Q1. Let \( f(x) = \sqrt{17x – x^2 – 16} \). Find the domain of \( f(x) \).
- A) [-1, 1]
- B) [1, 4]
- C) (0, 16]
- D) [1, 16] ✅
Q2. The domain of \( f(x) = \sqrt{x – x^2} \) is:
- A) \( \mathbb{R} \)
- B) \( \mathbb{R} \setminus \{0\} \)
- C) (0, 1)
- D) [-1, 1] ✅
Q3. Let \( f(x) = |f(x)| + f(x) \), where \( f(x) = x^2 – 2 \) for \( x \in [0, 2] \), \( f(x) = -2 \) for \( x \in [-2, 0] \). Then \( f \) and \( g \) are:
- A) Injective
- B) Surjective ✅
- C) Bijective
- D) Not bijective
Q4. Let \( f(x) = 1 + 2x + 4x^2 + 8x^3 + \dots \), for \( |x| < \frac{1}{2} \). Find \( f^{-1}(x) \).
- A) \( \frac{x – 1}{2x} \) ✅
- B) \( \frac{x – 1}{x} \)
- C) \( \frac{1 – x}{2x} \)
- D) \( \frac{1 – 2x}{x} \)
Q5. Let \( f(x) = \tan\left(\frac{\pi x}{2}\right) \), and \( g(x) = \sqrt{3 + 4x – 4x^2} \). Find the domain of \( f + g \).
- A) (-1, 1)
- B) [1, 4]
- C) [-1, 1] ✅
- D) [1, 1]
Q6. If \( f(x) \) satisfies \( 2f(x) + f\left(\frac{1}{x}\right) = 4x \), and \( S = \{x \in \mathbb{R} \setminus \{0\} : f(x) = f(-x)\} \), then number of elements in \( S \) is:
- A) 0
- B) 1
- C) 2 ✅
- D) At least 3
Q7. Let \( f(x) = \frac{x}{x^2 + 1} \). Then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q8. If \( f(x) = \log_2(x + 1) \), then \( f^{-1}(x) = \)
- A) \( 2^x – 1 \)
- B) \( 2^x – 1 ✅ \)
- C) \( \log_2(x – 1) \)
- D) \( \log_2(x + 1) \)
Q9. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 – 4}} \)
- A) \( (-\infty, -2) \cup (2, \infty) \)
- B) \( (-\infty, -2) \cup (2, \infty) ✅ \)
- C) \( [-2, 2] \)
- D) \( \mathbb{R} \)
Q10. If \( f(x) = x^2 \), \( g(x) = \sqrt{x} \), then \( (g \circ f)(x) = \)
- A) \( \sqrt{x^2} \)
- B) \( x \)
- C) \( |x| ✅ \)
- D) \( x^2 \)
Q11. If \( f(x) = \frac{2x + 3}{x – 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{x + 3}{2 – x} \)
- B) \( \frac{x – 3}{2 + x} \)
- C) \( \frac{x + 1}{2 – x} ✅ \)
- D) \( \frac{x – 1}{2 + x} \)
Q12. Find the domain of \( f(x) = \log_4(x^2 – 5x + 6) \)
- A) \( x \in \mathbb{R} \)
- B) \( x \in (2, 3) \)
- C) \( x \in (-\infty, 2) \cup (3, \infty) ✅ \)
- D) \( x \in [2, 3] \)
Q13. If \( f(x) = x + 1 \), \( g(x) = x^2 \), then \( (f \circ g)(x) = \)
- A) \( x^2 + 1 ✅ \)
- B) \( x + 1 \)
- C) \( x^2 + x \)
- D) \( x^2 + 2x + 1 \)
Q14. Let \( f(x) = \frac{1}{x} \), then \( f \) is:
- A) Injective ✅
- B) Surjective
- C) Bijective
- D) Not injective
Q15. If \( f(x) = x^3 + 1 \), then \( f^{-1}(x) = \)
- A) \( \sqrt[3]{x + 1} \)
- B) \( \sqrt[3]{x – 1} ✅ \)
- C) \( x^3 – 1 \)
- D) \( x – 1 \)
Q16. If \( f(x) = x + x^2 + x^3 + \dots + x^{2018} \), then \( f(0) + 1 = \)
- A) 0
- B) 1 ✅
- C) 2018
- D) Cannot be determined
Q17. Find the domain of \( f(x) = \frac{1}{\log(x)} \)
- A) \( x > 0 \)
- B) \( x > 0, x \ne 1 ✅ \)
- C) \( x \ne 0 \)
- D) \( x \in \mathbb{R} \)
Q18. If \( f(x) = x^2 \), \( g(x) = x + 1 \), then \( (f \circ g)(x) = \)
- A) \( x^2 + 1 \)
- B) \( x^2 + 2x + 1 ✅ \)
- C) \( x + 1 \)
- D) \( x^2 + x \)
Q19. Let \( f(x) = x^2 \), then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q20. If \( f(x) = \frac{1 – x}{1 + x} \), then \( f^{-1}(x) = \)
- A) \( \frac{1 – x}{1 + x} \)
- B) \( \frac{1 + x}{1 – x} \)
- C) \( \frac{1 – x}{1 + x} ✅ \)
- D) \( \frac{x – 1}{x + 1} \)
Q21. If \( f(x) = \frac{3x – 2}{x + 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{2 + x}{3 – x} \)
- B) \( \frac{x + 2}{3 – x} \)
- C) \( \frac{2 + x}{3 – x} ✅ \)
- D) \( \frac{3x + 2}{1 – x} \)
Q22. Find the domain of \( f(x) = \frac{1}{\sqrt{4 – x^2}} \)
- A) \( (-2, 2) ✅ \)
- B) \( [-2, 2] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q23. Let \( f(x) = \sin x \), then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q24. If \( f(x) = \sqrt{x} \), \( g(x) = x^2 – 1 \), then \( (f \circ g)(x) = \)
- A) \( \sqrt{x^2 – 1} ✅ \)
- B) \( x^2 – 1 \)
- C) \( \sqrt{x^2 + 1} \)
- D) \( x – 1 \)
Q25. If \( f(x) = x^2 \), and \( f(x + 1) – f(x) = 7 \), then \( x = \)
- A) 2
- B) 3
- C) 3 ✅
- D) 4
Q26. The domain of \( f(x) = \log_4(x^2 – 4x + 3) \) is:
- A) \( (-\infty, 1) \cup (3, \infty) ✅ \)
- B) \( (1, 3) \)
- C) \( [1, 3] \)
- D) \( \mathbb{R} \)
Q27. If \( f(x) = \frac{1}{x – 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{1}{x} + 1 \)
- B) \( \frac{1 + x}{x} \)
- C) \( \frac{1 + x}{x} ✅ \)
- D) \( \frac{x}{1 + x} \)
Q28. Let \( f(x) = \cos x \), then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q29. If \( f(x) = x^2 \), \( g(x) = \sqrt{x} \), then \( (f \circ g)(x) = \)
- A) \( x \)
- B) \( \sqrt{x^2} \)
- C) \( x ✅ \)
- D) \( |x| \)
Q30. Find the domain of \( f(x) = \frac{1}{\sqrt{1 – x^2}} \)
- A) \( (-1, 1) ✅ \)
- B) \( [-1, 1] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q31. If \( f(x) = \frac{1 + x}{1 – x} \), then \( f^{-1}(x) = \)
- A) \( \frac{x – 1}{x + 1} \)
- B) \( \frac{1 – x}{1 + x} \)
- C) \( \frac{x – 1}{x + 1} ✅ \)
- D) \( \frac{x + 1}{x – 1} \)
Q32. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 – 1}} \)
- A) \( (-\infty, -1) \cup (1, \infty) ✅ \)
- B) \( [-1, 1] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q33. If \( f(x) = x^2 \), \( g(x) = x + 1 \), then \( (g \circ f)(x) = \)
- A) \( x^2 + 1 ✅ \)
- B) \( x + 1 \)
- C) \( x^2 + x \)
- D) \( x^2 + 2x + 1 \)
Q34. Let \( f(x) = \frac{x^2}{x^2 + 1} \), then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q35. If \( f(x) = \frac{1}{x + 2} \), then \( f^{-1}(x) = \)
- A) \( \frac{1}{x} – 2 ✅ \)
- B) \( \frac{1}{x + 2} \)
- C) \( \frac{1}{x – 2} \)
- D) \( \frac{1}{x} + 2 \)
Q36. If \( f(x) = x^2 \), and \( f(x + 1) – f(x) = 9 \), then \( x = \)
- A) 2 ✅
- B) 3
- C) 4
- D) 5
Q41. If \( f(x) = \frac{2x + 1}{x – 2} \), then \( f^{-1}(x) = \)
- A) \( \frac{2x – 1}{x + 2} \)
- B) \( \frac{x + 2}{2x – 1} \)
- C) \( \frac{x + 2}{2x – 1} ✅ \)
- D) \( \frac{x – 2}{2x + 1} \)
Q42. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 + 4x + 3}} \)
- A) \( (-\infty, -3) \cup (-1, \infty) ✅ \)
- B) \( [-3, -1] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q43. If \( f(x) = x^2 \), \( g(x) = \sqrt{x} \), then \( (g \circ f)(x) = \)
- A) \( \sqrt{x^2} \)
- B) \( x \)
- C) \( |x| ✅ \)
- D) \( x^2 \)
Q44. Let \( f(x) = \frac{x + 1}{x – 1} \), then \( f \) is:
- A) Injective ✅
- B) Surjective
- C) Bijective
- D) Not injective
Q45. If \( f(x) = \frac{x – 3}{2x + 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{3x + 1}{2 – x} \)
- B) \( \frac{3x – 1}{2 + x} \)
- C) \( \frac{3x + 1}{2 – x} ✅ \)
- D) \( \frac{x + 3}{2x – 1} \)
Q46. If \( f(x) = x^2 \), and \( f(x + 1) – f(x) = 5 \), then \( x = \)
- A) 2
- B) 1 ✅
- C) 3
- D) 4
Q47. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 – 9}} \)
- A) \( (-\infty, -3) \cup (3, \infty) ✅ \)
- B) \( [-3, 3] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q48. Let \( f(x) = x^3 \), then \( f \) is:
- A) Injective ✅
- B) Surjective
- C) Bijective
- D) Neither injective nor surjective
Q49. If \( f(x) = x + 2 \), \( g(x) = x^2 \), then \( (f \circ g)(x) = \)
- A) \( x^2 + 2 ✅ \)
- B) \( x + 2 \)
- C) \( x^2 + x \)
- D) \( x^2 + 4 \)
Q50. Find the domain of \( f(x) = \frac{1}{\sqrt{9 – x^2}} \)
- A) \( (-3, 3) ✅ \)
- B) \( [-3, 3] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q51. If \( f(x) = \frac{3x + 2}{x – 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{x – 2}{3 + x} \)
- B) \( \frac{x + 2}{3 – x} \)
- C) \( \frac{x – 2}{3 + x} ✅ \)
- D) \( \frac{x + 1}{3x – 2} \)
Q52. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 – 2x – 3}} \)
- A) \( (-\infty, -1) \cup (3, \infty) ✅ \)
- B) \( [-1, 3] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q53. If \( f(x) = x^2 \), \( g(x) = x + 2 \), then \( (g \circ f)(x) = \)
- A) \( x^2 + 2 ✅ \)
- B) \( x + 2 \)
- C) \( x^2 + x \)
- D) \( x^2 + 4 \)
Q54. Let \( f(x) = \frac{x^2 – 1}{x^2 + 1} \), then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q55. If \( f(x) = \frac{x + 3}{2x – 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{3x – 1}{2 – x} ✅ \)
- B) \( \frac{x + 1}{2x + 3} \)
- C) \( \frac{x – 3}{2x + 1} \)
- D) \( \frac{2x + 1}{x – 3} \)
Q56. If \( f(x) = x^2 \), and \( f(x + 1) – f(x) = 3 \), then \( x = \)
- A) 1 ✅
- B) 2
- C) 3
- D) 4
Q57. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 + 2x + 1}} \)
- A) \( \mathbb{R} ✅ \)
- B) \( (-1, 1) \)
- C) \( [0, \infty) \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q58. If \( f(x) = x + 2 \), \( g(x) = x^2 \), then \( (f \circ g)(x) = \)
- A) \( x^2 + 2 ✅ \)
- B) \( x + 2 \)
- C) \( x^2 + x \)
- D) \( x^2 + 4 \)

Functions eapcet pyqs
Q1. Let \( f(x) = \sqrt{17x – x^2 – 16} \). Find the domain of \( f(x) \).
- A) [-1, 1]
- B) [1, 4]
- C) (0, 16]
- D) [1, 16] ✅
Q2. The domain of \( f(x) = \sqrt{x – x^2} \) is:
- A) \( \mathbb{R} \)
- B) \( \mathbb{R} \setminus \{0\} \)
- C) (0, 1)
- D) [-1, 1] ✅
Q3. Let \( f(x) = |f(x)| + f(x) \), where \( f(x) = x^2 – 2 \) for \( x \in [0, 2] \), \( f(x) = -2 \) for \( x \in [-2, 0] \). Then \( f \) and \( g \) are:
- A) Injective
- B) Surjective ✅
- C) Bijective
- D) Not bijective
Q4. Let \( f(x) = 1 + 2x + 4x^2 + 8x^3 + \dots \), for \( |x| < \frac{1}{2} \). Find \( f^{-1}(x) \).
- A) \( \frac{x – 1}{2x} \) ✅
- B) \( \frac{x – 1}{x} \)
- C) \( \frac{1 – x}{2x} \)
- D) \( \frac{1 – 2x}{x} \)
Q5. Let \( f(x) = \tan\left(\frac{\pi x}{2}\right) \), and \( g(x) = \sqrt{3 + 4x – 4x^2} \). Find the domain of \( f + g \).
- A) (-1, 1)
- B) [1, 4]
- C) [-1, 1] ✅
- D) [1, 1]
Q6. If \( f(x) \) satisfies \( 2f(x) + f\left(\frac{1}{x}\right) = 4x \), and \( S = \{x \in \mathbb{R} \setminus \{0\} : f(x) = f(-x)\} \), then number of elements in \( S \) is:
- A) 0
- B) 1
- C) 2 ✅
- D) At least 3
Q7. Let \( f(x) = \frac{x}{x^2 + 1} \). Then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q8. If \( f(x) = \log_2(x + 1) \), then \( f^{-1}(x) = \)
- A) \( 2^x – 1 \)
- B) \( 2^x – 1 ✅ \)
- C) \( \log_2(x – 1) \)
- D) \( \log_2(x + 1) \)
Q9. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 – 4}} \)
- A) \( (-\infty, -2) \cup (2, \infty) \)
- B) \( (-\infty, -2) \cup (2, \infty) ✅ \)
- C) \( [-2, 2] \)
- D) \( \mathbb{R} \)
Q10. If \( f(x) = x^2 \), \( g(x) = \sqrt{x} \), then \( (g \circ f)(x) = \)
- A) \( \sqrt{x^2} \)
- B) \( x \)
- C) \( |x| ✅ \)
- D) \( x^2 \)
Q11. If \( f(x) = \frac{2x + 3}{x – 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{x + 3}{2 – x} \)
- B) \( \frac{x – 3}{2 + x} \)
- C) \( \frac{x + 1}{2 – x} ✅ \)
- D) \( \frac{x – 1}{2 + x} \)
Q12. Find the domain of \( f(x) = \log_4(x^2 – 5x + 6) \)
- A) \( x \in \mathbb{R} \)
- B) \( x \in (2, 3) \)
- C) \( x \in (-\infty, 2) \cup (3, \infty) ✅ \)
- D) \( x \in [2, 3] \)
Q13. If \( f(x) = x + 1 \), \( g(x) = x^2 \), then \( (f \circ g)(x) = \)
- A) \( x^2 + 1 ✅ \)
- B) \( x + 1 \)
- C) \( x^2 + x \)
- D) \( x^2 + 2x + 1 \)
Q14. Let \( f(x) = \frac{1}{x} \), then \( f \) is:
- A) Injective ✅
- B) Surjective
- C) Bijective
- D) Not injective
Q15. If \( f(x) = x^3 + 1 \), then \( f^{-1}(x) = \)
- A) \( \sqrt[3]{x + 1} \)
- B) \( \sqrt[3]{x – 1} ✅ \)
- C) \( x^3 – 1 \)
- D) \( x – 1 \)
Q16. If \( f(x) = x + x^2 + x^3 + \dots + x^{2018} \), then \( f(0) + 1 = \)
- A) 0
- B) 1 ✅
- C) 2018
- D) Cannot be determined
Q17. Find the domain of \( f(x) = \frac{1}{\log(x)} \)
- A) \( x > 0 \)
- B) \( x > 0, x \ne 1 ✅ \)
- C) \( x \ne 0 \)
- D) \( x \in \mathbb{R} \)
Q18. If \( f(x) = x^2 \), \( g(x) = x + 1 \), then \( (f \circ g)(x) = \)
- A) \( x^2 + 1 \)
- B) \( x^2 + 2x + 1 ✅ \)
- C) \( x + 1 \)
- D) \( x^2 + x \)
Q19. Let \( f(x) = x^2 \), then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q20. If \( f(x) = \frac{1 – x}{1 + x} \), then \( f^{-1}(x) = \)
- A) \( \frac{1 – x}{1 + x} \)
- B) \( \frac{1 + x}{1 – x} \)
- C) \( \frac{1 – x}{1 + x} ✅ \)
- D) \( \frac{x – 1}{x + 1} \)
Q21. If \( f(x) = \frac{3x – 2}{x + 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{2 + x}{3 – x} \)
- B) \( \frac{x + 2}{3 – x} \)
- C) \( \frac{2 + x}{3 – x} ✅ \)
- D) \( \frac{3x + 2}{1 – x} \)
Q22. Find the domain of \( f(x) = \frac{1}{\sqrt{4 – x^2}} \)
- A) \( (-2, 2) ✅ \)
- B) \( [-2, 2] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q23. Let \( f(x) = \sin x \), then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q24. If \( f(x) = \sqrt{x} \), \( g(x) = x^2 – 1 \), then \( (f \circ g)(x) = \)
- A) \( \sqrt{x^2 – 1} ✅ \)
- B) \( x^2 – 1 \)
- C) \( \sqrt{x^2 + 1} \)
- D) \( x – 1 \)
Q25. If \( f(x) = x^2 \), and \( f(x + 1) – f(x) = 7 \), then \( x = \)
- A) 2
- B) 3
- C) 3 ✅
- D) 4
Q26. The domain of \( f(x) = \log_4(x^2 – 4x + 3) \) is:
- A) \( (-\infty, 1) \cup (3, \infty) ✅ \)
- B) \( (1, 3) \)
- C) \( [1, 3] \)
- D) \( \mathbb{R} \)
Q27. If \( f(x) = \frac{1}{x – 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{1}{x} + 1 \)
- B) \( \frac{1 + x}{x} \)
- C) \( \frac{1 + x}{x} ✅ \)
- D) \( \frac{x}{1 + x} \)
Q28. Let \( f(x) = \cos x \), then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q29. If \( f(x) = x^2 \), \( g(x) = \sqrt{x} \), then \( (f \circ g)(x) = \)
- A) \( x \)
- B) \( \sqrt{x^2} \)
- C) \( x ✅ \)
- D) \( |x| \)
Q30. Find the domain of \( f(x) = \frac{1}{\sqrt{1 – x^2}} \)
- A) \( (-1, 1) ✅ \)
- B) \( [-1, 1] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q31. If \( f(x) = \frac{1 + x}{1 – x} \), then \( f^{-1}(x) = \)
- A) \( \frac{x – 1}{x + 1} \)
- B) \( \frac{1 – x}{1 + x} \)
- C) \( \frac{x – 1}{x + 1} ✅ \)
- D) \( \frac{x + 1}{x – 1} \)
Q32. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 – 1}} \)
- A) \( (-\infty, -1) \cup (1, \infty) ✅ \)
- B) \( [-1, 1] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q33. If \( f(x) = x^2 \), \( g(x) = x + 1 \), then \( (g \circ f)(x) = \)
- A) \( x^2 + 1 ✅ \)
- B) \( x + 1 \)
- C) \( x^2 + x \)
- D) \( x^2 + 2x + 1 \)
Q34. Let \( f(x) = \frac{x^2}{x^2 + 1} \), then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q35. If \( f(x) = \frac{1}{x + 2} \), then \( f^{-1}(x) = \)
- A) \( \frac{1}{x} – 2 ✅ \)
- B) \( \frac{1}{x + 2} \)
- C) \( \frac{1}{x – 2} \)
- D) \( \frac{1}{x} + 2 \)
Q36. If \( f(x) = x^2 \), and \( f(x + 1) – f(x) = 9 \), then \( x = \)
- A) 2 ✅
- B) 3
- C) 4
- D) 5
Q41. If \( f(x) = \frac{2x + 1}{x – 2} \), then \( f^{-1}(x) = \)
- A) \( \frac{2x – 1}{x + 2} \)
- B) \( \frac{x + 2}{2x – 1} \)
- C) \( \frac{x + 2}{2x – 1} ✅ \)
- D) \( \frac{x – 2}{2x + 1} \)
Q42. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 + 4x + 3}} \)
- A) \( (-\infty, -3) \cup (-1, \infty) ✅ \)
- B) \( [-3, -1] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q43. If \( f(x) = x^2 \), \( g(x) = \sqrt{x} \), then \( (g \circ f)(x) = \)
- A) \( \sqrt{x^2} \)
- B) \( x \)
- C) \( |x| ✅ \)
- D) \( x^2 \)
Q44. Let \( f(x) = \frac{x + 1}{x – 1} \), then \( f \) is:
- A) Injective ✅
- B) Surjective
- C) Bijective
- D) Not injective
Q45. If \( f(x) = \frac{x – 3}{2x + 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{3x + 1}{2 – x} \)
- B) \( \frac{3x – 1}{2 + x} \)
- C) \( \frac{3x + 1}{2 – x} ✅ \)
- D) \( \frac{x + 3}{2x – 1} \)
Q46. If \( f(x) = x^2 \), and \( f(x + 1) – f(x) = 5 \), then \( x = \)
- A) 2
- B) 1 ✅
- C) 3
- D) 4
Q47. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 – 9}} \)
- A) \( (-\infty, -3) \cup (3, \infty) ✅ \)
- B) \( [-3, 3] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q48. Let \( f(x) = x^3 \), then \( f \) is:
- A) Injective ✅
- B) Surjective
- C) Bijective
- D) Neither injective nor surjective
Q49. If \( f(x) = x + 2 \), \( g(x) = x^2 \), then \( (f \circ g)(x) = \)
- A) \( x^2 + 2 ✅ \)
- B) \( x + 2 \)
- C) \( x^2 + x \)
- D) \( x^2 + 4 \)
Q50. Find the domain of \( f(x) = \frac{1}{\sqrt{9 – x^2}} \)
- A) \( (-3, 3) ✅ \)
- B) \( [-3, 3] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q51. If \( f(x) = \frac{3x + 2}{x – 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{x – 2}{3 + x} \)
- B) \( \frac{x + 2}{3 – x} \)
- C) \( \frac{x – 2}{3 + x} ✅ \)
- D) \( \frac{x + 1}{3x – 2} \)
Q52. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 – 2x – 3}} \)
- A) \( (-\infty, -1) \cup (3, \infty) ✅ \)
- B) \( [-1, 3] \)
- C) \( \mathbb{R} \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q53. If \( f(x) = x^2 \), \( g(x) = x + 2 \), then \( (g \circ f)(x) = \)
- A) \( x^2 + 2 ✅ \)
- B) \( x + 2 \)
- C) \( x^2 + x \)
- D) \( x^2 + 4 \)
Q54. Let \( f(x) = \frac{x^2 – 1}{x^2 + 1} \), then \( f \) is:
- A) Injective
- B) Surjective
- C) Neither injective nor surjective ✅
- D) Bijective
Q55. If \( f(x) = \frac{x + 3}{2x – 1} \), then \( f^{-1}(x) = \)
- A) \( \frac{3x – 1}{2 – x} ✅ \)
- B) \( \frac{x + 1}{2x + 3} \)
- C) \( \frac{x – 3}{2x + 1} \)
- D) \( \frac{2x + 1}{x – 3} \)
Q56. If \( f(x) = x^2 \), and \( f(x + 1) – f(x) = 3 \), then \( x = \)
- A) 1 ✅
- B) 2
- C) 3
- D) 4
Q57. Find the domain of \( f(x) = \frac{1}{\sqrt{x^2 + 2x + 1}} \)
- A) \( \mathbb{R} ✅ \)
- B) \( (-1, 1) \)
- C) \( [0, \infty) \)
- D) \( \mathbb{R} \setminus \{0\} \)
Q58. If \( f(x) = x + 2 \), \( g(x) = x^2 \), then \( (f \circ g)(x) = \)
- A) \( x^2 + 2 ✅ \)
- B) \( x + 2 \)
- C) \( x^2 + x \)
- D) \( x^2 + 4 \)

