Random Variables – Aimstutorial Practice
Random Variables Q1
The range of a discrete random variable X is $\{1, 2, 3\}$ and the probabilities are given by $P(X=1)=3k^3$, $P(X=2)=2k^2$, and $P(X=3)=7-19k$. Then $P(X=3)=$
(1) $\frac{2}{3}$
(2) $\frac{2}{9}$
(3) $\frac{1}{9}$
(4) $\frac{4}{9}$
Solution: Sum of probabilities must be 1: $$ 3k^3 + 2k^2 + 7 – 19k = 1 $$ $$ \Rightarrow 3k^3 + 2k^2 – 19k + 6 = 0 $$ Testing values (since $0 \le k \le 1$), for $k=1/3$: $$ 3(\frac{1}{27}) + 2(\frac{1}{9}) – 19(\frac{1}{3}) + 6 = 0 $$ So $k=1/3$. Then: $$ P(X=3) = 7 – 19(1/3) = \frac{21-19}{3} = \frac{2}{3} $$
Random Variables Q2
Among every 8 units of a product, one is likely to be defective. If a consumer orders 5 units, the probability that at most one unit is defective is:
(1) $\frac{15}{8}(\frac{7}{8})^6$
(2) $\frac{57}{8^5}$
(3) $\frac{36}{8^5}$
(4) $\frac{3}{2}(\frac{7}{8})^4$
Solution: Here $n=5$, defective prob $p=1/8$, good prob $q=7/8$. We need $P(X \le 1) = P(0) + P(1)$. $$ P(0) = \binom{5}{0}(\frac{7}{8})^5 = (\frac{7}{8})^5 $$ $$ P(1) = \binom{5}{1}(\frac{1}{8})(\frac{7}{8})^4 = 5(\frac{1}{8})(\frac{7}{8})^4 $$ $$ Total = (\frac{7}{8})^4 [ \frac{7}{8} + \frac{5}{8} ] = (\frac{7}{8})^4 [\frac{12}{8}] = \frac{3}{2}(\frac{7}{8})^4 $$
Random Variables Q3
Two persons A and B play a game by throwing two dice. If sum is even, A gets $\frac{1}{2}$ point. If sum is odd, A gets 1 point. The arithmetic mean of A’s points is:
(1) $\frac{1}{2}$
(2) $\frac{1}{4}$
(3) $1$
(4) $\frac{3}{4}$
Solution: $P(\text{Even sum}) = 1/2$ and $P(\text{Odd sum}) = 1/2$. Expected Value (Mean): $$ E[X] = (\frac{1}{2} \times \frac{1}{2}) + (1 \times \frac{1}{2}) $$ $$ E[X] = \frac{1}{4} + \frac{2}{4} = \frac{3}{4} $$
Random Variables Q4
A typist prepares a page with 1 error per 10 pages. In an assignment of 40 pages, if the probability of at most 2 errors is $p$, then $e^4 p =$
(1) $5$
(2) $13$
(3) $13e^{-2}$
(4) $5e^{-2}$
Solution: Mean $\lambda = 40/10 = 4$. $$ p = P(X \le 2) = e^{-4} [ \frac{4^0}{0!} + \frac{4^1}{1!} + \frac{4^2}{2!} ] $$ $$ p = e^{-4} [ 1 + 4 + 8 ] = 13e^{-4} $$ $$ \therefore e^4 p = e^4(13e^{-4}) = 13 $$
Random Variables Q5
If $X$ is a random variable with probability distribution $P(X=k) = \frac{(2k+3)c}{3^k}$ for $k=0,1,2,\dots$, then $P(X=3)=$
(1) $\frac{1}{24}$
(2) $\frac{1}{18}$
(3) $\frac{1}{6}$
(4) $\frac{1}{3}$
Solution: Using the sum of Arithmetico-Geometric series, we find $c = 1/6$. $$ P(3) = \frac{(2(3)+3)(1/6)}{3^3} $$ $$ P(3) = \frac{9/6}{27} = \frac{1.5}{27} = \frac{3}{54} = \frac{1}{18} $$
Random Variables Q6
If a Poisson variate X satisfies the relation $P(X=3)=P(X=5)$, then $P(X=4)=$
(1) $\frac{50}{3e^{\sqrt{20}}}$
(2) $\frac{20000}{3e^{20}}$
(3) $\frac{125}{3e^{10}}$
(4) $\frac{25}{3e^{\sqrt{20}}}$
Solution: $$ \frac{e^{-\lambda}\lambda^3}{3!} = \frac{e^{-\lambda}\lambda^5}{5!} \implies \frac{1}{6} = \frac{\lambda^2}{120} $$ $$ \lambda^2 = 20 \implies \lambda = \sqrt{20} $$ $$ P(4) = \frac{e^{-\lambda}\lambda^4}{4!} = \frac{e^{-\sqrt{20}}(400)}{24} = \frac{50}{3}e^{-\sqrt{20}} $$
Random Variables Q7
In a shelf there are 3 mathematics and 2 physics books. A student takes a book randomly 3 times with replacement. The mean number of mathematics books is:
(1) $\frac{3}{2}$
(2) $\frac{129}{125}$
(3) $\frac{9}{5}$
(4) $\frac{174}{125}$
Solution: This is a Binomial distribution problem. $n=3$ (trials). Probability of math book $p = 3/5$. $$ \text{Mean} = np = 3 \times \frac{3}{5} = \frac{9}{5} $$
Random Variables Q8
In a Poisson distribution, if $\frac{P(X=5)}{P(X=2)} = \frac{1}{7500}$ and $\frac{P(X=5)}{P(X=3)} = \frac{1}{500}$, then the mean is:
(1) $\frac{1}{15}$
(2) $\frac{1}{5}$
(3) $\frac{1}{25}$
(4) $\frac{1}{3}$
Solution: Using the first ratio: $$ \frac{\lambda^5/120}{\lambda^2/2} = \frac{\lambda^3}{60} = \frac{1}{7500} $$ $$ \lambda^3 = \frac{60}{7500} = \frac{1}{125} $$ $$ \lambda = \sqrt[3]{\frac{1}{125}} = \frac{1}{5} $$
Random Variables Q9
The probability distribution of X is given below. Then the standard deviation of X is:
X235712
P(X)3kkk2kk
(1) $5$
(2) $11$
(3) $\sqrt{11}$
(4) $\sqrt{5}$
Solution: Sum of P = $8k = 1 \implies k=1/8$. Mean $\mu = \sum xP = \frac{1}{8}(6+3+5+14+12) = 5$. $$ E(X^2) = \sum x^2P = \frac{1}{8}(12+9+25+98+144) = 36 $$ $$ \text{Variance} = E(X^2) – \mu^2 = 36 – 25 = 11 $$ $$ \text{SD} = \sqrt{11} $$
Random Variables Q10
If the mean and variance of a binomial distribution are $\frac{4}{3}$ and $\frac{10}{9}$ respectively, then $P(X \ge 6)=$
(1) $\frac{41}{6^8}$
(2) $\frac{741}{6^8}$
(3) $1 – \frac{741}{6^8}$
(4) $1 – \frac{41}{6^8}$
Solution: $np = 4/3$ and $npq = 10/9$. $$ q = \frac{npq}{np} = \frac{10/9}{4/3} = \frac{5}{6} \implies p = \frac{1}{6} $$ $$ n(\frac{1}{6}) = \frac{4}{3} \implies n = 8 $$ $$ P(X \ge 6) = P(6)+P(7)+P(8) $$ $$ = \frac{1}{6^8} [ \binom{8}{6}5^2 + \binom{8}{7}5^1 + 1 ] = \frac{741}{6^8} $$
Random Variables Q11
If three dice are thrown, then the mean of the sum of the numbers appearing on them is:
(1) $58.5$
(2) $76.66$
(3) $71.75$
(4) $10.5$
Solution: Mean of one die $E[X] = \frac{1+6}{2} = 3.5$. For 3 dice, Mean $= 3 \times 3.5 = 10.5$.
Random Variables Q12
If $X \sim B(7,p)$ and $P(X=3) = P(X=5)$, then $p=$
(1) $\frac{5-\sqrt{10}}{3}$
(2) $\frac{\sqrt{10}-2}{3}$
(3) $\frac{5-\sqrt{15}}{2}$
(4) $\frac{\sqrt{15}-3}{2}$
Solution: $$ \binom{7}{3} p^3 q^4 = \binom{7}{5} p^5 q^2 $$ $$ 35 q^2 = 21 p^2 \implies 5(1-p)^2 = 3p^2 $$ Solving quadratic $2p^2 – 10p + 5 = 0$: $$ p = \frac{10 \pm \sqrt{100-40}}{4} = \frac{5 \pm \sqrt{15}}{2} $$ Since $p \le 1$, we take $p = \frac{5-\sqrt{15}}{2}$.
Random Variables – Practice Questions
Random Variables Q1

The range of a discrete random variable X is $\{1, 2, 3\}$ and the probabilities are given by $P(X=1)=3k^3$, $P(X=2)=2k^2$, and $P(X=3)=7-19k$. Then $P(X=3)=$

(1) $\frac{2}{3}$
(2) $\frac{2}{9}$
(3) $\frac{1}{9}$
(4) $\frac{4}{9}$
Solution:

Sum of probabilities must be 1:

$$ 3k^3 + 2k^2 + 7 – 19k = 1 \implies 3k^3 + 2k^2 – 19k + 6 = 0 $$

Testing values (since $0 \le k \le 1$), for $k=1/3$:

$$ 3(\frac{1}{27}) + 2(\frac{1}{9}) – 19(\frac{1}{3}) + 6 = \frac{1}{9} + \frac{2}{9} – \frac{57}{9} + \frac{54}{9} = 0 $$

So $k=1/3$. Then $P(X=3) = 7 – 19(1/3) = \frac{21-19}{3} = \frac{2}{3}$.

Random Variables Q2

Among every 8 units of a product, one is likely to be defective. If a consumer orders 5 units, the probability that at most one unit is defective is:

(1) $\frac{15}{8}(\frac{7}{8})^6$
(2) $\frac{57}{8^5}$
(3) $\frac{36}{8^5}$
(4) $\frac{3}{2}(\frac{7}{8})^4$
Solution:

$n=5$, $p=1/8$, $q=7/8$. We need $P(X \le 1) = P(0) + P(1)$.

$$ P(0) = \binom{5}{0}(\frac{7}{8})^5 = (\frac{7}{8})^5 $$ $$ P(1) = \binom{5}{1}(\frac{1}{8})(\frac{7}{8})^4 = 5(\frac{1}{8})(\frac{7}{8})^4 $$

Total $= (\frac{7}{8})^4 [ \frac{7}{8} + \frac{5}{8} ] = (\frac{7}{8})^4 [\frac{12}{8}] = \frac{3}{2}(\frac{7}{8})^4$.

Random Variables Q3

Two persons A and B play a game by throwing two dice. If sum is even, A gets $\frac{1}{2}$ point. If sum is odd, A gets 1 point. The arithmetic mean of A’s points is:

(1) $\frac{1}{2}$
(2) $\frac{1}{4}$
(3) $1$
(4) $\frac{3}{4}$
Solution:

$P(\text{Even}) = 1/2$, $P(\text{Odd}) = 1/2$.

Mean $E[X] = (\frac{1}{2} \times \frac{1}{2}) + (1 \times \frac{1}{2}) = \frac{1}{4} + \frac{2}{4} = \frac{3}{4}$.

Random Variables Q4

A typist prepares a page with 1 error per 10 pages. In an assignment of 40 pages, if the probability of at most 2 errors is $p$, then $e^4 p =$

(1) $5$
(2) $13$
(3) $13e^{-2}$
(4) $5e^{-2}$
Solution:

Mean $\lambda = 40/10 = 4$.

$$ p = P(X \le 2) = e^{-4} [ \frac{4^0}{0!} + \frac{4^1}{1!} + \frac{4^2}{2!} ] $$ $$ p = e^{-4} [ 1 + 4 + 8 ] = 13e^{-4} $$

Therefore, $e^4 p = e^4(13e^{-4}) = 13$.

Random Variables Q5

If $X$ is a random variable with probability distribution $P(X=k) = \frac{(2k+3)c}{3^k}$ for $k=0,1,2,\dots$, then $P(X=3)=$

(1) $\frac{1}{24}$
(2) $\frac{1}{18}$
(3) $\frac{1}{6}$
(4) $\frac{1}{3}$
Solution:

Sum of probabilities is 1. Using AGP summation, we found $c = 1/6$.

$$ P(3) = \frac{(2(3)+3)(1/6)}{3^3} = \frac{9/6}{27} = \frac{1.5}{27} = \frac{1}{18} $$
Random Variables Q6

If a Poisson variate X satisfies $P(X=3)=P(X=5)$, then $P(X=4)=$

(1) $\frac{50}{3e^{\sqrt{20}}}$
(2) $\frac{20000}{3e^{20}}$
(3) $\frac{125}{3e^{10}}$
(4) $\frac{25}{3e^{\sqrt{20}}}$
Solution:

$\frac{\lambda^3}{3!} = \frac{\lambda^5}{5!} \implies \lambda^2 = 20 \implies \lambda = \sqrt{20}$.

$$ P(4) = \frac{e^{-\lambda}\lambda^4}{4!} = \frac{e^{-\sqrt{20}}(400)}{24} = \frac{50}{3}e^{-\sqrt{20}} $$
Random Variables Q7

A shelf has 3 math and 2 physics books. A student picks a book 3 times with replacement. The mean number of math books is:

(1) $\frac{3}{2}$
(2) $\frac{129}{125}$
(3) $\frac{9}{5}$
(4) $\frac{174}{125}$
Solution:

Binomial distribution with $n=3$, $p = 3/5$.

Mean $= np = 3 \times \frac{3}{5} = \frac{9}{5}$.

Random Variables Q8

In a Poisson distribution, if $\frac{P(X=5)}{P(X=2)} = \frac{1}{7500}$ and $\frac{P(X=5)}{P(X=3)} = \frac{1}{500}$, then the mean is:

(1) $\frac{1}{15}$
(2) $\frac{1}{5}$
(3) $\frac{1}{25}$
(4) $\frac{1}{3}$
Solution:

Using the first ratio: $\frac{\lambda^5/120}{\lambda^2/2} = \frac{\lambda^3}{60} = \frac{1}{7500}$.

$$ \lambda^3 = \frac{60}{7500} = \frac{1}{125} \implies \lambda = \frac{1}{5} $$
Random Variables Q9

The probability distribution of X is given below. Then the standard deviation of X is:

X235712
P(X)3kkk2kk
(1) $5$
(2) $11$
(3) $\sqrt{11}$
(4) $\sqrt{5}$
Solution:

Sum $= 8k = 1 \implies k=1/8$.

Mean $\mu = 5$. $E(X^2) = 36$.

Variance $= 36 – 25 = 11$. SD $= \sqrt{11}$.

Random Variables Q10

If the mean and variance of a binomial distribution are $\frac{4}{3}$ and $\frac{10}{9}$ respectively, then $P(X \ge 6)=$

(1) $\frac{41}{6^8}$
(2) $\frac{741}{6^8}$
(3) $1 – \frac{741}{6^8}$
(4) $1 – \frac{41}{6^8}$
Solution:

$np=4/3$, $npq=10/9 \implies q=5/6, p=1/6, n=8$.

$P(X \ge 6) = P(6)+P(7)+P(8) = \frac{1}{6^8}[\binom{8}{6}5^2 + \binom{8}{7}5 + 1] = \frac{741}{6^8}$.

Random Variables Q11

If three dice are thrown, then the mean of the sum of the numbers appearing on them is:

(1) $58.5$
(2) $76.66$
(3) $71.75$
(4) $10.5$
Solution:

Mean of 1 die $= 3.5$.

Mean of 3 dice sum $= 3 \times 3.5 = 10.5$.

Random Variables Q12

If $X \sim B(7,p)$ and $P(X=3) = P(X=5)$, then $p=$

(1) $\frac{5-\sqrt{10}}{3}$
(2) $\frac{\sqrt{10}-2}{3}$
(3) $\frac{5-\sqrt{15}}{2}$
(4) $\frac{\sqrt{15}-3}{2}$
Solution:

$\binom{7}{3} p^3 q^4 = \binom{7}{5} p^5 q^2 \implies 35 q^2 = 21 p^2 \implies 5(1-p)^2 = 3p^2$.

Solving quadratic: $2p^2 – 10p + 5 = 0$. Since $p \le 1$, $p = \frac{5-\sqrt{15}}{2}$.

Elementor #2483

Random Variables – Aimstutorial Practice
Random Variables Q1
The range of a discrete random variable X is $\{1, 2, 3\}$ and the probabilities are given by $P(X=1)=3k^3$, $P(X=2)=2k^2$, and $P(X=3)=7-19k$. Then $P(X=3)=$
(1) $\frac{2}{3}$
(2) $\frac{2}{9}$
(3) $\frac{1}{9}$
(4) $\frac{4}{9}$
Solution: Sum of probabilities must be 1: $$ 3k^3 + 2k^2 + 7 – 19k = 1 $$ $$ \Rightarrow 3k^3 + 2k^2 – 19k + 6 = 0 $$ Testing values (since $0 \le k \le 1$), for $k=1/3$: $$ 3(\frac{1}{27}) + 2(\frac{1}{9}) – 19(\frac{1}{3}) + 6 = 0 $$ So $k=1/3$. Then: $$ P(X=3) = 7 – 19(1/3) = \frac{21-19}{3} = \frac{2}{3} $$
Random Variables Q2
Among every 8 units of a product, one is likely to be defective. If a consumer orders 5 units, the probability that at most one unit is defective is:
(1) $\frac{15}{8}(\frac{7}{8})^6$
(2) $\frac{57}{8^5}$
(3) $\frac{36}{8^5}$
(4) $\frac{3}{2}(\frac{7}{8})^4$
Solution: Here $n=5$, defective prob $p=1/8$, good prob $q=7/8$. We need $P(X \le 1) = P(0) + P(1)$. $$ P(0) = \binom{5}{0}(\frac{7}{8})^5 = (\frac{7}{8})^5 $$ $$ P(1) = \binom{5}{1}(\frac{1}{8})(\frac{7}{8})^4 = 5(\frac{1}{8})(\frac{7}{8})^4 $$ $$ Total = (\frac{7}{8})^4 [ \frac{7}{8} + \frac{5}{8} ] = (\frac{7}{8})^4 [\frac{12}{8}] = \frac{3}{2}(\frac{7}{8})^4 $$
Random Variables Q3
Two persons A and B play a game by throwing two dice. If sum is even, A gets $\frac{1}{2}$ point. If sum is odd, A gets 1 point. The arithmetic mean of A’s points is:
(1) $\frac{1}{2}$
(2) $\frac{1}{4}$
(3) $1$
(4) $\frac{3}{4}$
Solution: $P(\text{Even sum}) = 1/2$ and $P(\text{Odd sum}) = 1/2$. Expected Value (Mean): $$ E[X] = (\frac{1}{2} \times \frac{1}{2}) + (1 \times \frac{1}{2}) $$ $$ E[X] = \frac{1}{4} + \frac{2}{4} = \frac{3}{4} $$
Random Variables Q4
A typist prepares a page with 1 error per 10 pages. In an assignment of 40 pages, if the probability of at most 2 errors is $p$, then $e^4 p =$
(1) $5$
(2) $13$
(3) $13e^{-2}$
(4) $5e^{-2}$
Solution: Mean $\lambda = 40/10 = 4$. $$ p = P(X \le 2) = e^{-4} [ \frac{4^0}{0!} + \frac{4^1}{1!} + \frac{4^2}{2!} ] $$ $$ p = e^{-4} [ 1 + 4 + 8 ] = 13e^{-4} $$ $$ \therefore e^4 p = e^4(13e^{-4}) = 13 $$
Random Variables Q5
If $X$ is a random variable with probability distribution $P(X=k) = \frac{(2k+3)c}{3^k}$ for $k=0,1,2,\dots$, then $P(X=3)=$
(1) $\frac{1}{24}$
(2) $\frac{1}{18}$
(3) $\frac{1}{6}$
(4) $\frac{1}{3}$
Solution: Using the sum of Arithmetico-Geometric series, we find $c = 1/6$. $$ P(3) = \frac{(2(3)+3)(1/6)}{3^3} $$ $$ P(3) = \frac{9/6}{27} = \frac{1.5}{27} = \frac{3}{54} = \frac{1}{18} $$
Random Variables Q6
If a Poisson variate X satisfies the relation $P(X=3)=P(X=5)$, then $P(X=4)=$
(1) $\frac{50}{3e^{\sqrt{20}}}$
(2) $\frac{20000}{3e^{20}}$
(3) $\frac{125}{3e^{10}}$
(4) $\frac{25}{3e^{\sqrt{20}}}$
Solution: $$ \frac{e^{-\lambda}\lambda^3}{3!} = \frac{e^{-\lambda}\lambda^5}{5!} \implies \frac{1}{6} = \frac{\lambda^2}{120} $$ $$ \lambda^2 = 20 \implies \lambda = \sqrt{20} $$ $$ P(4) = \frac{e^{-\lambda}\lambda^4}{4!} = \frac{e^{-\sqrt{20}}(400)}{24} = \frac{50}{3}e^{-\sqrt{20}} $$
Random Variables Q7
In a shelf there are 3 mathematics and 2 physics books. A student takes a book randomly 3 times with replacement. The mean number of mathematics books is:
(1) $\frac{3}{2}$
(2) $\frac{129}{125}$
(3) $\frac{9}{5}$
(4) $\frac{174}{125}$
Solution: This is a Binomial distribution problem. $n=3$ (trials). Probability of math book $p = 3/5$. $$ \text{Mean} = np = 3 \times \frac{3}{5} = \frac{9}{5} $$
Random Variables Q8
In a Poisson distribution, if $\frac{P(X=5)}{P(X=2)} = \frac{1}{7500}$ and $\frac{P(X=5)}{P(X=3)} = \frac{1}{500}$, then the mean is:
(1) $\frac{1}{15}$
(2) $\frac{1}{5}$
(3) $\frac{1}{25}$
(4) $\frac{1}{3}$
Solution: Using the first ratio: $$ \frac{\lambda^5/120}{\lambda^2/2} = \frac{\lambda^3}{60} = \frac{1}{7500} $$ $$ \lambda^3 = \frac{60}{7500} = \frac{1}{125} $$ $$ \lambda = \sqrt[3]{\frac{1}{125}} = \frac{1}{5} $$
Random Variables Q9
The probability distribution of X is given below. Then the standard deviation of X is:
X235712
P(X)3kkk2kk
(1) $5$
(2) $11$
(3) $\sqrt{11}$
(4) $\sqrt{5}$
Solution: Sum of P = $8k = 1 \implies k=1/8$. Mean $\mu = \sum xP = \frac{1}{8}(6+3+5+14+12) = 5$. $$ E(X^2) = \sum x^2P = \frac{1}{8}(12+9+25+98+144) = 36 $$ $$ \text{Variance} = E(X^2) – \mu^2 = 36 – 25 = 11 $$ $$ \text{SD} = \sqrt{11} $$
Random Variables Q10
If the mean and variance of a binomial distribution are $\frac{4}{3}$ and $\frac{10}{9}$ respectively, then $P(X \ge 6)=$
(1) $\frac{41}{6^8}$
(2) $\frac{741}{6^8}$
(3) $1 – \frac{741}{6^8}$
(4) $1 – \frac{41}{6^8}$
Solution: $np = 4/3$ and $npq = 10/9$. $$ q = \frac{npq}{np} = \frac{10/9}{4/3} = \frac{5}{6} \implies p = \frac{1}{6} $$ $$ n(\frac{1}{6}) = \frac{4}{3} \implies n = 8 $$ $$ P(X \ge 6) = P(6)+P(7)+P(8) $$ $$ = \frac{1}{6^8} [ \binom{8}{6}5^2 + \binom{8}{7}5^1 + 1 ] = \frac{741}{6^8} $$
Random Variables Q11
If three dice are thrown, then the mean of the sum of the numbers appearing on them is:
(1) $58.5$
(2) $76.66$
(3) $71.75$
(4) $10.5$
Solution: Mean of one die $E[X] = \frac{1+6}{2} = 3.5$. For 3 dice, Mean $= 3 \times 3.5 = 10.5$.
Random Variables Q12
If $X \sim B(7,p)$ and $P(X=3) = P(X=5)$, then $p=$
(1) $\frac{5-\sqrt{10}}{3}$
(2) $\frac{\sqrt{10}-2}{3}$
(3) $\frac{5-\sqrt{15}}{2}$
(4) $\frac{\sqrt{15}-3}{2}$
Solution: $$ \binom{7}{3} p^3 q^4 = \binom{7}{5} p^5 q^2 $$ $$ 35 q^2 = 21 p^2 \implies 5(1-p)^2 = 3p^2 $$ Solving quadratic $2p^2 – 10p + 5 = 0$: $$ p = \frac{10 \pm \sqrt{100-40}}{4} = \frac{5 \pm \sqrt{15}}{2} $$ Since $p \le 1$, we take $p = \frac{5-\sqrt{15}}{2}$.
Random Variables – Practice Questions
Random Variables Q1

The range of a discrete random variable X is $\{1, 2, 3\}$ and the probabilities are given by $P(X=1)=3k^3$, $P(X=2)=2k^2$, and $P(X=3)=7-19k$. Then $P(X=3)=$

(1) $\frac{2}{3}$
(2) $\frac{2}{9}$
(3) $\frac{1}{9}$
(4) $\frac{4}{9}$
Solution:

Sum of probabilities must be 1:

$$ 3k^3 + 2k^2 + 7 – 19k = 1 \implies 3k^3 + 2k^2 – 19k + 6 = 0 $$

Testing values (since $0 \le k \le 1$), for $k=1/3$:

$$ 3(\frac{1}{27}) + 2(\frac{1}{9}) – 19(\frac{1}{3}) + 6 = \frac{1}{9} + \frac{2}{9} – \frac{57}{9} + \frac{54}{9} = 0 $$

So $k=1/3$. Then $P(X=3) = 7 – 19(1/3) = \frac{21-19}{3} = \frac{2}{3}$.

Random Variables Q2

Among every 8 units of a product, one is likely to be defective. If a consumer orders 5 units, the probability that at most one unit is defective is:

(1) $\frac{15}{8}(\frac{7}{8})^6$
(2) $\frac{57}{8^5}$
(3) $\frac{36}{8^5}$
(4) $\frac{3}{2}(\frac{7}{8})^4$
Solution:

$n=5$, $p=1/8$, $q=7/8$. We need $P(X \le 1) = P(0) + P(1)$.

$$ P(0) = \binom{5}{0}(\frac{7}{8})^5 = (\frac{7}{8})^5 $$ $$ P(1) = \binom{5}{1}(\frac{1}{8})(\frac{7}{8})^4 = 5(\frac{1}{8})(\frac{7}{8})^4 $$

Total $= (\frac{7}{8})^4 [ \frac{7}{8} + \frac{5}{8} ] = (\frac{7}{8})^4 [\frac{12}{8}] = \frac{3}{2}(\frac{7}{8})^4$.

Random Variables Q3

Two persons A and B play a game by throwing two dice. If sum is even, A gets $\frac{1}{2}$ point. If sum is odd, A gets 1 point. The arithmetic mean of A’s points is:

(1) $\frac{1}{2}$
(2) $\frac{1}{4}$
(3) $1$
(4) $\frac{3}{4}$
Solution:

$P(\text{Even}) = 1/2$, $P(\text{Odd}) = 1/2$.

Mean $E[X] = (\frac{1}{2} \times \frac{1}{2}) + (1 \times \frac{1}{2}) = \frac{1}{4} + \frac{2}{4} = \frac{3}{4}$.

Random Variables Q4

A typist prepares a page with 1 error per 10 pages. In an assignment of 40 pages, if the probability of at most 2 errors is $p$, then $e^4 p =$

(1) $5$
(2) $13$
(3) $13e^{-2}$
(4) $5e^{-2}$
Solution:

Mean $\lambda = 40/10 = 4$.

$$ p = P(X \le 2) = e^{-4} [ \frac{4^0}{0!} + \frac{4^1}{1!} + \frac{4^2}{2!} ] $$ $$ p = e^{-4} [ 1 + 4 + 8 ] = 13e^{-4} $$

Therefore, $e^4 p = e^4(13e^{-4}) = 13$.

Random Variables Q5

If $X$ is a random variable with probability distribution $P(X=k) = \frac{(2k+3)c}{3^k}$ for $k=0,1,2,\dots$, then $P(X=3)=$

(1) $\frac{1}{24}$
(2) $\frac{1}{18}$
(3) $\frac{1}{6}$
(4) $\frac{1}{3}$
Solution:

Sum of probabilities is 1. Using AGP summation, we found $c = 1/6$.

$$ P(3) = \frac{(2(3)+3)(1/6)}{3^3} = \frac{9/6}{27} = \frac{1.5}{27} = \frac{1}{18} $$
Random Variables Q6

If a Poisson variate X satisfies $P(X=3)=P(X=5)$, then $P(X=4)=$

(1) $\frac{50}{3e^{\sqrt{20}}}$
(2) $\frac{20000}{3e^{20}}$
(3) $\frac{125}{3e^{10}}$
(4) $\frac{25}{3e^{\sqrt{20}}}$
Solution:

$\frac{\lambda^3}{3!} = \frac{\lambda^5}{5!} \implies \lambda^2 = 20 \implies \lambda = \sqrt{20}$.

$$ P(4) = \frac{e^{-\lambda}\lambda^4}{4!} = \frac{e^{-\sqrt{20}}(400)}{24} = \frac{50}{3}e^{-\sqrt{20}} $$
Random Variables Q7

A shelf has 3 math and 2 physics books. A student picks a book 3 times with replacement. The mean number of math books is:

(1) $\frac{3}{2}$
(2) $\frac{129}{125}$
(3) $\frac{9}{5}$
(4) $\frac{174}{125}$
Solution:

Binomial distribution with $n=3$, $p = 3/5$.

Mean $= np = 3 \times \frac{3}{5} = \frac{9}{5}$.

Random Variables Q8

In a Poisson distribution, if $\frac{P(X=5)}{P(X=2)} = \frac{1}{7500}$ and $\frac{P(X=5)}{P(X=3)} = \frac{1}{500}$, then the mean is:

(1) $\frac{1}{15}$
(2) $\frac{1}{5}$
(3) $\frac{1}{25}$
(4) $\frac{1}{3}$
Solution:

Using the first ratio: $\frac{\lambda^5/120}{\lambda^2/2} = \frac{\lambda^3}{60} = \frac{1}{7500}$.

$$ \lambda^3 = \frac{60}{7500} = \frac{1}{125} \implies \lambda = \frac{1}{5} $$
Random Variables Q9

The probability distribution of X is given below. Then the standard deviation of X is:

X235712
P(X)3kkk2kk
(1) $5$
(2) $11$
(3) $\sqrt{11}$
(4) $\sqrt{5}$
Solution:

Sum $= 8k = 1 \implies k=1/8$.

Mean $\mu = 5$. $E(X^2) = 36$.

Variance $= 36 – 25 = 11$. SD $= \sqrt{11}$.

Random Variables Q10

If the mean and variance of a binomial distribution are $\frac{4}{3}$ and $\frac{10}{9}$ respectively, then $P(X \ge 6)=$

(1) $\frac{41}{6^8}$
(2) $\frac{741}{6^8}$
(3) $1 – \frac{741}{6^8}$
(4) $1 – \frac{41}{6^8}$
Solution:

$np=4/3$, $npq=10/9 \implies q=5/6, p=1/6, n=8$.

$P(X \ge 6) = P(6)+P(7)+P(8) = \frac{1}{6^8}[\binom{8}{6}5^2 + \binom{8}{7}5 + 1] = \frac{741}{6^8}$.

Random Variables Q11

If three dice are thrown, then the mean of the sum of the numbers appearing on them is:

(1) $58.5$
(2) $76.66$
(3) $71.75$
(4) $10.5$
Solution:

Mean of 1 die $= 3.5$.

Mean of 3 dice sum $= 3 \times 3.5 = 10.5$.

Random Variables Q12

If $X \sim B(7,p)$ and $P(X=3) = P(X=5)$, then $p=$

(1) $\frac{5-\sqrt{10}}{3}$
(2) $\frac{\sqrt{10}-2}{3}$
(3) $\frac{5-\sqrt{15}}{2}$
(4) $\frac{\sqrt{15}-3}{2}$
Solution:

$\binom{7}{3} p^3 q^4 = \binom{7}{5} p^5 q^2 \implies 35 q^2 = 21 p^2 \implies 5(1-p)^2 = 3p^2$.

Solving quadratic: $2p^2 – 10p + 5 = 0$. Since $p \le 1$, $p = \frac{5-\sqrt{15}}{2}$.