TS EAMCET: Quadratic Equations Practice

TS EAMCET 2024

Quadratic Equations Practice Sheet

Q 1 / 281 11 May Shift 1

The equation \(16x^4 + 16x^3 – 4x – 1 = 0\) has a multiple root. If \(\alpha, \beta, \gamma, \delta\) are the roots of this equation, then \(\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4} =\)

A. 32
B. 64
C. \(\frac{1}{32}\)
D. \(\frac{1}{64}\)
Correct Answer: B (64)
Q 2 / 281 11 May Shift 1

If \(\alpha, \beta, \gamma\) are the roots of the equation \(4x^3 – 3x^2 + 2x – 1 = 0\), then \(\alpha^3 + \beta^3 + \gamma^3 =\)

A. \(\frac{2}{27}\)
B. \(\frac{27}{128}\)
C. \(\frac{1}{8}\)
D. \(\frac{3}{64}\)
Correct Answer: D (\(\frac{3}{64}\))
Q 3 / 281 11 May Shift 1

\(\alpha, \beta\) are the real roots of the equation \(x^2 + ax + b = 0\). If \(\alpha + \beta = \frac{1}{2}\) and \(\alpha^3 + \beta^3 = \frac{37}{8}\), then \(a – \frac{1}{b} =\)

A. \(\frac{1}{6}\)
B. \(\frac{-1}{6}\)
C. \(\frac{-3}{2}\)
D. \(\frac{3}{2}\)
Correct Answer: B (\(\frac{-1}{6}\))
Q 4 / 281 11 May Shift 1

If \(f(x)\) is a quadratic function such that \(f(x)f(\frac{1}{x}) = f(x) + f(\frac{1}{x})\), then
\(\sqrt{f(\frac{2}{3}) + f(\frac{3}{2})} =\)

A. \(\frac{10}{3}\)
B. \(\frac{41}{20}\)
C. \(\frac{13}{6}\)
D. \(\frac{25}{12}\)
Correct Answer: C (\(\frac{13}{6}\))
Q 5 / 281 10 May Shift 2

With respect to the roots of the equation \(3x^3 + bx^2 + bx + 3 = 0\), match the items of List-I with those of List-II.

LIST-I
  • A. All the roots are negative
  • B. Two roots are complex
  • C. Two roots are positive
  • D. All roots are real and distinct
LIST-II
  • I. \((b-3)^2 = 36 + P^2\) for \(P \in R\)
  • II. \(-3 < b < 9\)
  • III. \(b \in (-\infty, -3) \cup (9, \infty)\)
  • IV. \(b = 9\)
  • V. \(b = -3\)
A. A-IV, B-I, C-II, D-III
B. A-V, B-III, C-I, D-II
C. A-IV, B-II, C-V, D-III
Correct Answer: A (Implied by standard solution patterns for Reciprocal Equations)
Note: Option A corresponds to A-IV (All negative if b=9), B-I (Complex range), C-II, D-III.
Q 6 / 281 10 May Shift 2

The roots of the equation \(x^3 – 3x^2 + 3x + 7 = 0\) are \(\alpha, \beta, \gamma\) and \(\omega, \omega^2\) are complex cube roots of unity. If the terms containing \(x^2\) and \(x\) are missing in the transformed equation when each one of these roots is decreased by \(h\), then \(\frac{\alpha-h}{\beta-h} + \frac{\beta-h}{\gamma-h} + \frac{\gamma-h}{\alpha-h} =\)

A. 0
B. \(\frac{3}{\omega^2}\)
C. \(3\omega^2\)
D. \(3\omega\)
Correct Answer: C (\(3\omega^2\))
Q 7 / 281 10 May Shift 1

If \(\frac{2x-1}{2x^2-x-6} = ax + b + \frac{A}{px-2} + \frac{B}{2x+q}\), then \(51apB =\)

A. \(17bqA\)
B. \(7bqA\)
C. \(23bqA\)
D. \(69bqA\)
Correct Answer: C (\(23bqA\))
Q 8 / 281 10 May Shift 1

\(\alpha, \beta, \gamma\) are the roots of the equation \(8x^3 – 42x^2 + 63x – 27 = 0\). If \(\beta < \gamma < \alpha\) and \(\beta, \gamma, \alpha\) are in geometric progression, then the extreme value of the expression \(\gamma x^2 + 4\beta x + \alpha\) is

A. 3
B. \(\frac{3}{4}\)
C. \(\frac{3}{2}\)
D. \(\frac{21}{4}\)
Correct Answer: C (\(\frac{3}{2}\))
Q 9 / 281 10 May Shift 1

\(\alpha, \beta, \gamma\) are the roots of the equation \(x^3 + 3x^2 – 10x – 24 = 0\).
If \(\alpha > \beta > \gamma\) and \(\alpha^3 + 3\beta^2 – 10\gamma – 24 = 11k\), then \(k =\)

A. 55
B. 1
C. 11
D. 5
Correct Answer: D (5)
Q 10 / 281 10 May Shift 1

If the expression \(7 + 6x – 3x^2\) attains its extreme value \(\beta\) at \(x = \alpha\), then the sum of the squares of the roots of the equation \(x^2 + \alpha x – \beta = 0\) is

A. -21
B. 19
C. -19
D. 21 (Input answer)
Correct Answer: 21 (Matches user input)

Elementor #2253

TS EAMCET: Quadratic Equations Practice

TS EAMCET 2024

Quadratic Equations Practice Sheet

Q 1 / 281 11 May Shift 1

The equation \(16x^4 + 16x^3 – 4x – 1 = 0\) has a multiple root. If \(\alpha, \beta, \gamma, \delta\) are the roots of this equation, then \(\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4} =\)

A. 32
B. 64
C. \(\frac{1}{32}\)
D. \(\frac{1}{64}\)
Correct Answer: B (64)
Q 2 / 281 11 May Shift 1

If \(\alpha, \beta, \gamma\) are the roots of the equation \(4x^3 – 3x^2 + 2x – 1 = 0\), then \(\alpha^3 + \beta^3 + \gamma^3 =\)

A. \(\frac{2}{27}\)
B. \(\frac{27}{128}\)
C. \(\frac{1}{8}\)
D. \(\frac{3}{64}\)
Correct Answer: D (\(\frac{3}{64}\))
Q 3 / 281 11 May Shift 1

\(\alpha, \beta\) are the real roots of the equation \(x^2 + ax + b = 0\). If \(\alpha + \beta = \frac{1}{2}\) and \(\alpha^3 + \beta^3 = \frac{37}{8}\), then \(a – \frac{1}{b} =\)

A. \(\frac{1}{6}\)
B. \(\frac{-1}{6}\)
C. \(\frac{-3}{2}\)
D. \(\frac{3}{2}\)
Correct Answer: B (\(\frac{-1}{6}\))
Q 4 / 281 11 May Shift 1

If \(f(x)\) is a quadratic function such that \(f(x)f(\frac{1}{x}) = f(x) + f(\frac{1}{x})\), then
\(\sqrt{f(\frac{2}{3}) + f(\frac{3}{2})} =\)

A. \(\frac{10}{3}\)
B. \(\frac{41}{20}\)
C. \(\frac{13}{6}\)
D. \(\frac{25}{12}\)
Correct Answer: C (\(\frac{13}{6}\))
Q 5 / 281 10 May Shift 2

With respect to the roots of the equation \(3x^3 + bx^2 + bx + 3 = 0\), match the items of List-I with those of List-II.

LIST-I
  • A. All the roots are negative
  • B. Two roots are complex
  • C. Two roots are positive
  • D. All roots are real and distinct
LIST-II
  • I. \((b-3)^2 = 36 + P^2\) for \(P \in R\)
  • II. \(-3 < b < 9\)
  • III. \(b \in (-\infty, -3) \cup (9, \infty)\)
  • IV. \(b = 9\)
  • V. \(b = -3\)
A. A-IV, B-I, C-II, D-III
B. A-V, B-III, C-I, D-II
C. A-IV, B-II, C-V, D-III
Correct Answer: A (Implied by standard solution patterns for Reciprocal Equations)
Note: Option A corresponds to A-IV (All negative if b=9), B-I (Complex range), C-II, D-III.
Q 6 / 281 10 May Shift 2

The roots of the equation \(x^3 – 3x^2 + 3x + 7 = 0\) are \(\alpha, \beta, \gamma\) and \(\omega, \omega^2\) are complex cube roots of unity. If the terms containing \(x^2\) and \(x\) are missing in the transformed equation when each one of these roots is decreased by \(h\), then \(\frac{\alpha-h}{\beta-h} + \frac{\beta-h}{\gamma-h} + \frac{\gamma-h}{\alpha-h} =\)

A. 0
B. \(\frac{3}{\omega^2}\)
C. \(3\omega^2\)
D. \(3\omega\)
Correct Answer: C (\(3\omega^2\))
Q 7 / 281 10 May Shift 1

If \(\frac{2x-1}{2x^2-x-6} = ax + b + \frac{A}{px-2} + \frac{B}{2x+q}\), then \(51apB =\)

A. \(17bqA\)
B. \(7bqA\)
C. \(23bqA\)
D. \(69bqA\)
Correct Answer: C (\(23bqA\))
Q 8 / 281 10 May Shift 1

\(\alpha, \beta, \gamma\) are the roots of the equation \(8x^3 – 42x^2 + 63x – 27 = 0\). If \(\beta < \gamma < \alpha\) and \(\beta, \gamma, \alpha\) are in geometric progression, then the extreme value of the expression \(\gamma x^2 + 4\beta x + \alpha\) is

A. 3
B. \(\frac{3}{4}\)
C. \(\frac{3}{2}\)
D. \(\frac{21}{4}\)
Correct Answer: C (\(\frac{3}{2}\))
Q 9 / 281 10 May Shift 1

\(\alpha, \beta, \gamma\) are the roots of the equation \(x^3 + 3x^2 – 10x – 24 = 0\).
If \(\alpha > \beta > \gamma\) and \(\alpha^3 + 3\beta^2 – 10\gamma – 24 = 11k\), then \(k =\)

A. 55
B. 1
C. 11
D. 5
Correct Answer: D (5)
Q 10 / 281 10 May Shift 1

If the expression \(7 + 6x – 3x^2\) attains its extreme value \(\beta\) at \(x = \alpha\), then the sum of the squares of the roots of the equation \(x^2 + \alpha x – \beta = 0\) is

A. -21
B. 19
C. -19
D. 21 (Input answer)
Correct Answer: 21 (Matches user input)