Complex Number (Introduction)
A complex number is an ordered pair of real numbers $(a, b)$ written as $z = a + ib$, where:
• $a$ is called the real part of $z$, denoted as $\text{Re}(z) = a$
• $b$ is called the imaginary part of $z$, denoted as $\text{Im}(z) = b$
• $i$ is the imaginary unit with the property $i^2 = -1$
Equality of Complex Numbers
Two complex numbers $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$ are equal if and only if:
$$z_1 = z_2 \iff a_1 = a_2 \text{ and } b_1 = b_2$$
Modulus (Absolute Value)
For a complex number $z = a + ib$, the modulus is: $|z| = \sqrt{a^2 + b^2}$
Conjugate of Complex Number
For $z = a + ib$, the conjugate is $\bar{z} = a – ib$
$$z \cdot \bar{z} = (a + ib)(a – ib) = a^2 + b^2 = |z|^2$$
Argand Plane
The complex number $z = a + ib$ is represented as point $(a, b)$ where the horizontal axis is the real axis and vertical axis is the imaginary axis.
Argument (Amplitude)
The argument of $z = a + ib \neq 0$ is the angle $\theta$ that the line from origin to $z$ makes with positive real axis:
$$\arg(z) = \theta \text{ where } a = |z|\cos\theta, \quad b = |z|\sin\theta$$
Principal Argument: $-\pi < \arg(z) \leq \pi$
Polar Form
Complex number $z = a + ib$ can be written as:
$$z = r(\cos\theta + i\sin\theta) = r \text{ cis } \theta$$
where $r = |z|$ and $\theta = \arg(z)$
Essential Formulas
De Moivre’s Theorem
If $z = r(\cos\theta + i\sin\theta)$, then
nth Roots of Unity
Cube Roots of Unity
Modulus Properties
Argument Formula
Powers of $i$
TS EAMCET 2025 – Topic-Wise PYQs (24 Questions)
A) $1 + \omega$
B) $1 – \omega$
C) $\omega – \omega^2$
D) $\omega/(\omega – \omega^2)$
A) $3(1+i)/\sqrt{2}$
B) $-(3+\sqrt{2}i)/\sqrt{2}$
C) $-(3+\sqrt{2}i)/\sqrt{2}$
D) $-(3+3i)/\sqrt{2}$
A) $-32$
B) $32$
C) $0$
D) $16$
A) $x^2 – 4x + 7 = 0$
B) $x^2 + 4x + 7 = 0$
C) $x^2 – 2x + 4 = 0$
D) $x^2 + 2x + 4 = 0$
A) $2^{2025}$
B) $2^{2026}$
C) $-2^{2025}$
D) $-2^{2026}$
A) $-4((1-i)/(1+i))^{226}$
B) $4((1-i)/(1+i))^{226}$
C) $((1-i)/(1+i))^{228}$
D) $-((1-i)/(1+i))^{228}$
A) $1024\sqrt{3}$
B) $1024$
C) $2048$
D) $512\sqrt{3}$
A) $(-1)^n 2^{2n+1}$
B) $(-1)^{n+1}2^{2n+1}$
C) $(-1)^{n+1}2^{2n}$
D) $(-1)^n 2^{2n}$
A) $75$
B) $30$
C) $35$
D) $20$
A) $0$
B) $1$
C) $2$
D) $3$
A) $\pi/2$
B) $\pi/3$
C) $-5\pi/12$
D) $-\pi/6$
A) $2^n i \tan(n\theta + n\alpha)$
B) $i\tan(n\theta – n\alpha)$
C) $i\tan(n\theta + n\alpha)$
D) $\tan(n\theta + n\alpha)$
A) $\sqrt{3}/2 + i/2$
B) $1$
C) $-i$
D) $-\sqrt{3}/2 + i/2$
A) Circle $x^2 + y^2 – 3x – 2y = 0$
B) Arc of circle (excluding points)
C) Arc not containing origin
D) Circle not containing $(0,2)$
A) $x^2 + y^2 – 3x + 3y = 0$
B) $2xy – 3x + 3y = 9$
C) $x – y – 3 = 0$, $(x,y) \neq (0,-3)$
D) $x + y + 3 = 0$, $(x,y) \neq (0,-2)$
A) $x^2 + y^2 – y – 6 = 0$
B) $x^2 + y^2 – x – y – 6 = 0$
C) $x^2 + y^2 + 5x – y – 6 = 0$, $(x,y) \neq (0,-)$
D) $x^2 + y^2 + x – y – 6 = 0$
A) $1/4$
B) $i/4$
C) $i$
D) $2$
A) $2 + 12i$
B) $12 – 2i$
C) $-12 + 2i$
D) $-12 – 2i$
A) $((\bar{a}-\bar{b})/a^2b^2)^2$
B) $((\bar{a}-b)/ab)^2$
C) $((b\bar{a}-\bar{a}b)/ab)^2$
D) $((\bar{a}\bar{a}-\bar{b}\bar{b})/a^2b^2)^2$
A) $8$
B) $-8$
C) $8i$
D) $-8i$
A) $4$
B) $-4$
C) $-2$
D) $2$
A) First quadrant
B) Second quadrant
C) Third quadrant
D) Fourth quadrant
A) $\{n\pi + (-1)^n\pi/4, n \in \mathbb{Z}\}$
B) $\{n\pi/2 + (-1)^n\pi/4, n \in \mathbb{Z}\}$
C) $\{n\pi + (-1)^n\pi/5, n \in \mathbb{Z}\}$
D) $\{2n\pi \pm \pi/4, n \in \mathbb{Z}\}$
A) $0 \leq r \leq 4$
B) $r = $ only $|i/\omega|$
C) $r > 4$
D) $1 < r < 2$
A) $3 + i$
B) $3 – i$
C) $-3 + i$
D) $3 + 5i$
A) $6 – 2i$
B) $8 – i$
C) $8 + i$
D) $6 + 4i$
A) $0$
B) $2$
C) $-2$
D) $4i$
A) $-1/2 + 5i/2$
B) $1/2 – 5i/2$
C) $2 + 3i$
D) $-1 + 5i$
A) $5$
B) $7$
C) $25$
D) $1$
A) $2$
B) $4$
C) $8$
D) $16$
A) $5 + 3i$
B) $-5 – 3i$
C) $3 + 5i$
D) $-5 + 3i$
A) $3$
B) $4$
C) $5$
D) $6$
A) $7$
B) $12$
C) $1$
D) $7/3$
A) $5$
B) $10$
C) $20$
D) $2.5$
A) $2$
B) $-2$
C) $4$
D) $8$
A) $3$
B) $12$
C) $2$
D) $4$
A) $i$
B) $-i$
C) $1$
D) $-1$
A) $1 + i$
B) $1 – i$
C) $2$
D) $0$
A) $\pi/6$
B) $\pi/4$
C) $\pi/3$
D) $\pi/2$
A) $3\pi/4$
B) $-3\pi/4$
C) $\pi/4$
D) $-\pi/4$
A) $1 + i\sqrt{3}$
B) $2 + 2i$
C) $\sqrt{3} + i$
D) $2 + i\sqrt{3}$
A) $0$
B) $1$
C) $i$
D) $1 + i$
A) $-1$
B) $1$
C) $i$
D) $-i$
A) $0$
B) $\pi/2$
C) $\pi$
D) $3\pi/2$
A) $\sqrt{2}$ cis $\pi/4$
B) $2$ cis $\pi/3$
C) $\sqrt{2}$ cis $\pi/6$
D) $2$ cis $\pi/4$
A) $1 + i\sqrt{3}$
B) $\sqrt{3} + i$
C) $2 + 2i$
D) $1 – i\sqrt{3}$
A) $2\sqrt{2}$ cis $5\pi/4$
B) $2$ cis $\pi$
C) $4$ cis $3\pi/4$
D) $2\sqrt{2}$ cis $3\pi/4$
A) $\pm(2 + i)$
B) $\pm(1 + 2i)$
C) $\pm(2 – i)$
D) $\pm(1 – 2i)$
A) $\pm i$
B) $\pm 1$
C) $\pm(1 + i)$
D) No solution
A) $\pm(1+i)/\sqrt{2}$
B) $\pm(1-i)/\sqrt{2}$
C) $\pm 1$
D) $\pm i$
A) $1, \omega, \omega^2$
B) $1, i, -i$
C) $1, 1, 1$
D) $-1, i, -i$
A) $0$
B) $1$
C) $3$
D) $\omega$
A) $0$
B) $1$
C) $\omega$
D) $-1$
A) $\bar{\omega}$
B) $1$
C) $\omega^{-1}$
D) All of above
A) $0$
B) $1$
C) $-1$
D) $2$
A) $0$
B) $1$
C) $\omega^n$
D) $-1$
A) Circle with center 1, radius 1
B) Straight line
C) Parabola
D) Ellipse
A) $0, 1, \omega, \omega^2$
B) $0, 1$
C) $0, 1, -1$
D) $0$
A) $0$
B) $2$
C) $4$
D) $6$
A) Conjugates
B) In same direction (collinear)
C) Perpendicular
D) Equal


