Mathematics-1A: Functions – Complete Guide

📐 Mathematics-1A: Functions

Complete Guide for EAPCET & JEE Mains | 15 Years Teaching Experience

📋 Table of Contents (16 Sections)

  1. Basics of Functions
  2. Types of Functions
  3. Polynomial Functions
  4. Rational Functions
  5. Exponential Functions
  6. Logarithmic Functions
  7. Trigonometric Functions
  8. Special Functions
  9. Function Properties
  10. Operations on Functions
  11. Transformations of Functions
  12. Comparison Summary
  13. Problem-Solving Strategies
  14. Practice Problems
  15. Essential Formulas
  16. Exam Tips

1. BASICS OF FUNCTIONS

Definition of a Function

Function f: A → B such that each element of A is associated with exactly ONE element of B.

f: A → B, where x ∈ A ⟹ f(x) ∈ B
  • Domain: Set of all INPUT values (A)
  • Codomain: Set of possible outputs (B)
  • Range: Set of all ACTUAL outputs

Domain and Range Table

TypeFormDomainRange
Polynomialaₙxⁿ+…+a₀ℝ or [m,∞)
Rationalp(x)/q(x)ℝ-{0s of q}Varies
√x√x[0,∞)[0,∞)
logₐxlogₐx(0,∞)
(0,∞)

2. TYPES OF FUNCTIONS

2.1 One-One (Injective)

f(x₁)=f(x₂) ⟹ x₁=x₂

Different inputs give different outputs

2.2 Onto (Surjective)

Range = Codomain

Every element in codomain has at least one pre-image

2.3 Bijective

Both One-One AND Onto

⭐ Only bijective functions have inverses!

3. POLYNOMIAL FUNCTIONS

General Form

f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + … + a₁x + a₀

3.1 Linear: f(x) = mx + c

  • Domain: ℝ | Range: ℝ
  • Slope: m | y-intercept: c
  • Type: Bijective ✓
  • Graph: Straight line

3.2 Quadratic: f(x) = ax² + bx + c

  • Domain: ℝ
  • Vertex: (-b/2a, f(-b/2a))
  • Axis: x = -b/2a
  • a > 0: Opens UP, Range = [min, ∞)
  • a < 0: Opens DOWN, Range = (-∞, max]

3.3 Cubic: f(x) = ax³ + bx² + cx + d

  • Domain: ℝ | Range: ℝ
  • Type: Bijective ✓
  • Turning points: ≤ 2

4. RATIONAL FUNCTIONS

f(x) = p(x)/q(x), where q(x) ≠ 0
Vertical Asymptote: x = a where q(a) = 0
Horizontal Asymptote (deg p = deg q):

y = (lead coeff p)/(lead coeff q)

Example: f(x) = 1/x

  • Domain: ℝ – {0}
  • Range: ℝ – {0}
  • V. Asymptote: x = 0
  • H. Asymptote: y = 0
  • Type: Odd, Bijective

5. EXPONENTIAL FUNCTIONS

f(x) = aˣ where a > 0, a ≠ 1

Properties

  • Domain: ℝ
  • Range: (0, ∞)
  • Always positive: aˣ > 0
  • a⁰ = 1
  • Bijective ✓

Laws of Exponents

  • aᵐ·aⁿ = aᵐ⁺ⁿ
  • aᵐ/aⁿ = aᵐ⁻ⁿ
  • (aᵐ)ⁿ = aᵐⁿ
  • (ab)ⁿ = aⁿbⁿ

Case 1: a > 1 (Growth)

  • Increasing function
  • Passes: (0, 1)
  • H.A.: y = 0 as x → -∞
  • Examples: 2ˣ, eˣ

Case 2: 0 < a < 1 (Decay)

  • Decreasing function
  • Passes: (0, 1)
  • H.A.: y = 0 as x → +∞
  • Examples: (1/2)ˣ, e⁻ˣ

6. LOGARITHMIC FUNCTIONS

f(x) = logₐx where a > 0, a ≠ 1 Definition: y = logₐx ⟺ aʸ = x

Properties

  • Domain: (0, ∞)
  • Range: ℝ
  • logₐ(1) = 0
  • logₐ(a) = 1
  • Bijective ✓

Laws

  • logₐ(mn) = logₐm + logₐn
  • logₐ(m/n) = logₐm – logₐn
  • logₐ(mⁿ) = n·logₐm
  • logₐx = ln x/ln a

Case 1: a > 1

  • Increasing
  • Passes: (1, 0)
  • V.A.: x = 0

Case 2: 0 < a < 1

  • Decreasing
  • Passes: (1, 0)
  • V.A.: x = 0

⭐ INVERSE: aˣ ↔ logₐx

logₐ(aˣ) = x a^(logₐx) = x Graphs are reflections about y = x

7. TRIGONOMETRIC FUNCTIONS

7.1 Sine: f(x) = sin(x)

  • Domain: ℝ | Range: [-1, 1]
  • Period: 2π
  • Odd: sin(-x) = -sin(x)
  • sin(0)=0, sin(π/2)=1, sin(π)=0

7.2 Cosine: f(x) = cos(x)

  • Domain: ℝ | Range: [-1, 1]
  • Period: 2π
  • Even: cos(-x) = cos(x)
  • cos(0)=1, cos(π/2)=0, cos(π)=-1

7.3 Tangent: f(x) = tan(x)

  • Domain: ℝ – {(2n+1)π/2}
  • Range: ℝ
  • Period: π
  • Odd: tan(-x) = -tan(x)
  • V.A.: x = (2n+1)π/2

8. SPECIAL FUNCTIONS

8.1 Modulus: f(x) = |x|

|x| = { x if x ≥ 0 -x if x < 0 }
  • Domain: ℝ | Range: [0, ∞)
  • Even: |-x| = |x|
  • V-shaped graph
  • NOT bijective

8.2 Greatest Integer: f(x) = [x]

[x] = greatest integer ≤ x
  • Domain: ℝ | Range: ℤ
  • [3.7]=3, [-2.5]=-3
  • Step function

8.3 Signum: f(x) = sgn(x)

sgn(x) = { 1 if x > 0 0 if x = 0 -1 if x < 0 }
  • Domain: ℝ | Range: {-1, 0, 1}
  • Odd function
  • Step function

8.4 Fractional Part: f(x) = {x}

{x} = x – [x]
  • Domain: ℝ | Range: [0, 1)
  • {3.7}=0.7, {-2.5}=0.5
  • Period: 1

9. FUNCTION PROPERTIES

9.1 Even & Odd

EVEN

f(-x) = f(x)

Symmetric about Y-axis

Ex: x², cos(x), |x|

ODD

f(-x) = -f(x)

Symmetric about origin

Ex: x³, sin(x), tan(x)

9.2 Monotonic

Increasing

x₁ < x₂ ⟹ f(x₁) ≤ f(x₂)

Decreasing

x₁ < x₂ ⟹ f(x₁) ≥ f(x₂)

Strictly Incr

x₁ < x₂ ⟹ f(x₁) < f(x₂)

9.3 Periodic

f(x + T) = f(x) for all x

Examples: sin(2π), tan(π), {x}(1)

9.4 Bounded

Bounded above: ∃ M, f(x) ≤ M Example: sin(x) bounded by 1
Bounded below: ∃ m, f(x) ≥ m Example: x² bounded below by 0

10. OPERATIONS ON FUNCTIONS

10.1 Arithmetic Operations

(f+g)(x) = f(x)+g(x), Domain: D₁∩D₂ (f-g)(x) = f(x)-g(x), Domain: D₁∩D₂ (f·g)(x) = f(x)·g(x), Domain: D₁∩D₂ (f/g)(x) = f(x)/g(x), Domain: D₁∩D₂-{g(x)=0}

10.2 Composition

(f∘g)(x) = f(g(x))

Apply g FIRST, then f

Note: (f∘g) ≠ (g∘f) usually

10.3 Inverse Function

f⁻¹(f(x)) = x f(f⁻¹(y)) = y

Only bijective functions have inverses!

Finding Inverse

  1. Replace f(x) with y
  2. Solve for x in terms of y
  3. Swap x and y
  4. Result is f⁻¹(x)

11. TRANSFORMATIONS OF FUNCTIONS

11.1 Vertical Shift

g(x) = f(x) + c

c > 0: UP | c < 0: DOWN

11.2 Horizontal Shift

g(x) = f(x – h)

h > 0: RIGHT | h < 0: LEFT

11.3 Vertical Stretch/Compress

g(x) = a·f(x)

|a| > 1: STRETCH | 0 < |a| < 1: COMPRESS

11.4 Horizontal Stretch/Compress

g(x) = f(bx)

|b| > 1: COMPRESS | 0 < |b| < 1: STRETCH

11.5 Reflections

About x-axis

g(x) = -f(x)

About y-axis

g(x) = f(-x)

About y=x

g(x) = f⁻¹(x)

12. COMPARISON SUMMARY TABLE

FunctionDomainRangeType
f(x)=xIdentity, Odd, Bijective
f(x)=x²[0,∞)Even, Parabola, NOT bijective
f(x)=x³Odd, Cubic, Bijective
f(x)=√x[0,∞)[0,∞)Increasing, Bijective
f(x)=1/xℝ-{0}ℝ-{0}Odd, Hyperbola, Bijective
f(x)=|x|[0,∞)Even, V-shaped, NOT bijective
f(x)=aˣ(0,∞)Exponential, Bijective, Positive
f(x)=logₐx(0,∞)Logarithmic, Bijective, Inverse aˣ
f(x)=sin(x)[-1,1]Periodic, Odd, Period 2π
f(x)=cos(x)[-1,1]Periodic, Even, Period 2π

13. PROBLEM-SOLVING STRATEGIES

13.1 Finding Domain – Key Restrictions

  • Denominator ≠ 0: 1/(x-2) requires x ≠ 2
  • Square root: √x requires x ≥ 0
  • Even roots: ⁿ√x (n even) requires x ≥ 0
  • Logarithm: ln(x) requires x > 0
  • Inverse trig: sin⁻¹(x) requires -1 ≤ x ≤ 1
  • Tangent: tan(x) undefined at x = (2n+1)π/2

13.2 Finding Range – Methods

Method 1: Algebraic
  • Solve y = f(x) for x in terms of y
  • Find restrictions on y from domain of x
Method 2: Calculus
  • Find critical points: f'(x) = 0
  • Find max/min values
  • Check endpoints and limits

13.3 Quick Identification

Example Problems:
  • f(x) = ³√(x²): Domain ℝ, Range [0,∞) ✓
  • f(x) = x²/(x²+1): Domain ℝ, Range [0,1) ✓
  • f(x) = √(x²-4): Domain (-∞,-2]∪[2,∞) ✓
  • f(x) = √(|x|-1): Domain (-∞,-1]∪[1,∞) ✓

13.4 Composite Function Domain

Find domain of (f∘g)(x):
  1. Find domain of g(x)
  2. Find range of g(x)
  3. Check which range values are in domain of f(x)
  4. Combine all conditions

14. PRACTICE PROBLEMS WITH SOLUTIONS

Problem 1: Domain and Range

Q: Find domain and range of f(x) = √(4 – x²)

Solution:

For domain: 4 – x² ≥ 0 x² ≤ 4 -2 ≤ x ≤ 2 Domain = [-2, 2] When x = 0: f(0) = 2 (maximum) When x = ±2: f(±2) = 0 (minimum) Range = [0, 2] ✓

Problem 2: Injective Function

Q: Is f(x) = x³ – 3x one-one on ℝ?

Solution:

f'(x) = 3x² – 3 = 3(x²-1) = 3(x-1)(x+1) f'(x) = 0 at x = 1 and x = -1 Function increases, then decreases, then increases NOT monotonic Answer: NOT one-one ✗

Problem 3: Finding Inverse

Q: Find f⁻¹(x) if f(x) = (2x+1)/(x-3)

Solution:

y = (2x+1)/(x-3) y(x-3) = 2x+1 xy – 3y = 2x + 1 xy – 2x = 3y + 1 x(y-2) = 3y + 1 x = (3y+1)/(y-2) f⁻¹(x) = (3x+1)/(x-2) ✓

Problem 4: Composition

Q: If f(x)=x+2 and g(x)=x²-1, find (f∘g)(x) and (g∘f)(x)

Solution:

(f∘g)(x) = f(g(x)) = f(x²-1) = (x²-1) + 2 = x² + 1 ✓ (g∘f)(x) = g(f(x)) = g(x+2) = (x+2)² – 1 = x² + 4x + 4 – 1 = x² + 4x + 3 ✓

15. ESSENTIAL FORMULAS REFERENCE

TopicFormulaWhen Used
Vertex (Quadratic)(-b/2a, f(-b/2a))Parabola turning point
Axis of Symmetryx = -b/2aParabola line of symmetry
DiscriminantΔ = b² – 4acNature of roots
Change of Baselogₐx = log_b(x)/log_b(a)Convert log bases
Exp-Log Inversea^(logₐx) = x, logₐ(aˣ) = xSimplify expressions
Pythagoreansin²(x) + cos²(x) = 1Trig simplification
Sec-Tan1 + tan²(x) = sec²(x)Trig identities
Csc-Cot1 + cot²(x) = csc²(x)Trig identities

16. IMPORTANT EXAM TIPS & TRICKS

✓ Domain Finding Tips:
  • Check ALL denominators – must be ≠ 0
  • Check ALL even roots – must be ≥ 0
  • Check ALL logarithms – argument must be > 0
  • For composite: combine using AND (∩)
  • Write answer in standard form using intervals
✓ Range Finding Tips:
  • Use y = f(x) and solve for x: check y restrictions
  • For bounded functions: always have finite range
  • For periodic: range repeats
  • For rational: beware of horizontal asymptotes
  • Use calculus if algebraic method fails
✓ Function Properties to Remember:
  • ⭐ BIJECTIVE = ONE-ONE + ONTO (for inverse)
  • EVEN: symmetric about y-axis
  • ODD: symmetric about origin
  • PERIODIC: pattern repeats with period T
  • Check: if f(x)=f(-x) then EVEN
  • Check: if f(x)=-f(-x) then ODD
✓ Composition Order (IMPORTANT!):
  • (f∘g)(x) means “f of g of x” – apply g FIRST
  • Domain of (f∘g) ⊆ domain of g
  • Range of (f∘g) ⊆ range of f
  • Usually (f∘g) ≠ (g∘f)
✓ Inverse Function Tips:
  • Only bijective functions have inverses
  • Domain of f⁻¹ = Range of f
  • Range of f⁻¹ = Domain of f
  • f⁻¹(f(x)) = x and f(f⁻¹(x)) = x
  • Graphs of f and f⁻¹ are reflections about y=x
✓ Quick Checks in Exam:
  • Verify domain by checking all restrictions
  • Verify range by checking min/max values
  • Check special points: f(0), f(1), f(-1)
  • Check asymptotes for rational/exponential/log
  • Always write final answer clearly

MATHEMATICS-1A FUNCTIONS

Mathematics-1A: Functions – Complete Guide

📐 Mathematics-1A: Functions

Complete Guide for EAPCET & JEE Mains | 15 Years Teaching Experience

📋 Table of Contents (16 Sections)

  1. Basics of Functions
  2. Types of Functions
  3. Polynomial Functions
  4. Rational Functions
  5. Exponential Functions
  6. Logarithmic Functions
  7. Trigonometric Functions
  8. Special Functions
  9. Function Properties
  10. Operations on Functions
  11. Transformations of Functions
  12. Comparison Summary
  13. Problem-Solving Strategies
  14. Practice Problems
  15. Essential Formulas
  16. Exam Tips

1. BASICS OF FUNCTIONS

Definition of a Function

Function f: A → B such that each element of A is associated with exactly ONE element of B.

f: A → B, where x ∈ A ⟹ f(x) ∈ B
  • Domain: Set of all INPUT values (A)
  • Codomain: Set of possible outputs (B)
  • Range: Set of all ACTUAL outputs

Domain and Range Table

TypeFormDomainRange
Polynomialaₙxⁿ+…+a₀ℝ or [m,∞)
Rationalp(x)/q(x)ℝ-{0s of q}Varies
√x√x[0,∞)[0,∞)
logₐxlogₐx(0,∞)
(0,∞)

2. TYPES OF FUNCTIONS

2.1 One-One (Injective)

f(x₁)=f(x₂) ⟹ x₁=x₂

Different inputs give different outputs

2.2 Onto (Surjective)

Range = Codomain

Every element in codomain has at least one pre-image

2.3 Bijective

Both One-One AND Onto

⭐ Only bijective functions have inverses!

3. POLYNOMIAL FUNCTIONS

General Form

f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + … + a₁x + a₀

3.1 Linear: f(x) = mx + c

  • Domain: ℝ | Range: ℝ
  • Slope: m | y-intercept: c
  • Type: Bijective ✓
  • Graph: Straight line

3.2 Quadratic: f(x) = ax² + bx + c

  • Domain: ℝ
  • Vertex: (-b/2a, f(-b/2a))
  • Axis: x = -b/2a
  • a > 0: Opens UP, Range = [min, ∞)
  • a < 0: Opens DOWN, Range = (-∞, max]

3.3 Cubic: f(x) = ax³ + bx² + cx + d

  • Domain: ℝ | Range: ℝ
  • Type: Bijective ✓
  • Turning points: ≤ 2

4. RATIONAL FUNCTIONS

f(x) = p(x)/q(x), where q(x) ≠ 0
Vertical Asymptote: x = a where q(a) = 0
Horizontal Asymptote (deg p = deg q):

y = (lead coeff p)/(lead coeff q)

Example: f(x) = 1/x

  • Domain: ℝ – {0}
  • Range: ℝ – {0}
  • V. Asymptote: x = 0
  • H. Asymptote: y = 0
  • Type: Odd, Bijective

5. EXPONENTIAL FUNCTIONS

f(x) = aˣ where a > 0, a ≠ 1

Properties

  • Domain: ℝ
  • Range: (0, ∞)
  • Always positive: aˣ > 0
  • a⁰ = 1
  • Bijective ✓

Laws of Exponents

  • aᵐ·aⁿ = aᵐ⁺ⁿ
  • aᵐ/aⁿ = aᵐ⁻ⁿ
  • (aᵐ)ⁿ = aᵐⁿ
  • (ab)ⁿ = aⁿbⁿ

Case 1: a > 1 (Growth)

  • Increasing function
  • Passes: (0, 1)
  • H.A.: y = 0 as x → -∞
  • Examples: 2ˣ, eˣ

Case 2: 0 < a < 1 (Decay)

  • Decreasing function
  • Passes: (0, 1)
  • H.A.: y = 0 as x → +∞
  • Examples: (1/2)ˣ, e⁻ˣ

6. LOGARITHMIC FUNCTIONS

f(x) = logₐx where a > 0, a ≠ 1 Definition: y = logₐx ⟺ aʸ = x

Properties

  • Domain: (0, ∞)
  • Range: ℝ
  • logₐ(1) = 0
  • logₐ(a) = 1
  • Bijective ✓

Laws

  • logₐ(mn) = logₐm + logₐn
  • logₐ(m/n) = logₐm – logₐn
  • logₐ(mⁿ) = n·logₐm
  • logₐx = ln x/ln a

Case 1: a > 1

  • Increasing
  • Passes: (1, 0)
  • V.A.: x = 0

Case 2: 0 < a < 1

  • Decreasing
  • Passes: (1, 0)
  • V.A.: x = 0

⭐ INVERSE: aˣ ↔ logₐx

logₐ(aˣ) = x a^(logₐx) = x Graphs are reflections about y = x

7. TRIGONOMETRIC FUNCTIONS

7.1 Sine: f(x) = sin(x)

  • Domain: ℝ | Range: [-1, 1]
  • Period: 2π
  • Odd: sin(-x) = -sin(x)
  • sin(0)=0, sin(π/2)=1, sin(π)=0

7.2 Cosine: f(x) = cos(x)

  • Domain: ℝ | Range: [-1, 1]
  • Period: 2π
  • Even: cos(-x) = cos(x)
  • cos(0)=1, cos(π/2)=0, cos(π)=-1

7.3 Tangent: f(x) = tan(x)

  • Domain: ℝ – {(2n+1)π/2}
  • Range: ℝ
  • Period: π
  • Odd: tan(-x) = -tan(x)
  • V.A.: x = (2n+1)π/2

8. SPECIAL FUNCTIONS

8.1 Modulus: f(x) = |x|

|x| = { x if x ≥ 0 -x if x < 0 }
  • Domain: ℝ | Range: [0, ∞)
  • Even: |-x| = |x|
  • V-shaped graph
  • NOT bijective

8.2 Greatest Integer: f(x) = [x]

[x] = greatest integer ≤ x
  • Domain: ℝ | Range: ℤ
  • [3.7]=3, [-2.5]=-3
  • Step function

8.3 Signum: f(x) = sgn(x)

sgn(x) = { 1 if x > 0 0 if x = 0 -1 if x < 0 }
  • Domain: ℝ | Range: {-1, 0, 1}
  • Odd function
  • Step function

8.4 Fractional Part: f(x) = {x}

{x} = x – [x]
  • Domain: ℝ | Range: [0, 1)
  • {3.7}=0.7, {-2.5}=0.5
  • Period: 1

9. FUNCTION PROPERTIES

9.1 Even & Odd

EVEN

f(-x) = f(x)

Symmetric about Y-axis

Ex: x², cos(x), |x|

ODD

f(-x) = -f(x)

Symmetric about origin

Ex: x³, sin(x), tan(x)

9.2 Monotonic

Increasing

x₁ < x₂ ⟹ f(x₁) ≤ f(x₂)

Decreasing

x₁ < x₂ ⟹ f(x₁) ≥ f(x₂)

Strictly Incr

x₁ < x₂ ⟹ f(x₁) < f(x₂)

9.3 Periodic

f(x + T) = f(x) for all x

Examples: sin(2π), tan(π), {x}(1)

9.4 Bounded

Bounded above: ∃ M, f(x) ≤ M Example: sin(x) bounded by 1
Bounded below: ∃ m, f(x) ≥ m Example: x² bounded below by 0

10. OPERATIONS ON FUNCTIONS

10.1 Arithmetic Operations

(f+g)(x) = f(x)+g(x), Domain: D₁∩D₂ (f-g)(x) = f(x)-g(x), Domain: D₁∩D₂ (f·g)(x) = f(x)·g(x), Domain: D₁∩D₂ (f/g)(x) = f(x)/g(x), Domain: D₁∩D₂-{g(x)=0}

10.2 Composition

(f∘g)(x) = f(g(x))

Apply g FIRST, then f

Note: (f∘g) ≠ (g∘f) usually

10.3 Inverse Function

f⁻¹(f(x)) = x f(f⁻¹(y)) = y

Only bijective functions have inverses!

Finding Inverse

  1. Replace f(x) with y
  2. Solve for x in terms of y
  3. Swap x and y
  4. Result is f⁻¹(x)

11. TRANSFORMATIONS OF FUNCTIONS

11.1 Vertical Shift

g(x) = f(x) + c

c > 0: UP | c < 0: DOWN

11.2 Horizontal Shift

g(x) = f(x – h)

h > 0: RIGHT | h < 0: LEFT

11.3 Vertical Stretch/Compress

g(x) = a·f(x)

|a| > 1: STRETCH | 0 < |a| < 1: COMPRESS

11.4 Horizontal Stretch/Compress

g(x) = f(bx)

|b| > 1: COMPRESS | 0 < |b| < 1: STRETCH

11.5 Reflections

About x-axis

g(x) = -f(x)

About y-axis

g(x) = f(-x)

About y=x

g(x) = f⁻¹(x)

12. COMPARISON SUMMARY TABLE

FunctionDomainRangeType
f(x)=xIdentity, Odd, Bijective
f(x)=x²[0,∞)Even, Parabola, NOT bijective
f(x)=x³Odd, Cubic, Bijective
f(x)=√x[0,∞)[0,∞)Increasing, Bijective
f(x)=1/xℝ-{0}ℝ-{0}Odd, Hyperbola, Bijective
f(x)=|x|[0,∞)Even, V-shaped, NOT bijective
f(x)=aˣ(0,∞)Exponential, Bijective, Positive
f(x)=logₐx(0,∞)Logarithmic, Bijective, Inverse aˣ
f(x)=sin(x)[-1,1]Periodic, Odd, Period 2π
f(x)=cos(x)[-1,1]Periodic, Even, Period 2π

13. PROBLEM-SOLVING STRATEGIES

13.1 Finding Domain – Key Restrictions

  • Denominator ≠ 0: 1/(x-2) requires x ≠ 2
  • Square root: √x requires x ≥ 0
  • Even roots: ⁿ√x (n even) requires x ≥ 0
  • Logarithm: ln(x) requires x > 0
  • Inverse trig: sin⁻¹(x) requires -1 ≤ x ≤ 1
  • Tangent: tan(x) undefined at x = (2n+1)π/2

13.2 Finding Range – Methods

Method 1: Algebraic
  • Solve y = f(x) for x in terms of y
  • Find restrictions on y from domain of x
Method 2: Calculus
  • Find critical points: f'(x) = 0
  • Find max/min values
  • Check endpoints and limits

13.3 Quick Identification

Example Problems:
  • f(x) = ³√(x²): Domain ℝ, Range [0,∞) ✓
  • f(x) = x²/(x²+1): Domain ℝ, Range [0,1) ✓
  • f(x) = √(x²-4): Domain (-∞,-2]∪[2,∞) ✓
  • f(x) = √(|x|-1): Domain (-∞,-1]∪[1,∞) ✓

13.4 Composite Function Domain

Find domain of (f∘g)(x):
  1. Find domain of g(x)
  2. Find range of g(x)
  3. Check which range values are in domain of f(x)
  4. Combine all conditions

14. PRACTICE PROBLEMS WITH SOLUTIONS

Problem 1: Domain and Range

Q: Find domain and range of f(x) = √(4 – x²)

Solution:

For domain: 4 – x² ≥ 0 x² ≤ 4 -2 ≤ x ≤ 2 Domain = [-2, 2] When x = 0: f(0) = 2 (maximum) When x = ±2: f(±2) = 0 (minimum) Range = [0, 2] ✓

Problem 2: Injective Function

Q: Is f(x) = x³ – 3x one-one on ℝ?

Solution:

f'(x) = 3x² – 3 = 3(x²-1) = 3(x-1)(x+1) f'(x) = 0 at x = 1 and x = -1 Function increases, then decreases, then increases NOT monotonic Answer: NOT one-one ✗

Problem 3: Finding Inverse

Q: Find f⁻¹(x) if f(x) = (2x+1)/(x-3)

Solution:

y = (2x+1)/(x-3) y(x-3) = 2x+1 xy – 3y = 2x + 1 xy – 2x = 3y + 1 x(y-2) = 3y + 1 x = (3y+1)/(y-2) f⁻¹(x) = (3x+1)/(x-2) ✓

Problem 4: Composition

Q: If f(x)=x+2 and g(x)=x²-1, find (f∘g)(x) and (g∘f)(x)

Solution:

(f∘g)(x) = f(g(x)) = f(x²-1) = (x²-1) + 2 = x² + 1 ✓ (g∘f)(x) = g(f(x)) = g(x+2) = (x+2)² – 1 = x² + 4x + 4 – 1 = x² + 4x + 3 ✓

15. ESSENTIAL FORMULAS REFERENCE

TopicFormulaWhen Used
Vertex (Quadratic)(-b/2a, f(-b/2a))Parabola turning point
Axis of Symmetryx = -b/2aParabola line of symmetry
DiscriminantΔ = b² – 4acNature of roots
Change of Baselogₐx = log_b(x)/log_b(a)Convert log bases
Exp-Log Inversea^(logₐx) = x, logₐ(aˣ) = xSimplify expressions
Pythagoreansin²(x) + cos²(x) = 1Trig simplification
Sec-Tan1 + tan²(x) = sec²(x)Trig identities
Csc-Cot1 + cot²(x) = csc²(x)Trig identities

16. IMPORTANT EXAM TIPS & TRICKS

✓ Domain Finding Tips:
  • Check ALL denominators – must be ≠ 0
  • Check ALL even roots – must be ≥ 0
  • Check ALL logarithms – argument must be > 0
  • For composite: combine using AND (∩)
  • Write answer in standard form using intervals
✓ Range Finding Tips:
  • Use y = f(x) and solve for x: check y restrictions
  • For bounded functions: always have finite range
  • For periodic: range repeats
  • For rational: beware of horizontal asymptotes
  • Use calculus if algebraic method fails
✓ Function Properties to Remember:
  • ⭐ BIJECTIVE = ONE-ONE + ONTO (for inverse)
  • EVEN: symmetric about y-axis
  • ODD: symmetric about origin
  • PERIODIC: pattern repeats with period T
  • Check: if f(x)=f(-x) then EVEN
  • Check: if f(x)=-f(-x) then ODD
✓ Composition Order (IMPORTANT!):
  • (f∘g)(x) means “f of g of x” – apply g FIRST
  • Domain of (f∘g) ⊆ domain of g
  • Range of (f∘g) ⊆ range of f
  • Usually (f∘g) ≠ (g∘f)
✓ Inverse Function Tips:
  • Only bijective functions have inverses
  • Domain of f⁻¹ = Range of f
  • Range of f⁻¹ = Domain of f
  • f⁻¹(f(x)) = x and f(f⁻¹(x)) = x
  • Graphs of f and f⁻¹ are reflections about y=x
✓ Quick Checks in Exam:
  • Verify domain by checking all restrictions
  • Verify range by checking min/max values
  • Check special points: f(0), f(1), f(-1)
  • Check asymptotes for rational/exponential/log
  • Always write final answer clearly