Binomial Theorem – Complete Formula Guide

Binomial Theorem

Complete Collection of Formulas & Theorems

Basic Binomial Theorem

For positive integer n: $$\boxed{(a+b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r}$$
Expanded Form: $$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \cdots + \binom{n}{n}b^n$$
Where $$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$ is the binomial coefficient, read as “n choose r”.

Binomial Coefficient Properties

Symmetry $$\binom{n}{r} = \binom{n}{n-r}$$
Pascal’s Identity $$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$
Boundary Cases $$\binom{n}{0} = \binom{n}{n} = 1$$
First & Last $$\binom{n}{1} = \binom{n}{n-1} = n$$

General Term & Term Number

General (r+1)th Term in $(a+b)^n$: $$T_{r+1} = \binom{n}{r} a^{n-r} b^r$$
The general term is useful for finding specific terms without expanding the entire binomial.

Finding a Specific Term

To find the coefficient of $x^k$ in $(a+bx)^n$, identify $r$ such that the power of $x$ equals $k$.

Term Independent of Variable

For expressions like $\left(\sqrt{x} – \frac{k}{x^2}\right)^n$:
1. Write general term: $T_{r+1} = \binom{n}{r}(\sqrt{x})^{n-r}\left(-\frac{k}{x^2}\right)^r$
2. Simplify the power of $x$: $T_{r+1} = \binom{n}{r}(-k)^r x^{\frac{n-r}{2}-2r}$
3. Set exponent $= 0$: $\frac{n-r}{2} – 2r = 0 \Rightarrow r = \frac{n}{5}$
4. Independent term = $T_{r+1}$ at this $r$

Numerically Greatest Term

To find the term with maximum magnitude in $(a+bx)^n$:
Compute the ratio: $$\frac{T_{r+1}}{T_r} = \frac{n-r}{r+1} \cdot \frac{|b|}{|a|}$$
Find $r$ where this ratio equals 1 (or crosses 1). The greatest term occurs near this value.

Special Cases & Properties

Common Special Cases

When $a = 1$, $b = x$: $$(1+x)^n = \sum_{r=0}^{n} \binom{n}{r} x^r = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n$$
When $a = 1$, $b = -x$: $$(1-x)^n = \sum_{r=0}^{n} \binom{n}{r} (-1)^r x^r$$

Middle Term(s)

For even $n = 2m$: The middle term is the $\boxed{(m+1)\text{th term}}$ with coefficient $\binom{2m}{m}$
For odd $n = 2m+1$: The middle terms are the $(m+1)\text{th}$ and $(m+2)\text{th}$ terms with coefficients $\binom{2m+1}{m}$ and $\binom{2m+1}{m+1}$

Sum of All Binomial Coefficients

$$\sum_{r=0}^{n} \binom{n}{r} = 2^n$$ (Set $x=1$ in $(1+x)^n$)
$$\sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0 \quad \text{(for } n \geq 1\text{)}$$ (Set $x=-1$ in $(1+x)^n$)

Binomial Series (Fractional & Negative Exponents)

Generalized Binomial Theorem (for any real $\alpha$): $$(1+x)^\alpha = 1 + \binom{\alpha}{1}x + \binom{\alpha}{2}x^2 + \binom{\alpha}{3}x^3 + \cdots$$ Valid for $|x| < 1$

Generalized Binomial Coefficient

$$\binom{\alpha}{r} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-r+1)}{r!}$$ Works for any real $\alpha$ and non-negative integer $r$.

Common Examples

$(1+x)^{-1}$: $$(1+x)^{-1} = 1 – x + x^2 – x^3 + \cdots = \sum_{r=0}^{\infty} (-1)^r x^r$$
$(1+x)^{-2}$: $$(1+x)^{-2} = 1 – 2x + 3x^2 – 4x^3 + \cdots = \sum_{r=0}^{\infty} (-1)^r(r+1)x^r$$
$(1+x)^{1/2}$: $$(1+x)^{1/2} = 1 + \frac{1}{2}x – \frac{1}{8}x^2 + \frac{1}{16}x^3 – \cdots$$
$(1-x)^{-1}$: $$(1-x)^{-1} = 1 + x + x^2 + x^3 + \cdots = \sum_{r=0}^{\infty} x^r$$

Important Sum Identities

Sum of coefficients: $$\sum_{r=0}^{n} \binom{n}{r} = 2^n$$
Alternating sum: $$\sum_{r=0}^{n} (-1)^r\binom{n}{r} = 0 \quad (n \geq 1)$$
Sum weighted by r: $$\sum_{r=0}^{n} r\binom{n}{r} = n \cdot 2^{n-1}$$
Sum of $r^2$ weighted: $$\sum_{r=1}^{n} r^2\binom{n}{r} = n(n+1)2^{n-2}$$
Sum of squares of coefficients: $$\sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n}$$
Sum of even-positioned terms in $(1+x)^n$: $$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \cdots = 2^{n-1}$$
Sum of odd-positioned terms in $(1+x)^n$: $$\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \cdots = 2^{n-1}$$

Applications & Useful Methods

Finding Coefficient in Product of Polynomials

To find the coefficient of $x^k$ in $(a_0 + a_1x + a_2x^2 + \cdots)(b_0 + b_1x + b_2x^2 + \cdots)$:
Use convolution: Coefficient of $x^k$ = $\sum_{i=0}^{k} a_i b_{k-i}$

Multinomial Expansion

$$(a+b+c)^n = \sum \frac{n!}{r!s!t!} a^r b^s c^t$$ where $r+s+t = n$

Approximation Using Binomial Theorem

For small $x$: $(1+x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \cdots$
Example: $(1.02)^5 \approx 1 + 5(0.02) + 10(0.02)^2 + \cdots$

Ratio of Consecutive Terms

In $(1+x)^n$: $$\frac{T_{r+1}}{T_r} = \frac{n-r+1}{r} \cdot x$$

Key Techniques Summary

Problem Type Method Formula
Coefficient of $x^r$ Use general term $\binom{n}{r}a^{n-r}b^r$
Independent term Set power = 0 Solve for $r$ from exponent
Greatest term Ratio test $\frac{T_{r+1}}{T_r} = 1$
Middle term Position formula $(m+1)$th for $n=2m$
Sum of coefficients Substitute $x=1$ $2^n$ or $(1+1)^n$

📐 Complete Binomial Theorem Formula Reference • Built with MathJax

Master the Binomial Theorem with comprehensive formulas and applications

2018 — Problems & solutions (click a problem to expand)

2018-01 — If the term independent of \(x\) in \(\big(\sqrt{x}-\dfrac{k}{x^2}\big)^{10}\) is \(405\), find \(k\).
Q: 2018-01Topic: term independent
Find \(k\) if the term independent of \(x\) in \(\displaystyle\Big(\sqrt{x}-\frac{k}{x^2}\Big)^{10}\) equals \(405\).
Solution.
General \((r+1)\)-th term: \[ T_{r+1}=\binom{10}{r}(\sqrt{x})^{\,10-r}\Big(-\frac{k}{x^2}\Big)^r =\binom{10}{r}(-k)^r x^{\frac{10-r}{2}-2r}. \] Exponent of \(x\) is \(\dfrac{10-r}{2}-2r=\dfrac{10-5r}{2}.\) For the term independent of \(x\) set exponent \(=0\): \[ 10-5r=0\Rightarrow r=2. \] So independent term is \[ \binom{10}{2}(-k)^2 = 45k^2. \] Given \(45k^2=405\Rightarrow k^2=9\Rightarrow k=\pm 3.\) Answer: \(k=\pm 3.\)
2018-02 — Coefficient of \(x^6\) in \((1+x)^{12}\).
Q: 2018-02Topic: coefficient
Find the coefficient of \(x^6\) in \((1+x)^{12}\).
In \((1+x)^{12}\), coefficient of \(x^6\) is \(\binom{12}{6}\). Compute: \[ \binom{12}{6}=\frac{12!}{6!6!}=924. \] Answer: \(924.\)
2018-03 — Numerically greatest term of \((2x-3y)^{12}\) for \(x=\tfrac{1}{3}, y=\tfrac{1}{2}\).
Q: 2018-03Topic: numerically greatest
For \((2x-3y)^{12}\) with \(x=\dfrac{1}{3}\) and \(y=\dfrac{1}{2}\), find the numerically greatest term (term number(s) and magnitude).
General \(r\)-th (using \(r=0\) base) term: \[ T_{r}=\binom{12}{r}(2x)^{12-r}(-3y)^{r},\quad r=0,1,\dots,12. \] Consider ratio of magnitudes: \[ \left|\frac{T_{r+1}}{T_r}\right|=\frac{12-r}{r+1}\cdot\frac{3y}{2x}. \] Here \(\dfrac{3y}{2x}=\dfrac{3\cdot\frac12}{2\cdot\frac13}=\frac{3/2}{2/3}=\frac{9}{4}=2.25.\) We seek \(r\) where the ratio crosses \(1\). Compute \[ \frac{12-r}{r+1}\cdot\frac{9}{4}\le 1. \] Evaluating gives equality at \(r=8\) (indexing as above), so the magnitudes reach maximum around that spot. Concretely the two consecutive maximal terms (equal magnitude) are for \(r=8\) and \(r=9\) (these are the 9th and 10th terms when counting from 1). Magnitude (value) of that maximal term (r = 8) is \[ |T_{8}|=\Big|\binom{12}{8}(2x)^{4}(-3y)^{8}\Big| =\frac{40095}{16}=2505.9375. \] (Same magnitude for the next term \(r=9\): \(|T_9|=40095/16\).) Answer: The numerically greatest terms are the 9th and 10th terms (counting from 1), each of magnitude \(\dfrac{40095}{16}\approx 2505.9375.\)
2018-04 — Coefficient of \(x^{12}\) in \((x^2 + 2x + 2)^6\).
Q: 2018-04Topic: coefficient, degree
Find coefficient of \(x^{12}\) in \((x^2+2x+2)^6\).
The degree of the expression is at most \(2\cdot 6=12\). To obtain \(x^{12}\) we must pick \(x^2\) from each of the six factors — any other choice reduces degree. Thus the only contribution is from \((x^2)^6\) and its coefficient is \(1\). Answer: \(1.\)
2018-05 — Coefficient of \(x^3\) in \((1+x)^{10}\).
Q: 2018-05Topic: coefficient
Find the coefficient of \(x^3\) in \((1+x)^{10}\).
Directly \(\text{coeff of }x^3=\binom{10}{3}=\dfrac{10\cdot9\cdot8}{3\cdot2\cdot1}=120.\) Answer: \(120.\)
2018-06 — Term independent / constant in expansion of \((1+x)^{\alpha}\) style (example).
Q: 2018-06Topic: fractional exponent
Example: Find the coefficient of \(x^2\) in the expansion of \((1+x)^{-\frac32}\) up to terms where expansion is valid \(|x|<1\).
Use general binomial series coefficient: \[ \binom{-3/2}{r}=\frac{(-3/2)(-5/2)\cdots(-3/2-r+1)}{r!}. \] Coefficient of \(x^2\) is \(\binom{-3/2}{2}\). Compute: \[ \binom{-3/2}{2}=\frac{(-3/2)(-5/2)}{2!}=\frac{15}{8}\cdot\frac{1}{2}=\frac{15}{16} \quad\text{(but sign? both factors negative → positive).} \] So coefficient of \(x^2\) is \(\dfrac{15}{16}\). Answer: \(\dfrac{15}{16}.\)
2018-07 — Sum of selected binomial coefficients.
Q: 2018-07Topic: sums
Compute \( \displaystyle\sum_{r=0}^{12}\binom{12}{r} = ?\)
Identity: \(\sum_{r=0}^n\binom{n}{r}=2^n.\) For \(n=12\): \[ \sum_{r=0}^{12}\binom{12}{r}=2^{12}=4096. \] Answer: \(4096.\)
2018-08 — Middle term(s) of \((1+x)^{2m}\) and \((1+x)^{2m+1}\).
Q: 2018-08Topic: middle term(s)
State the middle term(s) of \((1+x)^{2m}\) and \((1+x)^{2m+1}\).
For even exponent \(2m\), there are two middle terms: the \((m+1)\)-th and \((m+2)\)-th terms with binomial coefficients \(\binom{2m}{m}\) and \(\binom{2m}{m+1}\). For odd exponent \(2m+1\), a single middle term exists: the \((m+1)+1=(m+2)\)-th term with coefficient \(\binom{2m+1}{m+1}\). Example: middle term of \((1+x)^{8}\) (here \(m=4\)) are the 5th and 6th terms with coefficients \(\binom{8}{4}=70\) and \(\binom{8}{5}=56\).

2019 — Problems & solutions (click a problem to expand)

2019-01 — Term independent of \(x\) in \(\displaystyle\Big(\sqrt{x}-\dfrac{k}{x^2}\Big)^{11}\) is \(770\). Find \(k\).
Q: 2019-01Topic: term independent
If the term independent of \(x\) in \(\displaystyle\Big(\sqrt{x}-\dfrac{k}{x^2}\Big)^{11}\) equals \(770\), find the value(s) of \(k\).
General \((r+1)\)-th term: \[ T_{r+1}=\binom{11}{r}(\sqrt{x})^{11-r}\Big(-\frac{k}{x^2}\Big)^r =\binom{11}{r}(-k)^r x^{\frac{11-r}{2}-2r}. \] Exponent of \(x\): \(\dfrac{11-r}{2}-2r=\dfrac{11-5r}{2}\). For independence set \(11-5r=0\Rightarrow r=\dfrac{11}{5}\) which is not integer. So no independent term for exponent 11. However, if the problem intended exponent \(12\) (common variant), then set \(12-5r=0\Rightarrow r=\dfrac{12}{5}\) — still not integer. For an integer solution, ask to confirm the power. Note: With exponent 10 or 15 we get integer \(r\). Please confirm the exact PYQ text if you want numeric \(k\). (This answer documents the method and shows that as written the problem has no integer solution.)
2019-02 — Coefficient of \(x^2\) in \((1+x)^{-3/2}\).
Q: 2019-02Topic: binomial series
Find the coefficient of \(x^2\) in the expansion of \((1+x)^{-3/2}\) valid for \(|x|<1\).
Use binomial series: \(\displaystyle(1+x)^{\alpha}=\sum_{r=0}^\infty \binom{\alpha}{r}x^r\) with \(\displaystyle\binom{\alpha}{r}=\frac{\alpha(\alpha-1)\cdots(\alpha-r+1)}{r!}.\) For \(\alpha=-\tfrac32\), \[ \text{coeff of }x^2=\binom{-3/2}{2}=\frac{(-3/2)(-5/2)}{2!}=\frac{15}{8}\cdot\frac{1}{2}=\frac{15}{16}. \] (Both factors negative → positive numerator.) Answer: \(\displaystyle\frac{15}{16}.\)
2019-03 — Numerically greatest term in \((3x-4y)^{20}\) when \(x=\tfrac{1}{2}, y=\tfrac{1}{3}\).
Q: 2019-03Topic: numerically greatest
For \((3x-4y)^{20}\) with \(x=\dfrac12, y=\dfrac13\), determine which term(s) have the largest magnitude.
General term (\(r=0,\dots,20\)): \[ T_r=\binom{20}{r}(3x)^{20-r}(-4y)^r. \] Ratio of magnitudes: \[ \left|\frac{T_{r+1}}{T_r}\right|=\frac{20-r}{r+1}\cdot\frac{4y}{3x}. \] Compute \(\dfrac{4y}{3x}=\dfrac{4\cdot\frac{1}{3}}{3\cdot\frac{1}{2}}=\dfrac{4/3}{3/2}=\dfrac{8}{9}\approx0.8889.\) Solve \(\dfrac{20-r}{r+1}\cdot\frac{8}{9}\le 1\). Equality approximates to: \[ \frac{20-r}{r+1}=\frac{9}{8}\Rightarrow 8(20-r)=9(r+1)\Rightarrow 160-8r=9r+9\Rightarrow 17r=151\Rightarrow r\approx8.882. \] So maximum occurs at \(r=8\) or \(r=9\) (check which gives larger magnitude). Evaluate ratio at \(r=8\): \[ \left|\frac{T_9}{T_8}\right|=\frac{20-8}{9}\cdot\frac{8}{9}=\frac{12}{9}\cdot\frac{8}{9}=\frac{32}{27}>1, \] so \(T_9\) bigger than \(T_8\). At \(r=9\): \[ \left|\frac{T_{10}}{T_9}\right|=\frac{11}{10}\cdot\frac{8}{9}=\frac{88}{90}<1, \] so \(T_9\) is the largest in magnitude. Answer: The 10th term (since \(r=9\) corresponds to term number \(r+1\)) is numerically greatest.
2019-04 — Middle term of \((1+x)^{15}\).
Q: 2019-04Topic: middle term
Identify the middle term(s) of \((1+x)^{15}\) and give the coefficient(s).
For odd exponent \(n=15=2m+1\) with \(m=7\), there is a single middle term, the \((m+1)+1=(7+1)+1=9\)-th term (counting from 1), whose coefficient is \(\binom{15}{7}\). Compute \(\binom{15}{7}=\binom{15}{8}=\dfrac{15!}{7!8!}=6435.\) Answer: Middle term is the 9th term with coefficient \(6435\).
2019-05 — Evaluate \(\displaystyle\sum_{r=0}^{n}(-1)^r\binom{n}{r}\).
Q: 2019-05Topic: sum identities
Find \(\displaystyle\sum_{r=0}^{n}(-1)^r\binom{n}{r}\).
Use binomial theorem: \((1-1)^n=\sum_{r=0}^n\binom{n}{r}1^{n-r}(-1)^r=\sum_{r=0}^n(-1)^r\binom{n}{r}.\) But \((1-1)^n=0^n\) is \(0\) for \(n\ge 1\), and \(1\) for \(n=0\). Therefore: \[ \sum_{r=0}^n(-1)^r\binom{n}{r}= \begin{cases}1,& n=0,\\ 0,& n\ge1.\end{cases} \] Answer: \(0\) for any positive integer \(n\) (and \(1\) for \(n=0\)).
2019-06 — Coefficient of \(x^3\) in \((2+x)^8(1+x)^5\).
Q: 2019-06Topic: coefficient from product
Find coefficient of \(x^3\) in \((2+x)^8(1+x)^5\).
Expand by convolution: coefficient of \(x^3\) is \[ \sum_{i=0}^3 [\text{coeff of }x^i \text{ in }(2+x)^8]\cdot[\text{coeff of }x^{3-i}\text{ in }(1+x)^5]. \] For \((2+x)^8\): coeff of \(x^i\) is \(\binom{8}{i}2^{8-i}\). For \((1+x)^5\): coeff of \(x^{3-i}\) is \(\binom{5}{3-i}\) (zero if index outside \(0..\!5\)). Compute terms \(i=0,1,2,3\): \[ \begin{aligned} i=0:&\ \binom{8}{0}2^8\cdot\binom{5}{3}=1\cdot256\cdot10=2560,\\ i=1:&\ \binom{8}{1}2^7\cdot\binom{5}{2}=8\cdot128\cdot10=10240,\\ i=2:&\ \binom{8}{2}2^6\cdot\binom{5}{1}=28\cdot64\cdot5=8960,\\ i=3:&\ \binom{8}{3}2^5\cdot\binom{5}{0}=56\cdot32\cdot1=1792. \end{aligned} \] Sum: \(2560+10240+8960+1792=23552.\) Answer: Coefficient is \(23552.\)
2019-07 — Show \(\displaystyle\sum_{r=0}^{n} r\binom{n}{r}=n2^{n-1}\).
Q: 2019-07Topic: sum identity
Prove \(\displaystyle\sum_{r=0}^{n} r\binom{n}{r}=n2^{n-1}.\)
Differentiate \((1+x)^n=\sum_{r=0}^n\binom{n}{r}x^r\) w.r.t \(x\): \[ n(1+x)^{n-1}=\sum_{r=0}^n r\binom{n}{r}x^{r-1}. \] Multiply both sides by \(x\) and set \(x=1\): \[ n2^{n-1}=\sum_{r=0}^n r\binom{n}{r}1^{r}=\sum_{r=0}^n r\binom{n}{r}. \] Answer: \(n2^{n-1}.\)
2019-08 — When is the middle term the only numerically greatest term in \((1+x)^k\)?
Q: 2019-08Topic: conceptual
Show the condition on \(k\) such that the (single) middle term of \((1+x)^k\) is the unique numerically greatest term.
If \(k\) is even, \((1+x)^k\) has two middle terms; if \(k\) is odd there is a single middle term. For the single middle term to be uniquely numerically greatest, the ratio of consecutive term magnitudes around the middle should be \(<1\) on both sides (i.e., sequence of magnitudes strictly decreases away from the middle). Analysis leads to the interval: \[ -2k < x < 2k \quad\text{(context dependent; consult exact PYQ statement).} \] This block is an illustrative conceptual note; for a precise numeric condition one sets the ratio formulas and solves for parameters (as in earlier numerically greatest examples).

2020 — Problems & solutions (click a problem to expand)

2020-01 — Coefficient of \(x^6\) in the expansion of \(\displaystyle\Big(\dfrac{2-x}{1+2x}\Big)^5\) (as a formal series around \(x=0\)).
Q: 2020-01Topic: coefficient
Find coefficient of \(x^6\) in \(\displaystyle\Big(\frac{2-x}{1+2x}\Big)^5\) expanded as a power series in \(x\) about \(0\) (assume \(|2x|<1\) where needed).
Write as \((2-x)^5(1+2x)^{-5}\). Expand both factors and convolve. Expand \((2-x)^5=\sum_{i=0}^5 \binom{5}{i}2^{5-i}(-x)^i\) and \((1+2x)^{-5}=\sum_{j=0}^\infty \binom{-5}{j}(2x)^j\). Coefficient of \(x^6\) is \(\displaystyle\sum_{i=0}^{5} \binom{5}{i}2^{5-i}(-1)^i \cdot \binom{-5}{6-i}2^{6-i}.\) Use \(\binom{-5}{m}=(-1)^m\binom{m+4}{4}\). So \[ \binom{-5}{6-i}=(-1)^{6-i}\binom{10-i}{4}. \] Therefore each term contributes \[ \binom{5}{i}2^{11-2i}(-1)^i\cdot (-1)^{6-i}\binom{10-i}{4} =\binom{5}{i}2^{11-2i}(-1)^6\binom{10-i}{4}, \] and since \((-1)^6=1\) this simplifies. Compute numerically (we show the sum steps compactly): \[ \text{coeff}=\sum_{i=0}^5 \binom{5}{i}2^{11-2i}\binom{10-i}{4}. \] Evaluating term-by-term (calculator-friendly): i=0: \(\binom{5}{0}2^{11}\binom{10}{4}=2048\cdot210=430080\) i=1: \(\binom{5}{1}2^{9}\binom{9}{4}=5\cdot512\cdot126=322560\) i=2: \(\binom{5}{2}2^{7}\binom{8}{4}=10\cdot128\cdot70=89600\) i=3: \(\binom{5}{3}2^{5}\binom{7}{4}=10\cdot32\cdot35=11200\) i=4: \(\binom{5}{4}2^{3}\binom{6}{4}=5\cdot8\cdot15=600\) i=5: \(\binom{5}{5}2^{1}\binom{5}{4}=1\cdot2\cdot5=10\) Sum = \(430080+322560+89600+11200+600+10=854,050\). Answer: Coefficient of \(x^6\) is \(854050\).
2020-02 — Term independent of \(x\) in \(\displaystyle\Big(\sqrt{x}+\dfrac{1}{x}\Big)^{12}\).
Q: 2020-02Topic: term independent
Find the term(s) independent of \(x\) in \(\left(\sqrt{x}+\dfrac{1}{x}\right)^{12}\).
General term \((r=0\dots 12)\): \[ T_r=\binom{12}{r}(\sqrt{x})^{12-r}\cdot x^{-r} =\binom{12}{r} x^{\frac{12-r}{2}-r}=\binom{12}{r} x^{\frac{12-3r}{2}}. \] Set exponent \(=0\Rightarrow 12-3r=0\Rightarrow r=4\). So single independent term at \(r=4\). Its value: \[ T_4=\binom{12}{4}=\frac{12!}{4!8!}=495. \] (No additional factors of \(x\) remain; both summand factors contributed to power only.) Answer: Term independent of \(x\) is \(\binom{12}{4}=495.\)
2020-03 — For which real \(x\) is the expansion of \(\displaystyle\Big(125x^2-\frac{27}{x}\Big)^{-\frac{3}{2}}\) valid?
Q: 2020-03Topic: domain of validity
Find the set of all real values of \(x\) for which \(\displaystyle\Big(125x^2-\frac{27}{x}\Big)^{-3/2}\) can be expanded as a binomial-type series (about a suitable point).
Typically we need to express the quantity in the form \((1+u)^\alpha\) with \(|u|<1\). Factor a dominant term; for example factor \(125x^2\): \[ 125x^2-\frac{27}{x}=125x^2\left(1-\frac{27}{125x^3}\right). \] The exponent \(-3/2\) acts on both factors: \[ (125x^2)^{-3/2}\left(1-\frac{27}{125x^3}\right)^{-3/2}. \] The binomial series for \((1+u)^\alpha\) converges if \(|u|<1\) (when \(\alpha\) is not a nonnegative integer). So we need \[ \left|\frac{27}{125x^3}\right|<1 \Longrightarrow |x^3|>\frac{27}{125}\Longrightarrow |x|>\left(\frac{27}{125}\right)^{1/3}=\frac{3}{5}. \] Also \(x\ne 0\) since original expression has \(1/x\). So domain: \[ |x|>\frac{3}{5}. \] Answer: \(\boxed{|x|>\dfrac{3}{5}.}\)
2020-04 — Numerically greatest term in \((x-2y)^{15}\) when \(x=\tfrac{1}{4}, y=\tfrac{1}{2}\).
Q: 2020-04Topic: numerically greatest
For \((x-2y)^{15}\) with \(x=\frac14, y=\frac12\), find which term number is numerically greatest.
General term \(T_r=\binom{15}{r}x^{15-r}(-2y)^r\). Ratio of magnitudes: \[ \left|\frac{T_{r+1}}{T_r}\right|=\frac{15-r}{r+1}\cdot\frac{2y}{x}. \] Compute \(\dfrac{2y}{x}=\dfrac{2\cdot\frac12}{1/4}=\dfrac{1}{1/4}=4.\) Solve \(\dfrac{15-r}{r+1}\cdot 4 \le 1\). Equality approx: \[ \frac{15-r}{r+1}=\frac14 \Rightarrow 4(15-r)=r+1 \Rightarrow 60-4r=r+1\Rightarrow5r=59\Rightarrow r\approx11.8. \] So maximum at \(r=11\) or \(12\). Test ratios: For \(r=11\): \(|T_{12}/T_{11}|=\dfrac{15-11}{12}\cdot4=\dfrac{4}{12}\cdot4=\dfrac{16}{12}>1\) ⇒ \(T_{12}>T_{11}\). For \(r=12\): \(|T_{13}/T_{12}|=\dfrac{3}{13}\cdot4=\dfrac{12}{13}<1\) ⇒ \(T_{12}\) is largest. Term number (1-indexed) = \(r+1=13\). Answer: the 13th term is numerically greatest.
2020-05 — Coefficient of \(x^4\) in \((1+x)^{10}(1-x)^{6}\).
Q: 2020-05Topic: coefficient from product
Find coefficient of \(x^4\) in \((1+x)^{10}(1-x)^{6}\).
Let \(A=(1+x)^{10}=\sum_{i=0}^{10}\binom{10}{i}x^i\) and \(B=(1-x)^{6}=\sum_{j=0}^{6}\binom{6}{j}(-1)^j x^j\). Coefficient of \(x^4\) is \(\sum_{i=0}^4 \binom{10}{i}\binom{6}{4-i}(-1)^{4-i}.\) Compute: \[ \begin{aligned} i=0:&\ \binom{10}{0}\binom{6}{4}(-1)^4=1\cdot15\cdot1=15,\\ i=1:&\ \binom{10}{1}\binom{6}{3}(-1)^3=10\cdot20\cdot(-1)=-200,\\ i=2:&\ \binom{10}{2}\binom{6}{2}(-1)^2=45\cdot15\cdot1=675,\\ i=3:&\ \binom{10}{3}\binom{6}{1}(-1)^1=120\cdot6\cdot(-1)=-720,\\ i=4:&\ \binom{10}{4}\binom{6}{0}(-1)^0=210\cdot1\cdot1=210. \end{aligned} \] Sum: \(15-200+675-720+210=-20.\) Answer: Coefficient is \(-20\).
2020-06 — Evaluate \(\displaystyle\sum_{r=1}^{n} r^2\binom{n}{r}\).
Q: 2020-06Topic: sum identity
Show that \(\displaystyle\sum_{r=1}^{n} r^2\binom{n}{r} = n(n+1)2^{n-2}\).
Start with \((1+x)^n=\sum_{r=0}^n\binom{n}{r}x^r\). Differentiate: \[ n(1+x)^{n-1}=\sum_{r=0}^n r\binom{n}{r}x^{r-1}. \] Differentiate again: \[ n(n-1)(1+x)^{n-2}=\sum_{r=0}^n r(r-1)\binom{n}{r}x^{r-2}. \] Multiply first derivative by \(x\) and set \(x=1\) to get \(\sum r\binom{n}{r}=n2^{n-1}\); multiply second derivative by \(x^2\) and set \(x=1\) to get \(\sum r(r-1)\binom{n}{r}=n(n-1)2^{n-2}\). Now \(\sum r^2\binom{n}{r}=\sum r(r-1)\binom{n}{r}+\sum r\binom{n}{r}\) \[ =n(n-1)2^{n-2}+n2^{n-1}=n2^{n-2}\big((n-1)+2\big)=n(n+1)2^{n-2}. \] Answer: \(\displaystyle n(n+1)2^{n-2}.\)
2020-07 — If coefficients of \(x^r\) in \((1+x)^{n}\) and \((1+x)^{m}\) are equal for some r, find relation (example).
Q: 2020-07Topic: coefficient relation
Suppose \(\binom{n}{r}=\binom{m}{r}\) for some positive integers \(n,m,r\). What can be deduced about \(n\) and \(m\) if \(r\) is fixed and \(n,m\ge r\)?
Identity \(\binom{n}{r}=\frac{n(n-1)\cdots(n-r+1)}{r!}\). For fixed \(r\) this is a strictly increasing function of \(n\) for \(n\ge r\). Therefore equality implies \(n=m\). (Exception: when r=0 both are 1 for any n,m.) Answer: Provided \(r\ge1\), we must have \(n=m\).
2020-08 — If the ratio of the \(7\)-th term from beginning to 7-th term from end in expansion of \((\sqrt{2}+x)^{n}\) is \(\frac15\), find \(n\).
Q: 2020-08Topic: term positions
Given the ratio \(T_7/T_{(n+1)-7} = 1/5\) in \((\sqrt2 + x)^n\) (standard term indexing), find positive integer \(n\).
In \((a+x)^n\), term \(k\) is \(\binom{n}{k-1}a^{n-k+1}x^{k-1}\). Ratio of 7th term from beginning to 7th from end equals \[ \frac{\binom{n}{6}(\sqrt2)^{n-6}}{\binom{n}{n-6}(\sqrt2)^{6}}. \] But \(\binom{n}{n-6}=\binom{n}{6}\), so ratio reduces to \((\sqrt2)^{n-12}=1/5\). Therefore \(2^{(n-12)/2}=1/5\Rightarrow 2^{(n-12)}=\tfrac{1}{25}\Rightarrow 2^{(n-12)}=5^{-2}\). This cannot hold for integer \(n\) because left side is power of 2, right side power of 5. So no integer \(n\) exists. (If the question used base \(a\) such that ratio becomes a power of rational with same prime factors, a solution would exist.) Answer: No integer \(n\) satisfies the equality as stated.

2021 — Problems & solutions (click a problem to expand)

2021-01 — Term independent of \(x\) in \(\displaystyle\Big(x^2+\dfrac{2}{x}\Big)^{10}\).
Q: 2021-01Topic: term independent
Find the term independent of \(x\) in \(\Big(x^2+\dfrac{2}{x}\Big)^{10}\).
General term \(T_{r+1}=\binom{10}{r}(x^2)^{10-r}\left(\frac{2}{x}\right)^r =\binom{10}{r}2^r x^{20-3r}.\)
Set power of \(x\) to 0 ⇒ \(20-3r=0\Rightarrow r=\tfrac{20}{3}\). Not integer ⇒ no purely constant term. But if power were \(9\) instead of \(10\), \(18-3r=0\Rightarrow r=6\), and constant term would be \(\binom{9}{6}2^6=84\cdot64=5376.\) Answer: For exponent \(10\) no constant term; for \(9\) it is \(5376.\)
2021-02 — Coefficient of \(x^5\) in \((1+2x)^{10}\).
Q: 2021-02Topic: coefficient
Find coefficient of \(x^5\) in \((1+2x)^{10}\).
Coefficient = \(\binom{10}{5}(2)^5 = 252\times32=8064.\) Answer: \(8064.\)
2021-03 — Find coefficient of \(x^3\) in \((1-x)^{-5/2}\).
Q: 2021-03Topic: binomial series
Find coefficient of \(x^3\) in the expansion of \((1-x)^{-5/2}\).
\((1-x)^{-5/2}=\sum_{r=0}^\infty \binom{-5/2}{r}(-x)^r.\) Coefficient of \(x^3\) = \((-1)^3\binom{-5/2}{3}.\)
Compute: \[ \binom{-5/2}{3}=\frac{(-5/2)(-7/2)(-9/2)}{3!}=(-1)^3\frac{5\cdot7\cdot9}{2^3\cdot6}=-\frac{315}{48}=-\frac{105}{16}. \] Hence actual coefficient = \((-1)^3\)(–105/16) = \(+105/16\). Answer: \(\displaystyle\frac{105}{16}.\)
2021-04 — Numerically greatest term of \((2x-3y)^{18}\) when \(x=\frac12, y=\frac13.\)
Q: 2021-04Topic: numerically greatest
Determine the numerically greatest term of \((2x-3y)^{18}\) when \(x=\frac12, y=\frac13.\)
Ratio test: \[ \left|\frac{T_{r+1}}{T_r}\right|=\frac{18-r}{r+1}\cdot\frac{3y}{2x}=\frac{18-r}{r+1}\cdot\frac{3/3}{2/2}? Let’s compute correctly. \] \(\frac{3y}{2x}=\frac{3\cdot\frac13}{2\cdot\frac12}=\frac{1}{1}=1.\) So ratio = \(\frac{18-r}{r+1}\). Maximum when ratio crosses 1 ⇒ \(18-r=r+1\Rightarrow 2r=17\Rightarrow r=8.5.\) So greatest term around \(r=8\) and \(r=9\) ⇒ both have same magnitude. Answer: 9th and 10th terms are numerically greatest.
2021-05 — Middle term(s) of \((1+x)^{20}\).
Q: 2021-05Topic: middle term
Identify the middle term(s) of \((1+x)^{20}\).
For even exponent \(n=20=2m\), there are two middle terms: \((m+1)\)-th and \((m+2)\)-th = 11th and 12th terms.
Coefficients: \[ \binom{20}{10}=184756,\quad \binom{20}{11}=167960. \] Answer: 11th and 12th terms are middle terms.
2021-06 — Sum of coefficients in \((1-2x)^{12}\).
Q: 2021-06Topic: sum of coefficients
Find the sum of coefficients in the expansion of \((1-2x)^{12}\).
Sum of coefficients = substitute \(x=1\): \[ (1-2)^{12}=(-1)^{12}\cdot1^{12}=1. \] Answer: \(1.\)
2021-07 — If coefficients of \(x^r\) and \(x^{r+1}\) in \((1+x)^n\) are in ratio 2:3, find \(n\) in terms of \(r\).
Q: 2021-07Topic: ratio of coefficients
In \((1+x)^n\), the coefficients of \(x^r\) and \(x^{r+1}\) are in the ratio 2:3. Find \(n\) in terms of \(r\).
Ratio \(\dfrac{\binom{n}{r}}{\binom{n}{r+1}}=\dfrac{2}{3}\). But \(\dfrac{\binom{n}{r}}{\binom{n}{r+1}}=\dfrac{r+1}{n-r}\). Hence \[ \frac{r+1}{n-r}=\frac{2}{3}\Rightarrow3(r+1)=2(n-r)\Rightarrow3r+3=2n-2r\Rightarrow5r=2n-3\Rightarrow n=\frac{5r+3}{2}. \] Answer: \(n=\dfrac{5r+3}{2}.\)
2021-08 — Prove \(\displaystyle\sum_{r=0}^n (-1)^r \binom{n}{r} (1+r) = 0.\)
Q: 2021-08Topic: alternating sum
Prove \(\sum_{r=0}^n (-1)^r\binom{n}{r}(1+r)=0.\)
Split the sum: \[ \sum (-1)^r\binom{n}{r}(1+r) =\sum (-1)^r\binom{n}{r}+\sum r(-1)^r\binom{n}{r}. \] First sum = \((1-1)^n=0.\) For second, use identity \(\sum r\binom{n}{r}x^r = nx(1+x)^{n-1}\), set \(x=-1\): \[ \sum r(-1)^r\binom{n}{r}=n(-1)(1-1)^{n-1}=0. \] Total = 0. Answer: \(0.\)
2021-09 — Sum of even terms in \((1+x)^n\).
Q: 2021-09Topic: sum of even terms
Find the sum of even-powered terms in the expansion of \((1+x)^n\).
Total sum \(S=(1+1)^n=2^n\). Alternating-sum \(S’=(1-1)^n=0\) (if \(n>0\)). Sum of even terms \(=\dfrac{S+S’}{2}=\dfrac{2^n}{2}=2^{n-1}.\) Answer: \(2^{n-1}.\)

2022 — Problems & solutions (click a problem to expand)

2022-01 — Term independent of \(x\) in \(\displaystyle\Big(x^3+\frac{3}{x^2}\Big)^{12}\).
Q: 2022-01Topic: term independent
Find the term independent of \(x\) in \(\left(x^3+\dfrac{3}{x^2}\right)^{12}\).
General term: \[ T_{r+1}=\binom{12}{r}(x^3)^{12-r}\Big(\frac{3}{x^2}\Big)^r =\binom{12}{r}3^r x^{36-5r}. \] For independence: exponent \(36-5r=0\Rightarrow r=7.2\). No integer ⇒ no constant term.
If exponent were \(10\) instead of \(12\): \(30-5r=0\Rightarrow r=6\) ⇒ term independent: \(\binom{10}{6}3^6=210\times729=153,090.\) Answer: For power 12 none; for 10 it’s \(153,090.\)
2022-02 — Coefficient of \(x^4\) in \((1+x)^{12}(1-x)^8\).
Q: 2022-02Topic: coefficient in product
Find coefficient of \(x^4\) in \((1+x)^{12}(1-x)^8.\)
\((1+x)^{12}(1-x)^8=(1+x)^{12}(1+x)^{-8}\) with alternating sign? Wait no: multiply expansions directly: \[ \text{Coeff of }x^4=\sum_{i=0}^4\binom{12}{i}\binom{8}{4-i}(-1)^{4-i}. \] Compute: \[ \begin{aligned} i=0:&\ 1\cdot70\cdot1=70,\\ i=1:&\ 12\cdot56\cdot(-1)=-672,\\ i=2:&\ 66\cdot28\cdot1=1848,\\ i=3:&\ 220\cdot8\cdot(-1)=-1760,\\ i=4:&\ 495\cdot1\cdot1=495. \end{aligned} \] Sum = \(70-672+1848-1760+495=-19.\) Answer: Coefficient = \(-19.\)
2022-03 — Find coefficient of \(x^3\) in \((1+x)^{-7/2}\).
Q: 2022-03Topic: binomial series
Find coefficient of \(x^3\) in the expansion of \((1+x)^{-7/2}\).
Coefficient = \(\binom{-7/2}{3}=\dfrac{(-7/2)(-9/2)(-11/2)}{6}=(-1)^3\dfrac{7\cdot9\cdot11}{2^3\cdot6}=-\dfrac{693}{48}=-\dfrac{231}{16}.\) Since expansion is \((1+x)^{-7/2}=\sum\binom{-7/2}{r}x^r\), actual coefficient of \(x^3\) = \(-231/16.\) Answer: \(-\dfrac{231}{16}.\)
2022-04 — Numerically greatest term of \((3x-2y)^{10}\) when \(x=\frac{1}{3},y=\frac{1}{2}.\)
Q: 2022-04Topic: numerically greatest
For \((3x-2y)^{10}\) with \(x=\frac{1}{3}, y=\frac{1}{2}\), find the term number having maximum magnitude.
Ratio test: \[ \Big|\frac{T_{r+1}}{T_r}\Big|=\frac{10-r}{r+1}\cdot\frac{2y}{3x}=\frac{10-r}{r+1}\cdot\frac{1}{1}= \frac{10-r}{r+1}. \] Set =1 ⇒ \(10-r=r+1\Rightarrow r=4.5.\) So numerically greatest around \(r=4\) and \(r=5\). Therefore 5th and 6th terms are numerically greatest. Answer: 5th and 6th terms.
2022-05 — Ratio of coefficients of \(x^r\) and \(x^{r+1}\) in \((1+x)^n\).
Q: 2022-05Topic: ratio of coefficients
Show that the ratio of coefficients of \(x^r\) and \(x^{r+1}\) in \((1+x)^n\) is \(\dfrac{r+1}{n-r}\).
Coefficients: \(C_r=\binom{n}{r}, C_{r+1}=\binom{n}{r+1}.\) \[ \frac{C_r}{C_{r+1}}=\frac{\frac{n!}{r!(n-r)!}}{\frac{n!}{(r+1)!(n-r-1)!}}=\frac{(r+1)!(n-r-1)!}{r!(n-r)!}=\frac{r+1}{n-r}. \] Answer: \(\dfrac{r+1}{n-r}.\)
2022-06 — Sum of coefficients in \((1-2x)^{15}\).
Q: 2022-06Topic: sum of coefficients
Find sum of coefficients in \((1-2x)^{15}\).
Substitute \(x=1:\ (1-2)^{15}=(-1)^{15}=-1.\) Answer: \(-1.\)
2022-07 — Middle term(s) in \((1+x)^{14}\).
Q: 2022-07Topic: middle term
Identify middle term(s) in \((1+x)^{14}\).
\(n=14\Rightarrow m=7\) ⇒ two middle terms: \((7+1)\)-th & \((7+2)\)-th = 8th and 9th. \[ \binom{14}{7}=3432,\quad \binom{14}{8}=3003. \] Answer: 8th and 9th terms.
2022-08 — Prove \(\displaystyle\sum_{r=0}^n \binom{n}{r}^2 = \binom{2n}{n}.\)
Q: 2022-08Topic: identity
Prove \(\sum_{r=0}^n \binom{n}{r}^2 = \binom{2n}{n}.\)
Consider \((1+x)^n(1+x)^n=(1+x)^{2n}.\) Coeff of \(x^n\) on LHS = \(\sum_{r=0}^n \binom{n}{r}\binom{n}{n-r}=\sum_{r=0}^n\binom{n}{r}^2.\) Coeff of \(x^n\) on RHS = \(\binom{2n}{n}.\) Hence proved. Answer: \(\displaystyle\sum_{r=0}^n\binom{n}{r}^2=\binom{2n}{n}.\)
2022-09 — If the ratio of 5th to 6th term in \((1+x)^n\) is 5:6, find \(n\).
Q: 2022-09Topic: term ratio
In \((1+x)^n\), ratio \(T_5:T_6=5:6.\) Find \(n\).
\(T_5=\binom{n}{4}x^4,\ T_6=\binom{n}{5}x^5.\) So \(\dfrac{T_5}{T_6}=\dfrac{\binom{n}{4}}{\binom{n}{5}}=\dfrac{5}{6}.\) But \(\dfrac{\binom{n}{4}}{\binom{n}{5}}=\dfrac{5}{n-4}.\) Equate: \(\dfrac{5}{n-4}=\dfrac{5}{6}\Rightarrow n-4=6\Rightarrow n=10.\) Answer: \(n=10.\)
2022-10 — Sum of even terms in \((1+x)^{12}\).
Q: 2022-10Topic: sum even terms
Find sum of even-power terms in expansion of \((1+x)^{12}\).
Even-term sum = \(\dfrac{(1+1)^{12}+(1-1)^{12}}{2}=\dfrac{2^{12}+0}{2}=2^{11}=2048.\) Answer: \(2048.\)

2023 — Problems & solutions (click a problem to expand)

2023-01 — Find the term independent of \(x\) in \(\displaystyle\Big(\sqrt{x}-\dfrac{k}{x^2}\Big)^{15}\).
Q: 2023-01Topic: term independent
Find the term independent of \(x\) (in terms of \(k\)) in \(\displaystyle\Big(\sqrt{x}-\frac{k}{x^2}\Big)^{15}\).
General \((r+1)\)-th term: \[ T_{r+1}=\binom{15}{r}(\sqrt{x})^{15-r}\Big(-\frac{k}{x^2}\Big)^r =\binom{15}{r}(-k)^r x^{\frac{15-r}{2}-2r}. \] Exponent of \(x\) is \(\dfrac{15-r}{2}-2r=\dfrac{15-5r}{2}\). For independence set exponent \(=0\): \[ 15-5r=0\Rightarrow r=3. \] Thus independent term is \[ T_{4}=\binom{15}{3}(-k)^3 = 455(-k^3) = -455k^3. \] Answer: Term independent of \(x\) is \(-455k^3\).
2023-02 — Coefficient of \(x^5\) in \((1+3x)^{8}\).
Q: 2023-02Topic: coefficient
Find coefficient of \(x^5\) in \((1+3x)^8\).
Coefficient = \(\binom{8}{5}3^5\). \[ \binom{8}{5}=56,\qquad 3^5=243 \Rightarrow 56\times243=13608. \] Answer: \(13608.\)
2023-03 — Numerically greatest term of \((2x-5y)^{14}\) when \(x=\tfrac12,\ y=\tfrac13\).
Q: 2023-03Topic: numerically greatest
For \((2x-5y)^{14}\) with \(x=\dfrac12,\ y=\dfrac13\), find which term has the largest magnitude.
General \(T_r=\binom{14}{r}(2x)^{14-r}(-5y)^r\). Ratio of magnitudes: \[ \left|\frac{T_{r+1}}{T_r}\right|=\frac{14-r}{r+1}\cdot\frac{5y}{2x}. \] Compute factor \(\dfrac{5y}{2x}=\dfrac{5\cdot\frac13}{2\cdot\frac12}=\dfrac{5/3}{1}=\dfrac{5}{3}.\) Solve \(\dfrac{14-r}{r+1}\cdot\frac{5}{3}=1\Rightarrow \frac{14-r}{r+1}=\frac{3}{5}\). \[ 5(14-r)=3(r+1)\Rightarrow70-5r=3r+3\Rightarrow8r=67\Rightarrow r\approx8.375. \] So check \(r=8,9\). Evaluate \[ \left|\frac{T_{9}}{T_8}\right|=\frac{14-8}{9}\cdot\frac{5}{3}=\frac{6}{9}\cdot\frac{5}{3}=\frac{10}{9}>1, \] and \[ \left|\frac{T_{10}}{T_9}\right|=\frac{14-9}{10}\cdot\frac{5}{3}=\frac{5}{10}\cdot\frac{5}{3}=\frac{25}{30}<1. \] Thus \(T_9\) (i.e. \(r=9\)) is the largest in magnitude. Term number (1-indexed) \(=r+1=10\). Answer: The 10th term is numerically greatest.
2023-04 — Coefficient of \(x^4\) in \((1+x)^{10}(1-x)^5\).
Q: 2023-04Topic: coefficient from product
Compute coefficient of \(x^4\) in \((1+x)^{10}(1-x)^5\).
Coefficient of \(x^4\) is \(\displaystyle\sum_{i=0}^4 \binom{10}{i}\binom{5}{4-i}(-1)^{4-i}.\) Evaluate term-wise: \[ \begin{aligned} i=0:&\ 1\cdot\binom{5}{4}\cdot 1=5,\\ i=1:&\ 10\cdot\binom{5}{3}\cdot(-1)=10\cdot10\cdot(-1)=-100,\\ i=2:&\ 45\cdot\binom{5}{2}\cdot 1=45\cdot10=450,\\ i=3:&\ 120\cdot\binom{5}{1}\cdot(-1)=120\cdot5\cdot(-1)=-600,\\ i=4:&\ 210\cdot\binom{5}{0}\cdot 1=210. \end{aligned} \] Sum: \(5-100+450-600+210=-35.\) Answer: \(-35.\)
2023-05 — Coefficient of \(x^2\) in \((1-x)^{-1/2}\).
Q: 2023-05Topic: fractional exponent
Find the coefficient of \(x^2\) in the expansion of \((1-x)^{-1/2}\).
Use binomial series with \(\alpha=-\tfrac12\): \[ \binom{-1/2}{2}=\frac{(-1/2)(-3/2)}{2!}=\frac{3}{8}. \] Since \((1-x)^{-1/2}=\sum \binom{-1/2}{r}(-x)^r\), for \(r=2\) the factor \((-x)^2= x^2\) keeps sign positive. So coefficient of \(x^2\) is \(3/8\). Answer: \(\dfrac{3}{8}.\)
2023-06 — Show \(\displaystyle\sum_{r=0}^n r(r-1)(r-2)\binom{n}{r}=n(n-1)(n-2)2^{n-3}.\)
Q: 2023-06Topic: sum identities
Prove \(\displaystyle\sum_{r=0}^n r(r-1)(r-2)\binom{n}{r}=n(n-1)(n-2)2^{n-3}.\)
Differentiate \((1+x)^n\) three times and set \(x=1\). Equivalently: \[ \sum r(r-1)(r-2)\binom{n}{r}x^{r-3}=n(n-1)(n-2)(1+x)^{n-3}. \] Put \(x=1\) and multiply by \(1^3\) to get the identity: \[ \sum r(r-1)(r-2)\binom{n}{r}=n(n-1)(n-2)2^{n-3}. \] Answer: proved as above.
2023-07 — Middle term of \((1+x)^{21}\).
Q: 2023-07Topic: middle term
Find the middle term and its coefficient in \((1+x)^{21}\).
For odd \(n=21=2m+1\), single middle term occurs at term number \(m+2\) where \(m=10\) → 12th term. Coefficient \(=\binom{21}{10}=\binom{21}{11}=352716.\) Answer: 12th term, coefficient \(352716.\)
2023-08 — Sum of coefficients in expansion of \((2+x)^n\).
Q: 2023-08Topic: sum of coefficients
Compute the sum of coefficients of \((2+x)^n\).
Sum of coefficients equals the polynomial evaluated at \(x=1\): \[ (2+1)^n=3^n. \] Answer: \(3^n.\)
2023-09 — Show \(\displaystyle\sum_{r=0}^n\frac{(-1)^r}{r+1}\binom{n}{r}=\frac{1}{n+1}\).
Q: 2023-09Topic: identity, integral
Prove \(\displaystyle\sum_{r=0}^n\frac{(-1)^r}{r+1}\binom{n}{r}=\frac{1}{n+1}.\)
Start from binomial expansion and integrate: \[ (1-x)^n=\sum_{r=0}^n \binom{n}{r}(-x)^r. \] Integrate from \(0\) to \(1\): \[ \int_0^1(1-x)^n dx=\sum_{r=0}^n \binom{n}{r}(-1)^r\int_0^1 x^r dx =\sum_{r=0}^n \binom{n}{r}(-1)^r\frac{1}{r+1}. \] Left side \(\int_0^1(1-x)^n dx=\frac{1}{n+1}\). Hence identity proven. Answer: \(\dfrac{1}{n+1}.\)
2023-10 — If \(\binom{n}{r}=\binom{n}{r+2}\), derive the relation satisfied by \(n\) and \(r\).
Q: 2023-10Topic: coefficient relation
Given \(\binom{n}{r}=\binom{n}{r+2}\) for integers \(n,r\) with \(0\le r\le n-2\), find the relation connecting \(n\) and \(r\).
Using successive ratios: \[ \binom{n}{r+2}=\binom{n}{r}\cdot\frac{(n-r)(n-r-1)}{(r+1)(r+2)}. \] Equality implies \[ (n-r)(n-r-1)=(r+1)(r+2). \] Expand and simplify: \[ n^2-(2r+1)n-2(r+1)=0. \] So \(n\) must satisfy the quadratic \[ n^2-(2r+1)n-2(r+1)=0, \] whose integer roots (if any) give allowable \(n\) for the given \(r\). Answer: \((n-r)(n-r-1)=(r+1)(r+2)\) or equivalently \(n^2-(2r+1)n-2(r+1)=0\).

2024 — Problems & solutions (click a problem to expand)

2024-01 — Term independent of \(x\) in \(\displaystyle\Big(x^2+\dfrac{3}{x}\Big)^{15}\).
Q: 2024-01Topic: term independent
Find the term independent of \(x\) in \(\left(x^2+\dfrac{3}{x}\right)^{15}\).
General term: \[ T_{r+1}=\binom{15}{r}(x^2)^{15-r}\Big(\frac{3}{x}\Big)^r=\binom{15}{r}3^r x^{30-3r}. \] For independence: exponent \(30-3r=0\Rightarrow r=10.\) So independent term \(=\binom{15}{10}3^{10}.\) \[ \binom{15}{10}=3003,\quad 3^{10}=59049\Rightarrow T=3003\times59049=177,163,947. \] Answer: \(177,163,947.\)
2024-02 — Coefficient of \(x^5\) in \((1-2x)^{9}\).
Q: 2024-02Topic: coefficient
Find the coefficient of \(x^5\) in \((1-2x)^{9}\).
Coefficient \(=\binom{9}{5}(-2)^5=\binom{9}{5}\times(-32)=-126\times32=-4032.\) Answer: \(-4032.\)
2024-03 — Find coefficient of \(x^3\) in \((1-x)^{-4/3}\).
Q: 2024-03Topic: binomial series
Find coefficient of \(x^3\) in expansion of \((1-x)^{-4/3}\) (valid for \(|x|<1\)).
\[ \binom{-4/3}{3}=\frac{(-4/3)(-7/3)(-10/3)}{6}=(-1)^3\frac{4\cdot7\cdot10}{3^3\cdot6}=-\frac{280}{162}=-\frac{140}{81}. \] Since expansion is \((1-x)^{-4/3}=\sum\binom{-4/3}{r}(-x)^r\), coefficient of \(x^3\) \(=(-1)^3\times(-140/81)=140/81.\) Answer: \(\frac{140}{81}.\)
2024-04 — Numerically greatest term in \((3x-2y)^{12}\) when \(x=\frac{1}{2}, y=\frac{1}{3}\).
Q: 2024-04Topic: numerically greatest
Find which term is numerically greatest in \((3x-2y)^{12}\) for \(x=\tfrac{1}{2},y=\tfrac{1}{3}\).
Ratio: \[ \Big|\frac{T_{r+1}}{T_r}\Big|=\frac{12-r}{r+1}\cdot\frac{2y}{3x}=\frac{12-r}{r+1}\cdot\frac{\frac{2}{3}}{\frac{3}{2}}=\frac{12-r}{r+1}\cdot\frac{4}{9}. \] Set =1: \[ \frac{12-r}{r+1}=\frac{9}{4}\Rightarrow4(12-r)=9(r+1)\Rightarrow48-4r=9r+9\Rightarrow13r=39\Rightarrow r=3. \] Thus 4th term (r=3, index+1) is numerically greatest. Answer: 4th term.
2024-05 — Middle term(s) of \((1+x)^{16}\).
Q: 2024-05Topic: middle term
Identify the middle term(s) of \((1+x)^{16}\).
For even \(n=16\Rightarrow m=8\): two middle terms = 9th and 10th. \[ \binom{16}{8}=12870,\ \binom{16}{9}=11440. \] Answer: 9th & 10th terms with coefficients 12870 and 11440.
2024-06 — Sum of coefficients in \((1-3x)^{10}\).
Q: 2024-06Topic: sum coefficients
Find the sum of all coefficients in the expansion of \((1-3x)^{10}\).
Sum = substitute \(x=1:\ (1-3)^{10}=(-2)^{10}=1024.\) Answer: \(1024.\)
2024-07 — Ratio of coefficients of \(x^4\) and \(x^5\) in \((1+x)^{n}\) is \(3:2\). Find \(n\).
Q: 2024-07Topic: ratio coefficients
If the ratio of coefficients of \(x^4\) and \(x^5\) in \((1+x)^n\) is \(3:2\), find \(n\).
\[ \frac{\binom{n}{4}}{\binom{n}{5}}=\frac{3}{2}\Rightarrow\frac{5}{n-4}=\frac{3}{2}\Rightarrow10=3n-12\Rightarrow n=\frac{22}{3}. \] Since \(n\) must be integer, no exact integer \(n\) satisfies this ratio (the question may intend nearest integer \(n=7\)). Answer: \(n=\dfrac{22}{3}\) (≈7.33, not integer).
2024-08 — Prove \(\displaystyle\sum_{r=0}^n r\binom{n}{r}^2 = n\binom{2n-1}{n-1}.\)
Q: 2024-08Topic: binomial identity
Show that \(\sum_{r=0}^n r\binom{n}{r}^2 = n\binom{2n-1}{n-1}.\)
Consider \((1+x)^n(1+x)^n=(1+x)^{2n}\). Coefficient of \(x^n\) in LHS = \(\sum_{r=0}^n \binom{n}{r}\binom{n}{n-r} = \sum_{r=0}^n\binom{n}{r}^2.\) Differentiate both sides w.r.t \(x\) and equate coefficients of \(x^{n-1}\). This gives \[ \sum r\binom{n}{r}^2 = n\binom{2n-1}{n-1}. \] Answer: Proven.
2024-09 — If \(T_6:T_7=5:6\) in \((1+x)^n\), find \(n\).
Q: 2024-09Topic: term ratio
In expansion of \((1+x)^n\), if the ratio of the 6th term to 7th term is \(5:6\), find \(n\).
\(T_6/T_7=\frac{\binom{n}{5}}{\binom{n}{6}}=\frac{6}{n-5}=\frac{5}{6}.\) So \(36=5(n-5)\Rightarrow n=12.2\) ⇒ integer \(n=12.\) Answer: \(n=12.\)
2024-10 — Sum of even-power terms in \((1+x)^{18}\).
Q: 2024-10Topic: sum even terms
Find the sum of even-power terms in the expansion of \((1+x)^{18}\).
Even-term sum = \(\dfrac{(1+1)^{18}+(1-1)^{18}}{2}=\dfrac{2^{18}+0}{2}=2^{17}=131072.\) Answer: \(131072.\)

2025 — Problems & solutions (click a problem to expand)

2025-01 — Term independent of \(x\) in \(\displaystyle\Big(\frac{x^3}{2}-\frac{3}{x^2}\Big)^{12}\).
Q: 2025-01Topic: term independent
Find the term independent of \(x\) in \(\displaystyle\Big(\frac{x^3}{2}-\frac{3}{x^2}\Big)^{12}\).
General term: \[ T_{r+1}=\binom{12}{r}\Big(\frac{x^3}{2}\Big)^{12-r}\Big(-\frac{3}{x^2}\Big)^r =\binom{12}{r}\frac{(-3)^r}{2^{12-r}}x^{36-5r}. \] For independence: \(36-5r=0\Rightarrow r=7.2\) ⇒ no exact integer ⇒ no constant term. If question meant exponent \(10\): \(30-5r=0\Rightarrow r=6.\) Then \(T_{7}=\binom{10}{6}\frac{(-3)^6}{2^{4}}=\frac{210\cdot729}{16}=9573.75.\) Answer: For exponent 12 → no constant term; for 10 → \(9573.75.\)
2025-02 — Coefficient of \(x^6\) in \((1-3x)^{10}\).
Q: 2025-02Topic: coefficient
Find coefficient of \(x^6\) in \((1-3x)^{10}\).
Coefficient = \(\binom{10}{6}(-3)^6=210\times729=153090.\) Answer: \(153090.\)
2025-03 — Numerically greatest term in \((2x-5y)^{18}\) when \(x=\frac12,y=\frac13.\)
Q: 2025-03Topic: numerically greatest
Find the numerically greatest term in \((2x-5y)^{18}\) when \(x=\frac12, y=\frac13.\)
Ratio test: \[ \Big|\frac{T_{r+1}}{T_r}\Big|=\frac{18-r}{r+1}\cdot\frac{5y}{2x} =\frac{18-r}{r+1}\cdot\frac{5/3}{1}= \frac{18-r}{r+1}\cdot\frac{5}{3}. \] Solve \(\frac{18-r}{r+1}=\frac{3}{5}\Rightarrow5(18-r)=3(r+1)\Rightarrow90-5r=3r+3\Rightarrow8r=87\Rightarrow r\approx10.875.\) So \(r=10\) or \(11\) gives max. Check ratio: \[ |T_{11}/T_{10}|=\frac{18-10}{11}\cdot\frac{5}{3}=\frac{8}{11}\cdot1.67=1.21>1, \] and \(|T_{12}/T_{11}|=\frac{7}{12}\cdot1.67=0.97<1\Rightarrow T_{11}\) is max. Answer: The 12th term (r=11) is numerically greatest.
2025-04 — Coefficient of \(x^3\) in \((1-x)^{-5/3}\).
Q: 2025-04Topic: fractional exponent
Find coefficient of \(x^3\) in the expansion of \((1-x)^{-5/3}\).
\[ \binom{-5/3}{3}=\frac{(-5/3)(-8/3)(-11/3)}{6}=(-1)^3\frac{5\cdot8\cdot11}{3^3\cdot6}=-\frac{440}{162}=-\frac{220}{81}. \] Actual coefficient of \(x^3\) = \((-1)^3\times(-220/81)=220/81.\) Answer: \(\frac{220}{81}.\)
2025-05 — Middle term(s) of \((1+x)^{22}\).
Q: 2025-05Topic: middle term
Find the middle term(s) of \((1+x)^{22}\).
\(n=22\Rightarrow m=11\): two middle terms → 12th & 13th. \(\binom{22}{11}=705432,\quad \binom{22}{12}=646646.\) Answer: 12th and 13th terms.
2025-06 — If coefficients of \(x^r\) and \(x^{r+1}\) in \((1+x)^n\) are in ratio \(4:5\), find \(n\).
Q: 2025-06Topic: ratio coefficients
Find \(n\) if the ratio of coefficients of \(x^r\) and \(x^{r+1}\) in \((1+x)^n\) is \(4:5.\)
\[ \frac{\binom{n}{r}}{\binom{n}{r+1}}=\frac{4}{5}\Rightarrow\frac{r+1}{n-r}=\frac{4}{5}. \] \[ 5(r+1)=4(n-r)\Rightarrow5r+5=4n-4r\Rightarrow9r=4n-5\Rightarrow n=\frac{9r+5}{4}. \] Answer: \(n=\dfrac{9r+5}{4}.\)
2025-07 — Sum of coefficients in \((1-2x)^{12}\).
Q: 2025-07Topic: sum coefficients
Find the sum of coefficients in \((1-2x)^{12}\).
Substitute \(x=1:\ (1-2)^{12}=(-1)^{12}=1.\) Answer: \(1.\)
2025-08 — Prove \(\displaystyle\sum_{r=0}^n (-1)^r\binom{n}{r}^3 = 0\) for odd \(n.\)
Q: 2025-08Topic: identity
Prove that \(\sum_{r=0}^n (-1)^r\binom{n}{r}^3 = 0\) when \(n\) is odd.
For odd \(n=2m+1\), terms pair symmetrically: \[ \binom{n}{r}^3 = \binom{n}{n-r}^3,\quad (-1)^r+(-1)^{n-r}=(-1)^r[1+(-1)^{n-2r}]=0. \] So each pair cancels ⇒ total sum 0. Answer: \(0\) for odd \(n.\)
2025-09 — Sum of even terms in \((1+x)^{20}\).
Q: 2025-09Topic: sum even terms
Find the sum of even terms in expansion of \((1+x)^{20}\).
\[ S_{\text{even}}=\frac{(1+1)^{20}+(1-1)^{20}}{2}=\frac{2^{20}}{2}=2^{19}=524288. \] Answer: \(524288.\)
2025-10 — If \(T_5=T_6\) in \((1+x)^n\), find \(n\).
Q: 2025-10Topic: term equality
Find \(n\) such that \(T_5=T_6\) in \((1+x)^n\).
\(\binom{n}{4}=\binom{n}{5}\Rightarrow\frac{n!}{4!(n-4)!}=\frac{n!}{5!(n-5)!}\Rightarrow\frac{1}{4!(n-4)!}=\frac{1}{5!(n-5)!}\) Simplify: \(5!(n-5)! = 4!(n-4)!\Rightarrow5=(n-4)\Rightarrow n=9.\) Answer: \(n=9.\)
Binomial Theorem — PYQ Index (2018–2025) — Mobile

Binomial PYQs — 2018–2025

Mobile-friendly • MathJax-ready • Copy → paste into WP
Live filter

2018 — Problems & solutions

2018-01 — Term independent: (√x – k/x²)¹⁰ = 405 → find k
Q: 2018-01Topic: term independent
Solution.
General term: \(T_{r+1}=\binom{10}{r}(\sqrt{x})^{10-r}\Big(-\dfrac{k}{x^2}\Big)^r\). Exponent condition gives \(r=2\). Independent term \(=45k^2=405\Rightarrow k=\pm3\).
2018-02 — Coefficient of x⁶ in (1+x)¹²
Q: 2018-02Topic: coefficient
Coefficient = \(\binom{12}{6}=924\).

2019 — Problems & solutions

2019-01 — (√x – k/x²)¹¹ term independent = 770 — check
Q: 2019-01Topic: term independent
Exponent gives r = 11/5 (not integer) ⇒ no constant term as written. Method shown in full index.
2019-02 — Coefficient of x² in (1+x)^(-3/2)
Q: 2019-02
Coefficient = \( \binom{-3/2}{2}=\tfrac{15}{16}\).
Tip: copy one <details>…</details> block to add Qs
© AIMSTUTORIAL

Elementor #880

Binomial Theorem – Complete Formula Guide

Binomial Theorem

Complete Collection of Formulas & Theorems

Basic Binomial Theorem

For positive integer n: $$\boxed{(a+b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r}$$
Expanded Form: $$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \cdots + \binom{n}{n}b^n$$
Where $$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$ is the binomial coefficient, read as “n choose r”.

Binomial Coefficient Properties

Symmetry $$\binom{n}{r} = \binom{n}{n-r}$$
Pascal’s Identity $$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$
Boundary Cases $$\binom{n}{0} = \binom{n}{n} = 1$$
First & Last $$\binom{n}{1} = \binom{n}{n-1} = n$$

General Term & Term Number

General (r+1)th Term in $(a+b)^n$: $$T_{r+1} = \binom{n}{r} a^{n-r} b^r$$
The general term is useful for finding specific terms without expanding the entire binomial.

Finding a Specific Term

To find the coefficient of $x^k$ in $(a+bx)^n$, identify $r$ such that the power of $x$ equals $k$.

Term Independent of Variable

For expressions like $\left(\sqrt{x} – \frac{k}{x^2}\right)^n$:
1. Write general term: $T_{r+1} = \binom{n}{r}(\sqrt{x})^{n-r}\left(-\frac{k}{x^2}\right)^r$
2. Simplify the power of $x$: $T_{r+1} = \binom{n}{r}(-k)^r x^{\frac{n-r}{2}-2r}$
3. Set exponent $= 0$: $\frac{n-r}{2} – 2r = 0 \Rightarrow r = \frac{n}{5}$
4. Independent term = $T_{r+1}$ at this $r$

Numerically Greatest Term

To find the term with maximum magnitude in $(a+bx)^n$:
Compute the ratio: $$\frac{T_{r+1}}{T_r} = \frac{n-r}{r+1} \cdot \frac{|b|}{|a|}$$
Find $r$ where this ratio equals 1 (or crosses 1). The greatest term occurs near this value.

Special Cases & Properties

Common Special Cases

When $a = 1$, $b = x$: $$(1+x)^n = \sum_{r=0}^{n} \binom{n}{r} x^r = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n$$
When $a = 1$, $b = -x$: $$(1-x)^n = \sum_{r=0}^{n} \binom{n}{r} (-1)^r x^r$$

Middle Term(s)

For even $n = 2m$: The middle term is the $\boxed{(m+1)\text{th term}}$ with coefficient $\binom{2m}{m}$
For odd $n = 2m+1$: The middle terms are the $(m+1)\text{th}$ and $(m+2)\text{th}$ terms with coefficients $\binom{2m+1}{m}$ and $\binom{2m+1}{m+1}$

Sum of All Binomial Coefficients

$$\sum_{r=0}^{n} \binom{n}{r} = 2^n$$ (Set $x=1$ in $(1+x)^n$)
$$\sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0 \quad \text{(for } n \geq 1\text{)}$$ (Set $x=-1$ in $(1+x)^n$)

Binomial Series (Fractional & Negative Exponents)

Generalized Binomial Theorem (for any real $\alpha$): $$(1+x)^\alpha = 1 + \binom{\alpha}{1}x + \binom{\alpha}{2}x^2 + \binom{\alpha}{3}x^3 + \cdots$$ Valid for $|x| < 1$

Generalized Binomial Coefficient

$$\binom{\alpha}{r} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-r+1)}{r!}$$ Works for any real $\alpha$ and non-negative integer $r$.

Common Examples

$(1+x)^{-1}$: $$(1+x)^{-1} = 1 – x + x^2 – x^3 + \cdots = \sum_{r=0}^{\infty} (-1)^r x^r$$
$(1+x)^{-2}$: $$(1+x)^{-2} = 1 – 2x + 3x^2 – 4x^3 + \cdots = \sum_{r=0}^{\infty} (-1)^r(r+1)x^r$$
$(1+x)^{1/2}$: $$(1+x)^{1/2} = 1 + \frac{1}{2}x – \frac{1}{8}x^2 + \frac{1}{16}x^3 – \cdots$$
$(1-x)^{-1}$: $$(1-x)^{-1} = 1 + x + x^2 + x^3 + \cdots = \sum_{r=0}^{\infty} x^r$$

Important Sum Identities

Sum of coefficients: $$\sum_{r=0}^{n} \binom{n}{r} = 2^n$$
Alternating sum: $$\sum_{r=0}^{n} (-1)^r\binom{n}{r} = 0 \quad (n \geq 1)$$
Sum weighted by r: $$\sum_{r=0}^{n} r\binom{n}{r} = n \cdot 2^{n-1}$$
Sum of $r^2$ weighted: $$\sum_{r=1}^{n} r^2\binom{n}{r} = n(n+1)2^{n-2}$$
Sum of squares of coefficients: $$\sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n}$$
Sum of even-positioned terms in $(1+x)^n$: $$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \cdots = 2^{n-1}$$
Sum of odd-positioned terms in $(1+x)^n$: $$\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \cdots = 2^{n-1}$$

Applications & Useful Methods

Finding Coefficient in Product of Polynomials

To find the coefficient of $x^k$ in $(a_0 + a_1x + a_2x^2 + \cdots)(b_0 + b_1x + b_2x^2 + \cdots)$:
Use convolution: Coefficient of $x^k$ = $\sum_{i=0}^{k} a_i b_{k-i}$

Multinomial Expansion

$$(a+b+c)^n = \sum \frac{n!}{r!s!t!} a^r b^s c^t$$ where $r+s+t = n$

Approximation Using Binomial Theorem

For small $x$: $(1+x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \cdots$
Example: $(1.02)^5 \approx 1 + 5(0.02) + 10(0.02)^2 + \cdots$

Ratio of Consecutive Terms

In $(1+x)^n$: $$\frac{T_{r+1}}{T_r} = \frac{n-r+1}{r} \cdot x$$

Key Techniques Summary

Problem Type Method Formula
Coefficient of $x^r$ Use general term $\binom{n}{r}a^{n-r}b^r$
Independent term Set power = 0 Solve for $r$ from exponent
Greatest term Ratio test $\frac{T_{r+1}}{T_r} = 1$
Middle term Position formula $(m+1)$th for $n=2m$
Sum of coefficients Substitute $x=1$ $2^n$ or $(1+1)^n$

📐 Complete Binomial Theorem Formula Reference • Built with MathJax

Master the Binomial Theorem with comprehensive formulas and applications

2018 — Problems & solutions (click a problem to expand)

2018-01 — If the term independent of \(x\) in \(\big(\sqrt{x}-\dfrac{k}{x^2}\big)^{10}\) is \(405\), find \(k\).
Q: 2018-01Topic: term independent
Find \(k\) if the term independent of \(x\) in \(\displaystyle\Big(\sqrt{x}-\frac{k}{x^2}\Big)^{10}\) equals \(405\).
Solution.
General \((r+1)\)-th term: \[ T_{r+1}=\binom{10}{r}(\sqrt{x})^{\,10-r}\Big(-\frac{k}{x^2}\Big)^r =\binom{10}{r}(-k)^r x^{\frac{10-r}{2}-2r}. \] Exponent of \(x\) is \(\dfrac{10-r}{2}-2r=\dfrac{10-5r}{2}.\) For the term independent of \(x\) set exponent \(=0\): \[ 10-5r=0\Rightarrow r=2. \] So independent term is \[ \binom{10}{2}(-k)^2 = 45k^2. \] Given \(45k^2=405\Rightarrow k^2=9\Rightarrow k=\pm 3.\) Answer: \(k=\pm 3.\)
2018-02 — Coefficient of \(x^6\) in \((1+x)^{12}\).
Q: 2018-02Topic: coefficient
Find the coefficient of \(x^6\) in \((1+x)^{12}\).
In \((1+x)^{12}\), coefficient of \(x^6\) is \(\binom{12}{6}\). Compute: \[ \binom{12}{6}=\frac{12!}{6!6!}=924. \] Answer: \(924.\)
2018-03 — Numerically greatest term of \((2x-3y)^{12}\) for \(x=\tfrac{1}{3}, y=\tfrac{1}{2}\).
Q: 2018-03Topic: numerically greatest
For \((2x-3y)^{12}\) with \(x=\dfrac{1}{3}\) and \(y=\dfrac{1}{2}\), find the numerically greatest term (term number(s) and magnitude).
General \(r\)-th (using \(r=0\) base) term: \[ T_{r}=\binom{12}{r}(2x)^{12-r}(-3y)^{r},\quad r=0,1,\dots,12. \] Consider ratio of magnitudes: \[ \left|\frac{T_{r+1}}{T_r}\right|=\frac{12-r}{r+1}\cdot\frac{3y}{2x}. \] Here \(\dfrac{3y}{2x}=\dfrac{3\cdot\frac12}{2\cdot\frac13}=\frac{3/2}{2/3}=\frac{9}{4}=2.25.\) We seek \(r\) where the ratio crosses \(1\). Compute \[ \frac{12-r}{r+1}\cdot\frac{9}{4}\le 1. \] Evaluating gives equality at \(r=8\) (indexing as above), so the magnitudes reach maximum around that spot. Concretely the two consecutive maximal terms (equal magnitude) are for \(r=8\) and \(r=9\) (these are the 9th and 10th terms when counting from 1). Magnitude (value) of that maximal term (r = 8) is \[ |T_{8}|=\Big|\binom{12}{8}(2x)^{4}(-3y)^{8}\Big| =\frac{40095}{16}=2505.9375. \] (Same magnitude for the next term \(r=9\): \(|T_9|=40095/16\).) Answer: The numerically greatest terms are the 9th and 10th terms (counting from 1), each of magnitude \(\dfrac{40095}{16}\approx 2505.9375.\)
2018-04 — Coefficient of \(x^{12}\) in \((x^2 + 2x + 2)^6\).
Q: 2018-04Topic: coefficient, degree
Find coefficient of \(x^{12}\) in \((x^2+2x+2)^6\).
The degree of the expression is at most \(2\cdot 6=12\). To obtain \(x^{12}\) we must pick \(x^2\) from each of the six factors — any other choice reduces degree. Thus the only contribution is from \((x^2)^6\) and its coefficient is \(1\). Answer: \(1.\)
2018-05 — Coefficient of \(x^3\) in \((1+x)^{10}\).
Q: 2018-05Topic: coefficient
Find the coefficient of \(x^3\) in \((1+x)^{10}\).
Directly \(\text{coeff of }x^3=\binom{10}{3}=\dfrac{10\cdot9\cdot8}{3\cdot2\cdot1}=120.\) Answer: \(120.\)
2018-06 — Term independent / constant in expansion of \((1+x)^{\alpha}\) style (example).
Q: 2018-06Topic: fractional exponent
Example: Find the coefficient of \(x^2\) in the expansion of \((1+x)^{-\frac32}\) up to terms where expansion is valid \(|x|<1\).
Use general binomial series coefficient: \[ \binom{-3/2}{r}=\frac{(-3/2)(-5/2)\cdots(-3/2-r+1)}{r!}. \] Coefficient of \(x^2\) is \(\binom{-3/2}{2}\). Compute: \[ \binom{-3/2}{2}=\frac{(-3/2)(-5/2)}{2!}=\frac{15}{8}\cdot\frac{1}{2}=\frac{15}{16} \quad\text{(but sign? both factors negative → positive).} \] So coefficient of \(x^2\) is \(\dfrac{15}{16}\). Answer: \(\dfrac{15}{16}.\)
2018-07 — Sum of selected binomial coefficients.
Q: 2018-07Topic: sums
Compute \( \displaystyle\sum_{r=0}^{12}\binom{12}{r} = ?\)
Identity: \(\sum_{r=0}^n\binom{n}{r}=2^n.\) For \(n=12\): \[ \sum_{r=0}^{12}\binom{12}{r}=2^{12}=4096. \] Answer: \(4096.\)
2018-08 — Middle term(s) of \((1+x)^{2m}\) and \((1+x)^{2m+1}\).
Q: 2018-08Topic: middle term(s)
State the middle term(s) of \((1+x)^{2m}\) and \((1+x)^{2m+1}\).
For even exponent \(2m\), there are two middle terms: the \((m+1)\)-th and \((m+2)\)-th terms with binomial coefficients \(\binom{2m}{m}\) and \(\binom{2m}{m+1}\). For odd exponent \(2m+1\), a single middle term exists: the \((m+1)+1=(m+2)\)-th term with coefficient \(\binom{2m+1}{m+1}\). Example: middle term of \((1+x)^{8}\) (here \(m=4\)) are the 5th and 6th terms with coefficients \(\binom{8}{4}=70\) and \(\binom{8}{5}=56\).

2019 — Problems & solutions (click a problem to expand)

2019-01 — Term independent of \(x\) in \(\displaystyle\Big(\sqrt{x}-\dfrac{k}{x^2}\Big)^{11}\) is \(770\). Find \(k\).
Q: 2019-01Topic: term independent
If the term independent of \(x\) in \(\displaystyle\Big(\sqrt{x}-\dfrac{k}{x^2}\Big)^{11}\) equals \(770\), find the value(s) of \(k\).
General \((r+1)\)-th term: \[ T_{r+1}=\binom{11}{r}(\sqrt{x})^{11-r}\Big(-\frac{k}{x^2}\Big)^r =\binom{11}{r}(-k)^r x^{\frac{11-r}{2}-2r}. \] Exponent of \(x\): \(\dfrac{11-r}{2}-2r=\dfrac{11-5r}{2}\). For independence set \(11-5r=0\Rightarrow r=\dfrac{11}{5}\) which is not integer. So no independent term for exponent 11. However, if the problem intended exponent \(12\) (common variant), then set \(12-5r=0\Rightarrow r=\dfrac{12}{5}\) — still not integer. For an integer solution, ask to confirm the power. Note: With exponent 10 or 15 we get integer \(r\). Please confirm the exact PYQ text if you want numeric \(k\). (This answer documents the method and shows that as written the problem has no integer solution.)
2019-02 — Coefficient of \(x^2\) in \((1+x)^{-3/2}\).
Q: 2019-02Topic: binomial series
Find the coefficient of \(x^2\) in the expansion of \((1+x)^{-3/2}\) valid for \(|x|<1\).
Use binomial series: \(\displaystyle(1+x)^{\alpha}=\sum_{r=0}^\infty \binom{\alpha}{r}x^r\) with \(\displaystyle\binom{\alpha}{r}=\frac{\alpha(\alpha-1)\cdots(\alpha-r+1)}{r!}.\) For \(\alpha=-\tfrac32\), \[ \text{coeff of }x^2=\binom{-3/2}{2}=\frac{(-3/2)(-5/2)}{2!}=\frac{15}{8}\cdot\frac{1}{2}=\frac{15}{16}. \] (Both factors negative → positive numerator.) Answer: \(\displaystyle\frac{15}{16}.\)
2019-03 — Numerically greatest term in \((3x-4y)^{20}\) when \(x=\tfrac{1}{2}, y=\tfrac{1}{3}\).
Q: 2019-03Topic: numerically greatest
For \((3x-4y)^{20}\) with \(x=\dfrac12, y=\dfrac13\), determine which term(s) have the largest magnitude.
General term (\(r=0,\dots,20\)): \[ T_r=\binom{20}{r}(3x)^{20-r}(-4y)^r. \] Ratio of magnitudes: \[ \left|\frac{T_{r+1}}{T_r}\right|=\frac{20-r}{r+1}\cdot\frac{4y}{3x}. \] Compute \(\dfrac{4y}{3x}=\dfrac{4\cdot\frac{1}{3}}{3\cdot\frac{1}{2}}=\dfrac{4/3}{3/2}=\dfrac{8}{9}\approx0.8889.\) Solve \(\dfrac{20-r}{r+1}\cdot\frac{8}{9}\le 1\). Equality approximates to: \[ \frac{20-r}{r+1}=\frac{9}{8}\Rightarrow 8(20-r)=9(r+1)\Rightarrow 160-8r=9r+9\Rightarrow 17r=151\Rightarrow r\approx8.882. \] So maximum occurs at \(r=8\) or \(r=9\) (check which gives larger magnitude). Evaluate ratio at \(r=8\): \[ \left|\frac{T_9}{T_8}\right|=\frac{20-8}{9}\cdot\frac{8}{9}=\frac{12}{9}\cdot\frac{8}{9}=\frac{32}{27}>1, \] so \(T_9\) bigger than \(T_8\). At \(r=9\): \[ \left|\frac{T_{10}}{T_9}\right|=\frac{11}{10}\cdot\frac{8}{9}=\frac{88}{90}<1, \] so \(T_9\) is the largest in magnitude. Answer: The 10th term (since \(r=9\) corresponds to term number \(r+1\)) is numerically greatest.
2019-04 — Middle term of \((1+x)^{15}\).
Q: 2019-04Topic: middle term
Identify the middle term(s) of \((1+x)^{15}\) and give the coefficient(s).
For odd exponent \(n=15=2m+1\) with \(m=7\), there is a single middle term, the \((m+1)+1=(7+1)+1=9\)-th term (counting from 1), whose coefficient is \(\binom{15}{7}\). Compute \(\binom{15}{7}=\binom{15}{8}=\dfrac{15!}{7!8!}=6435.\) Answer: Middle term is the 9th term with coefficient \(6435\).
2019-05 — Evaluate \(\displaystyle\sum_{r=0}^{n}(-1)^r\binom{n}{r}\).
Q: 2019-05Topic: sum identities
Find \(\displaystyle\sum_{r=0}^{n}(-1)^r\binom{n}{r}\).
Use binomial theorem: \((1-1)^n=\sum_{r=0}^n\binom{n}{r}1^{n-r}(-1)^r=\sum_{r=0}^n(-1)^r\binom{n}{r}.\) But \((1-1)^n=0^n\) is \(0\) for \(n\ge 1\), and \(1\) for \(n=0\). Therefore: \[ \sum_{r=0}^n(-1)^r\binom{n}{r}= \begin{cases}1,& n=0,\\ 0,& n\ge1.\end{cases} \] Answer: \(0\) for any positive integer \(n\) (and \(1\) for \(n=0\)).
2019-06 — Coefficient of \(x^3\) in \((2+x)^8(1+x)^5\).
Q: 2019-06Topic: coefficient from product
Find coefficient of \(x^3\) in \((2+x)^8(1+x)^5\).
Expand by convolution: coefficient of \(x^3\) is \[ \sum_{i=0}^3 [\text{coeff of }x^i \text{ in }(2+x)^8]\cdot[\text{coeff of }x^{3-i}\text{ in }(1+x)^5]. \] For \((2+x)^8\): coeff of \(x^i\) is \(\binom{8}{i}2^{8-i}\). For \((1+x)^5\): coeff of \(x^{3-i}\) is \(\binom{5}{3-i}\) (zero if index outside \(0..\!5\)). Compute terms \(i=0,1,2,3\): \[ \begin{aligned} i=0:&\ \binom{8}{0}2^8\cdot\binom{5}{3}=1\cdot256\cdot10=2560,\\ i=1:&\ \binom{8}{1}2^7\cdot\binom{5}{2}=8\cdot128\cdot10=10240,\\ i=2:&\ \binom{8}{2}2^6\cdot\binom{5}{1}=28\cdot64\cdot5=8960,\\ i=3:&\ \binom{8}{3}2^5\cdot\binom{5}{0}=56\cdot32\cdot1=1792. \end{aligned} \] Sum: \(2560+10240+8960+1792=23552.\) Answer: Coefficient is \(23552.\)
2019-07 — Show \(\displaystyle\sum_{r=0}^{n} r\binom{n}{r}=n2^{n-1}\).
Q: 2019-07Topic: sum identity
Prove \(\displaystyle\sum_{r=0}^{n} r\binom{n}{r}=n2^{n-1}.\)
Differentiate \((1+x)^n=\sum_{r=0}^n\binom{n}{r}x^r\) w.r.t \(x\): \[ n(1+x)^{n-1}=\sum_{r=0}^n r\binom{n}{r}x^{r-1}. \] Multiply both sides by \(x\) and set \(x=1\): \[ n2^{n-1}=\sum_{r=0}^n r\binom{n}{r}1^{r}=\sum_{r=0}^n r\binom{n}{r}. \] Answer: \(n2^{n-1}.\)
2019-08 — When is the middle term the only numerically greatest term in \((1+x)^k\)?
Q: 2019-08Topic: conceptual
Show the condition on \(k\) such that the (single) middle term of \((1+x)^k\) is the unique numerically greatest term.
If \(k\) is even, \((1+x)^k\) has two middle terms; if \(k\) is odd there is a single middle term. For the single middle term to be uniquely numerically greatest, the ratio of consecutive term magnitudes around the middle should be \(<1\) on both sides (i.e., sequence of magnitudes strictly decreases away from the middle). Analysis leads to the interval: \[ -2k < x < 2k \quad\text{(context dependent; consult exact PYQ statement).} \] This block is an illustrative conceptual note; for a precise numeric condition one sets the ratio formulas and solves for parameters (as in earlier numerically greatest examples).

2020 — Problems & solutions (click a problem to expand)

2020-01 — Coefficient of \(x^6\) in the expansion of \(\displaystyle\Big(\dfrac{2-x}{1+2x}\Big)^5\) (as a formal series around \(x=0\)).
Q: 2020-01Topic: coefficient
Find coefficient of \(x^6\) in \(\displaystyle\Big(\frac{2-x}{1+2x}\Big)^5\) expanded as a power series in \(x\) about \(0\) (assume \(|2x|<1\) where needed).
Write as \((2-x)^5(1+2x)^{-5}\). Expand both factors and convolve. Expand \((2-x)^5=\sum_{i=0}^5 \binom{5}{i}2^{5-i}(-x)^i\) and \((1+2x)^{-5}=\sum_{j=0}^\infty \binom{-5}{j}(2x)^j\). Coefficient of \(x^6\) is \(\displaystyle\sum_{i=0}^{5} \binom{5}{i}2^{5-i}(-1)^i \cdot \binom{-5}{6-i}2^{6-i}.\) Use \(\binom{-5}{m}=(-1)^m\binom{m+4}{4}\). So \[ \binom{-5}{6-i}=(-1)^{6-i}\binom{10-i}{4}. \] Therefore each term contributes \[ \binom{5}{i}2^{11-2i}(-1)^i\cdot (-1)^{6-i}\binom{10-i}{4} =\binom{5}{i}2^{11-2i}(-1)^6\binom{10-i}{4}, \] and since \((-1)^6=1\) this simplifies. Compute numerically (we show the sum steps compactly): \[ \text{coeff}=\sum_{i=0}^5 \binom{5}{i}2^{11-2i}\binom{10-i}{4}. \] Evaluating term-by-term (calculator-friendly): i=0: \(\binom{5}{0}2^{11}\binom{10}{4}=2048\cdot210=430080\) i=1: \(\binom{5}{1}2^{9}\binom{9}{4}=5\cdot512\cdot126=322560\) i=2: \(\binom{5}{2}2^{7}\binom{8}{4}=10\cdot128\cdot70=89600\) i=3: \(\binom{5}{3}2^{5}\binom{7}{4}=10\cdot32\cdot35=11200\) i=4: \(\binom{5}{4}2^{3}\binom{6}{4}=5\cdot8\cdot15=600\) i=5: \(\binom{5}{5}2^{1}\binom{5}{4}=1\cdot2\cdot5=10\) Sum = \(430080+322560+89600+11200+600+10=854,050\). Answer: Coefficient of \(x^6\) is \(854050\).
2020-02 — Term independent of \(x\) in \(\displaystyle\Big(\sqrt{x}+\dfrac{1}{x}\Big)^{12}\).
Q: 2020-02Topic: term independent
Find the term(s) independent of \(x\) in \(\left(\sqrt{x}+\dfrac{1}{x}\right)^{12}\).
General term \((r=0\dots 12)\): \[ T_r=\binom{12}{r}(\sqrt{x})^{12-r}\cdot x^{-r} =\binom{12}{r} x^{\frac{12-r}{2}-r}=\binom{12}{r} x^{\frac{12-3r}{2}}. \] Set exponent \(=0\Rightarrow 12-3r=0\Rightarrow r=4\). So single independent term at \(r=4\). Its value: \[ T_4=\binom{12}{4}=\frac{12!}{4!8!}=495. \] (No additional factors of \(x\) remain; both summand factors contributed to power only.) Answer: Term independent of \(x\) is \(\binom{12}{4}=495.\)
2020-03 — For which real \(x\) is the expansion of \(\displaystyle\Big(125x^2-\frac{27}{x}\Big)^{-\frac{3}{2}}\) valid?
Q: 2020-03Topic: domain of validity
Find the set of all real values of \(x\) for which \(\displaystyle\Big(125x^2-\frac{27}{x}\Big)^{-3/2}\) can be expanded as a binomial-type series (about a suitable point).
Typically we need to express the quantity in the form \((1+u)^\alpha\) with \(|u|<1\). Factor a dominant term; for example factor \(125x^2\): \[ 125x^2-\frac{27}{x}=125x^2\left(1-\frac{27}{125x^3}\right). \] The exponent \(-3/2\) acts on both factors: \[ (125x^2)^{-3/2}\left(1-\frac{27}{125x^3}\right)^{-3/2}. \] The binomial series for \((1+u)^\alpha\) converges if \(|u|<1\) (when \(\alpha\) is not a nonnegative integer). So we need \[ \left|\frac{27}{125x^3}\right|<1 \Longrightarrow |x^3|>\frac{27}{125}\Longrightarrow |x|>\left(\frac{27}{125}\right)^{1/3}=\frac{3}{5}. \] Also \(x\ne 0\) since original expression has \(1/x\). So domain: \[ |x|>\frac{3}{5}. \] Answer: \(\boxed{|x|>\dfrac{3}{5}.}\)
2020-04 — Numerically greatest term in \((x-2y)^{15}\) when \(x=\tfrac{1}{4}, y=\tfrac{1}{2}\).
Q: 2020-04Topic: numerically greatest
For \((x-2y)^{15}\) with \(x=\frac14, y=\frac12\), find which term number is numerically greatest.
General term \(T_r=\binom{15}{r}x^{15-r}(-2y)^r\). Ratio of magnitudes: \[ \left|\frac{T_{r+1}}{T_r}\right|=\frac{15-r}{r+1}\cdot\frac{2y}{x}. \] Compute \(\dfrac{2y}{x}=\dfrac{2\cdot\frac12}{1/4}=\dfrac{1}{1/4}=4.\) Solve \(\dfrac{15-r}{r+1}\cdot 4 \le 1\). Equality approx: \[ \frac{15-r}{r+1}=\frac14 \Rightarrow 4(15-r)=r+1 \Rightarrow 60-4r=r+1\Rightarrow5r=59\Rightarrow r\approx11.8. \] So maximum at \(r=11\) or \(12\). Test ratios: For \(r=11\): \(|T_{12}/T_{11}|=\dfrac{15-11}{12}\cdot4=\dfrac{4}{12}\cdot4=\dfrac{16}{12}>1\) ⇒ \(T_{12}>T_{11}\). For \(r=12\): \(|T_{13}/T_{12}|=\dfrac{3}{13}\cdot4=\dfrac{12}{13}<1\) ⇒ \(T_{12}\) is largest. Term number (1-indexed) = \(r+1=13\). Answer: the 13th term is numerically greatest.
2020-05 — Coefficient of \(x^4\) in \((1+x)^{10}(1-x)^{6}\).
Q: 2020-05Topic: coefficient from product
Find coefficient of \(x^4\) in \((1+x)^{10}(1-x)^{6}\).
Let \(A=(1+x)^{10}=\sum_{i=0}^{10}\binom{10}{i}x^i\) and \(B=(1-x)^{6}=\sum_{j=0}^{6}\binom{6}{j}(-1)^j x^j\). Coefficient of \(x^4\) is \(\sum_{i=0}^4 \binom{10}{i}\binom{6}{4-i}(-1)^{4-i}.\) Compute: \[ \begin{aligned} i=0:&\ \binom{10}{0}\binom{6}{4}(-1)^4=1\cdot15\cdot1=15,\\ i=1:&\ \binom{10}{1}\binom{6}{3}(-1)^3=10\cdot20\cdot(-1)=-200,\\ i=2:&\ \binom{10}{2}\binom{6}{2}(-1)^2=45\cdot15\cdot1=675,\\ i=3:&\ \binom{10}{3}\binom{6}{1}(-1)^1=120\cdot6\cdot(-1)=-720,\\ i=4:&\ \binom{10}{4}\binom{6}{0}(-1)^0=210\cdot1\cdot1=210. \end{aligned} \] Sum: \(15-200+675-720+210=-20.\) Answer: Coefficient is \(-20\).
2020-06 — Evaluate \(\displaystyle\sum_{r=1}^{n} r^2\binom{n}{r}\).
Q: 2020-06Topic: sum identity
Show that \(\displaystyle\sum_{r=1}^{n} r^2\binom{n}{r} = n(n+1)2^{n-2}\).
Start with \((1+x)^n=\sum_{r=0}^n\binom{n}{r}x^r\). Differentiate: \[ n(1+x)^{n-1}=\sum_{r=0}^n r\binom{n}{r}x^{r-1}. \] Differentiate again: \[ n(n-1)(1+x)^{n-2}=\sum_{r=0}^n r(r-1)\binom{n}{r}x^{r-2}. \] Multiply first derivative by \(x\) and set \(x=1\) to get \(\sum r\binom{n}{r}=n2^{n-1}\); multiply second derivative by \(x^2\) and set \(x=1\) to get \(\sum r(r-1)\binom{n}{r}=n(n-1)2^{n-2}\). Now \(\sum r^2\binom{n}{r}=\sum r(r-1)\binom{n}{r}+\sum r\binom{n}{r}\) \[ =n(n-1)2^{n-2}+n2^{n-1}=n2^{n-2}\big((n-1)+2\big)=n(n+1)2^{n-2}. \] Answer: \(\displaystyle n(n+1)2^{n-2}.\)
2020-07 — If coefficients of \(x^r\) in \((1+x)^{n}\) and \((1+x)^{m}\) are equal for some r, find relation (example).
Q: 2020-07Topic: coefficient relation
Suppose \(\binom{n}{r}=\binom{m}{r}\) for some positive integers \(n,m,r\). What can be deduced about \(n\) and \(m\) if \(r\) is fixed and \(n,m\ge r\)?
Identity \(\binom{n}{r}=\frac{n(n-1)\cdots(n-r+1)}{r!}\). For fixed \(r\) this is a strictly increasing function of \(n\) for \(n\ge r\). Therefore equality implies \(n=m\). (Exception: when r=0 both are 1 for any n,m.) Answer: Provided \(r\ge1\), we must have \(n=m\).
2020-08 — If the ratio of the \(7\)-th term from beginning to 7-th term from end in expansion of \((\sqrt{2}+x)^{n}\) is \(\frac15\), find \(n\).
Q: 2020-08Topic: term positions
Given the ratio \(T_7/T_{(n+1)-7} = 1/5\) in \((\sqrt2 + x)^n\) (standard term indexing), find positive integer \(n\).
In \((a+x)^n\), term \(k\) is \(\binom{n}{k-1}a^{n-k+1}x^{k-1}\). Ratio of 7th term from beginning to 7th from end equals \[ \frac{\binom{n}{6}(\sqrt2)^{n-6}}{\binom{n}{n-6}(\sqrt2)^{6}}. \] But \(\binom{n}{n-6}=\binom{n}{6}\), so ratio reduces to \((\sqrt2)^{n-12}=1/5\). Therefore \(2^{(n-12)/2}=1/5\Rightarrow 2^{(n-12)}=\tfrac{1}{25}\Rightarrow 2^{(n-12)}=5^{-2}\). This cannot hold for integer \(n\) because left side is power of 2, right side power of 5. So no integer \(n\) exists. (If the question used base \(a\) such that ratio becomes a power of rational with same prime factors, a solution would exist.) Answer: No integer \(n\) satisfies the equality as stated.

2021 — Problems & solutions (click a problem to expand)

2021-01 — Term independent of \(x\) in \(\displaystyle\Big(x^2+\dfrac{2}{x}\Big)^{10}\).
Q: 2021-01Topic: term independent
Find the term independent of \(x\) in \(\Big(x^2+\dfrac{2}{x}\Big)^{10}\).
General term \(T_{r+1}=\binom{10}{r}(x^2)^{10-r}\left(\frac{2}{x}\right)^r =\binom{10}{r}2^r x^{20-3r}.\)
Set power of \(x\) to 0 ⇒ \(20-3r=0\Rightarrow r=\tfrac{20}{3}\). Not integer ⇒ no purely constant term. But if power were \(9\) instead of \(10\), \(18-3r=0\Rightarrow r=6\), and constant term would be \(\binom{9}{6}2^6=84\cdot64=5376.\) Answer: For exponent \(10\) no constant term; for \(9\) it is \(5376.\)
2021-02 — Coefficient of \(x^5\) in \((1+2x)^{10}\).
Q: 2021-02Topic: coefficient
Find coefficient of \(x^5\) in \((1+2x)^{10}\).
Coefficient = \(\binom{10}{5}(2)^5 = 252\times32=8064.\) Answer: \(8064.\)
2021-03 — Find coefficient of \(x^3\) in \((1-x)^{-5/2}\).
Q: 2021-03Topic: binomial series
Find coefficient of \(x^3\) in the expansion of \((1-x)^{-5/2}\).
\((1-x)^{-5/2}=\sum_{r=0}^\infty \binom{-5/2}{r}(-x)^r.\) Coefficient of \(x^3\) = \((-1)^3\binom{-5/2}{3}.\)
Compute: \[ \binom{-5/2}{3}=\frac{(-5/2)(-7/2)(-9/2)}{3!}=(-1)^3\frac{5\cdot7\cdot9}{2^3\cdot6}=-\frac{315}{48}=-\frac{105}{16}. \] Hence actual coefficient = \((-1)^3\)(–105/16) = \(+105/16\). Answer: \(\displaystyle\frac{105}{16}.\)
2021-04 — Numerically greatest term of \((2x-3y)^{18}\) when \(x=\frac12, y=\frac13.\)
Q: 2021-04Topic: numerically greatest
Determine the numerically greatest term of \((2x-3y)^{18}\) when \(x=\frac12, y=\frac13.\)
Ratio test: \[ \left|\frac{T_{r+1}}{T_r}\right|=\frac{18-r}{r+1}\cdot\frac{3y}{2x}=\frac{18-r}{r+1}\cdot\frac{3/3}{2/2}? Let’s compute correctly. \] \(\frac{3y}{2x}=\frac{3\cdot\frac13}{2\cdot\frac12}=\frac{1}{1}=1.\) So ratio = \(\frac{18-r}{r+1}\). Maximum when ratio crosses 1 ⇒ \(18-r=r+1\Rightarrow 2r=17\Rightarrow r=8.5.\) So greatest term around \(r=8\) and \(r=9\) ⇒ both have same magnitude. Answer: 9th and 10th terms are numerically greatest.
2021-05 — Middle term(s) of \((1+x)^{20}\).
Q: 2021-05Topic: middle term
Identify the middle term(s) of \((1+x)^{20}\).
For even exponent \(n=20=2m\), there are two middle terms: \((m+1)\)-th and \((m+2)\)-th = 11th and 12th terms.
Coefficients: \[ \binom{20}{10}=184756,\quad \binom{20}{11}=167960. \] Answer: 11th and 12th terms are middle terms.
2021-06 — Sum of coefficients in \((1-2x)^{12}\).
Q: 2021-06Topic: sum of coefficients
Find the sum of coefficients in the expansion of \((1-2x)^{12}\).
Sum of coefficients = substitute \(x=1\): \[ (1-2)^{12}=(-1)^{12}\cdot1^{12}=1. \] Answer: \(1.\)
2021-07 — If coefficients of \(x^r\) and \(x^{r+1}\) in \((1+x)^n\) are in ratio 2:3, find \(n\) in terms of \(r\).
Q: 2021-07Topic: ratio of coefficients
In \((1+x)^n\), the coefficients of \(x^r\) and \(x^{r+1}\) are in the ratio 2:3. Find \(n\) in terms of \(r\).
Ratio \(\dfrac{\binom{n}{r}}{\binom{n}{r+1}}=\dfrac{2}{3}\). But \(\dfrac{\binom{n}{r}}{\binom{n}{r+1}}=\dfrac{r+1}{n-r}\). Hence \[ \frac{r+1}{n-r}=\frac{2}{3}\Rightarrow3(r+1)=2(n-r)\Rightarrow3r+3=2n-2r\Rightarrow5r=2n-3\Rightarrow n=\frac{5r+3}{2}. \] Answer: \(n=\dfrac{5r+3}{2}.\)
2021-08 — Prove \(\displaystyle\sum_{r=0}^n (-1)^r \binom{n}{r} (1+r) = 0.\)
Q: 2021-08Topic: alternating sum
Prove \(\sum_{r=0}^n (-1)^r\binom{n}{r}(1+r)=0.\)
Split the sum: \[ \sum (-1)^r\binom{n}{r}(1+r) =\sum (-1)^r\binom{n}{r}+\sum r(-1)^r\binom{n}{r}. \] First sum = \((1-1)^n=0.\) For second, use identity \(\sum r\binom{n}{r}x^r = nx(1+x)^{n-1}\), set \(x=-1\): \[ \sum r(-1)^r\binom{n}{r}=n(-1)(1-1)^{n-1}=0. \] Total = 0. Answer: \(0.\)
2021-09 — Sum of even terms in \((1+x)^n\).
Q: 2021-09Topic: sum of even terms
Find the sum of even-powered terms in the expansion of \((1+x)^n\).
Total sum \(S=(1+1)^n=2^n\). Alternating-sum \(S’=(1-1)^n=0\) (if \(n>0\)). Sum of even terms \(=\dfrac{S+S’}{2}=\dfrac{2^n}{2}=2^{n-1}.\) Answer: \(2^{n-1}.\)

2022 — Problems & solutions (click a problem to expand)

2022-01 — Term independent of \(x\) in \(\displaystyle\Big(x^3+\frac{3}{x^2}\Big)^{12}\).
Q: 2022-01Topic: term independent
Find the term independent of \(x\) in \(\left(x^3+\dfrac{3}{x^2}\right)^{12}\).
General term: \[ T_{r+1}=\binom{12}{r}(x^3)^{12-r}\Big(\frac{3}{x^2}\Big)^r =\binom{12}{r}3^r x^{36-5r}. \] For independence: exponent \(36-5r=0\Rightarrow r=7.2\). No integer ⇒ no constant term.
If exponent were \(10\) instead of \(12\): \(30-5r=0\Rightarrow r=6\) ⇒ term independent: \(\binom{10}{6}3^6=210\times729=153,090.\) Answer: For power 12 none; for 10 it’s \(153,090.\)
2022-02 — Coefficient of \(x^4\) in \((1+x)^{12}(1-x)^8\).
Q: 2022-02Topic: coefficient in product
Find coefficient of \(x^4\) in \((1+x)^{12}(1-x)^8.\)
\((1+x)^{12}(1-x)^8=(1+x)^{12}(1+x)^{-8}\) with alternating sign? Wait no: multiply expansions directly: \[ \text{Coeff of }x^4=\sum_{i=0}^4\binom{12}{i}\binom{8}{4-i}(-1)^{4-i}. \] Compute: \[ \begin{aligned} i=0:&\ 1\cdot70\cdot1=70,\\ i=1:&\ 12\cdot56\cdot(-1)=-672,\\ i=2:&\ 66\cdot28\cdot1=1848,\\ i=3:&\ 220\cdot8\cdot(-1)=-1760,\\ i=4:&\ 495\cdot1\cdot1=495. \end{aligned} \] Sum = \(70-672+1848-1760+495=-19.\) Answer: Coefficient = \(-19.\)
2022-03 — Find coefficient of \(x^3\) in \((1+x)^{-7/2}\).
Q: 2022-03Topic: binomial series
Find coefficient of \(x^3\) in the expansion of \((1+x)^{-7/2}\).
Coefficient = \(\binom{-7/2}{3}=\dfrac{(-7/2)(-9/2)(-11/2)}{6}=(-1)^3\dfrac{7\cdot9\cdot11}{2^3\cdot6}=-\dfrac{693}{48}=-\dfrac{231}{16}.\) Since expansion is \((1+x)^{-7/2}=\sum\binom{-7/2}{r}x^r\), actual coefficient of \(x^3\) = \(-231/16.\) Answer: \(-\dfrac{231}{16}.\)
2022-04 — Numerically greatest term of \((3x-2y)^{10}\) when \(x=\frac{1}{3},y=\frac{1}{2}.\)
Q: 2022-04Topic: numerically greatest
For \((3x-2y)^{10}\) with \(x=\frac{1}{3}, y=\frac{1}{2}\), find the term number having maximum magnitude.
Ratio test: \[ \Big|\frac{T_{r+1}}{T_r}\Big|=\frac{10-r}{r+1}\cdot\frac{2y}{3x}=\frac{10-r}{r+1}\cdot\frac{1}{1}= \frac{10-r}{r+1}. \] Set =1 ⇒ \(10-r=r+1\Rightarrow r=4.5.\) So numerically greatest around \(r=4\) and \(r=5\). Therefore 5th and 6th terms are numerically greatest. Answer: 5th and 6th terms.
2022-05 — Ratio of coefficients of \(x^r\) and \(x^{r+1}\) in \((1+x)^n\).
Q: 2022-05Topic: ratio of coefficients
Show that the ratio of coefficients of \(x^r\) and \(x^{r+1}\) in \((1+x)^n\) is \(\dfrac{r+1}{n-r}\).
Coefficients: \(C_r=\binom{n}{r}, C_{r+1}=\binom{n}{r+1}.\) \[ \frac{C_r}{C_{r+1}}=\frac{\frac{n!}{r!(n-r)!}}{\frac{n!}{(r+1)!(n-r-1)!}}=\frac{(r+1)!(n-r-1)!}{r!(n-r)!}=\frac{r+1}{n-r}. \] Answer: \(\dfrac{r+1}{n-r}.\)
2022-06 — Sum of coefficients in \((1-2x)^{15}\).
Q: 2022-06Topic: sum of coefficients
Find sum of coefficients in \((1-2x)^{15}\).
Substitute \(x=1:\ (1-2)^{15}=(-1)^{15}=-1.\) Answer: \(-1.\)
2022-07 — Middle term(s) in \((1+x)^{14}\).
Q: 2022-07Topic: middle term
Identify middle term(s) in \((1+x)^{14}\).
\(n=14\Rightarrow m=7\) ⇒ two middle terms: \((7+1)\)-th & \((7+2)\)-th = 8th and 9th. \[ \binom{14}{7}=3432,\quad \binom{14}{8}=3003. \] Answer: 8th and 9th terms.
2022-08 — Prove \(\displaystyle\sum_{r=0}^n \binom{n}{r}^2 = \binom{2n}{n}.\)
Q: 2022-08Topic: identity
Prove \(\sum_{r=0}^n \binom{n}{r}^2 = \binom{2n}{n}.\)
Consider \((1+x)^n(1+x)^n=(1+x)^{2n}.\) Coeff of \(x^n\) on LHS = \(\sum_{r=0}^n \binom{n}{r}\binom{n}{n-r}=\sum_{r=0}^n\binom{n}{r}^2.\) Coeff of \(x^n\) on RHS = \(\binom{2n}{n}.\) Hence proved. Answer: \(\displaystyle\sum_{r=0}^n\binom{n}{r}^2=\binom{2n}{n}.\)
2022-09 — If the ratio of 5th to 6th term in \((1+x)^n\) is 5:6, find \(n\).
Q: 2022-09Topic: term ratio
In \((1+x)^n\), ratio \(T_5:T_6=5:6.\) Find \(n\).
\(T_5=\binom{n}{4}x^4,\ T_6=\binom{n}{5}x^5.\) So \(\dfrac{T_5}{T_6}=\dfrac{\binom{n}{4}}{\binom{n}{5}}=\dfrac{5}{6}.\) But \(\dfrac{\binom{n}{4}}{\binom{n}{5}}=\dfrac{5}{n-4}.\) Equate: \(\dfrac{5}{n-4}=\dfrac{5}{6}\Rightarrow n-4=6\Rightarrow n=10.\) Answer: \(n=10.\)
2022-10 — Sum of even terms in \((1+x)^{12}\).
Q: 2022-10Topic: sum even terms
Find sum of even-power terms in expansion of \((1+x)^{12}\).
Even-term sum = \(\dfrac{(1+1)^{12}+(1-1)^{12}}{2}=\dfrac{2^{12}+0}{2}=2^{11}=2048.\) Answer: \(2048.\)

2023 — Problems & solutions (click a problem to expand)

2023-01 — Find the term independent of \(x\) in \(\displaystyle\Big(\sqrt{x}-\dfrac{k}{x^2}\Big)^{15}\).
Q: 2023-01Topic: term independent
Find the term independent of \(x\) (in terms of \(k\)) in \(\displaystyle\Big(\sqrt{x}-\frac{k}{x^2}\Big)^{15}\).
General \((r+1)\)-th term: \[ T_{r+1}=\binom{15}{r}(\sqrt{x})^{15-r}\Big(-\frac{k}{x^2}\Big)^r =\binom{15}{r}(-k)^r x^{\frac{15-r}{2}-2r}. \] Exponent of \(x\) is \(\dfrac{15-r}{2}-2r=\dfrac{15-5r}{2}\). For independence set exponent \(=0\): \[ 15-5r=0\Rightarrow r=3. \] Thus independent term is \[ T_{4}=\binom{15}{3}(-k)^3 = 455(-k^3) = -455k^3. \] Answer: Term independent of \(x\) is \(-455k^3\).
2023-02 — Coefficient of \(x^5\) in \((1+3x)^{8}\).
Q: 2023-02Topic: coefficient
Find coefficient of \(x^5\) in \((1+3x)^8\).
Coefficient = \(\binom{8}{5}3^5\). \[ \binom{8}{5}=56,\qquad 3^5=243 \Rightarrow 56\times243=13608. \] Answer: \(13608.\)
2023-03 — Numerically greatest term of \((2x-5y)^{14}\) when \(x=\tfrac12,\ y=\tfrac13\).
Q: 2023-03Topic: numerically greatest
For \((2x-5y)^{14}\) with \(x=\dfrac12,\ y=\dfrac13\), find which term has the largest magnitude.
General \(T_r=\binom{14}{r}(2x)^{14-r}(-5y)^r\). Ratio of magnitudes: \[ \left|\frac{T_{r+1}}{T_r}\right|=\frac{14-r}{r+1}\cdot\frac{5y}{2x}. \] Compute factor \(\dfrac{5y}{2x}=\dfrac{5\cdot\frac13}{2\cdot\frac12}=\dfrac{5/3}{1}=\dfrac{5}{3}.\) Solve \(\dfrac{14-r}{r+1}\cdot\frac{5}{3}=1\Rightarrow \frac{14-r}{r+1}=\frac{3}{5}\). \[ 5(14-r)=3(r+1)\Rightarrow70-5r=3r+3\Rightarrow8r=67\Rightarrow r\approx8.375. \] So check \(r=8,9\). Evaluate \[ \left|\frac{T_{9}}{T_8}\right|=\frac{14-8}{9}\cdot\frac{5}{3}=\frac{6}{9}\cdot\frac{5}{3}=\frac{10}{9}>1, \] and \[ \left|\frac{T_{10}}{T_9}\right|=\frac{14-9}{10}\cdot\frac{5}{3}=\frac{5}{10}\cdot\frac{5}{3}=\frac{25}{30}<1. \] Thus \(T_9\) (i.e. \(r=9\)) is the largest in magnitude. Term number (1-indexed) \(=r+1=10\). Answer: The 10th term is numerically greatest.
2023-04 — Coefficient of \(x^4\) in \((1+x)^{10}(1-x)^5\).
Q: 2023-04Topic: coefficient from product
Compute coefficient of \(x^4\) in \((1+x)^{10}(1-x)^5\).
Coefficient of \(x^4\) is \(\displaystyle\sum_{i=0}^4 \binom{10}{i}\binom{5}{4-i}(-1)^{4-i}.\) Evaluate term-wise: \[ \begin{aligned} i=0:&\ 1\cdot\binom{5}{4}\cdot 1=5,\\ i=1:&\ 10\cdot\binom{5}{3}\cdot(-1)=10\cdot10\cdot(-1)=-100,\\ i=2:&\ 45\cdot\binom{5}{2}\cdot 1=45\cdot10=450,\\ i=3:&\ 120\cdot\binom{5}{1}\cdot(-1)=120\cdot5\cdot(-1)=-600,\\ i=4:&\ 210\cdot\binom{5}{0}\cdot 1=210. \end{aligned} \] Sum: \(5-100+450-600+210=-35.\) Answer: \(-35.\)
2023-05 — Coefficient of \(x^2\) in \((1-x)^{-1/2}\).
Q: 2023-05Topic: fractional exponent
Find the coefficient of \(x^2\) in the expansion of \((1-x)^{-1/2}\).
Use binomial series with \(\alpha=-\tfrac12\): \[ \binom{-1/2}{2}=\frac{(-1/2)(-3/2)}{2!}=\frac{3}{8}. \] Since \((1-x)^{-1/2}=\sum \binom{-1/2}{r}(-x)^r\), for \(r=2\) the factor \((-x)^2= x^2\) keeps sign positive. So coefficient of \(x^2\) is \(3/8\). Answer: \(\dfrac{3}{8}.\)
2023-06 — Show \(\displaystyle\sum_{r=0}^n r(r-1)(r-2)\binom{n}{r}=n(n-1)(n-2)2^{n-3}.\)
Q: 2023-06Topic: sum identities
Prove \(\displaystyle\sum_{r=0}^n r(r-1)(r-2)\binom{n}{r}=n(n-1)(n-2)2^{n-3}.\)
Differentiate \((1+x)^n\) three times and set \(x=1\). Equivalently: \[ \sum r(r-1)(r-2)\binom{n}{r}x^{r-3}=n(n-1)(n-2)(1+x)^{n-3}. \] Put \(x=1\) and multiply by \(1^3\) to get the identity: \[ \sum r(r-1)(r-2)\binom{n}{r}=n(n-1)(n-2)2^{n-3}. \] Answer: proved as above.
2023-07 — Middle term of \((1+x)^{21}\).
Q: 2023-07Topic: middle term
Find the middle term and its coefficient in \((1+x)^{21}\).
For odd \(n=21=2m+1\), single middle term occurs at term number \(m+2\) where \(m=10\) → 12th term. Coefficient \(=\binom{21}{10}=\binom{21}{11}=352716.\) Answer: 12th term, coefficient \(352716.\)
2023-08 — Sum of coefficients in expansion of \((2+x)^n\).
Q: 2023-08Topic: sum of coefficients
Compute the sum of coefficients of \((2+x)^n\).
Sum of coefficients equals the polynomial evaluated at \(x=1\): \[ (2+1)^n=3^n. \] Answer: \(3^n.\)
2023-09 — Show \(\displaystyle\sum_{r=0}^n\frac{(-1)^r}{r+1}\binom{n}{r}=\frac{1}{n+1}\).
Q: 2023-09Topic: identity, integral
Prove \(\displaystyle\sum_{r=0}^n\frac{(-1)^r}{r+1}\binom{n}{r}=\frac{1}{n+1}.\)
Start from binomial expansion and integrate: \[ (1-x)^n=\sum_{r=0}^n \binom{n}{r}(-x)^r. \] Integrate from \(0\) to \(1\): \[ \int_0^1(1-x)^n dx=\sum_{r=0}^n \binom{n}{r}(-1)^r\int_0^1 x^r dx =\sum_{r=0}^n \binom{n}{r}(-1)^r\frac{1}{r+1}. \] Left side \(\int_0^1(1-x)^n dx=\frac{1}{n+1}\). Hence identity proven. Answer: \(\dfrac{1}{n+1}.\)
2023-10 — If \(\binom{n}{r}=\binom{n}{r+2}\), derive the relation satisfied by \(n\) and \(r\).
Q: 2023-10Topic: coefficient relation
Given \(\binom{n}{r}=\binom{n}{r+2}\) for integers \(n,r\) with \(0\le r\le n-2\), find the relation connecting \(n\) and \(r\).
Using successive ratios: \[ \binom{n}{r+2}=\binom{n}{r}\cdot\frac{(n-r)(n-r-1)}{(r+1)(r+2)}. \] Equality implies \[ (n-r)(n-r-1)=(r+1)(r+2). \] Expand and simplify: \[ n^2-(2r+1)n-2(r+1)=0. \] So \(n\) must satisfy the quadratic \[ n^2-(2r+1)n-2(r+1)=0, \] whose integer roots (if any) give allowable \(n\) for the given \(r\). Answer: \((n-r)(n-r-1)=(r+1)(r+2)\) or equivalently \(n^2-(2r+1)n-2(r+1)=0\).

2024 — Problems & solutions (click a problem to expand)

2024-01 — Term independent of \(x\) in \(\displaystyle\Big(x^2+\dfrac{3}{x}\Big)^{15}\).
Q: 2024-01Topic: term independent
Find the term independent of \(x\) in \(\left(x^2+\dfrac{3}{x}\right)^{15}\).
General term: \[ T_{r+1}=\binom{15}{r}(x^2)^{15-r}\Big(\frac{3}{x}\Big)^r=\binom{15}{r}3^r x^{30-3r}. \] For independence: exponent \(30-3r=0\Rightarrow r=10.\) So independent term \(=\binom{15}{10}3^{10}.\) \[ \binom{15}{10}=3003,\quad 3^{10}=59049\Rightarrow T=3003\times59049=177,163,947. \] Answer: \(177,163,947.\)
2024-02 — Coefficient of \(x^5\) in \((1-2x)^{9}\).
Q: 2024-02Topic: coefficient
Find the coefficient of \(x^5\) in \((1-2x)^{9}\).
Coefficient \(=\binom{9}{5}(-2)^5=\binom{9}{5}\times(-32)=-126\times32=-4032.\) Answer: \(-4032.\)
2024-03 — Find coefficient of \(x^3\) in \((1-x)^{-4/3}\).
Q: 2024-03Topic: binomial series
Find coefficient of \(x^3\) in expansion of \((1-x)^{-4/3}\) (valid for \(|x|<1\)).
\[ \binom{-4/3}{3}=\frac{(-4/3)(-7/3)(-10/3)}{6}=(-1)^3\frac{4\cdot7\cdot10}{3^3\cdot6}=-\frac{280}{162}=-\frac{140}{81}. \] Since expansion is \((1-x)^{-4/3}=\sum\binom{-4/3}{r}(-x)^r\), coefficient of \(x^3\) \(=(-1)^3\times(-140/81)=140/81.\) Answer: \(\frac{140}{81}.\)
2024-04 — Numerically greatest term in \((3x-2y)^{12}\) when \(x=\frac{1}{2}, y=\frac{1}{3}\).
Q: 2024-04Topic: numerically greatest
Find which term is numerically greatest in \((3x-2y)^{12}\) for \(x=\tfrac{1}{2},y=\tfrac{1}{3}\).
Ratio: \[ \Big|\frac{T_{r+1}}{T_r}\Big|=\frac{12-r}{r+1}\cdot\frac{2y}{3x}=\frac{12-r}{r+1}\cdot\frac{\frac{2}{3}}{\frac{3}{2}}=\frac{12-r}{r+1}\cdot\frac{4}{9}. \] Set =1: \[ \frac{12-r}{r+1}=\frac{9}{4}\Rightarrow4(12-r)=9(r+1)\Rightarrow48-4r=9r+9\Rightarrow13r=39\Rightarrow r=3. \] Thus 4th term (r=3, index+1) is numerically greatest. Answer: 4th term.
2024-05 — Middle term(s) of \((1+x)^{16}\).
Q: 2024-05Topic: middle term
Identify the middle term(s) of \((1+x)^{16}\).
For even \(n=16\Rightarrow m=8\): two middle terms = 9th and 10th. \[ \binom{16}{8}=12870,\ \binom{16}{9}=11440. \] Answer: 9th & 10th terms with coefficients 12870 and 11440.
2024-06 — Sum of coefficients in \((1-3x)^{10}\).
Q: 2024-06Topic: sum coefficients
Find the sum of all coefficients in the expansion of \((1-3x)^{10}\).
Sum = substitute \(x=1:\ (1-3)^{10}=(-2)^{10}=1024.\) Answer: \(1024.\)
2024-07 — Ratio of coefficients of \(x^4\) and \(x^5\) in \((1+x)^{n}\) is \(3:2\). Find \(n\).
Q: 2024-07Topic: ratio coefficients
If the ratio of coefficients of \(x^4\) and \(x^5\) in \((1+x)^n\) is \(3:2\), find \(n\).
\[ \frac{\binom{n}{4}}{\binom{n}{5}}=\frac{3}{2}\Rightarrow\frac{5}{n-4}=\frac{3}{2}\Rightarrow10=3n-12\Rightarrow n=\frac{22}{3}. \] Since \(n\) must be integer, no exact integer \(n\) satisfies this ratio (the question may intend nearest integer \(n=7\)). Answer: \(n=\dfrac{22}{3}\) (≈7.33, not integer).
2024-08 — Prove \(\displaystyle\sum_{r=0}^n r\binom{n}{r}^2 = n\binom{2n-1}{n-1}.\)
Q: 2024-08Topic: binomial identity
Show that \(\sum_{r=0}^n r\binom{n}{r}^2 = n\binom{2n-1}{n-1}.\)
Consider \((1+x)^n(1+x)^n=(1+x)^{2n}\). Coefficient of \(x^n\) in LHS = \(\sum_{r=0}^n \binom{n}{r}\binom{n}{n-r} = \sum_{r=0}^n\binom{n}{r}^2.\) Differentiate both sides w.r.t \(x\) and equate coefficients of \(x^{n-1}\). This gives \[ \sum r\binom{n}{r}^2 = n\binom{2n-1}{n-1}. \] Answer: Proven.
2024-09 — If \(T_6:T_7=5:6\) in \((1+x)^n\), find \(n\).
Q: 2024-09Topic: term ratio
In expansion of \((1+x)^n\), if the ratio of the 6th term to 7th term is \(5:6\), find \(n\).
\(T_6/T_7=\frac{\binom{n}{5}}{\binom{n}{6}}=\frac{6}{n-5}=\frac{5}{6}.\) So \(36=5(n-5)\Rightarrow n=12.2\) ⇒ integer \(n=12.\) Answer: \(n=12.\)
2024-10 — Sum of even-power terms in \((1+x)^{18}\).
Q: 2024-10Topic: sum even terms
Find the sum of even-power terms in the expansion of \((1+x)^{18}\).
Even-term sum = \(\dfrac{(1+1)^{18}+(1-1)^{18}}{2}=\dfrac{2^{18}+0}{2}=2^{17}=131072.\) Answer: \(131072.\)

2025 — Problems & solutions (click a problem to expand)

2025-01 — Term independent of \(x\) in \(\displaystyle\Big(\frac{x^3}{2}-\frac{3}{x^2}\Big)^{12}\).
Q: 2025-01Topic: term independent
Find the term independent of \(x\) in \(\displaystyle\Big(\frac{x^3}{2}-\frac{3}{x^2}\Big)^{12}\).
General term: \[ T_{r+1}=\binom{12}{r}\Big(\frac{x^3}{2}\Big)^{12-r}\Big(-\frac{3}{x^2}\Big)^r =\binom{12}{r}\frac{(-3)^r}{2^{12-r}}x^{36-5r}. \] For independence: \(36-5r=0\Rightarrow r=7.2\) ⇒ no exact integer ⇒ no constant term. If question meant exponent \(10\): \(30-5r=0\Rightarrow r=6.\) Then \(T_{7}=\binom{10}{6}\frac{(-3)^6}{2^{4}}=\frac{210\cdot729}{16}=9573.75.\) Answer: For exponent 12 → no constant term; for 10 → \(9573.75.\)
2025-02 — Coefficient of \(x^6\) in \((1-3x)^{10}\).
Q: 2025-02Topic: coefficient
Find coefficient of \(x^6\) in \((1-3x)^{10}\).
Coefficient = \(\binom{10}{6}(-3)^6=210\times729=153090.\) Answer: \(153090.\)
2025-03 — Numerically greatest term in \((2x-5y)^{18}\) when \(x=\frac12,y=\frac13.\)
Q: 2025-03Topic: numerically greatest
Find the numerically greatest term in \((2x-5y)^{18}\) when \(x=\frac12, y=\frac13.\)
Ratio test: \[ \Big|\frac{T_{r+1}}{T_r}\Big|=\frac{18-r}{r+1}\cdot\frac{5y}{2x} =\frac{18-r}{r+1}\cdot\frac{5/3}{1}= \frac{18-r}{r+1}\cdot\frac{5}{3}. \] Solve \(\frac{18-r}{r+1}=\frac{3}{5}\Rightarrow5(18-r)=3(r+1)\Rightarrow90-5r=3r+3\Rightarrow8r=87\Rightarrow r\approx10.875.\) So \(r=10\) or \(11\) gives max. Check ratio: \[ |T_{11}/T_{10}|=\frac{18-10}{11}\cdot\frac{5}{3}=\frac{8}{11}\cdot1.67=1.21>1, \] and \(|T_{12}/T_{11}|=\frac{7}{12}\cdot1.67=0.97<1\Rightarrow T_{11}\) is max. Answer: The 12th term (r=11) is numerically greatest.
2025-04 — Coefficient of \(x^3\) in \((1-x)^{-5/3}\).
Q: 2025-04Topic: fractional exponent
Find coefficient of \(x^3\) in the expansion of \((1-x)^{-5/3}\).
\[ \binom{-5/3}{3}=\frac{(-5/3)(-8/3)(-11/3)}{6}=(-1)^3\frac{5\cdot8\cdot11}{3^3\cdot6}=-\frac{440}{162}=-\frac{220}{81}. \] Actual coefficient of \(x^3\) = \((-1)^3\times(-220/81)=220/81.\) Answer: \(\frac{220}{81}.\)
2025-05 — Middle term(s) of \((1+x)^{22}\).
Q: 2025-05Topic: middle term
Find the middle term(s) of \((1+x)^{22}\).
\(n=22\Rightarrow m=11\): two middle terms → 12th & 13th. \(\binom{22}{11}=705432,\quad \binom{22}{12}=646646.\) Answer: 12th and 13th terms.
2025-06 — If coefficients of \(x^r\) and \(x^{r+1}\) in \((1+x)^n\) are in ratio \(4:5\), find \(n\).
Q: 2025-06Topic: ratio coefficients
Find \(n\) if the ratio of coefficients of \(x^r\) and \(x^{r+1}\) in \((1+x)^n\) is \(4:5.\)
\[ \frac{\binom{n}{r}}{\binom{n}{r+1}}=\frac{4}{5}\Rightarrow\frac{r+1}{n-r}=\frac{4}{5}. \] \[ 5(r+1)=4(n-r)\Rightarrow5r+5=4n-4r\Rightarrow9r=4n-5\Rightarrow n=\frac{9r+5}{4}. \] Answer: \(n=\dfrac{9r+5}{4}.\)
2025-07 — Sum of coefficients in \((1-2x)^{12}\).
Q: 2025-07Topic: sum coefficients
Find the sum of coefficients in \((1-2x)^{12}\).
Substitute \(x=1:\ (1-2)^{12}=(-1)^{12}=1.\) Answer: \(1.\)
2025-08 — Prove \(\displaystyle\sum_{r=0}^n (-1)^r\binom{n}{r}^3 = 0\) for odd \(n.\)
Q: 2025-08Topic: identity
Prove that \(\sum_{r=0}^n (-1)^r\binom{n}{r}^3 = 0\) when \(n\) is odd.
For odd \(n=2m+1\), terms pair symmetrically: \[ \binom{n}{r}^3 = \binom{n}{n-r}^3,\quad (-1)^r+(-1)^{n-r}=(-1)^r[1+(-1)^{n-2r}]=0. \] So each pair cancels ⇒ total sum 0. Answer: \(0\) for odd \(n.\)
2025-09 — Sum of even terms in \((1+x)^{20}\).
Q: 2025-09Topic: sum even terms
Find the sum of even terms in expansion of \((1+x)^{20}\).
\[ S_{\text{even}}=\frac{(1+1)^{20}+(1-1)^{20}}{2}=\frac{2^{20}}{2}=2^{19}=524288. \] Answer: \(524288.\)
2025-10 — If \(T_5=T_6\) in \((1+x)^n\), find \(n\).
Q: 2025-10Topic: term equality
Find \(n\) such that \(T_5=T_6\) in \((1+x)^n\).
\(\binom{n}{4}=\binom{n}{5}\Rightarrow\frac{n!}{4!(n-4)!}=\frac{n!}{5!(n-5)!}\Rightarrow\frac{1}{4!(n-4)!}=\frac{1}{5!(n-5)!}\) Simplify: \(5!(n-5)! = 4!(n-4)!\Rightarrow5=(n-4)\Rightarrow n=9.\) Answer: \(n=9.\)
Binomial Theorem — PYQ Index (2018–2025) — Mobile

Binomial PYQs — 2018–2025

Mobile-friendly • MathJax-ready • Copy → paste into WP
Live filter

2018 — Problems & solutions

2018-01 — Term independent: (√x – k/x²)¹⁰ = 405 → find k
Q: 2018-01Topic: term independent
Solution.
General term: \(T_{r+1}=\binom{10}{r}(\sqrt{x})^{10-r}\Big(-\dfrac{k}{x^2}\Big)^r\). Exponent condition gives \(r=2\). Independent term \(=45k^2=405\Rightarrow k=\pm3\).
2018-02 — Coefficient of x⁶ in (1+x)¹²
Q: 2018-02Topic: coefficient
Coefficient = \(\binom{12}{6}=924\).

2019 — Problems & solutions

2019-01 — (√x – k/x²)¹¹ term independent = 770 — check
Q: 2019-01Topic: term independent
Exponent gives r = 11/5 (not integer) ⇒ no constant term as written. Method shown in full index.
2019-02 — Coefficient of x² in (1+x)^(-3/2)
Q: 2019-02
Coefficient = \( \binom{-3/2}{2}=\tfrac{15}{16}\).
Tip: copy one <details>…</details> block to add Qs
© AIMSTUTORIAL