Mathematics Model Paper(I-B)

Intermediate I - Year

Time: 3 HRS

Max. Marks: 75

SECTION - I

I.Very Short Answer Questions. Answer all Questions. Each Question carries Two marks. $10 \times 2 = 20 M$

- 1. Find the equation of the straight line whose distance from the origin is 4, if the normal ray from the origin to the straight line makes an angle of 135° with the positive direction of the X-axis.
- 2. Find the value of k, if the angle between the straight lines 4x y + 7 = 0 and kx 5y 9 = 0and is 45°.
- 3. Find the in centre of the triangle formed by the points (0, 0, 0), (3, 0, 0) and (0, 4, 0).
- 4. Find the equation to the plane parallel to ZX- plane and passing through (0, 4, 4).

5. Compute
$$\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2}$$

6. Compute
$$\lim_{x \to \infty} \frac{11x^3 - 3x + 4}{13x^3 - 5x^2 - 7}$$

7. If
$$f(x) = 7^{x^3 + 3x}(x > 0)$$
 then find f'(x)

- 8. If $y = ae^{nx} + be^{-nx}$ then prove that $y'' = n^2 y$
- 9. Find dy and δ y of y = $f(x) = x^2 + x$ at x = 10 when $\delta x = 0.1$
- 10. Verify the Roll's theorem for $f(x) = x(x + 3) e^{-x/2}$ in [-3, 0]

SECTION - II

II.Short Answer Questions. Ans-wer any 'Five' Questions.Each Question carries 'Four' $5 \times 4 = 20 M$ marks.

- 11. If A (2, 3) and B(-3, 4) are two points. Find the locus of P so that the area of triangle PAB is 8.5 sq units.
- 12. When the axis are rotated through an angle $\frac{\pi}{6}$. Find the transformed equation of

$$x^2 + 2\sqrt{3}xy - y^2 = 2a^2$$

- 13. Find the orthocenter of the triangle whose vertices are (-5, -7), (13, 2) and (-5, 6).
- 14. Find real constants a, b so that the function f given by $f(x) = \begin{cases} \sin x & \text{if } x \le 0 \\ x^2 + a & \text{if } 0 < x < 1 \\ bx + 3 & \text{if } 1 \le x \le 3 \\ -3 & \text{if } x > 3 \end{cases}$ is

continuous on R.

- 15. Find the derivative of $\sin 2x$ from the first principle.
- 16. The volume of a cube is increasing at a rate of 9 cubic centimeters per second. How fast is the surface area increasing when the length of the edge is 10 centimeters?
- 17. Show that the curves $y^2 = 4(x+1)$ and $y^2 = 36(9-x)$ intersect orthogonally.

SECTION - III

III.Long Answer Questions. Ans-wer any 'Five' Questions. Each Question carries 'Seven'marks. $5 \times 7 = 35 M$

- 18. If Q (h, k) is the foot of the perpendicular from P (x_1 , y_1) on the straight line ax+by+c=0 then show that (h x_1) : a = (k y_1) : b = (a x_1 +b y_1 +c) : (a² + b²)
- 19. Find the lines joining the origin to the points of intersection of the curve $7x^2 4xy +$

$$8y^{-} + 2x - 4y - 8 = 0$$
 with the line $3x-y-2=0$ and also the angle between them.

- 20. Show that the pair of lines $3x^2 + 8xy 3y^2 = 0$ and $3x^2 + 8xy 3y^2 + 2x 4y 1 = 0$ form a square.
- 21. Find the angle between the lines whose direction cosines are given by the equations 3l+m+5n = 0 and 6mn-2nl+5lm = 0.

22. If
$$y = \operatorname{Tan}^{-1} \left[\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right]$$
 for $0 < |X| < 1$, find $\frac{\mathrm{dy}}{\mathrm{dx}}$

23. If the tangent at any point on the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ intersects the coordinate axes in A and B, then show that the length AB is a constant.

24. If the curved surface of right circular cylinder inscribed in a sph-ere of radius r in maximum. Show that the height of cylinder is $\sqrt{2}r$.