BOARD MODEL PAPER - 1
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. Find the equation of the straight line passing through $(-4,5)$ and cutting off equal intercepts on the coordinating axes
2. Transform the equation $2 x-3 y+6=0$ into Normal form
3. Find the distance between the mid point of the line segment $\overline{\mathrm{AB}}$ and the point $(3,-1,2)$ where $A=(6,3,-4), B=(-2,-1,2)$
4. Find the equation of the plane through($-1,6,2$) and perpendicular to the join of $(1,2,3),(-2,3,4)$.
5. Compute $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{3^{x}-1}{\sqrt{1+x}-1}$
6. Find $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{8|x|+3 x}{3|x|-2 x}$
7. Find the derivative of $Y=\frac{\sin (x+a)}{\cos x}$
8. If $Y=\cos (\log (\cot x))$ then find $\frac{d y}{d x}$.
9. The diameter of a skere is measuredto be 40 cm . If an error of 2.0 cm is made in it, then find approximate etrors in volume and surface area of the sphere.
10. verify Lagrange's mearvalue theorem for the function $f(x)=x^{2}$ on $[2,4]$

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:
[5 x $4=20]$
11. $A(1,2), B(2,-3), C(-2,3)$ are 3 points. A point P moves such that $P A^{2}+P B^{2}=2 P C^{2}$. show that the equation to the locus of P is $7 x-7 y+4=0$.
12. When the axes are rotated through an angle α, find the transformed equation of $x \cos \alpha+Y \sin \alpha=P$
13. A straight line through $Q(\sqrt{3}, 2)$ makes an angle $\pi / 6$ with the positive direction of the X-axis. if the straight line intersects the line $\sqrt{3} x-4 y+8=0$ at P, find the distance $P Q$
14. Show that $f(x)=\sin x$ is continuous on R
15. Find the derivative of cosax from the first principle.
16. A stone is dropped into a quiet lake and ripples move in circles at the speed of $5 \mathrm{~cm} / \mathrm{sec}$. At the instant when the radius of circular ripple is 8 cm , how fast is the enclosed area increase?
17. Show that the curves $x^{2}+y^{2}=2,3 x^{2}+y^{2}=4 x$ have a common tangent at the point (1,1)
III. Answer any FIVE of the following Long Answer Questions. :
18. Find the circumcentre of the triangle whose vertices are $(1,3),(-3,5),(5,-1)$.
19. Find the centroid and area of the triangle formed by $2 y^{2}-x y-6 x^{2}=0$ and $x+y+4=0$
20. If the straight lines joining the origin with the points of intersecion of the curve $3 x^{2}-x y+3 y^{2}+2 x-3 y+4=0$ \& the lines $2 x+3 y=k$ are perpendicular then prove that $6 k^{2}-5 k+52=0$
21. Find the direction cosines of two lines which are connected by the relations $1+\mathrm{m}+\mathrm{n}, \mathrm{mn}-2 \mathrm{nl}-2 \mathrm{~lm}=0$.
22. If $x^{y}+y^{x}=a^{b}$ the show that $\frac{d y}{d x}=-\left(\frac{y x^{y-1}+y^{x} \log y}{x^{y} \log x+x y^{x-1}}\right)$
23. Show that the curves $Y^{2}=4(x+1)$ and $Y^{2}=36(9-x)$ interested orthogonally.
24. From a rectangular sheet of dimensions $30 \mathrm{~cm} \times 80 \mathrm{~cm}$, from equal squares of sides $\times \mathrm{cm}$ are removed at the corners and the sides are then turned up so as to form an open rectangularbox. what is the value of x, so that the volume of the box is the greatest?

BOARD MODEL PAPER - 2

MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. Find the equation of the straight line passing through the origin and making equal angles with the coordinated axes.
2. If the product of the intercepts made by the straight line $x \operatorname{tana}+\mathrm{Y} \sec \alpha=1$ on the co-ordinates axes is equal to $\sin \alpha$, find α.
3. If $M(\alpha, \beta, \gamma)$ is the mid point of the line segment joining the points $A\left(x_{1}, y_{1}, z_{1}\right)$ and B then find B.
4. Find the equation of the plane passing through the point $(2,3,4)$ and perpendicular to the X-axis.
5. Evaluate $\underset{x \rightarrow \infty}{\operatorname{Lt}}\left(\sqrt{x^{2}+x}-x\right)$
6. Evaluate $\underset{x \rightarrow \infty}{\operatorname{Lt}} \frac{\mathrm{e}^{\mathrm{x}}-1}{\sqrt{1+\mathrm{x}}-1}$
7. Find the derivative of $\log \left(\frac{x^{2}+x+2}{x^{2}-x+2}\right)$ wn. to x
8. If $y=\left(\cot ^{-1} x^{3}\right)^{2}$ then find $\frac{d y}{d x}$
9. Find the approximate value of $4 \sqrt{1}$
10. Show that there is no real number for whichthe equation $x^{2}-3 x+k=0$ has two distinct roots in $[0,1]$.

II. Answer any FIVE of the following Short Answer Questions:
[5 x $4=20]$
11. Find the equation of locus of P, If the ratio of the distances from P to $A(5,-4)$ and $B(7,6)$ is $2: 3$.
12. Show that the axes are to be rotated through an angle of $\frac{1}{2} \operatorname{Tan}-1\left(\frac{2 h}{a-b}\right)$ so as to remove the $x y$ term from the equation an angle $a x^{2}+2 h x y+b y^{2}+0$
13. Find the value of K if the angle between the straight lines $4 x-y+7=0, K x-5 y-9=0$ is 45°
14. Is the function f defined by $f(x)=\left\{\begin{array}{l}x^{2} \text { if } x \leq 1 \\ x \text { if } x>1\end{array}\right.$ continous on R ?
15. Find the derivative of $\cos ^{2} X$ from the first principle.
16. The volume of a cube is increasing at a rate of 9 cubic centimeters per second. How fast is the surface area increasing when the length of the edge is 10 centimeters?
17. Find the equation of the tangent to the curve $y=3 x^{2}-x^{3}$, where it meets the x-axis.

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. The base of an equilateral triangle is $x+y-2=0$ and the opposite vertex is $(2,-1)$. Find the equation of the remaining sides.
19. Prove that the product of the perpendicular from (α, β) to $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}}$
20. Show that the equatio $8 x^{2}-24 x y+18 y^{2}-6 x+9 y-5=0$ represents a pair of parallel straight lines and find the distance between them.
21. Show that the lines whose direction cosines are given by $1+m+n=0,2 m n+3 n l-51 m=0$ are perpendicular to each other.
22. Show that the derivates of $\operatorname{Sin}-1 \sqrt{\frac{x-b}{a-b}}$ and $\operatorname{Tan}^{-1} \sqrt{\frac{x-b}{a-x}}$ are equal.
23. Find the angle between the curves $2 y^{2}-9 x=0,3 x^{2}+4 y=0$ (in the $4^{\text {th }}$ quadrant).
24. Prove that the radius of the right circular cylinder of greatest curved surface area which can be incribed in a given cone is half of that of the cone.

BOARD MODEL PAPER - 3

MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. Find the value of x, if the slope of the line passing through $(2,5)$ and $(x, 3)$ is 2 .
2. Transform the equation $x+y+1=0$ into Normal form
3. Shoe that the points($1,2,3$), $(2,3,1)$ and $(3,1,2)$ form an equilateral triangle.
4. Find the angle between the planes $2 x-y+z=6$ and $x+y+2 z=7$
5. Show that $\operatorname{Lt}_{x \rightarrow 0+}\left(\frac{2|x|}{x}+x+1\right)=3$
6. Evaluate $\operatorname{Lt}_{x \rightarrow 0+} \frac{e^{3}+x-e^{3}}{x}$
7. If $f(x)=a^{x} \cdot e^{x^{2}}$ then find (x)
8. Find the derivative of $\log (\sin (\log x))$
9. Find the approximate value of $\sqrt[3]{65}$
10. Verify Rolle's theorem for the function $y=f(x)=x^{2}+4$ on $[-3,3]$
I. Answer any FIVE of the folloying Short Answer Questions:
11. $A(2,3)$ and $B(-3,4)$ be two given points. Find the equation of the locus of P so that the area of the triangle PAB is 8.5 sq.Units.
12. Find the transformed equation of $x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$, when the axes are rotated through an angle $\pi / 6$
13. Find the points on the line $3 x-4 y-1=0$ which are at a distance of 5 units from the point $(3,2)$.
14. Show that $f(x)=\left\{\begin{array}{ll}\frac{\cos a x-\cos b x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2}\left(b^{2}-a^{2}\right) & \text { if } x=0\end{array}\right.$, is continuous at 0 .
15. Find the derivative of $\sin 2 x$ from the first principle.
16. A particle is moving in a straight line so that after t seconds its distance s(in cms) from a fixed point on the line is given by $s=f(t)=8 t+t^{3}$. Find (i) the velocity at time $t=2 \sec (i i)$ the initial velocity (iii) acceleration at $t=2 \mathrm{sec}$.
17. Show that the tangent at any point θ on the $\operatorname{curve} x=\operatorname{csec} \theta, Y=\operatorname{ctan} \theta$ is $y \sin \theta=x-\cos \theta$.

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the equation of the straight lines passing through the point $(1,2)$ and making an angle of 60° with the line $\sqrt{3} x+y+2=0$
19. Prove that the area of the traingle formed by the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ and $1 x+m y+n=0$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{\left|a m^{2}-2 h / m+b\right|^{2} \mid}$
20. Find the value of K, if the lines Joining the origin with the points of intersection of the curve $2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and the line $x+2 y=k$ are mutually perpendicular.
21. If a ray makes angle $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube then show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+$ $\cos ^{2} \delta=4 / 3$.
22. If $x=\frac{3 a t}{1+t^{3}} y=\frac{3 a t^{2}}{1+t^{3}}$ then find $\frac{d y}{d x}$
23. At any point on the curve $\mathrm{x}=\mathrm{a}(\mathrm{t}+\operatorname{sint}), \mathrm{Y}=\mathrm{a}(1-\cos \mathrm{t})$, find the length of tangent and normal
24. A wire of length I is cut into two parts which are bent respectively in the form of a square and a circle. what are the lengths of pieces of wire so that the sum of areas is least?

BOARD MODEL PAPER - 4
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x $2=20]$

1. Transform the equation $x+y+1=0$ into normal form.
2. Evaluate $\underset{x \rightarrow 2}{\operatorname{Lt}}([x]+x)$
3. Show that the points $A(3,-2,4), B(1,1,1), C(-1,4,-2)$ are collinear.
4. Reduce the equation $4 x-4 y+2 z+5=0$ of the plane to the intercept form.
5. Compute $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{3^{x}-1}{\sqrt{1+x}-1}$
6. Find $\underset{x \rightarrow \infty}{\operatorname{Lt}} \frac{8|x|+3 x}{3|x|-2 x}$
7. If $Y=x^{2} e^{x} \sin x$, then find $\frac{d y}{d x}$
8. Find the derivative of $\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right.$
9. The side of a square is increased from 3 cmion 3.01 cm . find the approximate increase in its area.
10. Verify Rolle's theorem for the fundtion $x^{2}-1$ on $[-1,1]$

II. Answer any FIVE of the following Short Answer Questions:
11. $A(5,3)$ and $B(3,-2)$ are two fixed points. Find the equation of locus of p, so that the area of $\Delta P A B$ is 9 sq. units
12. Show that the axes are to be rotated through an angle of $\frac{1}{2} \operatorname{Tan}-1\left(\frac{2 h}{a-b}\right)$ so as to remove the term from the equation $a x^{2}+2 h x y+b y^{2}=0$
13. Find the image of $(1,2)$ in the straight line $3 x+4 y-1=0$
14. Show that $f(x)=\left\{\begin{array}{ll}\frac{\cos a x-\cos b x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2}\left(b^{2}-a^{2}\right) & \text { if } x=0\end{array}\right.$, is continuous at 0 .
15. Find the derivatives of cotx from the first principle.
16. A particle moving along a straight line has the relation $s=t^{3}+2 t+3$, connecting the distnace s describe by the particle in time t. Find the velocity an acceleration of the particle at $t=4$ sec.
17. Find the equations of the tngent and the normal to the curve $y=x^{3}+4 x^{2}$ at $(-1,3)$

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the circumcenter of the traingle whose vertices are $(1,3),(0,-2)$ and $(-3,1)$
19. Find the centroid and area of the triangle formed by $2 y^{2}-x y-6 x^{2}=0$ and $x+y+4=0$
20. Write down the equation of the pair of lines joining the origin of intersection of the line $6 x-y+8=0$ with the pair of lines $3 x 2+4 x y-4 y 2-11 x+2 y+6=0$. show that the lines so obtained make equal angles with the coordinate axes.
21. Find the angle between the lines whose direction cosines satisfy the equation $1+m+n=0, r^{2}+m^{2}-n^{2}=0$
22. Find the derivative of $(\sin x)^{\log x}+x^{\sin x}$.
23. If the tangent at any point P on the curve $x^{m} y^{n}=a^{m+n}, m n \neq 0$ meets the coordinate axes in A, B then show that $\mathrm{AP}: \mathrm{BP}$ is a constant.
24. Show that when the curved surface of a is right circular cylinder inscribed in a sphere of radius R is maximum, then the height of the cylinder is $\sqrt{2} R$
$* * * * * * * * * * *$

BOARD MODEL PAPER - 5
 MATHS - 1B (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. Find the ratio in which the straight line $2 x+3 y-20=0$ divides the joins of the points $(2,3)$ and $(2,10)$
2. Find the length of the perpendicular from the point $(-2,-3)$ to the straight line $5 x-2 y+4=0$
3. Show that the points $(1,2,3),(7,0,1),(-2,3,4)$ are collinear.
4. Find the equation of the plane throught the points (α, β, γ) and parallel to the plane $a x+b y+c z=0$
5. Find $\underset{x \rightarrow 1}{\operatorname{Lt}} \frac{\sin (x-1)}{x^{2}-1}$
6. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{e^{\sin x}-1}{x}$
7. If $f(x)=2 x^{2}+3 x-5$, then prove that $f^{\prime}(0)+3 f^{\prime}(-1)=0$,
8. If $X=e^{\text {sinhy }}$ then find $\frac{d y}{d x}$
9. FInd the length of subtangentat a point on the curve $y=b \sin \left(\frac{x}{a}\right)$
10. Verify Rolle's theorem for the function $f(x)=\left(x^{2}-5 x+6\right.$ on the interval $[-3,8]$
II. Answer any FIVE of the following Short Answer Questions:
11. Find the equation of focus of a point, which forms a triangle of area 2 with the points $A(1,1), B(-2,3)$
12. When the origin is shifted to the point($-1,2$), the transformed equation of a curve is $x^{2}-2 y^{2}+16=0$. Find the original equation of the curve.
13. Find the equation of the straight line parallel to the line $3 x+4 y=7$ and passing through the point of intersection of the lines $x-2 y-3=0, x+3 y-6=0$.
14. Is f defined by $f(x)=\left\{\begin{array}{lll}\frac{\sin 2 x}{x} & \text { if } & x \neq 0 \\ & \text { if } & x \neq 0\end{array}\right.$ continuous at 0 ?
15. If $Y=\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}$ then find $\frac{d y}{d x}$
16. The radius of an air bubble is increasing at the rate of $1 / 2 \mathrm{~cm} / \mathrm{sec}$. At what rate is the volume of the bubble increasing when the radius is 1 cm ?
17. Find the equation of tangent and normal to the curve $y=2 . e^{\frac{-x}{3}}$ at the point where the curve meets the Y-axis

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the orthocentre of the traingle whose sides are given by $x+y+10=0, x-y-2=0$ and $2 x+y-7=0$
19. If (α, β) is the centroid of the traingle formed by the lines $a x^{2}+2 h x y+b y^{2}=0, I x+m y=1$ then $\frac{\alpha}{\mathrm{bl}-\mathrm{hm}}=\frac{\beta}{\mathrm{am}-\mathrm{hl}}=\frac{2}{3\left(\mathrm{bl}^{2}-2 \mathrm{hlm}+\mathrm{am}^{2}\right)}$
20. Find the condition for the lines joining the origin to the points of intersection of the circle $x^{2}+y^{2}=a^{2}$ and the line $\mathrm{lx}+\mathrm{my}=1$ to coincide.
21. $A(1,8,4), B(0,-11,4), C(2,-3,1)$ and 3 points and D is the foot of the perpendicular from A to $B C$. Find the Coordinates of D.
22. Find the derivative of $\operatorname{Sin}^{-1}\left(\frac{b+a \sin x}{a+b \cos x}\right)$ w.r.to x.
23. Show that the square of the length of subtangent at any point on the curve $b y^{2}=(x+a)^{3}, b \neq 0$ varies with the length of the subnormal at the point.
24. Find the maximum area of the rectangle that can be formed with fixed perimeter 20.

BOARD MODEL PAPER - 6
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x $2=20$]

1. Find the value of K. If the straight lines $y-3 k+4=0$ and $(2 k-1) x-(8 k-1) y-6=0$ are perpendicular.
2. Find the equation of the straight line passing through the point $(-2,4)$ and making intercepts whose sum is zero.
3. Find the ratio in which the point $C(6,-17,-4)$ divides the line segment joining the points $A(2,3,4)$ and $B(3,-2,2)$.
4. Reduce the equation $x+2 y-3 z-6=0$ of the plane to the normal form.
5. Evaluate $\operatorname{Lt}_{x \rightarrow 0} \frac{\cos a x-\cos b x}{x^{2}}$
6. Find $\operatorname{Lt}_{x \rightarrow 0}(\sqrt{x+1}-\sqrt{x})$
7. If $y=\log (\cosh 2 x)$, then find $\frac{d y}{d x}$
8. Find the derivates of $\operatorname{Tap}^{-1}\left(\frac{a-x}{1+a x}\right)$
9. If $Y=x^{2}+x, x=10, \Delta x=0.1$, then find Δy and $d y$
10. State Rolle's Theorem.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:
[5 x 4 = 20]
11. Find the equation of locus of P, if $A=(-4,0) B=(-4,0)$ and $|P A-P B|=4$
12. When the axes are rotated through an angle $\pi / 4$, Find the transformed equation of $3 x^{2}+10 x y+3 y^{2}=9$
13. If the straight lines $a x+b y+c=0$ and $c x+a y+b=0$ are concurrent, then prove that $a^{3}+b^{3}+c^{3}=3 a b c$
14. If f is given by $f(x)=\left\{\begin{array}{ll}k^{2} & x-k \text { if } x \geq 1 \\ 2 & \text { if } x<1\end{array}\right.$ is a Continous function on R, Then Find K.
15. Find the derivative of $\sin 2 x$ from the first principles
16. Show that at any point (x, y) on the curve $y=b e^{x / a}$, the length of subtangent is a constant and the length of the subnormal is $Y^{2 / a}$.
17. A container in the shape of an inverted cone has height 8 cm and radius 6 cm at the top. If it is filled with water at the rate of $2 \mathrm{~m}^{3} / \mathrm{mn}$, What is the rate of change in the height of water level when the tank is filled 4 m ?

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the circumcentre of the triangle Whose sides are given by $x+y+2=0,5 x-y-2=0$ and $x-2 y+5=0$
19. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two parallel lines then P.T (i) $h^{2}=a b$ (ii) $a f^{2}=b g^{2}$
(iii) The distance between the parallel is $2 \sqrt{\frac{g^{2}-a c}{b(a+b)}}$ or $2 \sqrt{\frac{f^{2}-b c}{b(a+b)}}$
20. Find the value of K, If the lines joining the origin with the points of intersection of the curve $2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and lines $x+2 y=k$ are mutually perpendicular.
21. If a ray makes angle $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube then Show that $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+\cos 2 \delta=4 / 3$
22. Find the derivative $\frac{d y}{d x}$ of the function $\mathrm{Y}=\frac{(1-2 x)^{2 / 3}(1+3 x)^{-3 / 4}}{(1-6 x)^{5 / 6}(1+7 x)^{-6 / 7}}$
23. Find the angle between the curves $x+y+2=0$ and $x^{2}+y^{2}-10 y=0$
24. A windoe is in the shape of arectangle surrounded by a semi-circle, if the perimeter of the window be 20 feet then the maximum area.

BOARD MODEL PAPER - 7

MATHS - 1B
(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x 2 = 20]

1. Find the ratio in which the straight line $2 x+3 y-5=0$ divides the lines joining the points $(0,0)$ and $(-2,1)$.
2. Find the equations of the straight lines passing through ($\mathrm{x}_{0}, \mathrm{y}_{0}$) and (i) parallel (ii) Perpendicular to the straight line $a x+b y+c=0$
3. Find the distance between the mid point of the line segment $\overline{\mathrm{AB}}$ and the point $(3,-1,2)$ when $A=(6,3,-4), B=(-2,-1,2)$.
4. Find the equation of the plane through $(-1,6,2)$ and perpendicular to the join of $(1,2,3),(-2,3,4)$
5. Evaluate $\operatorname{Lt}_{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}-1}$
6. Find $\operatorname{Lt}_{x \rightarrow a}\left[\frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}\right]$
7. Find the derivates of $\operatorname{Cos}^{-1}\left(4 x^{3}-3 x\right)$
8. If $Y=\operatorname{Cosec}^{-1}\left(e^{2 x+1}\right)$, Find
9. The diameter of a sphere is measured to be 40 cm . If an error of 0.02 cm is made in it, then find approximate errors in volume and surface area of the sphere.
10. Verify Lagrange's mean value theorem for the function $f(x)=x^{2}$ on $[2,4]$

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:
11. Find the equation of locus of a point, the sum of whose distances from $(0,2),(0,-2)$ is 6 units.
12. Prove that the point to which the origin should be shifted to eliminate the first degree trems in the
equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is $\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right), a b \neq h^{2}$
13. Find the incenter of the traingle whose vertices are $(1, \sqrt{3}), ?(2,0)$ and $(0,0)$
14. Show that $f(x)=\sin x$ is Continious on R.
15. Find the derivative of $a x^{2}+b x+c$ from the first principles.
16. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{sec} /$ what is the rate of increase of its circumcentre.
17. Find K so that the length of the subnormal at any point on the curve $x y^{k}=a^{k+1}$ is a constant.

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the area of the parallelogram whose sides are $3 x+4 y+5=0,3 x+4 y-2=0,2 x+3 y+1=0,2 x+3 y-7=0$
19. If θ is the angle between the pair of lines $a x 2+2 h x y+b y 2=0$ then prove that $\cos \theta=$

$$
\frac{a+b}{\sqrt{(a-b)^{2}+4 h^{2}}}
$$

20. Show that straight line $y^{2}-4 y+3=0, x^{2}+4 x y+4 y^{2}+5 x+10 y+4=0$ form a parallelogram and find the length od its sides.
21. Find the direction cosines of two lines which are connected by the relations $1+\mathrm{m}+\mathrm{n}=0$, $\mathrm{mn}-2 \mathrm{nl}-2 \mathrm{~lm}=0$.
22. If $f(x)=\left(a^{2}-b^{2}\right)^{-1 / 2} \cdot \cos -1\left(\frac{a \cos x+b}{a+b \cos x}\right), a>b>0$ and $0<x<$; then show show that $f^{\prime}(x)=(a+b \cos x)^{-1}$
23. FInd the angle between the curves $2 y^{2}-9 x=0,3 x^{2}+4 y=0$ (in the $4^{\text {th }}$ quadrant).
24. Find two positive integers x and y such that $x+y=60$ and $x y^{3}$ is maximum.

BOARD MODEL PAPER - 8

MATHS - 1B
(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x 2 = 20]

1. Find the equation of the line perpendicular to the line $3 x+4 y+6=0$ and marking -4 on the X-axis.
2. If the product of the intercepts madeby the straight line $\mathrm{x} \tan \alpha+\mathrm{ysec} \alpha=1,\left(0 \leq \alpha<\frac{\pi}{2}\right)$, on the coordinates axes is equal to $\sin \alpha$, find α.
3. If $M(\alpha, \beta, \gamma)$ is the mid point of the line segment joining the points $A\left(x_{1}, y_{1}, z_{1}\right)$ and B then Find B.
4. Find the equation of the planepassing through the point $(2,3,4)$ and perpendicular to the X -axis.
5. Find $\operatorname{Lt}_{x \rightarrow a}\left(\frac{x \sin a-a \sin x}{x-a}\right)$
6. Find $\underset{x \rightarrow 0}{ } \frac{\sin (a+b x)-\sin (a-b x)}{x}$
7. Find the derivative of $\log \left(\frac{x^{2}+x+2}{x^{2}-x+2}\right)^{\text {w.r.to } x}$
8. If $y=\left(\operatorname{Cot}^{-1} x^{3}\right)^{2}$ then find $\frac{d y}{d x}$
9. Find the approximate value of $\sqrt[4]{7}$
10. If $0 \leq x \leq \frac{\pi}{2}$, then show that $x \geq \sin x$.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:
11. Find the equation of Locus of P, If the ratio of the distances from P to $A(5,-4)$ and $B(7,6)$ is 2.3
12. When the origin is shifted to the translation of axes, Find the transformed equation of $2 x^{2}+y^{2}-4 x+4 y=0$
13. $(-4,5)$ is a Vertex of a square and one of its diagonals is $7 x-y+8=0$. Find the eqaution of the other diagonal.
14. Evaluate $\operatorname{Lt}_{x \rightarrow \infty} \frac{x^{2}-\sin x}{x^{2}-2}$
15. Using first principle, find the derivative of $\log _{e}{ }_{\mathrm{x}}$ where $\mathrm{x} \in(0, \infty)$
16. The volume of a cube is increasing at a rate of 8 cubic centimeters per second. How fast is the surface area increasing when the length of the edge is 12 cm ?
17. Find the equations of the tangent and the normal to the curve $y^{4}=a x^{3}$ at (a, a)

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. The base of an equilateral traingle is $x+y-2=0$ and the opposite vertex is $(2,-1)$. Find the equation of the remaining sides.
19. show that the lines $(x+2 a)^{2}-3 y^{2}=0, x=a$ form an equilateral traingle.
20. Show that the equation $8 x 2-24 x y+18 y 2-6 x+9 y-5=0$ represents a pair of parallel straight lines and find the distance between them.
21. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ and d.c.s of two interesting lines, show that d.c.s of two lines, bisecting the angles between them are proportional to $l_{1} \pm l_{2}, m_{1} \pm m_{2}, n_{1} \pm n_{2}$.
22. Show that the derivatives of $\operatorname{Sin}^{-1} \sqrt{\frac{x-b}{a-b}}$ and $\operatorname{Tan}^{-1} \sqrt{\frac{x-b}{a-x}}$ are equal.
23. Find the length of subtangent, subnormal at a point on the curve $x=a(\operatorname{cost}+t \sin t), Y=a(\operatorname{sint}-t$ tcost)
24. Prove that the radius of the right circular cylinder of greatest curved surface area which can be incresided in a given cone is half of that of the cone.
$* * * * * * * * * * *$

BOARD MODEL PAPER - 9
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x 2 = 20]

1. Transform the equation $4 x-3 y+12=0$ into (i) Slope - Intercept form (ii) Intercept form
2. Find the value of ' P ' if the lines $4 x-3 y-7=0,2 x+p y+2=0$ and $6 x+5 y-1=0$ are concurrent.
3. Find the ratio which the $X Z$ - plane divides the line joining $A(-2,3,4)$ and $B(1,2,3)$
4. Find the angle between the planes $x+2 y+2 z-5=0$ and $3 x+3 y+2 z-8=0$
5. Evalute $\underset{x \rightarrow a}{\operatorname{Lt}} \frac{\tan (x-a)}{x^{2}-a^{2}}$
6. Compute $\operatorname{Lt}_{x \rightarrow \infty} \frac{x^{2}+5 x+2}{2 x^{2}-5 x+1}$
7. Find the derivative of $Y=\sqrt{2 x-3}+\sqrt{7-3 x}$.
8. Find the derivative of $Y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
9. If $Y=5 x^{2}+6 x+6$, then find Δy and dy when $\Delta x=2 x=0.001$
10. Verify Rolle's theorem of the function $\log \left(x^{2}+2\right) \cdot \log 3$ on $(-1,1)$
II. Answer any FIVE of the forlowing Short Answer Questions:
[5 x $4=20]$
11. Find the locus of the 3 rd vertex of a riight angled triangle, ends of whose hypotenuse are $(4,0)$ and $(0,4)$
12. Find the point to which the origin is to be shifted so as to remove the first degree terms from the equation $4 x^{2}+9 y^{2}-8 x+36 y+4=0$
13. A straight line with slope 1 passes through $Q(-3,5)$ and meets the straight line $x+y-6=0$ at P Find the distance $P Q$
14. Check the continuity of ' f ' given by $f(x)=\left\{\begin{array}{l}4-x^{2} \text { if } x \leq 0 \\ x-5 \text { if } 0<x \leq 1 \\ 4 x^{2}-9 \text { if } 1<x<2 \\ 3 x+4 \text { if } x{ }^{2} 2\end{array}\right.$ at points $x=0,1,2$
15. Find the derivative of x^{3} from first principle.
16. Let a kind of bacteria grow in such a way that time $t \mathrm{sec}$, there are $\mathrm{t}^{3 / 2}$ bacteria. Find the rate of growth at time $t=4$ hours
17. Determine the intervals in which $\mathrm{f}(\mathrm{x})=\frac{2}{(x-1)}+18 \mathrm{x} \forall x \in R \backslash\{0\}$ is strictly increasing and decreasing.

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the orthocentre of the traingle formed by the vertices $(-2,-1),(6,-1)$ and $(2,5)$
19. Show that the equation $2 x^{2}-13 x y-7 y^{2}+x+23 Y-6=0$ represents a pair of straight lines. Also find the angle between them and the coordinates of the point of intersection of the lines.
20. Show that the lines joining the origin to the points of intersection of the curve $x^{2}-x y+y^{2}+3 x+3 y$
21. Find the angle between the lines whose d.c's are related by $I+m+n=0 \& I^{2}+m^{2}-n^{2}=0$
22. If $\sin y=x \sin (a+y)$ then show that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\operatorname{Sin} a}$
23. At a point $\left(x_{1}, y_{1}\right)$ on the curve $x 3+y 3=3 a x y$, show that the tangent is $\left(x_{1}{ }^{2}-a y_{1}\right) x+\left(y_{1}^{2}-a x_{1}\right) y=a x_{1} y_{1}$
24. Shoe that curves $6 x^{2}-5 x=2 y=0,4 x^{2}+8 y^{2}=3$ touch each other at $(1 / 2,1 / 2)$

BOARD MODEL PAPER - 10

MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. Find k, If the lines $y-3 k x+4=0$ and $(2 k-1) x-(8 k-1) y-6=0$ are perpendicular.
2. Find the ratio in which the lines $2 x+3 y-5=0$ divides the lines joining the points $(0,0) \&(-2,1)$
3. If $(3,2-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2$,$) is the centroid of a tetrahedron find the$ fourth vertex.
4. Write the equation of the plane $4 x-4 y+2 z+5=0$ in the intercept form
5. Evaluate $\operatorname{Lt}_{\mathrm{x} \rightarrow 0} \frac{\mathrm{a}^{\mathrm{x}}-1}{\mathrm{~b}^{x}-1}$
6. Evaluate $\operatorname{Lt}_{x \rightarrow \infty} \frac{11 x^{3}-3 x+4}{13 x^{3}-5 x^{2}-7}$
7. Find the derivatives of $y=e^{a \sin -1} x$
8. If $y=x^{x}$, then find $\frac{d y}{d x}$
9. If the increase in the side of a square is 4% then find the approximate percentage of increase in the area of the square
10. Verify Rolle's theorem for the function $x^{2}-1$ on $[-4,1]$

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:
11. Find the equation of locus of a point P, if $A=(2,3), B=(2,-3)$ and $P A+P B=8$
12. When the prigin is shifted to the point $(2,3)$, the transformed equation of ε curves is $x^{2}+3 x y-2 y^{2}+17 x-7 y-11=0$. find the original equation of the curve.
13. Transform the equation $\frac{x}{a}+\frac{x}{b}=1$ into normal form, where $\mathrm{a}>0$ and $\mathrm{b}>0$. if the perpendicular distance of the straight line from the Origin is P then deducethat $\frac{1}{P^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
14. If f is given by $f(x)=\left\{\begin{array}{l}k^{2} x-k \text { if } x \geq 1 \\ 2 \text { if } x<1\end{array}\right.$ is a continous function on R, then find k.
15. Find the derivates of $\tan 2 x$
16. The distance - time formula for the motion of a particle along a straight line is $s=t^{3}-9 t^{2}+24 t-18$. Find when and where the velocity is zero.
17. Find the value of K so that the length of the subnormal at any point on the curve $x y^{k}=a^{k+1}$ is a constant

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the circumcentre of the traingle with vertices $(1,3),(-3,5),(5,-1)$
19. Prove that the equation of pair of angular bisectors of $a x^{2}+2 h x y+b y^{2}=0$ is $h\left(x^{2}-y^{2}\right)-(a-b) x y=0$
20. Show that the lines joining the origin with the points of intersection of the curv $7 x^{2}-4 x y+8 y^{2}+2 x-4 y-8=0$ with the line $3 x-y=0$ are mutually perpendicular.
21. Find the angle between two diogonals of a cube
22. If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$ then prove that $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$
23. Show that tangent at $P\left(x_{1}, y_{1}\right)$ on the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ is $x x_{1}^{\frac{-1}{2}}+y y_{1}^{\frac{-1}{2}}=a^{\frac{1}{2}}$
24. Find the maximum area of traingle that can be formed with fixed perimeter 20 .

$$
* * * * * * * * * * *
$$

PREVIOUS IPE:MARCH - 2013

MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. Find the equation of straight line passing through the point point $(5,4)$ and parallel to the line $2 x+3 y+7=0$
2. Find the value of P, If straight lines $x+p=0, y+2=0,3 x+2 y+5=0$ are concurrent
3. Show that the points $A=(1,2,3) B=(7,0,1), C=(-2,3,4)$ are collinear.
4. Find the direction cosines of the normal to the plane $x+2 y+2 z-4=0$
5. Evaluate $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{a^{x}-1}{b^{x}-1}\right)(a>b>0, b \neq 1)$
6. Evaluate $\operatorname{Lt}_{x \rightarrow 0} \frac{e^{x}-\sin x-1}{x}$
7. If $\mathrm{Y}=\operatorname{Sin}^{-1} \sqrt{x}$, then find $\frac{d y}{d x}$
8. If $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$ find $\frac{d y}{d x}$
9. Find the approximate value of $\sqrt{82}$
10. Let $f(x)=(x-1)(x-2)(x-3)$ then prove that there 's more than one ' c ' in $(1,3)$ such that $f^{\prime}(c)=0$

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:
11. Find the equation of locus of P, if the line segment joining $(2,3) \&(-1,5)$ subtends a right ange at P.
12. Prove that the angle of rotation of the axes to climate $x y$ term from the equation $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{1}{2}$ $\tan -1\left(\frac{2 \mathrm{~h}}{\mathrm{a}-\mathrm{b}}\right)$ where $\mathrm{a} \neq \mathrm{b}$ and $\pi / 4$ if $\mathrm{a}=\mathrm{b}$
13. Find the point on the straight lines $3 x+y+4=0$ which is equidistant form the points $(-5,60$ and $(3,2)$
14. Is F given by $f(x)= \begin{cases}\frac{x^{2}-9}{x^{2}-2 x-3} \\ 1.5 & \text { if } 0, x, 5 \text { and } x \neq 3 \text {, Continuous at the point } 3 .\end{cases}$
15. Find the derivative of cosax from the first principle.
16. The volume of a cube is increasing at a rate of 9 cubic centimeters per second. How fast is the surface area increasing when the length of edge is 10 cms ?
17. Find lengths of normal and subnormal at a point on the curve $y=\frac{a}{2}\left(e^{\frac{x}{a}}+e^{\frac{x}{a}}\right)$

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. If $Q(h, k)$ is the image of the point $P\left(x_{1}, y_{1}\right)$ with respect to the straight line $a x+b y+c=0$ then prove that $\left(h-x_{1}\right) ; a=\left(k-y_{1}\right) ; b=-2\left(a x_{1}+b y_{1}+c\right) ;\left(a^{2}+b^{2}\right)$.
19. Prove that area of the triangle formed by $a x^{2}+2 h x y+b y^{2}=0$ and $\mid x+m y+n=0$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{a m^{2}-2 h / m+\left.b\right|^{2}}$
20. Find the angle between the lines joining the origin to the points of intersection of the curve $x^{2}+2 x y+y^{2}+2 x+2 y-5=0$ and the line $3 x-y+1=0$
21. Find the angle between the lines whose d.c's are related by $1+m+n=0 \& I^{2}+m^{2}-n^{2}=0$
22. Find the derivatives of $(\sin x)^{\log x}+x^{\sin x}$
23. If the tangent at a point on the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ interests the coordinates axes in A, b then show that the length $A B$ is a constant
24. If the curves surface of right circular cylinder inscribed in a sphere of radius R is maximum, show that the height of the cylinder is $\sqrt{2} R$

PREVIOUS IPE:MAY - 2013

MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x $2=20$]

1. Find the equation of straight line passing through the point $(-2,4)$ and making nonzero intercepts whose sum is zero.
2. Find the distance between the parallel straight lines $3 x+4 y-3=0$.
3. Reduce the equation $x+2 y-3 z-6=0$ of the plane to the normal form.
4. Compute $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\mathrm{e}^{7 x}-1}{\mathrm{x}}$
5. Show that $\operatorname{Lt}_{x \rightarrow 0}(\sqrt{x+1}-\sqrt{x})=0$
6. If $(3,2,-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2)$ is the centroid of a tetrahedron find the fourth vertex.
7. If $y=\left(\cot ^{-1} x^{3}\right)$, then find $\frac{d y}{d x}$
8. If $y=e^{2 x} \cdot \log (3 x+4),\left(x>\frac{-4}{3}\right)$, then find
9. If $y=e^{x}+x, x=5, \Delta x=0.02$, then find Δy and $d y$.
10. Find the value of ' c ' in Roltes theorem for the function $f(x)=x^{2}-1$ on $[-1,1]$

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:
11. Find the equation of the locus of P, if $A=(4,0), B=(-4,0)$ and $|P A-P B|=0$
12. When the axes are roated through an angle $\pi / 6$, find the transformed equation of $x^{2}+2 \sqrt{3} x-y^{2}=2 a^{2}$
13. If p, q are the lengths of the perpendiculars from the origin to the straightlines $x \sec \alpha+y \operatorname{cosec} \alpha=a$ and $x \cos \alpha-y \sin \alpha=a \cos 2 \alpha$. prove that $4 p^{2}+q^{2}=a^{2}$.
14. Find the real constants a, b so that the function f given by
$f(x)=\left\{\begin{array}{lll}\sin x & \text { if } & x \leq 0 \\ x^{2}+\alpha & \text { if } & 0<x<1 \\ b x+3 & \text { if } & 1 \leq x \leq 3 \\ -3 & \text { if } & x>3\end{array}\right.$ is continous on R.
15. Find the derivarive of $\sin 2 x$ from the first principle.
16. A container is in the shape of an inverted cone has a height 8 m and radius 6 m at the top. If it is filled with water at the rate of $2 \mathrm{~m}^{3} /$ minute, how fast is the height of water changing when the level is 4 m ?
17. Find the equations of the normal to the curve $y^{4}=a x^{3}$ at (a, a)

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the orthocenter of the traingle whose sides are given by $x+y+10=0, x-y-2=0$ and $2 x+y-7=0$
19. If the equation $a x 2+2 h x y+b y 2=0$ represents a pair of intersecting lines, then prove the combined equation of the pair of bisectirs of the angles between these lines is $h\left(x^{2}-y^{2}\right)=(a-b) x y$.
20. Find the condition for the chord $1 x+m y=1$ of the circle $x^{2}+y^{2}=a^{2}$ (whose centre is the origin) to subtend a right at the origin.
21. Find the angle between the diagonals of a cube.
22. If $\mathrm{y}=\mathrm{x}^{\tan \mathrm{x}}+(\sin \mathrm{x})^{\cos \mathrm{x}}$ find $\frac{d y}{d x}$
23. Find the angle between the curves $x y=2$ and $x^{2}+4 y=0$
24. If the curved surface of right circular cylinder inscribed in a sphere of radius R is maximum, show that the height of the cylinder is $\sqrt{2} R$.

PREVIOUS IPE : MARCH - 2014

MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 $\times 2$ = 20]

1. Find the ratio in which the straight line $2 x+3 y-5=0$ divides the line joining the points $(0,0)$ and $(-2,1)$
2. Find the equation of the straight line passing through the points (at $\left.{ }_{1}{ }^{2}, 2 \mathrm{at}_{1}\right),\left(\mathrm{at}_{2}{ }^{2}, 2 a t_{2}\right)$
3. If $(3,2,-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2)$ is the centroid of a tetrahedron find the fourth vertex of that tetrahedron.
4. Reduce the equation $x+2 y-3 z-6=0$ of the plane to the normal form.
5. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sqrt{1+x}-1}{x}$
6. Evaluate $\operatorname{Lt}_{x \rightarrow \infty} \frac{11 x^{3}-3 x+4}{13 x^{3}-5 x^{2}-7}$
7. Find the derivatives of $\log (\sec x+\tan x)$
8. Find the derivatives of $\operatorname{Cos}-1\left(4 x^{3}-3 x\right)$ wh.to x
9. If $y=x^{2}+3 x+6$ then find Δy and $d y$ when $x=10, \Delta x=0.01$.
10. Verify Rolle's theorem for the function $x^{2}-4$ on $[-14]$
II. Answer any FIVE of the follouving Short Answer Questions:
11. Find the locus of $P(x, y)$ which moves such that its distance from $A(5,-4), B(7,6)$ are in the ratio $2: 3$.
12. When the axes are rotated through an angle α, find the transformed equation of $x \cos \alpha+y \sin \alpha=P$
13. Find the value of y, if the line joining $(3, y)$ and $(2,7)$ is parallel to the line joining the points $(-1,4)$ and $(0,6)$
14. Is f given by $f(x)=\left\{\begin{array}{l}\frac{x^{2}-9}{x^{2}-2 x-3} \\ 1.5\end{array}\right.$ if $0, x, 5$ and $x \neq 3$, Continuous at the point 3 .
15. Find the derivative of $\tan 2 x$ from the first principle.
16. Find the angle between the curves $x+y+2=0$ and $x^{2}+y^{2}-10 y=0$
17. The volume of a cube is increasing at a rate of 8 cubic centimeters per second. how fast is the surface area increasing when the length of the edge is 12 cm ?

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the circumcentre of the traingle whose sides are $x+y+2=0,5 x-y-2=0, x-2 y+5=0$
19. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of lines then prove that
(a) $\Delta=a b c+2 f g h-a^{2}-$ bg $^{2}-$ ch $^{2}=0$
(b) $h^{2} \geq a b, f^{2} \geq b c, g^{2} \geq a c$.
20. Find the condition for the chord $\mathrm{lx}+\mathrm{my}=1$ of the circle $\mathrm{x} 2+\mathrm{y} 2=\mathrm{a} 2$ (whose centre is the origin) to subtend a right at the origin.
21. If the vertices of a traingle are $\mathrm{A}(1,4,2), \mathrm{B}(-2,1,2), \mathrm{C}(2,3,-4)$ then find $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$.
22. Find the derivative of $x^{\tan x}+(\sin x)^{\cos x}$ w.r.t0 x.
23. If the tangent at a point on the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ intersects the coordinates axes in A, B then show that the length $A b$ is a constant.
24. From a rectangular sheet of dimensions $30 \mathrm{~cm} \times 80 \mathrm{~cm}$, four equal squares of sides xcm are removed at the corners and the sides are then turned up so as to form an open rectangularbox. what is the value of x, so that the volume of the box is the greatest?

PREVIOUS IPE : MAY -2014

MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x 2 = 20]

1. Transform the equation $4 x-3 y+12=0$ (i) Slope - intercept form, (ii) intercept form
2. Find the value of ' p ' if the lines $4 x-3 y-7=0,2 x+p y+2=0$ and $6 x+5 y-1=0$ are concurrent.
3. Find the ratio which the $X Z$ - plane divides the line joining $A(-2,3,4)$ and $B(1,2,3)$ Also find the point of intersection
4. Find the equation of the plane which makes intercepts $1,2,4$ on the x, y, z axes respectively.
5. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{x\left(e^{x}-1\right)}{1-\cos x}$
6. Compute $\operatorname{Lt}_{x \rightarrow \infty} \frac{x^{2}+5 x+2}{2 x^{2}-5 x+1}$
7. If $f(x)=1+x+x^{2}+$ \qquad $+x^{100}$, then find $f^{1}(1)$
8. If $y=a e^{n x}+b e^{-n x}$, then prove that $y n=n^{2} y$.
9. If the increase in the side of a square is 4% then find the approximate percentage of increase in the area of the square.
10. Define the strictly increasing function and strictly decreasing function on an interval.
II. Answer any FIVE of the following Short Answer Questions:
11. If the distance from ' P to the points $(2,3)$ and $(2,-3)$ are in the ratio $2: 3$ then find the equation of locus of P.
12. When the axes are rotated through an angle $\pi / 4$, find the transformed equation of $3 x^{2}+10 x y+3 y^{2}=9$
13. If $Q(h, k)$ is the foot of the perpendicular of $P(x 1, y 1)$ on the line $a x+b y+c=0$ then prove that $\left(h-x_{1}\right)$: $a=\left(k-y_{1}\right): b=-\left(a x_{1}+b y_{1}+c\right):\left(a^{2}+b^{2}\right)$.
14. Show that $f(x)=\left\{\begin{array}{ll}\frac{\cos a x-\cos b x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2}\left(b^{2}-a^{2}\right) & \text { if } x=0\end{array}\right.$, is continuous at 0 .
15. Find the derivative of cosax from the first principles.
16. Find the equation of the tangent and the normal to the curve $y=x^{3}+4 x^{2}$ at $(-1,3)$
17. Find the length of sub tangent, subnormal at a point t on the curve $x=a(\operatorname{cost}+t \operatorname{sint}), y=a($ sint-tcost)

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the orthocenter of the tringle formed by the lines $x+2 y=0,4 x+3 y-5=0$, and $3 x+y=0$
19. Prove that the product of the perpendicular from (α, β) to $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}}$
20. Find the angle between the lines joining the origin to the points of intersection of the curve $x^{2}+2 x y+y^{2}+2 x+2 y-5=0$ and the line $3 x-y+1=0$
21. Find the angle between the lines whose d.c's are related by $1+m+n=0$ and $I^{2}+m^{2}-n^{2}=0$
22. If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$ then prove that $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$
23. Find the condition for the orthogonality of the curves $a x 2+b y 2=1$ and $a_{1} x^{2}+b_{1} y^{2}=1$ is $\frac{1}{a}-\frac{1}{b}=\frac{1}{a_{1}}-\frac{1}{b_{1}}$
24. Find two positive intergers x and y such that $x+y=60$ and $x y^{3}$ is maximum.

IPE: MARCH -2015[AP]

MATHS - 1B

(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x 2 = 20]

1. Find the are of the traingle formed by straight line $3 x-4 y+2=0$ with co-ordinate axes
2. Find the equation of straight linee passing through $(-2,4)$ and making non-zero intercepts whose sum is zero.
3. Find the angle between the planes $2 x-y+x=6, x+y+2 z=7$.
4. If $(3,2,-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2)$ is the centroid of a tetrahedron find the fourth vertex of that tetrahedron
5. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{a^{x}-1}{b^{x}-1} ;(a>0, b>0 . b \neq 1)$
6. Show that $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{2|x|}{x}+x+1\right)$
7. If $y=\operatorname{Tan}^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ find $\frac{d y}{d x}$
8. If $y=a e^{n x}+b e^{-n x}$, then prove that $y n=n^{2} y$.
9. If $Y=f(x)=x^{2}+x, x=10, \Delta x=0,1$, then find Δy and $d y$
10. Verify Rolle's theorem of the function $\log \left(x^{2}+2\right)-\log 3$ on $(-1,1)$

SECTION - B
II. Answer any FIVE of the following Short Answer Questions:
11. Find the equation of the locus of P, if $A=(2,3), B=(2,-3)$ and $P A+P B=8$
12. When the axes are roatated through an angle $\pi / 6$. Find the transformed equation of $x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$.
13. Find the points on the line $3 x-4 y-1=0$ which are at a distance of 5 units from the point $(3,2)$
14. Is f given by $f(x)= \begin{cases}\frac{x^{2}-9}{x^{2}-2 x-3} \\ 1.5 & \text { if } 0, x, 5 \text { and } x \neq 3, \text { Continuous at the point } 3 .\end{cases}$
15. Find the derivate of $x \sin x$ from the first principle.
16. The volume of a cube is increasing at a rate of $8 \mathrm{~cm}^{3} / \mathrm{sec}$ cubic centimeters per second. How fast is the surface area increasing when the length of edge is 12 cms ?
17. A particle is moving in a straight line so that after ' t ' seconds its distance is ' S ' (in cms) from a fixed point of the line is given is given be $S=f(t)=8 t+t^{3}$.

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
[5 x 7 = 35]
18. Find the orthocentre of the traingle formed by the vertices $(-2,-1),(6,-1),(2,5)$
19. If $S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of parallel straigh lines, then show that (i) $h^{2}=a b$,
(ii) $\mathrm{af}^{2}=\mathrm{bg}^{2}$ and (iii) The distance between the parallel lines $\sqrt[2]{\frac{g^{2}-a c}{a(a+b)}}$
20. Show that the lines joining the origin to the points of intersection of the curve $x^{2}-x y+y^{2}+3 x+3 y-2=0$ and the straight line $x-y-\sqrt{2}=0$ are mutually perpendicular.
21. Find the angle between two diagonals of a cube
22. If $y=x \sqrt{a^{2}+x^{2}}+a^{2}\left[x+\sqrt{a^{2}+x^{2}}\right]$, then find $\frac{d y}{d x}$
23. Find the positive integers x and y such that $x+y=60$ and $x y^{3}$ is maximum.
24. Show that the curves $6 x^{2}-5 x+2 y=0,4 x^{2}+8 y^{2}=3$ touch each otherat $\left(\frac{1}{2}, \frac{1}{2}\right)$

IPE: MARCH - 2015[TS]

MATHS - 1B

(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. Find the equation of the straight line passing through($-4,5$) and cutting off equal and zero intercepts on the co-ordinates axes.
2. Find the equation of the straight line perpendicular to the line $5 x-3 y+1=0$ and passing through thepoint $(4,-3)$.
3. Find the co-ordinates of the vertex ' c ' of $\triangle A B C$, if its centroid is the origin and the vertices A, B are ($1,1,1$) and ($-2,4,1$) respectively.
4. Find the angle between the planes $x+2 y+2 z-8=0$.
5. Compute $\underset{x \rightarrow a}{\operatorname{Lt}} \frac{\tan (x-a)}{x^{2}-a^{2}}(a \neq 0)$
6. Compute $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{e^{x}-1}{\sqrt{1+x}-1}$
7. Find the derivate of $y=\sqrt{2 x-3}+\sqrt{7-3 x}$
8. Find the derivate of $\left.y=\sin -1 \frac{2 x}{1+c^{2}}\right)$
9. Find Δy and $d y$ for the furction $=x^{2}+3 x+6$ at $x=10, \Delta x=0.01$
10. Verify Rothe's theorem Tor thefunction $y=f(x)=x^{2}+4$ in $[-3,3]$

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:
11. $A(5,3)$ and $B(3,-2)$ are two fixed points. Find the equation of the locus of P, so that the area of traingle PAB is p.
12. When the axes are rotated through an angle 45°, the transformed equationn of a curve is $17 x^{2}-16 x y+17 y^{2}=225$. Find the original equation of the curve.
13. A straight line with slope 1 passes through $Q(-3,5)$ and meets the straight line $x+y-6=0$ at P. Find the distance $P Q$.
14. If f is given by $f(x)=\left\{\begin{array}{ll}k^{2} & x-k \text { if } x \geq 1 \\ 2 & \text { if } x<1\end{array}\right.$ is a Continous function on R, Then Find K.
15. Find the derivative of x^{3} from the first principle.
16. A particle is moving along a line according to $S=f(t)=4 t 3-3 t 2+5 t-1$, where S is measured in meters and t is measured in seconds. find the velocity and acceleration at time t. At what time the acceleration is zero?
17. Determine the intervals in which $\left.f(x)=\frac{2}{(x-1)}+18 x \forall x \in R \right\rvert\,\{0\}$ is strictly increasing and decreasing.

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. If the equation of the sides of a traingle are $7 x+y-10=0, x-2 y+5=0$ and $x+y+2=0$ find the orthocentre of the traingle.
19. Show that the lines represented by $(l x+m y)^{2}-3(m x-l y)^{2}=0, \mid x+m y+n=0$ form an equilateral traingle with area $\frac{n^{2}}{\sqrt{3}\left(l^{2}+m^{2}\right)}$
20. Find the values of ' k ', if the lines joining the origin to the points of intersection of the curve $2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and the line $x+2 y=k$ are mutually perpendicular.
21. Find the angle between the lines, whose direction consines are given by the equation $3 /+m+5 n=0$ and $6 m n-2 n l+51 m=0$
22. Find the derivative of $y=(\sin x)^{\log x}+x^{\sin x}$
23. If the tangent at a point on the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ intersects the coordinates axes in A and B then show that the length $A B$ is a constant.

IPE: MAY-2015[AP]
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. Find the perpendicular distance from the point $(3,4)$ to the straight line: $3 x-4 y+10=0$
2. Find the equation of the straight line passing through the points: $\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{1}\right)$ and $\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right)$
3. If $(3,2,-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2)$ is the centroid of a tetrahedron find the fourth vertex of that tetrahedron.
4. Find the angle between the planes: $x+2 y+2 z-5=0$ and $3 x+3 y+2 z-8=0$
5. Compute : $\operatorname{Lt}_{x \rightarrow \infty} \frac{3 x^{2}+4 x+5}{2 x^{2}+3 x-7}$
6. Is the function f, defined by $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq 1 \\ x & \text { if } x>1\end{array}\right.$ continous on R ?
7. Find the derivates of the function : $f(x)=\left(x^{2}-3\right)\left(4 x^{3}+1\right)$.
8. Find $\mathrm{y}=\frac{2 x+3}{4 x+5}$ then find $\frac{d y}{d x}$
9. Find Δy and dy of the function $y=x^{2}+3 x+6$ for the values $x=10$ and $\Delta x=0.001$.
10. Find the equation of the tangent and the normal to the curve $y=5 x^{4}$ at the point $(1,5)$

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:
11. $A(1,2), B(2,-3)$ and $c(-2,3)$ are three points. A point P moves such that: $P A^{2}+P B^{2}=2 P C^{2}$. show that the equation to the locus of P is $7 x-7 y+4=0$
12. When the origin is shifted to the point $(2,3)$, the transformed equation of a curve is : $x^{2}+3 x y-2 y^{2}+17 x-7 y-11=0$. Find the original equation of the curve.
13. Find the equation of the straight lines passing through $(1,3)$ and

1) Parallel to
2) Perpendicular to

The line passing through the points $(3,-5)$ and $(-6,1)$.
14. Compute : $\operatorname{Lt}_{x \rightarrow 0} \frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x}$.
15. Show that derivative of the function tan $2 x$ from the first principle.
16. Show that the curves $y^{2}=4(x+1)$ and $y^{2}=36(9-x)$ intersect orthogonally.
17. The total cost $C(x)$ in rupees associated with production of x units of an item is givenby : $C(x)=0.005 x^{3}-0.02 x^{2}+30 x+500$. Find the marginal cost when 3 units are produces (marginal cost is the rate of change of total cost).

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the orthocentre of the traingle whose vertices are $(-2,-1),(6,-1)$ and $(2,5)$.
19. Show that the product of the perpendicular distances from a point (α, β) to the pair of straight lines
$a x^{2}+2 h x y+b y^{2}=0$ is : $\left|\frac{a \alpha^{2}+2 h \alpha \beta+b \beta^{2}}{\sqrt{(a-b)^{2}+4 h^{2}}}\right|$.
20. Write down the equation of the pair of straight lines joining the origin to the points of intersection of the line $6 x-y+8=0$ with the pair of straight lines: $3 x^{2}+4 x y-4 y^{2}-11 x+2 y+6=0$.
21. Find the angle between the lines whose direction cosines are given by the equations :31+m+5n=0 and $6 m n-2 n l+51 m=0$
22. If $\mathrm{y}=\tan -1\left[\frac{\sqrt{1+\mathrm{x}^{2}}+\sqrt{1-\mathrm{x}^{2}}}{\sqrt{1+\mathrm{x}^{2}}-\sqrt{1-\mathrm{x}^{2}}}\right]$, for $0<|\mathrm{x}|<1$, find $\frac{d y}{d x}$.
23. Show that tangent at $P\left(x_{1}, y_{1}\right)$ on the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ is $x x_{1}^{\frac{-1}{2}}$
24. If the curved surface of right circular cylinder inscribed in a sphere of radius r is maximum, show that the the height of the cylinder is $\sqrt{2} r$.

BOARD MODEL PAPER - 1
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. Find the equation of the straight line passing through the point ($-2,4$) and making non-zero intercepts on the axis of coordinates whose sum is zero.
2. Find the value of P if the straight lines $x+p=0, Y+2=0,3 x+2 y+5=0$ are concurrent.
3. Find the ratio in which the $x y$-plane divides the line joining $A(-2,3,4)$ and $B(1,2,3)$.
4. Find the direction consines of the normal to the plane $x+2 y+2 z-4=0$
5. Compute $\underset{x \rightarrow 0}{\operatorname{Lt}}\left(\frac{e^{3 x}-1}{x}\right)$.
6. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{1-\cos 2 m x}{\sin ^{2} n x}$
7. Find the derivative of $\operatorname{Tan}^{-1}(\log x)$
8. Find the derivative of $\sin 1\left(\frac{2 x}{1+x^{2}}\right)$
9. Find $d y$ and Δy of $y=f(x)=x 2+x$ at $x=10$ when $\Delta x=0.1$.
10. Verify Rolle's theorem for the function $f(x)=x^{2}+4$ in $[-3,3]$

II. Answer any FIVE of the following Short Answer Questions:
11. If the distance from the point P to the points $(2,3)$ and $(2,-3)$ are in the ratio $2: 3$, then find the equation of the locus of P.
12. when the axes are rotated through an angle 45°, the transformed equation of a curve is $17 x^{2}-16 x y+17 y^{2}=225$. Find the original eqaution of the curve.
13. Find the equation of the straight line passing through the points $(-1,3)$ and $(5,-1)$ and also find the area of the traingle formed by it with the axes of coordinates.
14. Check the continuity of $f(x)=\left\{\begin{array}{lll}\frac{1}{2}\left(x^{2}-4\right) & \text { if } & 0<x<2 \\ 0 & \text { if } & x=2\end{array} \quad \begin{array}{lll}2-8 x^{-3} & \text { if } & x>2\end{array}\right.$ the function at 2
15. Find the derivative of the function $\sin 2 x$ from the first principle.
16. Find the equation of tangent and normal to the curve $Y=x^{3}+4 x^{2}$ at $(-1,3)$
17. The volume of a cube is increasing at a of 9 (centimeters) 3 per second. How fast is the surface area increasing when the length of the edges is 10 centrimeters?

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the circumcenter of the traingle whose vertces are $(-2,3),(2,-1)$ and $(4,0)$.
19. Show that the area of the traingle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and $1 x+m y+n=0$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{\left|a m^{2}-2 h / m+b\right|^{2} \mid}$
20. Show that the lines joining the origin to the points of intersection of the curve $x^{2}-x y+y^{2}+3 x+3 y-2=0$ and the line $x-y-\sqrt{2}=0$ are mutually perpendicular.
21. Find the direction cosines of two lines which are connected by the relations $1+m+n=0$ and $\mathrm{mn}-2 \mathrm{nl}-2 \mathrm{nl}=0$
22. If $\mathrm{y}=\tan -1\left[\frac{\sqrt{1+\mathrm{x}^{2}}+\sqrt{1-\mathrm{x}^{2}}}{\sqrt{1+\mathrm{x}^{2}}-\sqrt{1-\mathrm{x}^{2}}}\right]$, for $0<|x|<1$, find $\frac{d y}{d x}$.
23. Find the lengths of subtangent, subnormal at a point t on the curve $y=a(\sin t-t \cos t)$, $x=a(\cos t+t \sin t)$.
24. From a rectangular sheet of dimensípns $30 \mathrm{~m} \times 80 \mathrm{~cm}$ four equal squares of side $\times \mathrm{cms}$ aree removed at the corners and the sides are taken turned up-so as to form an open rectangular box. Find the value of x, so that the volume of the box is the greatest.

IPE: MARCH - 2016[AP]

MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. Transform the equation $4 x-3 y+12=0$ into (i) slope intercept from (ii) Intercept form
2. Find the perpendicular distance from the point $(3,4)$ to the straight line : $3 x-4 y+10=0$
3. Find the perpendicular distance from the point $(3,4)$ to the straight line: $3 x-4 y+10=0$
4. Reduce the equation $x+2 y-3 z-6=0$ of the plane to the normal form.
5. Compute the limit of $\underset{x \rightarrow 3}{\operatorname{Lt}} \frac{x^{2}-8 x+15}{x^{2}-9}$
6. Evaluate $\operatorname{Lt}_{x \rightarrow 0} \frac{x^{2}-\sin x}{x^{2}-2}$
7. If $f(x)=2 x 2+3 x-5$, then prove that $f^{\prime}(0)+3 f^{\prime}(-1)=0$
8. If $x=\operatorname{acos}^{3} t, y=a \sin ^{3} t$, find $\frac{d y}{d x}$
9. Find Δy and dy of the function $y=5 x^{2}+6 x+6$, for the values $x=2$ and $\Delta x=0.001$.

10 Verify the conditions of lagrange's mean vakue theasem for the function $x^{2}-1$ on $[2,3]$
II. Answer any FIVE of thefollowing Short Answer Questions:
11. If the distance from ' P ' to the points $(2,3)$ and $(2,-3)$ are in the ratio $2: 3$ then find the equation of the locus of P.
12. When the origin is shifted to $(-1,2)$ by the translation of axes, find the transformed equation of $2 x^{2}+y^{2}-4 x+4 y=0$.
13. Find the points on the line $3 x-4 y-1=0$ which are at a distance of 5 units from the point $(3,2)$
14. Compute $\operatorname{Lt}_{x \rightarrow a}\left(\frac{x \sin a-a \sin x}{x-a}\right)$
15. If $f(x)=\sec ^{3} x(x \in R)$, then find $f^{\prime}(x)$ by first principle.
16. Find the lengths of subtangent and subnormal at a point on the curve $\mathrm{y}=\mathrm{b} \sin \left(\frac{x}{a}\right)$
17. The volume of acube is incresing at a rate of 9 cubic centimeters per second How fast is the surfase area increasing when the length of the edge is 10 centimeters?

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the orthocentre of the traingle whose vertices are $(-5,-7),(13,2),(-5,6)$.
19. If the second degree equation $S \equiv a x^{2}+2 h x y+b y^{2}+2 f y+c=0$ in two variables x and y represents a pair of straight Ines then prove that (a) abc+2fgh-af ${ }^{2}-b g^{2}-c h 2=0 \quad$ (b) $h^{2} \geq a b, f^{2} \geq b c, g^{2} \geq a c$.
20. Find the angle between the lines joining the origin to the points of intersection of the curve $x^{2}+2 x y+y^{2}+2 x+2 y-5=0$ and the lines $3 x-y+1=0$
21. Show that the lines whose direction cosines are given by $1+m+n=0,2 m n+3 n l-5 I m=0$ are perpendicular to each other.
22. If $\mathrm{y}=\tan -1\left[\frac{\sqrt{1+\mathrm{x}^{2}}+\sqrt{1-\mathrm{x}^{2}}}{\sqrt{1+\mathrm{x}^{2}}-\sqrt{1-\mathrm{x}^{2}}}\right]$, for $0<|x|<1$, find $\frac{d y}{d x}$.
23. Find the angle between the curves $y^{2}=4 x$ and $x^{2}+y^{2}=5$
24. From a rectangular shet of dimensions $30 \mathrm{~cm} \times 80 \mathrm{~cm}$, four equal squares of sides $\times \mathrm{cm}$ are removed at the corners, and the sides are then turnedup so as to form an open rectangular box. what is the value of x, so that the volume of the box is the greatest?

IPE: MARCH - 2016 [TS]
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x 2 = 20]

1. Transform the equation $\sqrt{3} x+y=4$ in to (i) slope intercept form (ii) Intercept form
2. Find the value of P if the straight lines $3 x+7 y-1=0$ and $7 x-p y+3=0$ are mutually perpendicular.
3. Show that the points $(1,2,3),(7,0,1),(-2,3,4)$ are collinear.
4. Reduce the equation $x+2 y-3 z-6=0$ of the plane to the normal form.
5. Compute the limit of $\underset{x \rightarrow 3}{\operatorname{Lt}} \frac{x^{2}-8 x+15}{x^{2}-9}$
6. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{e^{x}-\sin x-1}{x}$
7. Find the derivative of $\sin -1\left(3 x-4 x^{3}\right)$ with respect of x
8. If $2 x^{2}-3 x y+y^{2}+x+2 y-8=0$ then find
9. Find dy and Δy of $y=f(x)=x^{2}+x$ at $\left.x\right)=10$ when $\Delta x=0.1$
10. Find the length of subtangent at a ppiniop the curve $\mathrm{y}=\mathrm{b} \sin \left(\frac{x}{a}\right)$

II. Answer any FIVE of the following Short Answer Questions:
11. Find the equation of locus of a point, the sum of whose distance from $(0,2)$ and $(0,-2)$ is 6 .
12. When the origin is shifted to the point $(2,3)$ the transformed equation of a curve is $x^{2}+3 x y-2 y^{2}+17 x-7 y-$ $11=0$. Find the original equation of curve.
13. Find the equation of the straight line parallel to the line $3 x+4 y=7$ and passing through the point of intersection of the lines $x-2 y-3=0, x+3 y-6=0$.
14. Check the continuity of ' f ' given by $f(x)=\left\{\begin{array}{ll}4-x^{2} & \text { if } x \leq 0 \\ x-5 & \text { if } 0<x \leq 1 \\ 4 x^{2}-9 & \text { if } 1<x<2 \\ 3 x+4 & \text { if } x \geq 2\end{array}\right.$ at points $x=0,1,2$
15. $\mathrm{X}=\mathrm{a}(\cos \mathrm{t}+\sin \mathrm{t}), \mathrm{y}=\mathrm{a}(\sin \mathrm{t}-\mathrm{t} \operatorname{cost} \mathrm{t})$ find $\frac{d y}{d x}$.
16. Find the equation of tangent and normal to the curve $y=2 . e^{\frac{-x}{3}}$ at the point where the curve meets the Y - axis.
17. A point P is moving on the curve $y=2 x^{2}$. The x coordinates of P is increasing at the rate of 4 units per second. Find the rate at which y co-ordinates is uncreasing when the point is at $(2,8)$.

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. The base of an equilateral traingle is $x+y-2=0$ and opposite vertex is $(2,-1)$ Find the equation of the remaining sides.
19. If the second degree equation $S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ in two variables x and y represents a pair of straight lines, then prove that. (a) abc+2fgh-af ${ }^{2}-b^{2}-c h 2=0 \quad$ (b) $h^{2} \geq a b, f^{2} \geq b c, g^{2} \geq a c$.
20. Find the lines joining the origin with the points of intersection of the curv $7 x^{2}-4 x y+8 y^{2}+2 x-4 y-8=0$ with the straight line $3 x-y=2$ and also the angle between them.
21. Find the direction cosines of the two lines which are connected by the relations $1-5 m+3 n=0$, $7 I^{2}+5 m^{2}-3 n^{2}=0$.
22. If $x^{y}+y^{x}=a^{b}$ then prove that $\frac{d y}{d x}=-\left[\frac{y x^{y-1}+y^{x} \log y}{x^{y} \log x+x y^{x-1}}\right]$
23. If the curved surface of right circular cylinder inscrided in a sphere of radius ' r ' is maximum, show that the height of the cylinder is $\sqrt{2} \mathrm{r}$.
24. If $a x^{2}+b y^{2}=1, a_{1} x^{2}+b_{1} y^{2}=1$, then show that the condition for orthogonality of above curves is $\frac{1}{a}-\frac{1}{b}=\frac{1}{a_{1}}-\frac{1}{b_{1}}$

IPE: MARCH-2016[TS]
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x $2=20$]

1. Find the equation of the straight line perpendicular to the line $5 x-3 y+1=0$ and passing through the point $(4,-3)$
2. Find the equation of the straight line passing through $(-4,5)$ and cutting off equal intercepts on the coordinates axes.
3. Shoe that the points $(1,2,3),(2,3,1)$ and $(3,1,2)$ form an equilateral traingle.
4. Write the equation of the plane $4 x-4 y+2 z=0$ in the intercept form.
5. Evaluate $\operatorname{Lt}_{x \rightarrow 0} \frac{e^{x}-1}{\sqrt{1+x}-1}$
6. Evaluate $\operatorname{Lt}_{x \rightarrow 2}\left\{\frac{1}{x-1}-\frac{4}{x^{2}-4}\right\}$
7. Find the derivatives of $7^{x^{3}}+3 x$.
8. If $y=a x^{n+1}+b x^{-n}$ then show that $x^{2}-y^{\prime \prime}=n(n+1) y$.
9. If the increase in the side of a square is 4% then find the approximate percentage of increase in the area of the square.
10. Verify Rolles' theorem for the function $f(x)=x^{2}-5 x+6$ in the interval $[-3,8]$

II. Answer any FIVE of the following Short Answer Questions:
11. Find the equation of locus of a point p, if the distance of P from $A(3,0)$ twice the distance of P from $B(-3,0)$.
12. When the axes are roated through an angle 45°, the transformed equation of a curve is $17 x^{2}-16 x y+17 y^{2}=225$. find the original equation of the curve.
13. Find the value of k if the angle between the straight lines $4 x-y+7=0, k x-5 y-9=0$ is 45°

14 If f is given by $f(x)=\left\{\begin{array}{ll}k^{2} & x-k \text { if } x \geq 1 \\ 2 & \text { if } x<1\end{array}\right.$ is a Continous function on R, Then Find K.
15. Find the derivative of $\sin 2 x$ from the first principles.
16. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{sec} / \mathrm{what}$ is the rate of increase of its circumcentre.
17. Find the value of k, so that the length of the subnormal at any point on the curve $y=a^{1-k} x^{k}$ is a constant.

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the circumcenter of the traingle whose vertices are $(-2,3),(2,-1),(4,0)$.
19. Prove that the equation $3 x^{2}+7 x y+2 y^{2}+5 x+5 y+2=0$ represents a pair of straight lines and find the coodinates of the point of intersection.
20. Find the angle between the lines joining the origin to the points of intersection of the curve $x^{2}+2 x y+y^{2}+2 x+2 y-5=0$ and the line $3 x-y+1=0$
21. Find the direction cosines of the two lines which are connected by the relations $1-5 m+3 n=0$, $71^{2}+5 m^{2}-3 n^{2}=0$.
22. If $\sqrt{1-x}+\sqrt{1-y}=a(x-y)$ then prove that $\frac{d y}{d x}=\frac{\sqrt{1-y}}{\sqrt{1-x}}$
23. If the tangent at a point on the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ intersects the coordinates axes in A and B then show that the length $A B$ is a constant.
24. Find the maximum area of the rectangle that can be formed with fixed perimeter 20 units.

IPE: MAY-2016[TS]

 MATHS - 1B

 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x 2 = 20]

1. Find the value of x, if the slope of the line apssing through $(2,5)$ and $/(x, 3)$ is 2 .
2. Find the length of the perpendicular from the point $(-2,-3)$ to the straight line $5 x-2 y+4=0$
3. Find the centroid of the tetrahedron whose vertices are (2,3-4)(-3,3,-2), (-1,4,2),(3,5,1)
4. Find the direction cosines of the normal to the plane $x+2 y+2 z-4=0$
5. Compute $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\mathrm{e}^{\mathrm{x}}-\sin x-1}{x}$
6. Is the function f is defined by $f(x)=\left\{\begin{array}{lll}\frac{\sin 2 x}{x} & \text { if } & x \neq 0 \\ & \text { if } & x \neq 0\end{array}\right.$ continuous at 0?
7. Find $\frac{d}{d x}(\sec \sqrt{\tan x})$
8. If $y=\sin ^{-1}(\cos x)$, then find $\frac{d y}{d x}$
9. If the increase in the side of a square is 4% then find the approximate percentage of increase in the area of the square.
10. Verify Rolte's theoremfor the function $f(x)=x(x+3) e^{-x / 2}$ on $[-3,0]$

II. Answer any FIVE of the following Short Answer Questions:
11. Find the equation of locus of a point P, if $A=(2,3), B=(2,-3)$ and $P A+P B=8$
12. When the axes are rotated through an angle $\pi / 4$, Find the transformed equation of $3 x^{2}+10 x y+3 y^{2}=9$
13. Find the equation of the line perpendicular to the line $3 x+4 y+6=0$ and making an intercepts -4 on the x-axis.
14. Compute $\underset{x \rightarrow a}{\operatorname{Lt}}\left(\frac{x \sin a-a \sin x}{x-a}\right)$
15. If $y=\operatorname{acos}(\sin x)+b \sin (\sin x)$ then prove that : $y^{\prime}+(\tan x) y^{\prime}+y \cos ^{2} x=0$
16. Show that the curves $6 x 2-5 x+2 y=0$ and $4 x 2+8 y 2=3$ touch each other at $(1 / 2,1 / 2)$
17. The volume of a cube is increasing when the length of the edge is 10 centimeters?

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the circumcentre of the traingle whose vertices are (1,3),(0,-2), $(-3,1)$
19. Show that the area of the traingle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and $1 x+m y+n=0$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{\left|a m^{2}-2 h / m+b\right|^{2} \mid}$
20. Find the equation of the pair of straight lines joining the origin to the points of intersection of the line : $6 x-y+8=0$ with the pair of straight lines $3 x^{2}+4 x y-4 y^{2}-11 x+2 y+6=0$ and show that the lines obtained make equal angles with the coordinate axes.
21. If a ray makes angle $\alpha, \beta, \gamma, \delta$ with the four diagonals of a eube then show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta$
22. If $x^{y}+y^{x}=a^{b}$ then prove that $\frac{d y}{d x}=-\left[\frac{y x^{y-1}+y^{x} \log y}{x^{y} \log x+x y^{x-1}}\right]$
23. Find the lengths of subtangent, subnormal at a point t on the curve $y=a$ (cost+tsint), $\mathrm{x}=\mathrm{a}(\sin \mathrm{t}-\mathrm{t} \boldsymbol{\operatorname { c o s } t})$.
24. The profits function $p(x)$ of a company, selling x items per day is given by $p(x)=(150-x) x-1600$. find the number of items that the comapny should sell to get maximum profit. Also find the maximum profit.

IPE: MARCH - 2017[AP]
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x $2=20]$

1. Find the slope of the line $x+y=0$ and $x-y=0$.
2. Transform the equation $x+y+1=0$ into Normal form.
3. If $(3,2-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2$,$) is the centroid of a tetrahedron find the$ fourth vertex.
4. Find the angle between the planes $2 x-y+z=6$ and $x+y+2 x=7$
5. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\mathrm{e}^{7 x}-1}{x}$
6. Compute $\underset{x \rightarrow \infty}{\operatorname{Lt}} \frac{x^{2}+5 x+2}{2 x^{2}-5 x+1}$
7. Find the derivative of $5 \sin x+e^{x} \log x$
8. Find the derivative of $\sec -1\left(\frac{1}{2 x^{2}-1}\right),\left(0<x<\frac{1}{\sqrt{2}}\right)$
9. Find Δy and dy of the fupction $y=x^{2}+x$, for the $\sqrt{\text { alues }} x=10$ and $\Delta x=0.1$.
10. Verify Rolle's theoren for the function $y=f(x)=x^{2}+4$ oh $[-3,3]$

SECTION - B
II. Answer any FIVE of the following Short Answer Questions:
11. $A(1,2), B(2,-3)$ and $c(-2,3)$ are three points. A point P moves such that: $P A^{2}+P^{2}=2 P C^{2}$. show that the equation to the locus of P is $7 x-7 y+4=0$
12. When the axes are rotated through an angle $\pi / 4$, Find the transformed equation of $3 x^{2}+10 x y+3 y^{2}=9$
13. Find the value of P, if the lines $3 x+4 y=5,2 x+3 y=4, p x+4 y=6$ are concurrent
14. Check the continuity of the following function at 2. $f(x)=f(x)=\left\{\begin{array}{lll}\frac{1}{2}\left(x^{2}-4\right) & \text { if } & 0<x<2 \\ 0 & \text { if } & x=2 \\ 2-8 x^{-3} & \text { if } & x>2\end{array}\right.$
15. Find the derivative of cotx from the first principle.
16. A particle is moving in a straight line so that after t seconds its distance s (in cms) from a fixed point on the line is given by $s=f(t)=8 t+t^{3}$. find (i) the velocity at time $t=2 \mathrm{sec}$ (ii) The initial velocity (iii) acceleration at $\mathrm{t}=2 \mathrm{sec}$.
17. Find the equations of the tangent and normal to the curve $x y=10$ at $(2,5)$

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the circumcenter of the traingle whose vertices are $(-2,3),(2,-1),(4,0)$
19. Show that the area of the traingle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and $1 x+m y+n=0$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{\left|a m^{2}-2 h / m+b\right|^{2} \mid}$
20. Find the values of K, if the lines joining the origin to the points of intersection of the curve $2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and the line $x+2 y=k$ are mutually perpendicular.
21. Find the angle between the lines whose d.c's are related by $1+m+n=0 \& I^{2}+m^{2}+n^{2}=0$
22. Find the $\frac{d y}{d x}$ of $y=(\sin x)^{\log x+x^{\sin x}}$
23. Find the angle between the curves $x y=2$ and $x^{2}+4 y=0$
24. A wire of length I is cut into two parts which are bent respectively in the form of a square and a circle. what are the lengths of pieces of wire so that the sum of areas is least?

IPE: MARCH -2017[TS]
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x $2=20]$

1. Find the value of y, if the line joining $(3, y)$ and $(2,7)$ is parallel to the line joining the points $(-1,4)$ nad $(0,6)$
2. Find the value of P, if the straight lines $x+p=0, y+2=0,3 x+2 y+5=0$ are concurrent.
3. Find the fourth vertex of the parallelogram whose consecutive vertices are ($2,4-1$), ($3,6,-1$) and (4,51)
4. Find the angle between the planes $x+2 y+2 z-5=0$ and $3 x+3 y+2 z-8=0$
5. Compute $\underset{x \rightarrow 0}{\operatorname{Lt}} x^{2} \sin \left(\frac{1}{x}\right)$
6. Find $\underset{x \rightarrow \infty}{\operatorname{Lt}} \frac{8|x|+3 x}{3|x|-2 x}$
7. Find $f(x)=7^{x^{3}}+3 x(x>0)$, then find $f^{\prime}(x)$.
8. If $\mathrm{x}=\tan \left(\mathrm{e}^{-y}\right)$, then show that $\frac{d y}{d x}=\frac{-e^{y}}{1+\mathrm{x}^{2}}$.
9. Find dy and Δy of $y=f(x)=x 2+x$ at $x=10$ when $\Delta x=0.1$
10. Verify Rolle's theorem for the functionf: $[-\beta, 8\} \rightarrow R$ be defined by $f(x)=x^{2}-5 x+6$.

II. Answer any FIVE of the following Short Answer Questions:
11. $A(5,3)$ and $B(3,-2)$ are two fixed points. Find the equation of locus of p, so that the area of $\Delta P A B$ is 9 sq. units
12. When the axes are rotated through an angle $\pi / 4$, Find the transformed equation of $3 x^{2}+10 x y+3 y^{2}=9$
13. $x-3 y-5=0$ is the perpendicular bisector of the line segment joining the points A, B If $A=(-1,-3)$ find the coordinates of B.
14. Show that $f(x)=\left\{\begin{array}{ll}\frac{\cos a x-\cos b x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2}\left(b^{2}-a^{2}\right) & \text { if } x=0\end{array}\right.$, where a and b real constants is continuous at $x=0$.
15. If $a y^{4}=(x+b)^{5}$ then $5 y y^{n}=\left(y^{\prime}\right)^{2}$.
16. Find the lengths of subtangent, subnormal at a point t on the curve $y=a(c o s t+t s i n t)$, $\mathrm{x}=\mathrm{a}(\sin \mathrm{t}-\mathrm{tcost})$.
17.The volume of a cube is increasing at a rate of 9 cubic centimeters per second How fast is the surface area increasing when the length of the edge is 10 centimeters?

SSECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the orthocentre of the traingle whose vertices are $(5,-2),(-1,2),(1,4)$
19. Show that the area of the traingle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and $l x+m y+n=0$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{\left|a m^{2}-2 h / m+b\right|^{2} \mid}$
20. Find the condition for the lines joining the origin to the points of intersection of the circle $x^{2}+y^{2}=a^{2}$ and the line $\mid x+m y=1$ to coincide.
21. Find the direction cosines of two lines which are connected by the relations $1+m+n=0$ and $\mathrm{mn}-2 \mathrm{nl}-2 \mathrm{~lm}=0$.
22. If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$ then prove that $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$
23. At a point $\left(x_{1}, y_{1}\right)$ on the curve $x^{3}+y^{3}=3 a x y$, show that the tangent is $\left.\left(x_{1}{ }^{2}-a y\right)\right) x+\left(y_{1}{ }^{2}-a x_{1}\right) y=a x_{1} y_{1}$.
24. A window is in the shape of a rectangle surmounted by a semi-circle. If the perimeter of the window be 20 feet then find the maximum area.

IPE:MAY 2017[AP]

MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x $2=20]$

1. Find the equation of the straight line passing through the points $(-2,4)$ and making intercepts, whose sum is zero
2. Find the value of K, if the straight lines $6 x-10 y+3=0$ and $K x-5 y+8=0$ are parallel.
3. Show that points $(5,4,2),(6,2,-1)$ and $(8,-2,-7)$ are collinear
4. Find the equation of the plane passing through the poinnts $(1,1,1)$ and paralfel to the plane $x+2 y+3 z-7=0$
5. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sqrt{1+x}-1}{x}$
6. Is the function f is defined by $f(x)=\left\{\begin{array}{lll}\frac{\sin 2 x}{x} & \text { if } x \neq 0 \\ 1, & x=0\end{array}\right.$ continuous at 0 ?
7. Find the derivative of $\log (\sec x+\tan x)$
8. If $\mathrm{y}=\mathrm{e}^{t}+\cos t, \mathrm{x}=$ logt $t+\sin t$ then find $\frac{d y}{d x}$
9. Find dy and Δy of $y=f(x)=x^{2}+x$ at $x=1 p$ when $\Delta x=0.1$
10. Define Roille s theoren.

SECTION - B
II. Answer any FIVE of the following Short Answer Questions:
11. $A(5,3)$ and $B(3,-2)$ are two fixed points. Find the equation of locus of p, so that the area of $\Delta P A B$ is 9 sq. units
12. When the prigin is shifted to the point $(2,3)$, the transformed equation of ε curves is $x^{2}+3 x y-2 y^{2}+17 x-7 y-11=0$. find the original equation of the curve.
13. Find the value of P, if the lines $3 x+4 y=5,2 x+3 y=4, p x+4 y=6$ are concurrent
14. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\cos a x-\cos b x}{x^{2}}$
15. Find the derivative of tan $2 x$ from the first priinciple.
16. A stone is dropped into a quiet lake and ripples move in circles at the speed of $5 \mathrm{~cm} / \mathrm{sec}$. AT the instant when the radius of circular ripple is 8 cm , how fast is the enclosed area increases?
17. Show that at any point (x, y) on the curve $y=b e^{\times / a}$, the length of subtangent is a constant and the length of the subnormal is y^{2} / a.

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the circumcentre of the traingle with vertices $(1,3),(-3,5),(5,-1)$
19. Prove that the product of the perpendicular from (α, β) to $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}}$
20. Write down the equation of the pair of straight lines joining the origin to the points of intersection of the line $6 x-y+8=0$ with the pair of straight lines : $3 x^{2}+4 x y-4 y^{2}-11 x+2 y+6=0$.
21. Find the angle between the lines whose direction cosines are given by the equations :31+m+5n=0 and $6 m n-2 n l+51 m=0$
22. Find the derivatives of $(\sin x)^{\log x}+x^{\sin x}$
23. If the tangent at a point on the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ interests the coordinates axes inA,B then show that the length $A B$ is a constant
24. A window is in the shape of a rectangle surrounted by a semi-circle. If the perimeter of the window be 20 feet then find the maximum area.

IPE: MAY 2017[TS]

MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:
[10 x 2 = 20]

1. Transform the equation $3 x+4 y+12=0$ into Normal form
2. Find the value of p, if the straight lines $x+p=0, y+2=0,3 x+2 y+5=0$ are concurrent.
3. Find the ratio in which the $x y$ - plane divides line joining $A(-2,3,4)$ and $B(1,2,3)$
4. Find the equation of the plane if the foot of the perpendicular from origin to the plane is $A(2,3,-5)$
5. Evaluate $\operatorname{Lt}_{\mathrm{x} \rightarrow 2}([\mathrm{x}]+\mathrm{x})$
6. Evaluate $\underset{\mathrm{x} \rightarrow 1}{\mathrm{Lt}} \frac{\log _{e} x}{x-1}$
7. If $y=\operatorname{Cosec}^{-1}\left(\mathrm{e}^{2 x+1}\right)$, Find $\frac{d y}{d x}$
8. Show that $y=x+\tan x$ satisfies the equation $\cos 2 x \frac{d y^{2}}{d x^{2}}+2 x=2 y$
9. Find the approximate value of $\sqrt[4]{17}$
10. If $0 \leq x \leq \frac{\pi}{2}$, then show that $x \leq \sin x$

II. Answer any FIVE of the following Short Answer Questions:
11. $A(5,3)$ and $B(3,-2)$ are two fixed points. Find the equation of locus of p, so that the area of $\triangle P A B$ is 9 sq. units
12. Prove that the angle of rotation of the axes to eliminate $x y$ term from the equation $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{1}{2} \operatorname{Tan}-1\left(\frac{2 \mathrm{~h}}{\mathrm{a}-\mathrm{b}}\right)$ where $\mathrm{a} \neq \mathrm{b}$ and $\pi / 4$ if $\mathrm{a}=\mathrm{b}$
13. Find the value of k if the angle between the straight lines $4 x-y+7=0, k x-5 y-9=0$ is 45°
14. Show that $f(x)=\left\{\begin{array}{ll}\frac{\cos a x-\cos b x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2}\left(b^{2}-a^{2}\right) & \text { if } x=0\end{array}\right.$, is continuous at 0 .
15. If $\mathrm{x}^{y}=\mathrm{e}^{x-y}$ then show that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$
16. At any point t on the curve $x=a(t+\sin t), y=a(1-\operatorname{cost})$, find the lengths of tangent, normal, subtangent and subnormal.
17. A container is in the shape of an inverted cone has height 8 m and radius 6 m at the yop. If it is filled with water at the rate of $2 \mathrm{~m}^{3} /$ minute, how fast is the height of water changing when the level is 4 m ?

SECTION - C

III. Answer any FIVE of the following Long Answer Questions. :
18. Find the orthocentre of the traingle formed by the vertices(-5,-7), (13,2), (-5,6)
19. If (α, β) is the centroid of the traingle formed by the lines $a x^{2}+2 h x y+b y^{2}=0,1 x+m y=1$ then $\frac{\alpha}{b l-h m}=\frac{\beta}{a m-h l}=\frac{2}{3\left(b l^{2}-2 h l m+\mathrm{am}^{2}\right)}$
20. Find the value of K, If the lines joining the origin with the points of intersection of the curve $2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and lines $x+2 y=k$ are mutually perpendicular.
21. Find the direction cosines of two lines which are connected by the relations $1+m+n=0$ and $\mathrm{mn}-2 \mathrm{nl}-2 \mathrm{nl}=0$
22. Show that the derivatives of $\sin -1 \sqrt{\frac{x-\beta}{\alpha-\beta}}$ an $-1 \sqrt{\frac{x-\beta}{\alpha-x}}$ are equal.
23. If the tangent at a point on the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ interests the coordinates axes in A, B then show that the length $A B$ is a constant.
24. Prove that the radius of the right circular cylinder of greatest curved surface area which can be increibed in a given cone is half of that of the cone.

BOARD MODEL PAPER - 1
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. If

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:
11. Pro

SECTION-C

III. Answer any FIVE of the following Long Answer Questions. :
18. If f :

BOARD MODEL PAPER - 1
 MATHS - 1B
 (Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

1. If

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:
11. Pro
III. Answer any FIVE of the following Long_Answer Questions. :
18. If f :

