Let $S=0, \boldsymbol{S}^{1}=0$ be two circles with centres $\mathrm{C}_{1}, \mathrm{C}_{2}$ and radii r_{1}, r_{2} respectively.
i) If $\mathrm{C}_{1} \mathrm{C}_{2}>\mathrm{r}_{1}+\mathrm{r}_{2}$ then each circle lies completely outside the other circle. No. of common tangents $=4$

The point of intersection of transverse common tangents of $S=0, S^{1}=0$ is called internal centre of similitude P . P divides in the ratio r_{1} : r_{2} ($\mathrm{m}: \mathrm{n}$)
$\mathrm{P}=\left[\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right]$

Equation of T.C.T is
$\left(y-y_{1}\right)=m\left(x-x_{1}\right)$

The point of intersection of Direct common tangents of $S=0, S^{1}=0$ is called External centre of similitude Q . Q divides in the ratio r_{1} : $-\mathrm{r} 2 .(-\mathrm{m}: \mathrm{n})$

$$
\mathrm{Q}=\left[\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}\right]
$$

ii) If $\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{r}_{1}+\mathrm{r}_{2}$ then Circles touch each other externally

No. of common tangents $=3$
P divides in the ratio $r_{1} r_{2}(\mathrm{~m}: \mathrm{n})$

$\mathrm{P}=\left[\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right]$
The point of intersection of Direct common tangents of $S=0, S^{1}=0$ is called External centre of similitude Q . Q divides in the ratio r_{1} : $-\mathrm{r} 2 .(-\mathrm{m}: \mathrm{n})$
$\mathrm{Q}=\left[\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}\right]$
Equation of Direct common tangents is

$$
\left(y-y_{1}\right)=m\left(x-x_{1}\right)
$$

iii) If If $\left|r_{1}-r_{2}\right|<\left(C_{1} C_{2}\right)<r_{1}+r_{2}$ then Circles intersect each other at two points at A and B.

Equation of Direct common tangents is

$$
\left(y-y_{1}\right)=m\left(x-x_{1}\right)
$$

The point of intersection of Direct common tangents of $S=0, S^{1}=0$ is called External centre of similitude Q . Q divides in the ratio r_{1} : $-\mathrm{r}_{2} .(-\mathrm{m}: \mathrm{n})$
$\mathrm{Q}=\left[\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}\right]$
iv) If If $\left|r_{1}-r_{2}\right|=r_{1}+r_{2}$ then Circles touch each other internally.

$$
\text { No. of common tangents }=1
$$

```
Common tangents is }S-\mp@subsup{S}{}{\prime}=
```


The point of intersection of Direct common tangents of $S=0, S^{1}=0$ is called External centre of similitude Q . Q divides in the ratio r_{1} : $-\mathrm{r}_{2} .(-\mathrm{m}: \mathrm{n})$ $\mathrm{Q}=\left[\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}\right]$
v) If $C_{1} C_{2}<\left|r_{1}-r_{2}\right|$ then one circle lies completely inside the other circle. No. of common tangents $=0$.

