Quadratic Expressions
AIMSTUTORIAL
Ph: 90006 87600
Question 1 [2 May 2025, Shift-I]
\( \alpha, \beta \) are the roots of the equation \( \sin^2 x + b \sin x + c = 0 \). If \( \alpha + \beta = \frac{\pi}{2} \), then \( b^2 – 1 = \)
(a) \( c \)
(b) \( 2c \)
(c) \( c^2 \)
(d) \( 4c^2 \)
Teacher’s Explanation
Strategy: Use sum and product of roots. Convert \( \beta = \pi/2 – \alpha \) to relate sine and cosine.
Step 1: Relations
\( \sin\alpha + \sin\beta = -b \) and \( \sin\alpha \sin\beta = c \).
Step 2: Substitution
\( \sin\beta = \sin(\pi/2 – \alpha) = \cos\alpha \). So \( \sin\alpha + \cos\alpha = -b \).
Step 3: Square
\( (\sin\alpha+\cos\alpha)^2 = b^2 \implies 1 + 2\sin\alpha\cos\alpha = b^2 \). Since \( \sin\alpha\cos\alpha = c \), \( 1+2c = b^2 \).
Answer: (b)
Question 2 [2 May 2025, Shift-I]
The number of integral values of ‘\(a\)’ for which \( ax^2 + ax + 5 = 0 \) cannot have real roots is
(a) infinite
(b) 20
(c) 19
(d) 5
Teacher’s Explanation
Strategy: No real roots condition is \( D < 0 \).
Step 1: Discriminant
\( D = a^2 – 20a < 0 \implies a(a-20) < 0 \).
Step 2: Count Integers
Range is \( (0, 20) \). Integers are \( 1, 2, …, 19 \). Count = 19.
Answer: (c)
Question 3 [2 May 2025, Shift-II]
If \( x^2 – 3ax + a^2 – 2a – k = 0 \) has different real roots for every rational number \( a \), then \( k \) lies in
(a) \( (4/5, \infty) \)
(b) \( (-\infty, 4/5) \)
(c) \( (0, 4/5) \)
(d) \( (-\infty, \infty) \)
Teacher’s Explanation
Strategy: \( D_x > 0 \) leads to a quadratic inequality in \( a \). For this to hold for all \( a \), the discriminant of the \( a \)-quadratic must be negative.
Step 1: x-Discriminant
\( D_x = 9a^2 – 4(a^2 – 2a – k) = 5a^2 + 8a + 4k > 0 \).
Step 2: a-Discriminant
\( D_a = 64 – 80k < 0 \implies k > 64/80 = 4/5 \).
Answer: (a)
Question 4 [3 May 2025, Shift-I]
If \( \alpha \) is a root of \( x^2 – x + 1 = 0 \), sum of 12 terms of \( (\alpha^n + 1/\alpha^n)^3 \).
(a) -32
(b) 32
(c) 0
(d) 16
Teacher’s Explanation
Strategy: Roots are \( -\omega, -\omega^2 \). Cycle repeats every 3 terms.
Step 1: Calculate Cycle
Terms are \( 1, -1, -8 \). Sum = -8.
Step 2: Total Sum
12 terms = 4 cycles. Total = \( 4 \times (-8) = -32 \).
Answer: (a)
Question 5 [3 May 2025, Shift-I]
If \( x^2 + px + 2 = 0 \) and \( x^2 + x + 2p = 0 \) have a common root, sum of roots of \( x^2 + 2px + 8 = 0 \) is
(a) -3
(b) 3
(c) 6
(d) -6
Teacher’s Explanation
Strategy: Subtract equations to find common root \( \alpha = 2 \), then find \( p \).
Step 1: Find p
Substitute \( \alpha=2 \): \( 4+2p+2=0 \implies p=-3 \).
Step 2: Solve Final Eq
\( x^2 – 6x + 8 = 0 \). Sum of roots = 6.
Answer: (c)
Question 6 [3 May 2025, Shift-I]
If both roots of \( x^2 – 5ax + 6a = 0 \) exceed 1, range of ‘\( a \)’ is
(a) \( [-1, 0) \cup [24/25, \infty) \)
(b) \( [24/25, \infty) \)
(c) \( [-1, 0) \)
(d) R
Teacher’s Explanation
Strategy: Conditions: \( D \ge 0, f(1) > 0, -b/2a > 1 \).
Step 1: Intersection
Intersection of \( a \in (-\infty, 0] \cup [24/25, \infty) \), \( a > -1 \), and \( a > 0.4 \) gives \( [24/25, \infty) \).
Answer: (b)
Question 7 [3 May 2025, Shift-II]
If \( \tan\theta, \cot\theta \) are roots of \( ax^2 + bx + c = 0 \), then
(a) \( \cos 2\theta = -2b/c \)
(b) \( \sin 2\theta = -2c/b \)
(c) \( \tan 2\theta = 2b/c \)
(d) \( \cot 2\theta = 2c/a \)
Teacher’s Explanation
Strategy: Product of roots is 1, so \( a=c \). Sum gives relation.
Step 1: Relation
\( \tan\theta + \cot\theta = \frac{2}{\sin 2\theta} = -b/a \). So \( \sin 2\theta = -2a/b = -2c/b \).
Answer: (b)
Question 8 [3 May 2025, Shift-II]
Sum of roots of \( ||2x – 3| – 4| = 2 \) is
(a) 8
(b) 0
(c) 6
(d) 9
Answer: (c)
Question 9 [4 May 2025, Shift-I]
Relation for \( k \) if new roots are \( \alpha+1/\alpha \) type.
(a) \( 2x^2 – 13x + 20 = 0 \)
(b) …
Answer: (a)
Question 10 [4 May 2025, Shift-I]
\( f(x) \ge 0, f(-3)=0, f(0)=18 \). Find \( f(3) \).
(a) 36
(b) 72
(c) 144
(d) 288
Answer: (b)
Question 11 [9 May 2024, Shift-I]
\( k \) in \( (-0.5, 0) \) for equal roots.
(a) \( \frac{-16+\sqrt{255}}{2} \)
(b) …
Answer: (a)
Question 12 [9 May 2024, Shift-I]
Common root eq. Find root of \( ax^2 – 4x – 2a = 0 \).
(a) 2
(b) -2
(c) …
(d) \( \frac{-2+\sqrt{22}}{3} \)
Answer: (d)
Question 13 [9 May 2024, Shift-I]
Root \( \alpha \) in \( (-0.5, 0) \) for rational eq.
(a) -5/31
(b) -7/34
(c) -9/37
(d) -11/41
Answer: (b)
Question 14 [9 May 2024, Shift-II]
Value of \( \frac{28(M-\alpha)}{5(m+\beta)} \).
(a) 28
(b) 23
(c) 5
(d) 1
Answer: (b)
Question 15 [10 May 2024, Shift-I]
\( \frac{2}{\sqrt{3}}|\alpha^{2024} – \beta^{2024}| \).
(a) \( 2^{2024} \)
(b) \( 2^{2025} \)
Answer: (b)
Question 16 [10 May 2024, Shift-I]
Ratio from \( 12x^{1/3} – 25x^{1/6} + 12 = 0 \).
(a) 3/2
(b) 4/3
(c) 9/8
(d) 16/9
Answer: (d)
Question 17 [10 May 2024, Shift-I]
Sum of squares of roots.
(a) 21
(b) -19
(c) 19
(d) -21
Answer: (a)
Question 18 [10 May 2024, Shift-II]
Solution set \( 3^x + 3^{1-x} – 4 < 0 \).
(a) (1,2)
(b) (1,3)
(c) (0,2)
(d) (0,1)
Answer: (d)
Question 19 [10 May 2024, Shift-II]
Common solution set.
(a) (5,6)
(b) [5,6]
(c) [-3,5]
(d) None
Answer: (b)
Question 20 [11 May 2024, Shift-I]
Sum of cubic terms (roots of unity).
(a) 0
(b) 1
(c) -3
(d) -9
Answer: (d)
Question 21 [11 May 2024, Shift-I]
\( a – 1/b \) value.
(a) -1/6
(b) 3/2
(c) -3/2
(d) 1/6
Answer: (a)
Question 22 [11 May 2024, Shift-I]
Inequality \( \sqrt{…} > 1-x \).
(a) …
(b) …
(c) \( (1, \infty) \)
(d) …
Answer: (c)
Question 23 [12 May 2023, Shift-I]
Ratio value for common factor \( x-2 \).
(a) 1
(b) 2
(c) 3
(d) 4
Answer: (b)
Question 24 [12 May 2023, Shift-II]
Intersection of solution sets.
(a) (-1,2)
(b) (-1,1)
(c) (-2,-1)
(d) \{-1\}
Answer: (d)
Question 25 [12 May 2023, Shift-II]
Common root value (integer ratio condition).
(a) 4
(b) 3
(c) 2
(d) 1
Answer: (c)
Question 26 [12 May 2023, Shift-II]
\( \alpha^{15} + \beta^{15} \).
(a) -512
(b) -256
(c) 256
(d) 512
Answer: (b)
Question 27 [12 May 2023, Shift-II]
Reciprocal equation factor \( P \).
(a) 1/3
(b) 1/2
(c) 2
(d) 3
Answer: (b)
Question 28 [13 May 2023, Shift-I]
Positive root calculation.
(a) 2
(b) 2/5
(c) 3
(d) 3/5
Answer: (d)
Question 29 [13 May 2023, Shift-II]
Common root.
(a) 3
(b) 1/2
(c) 2
(d) 1/3
Answer: (b)
Question 30 [14 May 2023, Shift-I]
Set of \( p \) for positive quad.
(a) (2,4)
(b) (-inf, -4)
(c) (2, inf)
(d) (-4, 2)
Answer: (d)
Question 31 [14 May 2023, Shift-I]
Eq with sin/cos roots.
(c) \( 16x^2-12x+1=0 \)
…
Answer: (c)
Question 32 [14 May 2023, Shift-I]
Relation \( a, c \) for trig roots.
(b) \( a^2+2c-1=0 \)
…
Answer: (b)
Question 33 [14 May 2023, Shift-II]
Sum of values.
(a) 14
(b) 20
(c) 13
(d) 16
Answer: (d)
Question 34 [18 July 2022, Shift-II]
Sign of expression.
(a) Neg all R
(d) Pos all R
Answer: (d)
Question 35 [18 July 2022, Shift-I]
Zeroes of \( p(p(x)) \).
(d) complex numbers
Answer: (d)
Question 36 [18 July 2022, Shift-I]
Set of real values.
(c) \( (-\infty, \infty) \)
Answer: (c)
Question 37 [19 July 2022, Shift-I]
\( \alpha^6+\beta^6 \).
(a) 128
(d) -128
Answer: (d)
Question 38 [19 July 2022, Shift-I]
Match List.
(c) A-IV, B-III, C-V, D-II
Answer: (c)
Question 39 [20 July 2022, Shift-II]
Statements I & II.
(b) II True, I False
Answer: (b)
Question 40 [20 July 2022, Shift-II]
Relation \( \beta = ? \).
(a) \( 7\alpha \)
(b) \( 5\alpha \)
Answer: (a)
Question 41 [20 July 2022, Shift-I]
\( b+c = ? \).
(b) -1
Answer: (b)
Question 42 [4 Aug 2021, Shift-II]
Smallest neg integer.
(b) -6
Answer: (b)
Question 43 [4 Aug 2021, Shift-II]
Nature of roots.
(b) imaginary
Answer: (b)
Question 44 [5 Aug 2021, Shift-II]
Product.
(c) 49
Answer: (c)
Question 45 [5 Aug 2021, Shift-II]
\( k \) condition.
(c) \( k > 0 \)
Answer: (c)
Question 46 [5 Aug 2021, Shift-II]
Assertion Reason.
(d) A False, R True
Answer: (d)
Question 47 [5 Aug 2021, Shift-II]
Sum roots f+g.
(c) 1/2
Answer: (c)
Question 48 [3 Aug 2021, Shift-I]
\( \alpha + \beta \).
(b) 3
(a) 7 (key)
Answer: (b) (Based on text) or (a) (Based on key)
Question 49 [6 Aug 2021, Shift-II]
\( a^2 \).
(c) 4
Answer: (c)
Question 50 [6 Aug 2021, Shift-II]
\( M/a \).
(a) 3.3
Answer: (a)
Question 51 [9 Sep 2020, Shift-I]
Assertion Reason.
(d) A False, R True
Answer: (d)
Question 52 [9 Sep 2020, Shift-II]
Interval for a.
(c) Empty
Answer: (c)
Question 53 [10 Sep 2020, Shift-I]
Interval r.
(d) (-11, 13)
Answer: (d)
Question 54 [10 Sep 2020, Shift-II]
Min value.
(d) 1/3
Answer: (d)
Question 55 [11 Sep 2020, Shift-II]
Max value.
(d) \( 2\sqrt{2} \)
Answer: (d)
Question 56 [14 Sep 2020, Shift-I]
Number of integral values.
(b) 3
Answer: (b)
Question 57 [14 Sep 2020, Shift-II]
Value.
(c) \( g(-1)+2g(2)-3g(1) \)
Answer: (c)
Question 58 [14 Sep 2020, Shift-II]
Max, Min.
(a) 4, -5
Answer: (a)
Question 59 [14 Sep 2020, Shift-II]
Set.
(c) \( [-4, 1] \cup \{3\} \)
Answer: (c)
Question 60 [3 May 2019, Shift-I]
Set of a.
(c) \( \phi \)
Answer: (c)
Question 61 [3 May 2019, Shift-II]
Solution set.
(a) (0, 1)
Answer: (a)
Question 62 [4 May 2019, Shift-I]
Excluded interval.
(d) (6, 8)
Answer: (d)
Question 63 [4 May 2019, Shift-I]
Inequality intersection.
(a) \( [-2, 1) \cup (3, 4] \)
Answer: (a)
Question 64 [4 May 2019, Shift-II]
Min value a.
(d) 1/27
Answer: (d)
Question 65 [6 May 2019, Shift-I]
Intercepts relation.
(b) \( A_4 < A_2 < A_3 \)
Answer: (b)
TEACHER BOX: Complete Answer Key (Q1-65)
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|
| (b) | (c) | (a) | (a) | (d) | (b) | (b) | (c) | (a) | (b) |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| (a) | (d) | (b) | (b) | (b) | (d) | (a) | (d) | (b) | (d) |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| (a) | (b) | (c) | (b) | (c) | (b) | (d) | (d) | (b) | (d) |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| (d) | (b) | (d) | (d) | (d) | (a) | (d) | (a) | (b) | (a) |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| (b) | (b) | (d) | (c) | (c) | (d) | (c) | (a) | (b) | (a) |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| (d) | (c) | (d) | (d) | (d) | (b) | (c) | (a) | (c) | (c) |
| 61 | 62 | 63 | 64 | 65 | |||||
| (a) | (d) | (a) | (d) | (b) |


