AP/TS EAMCET ENGINEERING

www.aimstutorial.in

10 chemistry Practice Model papers

MODEL PAPER - 1 CHEMISTRY

121.	The density of a gas is 1.78 g L ⁻¹ at STP. The w 1) 39.9 gr 2) 22.4 g	eight of one mole of gas i 3) 3.56 g	is (Some Basic conce 4) 29 g	pt of chemistry)
122.	Which of the following species is isoelectronic v 1) HF 2) N	with CO? 3) N ⁺	(Struct	ure of Atom)
123.	What will be the wavenumber of yellow radiatio 1) 1 724 x 10^4 cm ⁻¹ 2) 4 16 x 10^6 m ⁻¹	n having wavelength 240 3) 4 x 10^{14} Hz	nm? (Structure of Ato 4) 219.3 x 10 ³ cm ⁻¹	om)
124.	What is the name and symbol of the element w	<i>i</i> th atomic number 112?	(Classificatio	on of elements)
125.	How many and what types of bonds are prese	ent in NH_4^2 ? (Cl	hemical Bonding & Mo	lecular structure)
	 Four covalent bonds Four ionic bonds 	2) Three covalent bond4) Three covalent bond	s and one ionic bon s and one coordinat	a :e bond
126.	In which of the following molecules octet rule is $1) \text{ NH}_3$ b) CH ₄	s not followed? (Che c) CO ₂	e <i>mical Bonding & Mole</i> d) NO	ecular structure)
127.	What is the effect on the pressure of a gas if its	s temperature is increase	d at constant volui (۱	me? States of Matter)
128.	 The pressure of the gas increases The pressure of the gas remains same A flask of capacity 2 L is heated from 35° C to 4 	2) The pressure of the g 4) The pressure of the g 15º C. What volume of air	gas decreases gas becomes double will escape from the (State	e. eflask?
129.	1) 10 mL 2) 20 mL In an adjustic expansion of ideal gas	3) 60 mL	4) 50 mL (Thern	nodvnamics)
120	1) W = $-\Delta E$ 2) W = ΔE	3) $\Delta E = 0$	4) W = 0	Albet will be the
130.	For the following reactions : $NO_{(g)} + O_{3(g)} \rightleftharpoons$ value of K _c for the reverse reaction ?	$NO_{2(g)} + O_{2(g)}$. The value	e of K _c is 8.2 X 10*. (Equilibrium)	what will be the
	1) 8.2 x 10 ⁴ 2) $\frac{1}{8.2 \times 10^4}$	3) (8.2 x 10 ⁴) ²	$4)\sqrt{8.2 \times 10^4}$	
131.	Which type of redox reaction is shown by the fo	llowing reaction ?		
	${\mathop{\rm Cl}^{}}_{2(g)}$ + 2KBr _(aq) \rightarrow 2KC	$sl_{(aq)}^{-1} + Br_{2(\ell)}^{0}$	(Rea	lox Reactions)
	1) Decomposition reaction 3) Non-metal displacement reaction	2) Metal displacement re 4) Disproportionation re	eaction action	
132.	What is the oxidation number of carbon in C_3O_1	$_{2}$ (carbon suboxide) ?	(Redo	ox Reactions)
133.	Adeuterium is	3) +Z	4) +2/3 (Hy	(drogen)
134.	 an electron with a positive charge a nucleus containing a neutron and two prote Which of the following alkali metals when burnt 	2) a nucleus having ons 4) a nucleus contain in air forms a mixture of c	g two protons ing a neutron and a oxide as well as nitric	proton de ?
	1) K 2) Na	3) Li	(S-Bloc 4) Cs	k elements)
135.	Ánhydrous AlCl ₃ fumes in air. What is the reas 1) It is hydroscopic in pature	on for it?	(P-Bloc	:k elements)
	2) It gives out chlorine when exposed to air.3) It is hydrolysed in moist air giving out fumes of the second se	of HCI.		
136.	4) It loses water when exposed to moist air. The decreasing order of power of boron halides 1) $BF_3 > BCI_3 > BBr_3 = 2$) $BBr_3 > BCI_3 > BF_3$	s to act as Lewis acids is 3) $BCl_3 > BF_3 > BBr_3$	(<i>P-B</i> 4) BCl ₃ > BBr ₃ > B	llock elements) F ₃
137.	Which type of hybridisation of each carbon is t	here in the compound? C	$CH_3 - CH = CH - CN$	
	1) sp ³ , sp ² , sp ² , sp 2) sp ³ , sp ² , sp ² , sp ³	(Organic) 3) sp³, sp², sp³, sp³	chemistry-some Basic 4) sp ³ , sp ² , sp, sp ³	: Principle)
138.	Which of the following compounds gives metha 1) CaC 2) B C	ane on reaction with wate 3) SiC	r? 4)ALC	(Hydro Carbons)
139.	The number of chain isomers possible for hydr 1) 3 2) 5	rocarbon $C_5 H_{12}$ is	4)6	(Hydro Carbons)
140.	Which of the following is a greenhouse gas ? 1) SO_2 2) H_2S	3) CO ₂	(Environmental 4) O ₂	Chemistry)
141.	Which of the following primitive cells show the g	given parameters ? $a \neq b$	\neq c, $\alpha = \beta = \gamma = 90^{\circ}$	
	1) Cubic 2) Tetragonal	3) Orthorhombic	4) Hexagonal	(Solid State)
142.	What is the molarity of a solution containing 10	0 g of NaOH in 500 mL of	solution?	(Solutions)
	W	WWW.AIMSTU	TORIAL.IN	

	1) 0.25 mol L ⁻¹	2) 0.75 mol L ⁻¹	3) 0.5 mol L ⁻¹	4) 1.25 mol L ^{.1}
143.	In the cell, $Zn Zn^{2+} Cu^{2+} $	Cu , the negative term	inal is	(Electro Chemistry)
144.	1) Cu Electrode potential data their reducing power.	2) Cu ²⁺ of few cells is given belo	3) Zn ow. Based on the data, an	4) Zn ²⁺ range the ions in increasing order of
	$Fe^{3_{+}}_{(aq)} + e^{-} \rightarrow Fe^{2_{+}}_{(aq)}; E^{0}$	= +0.77 V		
	$\operatorname{Al}^{3_+}_{(\operatorname{aq})} + 3e^- ightarrow \operatorname{Al}_{(s)}; \operatorname{E}^0 =$	= -1.66 V		
	$Br_{_{2(aq)}} + 2e^{-} \rightarrow 2Br_{_{(aq)}}^{-}; \ E$	E ⁰ = +1.09 V		(Electro Chemistry)
145.	1) Br $<$ Fe ²⁺ $<$ Al For a reaction R \rightarrow P, the	2) $Fe^{2+} < AI < Br^{-}$ e concentration of a read	3) AI < Br⁻ < Fe²⁺ stant changes from 0.05 N	4) AI < Fe^{2+} < Br V to 0.04 M in 30 minutes. What will
	1) 4 x 10 ⁻⁴ M min ⁻¹	2) 8 x 10 ⁻⁴ M min ⁻¹	3) 3.3 x 10 ^{-₄} M min ⁻¹	4) 2.2 x 10 ⁻⁴ M min ⁻¹
146.	For the reaction $4NH_3$ +	$50_2 \rightarrow 4NO + 6H_2O$, If t	he rate of disappearence	$e \text{ of NH}_3 \text{ is } 3.6 \text{ x } 10^{-3} \text{ mol } \text{L}^{-1} \text{ s}^{-1}, \text{ what}$
	1) 5.4 x 10^{-3} mol L ⁻¹ s ⁻¹	τH ₂ O?	2) 3.6 x 10 ⁻³ mol L ⁻¹ s ⁻¹	(Chemical Kinetics)
	3) 4 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹		4) 0.6 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹	
147.	Which of the following is	s less than zero during a	dsorption?	(Surface Chemistry)
148.	Which of the following is	≥) ∆S s not an ore of magnesiu	ാ) ∆⊓ m? (Genral Principles an	4) All Of these ad Process of Isolation of elements)
	1) Carnallite	2) magnesite	3) Dolomite	4) Gypsum
149.	Nitrogen shows differen	t oxidation states rangin	g from	(P-Block Elements)
150	1) - 3 to $+ 5Which of the following s$	2) -5 to +5	3) 0 to -5 lipole moment ?	4) -3 10 +3 (P-Block Elements)
100.	1) SbH ₃	2) PH ₃	3) NH ₃	4) AsH ₃
151.	Fe ³⁺ compounds are mo	re stable than Fe ²⁺ comp	ounds because	(d- and -f-block elements)
	1) Fe^{3+} has smaller size $\frac{1}{2}$	than Fe ²⁺	2) Fe ³⁺ has 3d ⁵ configura	ation (half - filled)
152	The number of ions give	en by IPt (NH) 1CL in ac	teous solution will be	(Co-ordination Compounds)
	1) Two	2) Three	3) Five	4) eleven
153.	Which of the following is	a primary halide ?		(HaloAlkanes & Halo Arenes)
154	1) ISO - Propyliodide	2) sec-Butyliodide	3) ter-Butylbromide	4) neo - hexylchoride
104.	$7 \text{ that cance of } 1_3 \text{ of } 1 = \text{ of } 1_2$			(Alcohols, Phenols and ethers)
155	1) CH_3CH_2CHO In the following reaction	2) $CH_{3}CH(OH)CH_{3}$	$3) CH_{3}CH_{2}CH_{2}OH$	$4) (CH_3 CH_2 CH_2)_3 B$
100.	In the following reducion	o		
		$R - C - CI \xrightarrow{H_2}{Pd/BaSO_4} F$	o (Alde	hydes, Ketones & Carboxylic acids)
	1) RCHO	2) RCH ₃	3) RCOOH	4) RCH ₂ OH
156.	Ozonolysis of an organi	c compound gives forma	aldehyde as one of the pr	oducts. This confirms the presence
	1) Two ethylenic double	bonds	2) a vinvl group	des, Retories & Carboxylic acids)
	3) an isopropyl group		4) an acetylenic triple bo	ond
157.	Identify X, Y and Z in the	e given reaction :		
		$CH_2 = CH_2 \xrightarrow{Br_2} X -$	$\xrightarrow{\text{NaCN}} Y \xrightarrow{\text{LiAlH}_4} Z$	(Amines)
	X	Y	Z	
	1) X - $CH_2Br - CH_2Br$	Y-CH ₃ CH ₂ CH ₂ CN	Z-CH ₃ CH ₂ CH ₂ CH ₂ NH ₃	
	3) X-CH ₂ CH ₂ Br	Y-CH ₃ CH ₂ CN	$Z-CH_3CH_2CH_2NH_2$ Z-CH_CH_CH_NH_	
	4) CH_2Br-CH_2Br	Y-NCCH ₂ CH ₂ CN	Z-H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ N	H ₂
158.	Invert sugar is			(Bio Molecules)
	 a type of cane sugar Optically inactive form 	ofsugar		
	3) Mixture of glucose and	d galactose		
4 - -	4) Mixture of glucose and	d fructose in equimolar o	quantities	
159.	The S in buna - S refers	to 2) Styrene	3) sodium	(Polymers)
160.	Barbituric acid and its de	erivatives are well know	1 as	(Chemistry in everydav life)
	1) Tranquilizers	2) antiseptics	3) analgesics	4) antipyretics
			* * * * *	

MODEL PAPER - 2

CHEMISTRY

137	The IUPAC name of the compound having for	nula	
107.	CH.		
	I 3		
	$H_{3}C - C - CH = CH_{2}$ is	(Orga	nic chemistry-some Basic Principle)
	I I		
			2
	1) 3,3,3 - trimethylprop - 1 -ene	2) 1,1,1 - trimethylprop	- 2 -ene
	3) 3,3 - dimethylbut - 1 - ene	4) 2,2 - dimethylbut - 3-	ene
138.	Which of the following compounds will react wit	th Na to form 4,5 - diethyl	octane? (Hydro Carbons)
	1) $CH_3CH_2CH_2CH_2Br$	2) CH ₃ CH ₂ CH ₂ - CH - C	H ₂ CH ₂ Br
		I	
		CH3	
	3) CH ₃ CH ₂ CH ₂ CH ₂ -CH-CH ₃	4) CH ₃ CH ₂ CH ₂ - CH -Cl	H ₂ CH ₃
		Î Î	
	Br	Br	
139.	Which alkane is produced when sodium salt of	butanoic acid is heated v	with soda lime? <i>(Hydro Carbons)</i>
	1) CH ₂ CH ₂ 2) CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	3) CH	4) CH ₂ CH ₂ CH ₂
140.	Which of the following is not regarded as a poll	utant ?	(Environmental Chemistry)
	1) NO. 2) CO.	3) SO	4) CO
141.	A crystal is formed by two elements X and Y in	cubic structure. X atoms	are at the corners of a cube while Y
	atoms are at the face centre. The formula of the	compound will be	(Solid State)
	1) XY 2) XY		4) XY
1/2	The molality of 6/18 α of pure water is	$0/N_2 I_3$	-//T ₃
142.	1) 26m 2) 55 5m	3) 3 6m	(3010110115)
	1) 30m 2) 33.5m	3) 3.011	4) 5.5511
143.	The cell reaction of the galvanic cell $Cu_{(s)} Cu_{(a)}^{24}$	⊢ _{g)} Hg _(ag) ²⁺ Hg _(ℓ) is	(Electro Chemistry)
	1) Ha + $Cu^{2+} \rightarrow Ha^{2+} + Cu$	2) Ha + $Cu^{2+} \rightarrow Cu^{+} + F$	ła⁺
	$3) Cu + Ha \rightarrow Cu Ha$	$4) C_{11} + Ha^{2+} \rightarrow Cu^{2+} + I$	Ha
111	The standard reduction potential for the half co	$4) Cu + Hg \rightarrow Cu + H$	ng Chwill bo
144.	The standard reduction potential for the nan-ce $(D^{++2} + 2C)$	$2e^{-1} \rightarrow D^{+} = 120 \lambda^{0}$	
	$(\operatorname{Pl}^{2} + 2\operatorname{Cl} \rightarrow \operatorname{Pl} + \operatorname{Cl}_{2}, \operatorname{E}^{\circ}_{\operatorname{cell}} - 0.15 \text{ V}, \operatorname{Pl}^{2} + 1) = 1 + 2\operatorname{Cl}^{2}_{\operatorname{cell}}$	$2e \rightarrow Pl, E^{\circ} = 1.20 V$	(Electro Chemistry)
	1)-1.35 V 2)+1.35 V	3)-1.05 V	4) +1.05 V
145.	The rate of disappearance of SO_2 in the read	ction $2SO_2 + O_2 \rightarrow 2SO$	$_3$ is 1.28 x 10 ⁻⁵ mol s ⁻¹ . The rate of
	appearance of SO_3 is		(Chemical Kinetics)
	1) 0.64 x 10 ⁻⁵ mol s ⁻¹ 2) 0.32 x 10 ⁻⁵ mol s ⁻¹	3) 2.56 x 10⁻⁵mol s⁻¹	4) 1.28 x 10⁻⁵mol s⁻¹
146.	In a reaction $2X \rightarrow Y$, the concentration of X decr	eases from 3.0 moles/litre	e to 2.0 moles/litre in 5 minutes. The
	rate of reaction is		(Chemical Kinetics)
	1) 0.1 mol L ⁻¹ min ⁻¹ 2) 5 mol L ⁻¹ min ⁻¹	3) 1 mol L ⁻¹ min ⁻¹	4) 0.5 mol L ⁻¹ min ⁻¹
147.	Which of the following is a property of Physisor	otion?	(Surface Chemistry)
	1) High specificity 2) Irreversibility	Non-specificity	4) None of these
148.	Which of the following is a halide ore?	(Genral Principle	es and Process of Isolation of elements)
	1) Cassiterite 2) Anglesite	3) Siderite	4) Carnallite
149.	Which of the following compounds will not give a	ammonia on heating?	(P-Block Elements)
	1) (NH.), SO. 2) (NH.), CO.	3) NH,NO	4) NH CI
150.	Which of the following oxides is anhydride of nit	rous acid?	(P-Block Elements)
	1) N O 2) NO	3) NO	4) N O
151	Which of the following transition metal ions is cc	olourless?	$(d_1 and_1 f_2) = (d_2 and_2 f_2)$
101.	$1 V^{2+}$ 2) Cr ³⁺	3) $7n^{2+}$	(d- and -i-block elements) 1) Ti ³⁺
150	A coordination compound CrCL 4H O gives whi	5)ZII	+ $ +$ $ +$ $ +$ $ +$ $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
152.	the compound corresponde to two ions. The string	uctural formula of the con	magno ₃ . The molar conductance of
450	$(1) [C((\Pi_2 O)_4 O)_3] = 2) [C((\Pi_2 O)_3 O)_3] [\Pi_2 O]$	$3) [CI(H_2O)_4CI_2]CI$	4) $[CI(\Pi_2 O)_4 CI]CI_2$
153.	The IUPAC name of $(CH_3)_2CH - CH_2 - CH_2Br is$		(HaloAlkanes & Halo Arenes)
	1) 1-bromopentane 2) 1-bromo-3-methylbu	tane 3)2-methyl-4-bromo	butane 4) 2-methyl-3-bromopropane
154.	A compound X with the molecular formula $C_{3}H_{2}$	O can be oxidised to and	other compound Y whose molecular
	formula is $C_3 H_6 O_2$. The compound X may be		(Alcohols, Phenols and ethers)
	1) $CH_3CH_2OCH_3$ 2) CH_3CH_2CHO	3) CH ₃ CH ₂ CH ₂ OH	4) CH ₃ CHOHCH ₃
155.	Propanone can be prepared from ethyne by	(*	Aldehydes, Ketones & Carboxylic acids)
	1) Passing a mixture of ethyne and steam over a	a catalyst, magnesium at	420°C
	2) Passing a mixture of ethyne and ethanol over	r a catalyst zinc chromite	
	3) Boiling ethyne with water and H ₂ SO	-	
	4) Treating ethyne with iodine and NaOH		
156.	The oxidation of toluene to benzaldehvde by chi	romyl chloride is called	(Aldehydes, Ketones & Carboxvlic acids)
	1) Etard reaction 2) Riemer-Tiemann reaction	action 3) Wurtz reaction	4) Cannizzaro's reaction
157	Amine that cannot be prepared by Gabriel-Phth	alimide synthesis is	,(Δmines)
	1) Aniline 2) henzyl amine	3) Methyl amine	4) iso-butylamine
158	The general formula of carbohydrates is		(Rio Moloculos)
		3) C (H O)	$(E) \in (H \cap C)$
	$2n^{1} 2n^{+1}$	$\mathcal{O}_{x}(\mathbf{U}_{2}\mathcal{O}_{y})$	$r_1 \sim r_1 \sim r_2 \sim r_{2n}$

159. Nylon 6, 6 is obtained by condensation polymerisation of
1) Adipic acid and ethylene glycol2) Adipic

3) Terephthalic acid and ethylene glycol 160. Antihistamines are not helpful

1) In curing nasal allergies

3) In bringing down acute fever

t

(Polymers)

2) Adipic acid and hexamethylenediamine 4) Adipic acid and phenol

(Chemistry in everyday life)

- 2) in treating rashes caused by itching
- 4) in vasodilation

MODEL PAPER - 3

CHEMISTRY

121.	How many moles of oxy	gen gas can be produce	d during electrolytic deco	omposition of 180 g of water ? (Some Basic concept of chemistry)
122.	1) 2.5 moles What is the maximum nu ground state ?	2) 5 moles umber of emission lines v	3) 10 moles vhen the excited electron	4) 7 moles of a hydrogen atom in n = 6 drops to <i>(Structure of Atom)</i>
123.	1) 6 The frequency of radiat energies E_1 (lower) and E (Structure of Atom)	2) 15 ion absorbed or emitted E_2 (higher) is given by	3) 30 when transition occurs b	4) 10 etween two stationary states with
	$1)\upsilon = \frac{E_1 + E_2}{h}$	$2) v = \frac{E_1 - E_2}{h}$	$3) v = \frac{E_1 x E_2}{h}$	4) $\upsilon = \frac{E_2 - E_1}{h}$
124.	Which of the following e 1) $7 = 19$ and $7 = 38$	elements shown as pairs $2)$ $7=12$ and $7=17$	with their atomic numbe (3) $7 = 11$ and $7 = 21$	rs belong to the same period ? (Classification of elements) (1) Z = 16 and Z = 35
125. 126.	In which of the following 1) NCl_3 The correct oder of decr	2) Z= 12 and Z= 17 species the bond is non 2) RbCl reasing bond lengths of	-directional? (C 3) BeCl ₂ CO, CO ₂ and CO ²⁻ ₃ is	4) Z = 10 and Z = 35 Chemical Bonding & Molecular structure) 4) BCl ₃
407	1) CO > CO ₂ > CO ²⁻ ₃	(Chemical Bonding & Mole 2) $CO^{2}_{3} > CO_{2} > CO$	cular structure) 3) $CO_2 > CO > CO^2_3$	4) $CO_2 > CO_{-3}^2 > CO$
127.	What volume in litres wi 1) 22.4 L	Il be occupied by 4.4 g c 2) 44.8 L g of N2 will occupy a vo	of CO ₂ at STP ? 3) 12.2 L Jume of 20 litres at 2 atm	(States of Matter) 4) 2.24 L
120.	1) 300.0 K What will be the change	2) 487.2 K in internal energy when	3) 289 .6 K 12 KJ of work is done on	4) 283.8 K the system and 2 Ki of heat is given
	by the system ? 1) +10 kJ	2) -10 kJ	3) +5 kJ	(Thermodynamics) 4) - 5 kJ
130.	For the reaction $2NO_{2(g)}$	$N_{2} \rightleftharpoons N_{2}O_{4(g)}K_{p}/K_{c}$ is eq	ual to	(Equilibrium)
	1) <u>1</u> RT	2) _{\(\begin{subarray}{c} RT \) = (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)}	3) RT	4) (RT) ²
131.	Permanganate (VII) ion	, MnO ^{₋₄} oxidises I- ion to	T ² and gives manganes	e (IV) oxide MnO_2 in basic medium
	The skeletal ionic equati q, r and s are	on is given as $pMnO_{4(aq)}^{-}$	$+ qI_{(aq)}^{-} + xH_2O_{(\ell)} \rightarrow rMnC$	$D_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$ the values of p, (Redox Reactions)
132.	1) p-1,q - 2, r- 8, s - 4 A compound contains a formula of the compound	2) p-2,q - 6, r- 2, s -3 itoms X, Y and Z. The o d is	3) p-2,q -4, r- 2, s -8 xidation number of X is +	4) p-1,q - 4, r- 8, s -2 2, Y is +5 and Z is -2, The possible <i>(Redox Reactions)</i>
133.	1) XYZ_2 Syngas is a mixture of	2) $Y_2(XZ_3)_2$	3) $X_{3}(YZ_{4})_{2}$	4) X ₃ (Y ₄ Z) ₂ (Hydrogen)
13/	1) $CO_2 + H_2$ Which of the following h	2) CO + H_2	$3) CO+CO_2$	4) $CO+O_2$
134.	1) Li, CO,	2) Na ₂ CO ₂	3) K ₂ CO ₂	4) Rb ₂ CO ₂
135.	Ŵhich of the following h	nydroxides is acidic?	, 2 3	(P-Block elements)
100	1) AI(OH) ₃	2) Ga(OH) ₃	3) TI(OH) ₃	4) B(OH) ₃
130.	1) Aluminium powder	2) Zinc powder	3) Iron turnings	4) copper turnings.
137.	The correct name of CH	$H_3CH_2 - C - CH-CHO is$		
138.	1) 2 - Cyano - 3 -oxopen 3) 2 -cyano-1,3 - pentad A mixure of 1-iodoethan reaction. Which of the fo	II I O <i>CN</i> Itanal iene ie and 1-iodopropane is	<i>(Organic</i> 2) 2 - formyl -3- oxopent 4) 1,3-dioxo-2-cyanoper treated with sodium me ill be formed?	c chemistry-some Basic Principle) anenitrile htane. tal and dry ether to carry out Wurtz (Hydro Carbons)
139.	1)Propane + Hexane Which of the following is	2) Ethane + propane s the most stable free ra	3) Butane + Propane dical?	4) Butane + pentane + Hexane (Hydro Carbons)

140.	In Antarctica,ozone dep	pletion is due to the form	nation of which of the follo	owing compou	inds?
	1) Aoroloin			(En 4) Chloring p	vironmental Chemistry)
141.	A cubic solid is made up of Q are present at body	of two elements P and C centre. What is the form	Atoms of P are present a ula of the compound and	at the corners of what are coord	of the cube and atoms dination numbers of P
		2) PQ 6.6	3) P Q 6 · 8	4) PQ 8 · 8	(Solid State)
142.	When 1.04 g of $BaCl_2$ is 1) 0.104 ppm	2)1	ition the concentration of 3) 0.0104 ppm	soultion is 4) 104 ppm	(Solutions)
143.	What will be the emf of	the following concentra	tion cell at 25 °C ?		
	$Ag_{(s)} AgNO_3 (0.0)$	1M) AgNO ₃ (0.05M) Ag	J _(s)		(Electro Chemistry)
	1) 0.828 V	2) 0.0413 V	3) -0.0413 V	4) -0.828 V	
144.	What will be the reduction $E_{cell}^0 = +0.80 \text{ V}$	ion potential for the follo	owing half - cell reaction	at 298 K? (Giv	/en : [Ag ⁺]=0.1 M and (<i>Electro Chemistry</i>)
	1) 0.741 V	2) 0.80 V	3) -0.80 V	4) - 0.741 V	
145.	For the reaction, 2N ₂ O	$O_5 \rightarrow 4NO_2 + O_2$ rate and	d rate constant are 1.02	x 10 ⁻⁴ mol L ⁻¹	$s^{\text{-1}}$ and 3.4 x 10 $^{\text{-5}}$ $s^{\text{-1}}$
	respectively. The concert 1) 3.4×10^{-4}	ntration of N_2O_5 in mol L 2) 3.0	- ⁻¹ will be 3) 5.2	(4) 3.2 x 10 ⁻⁵	Chemical Kinetics)
146.	Consider the reaction :	$2N_2O_4 \rightleftharpoons 4NO_2 \text{ If } -\frac{d[1]}{2N_2O_4}$	$\frac{N_2O_4]}{dt} = k \text{ and } \frac{d[NO_2]}{dt} =$	k then	(Chemical Kinetics)
	1) 2k' = k	2) k' = 2k	3) k' = k	4) $k = \frac{1}{4}k'$	
147.	Which of the following g	ases is least adsorbed	on charcoal ?		(Surface Chemistry)
	1) HCI	2) NH ₃	3) O ₂	4) CO ₂	
148.	Froth floatation process	s of concentration is ba	sed on the		· · · · · · · · · · · · · · · · · · ·
	 Preferential wetting p Difference in the spec Difference in solubility Difference in reactivity 	roperties with the frothir cific gravities of gangue / of gangue and ore par y of gangue and ore par	ng agent and water and ore particles ticles in frothing agent an ticles with water and froth	id water hing agent.	
149.	\acute{PCI}_{3} on hydrolysis gives	S		(P-Blo	ock Elements)
450	1) H ₃ PO ₃	2) HPO ₃	3) $H_3 PO_4$	4) POCl ₃	
150.	Arrange the following in 1) $PI_3 > PBr_3 > PCI_3 > PF$	decreasing Lewis acid : 3	strength - PF_3 , PCI_3 , PBr_3 2) $PF_3 > PCI_3 > PBr_3 > F$,, PI ₃ . <i>(P-Bloc</i> کا _ع	k Elements)
151	$3) POI_3 > PDI_3 > PI_3 > PI_3$	r₃ mber of unpaired electro	$4) PDI_3 PI_3 PI_3 PI_3 PI_3 PI_3$	ار ₃	l- and -f-block elements)
	1) $Cu^{2+} > Ni^{2+} > Cr^{3+} > Fe$	e ³⁺	2) Ni ²⁺ > Cu ²⁺ > Fe ³⁺ > C	Cr ³⁺	
	3) $Fe^{3+} > Cr^{3+} > Ni^{2+} > Ci$	u ²⁺	4) $Cr^{2+} > Fe^{3+} > Ni^{2+} >$		
152.	The charges x and y on and Fe is $+2$ in their resp	the following ions are (i pective complexes.)) $[Co(NH_3)_2 CI_4]^{\times}$ (ii) $[Fe$	CON) ₆] ^y (Oxida) (Co-ord) (Co-ord)	ation state of Co is +3 ination Compounds)
153	The negative part of the	2) x = -1, y = +3	3) x = -1, y = -4 cule to be added) adds c	4) x = -2, y =	-3 on atom of the double
100.	bond conatining the leas	st number of hydrogen a	atoms. This rule is known	as <i>(HaloA</i>	Ikanes & Halo Arenes)
154.	What happens when terti	ary butyl alcohol is passe	d over heated copper at 30	4) van t⊓on)0ºC? (Alcoh	nule hols. Phenols and ethers)
	1) Secondary butyl alcoh	nol is formed	2) 2-Methylpropene is for	ormed	
155.	The addition of HCN to c	carbonyl compounds is a	an example of	Aldehvdes. Keto	ones & Carboxvlic acids)
	1) nucleophilic addition	2) electrophilic addition	n 3) Free radical additio	n 4) electrom	eric addition
156.	Aldehydes other than for give	maldehyde react with G	rignard's reagent to give a (Alo	ddition produc Iehydes, Ketone	ts which on hydrolysis s & Carboxylic acids)
	1) Tertiary alcohols	2) secondary alcohols	3) primary alcohols 4) Carboxylic a	cids
157.	Arrange the following in 1) $C_6H_5NH_2 < NH_3 < (CH_3)$	increasing order of bas $I_3)_2NH < CH_3NH_2$	sicity : CH_3NH_2 , $(CH_3)_2NH_2$ 2) $CH_3NH_2 < (CH_3)_2NH_2$	$1, NH_3, C_6H_5NH < NH_3 < C_6H_5NH$	H ₂ (Amines)
158.	3) $C_6H_5NH_2 < NH_3 < CH_3$ What are the hydrolysis	$_{3}$ NH ₂ < (CH ₃) ₂ NH products of sucrose ?	4) $(CH_3)_2$ NH < CH_3NH_2	$< NH_3 < C_6H_5$	NH ₂ (Bio Molecules)
450	1) Fructose + Fructose	2) Glucose + Glucose	3) Glucose + Galaitose	4) Glucose	+ Fructose
159.	Natural rubber is a poly	mer of	2) 2 methyl 1 3 hutar	diono	(Polymers)
	3) 2 - chlorobuta -1. 3-di	ene	4) 2 - chlorobut - 2 - ene)	
160.	The chemical substance	es used to bring down b	ody temperature in high f	fever are know	/n as
	1)Analgesics	2) Antipyretics	3) Antihistamines	(Chemistry i 4) Tranquilize	n everyday life) ers
		WV	WWW.AIMSTU	TORIAL	.IN

MODEL PAPER - 4

CHEMISTRY

121. 122. 123.	1 mole of water contains 1) 6.023×10^{23} atoms What is the velocity of el 1) 2.18×10^5 m/s According to Bohr's theo	2) 6.023 x 10 ²³ ,molecu ectron present in first Bo 2) 2.18 x 10 ⁶ m/s ory, the angular moment	tiles 3) 3 x 6.023 x 10^{23} m ohr orbit of hydrogen ator 3) 2.18 x 10^{-18} m/s tum of an electron in 5th o	(Some Basic con nolecules 4) No n? 4) 2.18 x 10 ⁻⁹ n prbit is	ncept of chemistry) one of these (Structure of Atom) n/s (Structure of Atom)
	1) $\frac{10h}{\pi}$	2) $\frac{25h}{\pi}$	3) $\frac{1.5h}{\pi}$	4) $\frac{2.5h}{\pi}$	
124.	An element has atomic	number 79. Predict the ç	group and period in which	n the element is (Classifie	placed. cation of elements)
125.	1) 2 nd group, 7 th period The correct sequence c (<i>Chem</i>	2) 11th group, 6th perio of bond length in single t nical Bonding & Molecular :	d 3)13 th group, 6 th period bond, double bond and tri s <i>tructure</i>)	d 4) 12 [™] group iple bond of C is	o, 6 [⊪] period S
126.	1) $(C - C) < (C = C) < (C$ 3) $C - C < C = C < C = C$ Arrange the following in	$E \equiv C)$ C increasing order of cove	2) $C \equiv C < C = C < C - C$ 4) $C = C < C = C < C - C$ alent character - NaCl, M	C) gCl ₂ , AICl ₃ . <i>(Chemica</i>)	l Bonding & Molecular
	structure)			(enemieu)	Donanig a molecular
127.	1) NaCl < MgCl ₂ < AlCl ₃ What is the density of C 1) 5.2 α L ⁻¹	2) MgCl ₂ < NaCl < Al O ₂ at 27 °C and 2.5 atm 2) 6 2 g L ⁻¹	Cl ₃ 3) AlCl ₃ < MgCl ₂ < N pressure ? 3) 7 3 a L ⁻¹	laCl 4) NaCl <	< AICl ₃ < MgCl ₂ (States of Matter)
128.	Molecular mass of a ga	s is 78. Its density at 98	^o C and 1 am will be	4) 78 a l -1	(States of Matter)
129.	A reaction proceeds thro	ough two paths I and II to	o convert $X \rightarrow Z$.	4)70 y L	
		Q path I $Q_1 Q_2$ path II Y path II			
	What is the correct relation 1) $Q = Q_1 \times Q_2$	tionship between Q, Q_1 2) Q = $Q_1 + Q_2$	and Q_2 ? 3) Q = $Q_2 - Q_1$	4) Q = Q_1 / Q_2	(Thermodynamics)
130.	For the reaction $a + b \rightleftharpoons$ of d will be twice of that of 1) 2	c + d, initially concentra of a. What will be the eq 2) 9	ations of a and b are equal uilibrium constant for the 3) 4	and at equilibriu reaction ? 4) 3	im the concentration (Equilibrium)
131.				<i>(</i> D <i>)</i>	day Passtians)
	1) x- 6 y-3 z- 5	2) x-3 v-2 z-3	$+31_{2}$ 3) x-3 y-6 z-5	4) x-3 v-3 z-	3
132.	Which compound among	gst the following has the	highest oxidation numbe	r of Mn? (Redox Reactions)
133.	Which property of Hydro	$20 R_2 \sin \Theta_4$	lowing reactions ?	$(4) 1011_{2}O_{3}$	(Hydrogen)
	i) $Fe_{3}O_{4} + 4H_{2} \rightarrow 3Fe + 4H_{2}$	4H ₂ O	ii) $CO + H_2 \xrightarrow{ZnO} CH_3$,OH	
134.	1) Reducing character Baking soda is	2) Oxidising characte	er 3) Combustibility	4) High reac (S-Block element	tivity nts)
135	1) NaHCO ₃ Na B.O. + X \rightarrow H BO. \	2) NaHCO ₃ , $6H_2O$ What is X in the reaction	3) Na ₂ CO ₃ 2	4) Na ₂ CO ₃ , 10	H ₂ O Block elements)
100.	1) Aqueous solution of N	aOH 2) Dilute nitric a	cid 3) Conc. H_2SO_4 or H(CI 4) water	Dioon cicinento)
136.	Which of the following c 1) Metaborate	ompounds is formed in l 2) Tetraborate	borax bead test ? 3) Triborate	(P- 4) Orthoborate	Block elements)
137.	Which of the following re 1) $CH_2 = CH(CH_2)_2CH_3$ 2) $CH_2 = C(CH_2)_2CH_3$	presents 3 - methylpent	a - 1,3 - diene ? (C2) CH2 = CHCH(CH3)CH4) CH2 CH = C(CH)	Drganic chemistry I ₂ CH ₃	-some Basic Principle)
138.	Chlorination of methane	$\frac{1}{2}$ does not occur in dark	because $(CH_3)_2$		(Hydro Carbons)
	 Methane can form free To get chlorine free ra Substitution reaction Termination step can 	e radicals in presence o dicals from Cl ₂ molecule can take place only in su not take place in dark. It	r sunlight only es energy is required. It ca unlight and not in dark requires sunlight.	annot happen ir	n dark
139.	Presence of unsaturatio 1) Fehling's reagent	n in organic compounds 2) Tollen's reagent	can be tested with 3) Baeyer's reagent	4) Fittig's reac	(Hydro Carbons) tion

140.	Freon's are not recommended to be used in reg 1) Cause global warming	frigerators because they 2) Cause acid rain	(Environmental Chemistry)
141.	3) Cause depletion of ozone layer How many chloride ions are surrounding sodium	4) Cause very less coolin n ion in sodium chloride cr	ng. ystal ? (Solid State)
142.	The density of a solution prepared by dissolving	3) 6 120 g of urea (mol. mass :	4) 12 = 60 u) in 1000 g of water is 1.15 g/ (Solutions)
	1) 1.78 M 2) 1.02 M	3) 2.05 M	4) 0.50 M
143.	Limiting molar conductivity for some ions is give Na ⁺ - 50 1 Cl ⁻ - 763 H ⁺ - 349 6 CH COO ⁻ - 40 9	n below (in S cm² mol⁻¹) : Ca²⁺ -119 0	
	What will be the limiting molar conductivities (Λ	$^{0}_{m}$) of CaCl ₂ , CH ₃ COONa	and NaCl respectively?
	1) 97.65. 111.0 and 242.8 S cm ² mol ⁻¹	2) 195.3. 182.0 and 26.2	<i>(Electro Chemistry)</i> S cm ² mol ⁻¹
	3) 271.6, 91.0 and 126.4 S cm ² mol ⁻¹	4) 119.0, 1024.5 and 9.2	$S \text{ cm}^2 \text{ mol}^1$
144.	I he equivalent conductivity of N/10 solution of a	= 200 71 ob $=$ 25 °C is 14.3	1 ohm ⁻¹ cm ² equiv ⁻¹ . what will be the
	1) 3.66% 2) 3.9%	3) 2.12%	4) 0.008%
145.	The rate constant of a reaction depends upon		(Chemical Kinetics)
	1) Temperature of the reaction 3) Initial concentration of the reactants	2) extent of the reaction4) The time of completion	n of reaction.
146.	The chemical reaction, $2O_3 \rightarrow 3O_2$ proceeds as	.)	
	$O_3 \rightleftharpoons O_2 + [O]$ (fast) $[O] + O_3 \rightarrow 2O_2$ (slow	 The rate law expression 	n will be (Chemical Kinetics)
147	1) Rate = k[O] [O ₃] 2) Rate = k $[O_3]^2 [O_2]^{-1}$	3) Rate = k $[O_3]^2$	4) Rate = k $[O_2][O]$
147.	1) Alwyas grater than one		(Surface Chemisury)
	2) Always smaller 3) Always equal to one		
	4) Greater than one at low temperature and small	ller than one at high temp	erature.
148.	Sulphide ore of zinc / copper is concentrated by 1) Electromagnetic process 2) electromagnetic proc	(Genral Principles al Cress 3) gravity separation	nd Process of Isolation of elements)
149.	How many $P - O - P$ bonds appear in cyclic meta	a - phosphoric acid ?	(P-Block Elements)
150	1) Four 2) Three Which of the following is not correctly matched 2	3) Two	4) One (P-Block Elements)
100.	1) PCI_5 - sp^3 d hybridisation	2) PCl ₃ - sp ³ hybridisatior)
151	3) $PCI_5(solid) - [PtCI_4]^+ [PtCI_6]^-$ The magnetic moment of a divalent ion in aqueo	4) H_3PO_3 - tribasic	umber 25 is
		(d- and -f-block	elements)
152.	1) 5.9 B.M 2) 2.9 B.M Among the following which are ambidentate ligat	3) 6.9 B.M nds ?	4) 9.9 B.M
	(i) SCN ⁻ (ii) NO ⁻ ₃ (iii) NO ⁻ ₂	(iv) $C_2 O_4^{2-4}$	(Co-ordination Compounds)
153.	1) (I) and (III) 2) (I) and (IV) Which of the following reactions follows Markov	3) (II) and (III) nikov's rule ?	4) (II) and (IV) (HaloAlkanes & Halo Arenes)
454	1) $C_2H_4 + HBr$ 2) $C_3H_6 + Cl_2$	3) $C_{3}H_{6}$ +HBr	4) $C_{3}H_{6} + Br_{2}$
154.	An alconol x when treated with not conc. H_2SO_4 gives single product with molecular formula C_2H	Jave an alkene y with form	C_4H_8 . This alkene on ozonlysis (<i>Alcohols, Phenols and ethers</i>)
455	1) butan - 1-01 2) butan - 2 - ol	(3) 2 - methylpropan - 1 - c	bl 4) 2,2 - dimethylbutan - 1-ol
155.	1) CH ₂ CHO 2) CH ₂ COCH ₃	3) C _g H _g CHO	ehydes, Ketones & Carboxylic acids) 4) C ٍH ٍCH ֶCH
156.	Match the column I with column II and mark the a	ppropriate choice.	
	(A) Clemmensen reduction (i) Conc,	КОН	
	(B) Rosenmund reduction (ii) Zn /Hg	+ conc.HCl	
	(D) Cannizzaro reaction (iv) NaOF	$ \mathbf{I} + _2$ (Alde	hydes, Ketones & Carboxylic acids)
	1) (A) \rightarrow (i), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (iv) 2) (A) \rightarrow (iii) (B) \rightarrow (iv) (C) \rightarrow (i) (D) \rightarrow (ii)		
	$3) (A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (i), (D) \rightarrow (i)$		
157	4) (A) \rightarrow (iv), (B) \rightarrow (i), (C) \rightarrow (ii), (D) \rightarrow (iii) Electrophilic substitution of apiline with bromine	water at room temperati	Ire dives (Aminos)
107.	1) 2 - bromoaniline 2) 3 - bromoaniline	3) 2,4,6 - tribromoaniline	4) 3,5,6 - tribromoaniline
158.	Denaturation of protein leads to loss of its biolog	gical activity by	(Bio Molecules)
	2) Loss of primary structure		
	3) Loss of both primary and secondary structure		

- 159. Composition of Ziegler Natta catalyst is 1) $(Et_3)_3AI.TiCl_2$ 2) $(Me)_3AI.TiCl_2$
- 160. Barbiturates acts as 1) Hypnotic i.e., sleep producing agents
 - 3) Activator of neurotransmitters

3) $(Et)_{3}AI.TiCl_{4}$

(Polymers) 4) $(Et)_{3}AI.PtCI_{4}$ (Chemistry in everyday life)

- 2) non-narcotic analgesics
- 4) Antiallergic drugs.

MODEL PAPER -5

CHEMISTRY

121.	A compound contains tw What can be its simples 1) XY	vo elements 'X' and 'Y' ir t formula ? 2) X ₂ Y	n the ratio of 50% each. A 3) XY	tomic mass of 'X' (Some Basic of 4) X ₂ Y ₂	is 20 and 'Y' is 40. concept of chemistry)
122.	f the radius of first Boh	r's orbit is x pm, then the	e radius of the third orbit	would be (S	tructure of Atom)
	1) (3 x x) pm	2) (6 x x) pm	3) $\left(\frac{1}{2} \times x\right)$ pm	4) (9 x x) pm	
123.	If the ionisation energy next higher state is appro-	of hydrogen atom is 13.0 oximately	6 eV, the energy required	d to excite it from ((Structure of	ground state to the Atom)
124.	1) 3.4 eV An element has the elec	2) 10.2 eV ctronic configuration 1s ²	3) 17.2 eV 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ² . w	4) 13.6 eV /hat will be its posi	tion in the periodic
	table? 1) Period 4, Group 10	2) Period 2, group 2	3) period 4, Group 2	<i>(Classificatio</i> 4) Period 2, Gro	on of elements) oup 8
125.	What is common betwe	en the following molecu	les : $SO_3, CO^{2-}_3, NO^{-}_3$?	(Chemical I	Bonding & Molecular
	<i>structure)</i> 1) All have linear shape.		2) All have trigonal plan	arshape	
126.	3) All have tetrahedral sh Which of the following d	nape oes not show octahedra	4) All have trigonal pyra	imidal shape. <i>Chemical Bonding 8</i>	Molecular structure)
	1) SF ₆	2) IF ₅	3) SiF ²⁻ ₆	4) SF ₄	
127.	Which of the following rela	ationships between partia	l pressure, volume and ter	nperature is correc	t? (States of Matter)
	i) $P = \frac{nRT}{V}$	ii) $P_{total} = P_1 + P_2 + P_3$	iii) $P_{total} = (n_1 + n_2 + n_3)^{-1}$	RT V	
400	1) i and ii	2) i and iii	3) ii and iii	4) i, ii and iii	
128.	Density of a gas is found	d to be 5.46 g/dm³ at 27	°C and 2 bar pressure. V	/vhat will be its de	(States of Matter)
	1) 3.0 g dm ⁻³	2) 5.0 g dm ⁻³	3) 6.0 g dm ⁻³	4) 10.82 g dm ⁻³	(0.2000 01
129.	Which of the following e	xpressions is correct to	calculate enthalpy of a re	eaction?	(Thermodynamics)
	3) $\Delta H_{reaction} = \sum BE_{reaction}$	$_{\text{ts}} = \sum \Delta_{f} \Pi_{\text{products}}$	$\begin{array}{l} 2) \Delta \Pi_{\text{reaction}} = \Delta B L_{\text{produc}} \\ 4) \Delta H_{\text{reaction}} = \Delta H_{4} \times \Delta H_{2} \end{array}$	$t_{\rm s}$ - $\Delta H_{\rm c}$	
130.	Predict the direction of the	he reaction from the con	nparison of Q_c and K_c . M	ark the incorrect s	statement.
	$Q = \frac{K_c}{C} = \frac{Q_c K_c}{C} = \frac{Q_c K_c}{C}$	c.			
	$\begin{bmatrix} \mathbf{Q}_c \\ \mathbf{R} \to P \end{bmatrix} \begin{bmatrix} \mathbf{R} \to P \\ \mathbf{R} \to P \end{bmatrix} \begin{bmatrix} \mathbf{R} \to P \\ \mathbf{R} \to P \end{bmatrix}$		(1	Equilibrium)	
	1) If $Q_c < K_c$ reaction go 3) If $Q_c > K_c$ net reaction	es from left to right 1 goes from right to left	2) If $Q_c = K_c$ reaction go 4) If $Q_c = K_c$ reactants a	bes form right to le and products are a	eft at equilibrium
131.	In which of the following	compounds oxidation s	tate of chlorine has two	different values?	(Redox Reactions)
132.	The values of coefficien	ts to balance the followi	ng reaction are	4) CCI ₄	(Redox Reactions)
	$Cr(OH)_3 + CIO^- + C$	$OH^{-} \rightarrow CrO_4^{2-} + Cl^{-} + H_2^{0}$	O →		
	$Cr(OH)_3$	ClO-	CrO ₄ ²⁻	Cl- 3	
	2) 2	4	3	2	
	3) 2	4	4	2	
	4) 2	3	2	3	
133.	Which of the following h	ydrides is electron defici	ient?		(Hydrogen)
134.	A white solid X reacts w	ith dil. HCl to give colour	less gas which is used in	h fire extinguisher	s. The solid X is
135	1) NaCl Identify X and Y in the fo	2) CH ₃ COONa	3) Na ₂ CO ₃	4) NaHCO ₃	(S-BIOCK elements)
	BCl ₂ + NH ₂ Cl $\xrightarrow{140^{\circ}C}$	$\rightarrow X \xrightarrow{\text{NaBH}_4} Y$			(P-Block elements)
	1) X = NaBO Y = B O	<i>,</i>	2) X = Na.B.O . Y = H I	BO.	
	3) X = BN, Y = $[NH_4]^+[B0]$	Cl ₄]-	4) $X = B_3 N_3 H_3 C I_3$, $Y = B_3 N_3 H_3 C I_3$	$B_3 N_3 H_6$	
136.	The type of hybridization	n of boron in diborane is			(P-Block elements)

137. $C_2H_5 - N_1$ and $C_2H_5 - O - N = O$ are example of (Organic chemistry-some Basic Principle) 1) Functional isomers 2) Tautomers 3) Position isomers 4) metamers 138. Propanal -1 and pentan -3- - one are the ozonolysis products of an alkene. What is the structural formula of alkene? (Hydro Carbons) СН₃СН₂-С=СН-СН₂СН₃ CH₂CH₂ 2) _{CH₃CH₂-CH=CH-CH₃} 1) $CH_3 - C = C - CH_3$ CH_2CH_3 $CH_3CH_2CH_2CH_2 - CH = CH - CH_2CH_2$ 139. What are the products of dehydrohalogenation of 2-iodopentane? (Hydro Carbons) 2) 1-pentene (major), 2 - pentene (minor) 1) 2 - Pentene (major) - 1-Pentene(minor) 3) 2 - pentene (50%), 1-pentene (50%) 4) None of these. 140. Carbon monoxide is harmful to human beings as it (Environmental Chemistry) 1) Is carcinogenic 2) Is antagonistic to CO₂ 3) Has higher affinity for haemoglobin as compared to oxygen 4) Is destructive to CO₂ 141. Á metal crystallise into a lattice containing a sequence of layers as AB AB ABWhat percentage of voids are left in the lattice ? (Solid State) 1)72% 2)48% 3) 26% 4) 32% 142. Which of the following solutions shows positive deviation from Raoult's law? (Solutions) 1) Acetone + Aniline 2) Acetone + Ethanol 3) Water + Nitric acid 4) Chloroform + Benzene 143. Limiting molar conductivity of NaBr is (Electro Chemistry) 1) Λ_m° NaBr = Λ_m° NaCl + Λ_m° KBr 2) Λ_m° NaBr = Λ_m° NaCl + Λ_m° KBr - Λ_m° KCl 3) $\Lambda_m^\circ \text{NaBr} = \Lambda_m^\circ \text{NaOH} + \Lambda_m^\circ \text{NaBr} - \Lambda_m^\circ \text{NaCl}$ 4) $\Lambda_m^\circ \text{NaBr} = \Lambda_m^\circ \text{NaCl} - \Lambda_m^\circ \text{NaBr}$ 144. The equivalent conductance of Ba²⁺ and Cl⁻ are respectively 127 and 76 ohm⁻¹ cm² eq⁻¹ at infinite dilution. What will be the equivalent conductance of BaCl₂ at infinite dilution? (Electro Chemistry) 1) 139.5 ohm⁻¹ cm² eq⁻¹ 2) 203 ohm⁻¹ cm² eq⁻¹ 3) 279 ohm⁻¹ cm² eq⁻¹ 4) 101.5 ohm⁻¹ cm² eq⁻¹ 145. Half - Life period of a first order reaction is 10 min what percentage of the reaction will be completed in 100 min? (Chemical Kinetics) 1) 25% 2) 50% 3) 99.9% 4)75% 146. What will be the half - life of the first order reaction for which the value of rate constant is 200 s⁻¹? (Chemical Kinetics) 2) 3.46 x 10⁻³ s 3) 4.26 x 10⁻² s 1) 3.46 x 10⁻² s 4) 4.26 x 10⁻³ s 147. Which of the following graphs would yield a straight line? (Surface Chemistry) 3) x/m vs log p 1) x/m vs p 2) log x/m vs p 4) log x/m vs log p 148. Which of the following reactions show the process of smelting? (Genral Principles and Process of Isolation of elements) 1) 2PbO + Pbs \rightarrow 3Pb + So₂ 2) $2Na[Au(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Au$ 4) 2HgS + $3O_2 \rightarrow 2HgO + 2SO_2$ 3) PbO+C \rightarrow Pb +CO 149. Arrange the following hydrides of group 16 elements in order of increasing stability. (P-Block Elements) 1) H₂S <H₂O < H₂Te > H₂Se 2) H₂O < H₂Te < H₂Se < H₂S 3) H, O < H, S < H, Se < H, Te 4) H, Te < H, Se < H, S < H, O 150. Bond angle in $H_{2}O$ (104.5^o) is higher than the bond angle of $H_{2}S$ (92.1^o). The difference is due to H 104.5° H (P-Block Elements) 1) Difference in size of S and O 2) Difference in electronegativity of S and O 3) Difference in Oxidation states of S and O 4) Difference in shapes of hybrid orbitals of S and O 151. Which of the following pairs of ions have the same electronics configuration? (d- and -f-block elements) 1) Cu²⁺ , Cr²⁺ 2) Fe³⁺, Mn²⁺ 3) CO⁺³ , Ni³⁺ 4) Sc³⁺, Cr³⁺ 152. Which of the following is not a neutral Ligand ? (Co-ordination Compounds) 1) H₂O 2) NH₃ 3) ONO 4) CO

MODEL PAPER - 6

CHEMISTRY

121. An organic compound on analysis gave C = 54.2%, H = 9.2% by mass, its empirical formula is (Some Basic concept of chemistry) 1) CHO₂ $2) CH_2O$ $3) C_2 H_8 O$ 4) $C_2 H_4 O$ 122. The radius of hydrogen atom in ground state is 0.53 °A. What will be the radius of Li²⁺ in the ground state ? (Structure of Atom) 1) 1.06 A⁰ 2) 0.265 A⁰ 3) 0.17 A⁰ 4) 0.53 A⁰ 123. An electron in excited hydrogen atom falls from fifth energy level to second energy level. In which of the following regions, the spectrum line will be observed and is part of which series of the atomic spectrum ? (Structure of Atom) 1) Visible, Balmer 2) Ultraviolet, Lyman 3) Infrared, Paschen 4) Infrared, Brackett 124. Few general names are given along with their valence shell configurations. mark the incorrect name, (Classification of elements) 1) ns² np⁶ - Noble gases 2) ns² np⁵ - Halogens 3) ns1 - Alkali metals 4) ns² - np² - Chalcogens 125. How many sigma and pi bonds are present in toluene? (Chemical Bonding & Molecular structure) 1) 10 σ and 3 π bonds 2) 12 σ and 3 π bonds 3) 15 σ and 3 π bonds 4) 6σ and 3π bonds 126. Which of the following orbitals will not form sigma bond after overlapping? (Chemical Bonding & Molecular structure) 1) s - orbital and s - orbital 2) s - orbital and p_z - orbital 3) p, - orbital and p, - orbital 4) p_x - orbital and p_y - orbital 127. The correct value of the gas constant 'R' is close to (States of Matter) 1) 0.082 litre - atmosphere K 2) 0.082 litre - atmosphere K⁻¹ mol⁻¹ 3) 0.082 litre - atmosphere⁻¹ K mol⁻¹ 4) 0.082 litre⁻¹ atmosphere⁻¹ K mol. 128. Value of gas constant R in the ideal gas equation PV = nRT depends upon (States of Matter) 1) Temperature of the gas 2) Pressure of the gas 3) Units in which P, V and T are measured 4) nature of the gas 129. What will be ΔH for the reaction, $CH_2CI_2 \rightarrow C + 2H + 2CI (B.E of C - H and C - CI bonds are 416 KJ mol⁻¹ and$ 325 KJ mol⁻¹ respectively (Thermodynamics) 1) 832 KJ 2) 1482 KJ 3) 650 KJ 4) 1855 KJ 130. Which of the following species can act both as an acid as well as a base ? (Equilibrium) 1) SO²⁻4 2) HSO-4 3) PO³⁻ 4) OH-131. The oxidation state of Fe in K_4 [Fe(CN)₆] is (Redox Reactions) 1) +2 2) + 33) +4 4) + 6132. The stoichiometric constants for the reaction pCu + qHNO₃ \rightarrow rCu(NO₃)₂ +sNO + tH₂O (Redox Reactions) 1) 3,3,3,2,3 2) 3,2,3,2,4 3) 3,8,3,2,4 4) 2, 3, 3, 3, 2 133. The temporary hardness of water due to calcium bicarbonate can be removed by adding (Hydrogen) 2) CaCl₂ 4) Ca(OH), 1) CaCO 3) HCI 134. Which of the following is arranged according to increasing basic strength? (S-Block elements) 1) CaO < MgO < SrO < BaO < BeO 2) BaO < SrO < CaO < MgO < BeO 3) BeO < MgO < CaO < BaO < SrO</p> 4) BeO < MgO < CaO < SrO < BaO 135. Chemically borax is (P-Block elements) Sodium metaborate 2) Sodium orthoborate 3) Sodium tetraborate decahydrate 4) Sodium hexaborate 136. Borax is not used (P-Block elements) 2) In making enamel and pottery glazes 1) As a styptic to stop bleeding 3) As a flux in soldering 4) In making optical glasses. 137. Which of the following is an electrophilic reagent? (Organic chemistry-some Basic Principle) 1) H₂O 2) NH₃ OH⁻ 4) NO⁺₂ 138. $CH_3CH_2CH_2OH \xrightarrow{conc.H_2So_4} A \xrightarrow{Cl_2} B A and B are$ (Hydro Carbons) 1) $A = CH_3CH_2CH_3$, $B = CH_3CH_2CH_2CI$ 2) $A = CH_3CH = CH_3$, $B = CH_3CICH = CH_3$ 3) $A = CH_2 = CH_2$, $B = CH_3 CH_2 CI$ 4) $A = CH_{3}CH_{3}CH_{3}$, $B = CH_{3}CH = CH_{3}$ 139. The most acidic hydrogen atoms are present in (Hydro Carbons) 1) ethane 2) ethene 3) ethyne 4) benzene, 140. Mark the example which is not correctly matched ? (Environmental Chemistry) 1) Air pollutants - Oxides of sulphur, nitrogen and carbon 2) Particulate pollutants - Dust, mist, fumes 3) Global warming - methane, Ozone, CFC's 4) Water soluble chemical pollutants - Oxides of nitrogen, carbon and sodium

141.	A solid AB has a rock s B ⁻ anion ?	alt structure. If radius of	cation A ⁺ is 120 pm, wh	nat is the minimum value of radius o (Solid State)
	1) 120 pm	2) 240 pm	3) 290 pm	4) 360 pm
142.	10% solution of urea is solute X ?	isotonic with 6% solution	on of a non - volatile sol	ute X, what is the molecular masso (Solutions)
143.	1) 6 g mol ⁻¹ Specific conductance of	2) 60 g mol ⁻¹ 0.1 M NaCl solution is 1.	3) 36 g mol ⁻¹ .01 x 10 ⁻² ohm ⁻¹ cm ⁻¹ . Its	4) 32 g mol ⁻¹ molar conductance in ohm ⁻¹ cm ² mol
144.	1) 1.01 x 10 ² How much electricity in	2) 1.01 x 10 ³ terms of faraday is requ	3) 1.01 x 10⁴ ired to produce 100 a of	(Electro Chemistry) 4) 1.01 5 Ca from molten CaCl.?
	,,			(Electro Chemistry)
145.	1) 1 F A first order reaction is 2	2) 2 F 20% complete in 10 minu	3) 3 F utes. what is the specific	4) 5 F crate constant for the reaction
	1) 0.0970 min ⁻¹	2) 0.009 min ⁻¹	3) 0.0223 min ⁻¹	4) 2.223 min ⁻¹
146.	In a first order reaction minutes at 298 K. what i	n, the concentration of is the half - life period of	reactant is reduced to the reaction in minutes	1/8 of the initial concentration in 75 ? (Chemical Kinetics)
4 4 7	1) 50 min	2) 15 min	3) 30 min	4) 25 min
147.	Which of the following mask?	gases present in a poll	uted area will be adsort	oed most easily on the charcoal gas (Surface Chemistry)
1/18	1) H_2 Which of the following r	2) O_3	$3) N_2$	4) SO_2
140.		netals cannot be obtaine	(Genral Principles a	nd Process of Isolation of elements)
	1) Cr	2) Mn	3) Fe	4) Mg
149.	$\dot{\text{D}}$ ry SO ₂ does not blead	h dry flowers because	,	(P-Block Elements)
	1) nascent hydrogen res	sponsible for bleaching is	s produced only in prese	ence of moisture
	2) Water is the actual re	ducing agent responsibl	e for bleaching	
	3) water is stronger acional (1) The OH-ions produce	u inan SO ₂ ad by water cause bleac	hina	
150.	Match the column I with	column II and mark the a	appropriate choice.	
	Column - I	Column - II		
	A. Thiosulphuric acid	(i) H ₂ SO ₅		
	B. Caro's acid	(ii) $H_2S_2O_6$		
	C. Marshall's acid	(III) H ₂ S ₂ O ₃ (iv) 日 S O		(D. Black Flowerto
	1) $A \rightarrow (i)$ $B \rightarrow (ii)$ $C \rightarrow C$	(iv) $\Pi_2 S_2 O_8$ (iii) $D \rightarrow (iv)$	2) $A \rightarrow (iv)^{\cdot} B \rightarrow (iii)^{\cdot}$	(P-Block Elements) $C \rightarrow (ii) D \rightarrow (i)$
	$(i), D \rightarrow (ii), C \rightarrow (i), C \rightarrow (i), C \rightarrow (ii), C \rightarrow (iii), C \rightarrow (ii), C $	\rightarrow (iv) D \rightarrow (ii)	4) $A \rightarrow (ii); B \rightarrow (iii); C$	$C \rightarrow (i) D \rightarrow (i)$
151	The equation $3MnO^{2+}$	$\downarrow AH^+ \rightarrow 2MnO^- \pm 2HO$	respresents $2Mn\Omega + M$	$\ln \Omega + 2H \Omega$ (d- and -f-block elements
101.	1) reduction 2) disprov	$P + 11 \rightarrow 210110_4 + 211_20$	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	Reduction in acidic medium
152.	The correct IUPAC nam	ne of the coordinattion co	ompound K ₂ [Fe(CN) ₂ NO	lis (Co-ordination Compounds
	1) Potassium pentacyan	onitrosylferrate (II)	2) Potassium pentacya	nonitroferrate (III)
	3) Potassium nitritopenta	acyanoferrate (IV)	4) Potassium nitritepen	tacyanoiron (II)
153.	$CH_3OH \xrightarrow{pl_3} X \xrightarrow{KCN}$	$\rightarrow Y \xrightarrow{Hydrolysis} Z$. The fir	nal product in the reaction	on is (HaloAlkanes & Halo Arenes)
	1) CH,OH	2) HCOOH	3) CH ₂ CHO	4) CH ₂ COOH
154.	The most suitable reage	ent for the conversion of	RĆH₂ỔH →RCHO	(Alcohols, Phenols and ethers)
	1) $K_2 Cr_2 O_7$	2) CrO ₃	3) KMnO ₄	4) PCC
155.	Identify (X), (Y) and (Z)	reagents in the given see	quence of reaction.	
	$CH \equiv CH \xrightarrow{X} CH_{3}CHC$	O— ^Ÿ →CH₃CH(OH)CH₃	$\xrightarrow{z} CH_3COCH_3$	(Aldehydes, Ketones & Carboxylic acids
	1) X = H_2SO_4 Y = H_2O/C	$DH^{-}Z = PCI_{5}$, heat		
	2) X=HNO ₃ , Y =Na ₂ CO ₃	, Z=H₂SO₄, heat		
	3) $X = H_2 SO_4 / Hg^{2+}$, $Y = H_2 SO_4 $	$P \cup_{1_{5}} / H_{2} \cup, Z = K_{2} \cup f_{2} \cup f_{7} / U_{7} / U_{7} \cup F_{7} \cup F$) /H+	
	$+7 \times -12 \times 04^{11}$, 1 -0	1_{3} 1_{3} 1_{2} $0, 2 - 1_{2}$ 0_{2}		
156.	Which of the following of	does not answer iodofor	m test ?	(Aldehydes, Ketones & Carboxylic acids
	1) n - Butyl alcohol	2) sec-Butyl alcohol	3) Acetophenone	4) Acetaldehyde
157.	Which of the follwoing h	has highest pK _b value		(Amines)
158	I) (CH_3) ₃ CNH_2 Deficiency of vitamin \Box	∠) INH ₃ Causes	ა) (СН ₃) ₂ NH	4) $UH_3 NH_2$ (Bia Malasulas)
100.	1) rickets	2) scurvv	3) muscular weakness	4) beri beri.
159.	Śynthetic polymer prep	ared by using caprolacta	m is known as	, (Polymers)
	1) Terylene	2) teflon	3) nylon 6	4) neoprene
160.	An ester which is effecti	ve in curing malaria is		
	1) ethyl acotata	2) methyl acotata	3) methyl calicylata	(Chemistry in everyday life)
	i jeuryi acelale		o mennyi salicylate	-, cury Denzuale

MODEL PAPER - 7

CHEMISTRY

121.	How much copper is pre	esent in 50 gr of $CuSO_4$?	2) 62 5 a	(Some Basic o	concept of chemistry)
122.	The de Broglie waveleng the order of $(h = 6.625 x)$	gth associated with a ball (10^{-34} J s) is	of mass 200 g and movi	ing at aspeed of 5	meters / hour, is of
	1) 10 ⁻¹⁵ m	2) 10 ⁻²⁰ m	3) 10 ⁻²⁵ m	4) 10 ⁻³⁰ m	
123.	If uncertainty priciple is a will be	applied to an object of m	ass 1 milligram, the unce	ertainty value of ve (Structure of Atom	locity and position
101	1) 10^{-4} m ² s ⁻¹	2) $10^6 \mathrm{m}^2 \mathrm{s}^{-1}$	3) 10^{-28} m ² s ⁻¹	4) 10 ⁻³⁴ m ² s ⁻¹	fication of clamonta)
124.	1) s - block	2) p - block	3) d - block	4) f - block	ncation of elements)
125.	Which of the following	pairs are isostructural?	- /	, (Chemical E	Bonding & Molecular
126.	<i>structure)</i> Which type of hybridisa	1) SO^{2+}_{4} and BF^{-}_{4} tion is shown by carbon	2) NH_3 and NH_4^4 atom from left to right in	3) CO^{2-}_{3} and CC the given compound	P_2 4) CH ₄ and BF ₃ ind ;
		$CH_2 = CH - C \equiv N$?		(Chemical E	Bonding & Molecular
	structure)		-		
127.	1) sp², sp², sp For an ideal gas, numbe	2) sp², sp, sp er of moles per litre in ter	3) sp, sp², sp³ ms of its pressure, temp	4) sp ³ , sp ² , sp erature and gas co	onstant is
	1) PT/R	2) P/RT	3) PRT	(States of Mat	tter)
128.	If the ratio of masses of	SO, and O, gases confi	ned in a vessel is 1 : 1 th	en the ratio of thei	r partial pressures
	would be	3 20			(States of Matter)
	1) 5 : 2	2) 2 : 5	3) 2 : 1	4) 1 : 2	
129.	Formation of ammonia	is shown by the reaction	n, $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$	$_{g)},\Delta_{r}H^{0}=-91.8 \text{ kJ}$	mol ⁻¹ what will be
	the enthalpy of reaction	for decompostiton of NH	$I_{_3}$ according to the reaction	on? $2NH_{3(g)} \rightarrow N_{2}$	$_{(g)} + 3H_{2(g)}\Delta_{r}H^{0} = ?$
	(1) (1) (1) (1) (1)	\mathbf{O} + \mathbf{O} + \mathbf{O} + \mathbf{I} + \mathbf{r} = \mathbf{r}	(2) (45) (45) (45) (45) (45)		(Thermodynamics)
130	1) -91.8 KJ MOI^{-1}	2) +91.8 KJ MOF	3) -45.9 KJ MOI" What will be the pH of th	4) +45.9 KJ MOI ⁻	/Fauilibrium)
100.	1) 12	2) 7	3) 2	4) 10	(Equilibrium)
131.	When KMnO4 is reduce	d with oxalic acid in acid	ic solution, the oxidation	number of Mn cha (anges from <i>Redox Reactions)</i>
	1) +2 to +7	2) +4 to +7	3) +7 to +2	4) +6 to +2	
132.	In which of the following	compounds carbon is in	highest oxidation state		ions)
133	In a permutit the calciu	m and magnesium ions α	of hard water are exchar	$4) CH_2 CI_2$	(Hvdrogen)
100.	1) CO^{2-}_{3} and HCO^{-}_{3} ions	of premitit	2) Na ⁺ ions of permutit	.900.09	(1) (1) (1) (1)
	3) Al ³⁺ ions of permutit		4) Si ⁴⁺ ions of permutit		
134.	The pair of amphoteric	oxides is	2) PoO PO	(S-E	Block elements)
135	I) BeO, ZNO	2) Al ₂ O ₃ , Ll ₂ O the inert pair effect is m	3) BeO, BO ₃	4) BeO, IVIgO	lock alamants)
100.	1) C	2) Ge	3) Si	4) Pb	ock elements
136.	Buckminsterfullerene is	,	,	, P-Block e	elements)
407	1) Graphite	2) diamond	3) C-60	4) quartz	
137.	I ne increasing order of	stability of the following r		Organic chemistry-s	ome Basic Principle)
	1) $(CH_3)_2 \overset{\circ}{C} H < (CH_3)_3 \overset{\circ}{C}$	$<(C_6H_5)_2 \overset{\circ}{C}H < (C_6H_5)_3 \overset{\circ}{C}$			
	2) $(C_6H_5)_3C^0 < (C_6H_5)_2C^0$	$H < (CH_3)_3 \overset{0}{C} < (CH_3)_2 \overset{0}{C}$	Н		
	3) $(C_6H_5)_2 \overset{0}{C}H$, $(C_6H_5)_3 \overset{0}{C}$	$c_{\rm C} < (\rm CH_3)_3 \overset{0}{\rm C} < (\rm CH_3)_2 \overset{0}{\rm C}$	4		
	4) $(CH_3)_2 \overset{0}{C} H < (CH_3)_3 \overset{0}{C}$	$< (C_6H_5)_3C^0 < (C_6H_5)_2C^0$	Н		
138.	The ozonolysis product	s (s) of the following rea	ction is (are)		
		$CH_{3}CH_{2} - C \equiv CH - (i)$	^{) O} ₃→Product(s)		(Hydro Carbons)
	1) CH ₂ COCH ₂	с <u>г</u> (л,	2) CH_COCH_ + HCHO)	
	3) CH ₃ COOH + HCOOH	$14) CH_3 CH_2 COOH + HC$	ю́ОН ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		
139.	When 1-butyne undergo	oes oxymercuration with	the help of $HgSO_4 + H_2$	SO_4 , the product (s) formed is /are
		ЮН			(Hydro Carbons)
	3) $CH_3CH_2CH_2COOH$		$4) CH_3 CH_2 CH_2 CHO$		

140.	Biological Oxygen dema	nd (BOD) can be define	d as,	(Environmental Chemistry)
	1) The amount of oxyger	n required by bacteria to	break down the organic	matter of a sample of water
	2) The amount of chemic	bate required to preak do	the organic matter of a sc	a sample of water
	4) The amount of organi	c matter present in the c	iven sample of water	
141	The edge length of sodi	um chloride unit cell is 5	64 pm If the size of CI io	n is 181 pm. The size of Na ⁺ ion will
	be			(Solid State)
	1) 101 pm	2) 181 pm	3) 410 pm	4) 202 pm
142.	A solution containing 12	2.5 g of non-electrolyte	substance in 185 g of wa	ter shows boiling point elevation of
	0.80 K calculate the mol	ar mass of the substanc	es. (Kb = 0.52 K kg mol-	1) (Solutions)
	1) 53.06 g mol ⁻¹	2) 25.3 g mol ⁻¹	3) 16.08 g mol ⁻¹	4) 43.92 g mol ⁻¹
143.	If a current of 1.5 ampe through the wire?	ere flows through a me	tallic wire for 3 hours, the	en how many electrons would flow (Electro Chemistry)
	1) 2.25 x 10 ²² electrons	2) 1.13 x 10 ²³ electron	ns 3) 1.01 x 10 ²³ electro	ns 4) 4.5 x 10^{23} electrons
144.	An electric charge of 5 F	aradays is passed throu	igh three electrolytes AgN	NO_3 , CuSO ₄ and FeCl ₂ solution. The
	grams of each metal libe	rated at cathode will be		(Electro Chemistry)
	1) Ag = 10.8 g, Cu = 12.	7 g, Fe = 1.11g	2) Ag = 540 g, Cu = 367	.5 g, Fe = 325 g
	3) Ag = 108 g, Cu = 63.5	5 g, Fe = 56 g	4) Ag = 540 g, Cu = 158	.8 Fe = 93.3 g
145.	A first order reaction tak	es 40 min for 30% deco	mposition. What will be t_1	? (Chemical Kinetics)
4.4.0	1) / / . / min	2) 52.5 min	3) 46.2 min	4) 22.7 min
146.	I ne expression to calcu	late time required for co	mpletion of zero order rea	action is (Chemical Kinetics)
	[R.]		, k	[R ₀]–[R]
	1) $t = \frac{1}{k}$	2) $t = [R] - [R_0]$	3) $I = \frac{1}{[R_{0}]}$	4) $t = \frac{1}{[R_1]}$
4 4 7			[''']	[0]
147.	Novement of dispersion	medium under the influe	ence of electric field is know	OWN as (Surface Chemistry)
110	I) electrodialysis	2) electrophoresis	3) electroosmosis	4) cataphoresis.
140.	1) Silico	2) Carbon monovido	(Genral Principles a	A) lime stope
1/0	Sulphur triovide is not di	irectly dissolve in water	to form sulphuric acid be	(P P P P P P P P P P
143.	1) SO does not react wi	ith water to form acid		
	2) SO gets oxidised to F	H SO, when dissolve in t	water	
	3) It results in the format	tion of dense fog of sulp	huric acid which is difficul	It to condense
	4) Sulphur trioxide is ins	oluble in water due to its	covalent nature	
150.	The correct order of incl	reasing electron affinity	of halogens is	(P-Block Elements)
150.	The correct order of incl 1) I < Br < CI	reasing electron affinity 2) Br < I < Cl	of halogens is 3)Cl < Br < I	(<i>P-Block Elements)</i> 4) I < CI < Br
150. 151.	The correct order of incl 1) I < Br < CI The common oxidation	reasing electron affinity 2) Br < I < Cl state shown by lanthania	of halogens is 3)Cl < Br < I des, in their compounds is	(<i>P-Block Elements</i>) 4) < C < Br s (d- and -f-block
150. 151.	The correct order of incl 1) I < Br < CI The common oxidation s elements)	reasing electron affinity 2) Br < I < Cl state shown by lanthanie	of halogens is 3)Cl < Br < I des, in their compounds is	<i>(P-Block Elements)</i> 4) I < CI < Br s <i>(d- and -f-block</i>
150. 151.	The correct order of incl 1) I < Br < CI The common oxidation s elements) 1) +1	 2) Br < I < Cl state shown by lanthania 2) +3 	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5	(<i>P-Block Elements</i>) 4) I < CI < Br s (<i>d- and -f-block</i> 4) +6
150. 151. 152.	The correct order of incl 1) I < Br < CI The common oxidation s <i>elements</i>) 1) +1 The hybridisation involv	reasing electron affinity 2) Br < I < CI state shown by lanthania 2) +3 red in $[Co(C_2O_4)_3]^{3-}$ is	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5	(P-Block Elements) 4) < C < Br s (d- and -f-block 4) +6 (Co-ordination Compounds)
150. 151. 152.	The correct order of incl 1) I < Br < CI The common oxidation s <i>elements</i>) 1) +1 The hybridisation involv 1) sp ³ d ²	reasing electron affinity 2) Br < I < Cl state shown by lanthania 2) +3 red in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³	(P-Block Elements) 4) I < CI < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³
150. 151. 152. 153.	The correct order of incl 1) I < Br < CI The common oxidation = <i>elements</i>) 1) +1 The hybridisation involv 1) sp ³ d ² A mixture of 1 - chloropr	reasing electron affinity 2) Br < I < Cl state shown by lanthania 2) +3 red in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ opane and 2- choloroprese	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with	(P-Block Elements) 4) I < CI < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives
150. 151. 152. 153.	The correct order of incl 1) $I < Br < CI$ The common oxidation s <i>elements</i>) 1) +1 The hybridisation involv 1) $sp^{3}d^{2}$ A mixture of 1 - chloropr	reasing electron affinity 2) Br < I < Cl state shown by lanthania 2) +3 red in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro-	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with	(P-Block Elements) 4) < Cl < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes)
150. 151. 152. 153.	The correct order of incl 1) $I < Br < CI$ The common oxidation s <i>elements</i>) 1) +1 The hybridisation involv 1) $sp^{3}d^{2}$ A mixture of 1 - chloropr 1) Prop - 1 -ene 2) a mixture of prop. 1	reasing electron affinity 2) Br < I < Cl state shown by lanthania 2) +3 red in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro-	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanel	(P-Block Elements) 4) I < CI < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes)
 150. 151. 152. 153. 	The correct order of incl 1) I < Br < CI The common oxidation and <i>elements</i>) 1) +1 The hybridisation involv 1) sp ³ d ² A mixture of 1 - chloropr 1) Prop - 1 -ene 3) a mixture of prop - 1 -	reasing electron affinity 2) Br < I < Cl state shown by lanthania 2) +3 red in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol.	(P-Block Elements) 4) I < CI < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes)
 150. 151. 152. 153. 154. 	The correct order of incl 1) $I < Br < CI$ The common oxidation s <i>elements</i>) 1) +1 The hybridisation involv 1) sp ³ d ² A mixture of 1 - chloropr 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Crescel	reasing electron affinity 2) Br < I < Cl state shown by lanthania 2) +3 yed in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol.	(P-Block Elements) 4) < Cl < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers)
 150. 151. 152. 153. 154. 155. 	The correct order of incl 1) $I < Br < CI$ The common oxidation and <i>elements</i>) 1) +1 The hybridisation involv 1) $sp^{3}d^{2}$ A mixture of 1 - chloropr 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between	reasing electron affinity 2) Br < I < Cl state shown by lanthaniv 2) +3 ved in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro ene and prop -2- ene s phenol? 2) Catechol	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol	(P-Block Elements) 4) I < CI < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out Which of the following is the
 150. 151. 152. 153. 154. 155. 	The correct order of inci 1) $I < Br < CI$ The common oxidation selements) 1) +1 The hybridisation involv 1) $sp^{3}d^{2}$ A mixture of 1 - chloropr 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer 2	reasing electron affinity 2) Br < I < Cl state shown by lanthaniv 2) +3 ved in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri	(P-Block Elements) 4) < Cl < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the debydes Ketones & Carboxylic acids)
 150. 151. 152. 153. 154. 155. 	The correct order of incl 1) $I < Br < CI$ The common oxidation and <i>elements</i>) 1) +1 The hybridisation involv 1) $sp^{3}d^{2}$ A mixture of 1 - chloropr 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will g	reasing electron affinity 2) Br < I < Cl state shown by lanthania 2) +3 /ed in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per ive silver mirro test	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (Al 2) Pentan - 2 - one will o	(P-Block Elements) 4) I < CI < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) ive iodoform test.
 150. 151. 152. 153. 154. 155. 	The correct order of incl 1) $I < Br < CI$ The common oxidation and <i>elements</i>) 1) +1 The hybridisation involve 1) $sp^{3}d^{2}$ A mixture of 1 - chloropr 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will give	reasing electron affinity 2) Br < I < Cl state shown by lanthaniv 2) +3 ved in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro ene and prop -2- ene s phenol? 2) Catechol i pentan - 2- one and per ive silver mirro test ve iodoform test	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (Al 2) Pentan - 2 - one will g 4) None of these.	(P-Block Elements) 4) I < CI < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) ive iodoform test.
 150. 151. 152. 153. 154. 155. 156. 	The correct order of incl 1) $I < Br < CI$ The common oxidation and <i>elements</i>) 1) +1 The hybridisation involv 1) $sp^{3}d^{2}$ A mixture of 1 - chloropr 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will giv Which of the following c	reasing electron affinity 2) Br < I < Cl state shown by lanthaniv 2) +3 /ed in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per ive silver mirro test /e iodoform test compound will undergo s	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (Al 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in	(P-Block Elements) 4) I < CI < Br (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) jive iodoform test. the presence of cold dilute alkali ?
 150. 151. 152. 153. 154. 155. 156. 	The correct order of incl 1) $I < Br < CI$ The common oxidation and <i>elements</i>) 1) +1 The hybridisation involve 1) sp ³ d ² A mixture of 1 - chloropre 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will give Which of the following c	reasing electron affinity 2) Br < I < Cl state shown by lanthaniv 2) +3 ved in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per vive silver mirro test ve iodoform test compound will undergo s	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (Al 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldeh)	(P-Block Elements) 4) I < CI < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids)
 150. 151. 152. 153. 154. 155. 156. 	The correct order of inci 1) I < Br < CI The common oxidation and <i>elements</i>) 1) +1 The hybridisation involve 1) sp ³ d ² A mixture of 1 - chloropre 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will give Which of the following co 1) CH = C - CHO	reasing electron affinity 2) Br < I < CI state shown by lanthaniv 2) +3 /ed in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per live silver mirro test /e iodoform test compound will undergo s 2) CH ₂ = CHCHO	of halogens is 3)Cl < Br < I des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (Al 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldehy 3) C _e H ₅ CHO	(P-Block Elements) 4) I < CI < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids) 4) CH ₃ CH ₂ CHO
 150. 151. 152. 153. 154. 155. 156. 157. 	The correct order of incl 1) I < Br < CI The common oxidation = <i>elements</i>) 1) +1 The hybridisation involv 1) sp ³ d ² A mixture of 1 - chloropr 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will giv Which of the following c 1) CH = C - CHO Which of the following is	reasing electron affinity 2) Br < I < Cl state shown by lanthaniv 2) +3 ved in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per ve iodoform test ve iodoform test compound will undergo s 2) CH ₂ = CHCHO s amphoteric in nature ?	of halogens is 3)Cl < Br < 1 des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (All 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldeh) 3) C ₆ H ₅ CHO	(P-Block Elements) 4) $ < C < Br$ (d- and -f-block 4) $+6$ (Co-ordination Compounds) 4) d^2sp^3 alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids) 4) CH ₃ CH ₂ CHO (Amines)
 150. 151. 152. 153. 154. 155. 156. 157. 	The correct order of incl 1) I < Br < CI The common oxidation and <i>elements</i>) 1) +1 The hybridisation involve 1) sp ³ d ² A mixture of 1 - chloropre 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will give Which of the following c 1) CH = C - CHO Which of the following is 1) CH = C - CHO Which of the following is 1) CH = NH ₂	reasing electron affinity 2) Br < I < Cl state shown by lanthaniv 2) +3 ved in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol 1 pentan - 2- one and per vive silver mirro test ve iodoform test compound will undergo s 2) CH ₂ = CHCHO s amphoteric in nature ? 2) CH ₃ NHCH ₃	of halogens is 3)Cl < Br < 1 des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (Al 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldeh) 3) C ₆ H ₅ CHO 3)CH ₃ CONH ₂	(<i>P-Block Elements</i>) 4) $ < C < Br$ (<i>d- and -f-block</i> 4) +6 (<i>Co-ordination Compounds</i>) 4) d^2sp^3 alcoholic KOH gives (<i>HaloAlkanes & Halo Arenes</i>) (<i>Alcohols, Phenols and ethers</i>) 4) All of these ed out. Which of the following is the <i>dehydes, Ketones & Carboxylic acids</i>) ive iodoform test. the presence of cold dilute alkali ? <i>ydes, Ketones & Carboxylic acids</i>) 4) CH ₃ CH ₂ CHO (<i>Amines</i>) 4) CH ₃ - N - CH ₃
 150. 151. 152. 153. 154. 155. 156. 157. 	The correct order of incl 1) I < Br < CI The common oxidation and <i>elements</i>) 1) +1 The hybridisation involve 1) sp ³ d ² A mixture of 1 - chloropre 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will give Which of the following co 1) CH = C - CHO Which of the following is 1) CH = C - CHO Which of the following is 1) CH ₃ NH ₂	reasing electron affinity 2) Br < I < CI state shown by lanthaniv 2) +3 /ed in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per live silver mirro test /e iodoform test :ompound will undergo s 2) CH ₂ = CHCHO s amphoteric in nature ? 2) CH ₃ NHCH ₃	of halogens is 3)Cl < Br < 1 des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (All 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldehy 3) C ₆ H ₅ CHO 3)CH ₃ CONH ₂	(<i>P-Block Elements</i>) 4) $ < C < Br$ (<i>d- and -f-block</i> 4) +6 (<i>Co-ordination Compounds</i>) 4) d^2sp^3 alcoholic KOH gives (<i>HaloAlkanes & Halo Arenes</i>) (<i>Alcohols, Phenols and ethers</i>) 4) All of these ed out. Which of the following is the <i>dehydes, Ketones & Carboxylic acids</i>) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids) 4) CH ₃ - N - CH ₃ 1
 150. 151. 152. 153. 154. 155. 156. 157. 	The correct order of incl 1) I < Br < CI The common oxidation = <i>elements</i>) 1) +1 The hybridisation involv 1) sp ³ d ² A mixture of 1 - chloropr 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will giv Which of the following c 1) CH = C - CHO Which of the following is 1) CH = C - CHO Which of the following is 1) CH ₃ NH ₂	reasing electron affinity 2) Br < I < CI state shown by lanthania 2) +3 /ed in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per ve iodoform test /e iod	of halogens is 3)Cl < Br < 1 des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (All 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldeh) 3) C ₆ H ₅ CHO 3)CH ₃ CONH ₂	(P-Block Elements) 4) $ < C < Br$ (d- and -f-block 4) $+6$ (Co-ordination Compounds) 4) d^2sp^3 alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids) 4) CH ₃ -N-CH ₃ I CH ₃
 150. 151. 152. 153. 154. 155. 156. 157. 158. 	The correct order of incl 1) I < Br < CI The common oxidation and <i>elements</i>) 1) +1 The hybridisation involve 1) sp ³ d ² A mixture of 1 - chloropre 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will give Which of the following c 1) CH = C - CHO Which of the following is 1) CH = C - CHO Which of the following is 1) CH = NH ₂	reasing electron affinity 2) Br < I < Cl state shown by lanthaniv 2) +3 /ed in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol 1 pentan - 2- one and per ve silver mirro test /e iodoform test compound will undergo s 2) CH ₂ = CHCHO s amphoteric in nature ? 2) CH ₃ NHCH ₃ and DNA are	of halogens is 3)Cl < Br < 1 des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (Al 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldeh) 3) C ₆ H ₅ CHO 3)CH ₃ CONH ₂	(P-Block Elements) 4) $ < C < Br$ (d- and -f-block 4) $+6$ (Co-ordination Compounds) 4) d^2sp^3 alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids) 4) CH ₃ -N-CH ₃ I CH ₃ (Bio Molecules)
 150. 151. 152. 153. 154. 155. 156. 157. 158. 	The correct order of incl 1) I < Br < CI The common oxidation and <i>elements</i>) 1) +1 The hybridisation involve 1) sp ³ d ² A mixture of 1 - chloropre 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will give Which of the following co 1) CH = C - CHO Which of the following is 1) CH = C - CHO Which of the following is 1) CH = NH ₂ Bases common to RNA 1) adenine, guanine, cyte	reasing electron affinity 2) Br < I < CI state shown by lanthaniv 2) +3 ved in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per ve iodoform test ve iodoform test compound will undergo s 2) CH ₂ = CHCHO s amphoteric in nature ? 2) CH ₃ NHCH ₃	of halogens is 3)Cl < Br < 1 des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (All 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldehy 3) C ₆ H ₅ CHO 3)CH ₃ CONH ₂ 2) adenine , Uracil, cytos	(<i>P-Block Elements</i>) 4) $ < C < Br$ (<i>d- and -f-block</i> 4) +6 (<i>Co-ordination Compounds</i>) 4) d^2sp^3 alcoholic KOH gives (<i>HaloAlkanes & Halo Arenes</i>) (<i>Alcohols, Phenols and ethers</i>) 4) All of these ed out. Which of the following is the <i>dehydes, Ketones & Carboxylic acids</i>) ive iodoform test. the presence of cold dilute alkali ? <i>ydes, Ketones & Carboxylic acids</i>) 4) CH ₃ - N - CH ₃ I CH ₃ (<i>Bio Molecules</i>) sine
 150. 151. 152. 153. 154. 155. 156. 157. 158. 158. 	The correct order of incl 1) I < Br < CI The common oxidation = <i>elements</i>) 1) +1 The hybridisation involv 1) sp ³ d ² A mixture of 1 - chloropr 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will giv Which of the following c 1) CH = C - CHO Which of the following is 1) CH = C - CHO Which of the following is 1) CH = NH ₂ Bases common to RNA 1) adenine, guanine, cyt 3) adenine, guanine, thy	reasing electron affinity 2) Br < I < CI state shown by lanthania 2) +3 /ed in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per ve silver mirro test /e iodoform test compound will undergo s 2) CH ₂ = CHCHO s amphoteric in nature ? 2) CH ₃ NHCH ₃ and DNA are osine mine	of halogens is 3)Cl < Br < 1 des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (Al 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldeh) 3) C ₆ H ₅ CHO 3)CH ₃ CONH ₂ 2) adenine , Uracil, cytos 4) guanine, uracil, thymi	(P-Block Elements) 4) $ < C < Br$ s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d^2sp^3 alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids) 4) CH ₃ -N-CH ₃ (Bio Molecules) sine ne
 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 	The correct order of incl 1) I < Br < CI The common oxidation and elements) 1) +1 The hybridisation involve 1) sp ³ d ² A mixture of 1 - chloropre 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will give Which of the following of 3) pentan- 3 -one will give Which of the following of 1) CH = C - CHO Which of the following is 1) CH = C - CHO Which of the following is 1) CH = NH ₂ Bases common to RNA 1) adenine, guanine, cyto 3) adenine, guanine, thy Polymer which has amid	reasing electron affinity 2) Br < I < Cl state shown by lanthaniv 2) +3 /ed in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol n pentan - 2- one and per ve iodoform test /e i	of halogens is 3)Cl < Br < 1 des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (Al 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldeh) 3) C ₆ H ₅ CHO 3)CH ₃ CONH ₂ 2) adenine , Uracil, cytos 4) guanine, uracil, thymi	(P-Block Elements) 4) < Cl < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids) 4) CH ₃ -N-CH ₃ I CH ₃ (Bio Molecules) sine ne (Polymers)
 150. 151. 152. 153. 154. 155. 156. 157. 158. 158. 159. 160. 	The correct order of incl 1) I < Br < CI The common oxidation and <i>elements</i>) 1) +1 The hybridisation involve 1) sp ³ d ² A mixture of 1 - chloropre 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will give Which of the following of 1) CH = C - CHO Which of the following is 1) CH = C - CHO Which of the following is 1) CH = NH ₂ Bases common to RNA 1) adenine, guanine, cyto 3) adenine, guanine, thy Polymer which has amid 1) nylon - 6,6	reasing electron affinity 2) Br < I < CI state shown by lanthaniv 2) +3 /ed in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per live silver mirro test /e iodoform test compound will undergo s 2) CH ₂ = CHCHO s amphoteric in nature ? 2) CH ₃ NHCH ₃ and DNA are osine mine le linkage is 2) terylene	of halogens is 3)Cl < Br < 1 des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (All 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldehy 3) C ₆ H ₅ CHO 3)CH ₃ CONH ₂ 2) adenine , Uracil, cytos 4) guanine, uracil, thymin 3) teflon	(<i>P-Block Elements</i>) 4) $ < C < Br$ s (<i>d- and -f-block</i> 4) +6 (<i>Co-ordination Compounds</i>) 4) d^2sp^3 alcoholic KOH gives (<i>HaloAlkanes & Halo Arenes</i>) (<i>Alcohols, Phenols and ethers</i>) 4) All of these ed out. Which of the following is the <i>dehydes, Ketones & Carboxylic acids</i>) ive iodoform test. the presence of cold dilute alkali ? <i>ydes, Ketones & Carboxylic acids</i>) 4) CH ₃ - N - CH ₃ (<i>Amines</i>) 4) CH ₃ - N - CH ₃ (<i>Bio Molecules</i>) sine ne (<i>Polymers</i>) 4) bakelite.
 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 	The correct order of incl 1) I < Br < CI The common oxidation and <i>elements</i>) 1) +1 The hybridisation involve 1) sp ³ d ² A mixture of 1 - chloropre 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer? 1) Pentan - 2 - one will give Which of the following co 1) CH = C - CHO Which of the following is 1) CH = C - CHO Which of the following is 1) CH = NH ₂ Bases common to RNA 1) adenine, guanine, cyto 3) adenine, guanine, thy Polymer which has amid 1) nylon - 6,6 Which of the following and 1) Enthromucin	reasing electron affinity 2) Br < I < CI state shown by lanthania 2) +3 ved in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol pentan - 2- one and per ve silver mirro test ve iodoform test compound will undergo s 2) CH ₂ = CHCHO s amphoteric in nature ? 2) CH ₃ NHCH ₃ and DNA are osine mine le linkage is 2) terylene ntibiotics is bactericidal 1	of halogens is 3)Cl < Br < 1 des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (All 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldeh) 3) C ₆ H ₅ CHO 3)CH ₃ CONH ₂ 2) adenine , Uracil, cytos 4) guanine, uracil, thymit 3) teflon ? 3) Pencillin	(P-Block Elements) 4) < Cl < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids) 4) CH ₃ -N-CH ₃ (Bio Molecules) sine ne (Polymers) 4) bakelite. (Chemistry in everyday life) 4) Chloramphonical
 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 	The correct order of incl 1) I < Br < CI The common oxidation and elements) 1) +1 The hybridisation involve 1) sp ³ d ² A mixture of 1 - chloropre 1) Prop - 1 -ene 3) a mixture of prop - 1 - Which of the following is 1) Cresol To differentiate between correct answer ? 1) Pentan - 2 - one will give Which of the following of 3) pentan- 3 -one will give Which of the following of 1) CH = C - CHO Which of the following is 1) CH = C - CHO Which of the following is 1) CH ₃ NH ₂ Bases common to RNA 1) adenine, guanine, cyte 3) adenine, guanine, thy Polymer which has amid 1) nylon - 6,6 Which of the following and 1) Erythromycin	reasing electron affinity 2) Br < I < CI state shown by lanthania 2) +3 /ed in $[Co(C_2O_4)_3]^{3-}$ is 2) sp ³ d ³ ropane and 2- choloropro- ene and prop -2- ene s phenol? 2) Catechol n pentan - 2- one and per ve iodoform test /e i	of halogens is 3)Cl < Br < 1 des, in their compounds is 3) +5 3) dsp ³ opane when treated with 2) Prop - 2 - ene 4) Propanol. 3) Benzenol ntan - 3- one a test is carri (Al 2) Pentan - 2 - one will g 4) None of these. self aldol condensation in (Aldehy 3) C ₆ H ₅ CHO 3)CH ₃ CONH ₂ 2) adenine , Uracil, cytos 4) guanine, uracil, thymit 3) teflon ? 3) Pencillin	(P-Block Elements) 4) I < CI < Br s (d- and -f-block 4) +6 (Co-ordination Compounds) 4) d ² sp ³ alcoholic KOH gives (HaloAlkanes & Halo Arenes) (Alcohols, Phenols and ethers) 4) All of these ed out. Which of the following is the dehydes, Ketones & Carboxylic acids) ive iodoform test. the presence of cold dilute alkali ? ydes, Ketones & Carboxylic acids) 4) CH ₃ -N-CH ₃ (Amines) 4) CH ₃ -N-CH ₃ (Bio Molecules) sine ne (Polymers) 4) bakelite. (Chemistry in everyday life) 4) Chloramphenicol

MODEL PAPER - 8

CHEMISTRY

121.	How much oxygen is red 1) 6.4 kg	quired for complete com 2) 1.92 kg	bustion of 560 g of ethen 3) 2.8 kg	e (Some Basic co i 4) 9.6 kg	ncept of chemistry)
122.	What will be the wavele	ngth of an electron mov	ing with $\frac{1}{10}$ th of velocity of	of light ? (Structure of Atom)
123.	1) 2.43 x 10 ⁻¹¹ m What will be the mass o	2) 243 x 10 ⁻¹¹ m f a particle if uncertainty	3) 0.243 m y in its position is 10^{-8} m a	4) 2.43 x 10 ⁻⁴ r and velocity is 5.	n 26 x 10 ⁻²⁵ m s ⁻¹ ? <i>(Structure of Atom</i>)
124. 125.	1) 0.01 kg The first ionisation enth 1) C < N < Si < P Order of size of sp, sp ² 1) sp ³ < sp ² < sp	2) 0.1 kg alpy of the elements are 2) N < Si < C < P and sp ³ orbitals is 2) sp < sp ² < sp ³	3) 1 kg in the order of 3) Si < P < C < N (C 3) $sp^2 < sp < sp^3$	4) 10 kg (Clas 4) P < Si < N < <i>chemical Bonding</i> 4) sp ² < sp ³ <	sification of elements) < C & Molecular structure)
126.	Hybridisation state of X	e in XeF_2 , XeF_4 and XeF	F_6 respectively are	hamiaal D anding	• Malaa
127. 128.	1) sp ² ,sp ³ d, sp ³ d ² Equal masses of helium exerted by oxygen in the 1) 1/3 Taking into account the <i>(States of Matter)</i>	2) sp ³ d,sp ³ d ² ,sp ³ d ³ n and oxygen are mixe e mixture of gases is 2) 2/3 pressure and volume co	(C 3) sp³d², sp³d,sp³d³ d in a container at 25 ºC 3) 1/9 prrections, the gas equati	4) sp ² ,sp ³ ,sp ³ d The fraction c 4) 4/9 on can be writte	Molecular structure) f f the total pressure (States of Matter) n as
	$1)\left(p+\frac{a^2}{v^2}\right)(V-b)=nR$	Т	$2)\left(p+\frac{an^2}{V^2}\right)(V-nb) =$	nRT	
	$3)\left(p+\frac{aV}{nRT}\right)\left(\frac{V-b}{nRT}\right)=$	RT	$4)\left(p+\frac{Z}{V^2}\right)(V-Zb)=r$	۱RT	
129.	The enthalpy of formation $-H$ N = N is 389 k. I mol	n of ammonia when calc -1 435 k.l mol ⁻¹ 945.36	culated from the following	bond energy da	ta is (B.E of N - H, H
120	1) -41.82 kJ mol ⁻¹	2) +83.64 kJ mol ⁻¹	3) -945.36 kJ mol ⁻¹	4) -833 kJ mol	-1
130.	1) 2	2) 8.4	3) 11.3	4) 2.7	(Equilibrium)
131.	1) 1/3	$K_2 \operatorname{Cr}_2 \operatorname{O}_7$ reduced by of 2) 1/6	ne mole of Sn ²⁺ ions is 3) 2/3	4) 3/4	(Redox Reactions)
132.	Which of the following is 1) F_2	s the strongest oxidizing 2) Cl ₂	y agent ? 3) Br ₂	4) I ₂	(Redox Reactions)
133.	Which of the following r 1) Na, Al, Si,O,	epresents calgon ? 2) Mg ₂ (PO ₄) ₂	3) Na,[Na,(PO,),]	4) Na ₂ [Mg ₂ (PC	(Hydrogen)),),]
134.	Which of the following is 1) Ca. Al.O.	not present in portland 2) Ca.SiO	cement? 3) Ca_SiO	4) Ca.(PO.).	(S-Block elements)
135.	Which of the follwoing is	s not a use of graphite ?	- / - 2 - 4	/ - 31 - 4/2	(P-Block elements)
136.	2) Crucibles made from 3) For adsorbing poisor 4) Lubricant at high tem In SiO ⁴⁻ ₄ , the tetrahedral 1) Sheet silicates	graphite are used for its nous gases. perature. molecule, two oxygen a 2) double - chain silica	atoms are shared in tes 3) chain silicates	and alkalies (4) three-dime	<i>P-Block elements)</i> entional silicates
137.	Which of the following is i) $CI_3CCOOH > CI_2CHCOii) CH_3CH_2COOH > (CHii) F_2CHCOOH > FCH_2C1) (i) and (ii)$	the correct order of acid OOH > CICH ₂ COOH $_{3}$) ₂ CHCOOH > (CH ₃) ₂ CO OOH > CICH ₂ COOH 2) (ii) and (iii)	dity of carboxylic acids ? <i>((</i> COOH 3) (i) and (iii)	Organic chemistry 4) (i), (ii) and (-some Basic Principle) iii)
138.	Identify X and Y in the fo	blowing reaction. $H_2 C - C$	$CH_2 + KOH \longrightarrow X \longrightarrow$	$\xrightarrow{\text{NaNH}_2} Y$	(Hydro Carbons)
	1) X = $CH_{3}CHBr$, Y = CH_{3} 3) X = CH_{2} = $CHBr$, Y =	$H_2 = CH_2$ CH \equiv CH	^{Br} 2) X = CH ₂ OH - CH ₂ OH 4) X = CH \equiv CBr, Y = 0	, Y = CH ₂ = CH ₂ CH \equiv CH	2
139.	Identify the reagent fron	n the following list which	can easily distinguish be	etween 1 - butyn	e and 2 - butyne
	1) Bromine water	2) Baeyer's reagent	3) Dilute H_2SO_4 + HgSC	D_4 4) Ammon	ical Cu ₂ Cl ₂

140.	Mark the incorrect choic 1) Lead - Kidney, Liver, F 2) Fluoride - Bones and 3) Nitrate - Blue baby's s 4) Sulphur dioxide - Nerv	e of ill effects caused by Reproductive system teeth yndrome yous system diseases	the pollutant.	(Environmental Chemistry)
141.	The fraction of the total π	volume occupied by the π	atoms present in a sir π	mple cube is (Solid State) π
	1) $\frac{\pi}{4}$	2) $\frac{\pi}{6}$	3) $\frac{\pi}{3\sqrt{2}}$	4) $\frac{\pi}{4\sqrt{2}}$
142.	A solution containing 10 mass of glycerine ?	.2 g glycerine per litre is	isotonic with a 2% sol	ution of glucose. What is the molecular (Solutions)
143.	1) 91.8 g same amount of electr obtained from AgNO ₃ so	2) 1198 g ic current is passed thr lution, the amount of hy	3) 83.9 g ough the solutions of ⁄drogen liberated at S	4) 890.3 g AgNO ₃ and HCI. If 1.08 g of silver is TP will be <i>(Electro Chemistry)</i>
144.	1) 1.008 g During electrolysis of a s be the mass of silver der	2) 11.2 g solution of AgNO ₃ , 9650 posited on the cathode 3	3) 0.01 g coulombs of charge is	4) 1.1 g s passed through the solution. what will (Electro Chemistry)
145.	1) 108 g The decomposition of different the given date 2 At	2) 10.8 g nitrogen pentoxide (N_2 (N_2)	3) 1.08 g O ₅) follows first order	4) 216 g rate law. what will be the rate constant
	At t = 1600 s, $[N_2O_5]$ = 0. 1) 3.12 x 10 ⁻⁴ s ⁻¹	t = 800 s, [N ₂ O ₅]=1.45 n 88 mol L ⁻¹ 2) 6.24 x 10 ⁻⁴ s ⁻¹	3) 2.84 x 10 ⁻⁴ s ⁻¹	<i>(Chemical Kinetics)</i> 4) 8.14 x 10 ⁻⁴ s ⁻¹
146.	The hydrolysis of ethyl a	cetate, $CH_3COOC_2H_5 +$	$H_2O \xrightarrow{H^+} CH_3COOH$	$H + C_2 H_5 OH$ is a reaction of
147.	1) zero order Mixing of positively cha	2) pseudo first order rged colloidal solution v	3) second order with negatively charg	(Chemical Kinetics) 4) third order ed colloidal solution brings The
148.	 decreasing order of coa 1) mutual coagulation , I 3) coagulation Na⁺ > Ba⁺ Blister copper is 1) impure copper 2) Obtained in self - reduced 	gulating power of Na⁺, E Na⁺ > Ba²⁺ > Al³⁺ ²⁺ > Al³⁺ nction process during be	3A ⁺² and Al ³⁺ for negat 2) mutual coagulation 4) Peptization, Al ³⁺ > <i>(Genral Principle</i> ssemerisation	ively charged solution is (Surface Chemistry) n Al ³⁺ > Ba ²⁺ > Na ⁺ Ba ²⁺ > Na ⁺ es and Process of Isolation of elements)
149.	4) None is correct Mark the correct statement 1) Electron affinity of ha 2) HF is the strongest hy 3) F_2 has lower bond dis	ents about halogens logens is in the order F rdrohalic acid sociation energy than C	> Cl > Br > I. I ₂	(P-Block Elements)
150.	4) All halogens show var The halogen that is mos 1) F.	able oxidation states. t easily reduced is 2) Cl.	3) Br.	(P-Block Elements)
151.	Composition of mischme 1) 5% of a lanthanoid m 2) 95% of an actinoid me 3) 95% of a lanthanoid m 4) 95% of a transition me	ental is etal, 95% of iron and tra- etal, 5% of iron and trac- netal, 5% of iron and trac- etal, 5% of iron and trac-	aces of S,C Ca and Al es of S, C, Ca and Al ces of S, C, Ca and Al es of S, C, Ca and Al	(d- and -f-block elements)
152.	The magnitude of magn	etic moment (Spin only)	of $[NiCl_4]^2$ will be 3) 1 23 B M	(Co-ordination Compounds)
153.	An alkyl halide, RX read	ts with KCN to give prop	oane nitrile. RX is	(HaloAlkanes & Halo Arenes)
154.	The major product obtaining $G_3 \square_7 B \square_$	ined on interaction of ph	enol with sodium hydr	4) ک ₅ ח ₁₁ Bi roxide and carbon dioxide is (Alcohols, Phenols and ethers)
155.	 benzoic acid Carboxylic acids dimeris High molecular weigh 	2) salicylaldehyde e due to t2) Coordinate bonding	3) salicylic acid (Al	4) phthalic acid Idehydes, Ketones & Carboxylic acids)
156.	3) Intermolecular hydrog What are the correct ste 1) CH_3MgBr , H_2O , Oxida 3) Reduction, KCN, Hyd	en bonding p to convert acetaldehyc tion rolysis	4) covalent bonding le to acetone ? 2) Oxidation, Ca(OH) 4) Oxidation, C ₂ H ₅ ON	<i>(Aldehydes, Ketones & Carboxylic acids)</i>) ₂ , Heat Na, Heat

157. The Hinsberg test of a compound, C₅H₁₄N₂ produces a solid that is insoluble in 10% aq. NaOH, This solid derivative dissolves in 10% aqueous sulphuric acid. Which of the following would best describe these facts ?

(Amines) 2) (CH₃)₂NCH₂CH₂NHCH₃ 1) NH₂CH₂CH₂N(CH₃)₂ $3) NH_{2}CH_{2}C(CH_{3})_{2}CH_{2}NH_{2}$ 4) $(CH_3)_2 NCH_2 N(CH_3)_2$ 158. Thymine is (Bio Molecules) 3) 3 - methyluracil 1) 5 - methyluracil 2) 4 - methyluracil 4) 1 - methyluracil 159. In vulcanization of rubber (Polymers) 1) Sulphur reacts to form a new compound 2) Sulphur cross - links are introduced 3) Sulphur forms a very thin protective layer over rubber 4) All statements are correct 160. What is tincture of iodine? (Chemistry in everyday life) 1) 2-3% solution of iodine in alcohol - water mixture. 2) A mixture of iodine in chloroxylenol. 3) A mixture of 0.2% phenol and 2-3% iodine in water 4) 2-3% solution of iodine in potassium iodide

MODEL PAPER -9 CHEMISTRY

121.	A solution is prepared by	y adding 5 g of a solu	te 'X' to 45 g of sol	vent 'Y' what is the	mass per cent of the solute
	X ? 1) 10%	2) 11 1%	3) 90%	(Some B 4) 75%	asic concept of chemistry)
122.	How many orbitals and	electrons are associa	ated with $n = 4$?	1,10,0	(Structure of Atom)
	1) 32, 64	2) 16, 32	3) 4, 16	4) 8, 16	
123.	An electron is in one of	the 3d - orbitals. what	at are the possible	values of n, ℓ and i	m for this electron
	1) n = 3. ℓ =0. m.=0		2) n=3. ℓ=1. r	n. = -1. 0. +1	(Structure of Atom)
	3) n=3, ℓ =2, m _{ℓ} = -2,-1,	0, +1,+2	4) n=3, <i>ℓ</i> =3, n	n, = -3,-2-1, 0, +1,+	-2,+3
124.	Which is the most electr	opositive element?			(Classification of elements)
125.	According to molecular	orbital theory, which	of the following wil	4) Ca I not exist ?	
	(Ch	emical Bonding & Mole	cular structure)		
400	1) H ⁺ ₂	2) Be ₂	3) B ₂	4) C ₂	
126.	1) N	2) F	electrons	(Chemical E 4)⊖ ²⁻	Bonding & Molecular structure)
127.	What is the variation of	Z with pressure ?	$\mathbf{O}_{\mathbf{O}_{2}}$		(States of Matter)
	1) At very low pressures	, all gases show Z=1	2) At high	pressures, all gas	es show Z > 1
	3) At intermediate press	ures, all gases show	Z < 1 = 4 All of the	e above.	
128	The unit of a in van de	r waals equation P	$+\frac{an^2}{1-a^2}$ $(V-nb) =$	nRT is	(States of Matter)
120.			V^2		
	1) atm L^2 mol ⁻²	2) atm L mol ⁻²	3) atm L mol ⁻¹	4) atm L	_ ² mol ⁻¹
129.	Two reactions	are	given bel	low: $C_{(graphite)} + O_{2(g)}$	$\rightarrow \text{CO}_{2(g)}; \Delta H = -393.7 \text{ kJ};$
	$C_{(diamond)} \rightarrow C_{(graphite)}; \Delta H =$	-2.1 kJ what quantit	ty of diamond will g	give 800 kJ of heat	on burning ?
		(Thermodynamics)			
120	1) 24.25 g	2) 15.24 g	3) 2 g what will be its sol	4) 12.12 12.12 (ubility in mol I	2 g
150.	1) 4 x 10^{-3}	2) 3.2×10^{-9}	3) 1 x 10 ⁻³	4) 1 x 1	(<i>Equilibriulii)</i> 0 ⁻⁹
131.	Fluorine is best oxidisin	g agent because	,	,	(Redox Reactions)
	1) It is most electronega	tive on potential	2) It has highe	est reduction potent	ial
132.	Which species is acting	as a reducing agent	in the following re-	action ?	
	$14H^+ + Cr_2O_7^{2-}$	$+ 3Ni \rightarrow 2Cr^{3+} + 7H_{2}$	0 + 3Ni ²⁺		(Redox Reactions)
	1) $Cr_2O^{2-}_7$	2) Ni	3) H⁺	4) H ₂ O	
133.	Hydrolysis of SiCl ₄ gives				(Hydrogen)
134	1) $SI(OH)_4$ The difference of water	2) SIUCI ₂ molecules in avosun	3) SIO ₂ and plaster of pa	4) H ₂ SiC ris is) ₄ (S-Block elements)
101.	5	inoloculoo in gypoun	1	1	(O-Block clements)
	1) $\frac{3}{2}$	2) 2	3) $\frac{1}{2}$	4) 1 1	
135.	Compete the following r	eactions :	_	_	
	(i) $SiO_2 + 2NaOH \rightarrow X +$	H ₂ O			
	(ii) SiO ₂ + 4HF \rightarrow Y + 2H	l₂O			
	(iii) Si +2CH3CI	^{der} →Z			(P-Block elements)
	1) X- Na ₂ SiO ₃ , Y-SiF ₄ , Z- 2) X No SiO $X + SiO$	$-(CH_3)_2SiCl_2$	2) X-H ₂ SiO ₃ , Y	$Y \rightarrow SiF_2$, Z-CH ₃ SiCl ₃	SiCI
136.	3) X-Na ₂ SIO ₃ , Y-H ₂ SIO ₃ , A type of zeolite used to	ୁ ଅ-(୯୮ ₃) ₃ ରାଠା convert alcohols dir	4) X-INa ₂ SIO ₃ , rectly into gasoline	r-⊓₂∂ιг₄, ∠-(∪⊓₃)₂ ⊧is	(P-Block elements)
	1) Zeolite A	2) Zeolite L	3) Zeolite Bet	a 4) ZSM	- 5
137.	In Lassaigne's test for N	I, S and halogens, th	e organic compou	nd is <i>(Organic ch</i>	emistry-some Basic Principle)
	3) extracted with sodium	ide	 2) dissolved w 4) Fused with 	ith sodamide calcium	
138.	What is the carbon - ca	rbon bond length in b	penzene?		(Hydro Carbons)
	1) 1.20 ºA and 1.31 ºA	2)1.39 ºA	3) 1.39 ºA and	1.20 °A 4) 1.2	0 ºA
139.	The following reaction i	s known as $C_6 H_6 + C$	$H_3CI \xrightarrow{AICI_3} C_6H$	$H_5CH_3 + HCI$	(Hydro Carbons)
	1) Wurtz - Fitting reactio	n	2) Friedel - Cr	afts reaction	
140	3) Rosenmund reaction		4) Sandmeye	r reaction	montal Chomistry)
1 70.	1) Increase in nutrients		2) Increase in	dissolved salts	mentar onemisa y
	3) reduction in dissolved	loxygen	4) Reduction	in water pollution.	
		V	WWW.AI	MSTUTORI	AL.IN

141 The density of a metal which crystallies in boc lattice with unit cell edge length 300 pm and molar mass 50g mol will be (Solid Stete) 1) 10 g cm ⁻³ 2) 14.2 g cm ⁻³ 3) 6.15 g cm ⁻³ 4) 9.32 g cm ⁻³ 122 Which of the following will have same value of vant Hoff factors ath of K. [FG(K),]? (Solutions) 11, A[SO,] 2) 1.32 g 3) 3.62 g 4) 4.22 g 112.64 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 12.64 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 12.64 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 12.7 g 2) 4.5 g 3) 27 g 4) 5.4 g (Chemical Kinetics) 12.7 d 2) 1.2 d 3) 3.7 g 4) 5.4 g (Chemical Kinetics) 13. The difference in energizes of reactants and products (Chemical Kinetics) 1) The difference in energize of intermediate complex with the average energy of reactants and products 14. The separation of an emulsion into its constituent liquids is known as (surface Chemistry) 1) Emulsification 2) Protection of colid 3) Cosguistion 4) Demulsification 14.8 Which of the following slags is produced during extraction of iron? (Ghemical Kinetics) 14.9 Flouring is the bast oxidising agent because thas (Machee Chemistry) 15.1 Floorence tone		WWW.A	IMSTUTORIA	J.IN
1) 10 g cm ³ 2) 14.2 g cm ³ 3) 6.15 g cm ³ 4) 9.32 g cm ³ (Solutiona) 1)AJ(SO ₂) 2) AICL, 3) AIV(NO ₂) 4) AIV(O+), 4) AIV(O+), 143. The amount of chiorine evolved by passing 2A of current in an aqueous solution of NaCIGr 3D minutes is (Electro Chemistry) 1)2.24 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 1)2.54 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 1)2.54 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 1)2.54 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 1)2.54 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 1)2.54 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 1)2.54 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 1)2.54 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 1)2.54 g 2) 1.32 g 3) 3.62 g 4) 4.22 g 1)2.54 g 2) 1.52 g 3) 27 g 4) 5.4 g (<i>Chemical Kinetcy</i>) 1)2.54 Rate of which reaction increases with tempature? 1)Evolthermic reaction 2) Endothermic reaction 3) Any of the above 4) None of the above 10 The difference in energy of intermediate complex with the average energy of reactants and products 3) The difference in energy of intermediate complex with the average energy of reactants and products 4) The difference in energy of intermediate complex with the average energy of reactants and products 3) The eightence in energy of intermediate complex with the average energy of reactants and products 4) The difference in energy of intermediate complex with the average energy of reactants 4) The difference in energy of intermediate complex with the average energy of reactants 4) The difference in energy of intermediate complex with the average energy of reactants 4) The difference in energy of intermediate complex with the average energy of reactants 4) The difference in energy of intermediate complex with the average energy of reactants 4) The difference in energy of intermediate complex with the average energy of reactants 4) The difference in energy of intermediate complex with the average of solation of elements 1) CaSIO, 2) FeSIO, 2) FeSIO, 3) MgSIO, 4) 2/2/SIO, 4) 2/2/SIO	141.	The density of a metal which crystallises in bcc mol ⁻¹ will be	lattice with unit cell edge	length 300 pm and molar mass 50g (Solid State)
143. The amount of chlorine evolved by passing 2A of current h ² an aqueous solution of NaCI for 30 minutes is (Electro Chemistry) 144. If 54 g of silver is deposited during an electrolysis reaction, how much aluminium will be deposited by the same mount of electric current? (Electro Chemistry) 12.7 g 4) 5.4 g (Electro Chemistry) 12.7 g 4) 5.4 g (Chemical Kinetics) 145. Rate of which reaction increases with tempeature? (Chemical Kinetics) 115. Rate of which reaction and endmain reaction is defined as (Chemical Kinetics) 117. The difference in energies of reactants and products (Chemical Kinetics) 12. The separation of an emulsion into its constituent liquids is known as (Surface Chemistry) 116. machine is the best oxidiating agent because it has (Gerral Principles and Process of Isolation of elements) 117. The correct order of acidity of exoacids of halogens is (Pallock Elements) 118. Which of the following slags is produced during extraction of inon? (Gerral Principles and Process of Isolation of elements) 119. CaSIO, 2) FeSiO, 3) MgSiO, 4) ZnSiO, 128. Which of the following complexes will have tetrahedral shape? (Coordination Compounds) 111. Macorece configuration of block elements is (Dienal Principles and Process of Isolation of elements) 111. Ho correct or	142.	1) 10 g cm ⁻³ 2) 14.2 g cm ⁻³ Which of the following will have same value of v 1) Al ₂ (SO ₂) ₂ 2) AlCl ₂	3) 6.15 g cm ⁻³ an't Hoff factor as that of 3) Al(NO ₂)	4) 9.32 g cm ⁻³ $K_{4}[Fe(CN)_{6}]$? (Solutions) 4) Al(OH)_
$ \begin{array}{c} (Electro Chemistry) \\ 1) 2.64 g 2) 1.32 g 3) 3.62 g 4) 4.22 g \\ 41. [E54 g of silver is deposited during an electrolysis reaction, how much aluminium will be deposited by the same amount of electric current? (Electro Chemistry) \\ 12.7 g 2) 4.5 g 3) 27 g 4) 5.4 g \\ 41. Rate of which reactor in creases with tempeature? (Chemical Kinetics) \\ 12.7 beothermic reaction 2) Endothermic reaction 3) Any of the above 4) None of the above (Chemical Kinetics) \\ 12.7 beothermic reaction and products (Chemical Kinetics) \\ 13.7 the difference in energy of intermediate complex with the average energy of reactants and products (Chemical Kinetics) \\ 13.7 the difference in energy of intermediate complex with the average energy of reactants and products (Chemical Kinetics) \\ 13.7 the difference in energy of intermediate complex with the average energy of reactants and products (Chemical Kinetics) \\ 14.7 The separation of an emulsion into its constituent liquids is known as (Curreac Chemistry) \\ 15.7 the difference in energy of intermediate complex with the average energy of reactants (Chemical Kinetics) \\ 10.7 the difference in energy of intermediate complex with the average energy of reactants (Chemical Kinetics) \\ 10.7 the difference in energy of intermediate complex and the average energy of reactants (Chemical Kinetics) \\ 10.7 the difference in energy of intermediate complex and the average energy of reactants (Chemical Kinetics) \\ 10.7 the difference in energy of intermediate complex and the average energy of reactants (Chemical Kinetics) \\ 10.8 the difference in energy of intermediate complex and the average energy of reactants (Chemical Kinetics) \\ 10.8 the difference in energy of intermediate complex and the average energy of reactants (Chemical Kinetics) \\ 10.8 the difference in energy of intermediate complex and the average energy of reactants (Chemical Kinetics) \\ 10.8 the difference in energy of intermediate complex and the average energy of reactants (Chemical Kinetics) \\ 10.8 the difference in energy of interm$	143.	The amount of chlorine evolved by passing 2A α	of current in an aqueous	solution of NaCl for 30 minutes is
anitod to electric current? 1) 2.7 2) 4.5 g 3) 27 g 4) 5.4 g 1) 2.7 2 2) 4.5 g 3) 27 g 4) 5.4 g 1) The difference in energy in a chemical reaction 3) Any of the above 4) None of the above 5) The difference in energy of intermediate complex with the average energy of reactants and products 3) The difference in energy of intermediate complex with the average energy of reactants and products 4) The difference in energy of intermediate complex with the average energy of reactants 4) The difference in energy of intermediate complex with the average energy of reactants 4) The difference in energy of intermediate complex with the average energy of reactants 4) The difference in energy of intermediate complex and the average energy of reactants 4) The difference in energy of intermediate complex and the average energy of reactants 4) The difference in energy of intermediate complex with the average energy of reactants 4) The difference in energy of intermediate complex and the average energy of reactants 4) The difference in energy of intermediate complex with the average energy of reactants 4) Demulsification 4) Deficience at the above 4) Foldon + Electon diffinity 5) The correct order diadity of oxoacids of halogens is 4) HCiO ₂ + HC	144.	1) 2.64 g 2) 1.32 g If 54 g of silver is deposited during an electrolysis	3) 3.62 g reaction, how much alun	(Electro Chemistry) 4) 4.22 g ninium will be deposited by the same
145. Rate of which reaction increases with tempeature? (Chemical Kinetics) 11 The difference in energy in a chemical reaction is defined as (Chemical Kinetics) 11 The difference in energy of intermediate complex with the average energy of reactants and products (Chemical Kinetics) 11 The difference in energy of intermediate complex with the average energy of reactants and products (Chemical Kinetics) 11 The difference in energy of intermediate complex with the average energy of reactants and products (Chemical Kinetics) 12 The separation of an emulsion into its constituent liquids is known as (Surface Chemistry) 11 Emulsification 2) Protection of colloid 3 Coagulation 4) Demulsification 12 Which of the following slags is produced during extraction of inor? (Chemical Kinetics) 13 Fugitation is the best oxidising agent because it has (Pelicok Elements) 13 highest electron affinity 2) highest reduction potential (Pelicok Elements) 14 (Coc) < HClO_		1) 2.7 g 2) 4.5 g	3) 27 g	(Electro Chemistry) 4) 5.4g
146. The activation energy in a chemical reaction is defined as (Chemical Kinetics) (Chemical Kinetics) 1) The difference in energy of intermediate complex with the average energy of reactants and products 3) The difference in energy of intermediate complex and the average energy of reactants and products 4) The difference in energy of intermediate complex and the average energy of reactants and products 4) The difference in energy of intermediate complex and the average energy of reactants and products 11 The separation of an emulsion into its constituent liquids is known as (Surface Chemistry) 1) Emulsification 2) Protection of collidi 3) Coagulation 4) Demulsification 13. Micho of the following stags is produced during extraction of iron? (Cenal Principles and Process of Isolation of elemonts) 14. The separation of an emulsion into its constituent liquids is known as (Particue Chemistry) 1) highest electron affinity 2) highest reduction potential 3) highest oxidation potential 19. Fluorine is the best oxidation potential 4) lowest electron affinity 10 (Particue Chemistry) 11 (Particue Chemistry) 12 (Particue Ch	145.	Rate of which reaction increases with tempeature 1) Exothermic reaction 2) Endothermic reaction	re? on 3) Any of the above	(Chemical Kinetics) 4) None of the above
 3) The difference in energy of intermediate complex with the average energy of reactants and products 4) The difference in energy of intermediate complex and the average energy of reactants and products 147. The separation of an emulsion into its constituent liquids is known as (Surface Chemistry) 1) Emulsification 2) Protection of colloid 3) Coagulation 4) Demulsification 110. CaSiO₃ 2) FeSiO₃ 3) MgSiO₂ 4) ZnSiO₃ 112 Fluorine is the best oxidising agent because it has (P-Block Elements) 1) highest electron affinity 2) highest reduction potential 3) highest oxidation potential 4) lowest electron affinity 110 Col > HCIO₂ < HCIO₂ 110 Col > HCIO₂ < HCIO₂ 110 Col > HCIO₃ < HCIO₄ 110 Col > HCIO₄ 110 Col > HC	146.	The activation energy in a chemical reaction is of 1) The difference in energies of reactants and p 2) The sum of energies of reactants and product	defined as roducts ts	(Chemical Kinetics)
147. The separation of an emulsion into its constituent liquids is known as (Surface Chemistry) 1) Emulsification 2) Protection of colioid 3) Cocquitation 4) Demulsification 148. Which of the following slags is produced during extraction of iron? (Genral Principles and Process of Isolation of elements) 1) CaSiO ₃ 2) FeSiO ₄ 3) MgSiO ₅ 4) ZnSiO ₅ 149. Fluorine is the best oxidising agent because it has (P.Block Elements) 1) highest electron affinity 2) highest reduction potential 4) lowest electron affinity 150. The correct order of addity of oxacids of halogens is (P.Block Elements) 1) HCIO < HCIO ₂ < HCIO ₂ < HCIO ₂ (HCIO ₄ < HCIO ₂ < HCIO ₂ 11 (HC - 1)f ¹¹ (n - 1)d ¹⁰ ns ² 2) (n - 1)f ¹¹ (n - 1)d ¹⁰ ns ² (Co-ordination Compounds) 1) (HO - 2)f ¹¹¹ (n - 1)d ¹⁰ ns ² 2) (Pa(CM), P ³ 3) (NiCI) ² 4) [NiCI, -1)d ²⁰ ns ² 125. Which of the following complexes will have tetrahedral shape? (Co-ordination Compounds) 1) Equimolar mixture of 1 and 2-butene 2) Predominantly 2-butene 3) Predominantly 2-butene 4) Predominantly 2-butene 4) Predominantly 2-butene 4) Toleane 152. Which of the following reactions, acetic acid yielded a product C (Alcohola, Phenols and ethers) 1) Benzaldehyde 2) Benzoic acid		3) The difference in energy of intermediate com4) The difference in energy of intermeidate com	plex with the average energies and the average energies and the average energies.	ergy of reactants and products ergy of reactants
148. Which of the following slags is produced during extraction of iron? (Genral Principles and Process of Isolation of elements) 1) CaSiO ₃ 2) FeSiO ₃ 3) MgSiO ₃ 4) ZnSiO ₃ 149. Fluorine is the best oxidising agent because it has (P-Block Elements) (P-Block Elements) 1) highest electron affinity 2) highest reduction potential 3) highest oxidation potential 4) lowest electron affinity 150. The correct order of acidity of oxoacids of halogens is (P-Block Elements) (P-Block Elements) 1) HOIO < HCIO ₂ < HCIO ₃ < HCIO ₃ (HCIO ₃ < HCIO ₃ < HCIO	147.	The separation of an emulsion into its constitue1) Emulsification2) Protection of colloid	nt liquids is known as 3) Coagulation	<i>(Surface Chemistry)</i> 4) Demulsification
1) CaSIO ₃ (2) FeSIO ₃ (3) MgSIO ₃ (4) ZnSIO ₃ (<i>P</i> -Block Elements) 1) highest electron affinity (2) highest reduction potential 3) highest electron affinity (<i>P</i> -Block Elements) 1) HCIO < HCIO ₃ < HCIO ₄ < HCIO ₄ (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	148.	Which of the following slags is produced during	extraction of iron? (Genral Principle	es and Process of Isolation of elements)
149. Fluorine is the best oxidising agent because it has (<i>P</i> -Block Elements) 1) highest electron affinity 2) highest reduction potential 3) highest electron affinity 2) highest reduction potential 10. Highest oxidation potential 4) lowest electron affinity 10. Highest oxidation potential 4) lowest electron affinity 11. Highest oxidation potential 4) lowest electron affinity 12. The correct configuration of f-block elements is (<i>d</i> - and -f-block elements) 11. (n - 2)f ¹⁺⁴ (n -1)d ¹⁻¹ ns ² 2) (n -1)f ¹⁺⁴ (n -1)d ¹⁻¹ ns ² 12. Which of the following complexes will have tetrahedral shape? (<i>Co-ordination Compounds</i>) 11. [FqCit]J ¹²⁻ 2) [Pd(CN),] ²⁻ 3) [NI(CN),] ²⁻ 4) [NICL,] ²⁻ 12. Elimination of bromine from 2-bromobutane results in the formation of (<i>HaloAlkanes & Halo Arenes</i>) 11. [Fqcitmolar mixture of 1 and 2-butene 2) Predominantly 2-butene 3) Predominantly 2-butene 13. Benzaldehyde 2) Benzoic acid 3) Benzene 4) Toluene 15. In a set of the given reactions, acetic acid yielded a product C CH ₀ -C(HOH)C, H, 1) CH ₂ CH(OH)C, H, 1) CH ₂ CH(OH)C, H, 10. CH ₂ CH(OH)C, H, 2) Primary alcohol is formed 3) CH, CH(OH)C, H, 1) CHobye, PC, H ¹ O, P, <td></td> <td>1) CaSiO₃ 2) FeSiO₃</td> <td>3) MgSiO₃</td> <td>4) ZnSiO₃</td>		1) CaSiO ₃ 2) FeSiO ₃	3) MgSiO ₃	4) ZnSiO ₃
3) highest oxidation potential 4) lowest electron affinity (<i>P.Biock Elements</i>) 1) HCIO < HCIO ₂ < HCIO ₃ (HCIO ₂ < HCIO ₃ < HCIO ₂ < HCIO ₃ < HCIO ₂ < HCIO ₃ < HCIO	149.	Fluorine is the best oxidising agent because it h 1) highest electron affinity	as 2) highest reduction pot	(<i>P-Block Elements)</i> ential
150. The correct order of acidity of oxoacids of halogens is (<i>P</i> -Block Elements) 1) HClO < HClO ₂ < HClO ₃ < HClO ₄ 2)HClO ₄ < HClO ₂ < HClO ₃ < HClO		3) highest oxidation potential	4) lowest electron affinit	ty
3) HClO < HClO ₂ < HClO ₃ < HClO	150.	The correct order of acidity of oxoacids of halog 1) $HCIO < HCIO_2 < HCIO_3 < HCIO_4$	$\begin{array}{c} \text{jens is} \\ \text{2)HCIO}_4 < \text{HCIO}_3 < \text{HCI} \\ \end{array}$	(P-Block Elements) $O_2 < HCIO$
1) $(n - 2)^{1+n} (n - 1)d^{1-ns^2}$ 3) $(n - 3)^{n+1} (n - 2)d^{1-1} (n - 1)s^{2}$ 4) $(n - 2)^{n+1} (n - 1)d^{1-ns^2}$ 152. Which of the following complexes will have tetrahedral shape? 1) [PdCl_] ² 2) [Pd(CN)_2 ¹ 3) [Ni(CN)_2 ¹ 4) [NiCl_1 ² 4) [NiCl_1 ² 153. Elimination of bromine from 2-bromobutane results in the formation of <i>(HaloAlkanes & Halo Arenes)</i> 1) Equimolar mixture of 1 and 2-butene 3) Predominantly 2-butene 3) Predominantly 1-butene 4) Predominantly 2-butyne 154. Consider the following reaction Phenol $\frac{2^{ndwl}}{2^{ndwl}} \times \frac{C^{4}_{C}C_{C}}{4^{1}_{C}C_{C}} \times \frac{(Alcohols, Phenols and ethers)}{(Alcohols, Phenols and ethers)}$ 1) Benzaldehyde 2) Benzoic acid 3) Benzene 4) Toluene 155. In a set of the given reactions, acetic acid yielded a product C CH ₃ COOH + PCl ₅ $\rightarrow A - \frac{C^{44}_{C}C_{C}}{A_{MB}, MC_{0}} \Rightarrow B - \frac{C^{44}_{MBP}}{e^{4}_{MBP}} \times C. Product C would be (Aldehydes, Ketones & Carboxylic acids) C2H5 1) CH3CH(OH)C2H5 2) CH4COC6H5 3) CH3CH(OH)C6H5 4) CH3OCOC6H5 1) Aldehyde is formed 2) Primary alcohol is formed 3) Ketone is formed 4) Grignard reagent is formed 157. C6H6 - \frac{1400}{1100} P - \frac{5^{NHCl}}{HO} - Q - \frac{Ma^{00}}{HO} - P^{H-\frac{1}{H_2O}} \rightarrow S. The end product S in the given sequence of reactions is1) Benzoic acid2) Benzene3) Phenol4) Ohlorobenzene (Amines)168. A nucleoside on hydrolysis gives(Bio Malccules)1) An aldopentose and a nitrogenous base2) An aldopentose and phosphoric acid3) An aldopentose, anitrogenous base2) An aldopentose and phosphoric acid3) An aldopentose, anitrogenous base3) Phenol4) Ohlorobenzene (Amines)158. A nucleoside on hydrolysis gives(Bio Malccules)1) It is tough, hard and rigid2) It is chemically inert, tough, flexible and poor conductor of electricity carrying wires and manufacture of flexiblepipes and squeeze bottles because(Polymers)1) It is unstable to heat and decomposes at cooking temperature2) It reacts with the food at cooking $	151.	3) HCIO < HCIO ₄ < HCIO ₃ < HCIO ₂ The correct configuration of f-block elements is	4) $HCIO_4 < HCIO_2 < HC$	(d- and -f-block elements)
 152. Which of the following complexes will have tetrahedral shape? (<i>Co-redination Compounds</i>) 1) [PdCl_]²⁻ 2) [Pd(CN),]²⁻ 3) [Ni(CN),]²⁻ 4) [Ni(C],]²⁻ 153. Elimination of bromine from 2-bromobutane results in the formation of <i>(HatoAlkanes & Hato Arenes)</i> 1) Equimolar mixture of 1 and 2-butene 2) Predominantly 2-butene 3) Predominantly 1-butene 4) Predominantly 2-butene 3) Predominantly 1-butene 4) Predominantly 2-butene 7. 154. Consider the following reaction Phenol 2-adust X and the formation of <i>(Alcohols, Phenols and ethers)</i> 1) Benzaldehyde 2) Benzoic acid 3) Benzene 4) Toluene 4. 155. In a set of the given reactions, acetic acid yielded a product C C CH₃COOH + PCl₅ → A and Accl₁ → B and the ether of the ether of C₂H₅ (<i>Alcohols, Phenols and ethers)</i> 1) CH₃CH(OH)C₂H₅ 2) CH₃COC₆H₅ 3) CH₃CH(OH)C₆H₅ 4) CH₃ - (COH)C₈H₅ 156. What happens when a carboxylic acids to treated with lithium aluminium hydride? (<i>Aldehydes, Ketones & Carboxylic acids</i>) 1) Aldehyde is formed 2) Primary alcohol is formed 3) Ketone is formed 4) Grignard reagent is formed 157. C₆H₆ = H^{MO2}/_{HGO} → P = H^{PO2}/_{HGO} → S. The end product S in the given sequence of reactions is 1) Benzoic acid 2) Benzene 3) Phenol 4) Chlorobenzene (<i>Amines)</i> 158. A nucleoside on hydrolysis gives (<i>Bio Molecules</i>) 1) An aldopentose and a nitrogenous base 2) An aldopentose and phosphoric acid 3) An aldopentose and phosphoric acid 4) A nitrogenous base and phosphoric acid 159. Low density polythene (LDP) is used in the insulation of electricity carrying wires and manufacture of flexible pipes and squeeze bottles because (<i>Polymers</i>) 1) It is chemically inert, tough, flexible and poor conductor of electricity 3) It is very tough, good conductor of electricity and flexible 4) It is onstable to heat and decomposes at cooking temperature 2) It is 500 times sweeter than		1) (n - 2)f ¹⁻¹⁴ (n-1)d ⁰⁻¹ ns ² 3) (n-3)f ¹⁻¹⁴ (n-2)d ⁰⁻¹ (n-1)s ²	2) $(n-1)f^{1-14}(n-1)d^{0-1}ns^2$ 4) $(n-2)f^{0-1}(n-1)d^{0-1}ns^2$	
 133. Elimination of bromine from 2-bromobutane results in the formation of (HaloAlkanes & Halo Arenes) 1) Equimolar mixture of 1 and 2-butene 2) Predominantly 2-butene 3) Predominantly 1-butene 4) Predominantly 2-butyne 154. Consider the following reaction Phenol Zndust × X (Alcohols, Phenols and ethers) 1) Benzaldehyde 2) Benzoic acid 3) Benzene 4) Toluene 155. In a set of the given reactions, acetic acid yielded a product C CH₃COOH + PCI₅ → A (Anth.AlO₅) × C. Product C would be (Aldehydes, Ketones & Carboxylic acids) CH₃COOH + PCI₅ → A (Alcohols, Phenols and ethers) 1) CH₃CH(OH)C₂H₅ 2) CH₃COC₆H₅ 3) CH₃CH(OH)C₆H₅ 4) CH₃ - C(OH)C₆H₅ 1) CH₃CH(OH)C₂H₅ 2) CH₃COC₆H₅ 3) CH₃CH(OH)C₆H₅ 4) CH₃ - C(OH)C₆H₅ 1) CH₃CH(OH)C₂H₅ 2) CH₃COC₆H₅ 3) CH₃CH(OH)C₆H₅ 4) CH₃ - C(OH)C₆H₅ 1) CH₃CH(OH)C₂H₅ 2) CH₃COC₆H₅ 3) CH₃CH(OH)C₆H₅ 4) CH₃ - C(OH)C₆H₅ 1) Aldehyde is formed 2) Primary alcohol is formed 3) Ketone is formed 4) Grignard reagent is formed 157. C₆H₆ (HNO₅) P (SiHO) (Aldehydes) (Aldehyde	152.	Which of the following complexes will have tetra 1) $[PdCl_4]^{2-}$ 2) $[Pd(CN)_4]^{2-}$	hedral shape? 3) [Ni(CN) ₄] ²⁻	(Co-ordination Compounds) 4) [NiCl ₄] ²⁻
 154. Consider the following reaction Phenol 2ndust, X, CH₂Cl, arbitration (XhrO₄, Y) atkaline(XhrO₄, Z). The product Z is (Alcohols, Phenols and ethers) 1) Benzaldehyde 2) Benzoic acid 3) Benzene 4) Toluene 155. In a set of the given reactions, acetic acid yielded a product C CH₃COOH + PCI₅ → A (C₂H₄)/(ACI₅) → B (C₂H₄MgBr)/(BHC) → C. Product C would be (Aldehydes, Ketones & Carboxylic acids) C₂H₅ 1) CH₃CH(OH)C₂H₅ 2) CH₃COC₆H₅ 3) CH₃CH(OH)C₆H₅ 4) CH₃ - C(OH)C₆H₅ 1) CH₃CH(OH)C₂H₅ 2) CH₃COC₆H₅ 3) CH₃CH(OH)C₆H₅ 4) CH₃ - C(OH)C₆H₅ 1) Aldehyde is formed 2) Primary alcohol is formed 3) Ketone is formed 4) Grignard reagent is formed 157. C₆H₆ (HNO₅)/(H₂)→ P (SinHeC)/(HC) → P (H₂O₅) × S. The end product S in the given sequence of reactions is 1) Benzoic acid 2) Benzene 3) Phenol 4) Chlorobenzene (Amines) 1) An aldopentose and a nitrogenous base 2) An aldopentose and phosphoric acid 3) An aldopentose, anitrogenous base and phosphoric acid 4) A nitrogenous base and phosphoric acid 1) It is ough, hard and rigid 2) It is chemically inert, torugh, flexible and poor conductor of electricity 3) It is very tough, good conductor of electricity and flexible 4) It is sustable to heat and decomposes at cooking temperature 2) It is stable to heat and decomposes at cooking temperature 4) It reacts with the food at cooking temperature 	153.	Elimination of bromine from 2-bromobutane result 1) Equimolar mixture of 1 and 2-butene 3) Predominantly 1-butene	ults in the formation of 2) Predominantly 2-bute 4) Predominantly 2-buty	(HaloAlkanes & Halo Arenes) ene /ne
(Alcohols, Phenols and ethers) 1) Benzaldehyde 2) Benzoic acid 3) Benzene 4) Toluene 155. In a set of the given reactions, acetic acid yielded a product C CH ₃ COOH + PCl ₅ → A (-C ₄ H ₆ /Anh.AlCl ₃) B (-C ₄ H ₄ MgBr)/(ether) → C. Product C would be (Aldehydes, Ketones & Carboxylic acids) 1) CH ₃ CH(OH)C ₂ H ₅ 2) CH ₃ COC ₆ H ₅ 3) CH ₃ CH(OH)C ₆ H ₅ 4) CH ₃ - C(OH)C ₆ H ₅ 1) CH ₃ CH(OH)C ₂ H ₅ 2) CH ₃ COC ₆ H ₅ 3) CH ₃ CH(OH)C ₆ H ₅ 4) CH ₃ - C(OH)C ₆ H ₅ 156. What happens when a carboxylic acid is treated with lithium aluminium hydride? (Aldehydes, Ketones & Carboxylic acids) 1) Aldehyde is formed 2) Primary alcohol is formed 3) Ketone is formed 4) Grignard reagent is formed 157. C ₆ H ₆ (-H ^{HOO} / _{HSO2}) P (-H ^{HOO} / _{HOO}) Q (-N ^{HOO} / _{HOO}) P (-H ^{HOO} / _{HOO}) S. The end product S in the given sequence of reactions is 1) Benzoic acid 2) Benzene 3) Phenol 4) Chlorobenzene (Amines) 158. A nucleoside on hydrolysis gives (Bio Molecules) (Polymers) (Polymers) (Polymers) 1) An aldopentose and a nitrogenous base 2) An aldopentose and phosphoric acid 3) An aldopentose, aniltrogenous base and phosphoric acid 4) A nitrogenous base and phosphoric acid 159. Low density polythene (LDP) is used in the insulation of electricity carrying wires and manufacture of flexible	154.	Consider the following reaction Phenol	$\rightarrow X \xrightarrow{CH_3Cl} Y \xrightarrow{alkaline}$	$\overset{\mathrm{KMnO}_4}{\longrightarrow}$ Z. The product Z is
 1) Benzaldehyde 2) Benzoic acid 3) Benzene 4) Toluene 155. In a set of the given reactions, acetic acid yielded a product C CH₃COOH + PCI₅ → A (-C₄H_b) B (-C₂H_bMgBr)/(-Anh.ACG₅) B (-C₂H_bMgBr)/(-Anh.ACG₅) B (-C₂H_b)/(-BH₅) C. Product C would be (Aldehydes, Ketones & Carboxylic acids) C₂H₅ 1) CH₃CH(OH)C₂H₅ 2) CH₃COC₆H₅ 3) CH₃CH(OH)C₆H₅ 4) CH₃ - C(OH)C₆H₅ 1) CH₃CH(OH)C₂H₅ 2) CH₃COC₆H₅ 3) CH₃CH(OH)C₆H₅ 4) CH₃ - C(OH)C₆H₅ 1) Aldehyde is formed 2) Primary alcohol is formed 3) Ketone is formed 4) Grignard reagent is formed 157. C₆H₆ (-HH₀O₃) P (-H₁D₁O) P (-H₁D₁O		5	annya. Aloi3	(Alcohols, Phenols and ethers)
$CH_{3}COOH + PCI_{5} \rightarrow A \xrightarrow{C_{4}H_{5}}_{Anh,ACl_{3}} B \xrightarrow{C_{4}H_{4}MgB^{-}}_{effer} C. Product C would be (Aldehydes, Ketones & Carboxylic acids) C_{2}H_{5} 1) CH_{3}CH(OH)C_{2}H_{5} 2) CH_{3}COC_{6}H_{5} 3) CH_{3}CH(OH)C_{6}H_{5} 4) CH_{3} - C(OH)C_{6}H_{5} 156. What happens when a carboxylic acid is treated with lithium aluminium hydride? (Aldehydes, Ketones & Carboxylic acids) 1) Aldehyde is formed 2) Primary alcohol is formed 3) Ketone is formed 4) Grignard reagent is formed 157. C_{6}H_{6} \xrightarrow{HNO_{5}}_{H_{2}SO_{4}} \rightarrow P \xrightarrow{Sn/HCl} Q \xrightarrow{NaNO_{2}}_{HCl} P \xrightarrow{H_{4}O_{2}}_{H_{2}O} S. The end product S in the given sequence of reactions is1) Benzoic acid 2) Benzene 3) Phenol 4) Chlorobenzene (Amines)158. A nucleoside on hydrolysis gives (Bio Molecules)1) An aldopentose and a nitrogenous base 2) An aldopentose and phosphoric acid3) An aldopentose, anitrogenous base and phosphoric acid 4) A nitrogenous base and phosphoric acid159. Low density polythene (LDP) is used in the insulation of electricity carrying wires and manufacture of flexiblepipes and squeeze bottles because (Polymers)1) It is tough, hard and rigid2) It is chemically inert, tough, flexible and poor conductor of electricity3) It is very tough, good conductor of electricity and flexible4) It is chemically inert, very soft, water absorbent and poor conductor of heat160. The use of aspartame is limited to cold foods and drinks because (Chemistry in everyday life)1) It is unstable to heat and decomposes at cooking temperature2) It is 500 times sweeter than cane sugar3) It becomes bitter at cooking temperature4) It reacts with the food at coo$	155.	1) Benzaldehyde 2) Benzoic acid In a set of the given reactions, acetic acid yielde	3) Benzene ed a product C	4) Toluene
 C₂H₅ 1) CH₃CH(OH)C₂H₅ 2) CH₃COC₆H₅ 3) CH₃CH(OH)C₆H₅ 4) CH₃ - C(OH)C₆H₅ 156. What happens when a carboxylic acid is treated with lithium aluminium hydride? (Aldehydes, Ketones & Carboxylic acids) 1) Aldehyde is formed 2) Primary alcohol is formed 3) Ketone is formed 4) Grignard reagent is formed 157. C₆H₆ - HNO₃ → P - SnHCI → Q - NHO₂ → P - H₁PO₂ → S. The end product S in the given sequence of reactions is 1) Benzoic acid 2) Benzene 3) Phenol 4) Chlorobenzene (<i>Amines</i>) 158. A nucleoside on hydrolysis gives (Bio Molecules) 1) An aldopentose, anitrogenous base and phosphoric acid 4) A nitrogenous base and phosphoric acid 3) An aldopentose, anitrogenous base and phosphoric acid 4) A nitrogenous base and phosphoric acid 159. Low density polythene (LDP) is used in the insulation of electricity carrying wires and manufacture of flexible pipes and squeeze bottles because (<i>Polymers</i>) 1) It is tough, hard and rigid 2) It is chemically inert, tough, flexible and poor conductor of electricity 3) It is very tough, good conductor of electricity and flexible 4) It is unstable to heat and decomposes at cooking temperature 2) It is 500 times sweeter than cane sugar 3) It becomes bitter at cooking temperature 4) It reacts with the food at cooking temperature 		$CH_{3}COOH + PCI_{5} \rightarrow A \xrightarrow{C_{6}H_{6}} B \xrightarrow{C_{2}H_{5}MgBr}_{ether} \rightarrow$	C. Product C would be	(Aldehydes, Ketones & Carboxylic acids)
 1) CH₃CH(OH)C₂H₅ 2) CH₃COC₆H₅ 3) CH₃CH(OH)C₆H₅ 4) CH₃ - C(OH)C₆H₅ 156. What happens when a carboxylic acid is treated with lithium aluminium hydride? (Aldehydes, Ketones & Carboxylic acids) 1) Aldehyde is formed 2) Primary alcohol is formed 3) Ketone is formed 4) Grignard reagent is formed 157. C₆H₆ - HNO₃ → P - Sn/HCl → Q - NaNO₂ → P - H₃PO₂ → S. The end product S in the given sequence of reactions is 1) Benzoic acid 2) Benzene 3) Phenol 4) Chlorobenzene (Amines) 158. A nucleoside on hydrolysis gives (Bio Molecules) 1) An aldopentose and a nitrogenous base 2) An aldopentose and phosphoric acid 3) An aldopentose, anitrogenous base and phosphoric acid 4) A nitrogenous base and phosphoric acid 159. Low density polythene (LDP) is used in the insulation of electricity carrying wires and manufacture of flexible pipes and squeeze bottles because (Polymers) 1) It is tough, hard and rigid 2) It is chemically inert, tough, flexible and poor conductor of electricity 3) It is very tough, good conductor of electricity and flexible 4) It is unstable to heat and decomposes at cooking temperature 2) It is 500 times sweeter than cane sugar 3) It becomes bitter at cooking temperature 4) It reacts with the food at cooking temperature 				C ₂ H ₅
1) Aldehyde is formed 2) Primary alcohol is formed 3) Ketone is formed 4) Grignard reagent is formed 157. $C_8H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q \xrightarrow{NaNO_2}{HCl} P \xrightarrow{H_3PO_2}{H_2O} S$. The end product S in the given sequence of reactions is 1) Benzoic acid 2) Benzene 3) Phenol 4) Chlorobenzene (<i>Amines</i>) 158. A nucleoside on hydrolysis gives (<i>Bio Molecules</i>) 1) An aldopentose and a nitrogenous base 2) An aldopentose and phosphoric acid 3) An aldopentose, anitrogenous base and phosphoric acid 4) A nitrogenous base and phosphoric acid 159. Low density polythene (LDP) is used in the insulation of electricity carrying wires and manufacture of flexible pipes and squeeze bottles because (<i>Polymers</i>) 1) It is tough, hard and rigid 2) It is chemically inert, tough, flexible and poor conductor of electricity 3) It is very tough, good conductor of electricity and flexible 4) It is chemically inert, very soft, water absorbent and poor conductor of heat 160. The use of aspartame is limited to cold foods and drinks because (<i>Chemistry in everyday life</i>) 1) It is unstable to heat and decomposes at cooking temperature 2) It is 500 times sweeter than cane sugar 3) It becomes bitter at cooking temperature 4) It reacts with the food at cooking temperature	156.	1) $CH_{3}CH(OH)C_{2}H_{5}$ 2) $CH_{3}COC_{6}H_{5}$ What happens when a carboxylic acid is treated (Aldebydes, Ketones & Carb	3) CH ₃ CH(OH)C ₆ H ₅ with lithium aluminium hypoxylic acids)	4) CH ₃ - Ċ(OH)C ₆ H ₅ ydride?
157. $C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} P \xrightarrow{Sn/HCl} Q \xrightarrow{NaNO_2}{HCl} P \xrightarrow{H_4PO_2}{H_{Cl}} S$. The end product S in the given sequence of reactions is 1) Benzoic acid 2) Benzene 3) Phenol 4) Chlorobenzene (Amines) 158. A nucleoside on hydrolysis gives (Bio Molecules) 1) An aldopentose and a nitrogenous base 2) An aldopentose and phosphoric acid 3) An aldopentose, anitrogenous base and phosphoric acid 4) A nitrogenous base and phosphoric acid 159. Low density polythene (LDP) is used in the insulation of electricity carrying wires and manufacture of flexible pipes and squeeze bottles because (Polymers) 1) It is tough, hard and rigid 2) It is chemically inert, tough, flexible and poor conductor of electricity 3) It is very tough, good conductor of electricity and flexible 4) It is chemically inert, very soft, water absorbent and poor conductor of heat 160. The use of aspartame is limited to cold foods and drinks because (Chemistry in everyday life) 1) It is sough to heat and decomposes at cooking temperature 2) It is 500 times sweeter than cane sugar 3) It becomes bitter at cooking temperature 4) It reacts with the food at cooking temperature		1) Aldehyde is formed 2) Primary alcohol is for	ormed 3) Ketone is forme	ed 4) Grignard reagent is formed
1) Benzoic acid 2) Benzene 3) Phenol 4) Chlorobenzene (Amines) 158. A nucleoside on hydrolysis gives (Bio Molecules) 1) An aldopentose and a nitrogenous base 2) An aldopentose and phosphoric acid 3) An aldopentose, anitrogenous base and phosphoric acid 4) A nitrogenous base and phosphoric acid 159. Low density polythene (LDP) is used in the insulation of electricity carrying wires and manufacture of flexible pipes and squeeze bottles because (Polymers) 1) It is tough, hard and rigid (Polymers) (Polymers) 1) It is very tough, good conductor of electricity and flexible (Chemistry in everyday life) 1) It is unstable to heat and decomposes at cooking temperature (Deletation endoced at cooking temperature 1) It poor the sweeter than cane sugar 3) It becomes bitter at cooking temperature 4) It reacts with the food at cooking temperature 4) It reacts with the food at cooking temperature	157.	$C_{6}H_{6} \xrightarrow{HNO_{3}} P \xrightarrow{Sn/HCl} Q \xrightarrow{NaNO_{2}} P \xrightarrow{H_{3}PO_{2}}_{Hcl}$	ightarrow S . The end product S in	n the given sequence of reactions is
 1) An aldopentose and a nitrogenous base 3) An aldopentose, anitrogenous base and phosphoric acid 4) A nitrogenous base and phosphoric acid 159. Low density polythene (LDP) is used in the insulation of electricity carrying wires and manufacture of flexible pipes and squeeze bottles because (Polymers) 1) It is tough, hard and rigid 2) It is chemically inert, tough, flexible and poor conductor of electricity 3) It is very tough, good conductor of electricity and flexible 4) It is chemically inert, very soft, water absorbent and poor conductor of heat 160. The use of aspartame is limited to cold foods and drinks because (Chemistry in everyday life) 1) It is unstable to heat and decomposes at cooking temperature 2) It is 500 times sweeter than cane sugar 3) It becomes bitter at cooking temperature 4) It reacts with the food at cooking temperature 	150	1) Benzoic acid 2) Benzene	3) Phenol	4) Chlorobenzene (Amines)
 159. Low density polythene (LDP) is used in the insulation of electricity carrying wires and manufacture of flexible pipes and squeeze bottles because (Polymers) 1) It is tough, hard and rigid 2) It is chemically inert, tough, flexible and poor conductor of electricity 3) It is very tough, good conductor of electricity and flexible 4) It is chemically inert, very soft, water absorbent and poor conductor of heat 160. The use of aspartame is limited to cold foods and drinks because (Chemistry in everyday life) 1) It is unstable to heat and decomposes at cooking temperature 2) It is 500 times sweeter than cane sugar 3) It becomes bitter at cooking temperature 4) It reacts with the food at cooking temperature 	100.	1) An aldopentose and a nitrogenous base 3) An aldopentose, anitrogenous base and phose	2) An aldope	entose and phosphoric acid
 1) It is tough, hard and rigid 2) It is chemically inert, tough, flexible and poor conductor of electricity 3) It is very tough, good conductor of electricity and flexible 4) It is chemically inert, very soft, water absorbent and poor conductor of heat 160. The use of aspartame is limited to cold foods and drinks because (Chemistry in everyday life) 1) It is unstable to heat and decomposes at cooking temperature 2) It is 500 times sweeter than cane sugar 3) It becomes bitter at cooking temperature 4) It reacts with the food at cooking temperature 	159.	Low density polythene (LDP) is used in the insu pipes and squeeze bottles because	lation of electricity carryin	ng wires and manufacture of flexible (Polymers)
 160. The use of aspartame is limited to cold foods and drinks because 1) It is unstable to heat and decomposes at cooking temperature 2) It is 500 times sweeter than cane sugar 3) It becomes bitter at cooking temperature 4) It reacts with the food at cooking temperature 		 2) It is chemically inert, tough, flexible and poor 3) It is very tough, good conductor of electricity and the provided statement of the provided statement	conductor of electricity and flexible	haat
 It is unstable to heat and decomposes at cooking temperature It is 500 times sweeter than cane sugar It becomes bitter at cooking temperature It reacts with the food at cooking temperature 	160.	The use of aspartame is limited to cold foods ar	nd drinks because	(Chemistry in everyday life)
3) It becomes bitter at cooking temperature 4) It reacts with the food at cooking temperature		1) It is unstable to heat and decomposes at cool 2) It is 500 times sweeter than cape sugar	king temperature	
		 3) It becomes bitter at cooking temperature 4) It reacts with the food at cooking temperature 	9	

MODEL PAPER - 10

CHEMISTRY

121.	In a reaction conatiner, f limiting reagent and how 1) H ₂ is limiting reagent 2) Cl ₂ is limiting reagent 3) H ₂ is limiting reagent 4) Cl ₂ is limiting reagent	100 g of hydrogen and 1 v much HCl is formed in and 36.5 g of HCl are fo and 102.8 g of HCl are f and 142 g of HCl are for and 73 g of HCl are for	00 g of Cl ₂ are mixed for the reaction ? rmed. formed. med med.	the formation o (Some Bas	of HCl gas, what is the sic concept of chemistry)
122.	Few electrons have follo (i) $n = 4$, $l = 1$	owing quantum numbers (ii) n = 4, l = 0	s, (iii) n = 3, l = 2	(iv) n = 3, l =	1
	Arrange them in the order $(ii) = (iii) = (ii)$	er of increasing energy f	rom lowest to highest.	(· (·) (iii) ~ (i) ~ (i)	Structure of Atom)
123.	The number of radial nodes + 2) (n - 2) radial nodes + 3) (n - 3) radial nodes + (n - 2) radial nodes + (n - 3) radial nodes +	bdes and angular nodes 1 angular node = $(n-1)$ 1 angular node = $(n - 1)$ 2 angular nodes = $(n - 1)$	total nodes $\ell = -1$ total nodes $\ell = -1$ total nodes	oresented as	(III) (Structure of Atom)
124.	Which of the following g	roups conatins metals, r	non - metals and metalloi	ds? (Cla	assification of elements)
125	1) Group 17 Which of the following h	2) Group 14 as strongest bond ?	3) Group 13	4)Group 12 Chemical Bondin	a & Molecular structure)
120.	1) HF	2) HCl	3) HBr	4) HI	g a molecular structure)
126.	Hydrogen bond betweer1) Displacement of electronic	n two atoms is formed du ctrons towards more ele	ue to ((ectronegative atom resul	<i>Chemical Bondin</i> Iting in fraction	g & Molecular structure) al positive charge on
	 hydrogen 2) Displacement of elect 3) Formation of a bond k 4) Existence of an attract 	trons towards hydrogen between hydrogen atom	atom resulting in a polar s of one molecule and th vdrogen atoms together	molecule e other	
127.	It is observed that H_2 ar because	nd He gases always sho	w positive deviation from	n ideal behavio	ur i.e., Z > 1. This is (States of Matter)
	 The value of a is very The weak intermolect The value of b is very Both a and b are very 	large due to high attraction (ular forces of attraction (large due to large size (small and pegligible)	tive forces due to which a is very sm of the molecules	hall and a/V^2 is	negligible
128.	Surface tension does no	ot vary with			(States of Matter)
120	1) temperature Which of the following re	2) concentration	3) size of the surface	4) vapour pre	essure.
120.	1) $\Delta H = \Delta E + \Delta n_{g} RT$		2) $\Delta H_{sub} = \Delta H_{fusion} + \Delta H$	Vap	mermouynumes)
120	3) $\Delta H_r^0 = \sum_{r} H_{f(reactants)}^0 - \sum_{r} H_{r}^0$	$\sum H^{0}_{f(\text{products})}$	4) $\Delta H_{r}^{0} = \Sigma B.E$ of react	ants - $\sum B.E$ of	f products
130.	Solubility product expre	ession of sait MA ₄ which	is sparingly soluble with	a solubility s c	an be given as <i>(Equilibrium)</i>
101	1) 256 s ⁵	2) 16 s ³	3) 5s	4) 25 s ⁴	
131.	1) F^{-}	2) Br ⁻	3) l ⁻	4) Cl⁻	(Redox Reactions)
132.	Given $E^{0}_{Ag^{+}/Ag} = +0.80 V$	/;E ⁰ _{Cu²⁺/Cu} = +0.34 V;E	$E_{Fe^{+3}/Fe^{+2}}^{0}$ = +0.76 V ; $E_{Ce^{+4}}^{0}$	_{'Ce⁺³} = +1.60V v	which of the following
	statements is not correc	t?			(Redox Reactions)
	 Fe³⁺ does not oxidise Ag will reduce Cu²⁺ to 	Ce³⁺ o Cu	 2) Cu reduces Ag+ to A 4) Fe³⁺ reduces Cu²⁺ to 	g Cu	
133.	Strength of 10 volume h	ydrogen peroxide solutio	on means	<u>ou</u>	(Hydrogen)
12/	1) 30.35 g L^{-1}	2) 17 g L ⁻¹	3) 34 g L ⁻¹	4) 68 g L ⁻¹	C Block clomonto)
104.	1) CaCl ₂	2) CaO	3) Ca(OCI) ₂	4) CaCO ₃	S-BIOCK elements)
135.	Glass and cement are to	wo important examples	of	(P-Blo	ock elements)
136.	Which of the following a	د∠) onicates cids cannot be stored in	oj Zeolites	4) organic po	nymers P-Block elements)
40-	1) HF	2) HCI	3) H ₂ SO ₄	4) HI	, <u>,</u>
137.	2.18g of an organic con the compound is	npound containing sulph	nur produces 1.02g of B	aSO_4 . THe per	centage of sulphur in
	1)1.20%	∠) ð.9ð%	3) 10%	4)0.42%	

138. Which of the following species does not show aromaticity?

2)

S.

1)

.. N H 3)

(Hydro Carbons)

1

4)

139. Similar to alkenes and alkynes benzene also undergoes ozonolysis. In the sequence of the given reaction identify X and Y. *(Hydro Carbons)*

$$+ O_3 \longrightarrow X \xrightarrow{Zn/H_2O} Y$$

	1) X = Triozonide, Y = Glyoxal	2) X = Diozonide, Y = S	uccinic acid
440	3) X = Monoozonide, Y = Benzoic acid	4) $X = 1$ riozonide, $Y = B$	enzaldenyde
140.	AS DDT passes into food chain, its concentration) 2) Bacamaa zara	(Environmental Chemistry)
111	I) Remains same 2) Decreases	3) Becomes Zero	4) increases
141.	1) Ager 2) AgC	2) KBr	(Solid State)
1/2	2 Ayol 2	Ulitres of water so that its o	4/2110
142.	What amount of $CaCl_2(1 - 2.47)$ is dissolved in 2		Shoue pressure is 0.5 attri at 21°C ?
	1) 3 42 a 2) 9 24 a	3) 2 834 a	4) 1 820 a
143	In electrolysis of dilute H SO what is liberated	at anode?	(Electro Chemistry)
140.	1) H 2) SO 2^{-1}	3) SO	(Liecuto chemistry)
144	When a lead storage battery is discharged	0,002	(Flectro Chemistry)
	1) Lead sulphate is consumed	2) Oxygen gas is evolve	ed
	3) Lead sulphate is formed	4) Lead sulphide is form	ned
145.	Which of the following factors are resonsible fo	r the increase in the rate of	of a surface catalysed reaction?
			(Chemical Kinetics)
	i) A catalyst provides proper orientation for the	reactant molecules to rea	ict
	ii) Heat of adsorption of reactants on a catalyst	helps reactant molecules	to overcome activation energy.
	iii) The catalyst increases the activation energy	of the reaction	
	1) i & iii 2) i & ii	3) ii & iii	4) i, ii & iii
146.	Threshold energy is equal to	,	(Chemical Kinetics)
	1) Activation energy	2) Activation energy - Ei	nergy of molecules
	3) Activation energy + Energy of molecules	4) None of these	
147.	What is the role of adsorption in froth floatation	process used especially f	for concerntration of sulphide ores?
			(Surface Chemistry)
	1) Shape selective catalysis	2) Adsorption of pine oil	on sulphide ore particles
	3) Adsorption of pine oil on impurities	4) Production of heat in	the process of exothermic reaction
148.	Most electropositive metals are obtained from the	neir ores by <i>(Genral Princip</i>	les and Process of Isolation of elements)
	1) Autoreduction 2) Smelting with carbo	n 3) Electrolysis of fused	I salts 4) Thermal decomposition
149.	In XeF ₂ , XeF ₄ and XeF ₆ the number of lone pair	s on Xe is respectively	(P-Block Elements)
	1) 2, 3, 1 2) 1, 2, 3	3) 4, 1, 2	4) 3, 2, 1
150.	1) 2, 3, 1 2) 1, 2, 3 Compound with the geometry square pyramida	3) 4, 1, 2 I and sp ³ d ² hybridisation is	4) 3, 2, 1 5 (P-Block Elements)
150.	1) 2, 3, 1 2) 1, 2, 3 Compound with the geometry square pyramida 1) $XeOF_2$ 2) $XeOF_4$	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO_4	4) 3, 2, 1 s (<i>P-Block Elements</i>) 4) XeO ₂ F ₂
150. 151.	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen	3) 4, 1, 2 l and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table	4) 3, 2, 1 (<i>P-Block Elements</i>) 4) XeO ₂ F ₂ (<i>d- and -f-block elements</i>)
150. 151.	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect metab	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ ments in the periodic table 3) 30	4) 3, 2, 1 (P-Block Elements) 4) XeO_2F_2 ? (d- and -f-block elements) 4) 28
150. 151. 152.	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin Zing 2) Hapmaglobin Iron	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table 3) 30 2) Vitemin B Cobolt	4) 3, 2, 1 s (P-Block Elements) 4) XeO ₂ F ₂ ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll, Chromium
150. 151. 152.	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen 1) 10 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beer	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ ments in the periodic table 3) 30 3) Vitamin B ₁₂ - Cobalt	 4) 3, 2, 1 5 (P-Block Elements) 4) XeO₂F₂ ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium
150. 151. 152. 153.	 1) 2, 3, 1 2) 1, 2, 3 Compound with the geometry square pyramida 1) XeOF₂ 2) XeOF₄ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear class 	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table 3) 30 3) Vitamin B ₁₂ - Cobalt ause 2) It undergoes chloring	 4) 3, 2, 1 5 (P-Block Elements) 4) XeO₂F₂ ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium (HaloAlkanes & Halo Arenes) tion in transparent glass bottles
150. 151. 152. 153.	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear glass 3) It is ovidised to poisonous gas, phosene in a	 3) 4, 1, 2 I and sp³d² hybridisation is 3) XeO₄ nents in the periodic table 3) 30 3) Vitamin B₁₂ - Cobalt ause 2) It undergoes chlorina 	 4) 3, 2, 1 5 (P-Block Elements) 4) XeO₂F₂ ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium (HaloAlkanes & Halo Arenes) tion in transparent glass bottles g when exposed to suplight
 150. 151. 152. 153. 154. 	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear glass 3) It is oxidised to poisonous gas, phosgene in s	 3) 4, 1, 2 I and sp³d² hybridisation is 3) XeO₄ nents in the periodic table 3) 30 3) Vitamin B₁₂ - Cobalt ause 2) It undergoes chlorina sunlight 4) It starts burning 	 4) 3, 2, 1 5 (P-Block Elements) 4) XeO₂F₂ ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium (HaloAlkanes & Halo Arenes) ation in transparent glass bottles g when exposed to sunlight (Alcohols Bhenols and others)
 150. 151. 152. 153. 154. 	 1) 2, 3, 1 2) 1, 2, 3 Compound with the geometry square pyramida 1) XeOF₂ 2) XeOF₄ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear glass 3) It is oxidised to poisonous gas, phosgene in s Cumene on reaction with oxygen followed by hy 1) CH OH and C H COCH 	 3) 4, 1, 2 I and sp³d² hybridisation is 3) XeO₄ nents in the periodic table 3) 30 3) Vitamin B₁₂ - Cobalt ause 2) It undergoes chlorina sunlight 4) It starts burning /drolysis gives 2) C H OH and (CH) C 	 4) 3, 2, 1 s (P-Block Elements) 4) XeO₂F₂ ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium (HaloAlkanes & Halo Arenes) tion in transparent glass bottles g when exposed to sunlight (Alcohols, Phenols and ethers)
 150. 151. 152. 153. 154. 	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear glass 3) It is oxidised to poisonous gas, phosgene in s Cumene on reaction with oxygen followed by hy 1) CH ₃ OH and C ₆ H ₅ COCH ₃ 3) C H OCH and CH OH	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table 3) 30 3) Vitamin B ₁₂ - Cobalt ause 2) It undergoes chlorina sunlight 4) It starts burning /drolysis gives 2) C ₆ H ₅ OH and (CH ₃) ₂ C 4) C ₆ H OH and CH CO	 4) 3, 2, 1 5 (P-Block Elements) 4) XeO₂F₂ ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium (HaloAlkanes & Halo Arenes) ation in transparent glass bottles g when exposed to sunlight (Alcohols, Phenols and ethers) CH
 150. 151. 152. 153. 154. 155. 	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear glass 3) It is oxidised to poisonous gas, phosgene in s Cumene on reaction with oxygen followed by hy 1) CH ₃ OH and C ₆ H ₅ OCH ₃ 3) C ₆ H ₅ OCH ₃ and CH ₃ OH Which of the following will not undergo HVZ real	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table 3) 30 3) Vitamin B ₁₂ - Cobalt ause 2) It undergoes chlorina sunlight 4) It starts burning /drolysis gives 2) C ₆ H ₅ OH and (CH ₃) ₂ C 4) C ₆ H ₅ OH and CH ₃ CO action?	 4) 3, 2, 1 S (P-Block Elements) 4) XeO₂F₂ ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium (HaloAlkanes & Halo Arenes) ition in transparent glass bottles g when exposed to sunlight (Alcohols, Phenols and ethers)) CH₅ Aldehydes, Ketones & Carboxylic acids)
 150. 151. 152. 153. 154. 155. 	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear glass 3) It is oxidised to poisonous gas, phosgene in s Cumene on reaction with oxygen followed by hy 1) CH ₃ OH and C ₆ H ₅ COCH ₃ 3) C ₆ H ₅ OCH ₃ and CH ₃ OH Which of the following will not undergo HVZ rea 1) Propanoic acid	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table 3) 30 3) Vitamin B ₁₂ - Cobalt ause 2) It undergoes chlorina sunlight 4) It starts burning /drolysis gives 2) C ₆ H ₅ OH and (CH ₃) ₂ C 4) C ₆ H ₅ OH and CH ₃ CO action? (A	 4) 3, 2, 1 (<i>P-Block Elements</i>) 4) XeO₂F₂ (<i>d- and -f-block elements</i>) 4) 28 (<i>Co-ordination Compounds</i>) 4) Chlorophyll - Chromium (<i>HaloAlkanes & Halo Arenes</i>) tion in transparent glass bottles g when exposed to sunlight (<i>Alcohols, Phenols and ethers</i>) CH₅ Aldehydes, Ketones & Carboxylic acids)
 150. 151. 152. 153. 154. 155. 	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear glass 3) It is oxidised to poisonous gas, phosgene in s Cumene on reaction with oxygen followed by hy 1) CH ₃ OH and C ₆ H ₅ COCH ₃ 3) C ₆ H ₅ OCH ₃ and CH ₃ OH Which of the following will not undergo HVZ rea 1) Propanoic acid 3) 2-Methylpropanoic acid	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table 3) 30 3) Vitamin B ₁₂ - Cobalt ause 2) It undergoes chlorina sunlight 4) It starts burning /drolysis gives 2) C ₆ H ₅ OH and (CH ₃) ₂ C 4) C ₆ H ₅ OH and CH ₃ CO action? (A 2) Ethanoic acid 4) 2.2-Dimethylpropano	 4) 3, 2, 1 (<i>P-Block Elements</i>) 4) XeO₂F₂ (<i>d- and -f-block elements</i>) 4) 28 (<i>Co-ordination Compounds</i>) 4) Chlorophyll - Chromium (<i>HaloAlkanes & Halo Arenes</i>) tion in transparent glass bottles g when exposed to sunlight (<i>Alcohols, Phenols and ethers</i>) CH₅ <i>Aldehydes, Ketones & Carboxylic acids</i>)
 150. 151. 152. 153. 154. 155. 156. 	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear glass 3) It is oxidised to poisonous gas, phosgene in s Cumene on reaction with oxygen followed by hy 1) CH ₃ OH and C ₆ H ₅ COCH ₃ 3) C ₆ H ₅ OCH ₃ and CH ₃ OH Which of the following will not undergo HVZ rea 1) Propanoic acid 3) 2-Methylpropanoic acid Which of the following orders is not correct for t	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table 3) 30 3) Vitamin B ₁₂ - Cobalt ause 2) It undergoes chlorina sunlight 4) It starts burning /drolysis gives 2) C ₆ H ₅ OH and (CH ₃) ₂ C 4) C ₆ H ₅ OH and CH ₃ CO action? (A 2) Ethanoic acid 4) 2,2-Dimethylpropano he decreasing order of ac	 4) 3, 2, 1 s (P-Block Elements) 4) XeO₂F₂ ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium (HaloAlkanes & Halo Arenes) ition in transparent glass bottles g when exposed to sunlight (Alcohols, Phenols and ethers)) CH₅ Aldehydes, Ketones & Carboxylic acids) ic acid cidic characer?
 150. 151. 152. 153. 154. 155. 156. 	1) 2, 3, 1 (compound with the geometry square pyramidal) XeOF ₂ (what is the total number of inner transition elem 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear glass 3) It is oxidised to poisonous gas, phosgene in s Cumene on reaction with oxygen followed by hy 1) CH ₃ OH and C ₆ H ₅ COCH ₃ 3) C ₆ H ₅ OCH ₃ and CH ₃ OH Which of the following will not undergo HVZ rea 1) Propanoic acid 3) 2-Methylpropanoic acid Which of the following orders is not correct for t	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table 3) 30 3) Vitamin B ₁₂ - Cobalt ause 2) It undergoes chlorina sunlight 4) It starts burning /drolysis gives 2) C ₆ H ₅ OH and (CH ₃) ₂ C 4) C ₆ H ₅ OH and CH ₃ CO action? (A 2) Ethanoic acid 4) 2,2-Dimethylpropano he decreasing order of ac	4) 3, 2, 1 s (P-Block Elements) 4) XeO_2F_2 ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium (HaloAlkanes & Halo Arenes) tion in transparent glass bottles g when exposed to sunlight (Alcohols, Phenols and ethers)) CH_5 Aldehydes, Ketones & Carboxylic acids) ic acid bidic characer? Aldehydes, Ketones & Carboxylic acids)
 150. 151. 152. 153. 154. 155. 156. 	1) 2, 3, 1 (compound with the geometry square pyramida 1) $XeOF_2$ (compound with the geometry square pyramida 2) $XeOF_4$ (compound with the geometry square pyramida (compound with the geometry square pyramida (compo	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table 3) 30 3) Vitamin B ₁₂ - Cobalt ause 2) It undergoes chlorina sunlight 4) It starts burning (drolysis gives 2) C ₆ H ₅ OH and (CH ₃) ₂ C 4) C ₆ H ₅ OH and CH ₃ CO action? (d) C ₆ H ₅ OH and CH ₃ CO b C ₁ - CD action (d) 2,2-Dimethylpropano he decreasing order of action (d) C ₁ - CH ₂ (CI)CH ₂ CH ₂ CO	4) 3, 2, 1 s (P-Block Elements) 4) XeO_2F_2 ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium (HaloAlkanes & Halo Arenes) ation in transparent glass bottles g when exposed to sunlight (Alcohols, Phenols and ethers)) CH_5 Aldehydes, Ketones & Carboxylic acids) bic acid cidic characer? Aldehydes, Ketones & Carboxylic acids) $OH > CH_3CH_2CH_2COOH$
 150. 151. 152. 153. 154. 155. 156. 	1) 2, 3, 1 Compound with the geometry square pyramida 1) $XeOF_2$ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear glass 3) It is oxidised to poisonous gas, phosgene in s Cumene on reaction with oxygen followed by hy 1) CH ₃ OH and C ₆ H ₅ COCH ₃ 3) C ₆ H ₅ OCH ₃ and CH ₃ OH Which of the following will not undergo HVZ rea 1) Propanoic acid 3) 2-Methylpropanoic acid Which of the following orders is not correct for t 1) CH ₃ CH ₂ CH(CI)COOH > CH ₃ CH(CI)CH ₂ COC 2) ICH ₂ COOH > BrCH ₂ COOH > CICH ₂ COOH >	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table 3) 30 3) Vitamin B ₁₂ - Cobalt ause 2) It undergoes chlorina sunlight 4) It starts burning /drolysis gives 2) C ₆ H ₅ OH and (CH ₃) ₂ C 4) C ₆ H ₅ OH and CH ₃ CO action? (A 2) Ethanoic acid 4) 2,2-Dimethylpropano he decreasing order of ac (A DH > CH ₂ (CI)CH ₂ CH ₂ CO FCH ₂ COOH	4) 3, 2, 1 s (P-Block Elements) 4) XeO_2F_2 ? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium (HaloAlkanes & Halo Arenes) ation in transparent glass bottles g when exposed to sunlight (Alcohols, Phenols and ethers)) CH_5 Aldehydes, Ketones & Carboxylic acids) bic acid cidic characer? Aldehydes, Ketones & Carboxylic acids) $OH > CH_3CH_2CH_2COOH$
 150. 151. 152. 153. 154. 155. 156. 	1) 2, 3, 1 Compound with the geometry square pyramida 1) XeOF ₂ 2) XeOF ₄ What is the total number of inner transition elen 1) 10 2) 14 Mark the incorrect match 1) Insulin - Zinc 2) Haemoglobin - Iron Chloroform is kept in dark coloured bottles beca 1) It reacts with clear glass 3) It is oxidised to poisonous gas, phosgene in s Cumene on reaction with oxygen followed by hy 1) CH ₃ OH and C ₆ H ₅ COCH ₃ 3) C ₆ H ₅ OCH ₃ and CH ₃ OH Which of the following will not undergo HVZ rea 1) Propanoic acid 3) 2-Methylpropanoic acid Which of the following orders is not correct for t 1) CH ₃ CH ₂ CH(CI)COOH > CH ₃ CH(CI)CH ₂ COCC 2) ICH ₂ COOH > BrCH ₂ COOH > CICH ₂ COOH > 3) CCl ₃ COOH > CHCl ₂ COOH > CH ₂ CICOOH >	3) 4, 1, 2 I and sp ³ d ² hybridisation is 3) XeO ₄ nents in the periodic table 3) 30 3) Vitamin B ₁₂ - Cobalt ause 2) It undergoes chlorina sunlight 4) It starts burning /drolysis gives 2) C ₆ H ₅ OH and (CH ₃) ₂ C 4) C ₆ H ₅ OH and CH ₃ CO action? (A 2) Ethanoic acid 4) 2,2-Dimethylpropano he decreasing order of ac (A DH > CH ₂ (CI)CH ₂ CH ₂ CO FCH ₂ COOH CH ₃ COOH	4) 3, 2, 1 s (P-Block Elements) 4) XeO_2F_2 ?? (d- and -f-block elements) 4) 28 (Co-ordination Compounds) 4) Chlorophyll - Chromium (HaloAlkanes & Halo Arenes) tion in transparent glass bottles g when exposed to sunlight (Alcohols, Phenols and ethers)) CH_5 Aldehydes, Ketones & Carboxylic acids) wic acid cidic characer? Aldehydes, Ketones & Carboxylic acids) OH > $CH_3CH_2CH_2COOH$

