📐 Mathematics-1A: Functions
Complete Guide for EAPCET & JEE Mains | 15 Years Teaching Experience
📋 Table of Contents (16 Sections)
- Basics of Functions
- Types of Functions
- Polynomial Functions
- Rational Functions
- Exponential Functions
- Logarithmic Functions
- Trigonometric Functions
- Special Functions
- Function Properties
- Operations on Functions
- Transformations of Functions
- Comparison Summary
- Problem-Solving Strategies
- Practice Problems
- Essential Formulas
- Exam Tips
1. BASICS OF FUNCTIONS
Definition of a Function
Function f: A → B such that each element of A is associated with exactly ONE element of B.
- Domain: Set of all INPUT values (A)
- Codomain: Set of possible outputs (B)
- Range: Set of all ACTUAL outputs
Domain and Range Table
| Type | Form | Domain | Range |
|---|---|---|---|
| Polynomial | aₙxⁿ+…+a₀ | ℝ | ℝ or [m,∞) |
| Rational | p(x)/q(x) | ℝ-{0s of q} | Varies |
| √x | √x | [0,∞) | [0,∞) |
| logₐx | logₐx | (0,∞) | ℝ |
| aˣ | aˣ | ℝ | (0,∞) |
2. TYPES OF FUNCTIONS
2.1 One-One (Injective)
Different inputs give different outputs
2.2 Onto (Surjective)
Every element in codomain has at least one pre-image
2.3 Bijective
⭐ Only bijective functions have inverses!
3. POLYNOMIAL FUNCTIONS
General Form
3.1 Linear: f(x) = mx + c
- Domain: ℝ | Range: ℝ
- Slope: m | y-intercept: c
- Type: Bijective ✓
- Graph: Straight line
3.2 Quadratic: f(x) = ax² + bx + c
- Domain: ℝ
- Vertex: (-b/2a, f(-b/2a))
- Axis: x = -b/2a
- a > 0: Opens UP, Range = [min, ∞)
- a < 0: Opens DOWN, Range = (-∞, max]
3.3 Cubic: f(x) = ax³ + bx² + cx + d
- Domain: ℝ | Range: ℝ
- Type: Bijective ✓
- Turning points: ≤ 2
4. RATIONAL FUNCTIONS
y = (lead coeff p)/(lead coeff q)
Example: f(x) = 1/x
- Domain: ℝ – {0}
- Range: ℝ – {0}
- V. Asymptote: x = 0
- H. Asymptote: y = 0
- Type: Odd, Bijective
5. EXPONENTIAL FUNCTIONS
Properties
- Domain: ℝ
- Range: (0, ∞)
- Always positive: aˣ > 0
- a⁰ = 1
- Bijective ✓
Laws of Exponents
- aᵐ·aⁿ = aᵐ⁺ⁿ
- aᵐ/aⁿ = aᵐ⁻ⁿ
- (aᵐ)ⁿ = aᵐⁿ
- (ab)ⁿ = aⁿbⁿ
Case 1: a > 1 (Growth)
- Increasing function
- Passes: (0, 1)
- H.A.: y = 0 as x → -∞
- Examples: 2ˣ, eˣ
Case 2: 0 < a < 1 (Decay)
- Decreasing function
- Passes: (0, 1)
- H.A.: y = 0 as x → +∞
- Examples: (1/2)ˣ, e⁻ˣ
6. LOGARITHMIC FUNCTIONS
Properties
- Domain: (0, ∞)
- Range: ℝ
- logₐ(1) = 0
- logₐ(a) = 1
- Bijective ✓
Laws
- logₐ(mn) = logₐm + logₐn
- logₐ(m/n) = logₐm – logₐn
- logₐ(mⁿ) = n·logₐm
- logₐx = ln x/ln a
Case 1: a > 1
- Increasing
- Passes: (1, 0)
- V.A.: x = 0
Case 2: 0 < a < 1
- Decreasing
- Passes: (1, 0)
- V.A.: x = 0
⭐ INVERSE: aˣ ↔ logₐx
7. TRIGONOMETRIC FUNCTIONS
7.1 Sine: f(x) = sin(x)
- Domain: ℝ | Range: [-1, 1]
- Period: 2π
- Odd: sin(-x) = -sin(x)
- sin(0)=0, sin(π/2)=1, sin(π)=0
7.2 Cosine: f(x) = cos(x)
- Domain: ℝ | Range: [-1, 1]
- Period: 2π
- Even: cos(-x) = cos(x)
- cos(0)=1, cos(π/2)=0, cos(π)=-1
7.3 Tangent: f(x) = tan(x)
- Domain: ℝ – {(2n+1)π/2}
- Range: ℝ
- Period: π
- Odd: tan(-x) = -tan(x)
- V.A.: x = (2n+1)π/2
8. SPECIAL FUNCTIONS
8.1 Modulus: f(x) = |x|
- Domain: ℝ | Range: [0, ∞)
- Even: |-x| = |x|
- V-shaped graph
- NOT bijective
8.2 Greatest Integer: f(x) = [x]
- Domain: ℝ | Range: ℤ
- [3.7]=3, [-2.5]=-3
- Step function
8.3 Signum: f(x) = sgn(x)
- Domain: ℝ | Range: {-1, 0, 1}
- Odd function
- Step function
8.4 Fractional Part: f(x) = {x}
- Domain: ℝ | Range: [0, 1)
- {3.7}=0.7, {-2.5}=0.5
- Period: 1
9. FUNCTION PROPERTIES
9.1 Even & Odd
EVEN
Symmetric about Y-axis
Ex: x², cos(x), |x|
ODD
Symmetric about origin
Ex: x³, sin(x), tan(x)
9.2 Monotonic
Increasing
Decreasing
Strictly Incr
9.3 Periodic
Examples: sin(2π), tan(π), {x}(1)
9.4 Bounded
10. OPERATIONS ON FUNCTIONS
10.1 Arithmetic Operations
10.2 Composition
Apply g FIRST, then f
Note: (f∘g) ≠ (g∘f) usually
10.3 Inverse Function
Only bijective functions have inverses!
Finding Inverse
- Replace f(x) with y
- Solve for x in terms of y
- Swap x and y
- Result is f⁻¹(x)
11. TRANSFORMATIONS OF FUNCTIONS
11.1 Vertical Shift
c > 0: UP | c < 0: DOWN
11.2 Horizontal Shift
h > 0: RIGHT | h < 0: LEFT
11.3 Vertical Stretch/Compress
|a| > 1: STRETCH | 0 < |a| < 1: COMPRESS
11.4 Horizontal Stretch/Compress
|b| > 1: COMPRESS | 0 < |b| < 1: STRETCH
11.5 Reflections
About x-axis
About y-axis
About y=x
12. COMPARISON SUMMARY TABLE
| Function | Domain | Range | Type |
|---|---|---|---|
| f(x)=x | ℝ | ℝ | Identity, Odd, Bijective |
| f(x)=x² | ℝ | [0,∞) | Even, Parabola, NOT bijective |
| f(x)=x³ | ℝ | ℝ | Odd, Cubic, Bijective |
| f(x)=√x | [0,∞) | [0,∞) | Increasing, Bijective |
| f(x)=1/x | ℝ-{0} | ℝ-{0} | Odd, Hyperbola, Bijective |
| f(x)=|x| | ℝ | [0,∞) | Even, V-shaped, NOT bijective |
| f(x)=aˣ | ℝ | (0,∞) | Exponential, Bijective, Positive |
| f(x)=logₐx | (0,∞) | ℝ | Logarithmic, Bijective, Inverse aˣ |
| f(x)=sin(x) | ℝ | [-1,1] | Periodic, Odd, Period 2π |
| f(x)=cos(x) | ℝ | [-1,1] | Periodic, Even, Period 2π |
13. PROBLEM-SOLVING STRATEGIES
13.1 Finding Domain – Key Restrictions
- Denominator ≠ 0: 1/(x-2) requires x ≠ 2
- Square root: √x requires x ≥ 0
- Even roots: ⁿ√x (n even) requires x ≥ 0
- Logarithm: ln(x) requires x > 0
- Inverse trig: sin⁻¹(x) requires -1 ≤ x ≤ 1
- Tangent: tan(x) undefined at x = (2n+1)π/2
13.2 Finding Range – Methods
- Solve y = f(x) for x in terms of y
- Find restrictions on y from domain of x
- Find critical points: f'(x) = 0
- Find max/min values
- Check endpoints and limits
13.3 Quick Identification
- f(x) = ³√(x²): Domain ℝ, Range [0,∞) ✓
- f(x) = x²/(x²+1): Domain ℝ, Range [0,1) ✓
- f(x) = √(x²-4): Domain (-∞,-2]∪[2,∞) ✓
- f(x) = √(|x|-1): Domain (-∞,-1]∪[1,∞) ✓
13.4 Composite Function Domain
- Find domain of g(x)
- Find range of g(x)
- Check which range values are in domain of f(x)
- Combine all conditions
14. PRACTICE PROBLEMS WITH SOLUTIONS
Problem 1: Domain and Range
Solution:
Problem 2: Injective Function
Solution:
Problem 3: Finding Inverse
Solution:
Problem 4: Composition
Solution:
15. ESSENTIAL FORMULAS REFERENCE
| Topic | Formula | When Used |
|---|---|---|
| Vertex (Quadratic) | (-b/2a, f(-b/2a)) | Parabola turning point |
| Axis of Symmetry | x = -b/2a | Parabola line of symmetry |
| Discriminant | Δ = b² – 4ac | Nature of roots |
| Change of Base | logₐx = log_b(x)/log_b(a) | Convert log bases |
| Exp-Log Inverse | a^(logₐx) = x, logₐ(aˣ) = x | Simplify expressions |
| Pythagorean | sin²(x) + cos²(x) = 1 | Trig simplification |
| Sec-Tan | 1 + tan²(x) = sec²(x) | Trig identities |
| Csc-Cot | 1 + cot²(x) = csc²(x) | Trig identities |
16. IMPORTANT EXAM TIPS & TRICKS
- Check ALL denominators – must be ≠ 0
- Check ALL even roots – must be ≥ 0
- Check ALL logarithms – argument must be > 0
- For composite: combine using AND (∩)
- Write answer in standard form using intervals
- Use y = f(x) and solve for x: check y restrictions
- For bounded functions: always have finite range
- For periodic: range repeats
- For rational: beware of horizontal asymptotes
- Use calculus if algebraic method fails
- ⭐ BIJECTIVE = ONE-ONE + ONTO (for inverse)
- EVEN: symmetric about y-axis
- ODD: symmetric about origin
- PERIODIC: pattern repeats with period T
- Check: if f(x)=f(-x) then EVEN
- Check: if f(x)=-f(-x) then ODD
- (f∘g)(x) means “f of g of x” – apply g FIRST
- Domain of (f∘g) ⊆ domain of g
- Range of (f∘g) ⊆ range of f
- Usually (f∘g) ≠ (g∘f)
- Only bijective functions have inverses
- Domain of f⁻¹ = Range of f
- Range of f⁻¹ = Domain of f
- f⁻¹(f(x)) = x and f(f⁻¹(x)) = x
- Graphs of f and f⁻¹ are reflections about y=x
- Verify domain by checking all restrictions
- Verify range by checking min/max values
- Check special points: f(0), f(1), f(-1)
- Check asymptotes for rational/exponential/log
- Always write final answer clearly
📚 Mathematics-1A: Complete Functions Guide
✓ Perfect for EAPCET & JEE Mains Preparation
✓ 15 Years of Teaching Experience
✓ All 16 Sections with Graphs, Tables & Clear Explanations


