹¹ T

115. Ultraviolet light of wavelength 300 nm and intensity 1.0 W/m² falls on the surface of a photoelectric material. If one percent of the incident photons produce photoelectrons, Then the number of photoelectrons emitted from an area of 1.0 cm² of the surface is nearly (Dual Nature)

1) 9.61 x 10¹⁴ per second

2) 4.12 x 10¹³ per second

3) 1.51 x 10¹² per second

4) 2.13 x 10¹¹ per second

3) 1.31 x 10¹² per second 116. An α - particle passes through a potential difference of 2 x 10⁶ volt and then it becomes incident on a silver foil. The charge number of silver's 47. The energy of incident particles will be (in joules). (Atoms)

1) 5 x 10⁻¹²

(2) 6.4 x 10⁻¹³

3) 5.8 x 10⁻¹⁴

4) 9.1 x 10⁻¹⁵

117. α and β - particles emitted when uranium nucleus $_{92}$ U²³⁸ decay to $_{82}$ Pb²¹⁴ are (Nuclei)

1) 6 - α particle and 2 - β particles

2) 4 α - particles and 2 β particles

3) 2 - α particles and 6 β particles

4) 2 α - particles and 4 β - particles

118. In a transistor circuit the base current changes from 30 μ A to 90 μ A. If the current gain of transistor is 30, the change in the collector current is (Semiconductors)

1) 4 m A

2) 2 m A

3) 3.6 m A

4) 1.8 m A

119. The Boolean expression for the gate circuit shown in below figure is

(Semiconductors)

1) A. 1 = A

2) $A.\overline{A} = 0$

3) A. A = A

4) A.0 = 0

120. The maximum peak - to- peak voltage of an AM wave is 16 mV and the minimum peak - to- peak voltage is 4 mV. The modulation factor is equal to (Communication System)

1) 0.6

2) 0.3

3) 0.8

4)0.25